

1

1.1INTRODUCTION:

Cloud computing is becoming more and more popular in the recent trend as it provides

many benefits over the traditional data center solutions.

It is a style of computing in which IT related capabilities are provided “as a service”,

allowing users to access a shared pool of configurable computing resources such as

networks, servers, storage, applications that can be rapidly provisioned and released

from the Internet (i.e., the Cloud) without knowledge of, expertise with, or control over

the technology infrastructure that supports them.{Sarga, 2012 #1}

Even though cloud computing brings many benefits and reduces costs, there is still

much distrust of such services from a security standpoint, and a lot of security

concerns. Before moving to the cloud, organizations must have a well defined

methodology for data migration. Cloud computing should be approached carefully and

the data sensitivity should be taken in consideration. By adopting the cloud model,

organization doesn’t have the control over their data, which a more classical model

provides. By doing so, they trust the provider’s security policy. Security and privacy

issues must be addressed at an early stage, because the subsequent changes could bring

many complications, which can be expensive and risky.

1.2 RESEARCH PROBLEM:

The shared development environment presents some unique challenges, include those

involving authentication, access control and authorization. Working with distributed

applications and storage make data stored in cloud storage easily targeted by the

masquerade attack and the insider data theft attack. These attacks threaten the data

security and the data privacy of the stored data.

 The major challenges that any cloud computing service provider must overcome

are to make sure that if its servers are attacked by hackers, the client data cannot be

stolen or misused and secondly the confidential client data must remain invisible even

to the cloud service providers. The data needs to be encrypted and then sent to the

2

cloud provider. This means that the provider cannot operate on the data until it decrypts

the same. The client has to provide private key to the server (has to compromise on

confidentiality) for decryption and only then subsequent operations can be done on the

data.

1.3PROJECTOBJECTIVES :

 The main objective of this project is to implement a cloud based application that

use encryption techniques to provide data confidentially.

 Allow cloud provider to operate on the data in encrypted form without decrypt it.

1.4METHODOLOGY:

This thesis focuses on addressing security and privacy issues in the cloud by basically

encrypting data before sending them to the cloud.

Our basic concept was to encrypt the data before send it to the Cloud provider, this

means that the provider cannot operate on the data until it decrypts the same. This

becomes a problem as the client has to compromise on confidentiality and share the

private key to the server for decryption and only then subsequent operations can be

done on the data. Also, this decryption process can be a performance issue for the

service provider whenever it wants to operate on its client data.

This application will be a Cloud based Open Share point Website from where the users

can store and manage their data onto the cloud. This data can be application data,

personal data or computed data and will be in encrypted format.

1.5 ORGANIZATION OFRESEARCH:

Beside this chapter, this thesis consists of five chapters, as following:

Chapter 2: consists of two sections, first section discusses a background of cloud

computing and the second one discusses previous studies that related to the thesis .

Chapter 3: discusses the methodology of the thesis .

3

Chapter 4: discusses tools and platforms and techniques witch used in the

thesis .

Chapter 5: discusses implementation of the system and the results of this thesis .

Chapter 6: contains the conclusion and recommendation and the obstacles.

4

2.1 BACK GROUND

This chapter provides a brief overview about background of Cloud Computing. Section

2..11 provides the standard definition of Cloud Computing and its essential

characteristics, services, deployment models respectively. The section 2.1.2 gives brief

information about the Cloud Actors .Section 2.1.3 deals with the importance of security

in the Cloud Computing, whereas section 2.1.4 provides the major security issues in

Cloud.

2.1.1 What Is Cloud Computing?

Cloud is a computing model that refers to both the applications derived as services over

the Internet, the hardware and system software in the datacenters that provide those

services. Cloud Computing is treated as the high potential paradigm used for

deployment of applications on Internet. This concept also explains the applications that

are broaden to be accessible through the Internet. Cloud applications use large data

centers and effective servers that host web applications and services.

2.1.1.1 Definition Of Cloud Computing

Cloud Computing is rapidly being accepted as a universal access appliance on the

Internet. A lot of attention has been given to the Cloud Computing concept in deriving

standard definitions. However, the definitions of Cloud Computing remain

controversial. But here we have considered the standard definition which was given by

the National Institute of Standards and Technology (NIST): “Cloud Computing is

model for enabling ubiquitous, convenient, on demand network access to a shared pool

of configurable computing resources (e.g., networks, servers, storage, applications and

services) that can be rapidly provisioned and released with minimal management effort

or service provider interaction”,{Maddineni, 2012 #2} .

2.1.1.2 Essential Characteristics of Cloud Computing :

According to NIST, the Cloud model is composed of five essential characteristics:

5

 On-demand self-service: A consumer can unilaterally provision computing

capabilities, such as server time and network storage, as needed automatically

without requiring human interaction with each service provider .

 Broad network access: Capabilities are available over the network and

accessed through standard mechanisms that promote use by heterogeneous thin

or thick client platforms (e.g., mobile phones, tablets, laptops, and workstations)

.

 Resource pooling: The provider’s computing resources are pooled to serve

multiple consumers using a multi-tenant model, with different physical and

virtual resources dynamically assigned and reassigned according to consumer

demand. Examples of resources include storage, processing, memory, and

network bandwidth .

 Rapid elasticity: Capabilities can be elastically provisioned and released, in some

cases automatically, to scale rapidly outward and inward commensurate with

demand. To the consumer, the capabilities available for provisioning often

appear to be unlimited and can be appropriated in any quantity at any time.

 Measured service: Cloud systems automatically control and optimize resource

use by leveraging a metering capability (pay-per-use basis) at some level of

abstraction appropriate to the type of service (e.g., storage, processing,

bandwidth, and active user accounts). Resource usage can be monitored,

controlled, and reported, providing transparency for both the provider and

consumer of the utilized service .

2.1.1.3 Service Models Of Cloud Computing

According to NIST, the cloud model is composed of three service models:

6

2.1.1.3.1Software as a Service (SaaS) :

In this model, software is delivered or offered to customers as a service. SaaS is a

software application delivery model in which enterprises hosts and operates their

application over the internet so that customers can access it. Earlier, companies have

run software on their own internal infrastructures and computer networks, but now

most of them have migrated to the SaaS model. One benefit of this model is customers

do not need to buy any software licenses or any additional equipment for hosting the

application. Instead, they pay for using the software application.

2.1.1.3.2 Platform as a Service (PaaS):

This model provides a platform for building and running custom applications. There is

a lot of complexity and cost involved in building and running applications within the

enterprise like support from hardware, a database, middleware, an operating system and

other software. Enterprises should have team of network, database and system experts

for setting up the configuration suitable for development. With continuous evolving

business requirements, the application needs to be changed every time thus causing

long development cycles due to redeployment. With PaaS, enterprises can build

applications without installing any tools on their local systems and can deploy them

without many difficulties. By using PaaS as a development platform web applications

can be built almost five times faster than using conventional Java or .Net methods.

2.1.1.3.1Infrastructure as a Service (IaaS):

In organizations, maintaining their internal IT related tasks like installing, configuring

servers, routers, firewalls and other devices is a cumbersome process and it requires

dedicated personnel for carrying out these tasks. Apart from this there are many

challenges the enterprise has to tackle while managing their infrastructure. IaaS

provides a solution by migrating the IT infrastructure to the cloud and it is the

responsibility of the cloud provider to tackle the issues of IT infrastructure

management. Virtualization techniques are most commonly used in this model.

7

VMWare, Amazon EC2, IBM BlueHouse, Microsoft Azure, Sun ParaScale Cloud

Storage, etc are some of the infrastructure services.{Annapureddy, 2010 #3}

2.1.1.4 Deployment Models of Cloud Computing :

According to NIST, the cloud model is composed of four deployment models:

 Private cloud: The cloud infrastructure is provisioned for exclusive use by a

single organization comprising multiple consumers (e.g., business units). It may

be owned, managed, and operated by the organization, a third party, or some

combination of them, and it may exist on or off premises .

 Community cloud: The cloud infrastructure is provisioned for exclusive use by

a specific community of consumers from organizations that have shared concerns

(e.g., mission, security requirements, policy, and compliance considerations). It

may be owned, managed, and operated by one or more of the organizations in the

community, a third party, or some combination of them, and it may exist on or

off premises .

 Public cloud: The cloud infrastructure is provisioned for open use by the general

public. It may be owned, managed, and operated by a business, academic, or

government organization, or some combination of them. It exists on the premises

of the cloud provider .

 Hybrid cloud: The cloud infrastructure is a composition of two or more distinct

cloud infrastructures (private, community, or public) that remain unique entities,

but are bound together by standardized or proprietary technology that enables

data and application portability (e.g., cloud bursting for load balancing between

clouds) {Maddineni, 2012 #2}.

8

2.1.2 Cloud Actors :

The NIST Cloud Computing Reference Architecture defines five different actors

related to cloud computing: consumer, provider, auditor, broker, carrier.

1. Cloud Provider :

“A person, organization, or entity responsible for making a service available to

interested parties. A Cloud Provider acquires and manages the computing

infrastructure required for providing the services, runs the cloud software that

provides the services, and makes arrangement to deliver the cloud services to the

Cloud Consumers through network access” .

2. Cloud Consumer:

"A person or organization that maintains a business relationship with, and uses

service from, Cloud Providers. A cloud consumer browses the service catalog from

a cloud provider, requests the appropriate service, sets up service contracts with the

cloud provider, and uses the service."

3. Cloud Auditor:

“ A party that can conduct independent assessment of cloud services, information

system operations, performance and security of the cloud implementation. A cloud

auditor is a party that can perform an independent examination of cloud service

controls with the intent to express an opinion thereon. A cloud auditor can evaluate

the services provided by a cloud provider in terms of security controls, privacy

impact, performance, etc. “

4. Cloud Broker:

 "As cloud computing evolves, the integration of cloud services can be too complex for

cloud consumers to manage. A cloud consumer may request cloud services from a

cloud broker, instead of contacting a cloud provider directly. Hence the broker is an

entity that manages the use, performance and delivery of cloud services, and negotiates

9

relationships between Cloud Providers and Cloud Consumers." Brokers provide three

different types of services to the Cloud Consumer.

5. Cloud Carrier :

“ An intermediary that provides connectivity and transport of cloud services from

Cloud Providers to Cloud Consumers. Cloud carriers provide access to consumers

through network, telecommunication and other access devices.” {#4}

2.1.3 Importance of Security in Cloud Computing:

Security is an essential component of strong privacy safeguards in all online computing

environments. Cloud customers and business providers both are willing to use online

computing only if they trust that, their data will remain private and secure , because

The information housed on the cloud is often seen as valuable to individuals with

malicious intent. There is a lot of personal information and potentially secure data that

people store on their computers, and this information is now being transferred to the

cloud. {ASHALATHA, #5}

2.1.4 Important Security Issues in the Cloud :

Even though, the virtualization and Cloud Computing delivers wide range of dynamic

resources, the security concern is generally perceived as the huge issue in the Cloud

which makes the users to resist themselves in adopting the technology of Cloud

Computing. Some of the security issues in the Cloud are discussed below:

Integrity: Integrity makes sure that data held in a system is a proper representation of

the data intended and that it has not been modified by an authorized person. When any

application is running on a server, backup routine is configured so that it is safe in the

event of a data-loss incident. Normally, the data will backup to any portable media on a

regular basis which will then be stored in an off-site location {#4}.

10

Availability: Availability ensures that data processing resources are not made

unavailable by malicious action. It is the simple idea that when a user tries to access

something, it is available to be accessed. This is vital for mission critical systems.

Availability for these systems is critical that companies have business continuity plans

(BCP‟s) in order for their systems to have redundancy {#4}.

Confidentiality: Confidentiality ensures that data is not disclosed to unauthorized

persons. Confidentiality loss occurs when data can be viewed or read by any

individuals who are unauthorized to access it. Loss of confidentiality can occur

physically or electronically. Physical confidential loss takes place through social

engineering. Electronic confidentiality loss takes place when the clients and servers

aren’t encrypting their communications {#4}.

11

2.2. INTRODUCTION :
This part demonstrates three previous research , all of this researches discuss security

issues in cloud computing and some of them provide solutions .

2.2.1 SECURITY ISSUES AND USE OF CRYPTOGRAPHY IN

CLOUD COMPUTING:

The paper {Sarddar, 2015 #8} discuss cloud security model for servicing to the

consumers, security issues, analysis of vulnerabilities and attacks cloud computing

frameworks, and the role of cryptography in cloud computing. to get insights a new

security approach with the implementation of cryptography to secure a data at cloud

data centers. So, the cloud data centers are assessed by the authenticated clients only

and the approach takes a less time for execution and better security parameter.

2.2.1.1 Cloud Security Model For Servicing To The Consumers :

During communication process consumers are front end and cloud service providers are

back end. For resource pooling various steps are included:

 User authentication and login process: In this web browser collects all necessary

information about the consumer using various security technologies/protocols

like SSL/SSH/TLS.

 Web browser provides all information to policy manager which authenticate the

consumer using public key infrastructure, certification authority and others.

2.2.1.2 Use Of Cryptography In Cloud Computing :

In cloud computing the users can upload their information to the centralized large data

centers where management of data and services are not trust worthy because

information is uploaded by the users into cloud data centers not encrypted hence that is

accessed by everyone and lead to above mentioned security challenges. For better

security of cloud data centers the information is encrypted by the users by using

cryptography techniques before uploading into the cloud data centers.

12

2.2.2 DATA SECURITY IN CLOUD COMPUTING WITH

ELLIPTIC CURVE CRYPTOGRAPHY:
The paper {Gampala, 2012 #7} explore data security of cloud in cloud computing by

implementing digital signature and encryption with elliptic curve cryptography.

 The author consider the security of the traditional environment To preserve

security of your cloud-based virtual infrastructure, you must perform security best

practice at both the traditional IT and virtual cloud. To ensure data confidentiality,

authentication, integrity, and availability, the provider should include the following

solutions:

 Encryption: the sensitivity of data may require that the network traffic to and

from the virtual machine be encrypted, using encryption at the host OS software.

 Physical security: keep the virtual system and cloud management hosts safe and

secure behind carded doors, and environmentally safe.

 Authentication and access control: the authentication capabilities within your

virtual system should copy the way your other physical systems authenticate.

One time password and biometrics should all be implemented in the same

manner. Also authentication requires while you are sending data or message

from one cloud to other cloud. To provide message authentication we will use

digital signatures.

 Separation of duties: as system get more complex, misconfiguration take place,

because lack of expertise coupled with insufficient communication. Be sure to

enforce least privileges with access controls and accountability.

 Configuration, change control, and patch management: this is very important and

sometimes overlooked in smaller organizations. Configuration, change control,

patch management, and updated processes need to be maintained in the virtual

world as well as physical world.

13

 Intrusion detection and prevention: what’s coming into and going out of your

network has to know. A host based intrusion prevention system coupled with a

hypervisor based solution could examine for virtual network traffic.

The proposed security solutions, is authentication and encryption for secure data

transmission from one cloud to other cloud that requires secure and authenticated data

with elliptic curve cryptography.

Proposed Procedure To Enhance Data Security In Cloud :

A and B act as public clouds with data, software and applications. A want to send data

to B’s cloud securely and data should be authenticated. We are here trying to send a

secure data from A to B by applying digital signature and encryption to data with

elliptic curve cryptography. if B wants document from A’s cloud then B’s user will

place a request to A’s user. A’s user select corresponding document from A’s cloud

data storage and then apply the hash function, it will give message digest. Sign the

message digest with his private key by using A’s software. It is called digital signature.

Encrypt digitally signed signature with B’s public key using ECC algorithm. Encrypted

cipher message will be send to B. B’s software decrypt the cipher message to document

with his private key and verify the signature with A’s public key. using ECC algorithm.

Encrypted cipher message will be send to B. B’s software decrypt the cipher message

to document with his private key and verify the signature with A’s public key.

2.2.3 PRIVACY AND CONFIDENTIALITY ISSUES IN

CLOUD COMPUTING ARCHITECTURES:
The master thesis{Jiménez Martínez, 2013 #6} discuss the privacy and confidentiality

requirements, issues and challenges applied to the Cloud Computing paradigm, identify

the existing evidence on this topic and establish relationships among works to find gaps

and conflicting areas.

14

 The methodology used was a systematic literature review, to provide the reader with a

portion of the current research background in this field.

What is the Systematic Literature Review :

A systematic literature review (often referred to as a systematic review) is a means of

identifying, evaluating and interpreting all available research relevant to a particular

research question, or topic area, or phenomenon of interest. Individual studies

contributing to a systematic review are called primary studies; a systematic review is a

form of secondary study.

The review questions of the thesis:

 What is the impact of privacy and confidentiality requirements in Cloud

Computing architectures?

 Which are the currently identified issues and challenges regarding privacy and

confidentiality in Cloud Computing platforms. What are some of the solutions

proposed to solve these issues?

15

3.1METHODOLOGY:
This thesis focuses on addressing security and privacy issues in the cloud by basically

encrypting data before sending them to the cloud.

Then the data remain encrypted in the cloud and only users authorized by the data

owner can get the credential for accessing the encrypted data. The encrypted data can

be decrypted only after they are downloaded to an authorized user machine. In such a

scenario, the privacy of the data does not depend on an implicit assumption of trust of

the server or of the service level of agreement (SLA). Instead, the protection of privacy

depends on the encryption techniques used to protect the data .the proposed schema

was shown in Figure 3.1.

Figure 3.1:Basic Architecture for Preserving Data Privacy in the Cloud

{Mohammad, 2014 #9}

When the data transferred to the Cloud we use standard encryption methods to secure

the operations and the storage of the data. Our basic concept was to encrypt the data

before send it to the Cloud provider.

16

 But the last one needs to decrypt data at every operation. The client will need to

provide the private key to the server (Cloud provider) to decrypt data before execute the

calculations required ,which might affect the confidentiality and privacy of data stored

in the Cloud.

3.2PROPOSED SYSTEM DESIGN:
The proposed system is cloud based platform which will be used by the user to

upload data onto the cloud. An open share point website will be deployed onto the

cloud for this purpose using java Enterprise Edition (JEE) technology. Once logged in

successfully, the user will be prompted to encrypt the data before moving it onto the

cloud and a private key will be entered by the user . This key will be used when the

user decrypts final output file/data.

The proposed system provides the cloud data security using the homomorphic

encryption technique. This technique provides functionality to perform

operations on encrypted data without using the private key and without decrypting that

data. After decrypting the result of this operation, it is the same as if we carried out the

calculation on the plain data. This major strength of homomorphic encryption allows

the cloud service providers to perform operations on encrypted client data without

compromising on the client data privacy.

 Deploy private cloud computing environment using OpenStack.

 Design a web based application that can be deployed on the cloud and can

provide functionality to secure user data.

 Develop the web application on MVC architecture using Java 2 enterprise

edition.

17

 Homomorphic Encryption and decryption techniques are implemented using the

Paillier’s algorithm using the security packages provided by Java. These

packages are also used for creation of the secrets keys.

Figure 3.1: Proposed System Flow Chart Diagram

18

4INTRODUCTION:

This section discuss all tools and techniques used in this thesis.

4.1 TOOLS AND ENVIROMENTS:

4.1.1 Ubuntu :

Ubuntu is an open source Debian-based Linux distribution. Sponsored by Canonical

Ltd., Ubuntu is considered a good distribution for beginners. The operating system was

intended primarily for personal computers (PCs) but it can also be used on servers[10].

4.1.2 OpenStack:

The OpenStack project is an open source cloud computing platform that supports all

types of cloud environments. The project aims for simple implementation, massive

scalability, and a rich set of features. Cloud computing experts from around the world

contribute to the project.

OpenStack provides an Infrastructure-as-a-Service (IaaS) solution through a variety of

complementally services. Each service offers an application programming interface

(API) that facilitates this integration.

4.1.2.1OpenStack services :

Table 4.1 list of 1OpenStack services

Service Project

name

Description

Dashboard Horizon Provides a web-based self-service portal to interact with

underlying OpenStack services, such as launching an instance,

assigning IP addresses and configuring access controls.

19

Compute Nova Manages the lifecycle of compute instances in an OpenStack

environment. Responsibilities include spawning, scheduling

and decommissioning of virtual machines on demand.

Networking Neutron Enables network connectivity as a service for other

OpenStack services, such as OpenStack Compute. Provides

an API for users to define networks and the attachments into

them. Has a pluggable architecture that supports many

popular networking vendors and technologies.

Storage

Object

Storage

Swift Stores and retrieves arbitrary unstructured data objects via a

RESTful, HTTP based API. It is highly fault tolerant with its

data replication and scale out architecture. Its implementation

is not like a file server with mountable directories.

Block

Storage

Cinder Provides persistent block storage to running instances. Its

pluggable driver architecture facilitates the creation and

management of block storage devices.

Shared services

Identity

service

Keystone Provides an authentication and authorization service for other

OpenStack services. Provides a catalog of endpoints for all

OpenStack services.

Image

Service

Glance Stores and retrieves virtual machine disk images. OpenStack

Compute

makes use of this during instance provisioning.

Telemetry Ceilometer Monitors and meters the OpenStack cloud for billing,

benchmarking, scalability, and statistical purposes.

Higher-level services

Orchestration Heat Orchestrates multiple composite cloud applications by using

20

either the native HOT template format or the AWS Cloud

Formation template format, through both an OpenStack-native

REST API and a Cloud Formation-compatible Query API.

Database

Service

Trove Provides scalable and reliable Cloud Database-as-a-Service

functionality for both relational and non-relational database

engines.

we will talk about the storage services because this research focus on it , to provide

secure Storage to the users[11].

4.1.2.2Storage in OpenStack:

Storage is found in many parts of the OpenStack stack, and the differing types , all of

this types It falls under two basic category ephemeral storage and persistent storage.

This section focuses on persistent storage options .

Ephemeral Storage

If you deploy only the OpenStack Compute Service (nova), your users do not have

access to any form of persistent storage by default. The disks associated with VMs are

"ephemeral," meaning that (from the user's point of view) they effectively disappear

when a virtual machine is terminated.

 Persistent Storage

Persistent storage means that the storage resource outlives any other resource and is

always available, regardless of the state of a running instance.

Today, OpenStack clouds explicitly support three types of persistent storage: object

storage, block storage, and file system storage.

21

 Object Storage

With object storage, users access binary objects through a REST API. Object storage is

implemented in OpenStack by the OpenStack Object Storage (swift) project.

OpenStack Object Storage provides a highly scalable, highly available storage solution

by relaxing some of the constraints of traditional file systems.

Block Storage

Block storage (sometimes referred to as volume storage) provides users with access to

block-storage devices. Users interact with block storage by attaching volumes to their

running VM instances.

These volumes are persistent: they can be detached from one instance and re-attached

to another, and the data remains intact. Block storage is implemented in OpenStack by

the OpenStack Block Storage (cinder) project, which supports multiple back ends in the

form of drivers. Your choice of a storage back end must be supported by a Block

Storage driver.

Shared File Systems Service

The Shared File Systems service provides a set of services for management of Shared

File Systems in a multi-tenant cloud environment. Users interact with Shared File

Systems service by mounting remote File Systems on their instances with the following

usage of those systems for file storing and exchange. Shared File Systems service

provides you with shares. A share is a remote, mountable file system. You can mount a

share to and access a share from several hosts by several users at a time. With shares,

user can also:

 Create a share specifying its size, shared file system protocol, visibility level

22

 Create a share on either a share server or standalone, depending on the selected

back-end mode, with or without using a share network.

 Specify access rules and security services for existing shares.

 Combine several shares in groups to keep data consistency inside the groups for

the following safe group operations.

 Create a snapshot of a selected share or a share group for storing the existing

shares consistently or creating new shares from that snapshot in a consistent way

 Create a share from a snapshot.

 Set rate limits and quotas for specific shares and snapshots

 View usage of share resources

 Remove shares.

Table 4.1 Comparison of differing types of storage in openStack [12]

 Ephemeral storage Block storage Object

storage

Shared File System

storage

Used to Run operating

system and scratch

space

Add additional

persistent

storage to a

virtual

machine (VM)

Store data,

including VM

images

Add additional

persistent storage to

a virtual machine

Accessed

through

A file system A block

device that can

be partitioned,

formatted, and

mounted (such

as, /dev/vdc)

The REST

API

A Shared File

Systems service

share (either manila

managed or an

external one

registered in manila)

that can be

partitioned,

23

formatted and

mounted (such as

/dev/vdc)

Accessible

from

Within a VM Within a VM Anywhere Within a VM

Managed

by

OpenStack

Compute (nova)

OpenStack

Block Storage

(cinder)

OpenStack

Object

Storage

(swift)

OpenStack Shared

File System Storage

(manila)

Persists

until

VM is terminated Deleted by use Deleted by

use

Deleted by use

Sizing

determined

by

Administrator

configuration of

size settings,

known as flavors

User

specification

in initial

request

Amount of

available

physical

storage

 User

specification

in initial

request

 Requests for

extension

 Available

user-level

quotes

 Limitations

applied by

Administrator

Encryption

set by

Parameter in

nova.conf

Admin

establishing

encrypted

Not yet

available

Shared File Systems

service does not

apply any additional

http://docs.openstack.org/user-guide-admin/dashboard_manage_volumes.html

24

volume type,

then user

selecting

encrypted

volume

encryption above

what the share’s

back-end storage

provides

Example of

typical

usage

10 GB first disk, 30

GB second disk

1 TB disk 10s of TBs of

dataset

storage

Depends completely

on the size of back-

end storage specified

when a share was

being created. In

case of thin

provisioning it can

be partial space

reservation (for

more details see

Capabilities and

Extra-Specs

specification)

Object Store

The Object Store allows you to push a file directly to the cloud where it is stored thrice. You can then

configure the file to be directly accessible on the web.

4.1.2.3 Encryption and Key Management

OpenStack Object Storage does not encrypt files before storing in a cluster . This

means that if a user needs to store sensitive information in OpenStack, he will have to

encrypt files before sending them to OpenStack and take care of key management for

encryption himself.

http://docs.openstack.org/developer/manila/devref/capabilities_and_extra_specs.html?highlight=extra%20specs#common-capabilities
http://docs.openstack.org/developer/manila/devref/capabilities_and_extra_specs.html?highlight=extra%20specs#common-capabilities

25

Also users in role of Reseller Admin can view any file on any of the accounts, which is

why if customers want to prevent provider’s personnel from accessing their data, they

should encrypt their files before uploading to OpenStack.

4.1.3J2EE (Java 2 Enterprise Edition)

J2EE stands for Java 2 Platform Enterprise Edition, it is a platform-independent,

Java-centric environment from Sun. It is used for developing, building and deploying

of online Web-based enterprise applications. The J2EE platform comprises of a set of

services, APIs, and protocols that can be used for developing web based applications.

4.1.3.1Java Servlets:

Java Servlets are java programs written at server side. Web container of application

server provides runtime environment for deploying java servlets. When the J2EE

application server gets a client request, servlets are executed. Some of the features of

Java Servlets are:

1) Security: Java Servlets inherits the security feature that the Web container provides.

2) Session Management: End user identity and state is kept intact across more than one

requests.

3) Instance persistence: Frequent disk access is prevented. This enhances server

performance.

4.1.3.2 JSP Technology

Work profiles of a Web designer and a Web developer are brought together with the

help of JSP technology. HTML can be used by the web designer to design and the

layout for a Web page. Then the Web developer can use Java code and other JSP

related tags and work independently to write the business logic. Files are tied up by

servlets to

handle the static presentation logic and the dynamic business logic independently. Also,

26

Java can be embedded directly into an HTML page with the help of JSP by using

special tags. Extensive coding is involved in Servlet programming. Static code content

and dynamic code content has to be identified and separated if any changes need to be

made to the code to ease incorporation of the changes. This also allows both Web

developers and the Web designer to work independently.[13]

4.1.4 Eclipse IDE

Eclipse is an integrated development environment (IDE). It comprises of a workspace

and an extensible plug-in system. This IDE can be used to develop applications coded

in Java. When certain plug-ins are added to the Eclipse IDE, we can then use it for

making applications in C, C++, COBOL, JavaScript, Perl, PHP, Python, and Ruby and

many other programming languages. The Java development tools are present in Eclipse

software development kit (SDK) for developers.[14]

A built-in incremental Java compiler is provided in this IDE and a full model of the

Java source files. This allows for advanced refactoring techniques and code analysis.

4.2 TECHNIQUES

4.2.1homomorphic encryption:

4.2.1definition:

Homomorphic encryption is the conversion of data into cipher text that can be analyzed

and worked with as if it were still in its original form.

4.2.2 Introduction to Homomorphic Encryption

Homomorphic encryptions allow complex mathematical operations to be performed on

encrypted data without compromising the encryption. In mathematics, homomorphic

describes the transformation of one data set into another while preserving relationships

between elements in both sets. The term is derived from the Greek words for "same

27

structure." Because the data in a homomorphic encryption scheme retains the same

structure, identical mathematical operations -- whether they are performed on encrypted

or decrypted data -- will yield equivalent results.

The concept of homomorphic encryption was first discussed by Rivest, Adleman

And Dertouzos . They used some restricted classes of functions such as addition or

multiplication in their discussion. Fully Homomorphic Encryption (FHE) methods that

were recently developed have the capability to support all kinds of functions.

4.2.3 Homomorphic Encryption types:

Homomorphic Encryption systems can be classified into different types based on

the operations that it allows on its raw data. Following sections discuss these different

types of homomorphic encryption systems.

4.2.3.1 Partially Homomorphic Encryption Systems

Partially homomorphic encryption systems can support only a single operation on

encrypted data as they are defined over a group. Different types of partially

homomorphic Encryption systems are as follows.

4.2.3.2 Additive Homomorphic Encryption Systems

This type of system allows homomorphic computation of only the addition operation.

The product of two cipher texts will decrypt to the sum of their plain texts.

Enc(x + y) = Enc(x).Enc(y)

generalization of Paillier system . These subsystems satisfy the property that the

product of two cipher texts will decrypt to the sum of their plain texts.

Enc(x + y) = Enc(x).Enc(y)

4.2.3.3 Multiplicative Homomorphic Encryption Systems

This type of system allows homomorphic computation of only the Multiplication

operation. Some well-known examples of multiplicative homomorphic encryption

28

systems are RSA algorithm and ElGamal encryption system . These subsystems satisfy

the property that the product of the cipher texts equals the cipher of the product.

Enc(x . y) = Enc(x).Enc(y) .

4.2.3.4 Additive and Multiplicative Homomorphic Encryption Systems

These systems allow arbitrary many homomorphic computations of one type and

limited number of operations of the other type i.e. it allows both addition and

multiplication operations but is not fully homomorphic. An example of this kind would

be Boneh-Goh-Nissim cryptosystem . It supports computation of an unlimited number

of additions but at most one multiplication.

4.2.3.4 Fully Homomorphic Encryption Systems

These systems allow arbitrary number of additions and multiplications and thus many

types of computations can be done on the encrypted data that is stored in the cloud

without the need for any decryption. This means that operations on confidential data

can now be outsourced to the cloud server keeping the secret key that can decrypt the

result of the operation.{Mohammad, 2014 #10}

4.2.4 Homomorphic Encryption Applied to Cloud Computing Security:

When the data transferred to the Cloud we use standard encryption methods to secure

the operations and the storage of the data. Our basic concept was to encrypt the data

before send it to the Cloud provider. But the last one needs to decrypt data at every

operation. The client will need to provide the private key to the server (Cloud provider)

to decrypt data before execute the calculations required, which might affect the

confidentiality and privacy of data stored in the Cloud. In this paper we are proposing

an application of a method to execute operations on encrypted data without decrypting

them, which will provide the same results after calculations as if we have worked

directly on the raw data.{Tebaa, 2012 #15}

29

4.2.5 Paillier cryptosystem

The Paillier Cryptosystem named after and invented by French researcher Pascal

Paillier in 1999 is an algorithm for public key cryptography.

The distinguishing technique used in public key cryptography is the use of asymmetric

key algorithms, where the key used to encrypt a message is not the same as the key

used to decrypt it. Each user has a pair of cryptographic keys , a public key and a

private key. The private key is kept secret, whilst the public key may be widely

distributed. Messages are encrypted with the recipient's public key and can only be

decrypted with the corresponding private key. The keys are related mathematically, but

the private key cannot be feasibly derived from the public key. [16]

Key generation

1. Choose two large prime numbers p and q randomly and independently of each other such

that . This property is assured if both primes are of equal

length

2. Compute and .

3. Select random integer where

4. Ensure divides the order of by checking the existence of the following modular

multiplicative inverse: ,

where function is defined as .

Note that the notation does not denote the modular multiplication of times the modular

multiplicative inverse of b ut rather the quotient of divided by , i.e., the largest

integer value to satisfy the relation .

 The public (encryption) key is .

 The private (decryption) key is

If using p,q of equivalent length, a simpler variant of the above key generation steps would be to set

and , where

30

Encryption

1. Let be a message to be encrypted where

2. Select random where

3. Compute ciphertext as:

Decryption

1. Let be the ciphertext to decrypt, where

2. Compute the plaintext message as:

Homomorphic properties

A notable feature of the Paillier cryptosystem is its homomorphic properties along with

its non-deterministic encryption . As the encryption function is additively

homomorphic, the following identities can be described:

 Homomorphic addition of plaintexts

The product of two cipher texts will decrypt to the sum of their corresponding

plaintexts,

The product of a ciphertext with a plaintext raising g will decrypt to the sum of the

corresponding plaintexts,

 Homomorphic multiplication of plaintexts

An encrypted plaintext raised to the power of another plaintext will decrypt to the

product of the two plaintexts,

More generally, an encrypted plaintext raised to a constant k will decrypt to the

product of the plaintext and the constant,

31

5.1 INTRODUCTION:
This chapter shows the implementation steps and screen shots for the basic operation.

5.2 IMPLEMENTATION STEPS:

5.2.1 Cloud Server:

The cloud software used is OpenStack and its components were configured in this

project and that mentioned in details at APPENDIX II. and here the admin and client

interfaces to interact with the cloud server:

5.2.1.1 Login Interface:

Figure 5.1 Login Interface.

5.2.1.2 Users Account:

32

Figure 5.2Users Accounts Interface.

5.2.1.3 Admin Panel Interface:

Figure 2.3: Admin Interface.

5.2.1.4 Containers Interface:

 Container play a folder role for the clients they can organize their files in different

containers or put all files in one container.

33

Figure 5.4: Shows The Containers Interface.

5.2.1.5 Client Objects Interface:

Figure 5.5: Shows The Objects Interface.

5.2.2 Web Based Application :

The application was developed using java EE (JSP and java servlet) it communicate with

OpenStack API to provide the desired services, the communication with API was done

through the HTTP protocol on secure port 8080 any request associate with account

credentials and Authorization token.

The application provide security using paillier algorithm as one of the Homomorphic

encryption algorithms.

5.2.2.1 Login :

User login using the appropriate credentials(username ,password) based on his account

,Then its verified using the authentication process in OpenStack server . In response to

34

the credentials, the identity service issues an authentication token that the user must

provides for subsequent requests.

Figure 5.6: Shows The Login Interface.

5.2.2.2 Home Page :

This interface consists of various functionalities such as uploading of files to the cloud

that include encryption mechanism, download mechanism and decryption mechanism

to view the decrypted files.

Figure 5.7: Shows The User Interface.

35

5.2.2.3 File Upload Mechanism

Using this mechanism user can upload data onto the website in encrypted format .this

mechanism include the encryption module to protect the privacy and the two keys

stored locally.

Figure 5.8:The Upload Interface.

5.2.2.4 File Encryption Module:

This module doesn’t have user interface it is an embedded module it take the file that

wanted to upload and convert it to byte array and divide it to sub arrays each one has

length is 64 byte , then convert each one to Big Integer and passed as plain text to

paillier encryption method that return cipher text in Big Integer format and it convert

again to byte array.

5.2.2.5 Download Encrypted File:

 user can download the encrypted file ,this include two steps first list all files related to

the user account , user select the file want to download it .

36

Figure 5.9: The download interface.

5.2.2.6 Decryption Mechanism:

After user download encrypted file he/she can decrypt it because the private key stored

locally , the selected file convert to byte array and divide it to sub arrays each one has

length is 128 byte , then convert each one to Big Integer and passed as cipher text to

paillier Decryption method that return plain text in Big Integer format and it convert

again to byte array.

Figure 5.10: The Decryption Interface.

37

5.2.2.7 Homomorphic addition Mechanism:

After user upload encrypted file he/she can apply addition operation on the encrypted

data without download it ,by send encrypted value you want to add and select the file

convert to byte array and , the result will re-write in encrypted format .

This operation was done in secure way and without decrees the performance.

Figure 5.11: The Addition Interface.

5.3Discussions :

 The major challenges that any cloud computing service provider must

overcome are to make sure that if its servers are attacked by hackers, the

client data cannot be stolen or misused and this was achieved by encrypt the

client data before upload it .

38

 The confidential client data must remain invisible even to the cloud service

providers. this was achieved by The client private key store locally and

decryption done on the client side.

 The provider can operate on the data without decrypt it . this was achieved

by using Homomorphic encryption.

5.4 Results:

This implementation of a cloud integrated with web application can provide

functionality for users to homomorphically encrypt data on the cloud servers. The main

advantage of this technique is that operations such as addition can be done on

encrypted data without the need for decryption. The user’s data is kept confidentiality

as the cloud server that operates on it does not know what data it operated upon. Also,

if the cloud service provider servers are hacked by malicious attackers, the user’s data

is secured and cannot be misused as it is homomorphic encrypted.

Sample of results:

Figure 5.12: The plain text file.

39

Figure 5.13: The encrypted text file after downloaded.

Figure 5.14: The encrypted modified text file after downloaded.

40

Figure 5.15: The decrypted modified text file.

41

6.1 CONCLUSION
 In this thesis a cloud based web application was implemented to encrypt data on

the cloud servers using Paillier’s homomorphic encryption algorithm. The main

advantage of this technique is that operations can be performed on encrypted data

stored on the cloud without the need for decryption. Hence, user’s data is kept

confidentiality as the cloud server that operates on it does not know what data it

operated upon. Also, if the cloud service provider servers are hacked by malicious

attackers, the user’s data is secured and cannot be misused as it is homomorphic

encrypted.

 Homomorphic encryption in cloud computing is an active area of research

considering the dominance of cloud computing in today’s market place. therefore more

work can be done in future to build more efficient cloud computing applications similar

to the one that is implemented as part of this project. Additional functionality to work

with different types of input files can be implemented for this application in the future.

6.2 RECOMMENDATION
I recommends with the following:

 Use the Fully Homomorphic Encryption rather than Additive Homomorphic

Encryption to include all possible operations of the data.

 Apply this solution into cloud Data base service (Daas) .

 Work in others security service (integrity and Availability).

6.3 OBSTACLES:
The implementation of this research faced many problems:

 Ubuntu12.04 was used to build OpenStack from the source which was failed many

times because the deeps files were not found. Then Migrate to Ubuntu14.04, the setup

of all OpenStack components was successfully installed.

 Fully Homomorphic Encryption(FHE) java package was used at the beginning but the

integration with Java servlet failed ,then migrate to Additive Homomorphic.

42

REFERENCES:
{Sarga, 2012 #1}Sarga, L. (2012). Cloud computing: an overview. Journal of Systems

Integration, 3(4), 3.[4]

{Maddineni,2012#2} Maddineni, V. S. K., & Ragi, S. (2012). Security Techniques for

protecting data in Cloud Computing.

{ Annapureddy ,2010#3}Annapureddy, K. (2010). Security challenges in hybrid cloud

infrastructures. Aalto University.

{#4} https://www.cloudsocket.eu/common-understanding-wiki/-

/wiki/Main/Cloud+Actors [Access on 3-2-2016]

{ASHALATHA, #5}ASHALATHA, R., & VAIDEHI, M. THE SIGNIFICANCE OF

DATA SECURITY IN CLOUD: A SURVEY ON CHALLENGES AND

SOLUTIONS ON DATA SECURITY.

{Jiménez Martínez, 2013 #6} Jiménez Martínez, D. (2013). Privacy and confidentiality

issues in cloud computing architectures.

{Gampala, 2012 #7} Gampala, V., Inuganti, S., & Muppidi, S. (2012). Data security in

cloud computing with elliptic curve cryptography. International Journal of Soft

Computing and Engineering (IJSCE), 2(3), 138-141.

{Sarddar, 2015 #8} Sarddar, D., Das, N., & Halder, J. (2015). An Authenticate Model

of Cloud Interaction Using Cryptography. International Journal of Grid and Distributed

Computing, 8(6), 9-18.

{Mohammad, 2014 #9} Mohammad, M. K. (2014). Using Homomorphic Encryption

to Protect Confidentiality and Integrity of Data in a Simulated Cloud Environment.

Texas A&M University-Corpus Christi.

{#10} https://www.ubuntu.com/about/about-ubuntu [Access on 5-3-2016]

{#11} OpenStack Installation Guide for Ubuntu 12.04/14.04 (LTS), icehouse (june

1,2015)

https://www.cloudsocket.eu/common-understanding-wiki/-/wiki/Main/Cloud+Actors
https://www.cloudsocket.eu/common-understanding-wiki/-/wiki/Main/Cloud+Actors

43

{#12} http://docs.openstack.org/openstack-ops/content/storage_decision.html

 [Accessed on 2-13-2016]

{#13} http://www.pcmag.com/encyclopedia/term/57268/java-ee

 [Accessed on 15-3-2016]

{#14} http://zeroturnaround.com/rebellabs/using-eclipse-for-java-development/

 [Accessed on 15-3-2016]

{Tebaa, 2012 #15}Tebaa, M., El Hajji, S., & El Ghazi, A. (2012). Homomorphic

encryption applied to the cloud computing security. Paper presented at the Proceedings

of the World Congress on Engineering.

{#16} http://security.hsr.ch/msevote/seminarpapers/

HS09_Homomorphic_Tallying_with_Paillier.pdf[Accessed on 20-3-2016]

http://docs.openstack.org/openstack-ops/content/storage_decision.html
http://www.pcmag.com/encyclopedia/term/57268/java-ee
http://zeroturnaround.com/rebellabs/using-eclipse-for-java-development/
http://security.hsr.ch/msevote/seminarpapers/
file:///H:\monakasha\HS09_Homomorphic_Tallying_with_Paillier.pdf

44

APPENDIX:

APPENDIX I:

Paillier’s Algorithm:

The following code implements Paillier’s Algorithm for integer and text data.

//package Paillier;

/**

 * @author Sara

 */

/**

 * This program is free software: you can redistribute it and/or modify it under the terms of the GNU

* General Public License as published by the Free Software Foundation, either version 3 of the

*License, or (at your option)

 */

Import java.math.*;

Import java.util.*;

/**

 * Paillier Cryptosystem

 * References:

 * [1] Pascal Paillier, "Public-Key Cryptosystems Based on Composite Degree Residuosity Classes,"

EUROCRYPT'99.

 * URL: http://www.gemplus.co

m/smart/rd/publications/pdf/Pai99pai.pdf

* [2] Paillier cryptosystem from Wikipedia.

45

 * URL: http://en.wikipedia.org/wiki/Paillier_cryp

tosystem

 * @author Kun Liu (kunliu1@cs.umbc.edu)

 * @version 1.0

 */

public class Paillier {

 /**

 * p and q are two large primes.

 * lambda = lcm(p-1, q-1) = (p-1)*(q-1)/gcd(p-1, q-1).

 */

Private BigInteger p, q, lambda;

 /**

 * n = p*q, where p and q are two large primes.

 */

Public BigInteger n;

 /**

 * nsquare = n*n

 */

Public BigInteger nsquare;

 /**

 * a random integer in Z*_{n^2} where gcd (L(g^lambda mod n^2), n) = 1.

 */

Private BigInteger g;

 /**

 * number of bits of modulus

46

 */

Private int bitLength;

 /**

 * Constructs an instance of the Paillier cryptosystem.

 * @param bitLengthVal number of bits of modulus

 * @param certainty The probability that the new BigInteger represents a prime number will

exceed (1 - 2^(-certainty)). The execution time of this constructor is proportional to the value of this

parameter.

 */

Public Paillier(int bitLengthVal, int certainty) {

KeyGeneration(bitLengthVal, certainty);

 }

 /**

 * Constructs an instance of the Paillier cryptosystem with 512 bits of modulus and at least 1-2^(-

64) certainty of primes generation.

 */

public Paillier() {

KeyGeneration(512, 64);

 }

 /**

 * Sets up the public key and private key.

* @param bitLengthVal number of bits of modulus.

 * @param certainty The probability that the new BigInteger represents a prime number will

exceed (1 - 2^(-certainty)). The execution time of this constructor is proportional to the value of this

parameter. */

public void KeyGeneration(int bitLengthVal, int certainty) {

bitLength = bitLengthVal;

47

 /*Constructs two randomly generated positive BigIntegers that are probably prime, with the

specified bitLength and certainty.*/

 p = new BigInteger(bitLength / 2, certainty, new Random());

 q = new BigInteger(bitLength / 2, certainty, new Random());

 n = p.multiply(q);

nsquare = n.multiply(n);

 g = new BigInteger("2");

lambda = p.subtract(BigInteger.ONE).multiply(q.subtract(BigInteger.ONE)).divide(

p.subtract(BigInteger.ONE).gcd(q.subtract(BigInteger.ONE)));

 /* check whether g is good.*/

if (g.modPow(lambda, nsquare).subtract(BigInteger.ONE).divide(n).gcd(n).intValue() != 1) {

System.out.println("g is not good. Choose g again.");

System.exit(1);

 }

 }

 /**

 * Encrypts plaintext m. ciphertext c = g^m * r^n mod n^2. This function explicitly requires random

input r to help with encryption.

 * @param m plaintext as a BigInteger

 * @param r random plaintext to help with encryption

 * @return ciphertext as a BigInteger

 */

Public BigInteger Encryption(BigInteger m, BigInteger r) {

return g.modPow(m, nsquare).multiply(r.modPow(n, nsquare)).mod(nsquare);

 }

 /**

48

 * Encrypts plaintext m. ciphertext c = g^m * r^n mod n^2. This function automatically generates

random input r (to help with encryption).

 * @param m plaintext as a BigInteger

 * @return ciphertext as a BigInteger

 */

Public BigInteger Encryption(BigInteger m) {

BigInteger r = new BigInteger(bitLength, new Random());

Return g.modPow(m, nsquare).multiply(r.modPow(n, nsquare)).mod(nsquare);

 }

 /**

 * Decrypts ciphertext c. plaintext m = L(c^lambda mod n^2) * u mod n, where u = (L(g^lambda

mod n^2))^(-1) mod n.

 * @param c ciphertext as a BigInteger

 * @return plaintext as a BigInteger

 */

Public BigInteger Decryption(BigInteger c) {

BigInteger u = g.modPow(lambda, nsquare).subtract(BigInteger.ONE).divide(n).modInverse(n);

Return c.modPow(lambda, nsquare).subtract(BigInteger.ONE).divide(n).multiply(u).mod(n);

 }

 /**

My own functions to manipulate Big Integer

 */

public static BigInteger toBigInteger(String s){return new BigInteger(s.getBytes());}

public static String fromBigInteger(BigInteger b){return new String(b.toByteArray());}

}

49

APPENDIX II:

Installing OpenStack Icehouse on Ubuntu 14.04 LTS:

1- fresh install of Ubuntu 14.04 LTS Desktop, you'll need to locally login to each

rig and install the openssh-server to allow remote ssh access:

sudo apt-get install openssh-server

2- Remotely log into your new server and install git with aptitude:

Sudo su

apt-get -y install git

3- Checkout the StackGeekOpenStack setup scripts from Github:

git clone git://github.com/StackGeek/openstackgeek.git

cd openstackgeek/icehouse

4- Setup

Note: Be sure to take a look at the scripts before you run them. Keep in mind the setup

scripts will periodically prompt you for input, either for confirming installation of a

package, or asking you for information for configuration. Start the installation by

running the setup script:

./openstack_setup.sh

5- Database Setup :

The next part of the setup installs MySQL and RabbitMQ.

./openstack_mysql.sh

The install script will install Rabbit and MySQL. During the MySQL install you will be

prompted for the MySQL password you entered earlier to set a password for the

MySQL root user. You'll be prompted again toward the end of the script when it creates

the databases.

50

6- Keystone Setup :

Keystone is used by OpenStack to provide central authentication across all installed

services. Start the install of Keystone by typing the following:

./openstack_keystone.sh

When the install is done, test Keystone by setting the environment variables using the

newly created stackrc file.

. ./stackrc

keystone user-list

Keystone should output the current user list to the console:

+----------------------------------+---------+---------+--------------------+

| id | name | enabled | email |

+----------------------------------+---------+---------+--------------------+

| 5474c43e65c840b5b371d695af72cba4 | admin | True | xxxxxxxx@gmail.com |

| dec9e0adf6af4066810b922035f24edf | cinder | True | xxxxxxxx@gmail.com |

| 936e0e930553423b957d1983d0a29a62 | demo | True | xxxxxxxx@gmail.com |

| 665bc14a5da44e86bd5856c6a22866fb | glance | True | xxxxxxxx@gmail.com |

| bf435eb480f643058e27520ee3737685 | nova | True | xxxxxxxx@gmail.com |

| 7fa480363a364d539278613aa7e32875 | quantum | True | xxxxxxxx@gmail.com |

+----------------------------------+---------+---------+--------------------+

7- Glance Setup :

Glance provides image services for OpenStack. Images are comprised of prebuilt

operating system images built to run on OpenStack. Start the Glance install by typing:

./openstack_glance.sh

Once the Glance install completes, you should be able to query the system for the

available images:

glance image-list

The output should be something like this:

+--------------------------------------+--------------+-------------+--------+----

| ID | Name | Disk Format | Format |

Size | Status |

+--------------------------------------+--------------+-------------+--------+----

51

| df53bace-b5a0-49ba-9b7f-4d43f249e3f3 | Cirros 0.3.0 | qcow2 | bare |

9761280 | active |

+--------------------------------------+--------------+-------------+--------+----

8- Cinder Setup :

Cinder is used to provide additional volume attachments to running instances and

snapshot space. Start the install of Cinder by typing:

./openstack_cinder.sh

Once the install of Cinder is complete, determine your space requirements and run the

loopback volume creation script (keep in mind you have to create a loopback file that is

at least 1GB in size):

./openstack_loop.sh

You should now be able to query installed storage types:

cinder type-list

You may then create a new volume to test:

cinder create --volume-type Storage --display-name test 1

9- Nova Setup :

Nova provides multiple services to OpenStack for controlling networking, imaging and starting and

stopping instances. Start the controller's nova install by typing the following:

./openstack_nova.sh

When the install is complete, you may query the running services by doing the following:

nova service-list

You should see output that looks similar to this:

+------------------+--------+----------+---------+-------+------------------------

| Binary | Host | Zone | Status | State | Updated_at

|

+------------------+--------+----------+---------+-------+------------------------

| nova-cert | tester | internal | enabled | up | 2014-02-

20T10:37:25.000000 |

| nova-conductor | tester | internal | enabled | up | 2014-02-

20T10:37:17.000000 |

52

| nova-consoleauth | tester | internal | enabled | up | 2014-02-

20T10:37:25.000000 |

| nova-network | tester | internal | enabled | up | 2014-02-

20T10:37:25.000000 |

| nova-scheduler | tester | internal | enabled | up | 2014-02-

20T10:37:24.000000 |

+------------------+--------+----------+---------+-------+------------------------

10- Swift setup:

./openstack_swift_loop.sh

11- Nova Compute Setup

./openstack_nova_compute.sh

nova service-list

You should see new entries for the newly added compute rig:

+------------------+---------+----------+---------+-------+-----------------------

| Binary | Host | Zone | Status | State | Updated_at

|

+------------------+---------+----------+---------+-------+-----------------------

| nova-cert | nero | internal | enabled | up | 2014-04-

13T17:20:52.000000 |

| nova-compute | booster | nova | enabled | up | 2014-04-

13T17:20:55.000000 |

| nova-compute | nero | nova | enabled | up | 2014-04-

13T17:20:55.000000 |

| nova-conductor | nero | internal | enabled | up | 2014-04-

13T17:20:52.000000 |

| nova-consoleauth | nero | internal | enabled | up | 2014-04-

13T17:20:52.000000 |

| nova-network | booster | internal | enabled | up | 2014-04-

13T17:20:52.000000 |

| nova-network | nero | internal | enabled | up | 2014-04-

13T17:20:52.000000 |

| nova-scheduler | nero | internal | enabled | up | 2014-04-

13T17:20:52.000000 |

+------------------+---------+----------+---------+-------+-----------------------

12- Horizon Setup :

Horizon provides OpenStack's managment interface. Install Horizon by typing:

./openstack_horizon.sh

reboot

you should be able to log into your OpenStack cluster with the following URL format (changing the

IP of course):

http://172.30.12.123/horizon

