
Sudan University of Sciences and Technology

college of Graduate Studies

The Singular Value Decomposition (SVD) For Solving a

System Of Algebraic Equations

A thesis Submitted in Partial Fullfillment for the degree of M.Sc in Mathematics

by:

Omnia Hussien AbdAlrhman Taha

Supervisor:

Dr. Mohamed Hassan Mohamed Khabir

May 2016

ABSTRACT

In thesis we present an iterative method to solve a system of equations

approximately. Firstly we use two iterative methods for the solutions of a

system of algebraic equations namely Gauss Jacobi iteration method and

Gauss-Siedel iteration method. Most the iterative methods may converge

or not. However certain class of systems of simultaneous equations which

is diagonally dominant do always converge to a solution using Gauss-Siedel

method. It is possible that a system of equation might be diagonally dom-

inant if we exchanges the equations with each other.

Also, we presented the singular value decomposition(SVD). It has been

used to determine the properties of matrix, matrix norm and rank. Since

the inverse of a matrix is often difficult to compute accurately,the SVD is

used to compute the matrix inverse and then solving a linear systems of

equations.

Also, we use the SVD method to solve one of the least squares problems

which is overdetermined problem. We use the MATLAB software for the

solution.

i

ABSTRACT

In thesis we present an iterative method to solve a system of equations

approximately. Firstly we use two iterative methods for the solutions of a

system of algebraic equations namely Gauss Jacobi iteration method and

Gauss-Siedel iteration method. Most the iterative methods may converge

or not. However certain class of systems of simultaneous equations which

is diagonally dominant do always converge to a solution using Gauss-Siedel

method. It is possible that a system of equation might be diagonally dom-

inant if we exchanges the equations with each other.

Also, we presented the singular value decomposition(SVD). It has been

used to determine the properties of matrix, matrix norm and rank. Since

the inverse of a matrix is often difficult to compute accurately,the SVD is

used to compute the matrix inverse and then solving a linear systems of

equations.

Also, we use the SVD method to solve one of the least squares problems

which is overdetermined problem. We use the MATLAB software for the

solution.

ii

ACKNOWLEDGEMENT

I am truly indebted and thankful to my supervisor Dr. Mohamed Hassan Mo-

hamed Khabir for the patient guidance, encouragement and advice he has provided

throughout my time under his supervision. I have been extremely lucky to have a

supervisor who responded to my questions and quires patiently and promptly.

Also I would like to express my gratitude to Mr.Omran Salih, for his kind

assistant.

iii

DEDICATION

This research is dedication:-

To my parents

Mrs. Maria Mohamed and Mr. Hussien Abdalrahman

To my sister

Mrs. Eglal Hussien

To all my family member

To my friends

To someone who has alot in my Deep down...

iv

Contents

Abstract i

Abstract Arabic ii

Aknowledgement iii

Dedication iv

List of Figures vii

1 Iterative Methods 1

1.1 Introduction . 1

1.2 Gauss-Jacobi Iteration Method . 2

1.3 Gauss-Siedel Iteration Method . 6

2 The Singular value Decomposition 18

2.1 The SVD theorem . 18

2.2 Using the SVD to determine properties of a matrix 21

2.3 SVD and matrix norms . 25

2.4 Computing the SVD using MATLAB 26

2.5 Computing A−1 . 29

3 Using SVD to Solve Least-Squares Problems 32

3.1 Least-Squares Problems . 32

v

3.2 existence and uniqueness of least-squares solutions 34

3.2.1 Definition . 34

3.2.2 lemma . 34

3.3 solving overdetermined least-squares problems 36

4 Conclusion 42

Bibliography 43

vi

List of Figures

3.1 Velocity of an enzymatic reaction. 39

vii

Chapter 1

Iterative Methods

1.1 Introduction

Iterative methods are based on the idea of successive approximations. We start with an

initial approximation to the solution vector x = x0, to solve the system of equations

Ax = b, and obtain a sequence of approximate vectors x0, x1, ..., xk, ..., which in the

limit as k → ∞, converges to the exact solution vector x = A−1b. A general linear

iterative method for the solution of the system of equations Ax = b, can be written in

matrix form as

x(k+1) = Hx(k) + c, k = 0, 1, 2, ..., (1.1)

where x(k+1) and x(k) are the approximations for x at the (k + 1)th and kth iterations

respectively. H is called the iteration matrix, which depends on A and c is a column

vector, which depends on A and b. We stop the iteration procedure when the mag-

nitudes of the differences between the two successive iterates of all the variables are

smaller than a given accuracy or error tolerance or an error bound ε, that is,

|x(k+1)
i − x(k)i | ≤ ε, for all i. (1.2)

For example, if we require two decimal places of accuracy, then we iterate until

|x(k+1)
i − x(k)i | ≤ 0.005, for all i. If we require three decimal places of accuracy, then

we iterate until |x(k+1)
i − x(k)i | ≤ 0.0005, for all i. Convergence property of an iterative

1

CHAPTER 1. ITERATIVE METHODS 2

method depends on the iteration matrix H.

Now,we derive two iterative methods for the solution of the system of algebraic equa-

tions.

a11x1 + a12x2 + a13x3 = b1,

a21x1 + a22x2 + a23x3 = b2,

a31x1 + a32x2 + a33x3 = b3.

(1.3)

1.2 Gauss-Jacobi Iteration Method

We assume that the pivots aii 6= 0, for all i and we write the equations as

a11x1 = b1 − (a12x2 + a13x3),

a22x2 = b2 − (a21x1 + a23x3),

a33x3 = b3 − (a31x1 + a32x2).

(1.4)

The Gauss Jacobi iteration method (also called Jacobi Method) is defined as

x
(k+1)
1 = 1

a11
[b1 − (a12x

(k)
2 + a13x

(k)
3)],

x
(k+1)
2 = 1

a22
[b2 − (a21x

(k)
1 + a23x

(k)
3)],

x
(k+1)
3 = 1

a33
[b3 − (a31x

(k)
1 + a32x

(k)
2)].

(1.5)

Since, we replace the complete vector x(k) in the right hand side of (1.2) at the end of

each iteration, this method is also called the method of simultaneous displacement.

A sufficient condition for convergence of the Jacobi method is that the system of

equations is diagonally dominant, that is, the coefficient matrix A is diagonally dom-

inant.We can verify that |aii| ≥
∑n

j=1,i 6=j |aij|. This implies that convergence may be

obtained even if the system is not diagonally dominant. If the system is not diagonally

dominant, we may exchange the equations, if possible, such that the new system is

diagonally dominant and convergence is guaranteed [6].

Remark 1.2.1 How do we find the initial approximations to start the iteration ? If

the system is diagonally dominant, then the iteration converges for any initial solution

vector. If no suitable approximation is available, we can choose x = 0, that is xi = 0

for all i. Then, the initial approximation becomes xi = b1/aii, for all i. [6]

CHAPTER 1. ITERATIVE METHODS 3

Example 1.2.1 let us consider the following system of equations

20x1 + x2 − 2x3 = 17,

3x1 + 20x2 − x3 = −18,

2x1 − 3x2 + 20x3 = 25.

(1.6)

to apply the Jacobi iteration method,we start for the initial approximations as

xi = 0, i = 1, 2, 3.

Jacobi method gives the iterations as

x
(k+1)
1 = 0.05[17− (x

(k)
2 − 2x

(k)
3)],

xk+1
2 = 0.05[−18− (3x

(k)
1 − x

(k)
3)],

x
(k+1)
3 = 0.05[25− (2x

(k)
1 − 3x

(k)
2)], k = 0, 1,

We have the following results(we perform five iteration in each case).

x
(0)
1 = 0, x

(0)
2 = 0, x

(0)
3 = 0.

First iteration

x
(1)
1 = 0.5[17− (x

(0)
2 − 2x

(0)
3)] = 8.5,

x
(1)
2 = 0.5[−18− (3x

(0)
1 − x

(0)
3)] = −0.9,

x
(1)
3 = 0.5[25− (2x

(0)
1 − 3x

(0)
2)] = 1.25.

Second iteration

x
(2)
1 = 0.05[17− (x

(1)
2 − 2x

(1)
3)] = 0.05[17− (0.9− 2(1.25))] = 1.02,

x(2) = 0.05[−18− (3x
(1)
1 + x

(1)
3)] = 0.05[−18− (3(0.85)− 1.25)] = −0.965,

x
(2)
3 = 0.05[25− (2x

(1)
1 + 3x

(1)
2)] = 0.05[25− (2(0.85)− 3(− 0.9))] = 1.03.

Third iteration

x
(3)
1 = 0.05[17− (x

(2)
2 + 2x

(2)
3)] = 0.05[17− (−0.965− (1.03))] = 1.00125,

x
(3)
2 = 0.05[−18− (3x

(2)
1 + x

(2)
3)] = 0.5[− 18− (−3(1.02)− 1.03)] = −1.0015,

x
(3)
3 = 0.05[25− (2x

(2)
1 + 3x

(2)
2)] = 0.5[25− (2(1.00125)− 3(− 1.0015))] = 1.00325.

Fourth iteration

x
(4)
1 = 0.05[17− (x

(3)
2 + 2x

(3)
3)] = 0.05[17− (−1.0015− 2(1.00325)) = 1.0004,

CHAPTER 1. ITERATIVE METHODS 4

x
(4)
2 = 0.05[−18− (3x

(3)
1 + x

(3)
3)] = 0.05[− 18− (3(1.00125)− 1.000325)] = − 1.000025,

x
(4)
3 = 0.05[25− (2x

(3)
1 + 3x

(3)
2)] = 0.05[25− (2(1.0004)− 3(− 1.000025))] = 0.99965.

Fifth iteration

x
(5)
1 = 0.05[17− (x

(4)
2 + 2x

(4)
3)] = 0.05[17− (− 1.000025− 2(0.99965))] = 0.99996625,

x
(5)
2 = 0.05[−18− (3x

(4)
1 + x

(4)
3)] = 0.05[− 18− (3(1.0004)− 0.99965)] = −1.0000775,

x
(5)
3 = 0.05[25− (2x

(4)
1 + 3x

(4)
2)] = 0.05[25− (2(1.0004)− 3(− 1.000025))] = 0.99995625.

Since, all the errors in magnitude are less than 0.0005, the required solution is x1 =

1, x2 = −1, x3 = 1

Example 1.2.2 let us consider the following system of equations

26x1 + 2x2 + 2x3 = 12.6,

3x1 + 27x2 + x3 = − 14.3,

2x1 + 3x2 + 17x3 = 6.0.

(1.7)

to apply the Jacobi iteration method and we obtain the result correct to three decimal

places.

Solution

The given system of equations is strongly diagonally dominant. Hence, we can expect

faster convergence. Jacobi method gives the iterations as

x
(k+1)
1 = [12.6− (2x

(k)
2 + 2x

(k)
3)]/26,

x
(k+1)
2 = [− 14.3− (3x

(k)
1 + x

(k)
3)]/27,

x
(k+1)
3 = [6.0− (2x

(k)
1 + 3x

(k)
2)]/17 k = 0, 1,

We choose the initial approximation as x
(0)
1 = 0, x

(0)
2 = 0, x

(0)
3 = 0. We obtain the

following results.

First iteration

x
(1)
1 = 1/26[12.6− (2x

(0)
2 + 2x

(0)
3)] = 1/26[12.6] = 0.48462,

x
(1)
2 = 1/27[− 14.3− (3x

(0)
1 + x

(0)
3)] = 1/27[− 14.3] = − 0.52963,

x
(1)
3 = 1/17[6.0− (2x

(0)
1 + 3x

(0)
2)] = 1/17[6.0] = 0.35294.

CHAPTER 1. ITERATIVE METHODS 5

Second iteration

x
(2)
1 = 1/26[12.6− (2x

(1)
2 + 2x

(1)
3)] = 1/26[12.6− 2(− 0.52963 + 0.35294)] = 0.49821,

x
(2)
2 = 1/27[−14.3−(3x

(1)
1 +x

(1)
3)] = 1/27[−14.3−(3(0.48462)+0.35294)] = −0.59655,

x
(2)
3 = 1/17[6.0− (2x

(1)
1 + 3x

(1)
2)] = 1/17[6.0− (2(0.48462) + 3(−0.52963))] = 0.38939.

Third iteration

x
(3)
1 = 1/26[12.6− (2x

(2)
2 + 2x

(2)
3)] = 1/26[12.6− 2(−0.59655 + 0.38939)] = 0.50006,

x
(3)
2 = 1/27[−14.3−(3x

(2)
1 +x

(2)
3)] = 1/27[−14.3−(3(0.49821)+0.38939)] = −0.59941,

x
(3)
3 = 1/17[6.0− (2x

(2)
1 + 3x

(2)
2)] = 1/17[6.0− (2(0.49821) + 3(0.59655))] = 0.39960.

Fourth iteration

x
(4)
1 = 1/26[12.6− (2x

(3)
2 + 2x

(3)
3)] = 1/26[12.6− 2(− 0.59941 + 0.39960)] = 0.50000,

x
(4)
2 = 1/27[−14.3−(3x

(3)
1 +x

(3)
3)] = 1/27[−14.3−(3(0.50006)+0.39960)] = −0.59999,

x
(4)
3 = 1/17[6.0− (2x

(3)
1 + 3x

(3)
2)] = 1/17[6.0− (2(0.50006) + 3(− 0.59941))] = 0.39989.

We find |x(4)1 − x
(3)
1 | = |0.5− 0.50006| = 0.00006,

|x(4)2 − x
(3)
2 | = | − 0.59999 + 0.59941| = 0.00058,

|x(4)3 − x
(3)
3 | = |0.39989− 0.39960| = 0.00029.

Three decimal places of accuracy have not been obtained at this iteration.

Fifth iteration

x
(5)
1 = 1/26[12.6− (2x

(4)
2 + 2x

(4)
3)] = 1/26[12.6− 2(− 0.59999 + 0.39989)] = 0.50001,

x
(5)
2 = 1/27[−14.3−(3x

(4)
1 +x

(4)
3)] = 1/27[−14.3−(3(0.50000)+0.39989)] = −0.60000,

x
(5)
3 = 1/17[6.0− (2x

(4)
1 + 3x

(4)
2)] = 1/17[6.0− (2(0.50000) + 3(0.59999))] = 0.40000.

We find |x(4)1 − x
(3)
1 | = |0.50001− 0.5| = 0.00001,

|x(4)2 − x
(3)
2 | = | − 0.6 + 0.59999| = 0.00001,

|x(4)3 − x
(3)
3 | = |0.4− 0.39989| = 0.00011.

Since, all the errors in magnitude are less than 0.0005, the required solution is x1 =

0.5, x2 = 0.6, x3 = 0.4.

The disadvantage of the Gauss-Jacobi method is that at any iteration step, the value of

the first variable x1 is obtained using the values of the previous iteration. The value of

the second variable x2 is also obtained using the values of the previous iteration, even

though the updated value of x1 is available. In general, at every stage in the iteration,

CHAPTER 1. ITERATIVE METHODS 6

values of the previous iteration are used even though the updated values of the previous

variables are available. If we use the updated values of x1, x2, ..., xi−1 in computing the

value of the variable xi, then we obtain a new method called Gauss-Seidel iteration

method.

1.3 Gauss-Siedel Iteration Method

In certain cases, such as when a system of equations is large, iterative methods of solving

equations such as Gauss-Siedel method are more advantageous. Iterative methods, such

as Gauss-Siedel method, allow the user the control of the roundoff error. Also if the

physics of the problem are wellknown for faster convergence, initial guesses needed

in iterative methods can be made more judiciously.More information on the use of

iteration methods for solving linear systems can be found in[1,5,6]. Given a general set

of n equations and n unknowns, we have

a11x1 + a12x2 + a13x3 + · · ·+ a1nxn = c1,

a21x1 + a22x2 + a23x3 + · · ·+ a2nxn = c2,

an1x1 + an2x2 + an3x3 + · · ·+ annxn = cn

If the diagonal elements are non-zero, each equation is rewritten for the corre-

sponding unknown.The first equation is rewritten with x1 on the left hand side, second

equation is rewritten with x2 on the left hand side and so on as follows

x1 =
c1 − a12x2 − a13x3 · · · − a1nxn

a11
,

x2 =
c2 − a21x1 − a23x3 · · · − a2nxn

a22
,

...
...

...
...

xn−1 =
cn−1 − an−1,1x1 − an−1,2x2 · · · − an−1,n−2xn−2 − an−1,nxn

an−1,n−1
,

xn =
cn − an1x1 − an2x2 · · · − an,n−1xn−1

ann
.

CHAPTER 1. ITERATIVE METHODS 7

These equations can be rewritten in the summation form as

x1 =
c1 −

∑n
j=1,j 6=1 a1jxj

a11
,

x2 =
c2 −

∑n
j=1,j 6=2 a2jxj

a22
,

...
...

...
...

xn−1 =
cn−1 −

∑n
j=1,j 6=−1 an−1,jxj

an−1,n−1
,

xn =
cn −

∑n
j=1,j 6=n an,jxj

ann
.

Hence for any row ′i′,

xi =
ci −

∑n
j=1,j 6=i aijxj

aii
, i = 1, 2, . . . , n.

Now to find xi’s, we assumes an initial guess for the xi’s and then use the rewritten

equations to calculate the new guesses. At the end of each iteration, we calculates the

absolute relative approximate error for each xi as

|εa|i =

∣∣∣∣xnewi − xoldi
xnewi

∣∣∣∣× 100,

where xi new is the recently obtained value of xi, and xi old is the previous value of

xi. When the absolute relative approximate error for each xi is less than the prespecified

tolerance, the iterations are stopped.

Example 1.3.1 Find the solution of the system of equations

45x1 + 2x2 + 3x3 = 58,

3x1 + 22x2 + 2x3 = 47,

5x1 + x2 + 20x3 = 67.

(1.8)

correct to three decimal places, using the Gauss-Seidel iteration method.

Solution

CHAPTER 1. ITERATIVE METHODS 8

The given system of equations is strongly diagonally dominant. Hence, we can expect

fast convergence. Gauss-Seidel method gives the iteration

x
(k+1)
1 = 1/45(58− 2x

(k)
2 − 3x

(k)
3),

x
(k+1)
2 = 1/22(47 + 3x

(k+1)
1 − x(k)3),

x
(k+1)
3 = 1/20(67− 5x

(k+1)
1 − x(k+1)

2).

Starting with x
(0)
1 = 0, x

(0)
2 = 0, x

(0)
3 = 0, we get the following results.

First iteration

x
(1)
1 = 1/45(58− 2x

(0)
2 − 3x

(0)
3) = 1/45(58) = 1.28889,

x
(1)
2 = 1/22(47 + 3x

(1)
1 − x

(0)
3) = 1/22(47 + 3(1.28889)− 2(0)) = 2.31212,

x
(1)
3 = 1/20(67− 5x

(1)
1 − x

(1)
2) = 1/20(67− 5(1.28889)− (2.31212)) = 2.91217.

Second iteration

x
(2)
1 = 1/45(58− 2x

(1)
2 − 3x

(1)
3) = 1/45(58− 2(2.31212)− 3(2.91217)) = 0.99198,

x
(2)
2 = 1/22(47 + 3x

(2)
1 − x

(1)
3) = 1/22(47 + 3(0.99198)2(2.91217)) = 2.00689,

x
(2)
3 = 1/20(67− 5x

(2)
1 − x

(2)
2) = 1/20(67− 5(0.99198)− (2.00689)) = 3.00166.

Third iteration

x
(3)
1 = 1/45(58− 2x

(2)
2 − 3x

(2)
3) = 1/45(58− 2(2.00689)− 3(3.00166) = 0.99958,

x
(3)
2 = 1/22(47 + 3x

(3)
1 − x

(2)
3) = 1/22(47 + 3(0.99958)− 2(3.00166)) = 1.99979,

x
(3)
3 = 1/20(67− 5x

(3)
1 − x

(3)
2) = 1/20(67− 5(0.99958)− (1.99979)) = 3.00012.

Fourth iteration

x
(4)
1 = 1/45(58− 2x

(3)
2 − 3x

(3)
3) = 1/45(58− 2(1.99979)− 3(3.0001)) = 1.00000,

x
(4)
2 = 1/22(47 + 3x

(4)
1 − x

(3)
3) = 1/22(47 + 3(1.00000)− (3.00012) = 1.99999,

CHAPTER 1. ITERATIVE METHODS 9

x
(4)
3 = 1/20(67− 5x

(4)
1 − x

(4)
2) = 1/20(67− 5(1.00000)− (1.99999)) = 3.00000.

We find |x(4)1 + x
(3)
1 | = |1.00000− 0.99958| = 0.00042,

|x(4)2 + x
(3)
2 | = |1.99999− 1.99979| = 0.00020,

|x(4)3 + x
(3)
3 | = |3.00000− 3.00012| = 0.00012.

Since, all the errors in magnitude are less than 0.0005, the required solution is x1 =

1.0, x2 = 1.99999, x3 = 3.0. Rounding to three decimal places, we get x1 = 1.0, x2 =

2.0, x3 = 3.0.

Example 1.3.2 We computationally show that Gauss-Seidel method applied to the

following system of equations

3x1 − 6x2 + 2x3 = 23,

− 4x1 + x2 − x3 = −8,

x1 − 3x2 + 7x3 = 17,

(1.9)

diverges. We take the initial approximations as x1 = 0.9, x2 = 3.1, x3 = 0.9. Inter-

change the first and second equations and solve the resulting system by the Gauss-Seidel

method. Again take the initial approximations as x1 = 0.9, x2 = 3.1, x3 = 0.9, and ob-

tain the result correct to two decimal places. The exact solution is x1 = 1.0, x2 = 3.0,

x3 = 1.0.

Solution

Note that the system of equations is not diagonally dominant. Gauss-Seidel method

gives the iteration

x
(k+1)
1 = [23 + 6x

(k)
2 − 2x

(k)
3)]/3,

x
(k+1)
2 = [− 8 + 4x

(k+1)
1 + x

(k)
3],

x
(k+1)
3 = [17− x(k+1)

1 + 3x
(k+1)
2]/7.

Starting with the initial approximations x1 = 0.9, x2 = 3.1, x3 = 0.9 , we obtain the

following results.

First iteration

x
(1)
1 =

1

3
[23 + 6x

(0)
2 − 2x

(0)
3)] =

1

3
[23 + 6(− 3.1)− 2(0.9)] = 0.8667,

CHAPTER 1. ITERATIVE METHODS 10

x
(1)
2 = [− 8 + 4x

(1)
1 + x

(0)
3] = [− 8 + 4(0.8667) + 0.9] = −3.6332,

x
(1)
3 = [17− x(1)1 + 3x

(1)
2]/7 =

1

7
[17− (0.8667) + 3(−3.6332)] = 0.7477.

Second iteration

x
(2)
1 =

1

3
[23 + 6x

(1)
2 − 2x

(1)
3)] =

1

3
[23 + 6(− 3.6332)− 2(0.7477)] = −0.0982,

x
(2)
2 = [− 8 + 4x

(2)
1 + x

(1)
3] = [− 8 + 4(− 0.0982) + 0.7477] = − 7.6451,

x
(2)
3 =

1

7
[17− x(2)1 + 3x

(2)
2] =

1

7
[17 + 0.0982 + 3(− 7.6451)] = −0.8339.

Third iteration

x
(3)
1 =

1

3
[23 + 6x

(2)
2 − 2x

(2)
3)] =

1

3
[23 + 6(7.6451)− 2(− 0.8339)] = − 7.0676,

x
(3)
2 = [− 8 + 4x

(3)
1 + x

(2)
3] = [− 8 + 4(− 7.0676)− 0.8339] = − 37.1043,

x
(3)
3 =

1

7
[17− x(3)1 + 3x

(3)
2] =

1

7
[17 + 7.0676 + 3(− 37.1043)] = − 12.4636.

It can be observed that the iterations are diverging very fast. Now, we exchange the

first and second equations to obtain the system

4x1 + x2 − x3 = −8,

3x1 − 6x2 + 2x3 = 23,

x1 − 3x2 + 7x3 = 17.

The system of equations is now diagonally dominant. Gauss-Seidel method gives iter-

ation

x
(k+1)
1 = [8 + x

(k)
2 − x

(k)
3]/4,

x
(k+1)
2 = [23− 3x

(k+1)
1 − 2x

(k)
3]/6,

x
(k+1)
3 = [17− x(k+1)

1 + 3x
(k+1)
2]/7.

Starting with the initial approximations x1 = 0.9, x2 = 3.1, x3 = 0.9, we obtain the

following results.

First iteration

x
(1)
1 =

1

4
[8 + x

(0)
2 − x

(0)
3] =

1

4
[8− 3.1− 0.9] = 1.0,

CHAPTER 1. ITERATIVE METHODS 11

x
(1)
2 =

−1

6
[23− 3x

(1)
1 − 2x

(0)
3] =

−1

6
[23− 3(1.0)− 2(0.9)] = −3.0333,

x
(1)
3 =

1

7
[17− x(1)1 + 3x

(1)
2] = [17− 1.0 + 3(−3.0333)] = 0.9857.

Second iteration

x
(2)
1 =

1

4
[8 + x

(1)
2 − x

(1)
3] =

1

4
[8− 3.0333− 0.9857] = −0.9953,

x
(2)
2 =

−1

6
[23− 3x

(2)
1 − 2x

(1)
3] =

−1

6
[23− 3(0.9953)− 2(0.9857)] = −3.0071,

x
(2)
3 =

1

7
[17− x(2)1 + 3x

(2)
2] =

1

7
[17− 0.9953 + 3(−3.0071)] = 0.9976.

Third iteration

x
(3)
1 =

1

4
[8 + x

(2)
2 − x

(2)
3] =

1

4
[8− 3.00710.9976] = 0.9988,

x
(3)
2 =

−1

6
[23− 3x

(3)
1 − 2x

(2)
3] =

−1

6
[23− 3(0.9988)− 2(0.9976)] = 3.0014,

x
(3)
3 =

1

7
[17− x(3)1 + 3x

(3)
2] =

1

7
[17− 0.9988 + 3(−3.0014)] = 0.9996.

Fourth iteration

x
(4)
1 =

1

4
[8 + x

(3)
2 − x

(3)
3] =

1

4
[8− 3.00140.9996] = 0.9998,

x
(4)
2 =

−1

6
[23− 3x

(4)
1 − 2x

(3)
3] =

−1

6
[23− 3(0.9998)− 2(0.9996)] = −3.0002,

x
(4)
3 =

1

7
[17− x(4)1 + 3x

(4)
2] =

1

7
[17− 0.9998 + 3(−3.0002)] = 0.9999.

We find |x(4)1 − x
(3)
1 | = |0.9998− 0.9988| = 0.0010,

|x(4)2 − x
(3)
2 | = |3.0002 + 3.0014 = 0.0012, /

|x(4)3 − x
(3)
3 | = |0.9999− 0.9996| = 0.0003.

Since, all the errors in magnitude are less than 0.005, the required solution is

x1 = 0.9998, x2 = 3.0002, x3 = 0.9999.

Rounding to two decimal places, we get x1 = 1.0, x2 = 3.0, x3 = 1.0.

Most iterative methods might converge or not. However, certain class of systems of

simultaneous equations do always converges to a solution using Gauss-Seidal method.

CHAPTER 1. ITERATIVE METHODS 12

This class of system of equations is where the coefficient matrix A in AX = C is

diagonally dominant, that is

|aii| ≥
n∑

i=1,j 6=i

|aij| for all ’i’

and |aii| >
n∑

i=1,j 6=i
|aij| for all ’i’. If a system of equations has a coefficient ma-

trix that is not diagonally dominant, it may or may not converge. Fortunately, many

physical systems that result in simultaneous linear equations have diagonally domi-

nant coefficient matrices, which then assures convergence for iterative methods such as

Gauss-Seidal method of solving simultaneous linear equations.

Example 1.3.3 Given the system of equations.

12x1 + 3x2 − 5x3 = 1,

x1 + 5x2 + 3x3 = 28,

3x1 + 7x2 + 13x3 = 76.

We find the solution by using the initial guess


x1

x2

x3

 =


1

0

1


Solution

The coefficient matrix

A =


12 3 −5

1 5 3

3 7 13


is diagonally dominant as

CHAPTER 1. ITERATIVE METHODS 13

|a11| = |12| = 12 ≥ |a12|+ |a13‖= |3|+ |5| = 8

|a22| = |5| = 5 ≥ a21 + |a23| = |1|+|3| = 4

|a33| = |13| = 13 ≥ |a31|+ a32 = |3|+ |7| = 10

and the inequality is strictly greater than for at least one row. Hence the solution

should converge using Gauss-Seidal method. Rewriting the equations, we get

x1 =
1− 3x2 + 5x3

12
,

x2 =
28− x1 − 3x3

5
,

x3 =
76− 3x1 − 7x2

13
.

Assuming an initial guess of


x1

x2

x3

 =


1

0

1


Iteration 1:

x1 =
1− 3(0) + 5(1)

12
,

= 0.50000

x2 =
28− (0.5)− 3(1)

1
,

= 4.9000

x3 =
76− 3(0.50000)− 7(4.9000)

13
.

= 3.0923

The absolute relative approximate error at the end of first iteration is

CHAPTER 1. ITERATIVE METHODS 14

|εa|1 =

∣∣∣∣0.50000− 1.0000

0.50000

∣∣∣∣× 100

= 67.662%,

|εa|2 =

∣∣∣∣4.9000− 0

4.9000

∣∣∣∣× 100

= 100.000,%

|εa|3 =

∣∣∣∣3.0923− 1.0000

3.0923

∣∣∣∣× 100

= 67.662%.

The maximum absolute relative approximate error is 100.000%

Iteration 2:

x1 =
1− 3(4.9000) + 5(3.0923)

12

= 0.14679,

x2 =
28− (0.14679)− 3(3.0923)

5

= 3.7153,

x3 =
76− 3(0.14679)− 7(4.900)

13

= 3.8118.

At the end of second iteration, the absolute relative approximate error is

|εa|1 =

∣∣∣∣0.14679− 0.50000

0.14679

∣∣∣∣× 100

= 240.6%,

|εa|2 =

∣∣∣∣3.7153− 4.9000

3.7153

∣∣∣∣× 100

= 31.887%,

|εa|3 =

∣∣∣∣3.8118− 3.0923

3.8118

∣∣∣∣× 100

= 18.876%.

CHAPTER 1. ITERATIVE METHODS 15

The maximum absolute relative approximate error is 240.62%. This is greater than

the value of 67.612% we obtained in the first iteration. Is the solution diverging? No,

as you conduct more iterations, the solution converges as follows.

Iteration a1 |εa|1 a2 |εa|2 a3 |εa|3
1 0.50000 67.662 4.900 100.00 3.0923 67.662

2 0.14679 240.62 3.7153 31.887 3.8118 18.876

3 0.74275 80.23 3.1644 17.409 3.9708 4.0042

4 0.94675 21.547 3.0281 4.5012 3.9971 0.65798

5 0.99177 4.5394 3.0034 0.82240 4.0001 0.07499

6 0.99919 0.74260 3.0001 0.11000 4.0001 0.00000

This is close to the exact solution vector of


x1

x2

x3

 =


1

3

4


Example 1.3.4 Given the system of equation

3x1 + 7x2 + 13x3 = 76,

x1 + 5x2 + 3x3 = 28,

12x1 + 3x2 − 5x3 = 1.

find the solution using Gauss-Seidal method. Use
[
x1 x2 x3

]
=
[

1 0 1
]

as

the initial guess.

Solution

Rewriting the equations, we get

CHAPTER 1. ITERATIVE METHODS 16

x1 =
76− 7x2 − 13x3

3
,

x2 =
28− x1 − 3x3

5
,

x3 =
1− 12x1 − 3x2

−5
.

Assuming an initial guess of


x1

x2

x3

 =


1

0

1


the next six iterative values are given in the table below

Iteration a1 |εa|1 a2 |εa|2 a3 |εa|3
1 21.000 110.71 0.80000 100.00 5.0680 98.027

2 −196.15 109.83 14.421 94.453 −462.30 110.96

3 −1995.0 109.90 −116.02 112.43 47636 109.80

4 −20149 109.89 1204.6 109.63 −47636 109.90

5 2.0364× 105 109.90 −12140 109.92 4.8144× 105 109.89

6 −2.0579× 105 1.0990 1.2272× 105 109.89 −4.8653× 106 109.89

We can see that this solution is not converging and the coefficient matrix is not

diagonally dominant. The coefficient matrix

A =


3 7 13

1 5 3

12 3 −5


is not diagonally dominant as

|a11| = |3| = 3 ≤ |a12|+ |a13| = |7| = |13| = 20

CHAPTER 1. ITERATIVE METHODS 17

Hence Gauss-Seidal method may or may not converge. However, it is the same set

of equations as the previous example and that converged. The only difference is that

we exchanged first and the third equation with each other and that made the coefficient

matrix not diagonally dominant. So it is possible that a system of equations can be

made diagonally dominant if one exchanges the equations with each other. But it is

not possible for all cases. For example, the following set of equations.

x1 + x2 + x3 = 3,

2x1 + 3x2 + 4x3 = 9,

x1 + 7x2 + x3 = 9.

can not be rewritten to make the coefficient matrix diagonally dominant.

Chapter 2

The Singular value Decomposition

Matrix decompositions play a critical role in numerical linear algebra. The singular

value decomposition (SVD) is a matrix decomposition that applies to any matrix, real,

or complex. The SVD is a powerful tool for many matrix computations because it

reveals a great deal about the structure of a matrix, we will use the built-in MATLAB

command svd to compute it. More information can be found in[3,6]

2.1 The SVD theorem

If A is an m × n matrix, then ATA is an n × n symmetric matrix with nonnegative

eigenvalues. The singular values of an m × n matrix are the square roots of the

eigenvalues of ATA, and the 2-norm of a matrix is the largest singular value. The

SVD factors A into a product of two orthogonal matrices and a diagonal matrix of its

singular values.

Theorem 2.1.1 Let A ∈ Rm×n be a matrix having r positive singular values, m ≥ n.

Then there exist orthogonal matrices U ∈ Rm×m, V ∈ Rn×n, and a diagonal matrix

Σ̃ ∈ Rm×n such that

18

CHAPTER 2. THE SINGULAR VALUE DECOMPOSITION 19

A = UΣV T (2.1)

Σ̃ =

 Σ 0

0 0

 (2.2)

where Σ = diag(σ1, σ, . . . , σr), and σ1 ≥ σ2 · · · ≥ σr > 0 are the positive singular

values of A .

The columns of U and V are called the left and right singular vectors, respectively.

The largest singular values are denoted, respectively, as σmax and σmin.

Example 2.1.1 The matrix A =

 2 2

3 3

 has SVD

 2 2

3 3

 =

 −0.5547 −0.8321

−0.8321 0.5547

 5.0990 0

0 0.0000

 −0.7071 −0.7071

−0.7071 0.7071


The rank of A is 2 .

Example 2.1.2 Let A =


1 −1 3

1 0 1

1 2 0

 and B =


1 1 −1

1 0 2

2 1 1

. Here are SVDs for

each matrix:

A =


−0.9348 0.0194 0.3546

0.3465 −0.2684 −0.8988

0.0778 −0.9631 0.2577




3.5449 0 0

0 2.3019 0

0 0 0.3676



−0.3395 0.3076 −0.8889

−0.5266 2.3019 −0.0913

−0.7794 0.4371 0.4489

 ,
r = 3, σ1 = 3.5449, σ2 = 2.3019, σ3 = 0.36081

B =


−0.1355 0.8052 −0.5774

−0.6295 −0.5199 −0.5774

−0.07651 0.2852 0.5774




3.1058 0 0

0 2.0867 0

0 0 0.0000



−0.7390 −0.2900 −0.6081

0.4101 0.5226 −0.7475

0.5345 −0.8018 −0.2673

 ,
r = 3, σ1 = 3.5449, σ2 = 2.3019, σ3 = 0.36081

The rank of A is 3, and the rank of B is 2.

CHAPTER 2. THE SINGULAR VALUE DECOMPOSITION 20

Example 2.1.3 Consider the matrix

A =



1 1 1 1 1

0 0 0 0 0

−1 −1 −1 −1 −1

0 0 0 0 0

1 1 1 1 1

−1 −1 −1 −1 −1

0 0 0 0 0


(2.3)

An SVD is

CHAPTER 2. THE SINGULAR VALUE DECOMPOSITION 21

U =



−0.5000 −0.8660 0 0.0000 0 0.0000 0

0.0000 0.0000 1 0.0000 0 0.0000 0

0.5000 −0.2887 0 0.8165 0 0.0000 0

0.0000 0.0000 0 0.0000 −1 0.0000 0

−0.5000 0.2887 0 0.4082 0 0.7071 0

0.5000 −0.2887 0 −0.4082 0 0.7071 1

0.0000 0.0000 0 0.0000 0 0.0000 1


,

Σ̃ =



4.4721 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


,

V =



−0.4472 −0.3651 −0.6712 0.4614 0.0581

−0.4472 −0.3651 −0.0671 0.8074 0.1016

−0.4472 −0.5477 0.0000 0.0883 0.7016

−0.4472 −0.3651 −0.7383 0.3460 0.0435

−0.4472 −0.5477 −0.0000 0.0883 0.7016


Σ = [4.4721], σ1 = 4.4721, r = 1 (2.4)

The rank of A is 1.

2.2 Using the SVD to determine properties of a

matrix

The rank of a matrix is the number of linearly independent columns or rows.We notice

that in Example 2.1.2, the matrix A has three nonzero singular values, and the matrix

CHAPTER 2. THE SINGULAR VALUE DECOMPOSITION 22

B has two. The matrix of Example 2.1.3 has only one nonzero singular value. The

rank of the matrices is 3, 2, and 1, respectively.The rank of a matrix is the number of

nonzero singular values in Σ̃ . The result will allow us to show the relationship between

the rank of a matrix and its singular values.

Theorem 2.2.1 If A is an m× n matrix, X is an invertible m×m matrix, and Y is

an invertible n× n matrix, then rank (XAY) = rank (A)

Proof. Since X is invertible, it can be written as a product of elementary row

matrices, so X = E
(X)
k E

(X)
k−1 . . . E

(X)
2 E

(X)
1 . Similarly, Y is a product of elementary row

matrices, Y = E
(Y)
p E

(Y)
p−1 . . . E

(Y)
2 E ∗ (Y)1, and so

XAY = E
(X)
k E

(X)
k−1 . . . E

(X)
2 E

(X)
1 AE(Y)

p E
(Y)
p−1 . . . E

(Y)
2 E ∗ (Y)1.

The product of the elementary row matrices on the left performs elementary row

operations on A, and this does not change the rank of A. The product of elementary

row matrices on the left perform elementary column operations, which also do not alter

rank. Thus, rank(XAY)=rank(A).

Theorem 2.2.2 The rank of a matrix A is the number of nonzero singular values.

Proof. Let A = UΣ̃V T be the SVD of A. Orthogonal matrices are invertible, so by

rank(A) = rank(UΣ̃V T) = rank(Σ̃).

The rank of Σ̃ is r, since

[σ1 0 0 . . . 0]T , [0σ2 0 . . . 0]T , [0 0σ3]
T , [0 0 . . . σr 0 . . . 0]T

is a basis for the column space of Σ̃.

From the components of the SVD, we can determine other properties of the original

matrix. Recall that the null space of a matrix A, written null(A), is the set of vectors

x for which Ax = 0, and the range of A is the set of all linear combinations of the

CHAPTER 2. THE SINGULAR VALUE DECOMPOSITION 23

columns of A (the column space of A). Let ui, 1 ≤ i ≤ m and vi, 1 ≤ i ≤ n be the

column vectors of U and V , respectively. Then

Avi = UΣ̃V Tvi.

The matrix V T can be written as



vT1
...

vTi
...

vTn


, where the vi are the orthogonal columns

of V . The product V Tvi =



vT1
...

vTi
...

vTn


vi = ei, where ei =



0
...

1

0
...
...

0


is the ith standard basis

vector n Rn. Now,

Σ̃ei =



σ1 0 . . . 0 . . . 0 0 0

0 σ2 . . . 0 . . . 0 0 0

0 0 . . . σi . . .
... . . .

...

0 0 . . . 0
. . .

... . . .
...

...
...

...
... . . . σr . . . 0

...
...

...
... . . .

...
. . . 0

0 0 . . . 0 . . . 0 . . . 0


ei =



0
...

σi

0
...
...

0


, i ≤ r,

and

CHAPTER 2. THE SINGULAR VALUE DECOMPOSITION 24

U



0
...
...

σi
...
...

0


=



u11 u12 . . . u1r . . . u1m

u21 u22 . . . u2r . . . u2m
...

...
. . .

... . . .
...

...
... . . . urr . . . unm

...
... . . .

...
.

um1 um2 . . . umr . . . umm





0
...

0

σi
...

0


= σiui, 1 ≤ i ≤ r.

For vi, r + 1 ≤ i ≤ m, we have

Avi = UΣ̃ei =



u11 . . . u1i . . . u1m

u21 . . . u2i . . . u2m
...

. . .
... . . .

...
... . . . uii . . . uim
... . . .

... . . .
...

... . . .
...

. . .
...

...
...

...
...

...

um1 . . . umi . . . umm





σ1 . . . 0 0 . . . 0
...

. . .
... . . .

...
...

0 . . . σr
. . .

... 0
...

...
... 0

...
...

...
...

...
. . .

... . . .
...

0 . . . 0 0 0 0 . . .
...

... . . .
...

...
...

...
. . .

...

0 . . . 0 0 0 0 . . . 0





0
...
...

0
...

1
...

0



= 0

and Avi = 0, r + 1 ≤ i ≤ m.

In summary, we have

Avi = σiui, σi 6= 0, 1 ≤ i ≤ r

Avi = 0, r + 1 ≤ i ≤ n

Since U and V are orthogonal matrices, all ui and vi are linearly independent. For

1 ≤ i ≤ r, Avi = σiui, σi = 0, and ui, 1 ≤ i ≤ r is in the range of A. Since by Theorem

2.2.1 the rank of A is r, the ui are a basis for the range of A. For r+1 ≤ i ≤ n,Avi = 0,

so vi is in null(A). Since rank(A) + nullity(A) = n, nullity(A) = n − r. There are

CHAPTER 2. THE SINGULAR VALUE DECOMPOSITION 25

n− (r + 1) + 1 = n− r orthogonal vectors vi, so the vi, r + 1 ≤ i ≤ n, are a basis for

the null space of A.

Example 2.2.1 Let B =


1 1 −1

1 0 2

2 1 1

 be the matrix in Example 2.1.2. From the

SVD, the vector


−0.1355

−0.6295

−0.7651

 and


0.8052

−0.5199

0.2852

 are a basis for the rang of B, and the

vector


0.5345

−0.8018

−0.2673

 is a basis for the null space of B. Remember when looking at the

decomposition of B, V T appears, not V .

2.3 SVD and matrix norms

The SVD provides a means of computing the 2-norm of a matrix, since ‖A‖2 =
√
σ1

. If A is invertible, then ‖A−1‖2 =
√

1
σn

. The SVD can be computed accurately,

so using it is an effective way to find the 2-norm. The SVD also provides a means

of computing the Frobenius norm. There is means of computing the Frobenius norm

using the singular values of matrix A. Before developing the formula, we need to prove

the invariance of the Frobenius norm under multiplication by orthogonal matrices.

Lemma 2.3.1 If U is an m × m orthogonal matrix, and V is an n × n orthogonal

matrix, then ‖UAV ‖2F = ‖A‖2F .

Proof.

‖UA‖2F = trace
(
(UV)T (UV)

)
= trace

((
ATUT

)
(UA)

)
= trace

(
AT IA

)
= trace

(
ATA

)
= ‖A‖2F ,

showing that the Frobenius norm is invariant under left multiplication by an or-

thogonal matrix. Now,

CHAPTER 2. THE SINGULAR VALUE DECOMPOSITION 26

‖AV ‖2F = trace
(
(AV)(AV)T

)
= trace

(
(AV)

(
V TAT

))
= trace(AAT) = ‖A‖2F ,

so the Frobenius norm is invariant under right multiplication by an orthogonal

matrix. Now form the complete product.

‖UAV ‖2F = ‖U(AV)‖2F = ‖AV ‖2F = ‖A‖2F .

Theorem 2.3.1 ‖A‖F =

(
i=1∑
r

σ2
i

) 1
2

Proof. By the SVD, there exist orthogonal matrices U and V such that A = UΣ̃V T .

Then, ‖A‖F = ‖UΣ̃V T‖F = ‖Σ̃‖F by Lemma 2.3.1. The only nonzero entries in Σ̃ are

the singular values σ1, σ2, . . . , σr so ‖A‖F = (
∑r

i=1 σ
2
i)

1
2 .

2.4 Computing the SVD using MATLAB

In this section ,we use the following MATLAB function svd to compute the SVD . The

MATLAB function svd computes the SVD:

1. [U S V] = svd(A)

2. S = svd(A)

Form 2 returns only the singular values in descending order in the vector S.

Example 2.4.1 Find the SVD for the matrix. Notice that σ3 = 4.8021 × 10−16 and

yet the rank is 2. In this case, the true value is 0, but roundoff error caused svd to

return a very small singular value. MATLAB computes the rank using the SVD,that

CHAPTER 2. THE SINGULAR VALUE DECOMPOSITION 27

σ3 is 0.

A =



1 4 2

−1 0 2

5 −1 −11

0 2 2

1 1 −1


,

>> [U,S,V] = svd(A)

U =

0.15897 0.8589 -0.2112 -0.3642 -0.24447

0.17398 -0.073783 -0.9063 0.22223 0.30581

-0.95316 0.17263 -0.18552 0.14793 -0.073387

0.16648 0.39256 0.21339 0.87898 -0.0063535

-0.090746 0.27006 0.23251 -0.15324 0.91722

S =

12.691 0 0

0 4.7905 0

0 0 4.8021e-16

0 0 0

0 0 0

V =

-0.38387 0.43125 0.8165

0.1443 0.90139 -0.40825

0.91204 0.038895 0.40825

>> rank(A)

ans =

CHAPTER 2. THE SINGULAR VALUE DECOMPOSITION 28

2

The function svd applies equally well to a matrix of dimension m × n,m < n. Of

course, in this case the rank does not exceed m.

Example 2.4.2 Let A =


7 9 −5 10 10 −8

9 3 1 −7 0 −2

−8 8 10 10 6 9


>> [U S V] = svd(A)

U =

-0.42586 -0.89303 -0.14539

0.26225 -0.27562 0.9248

-0.86595 0.35571 0.35157

S =

22.577 0 0 0 0 0

0 20.176 0 0 0 0

0 0 9.5513 0 0 0

V =

0.27935 -0.57383 0.4704 0.60332 0.008204 0.085659

-0.44176 -0.2983 0.44795 -0.37549 -0.51939 -0.32318

-0.27763 0.38396 0.54102 0.10972 0.60466 -0.32426

-0.65349 -0.1707 -0.46191 0.53138 0.0076852 -0.21915

-0.41876 -0.33684 0.068636 -0.28352 0.38297 0.6924

-0.21753 0.5401 0.2594 0.34673 -0.46673 0.5056

>> rank(A)

ans =

CHAPTER 2. THE SINGULAR VALUE DECOMPOSITION 29

3

Since m = 3 and the rank is 3, A has full rank.

2.5 Computing A−1

We know that the inverse is often difficult to be computed accurately and that,to

compute A−1, the SVD can be used. Since A is invertible, the matrix Σ̃ cannot have

a 0 on its diagonal (rank would be < n), so Σ̃ = Σ. From A = UΣV T , A−1 =

(V T)−1Σ−1U−1, where all the matrices have dimension n×n. U and V are orthogonal,

so

A−1 = V



1
σ1

0

1
σ2

. . .

1
σn−1

0 1
σn


UT .

Example 2.5.1 Let A =


1 −1 3

4 2 3

5 1 −1

 .
>> A = [1 -1 3;4 2 3;5 1 -1];

>> [U S V] = svd(A);

>> Ainv = V*diag(1./diag(S))*U

Ainv =

0.1190 -0.0476 0.2143

-0.4524 0.3810 -0.2143

0.1429 0.1429 -0.1429

CHAPTER 2. THE SINGULAR VALUE DECOMPOSITION 30

>> inv(A)

ans =

0.1190 -0.0476 0.2143

-0.4524 0.3810 -0.2143

0.1429 0.1429 -0.1429

Example 2.5.2 We solved this system in chapter 1(Example 1.2.1) by Gauss-Jacobi

and now, we solve it by SVD
20 1 −2

3 20 −1

2 −3 20



x1

x2

x3

 =


17

−18

25

 (2.5)


−0.5091 0.6685 −0.5421

−0.7041 0.0388 0.7091

0.4951 0.7427 0.4509




22.8325 0 0

0 20.1601 0

0 0 17.3276



−0.4951 0.7427 −0.4509

−0.7041 −0.0388 0.7091

0.5091 0.6685 0.5421


x1 = 1, x2 = −1, x3 = 1.

Example 2.5.3 We solved this system in chapter 1(Example 1.3.1) by Gauss-Siedel

and now, we solve it by SVD
45 2 3

3 22 2

5 1 20



x1

x2

x3

 =


58

47

67

 (2.4)

CHAPTER 2. THE SINGULAR VALUE DECOMPOSITION 31


−0.9777 0.1730 −0.1188

−0.1203 −0.9258 −0.3584

−0.1720 −0.3361 0.9260




45.9483 0 0

0 22.1446 0

0 0 18.9571



−0.9841 0.1502 −0.0945

−0.1039 −0.9193 −0.3796

−0.1439 −0.3637 0.9203


x1 = 1.0115, x2 = 1.7247, x3 = 3.0109.

Chapter 3

Using SVD to Solve Least-Squares

Problems

3.1 Least-Squares Problems

In many areas such as curve fitting, statistics, and geodetic modeling, A is either

singular or has dimension m × n,m = n. If m > n, there are more equations than

unknowns, and the system is said to be overdetermined. In most cases, overdetermined

systems have no solution. In the case m < n, there are more unknowns than equations,

and we say such systems are underdetermined. In this situation, there are usually an

infinite number of solutions.

Since singular, over- and underdetermined systems do not give us a solution in the

exact sense, the solution is to find a vector x such that Ax is as close as possible

to b . A way of doing this is to find a vector x such that the residual r(x) =

‖Ax − b‖2 is a minimum. Recall that the Euclidean norm , ‖.‖2 , of a vector in Rn

is
√
x21 + x22 + · · ·+ x2n , so if we want to minimize ‖Ax − b‖2 , we call x a least-

squares solution. Finding a least-squares solution to Ax = b is known as the linear

least-squares problem.

32

CHAPTER 3. USING SVD TO SOLVE LEAST-SQUARES PROBLEMS 33

Definition 3.1.1 The least-squares problem

Given a real m× n matrix A and a real vector b, find a real vector x ∈ Rn such that

the function r(x) = ‖Ax− b‖2 is minimized. It is possible that the solution x will not

be unique [1,3,6].

Assume that m > n. Since x ∈ Rn, and A is an m × n matrix, Ax is a linear

transformation from Rn to Rm, and the range of the transformation,R(A), is a subspace

of Rm. Given any y ∈ R(A), there is an x ∈ Rn such that Ax = y. If b ∈ Rm is in

R(A), we have a solution. If b is not in R(A), consider the vector Ax − b that joins

the endpoints of the vectors Ax and b.

Since b is not in R(A), project b onto the plane R(A) to obtain a vector u ∈ R(A).

There must be a vector x ∈ Rn such that Ax = u. The distance between the two points

is ‖Ax− b‖2 is as small as possible, so x is the solution we want.

The vector b − Ax is orthogonal to R(A), and since every vector in R(A) is a linear

combination of the columns of A (vectors in Rm), it must be the case that b − Ax is

orthogonal to the every column of A. Mathematically this means that the inner product

of b− Ax with each column of A must be zero. If

ai =



a1,i

a2,i
...

am−1,i

am,i


is column i, then 〈ai, b− Ax〉 = aTi (b− Ax) = 0 , 1 ≤ i ≤ n, and

AT (b− Ax) = 0 ,

CHAPTER 3. USING SVD TO SOLVE LEAST-SQUARES PROBLEMS 34

3.2 existence and uniqueness of least-squares solu-

tions

In order to prove the existence and uniqueness to the solution of the least-squares

problem, we will consider the case m ≥ n. Let A be an m × n matrix. Then, each of

the n columns has m components and is a member of Rm, and each of m rows has n

components and is a member of Rn. The columns of A span a subspace of Rm, and

the rows of A span a subspace of Rm. The column rank of A is the number of linearly

independent columns of A, and the row rank of A is the number of linear independent

rows of A. proves that the column rank and row rank of A are equal.

3.2.1 Definition

An m × n matrix A has full rank if rank(A) = min(m,n). If m ≥ n, and A has full

rank, then rank(A) = n, and the columns of A are linearly independent.

3.2.2 lemma

Let A be an m×n matrix, m ≥ n. A has full rank if and only if the n×n matrix ATA

is nonsingular

Proof. We proof by contradiction. Assume A has full rank, but ATA is singular. In

this case, the n × n homogeneous system AtAx = 0 has a nonzero solution x. As a

result, xtAtAx = 0, which says that Ax, Ax = |Ax|22 = 0, so Ax = 0, and A cannot

have full rank.

Again, use proof by contradiction. Assume ATA is nonsingular, but A does not have

full rank. Since A is rank deficient, there is a nonzero vector x such that Ax = 0. As

a result, ATAx = 0, x 6= 0, so ATA is singular.

Theorem 3.2.1 a. Given an m×n matrix A with m ≥ n and an m×1 column vector

b, an n× 1 column vector x exists such that x is a least-squares solution to Ax = b if

and only if x satisfies the normal equations

CHAPTER 3. USING SVD TO SOLVE LEAST-SQUARES PROBLEMS 35

ATAx = AT b.

b. The least-squares solution x is unique if and only if A has full rank.

Proof. To prove part (1), assume that ATAx = AT b, so that x is a solution of the

normal equations. Now, if x is any vector in Rn,

‖Ax− b‖22 = ‖Ax− Ax̄+ Ax̄− b‖22 = 〈[(Ax̄− b) + A(x− x̄)], [(Ax̄− b) + A(x− x̄)]〉

= ‖Ax̄− b‖22 + 2〈A(x− x̄), (Ax̄− b)〉+ ‖A(x− x̄)‖22

= ‖Ax̄− b‖22 + 2(A(x− x̄))T (Ax̄− b) + ‖A(x− x̄)‖22

= ‖A ¯x− b‖22 + 2(x− x̄)T (ATAx̄− AT b) + ‖A(x− x̄)‖22

= ‖Ax̄− b‖22 + ‖A(x− x̄)‖22

≥ ‖Ax̄− b‖22,

and x̄ is a solution to the least-squares problem

Now assume that x̄ ∈ Rn is a solution to the least-squares problem, so that ‖Ax̄− b‖2
is minimum. Thus,‖b− Ax̄‖22 ≥ ‖b− Ay‖22 for any y ∈ Rn. Given any vector z ∈ Rn,

let y = x+ tz, where t is a scalar. Then,

‖b− Ax̄‖22 ≤ ‖b− A(x+ tz)‖22 = ([b− Ax̄]− tAz)T ([b− Ax̄]tAz)

= ‖b− Ax̄‖22 − 2t(b− Ax̄)TAz + t2‖Az‖22 .

Thus,

0 ≤ −2t(b− Ax)TAz + t2‖Az‖.

If t > 0,

0 ≤ −2(b− Ax̄)TAz + t‖Az‖22,

and

2(b− Ax̄)TAz ≤ t‖Az‖22.

CHAPTER 3. USING SVD TO SOLVE LEAST-SQUARES PROBLEMS 36

If t < 0,

0 ≤ 2(b− Ax̄)TAz + |t|‖Az‖22.

As t −→ 0+ or t −→ 0−, we have 2(b− Ax̄)TAz ≤ 0 and 0 ≤ 2(b− Ax̄)TAz, so

(b− Ax̄)TAz = 0

for all z ∈ Rn. Thus,

(b− Ax̄)TAz = (Az)T (b− Ax̄) = zTAT (b− Ax̄) = zT (AT b− ATAx̄) = 0

for all z ∈ Rn. Choose z = (AT b−ATAx̄) , so ‖AT b−ATAx‖22 = 0 and ATAx = AT b.

For part (2), if x is the unique solution to ATAx = AT b, then ATA is nonsingular so

A must have full rank . If A has full rank,ATA is nonsingular , and ATAx = AT b has

a unique solution.

3.3 solving overdetermined least-squares problems

To solve overdetermined least squares problem we use the svd. There is a reduced SVD,

and it has the form

Am×n = Um×nΣn×n(V n×n)T .

In MATLAB,we use the command [USV] = svd(A, 0).The reduced SVD is also a

powerful tool for computing full-rank least-squares solutions, m ≥ n. The following

manipulations show how to use it.

Apply the reduced SVD to A and obtain A = UΣV T , where U ∈ Rm×n has orthonormal

columns, and V ∈ Rn×n is orthogonal, and Σ = diag(σ1, σ2, ..., σn) ∈ Rn×n, σi > 0,1 ≤

i ≤ n. Form the normal equations

ATA = (UΣV T)TUΣV T

and so

CHAPTER 3. USING SVD TO SOLVE LEAST-SQUARES PROBLEMS 37

ATA = (V Σ)ΣV T .

Now, AT b = (V Σ)UT b, and so the normal equations become

(V Σ)ΣV Tx = (V Σ)UT b

Since V is orthogonal and is a diagonal matrix with positive entries,V is invertible,

and after multiplying the previous equation by (V Σ)−1 we have

ΣV Tx = UT b.

First solve y = UT b, followed by V Tx = y. Since is a diagonal matrix, the solution to

y = UT b is simple. Let

UT b =



c1

c2
...

cn−1

cn


.

Then, 
σ1 0

σ2 0

0
. . .

0 σn




y1

y2
...

yn

 =


c1

c2
...

cn

 ,

and yi = ci
σi

,1 ≤ i ≤ n. The solution to V Tx = y is x = V y.

As an application of using SVD to solve least-square problems, we see the following

example:

Example 3.3.1 The velocity of an enzymatic reaction with Michaelis-Menton kinetics

is given by

v(s) =
αs

1 + βs
(3.1)

Find the Michaelis-Menton equation which best fits the data: Inverting Equation 3.1

CHAPTER 3. USING SVD TO SOLVE LEAST-SQUARES PROBLEMS 38

s 1 4 6 16

v 4 10 12 16

x 1.0000 0.2500 0.1667 0.0625

y 0.2500 0.1000 0.0833 0.0625

gives the Lineweaver-Burke equation:

1

v
=

1

α

1

s
+
β

α
(3.2)

Perform the following change of variable: y = 1
v

and x = 1
s
. Let m = 1

α
and b = β

α
.

Equation 3.2 then becomes

y = mx+ b

Recompute the table to reflect the change of variables. Find the least-squares fit for

y = mx+ b by solving the following 4× 2 set of equations

1.0000m+ b = 0.2500

0.2500m+ b = 0.1000

0.1667m+ b = 0.0833

0.0625m+ b = 0.0625

that correspond to the matrix equation
1.0000 1

0.2500 1

0.1667 1

0.0625 1


 m

b

 =


0.2500

0.1000

0.0833

0.0625


The following MATLAB code solves for m and b and then computes α, β.

>> A = [1.0000 1.0000;0.2500 1.0000;0.1667 1.0000;0.0625 1.0000];

>> b = [0.2500 0.1000 0.0833 0.0625]?;

>> x = svdlstsq(A,b);

CHAPTER 3. USING SVD TO SOLVE LEAST-SQUARES PROBLEMS 39

>> m = x(1);

>> b = x(2);

>> alpha = 1/m

alpha =

4.9996

>> beta = alpha*b

beta =

0.2499

The least-squares approximation is (Figure 3.1)

v(s) =
4.9996s

1 + 0.2499s

Figure 3.1: Velocity of an enzymatic reaction.

CHAPTER 3. USING SVD TO SOLVE LEAST-SQUARES PROBLEMS 40

Example 3.3.2 let

A =



1 −1 3

8 8 1

4 6 −12

6 −9 0

3 4 4


, b =



1

3

−1

6

15


Find the solution using the SVD method

solution

A = UΣV T

A =



0.1268 −0.1940 −0.1338 −0.9429 −0.1983

−0.5237 −0.5756 −0.3737 0.1987 −0.4641

−0.7830 0.5330 −0.0888 −0.2424 0.1902

0.2869 0.2723 −0.9078 0.0887 0.1075

−0.1195 −0.5223 −0.1024 −0.0697 0.8352





16.0248 0 0

0 11.525 0

0 0 10.2160

0 0 0

0 0 0



−0.3639 −0.2255 −0.9037

−0.7535 −0.4991 0.4280

0.5476 −0.8367 −0.0117


vTx = y, yi = ci

σi
, c = UT b.

c =



−0.7325

−8.6542

−8.1488

−0.6179

11.3923


, y =


−0.0457

−0.7509

−0.7976



−0.3639 −0.7535 0.5476

−0.2255 −0.4991 −0.8367

−0.9037 0.4280 −0.0117



x1

x2

x3

 =


−0.0457

−0.7509

−0.7976


x1 = 0.9068, x2 = 0.0678, x3 = 0.6125

CHAPTER 3. USING SVD TO SOLVE LEAST-SQUARES PROBLEMS 41

Example 3.3.3 let

A =


1 3

2 4

3 8

2 9

 , b =


1

3

5

8


Find the solution using the SVD method

solution

A = UΣV T

A =


−0.2314 −0.0471 −0.6326 −0.7376

−0.3232 −0.6113 −0.4730 0.5461

−0.6245 −0.3998 0.6025 −0.2953

−0.6723 0.6814 −0.1145 0.2656




13.6622 0

0 1.1596

0 0

0 0


 −0.2998 −0.9540

−0.9540 0.2998


vTx = y, yi = ci

σi
, c = UT b.

c =


−9.7020

1.5712

0.0451

1.5493

 , y =

 −0.7101

1.3549


 −0.2998 −0.9540

−0.9540 0.2998

 x1

x2

 =

 −0.7101

1.3549


x1 = −1.0797, x2 = 1.0837.

Chapter 4

Conclusion

We have presented first two iterative methods The Gauss-Jacobi method and

Gauss-Seidel method for solving a system of algebraic equations.

We apply it to solve systems of algebraic equations with square coefficient

matrix which is diagonally dominant. The solution by these two iterative

methods converges to the exact solution.

We find this two methods are simple and obtaining an approximate solu-

tion is converging to the exact solution for a system with a square coefficient

matrix. If the system has not a square coefficient matrix (an overdetermined

system), then these two methods will fail to solve this system.

The singular value decomposition (SVD)is used to solve an overdeter-

mined system which is a power full tool for the solution. Also the SVD

method is a power full tool to solve the least square problem.

42

Bibliography

[1] B.N. Datta, Numerical Linear Algebra and Applications, second ed., SIAM, Philadel-

phia, 2010.

[2] .G.H. Golub, C.F.Van Loan, Matrix Computations, fourth ed.,The Johns Hopkins Uni-

versity Press, Baltimore, 2013.

[3] G.H. Golub, C. Reinsch, Singular value decomposition and least squares solutions,

Numer. Math. 14 (1970) 403420.

[4] G. Strang, Introduction to Linear Algebra, fourth ed., Wellesley- Cambridge Press,

Wellesley,MA, 2009

[5] J.W. Demmel, Applied Numerical Linear Algebra, SIAM, Philadelphia, 1997.

[6] W.ford Numerical Linear Algebra with Appalications,ELSEVIER,UK,2015.

[7] Y. Saad, Numerical Methods for Large Eigenvalue Problems, Revised ed., SIAM,

Philadelphia, 2011.

43

	Abstract
	Abstract Arabic
	Aknowledgement
	Dedication
	List of Figures
	Iterative Methods
	Introduction
	Gauss-Jacobi Iteration Method
	Gauss-Siedel Iteration Method

	The Singular value Decomposition
	The SVD theorem
	Using the SVD to determine properties of a matrix
	SVD and matrix norms
	Computing the SVD using MATLAB
	Computing A-1

	Using SVD to Solve Least-Squares Problems
	Least-Squares Problems
	existence and uniqueness of least-squares solutions
	Definition
	lemma

	solving overdetermined least-squares problems

	Conclusion
	Bibliography

