بسم الله الرحمن الرحيم

وقل الحمد لله سيريكم اياته فتعرفونها وماربك بغافل عما تعملون الاية (93) سورة النمل

ACKNOWLEDGMENTS

After thanks to Allah I would like to express my gratitude to all my family members ,my supervisor DrElfatihAhmed Hasssan for his support ,patience , guidance, and encouragement My thanks extend to the staff of the chemistry department Sudan University of Science and technology .

Abstract

Poly ethylene glycol (PEG4)oleate nonionic surfactant was synthesizedusingageneral method by esterification of poly ethylene glycol (PEG4) as hydrophilic portion with oleic acid as hydrophobic portionof the surfactant . IR was used to investigate esterification product which show peaks at 1739.69 cm⁻¹ ,1137.92 cm⁻¹due to (c=o) and (c-o) groups respectively .which confirm presence of ester function. The hydrophilic ,libophilic balance (HLB) of the prepared surfactant was calculated using griffin method and found that the HLB for PEG4 mono and dioleate was 8.176 ,5.138 cm⁻¹respectively .The surfactant functionality in emulsification was investigated using n-hexane as oil phase and . Dilution test showed that the type of emulsion was to be w\o type.

الملخص: ـ

باستخدام الطريقة العامة تم تحضير مادة أوليات البولي اثايلين جلاكول اللا ايونية وهي مادة ذات نشاط سطحي و تستخدم هذه المادة في تحضير المستحلبات وذلك بتفاعل استرة البولى اثايلين جلاكول ذي الاربع جزيئات ايثوكسيد ممثلا الجزء المحب للماء مع حمض الاوليك الجزء الكاره للماء وتم تأكيد عملية الاسترة بتحليل المركب الناتج بالاشعة تحت الحمراء والتي اظهرت امتصاصين في 1739.69 سم-1 و 1137.92 سم-1 ممايؤكد وجود مجموعتي الكربونيل والايثوكسيد على التوالي وهذا يدل على حدوث عملية الاسترة وبطريقة العالم قريفن تم حساب قيمة.

لثنائية HLB سم-1 لمركبأوليات البولي اثايلين جلاكولاوحادية الأوليات. و5.138سم-1وكانت القيمة هي 8.176 ثم تم اختبار مقدرة مادة أوليات البولي اثايلين جلاكول في تكوين المستحلب بتحضير مستحلب بين مركب الهكسان العادي كطور زيتي والماء واظهر اختبار التخفيف ان المستحلب من النوع ماء في زيت.

Tableofcontent

content	Page No
الاية	I
A cknowledgment	V
Abstract	III
Abstract in arrabic	V
Table of contents	V
List of table	VI
List of figure	VII
List of abbreviations	VIII
Chapter one introduction	
1.1 True solution	1
1.2 Suspensions	1
1.3 colloids	2
1.4formation of colloids	4
1.5 shape of colloidal particles	4
1.6 emulsifying agent	5
1.7 characteristic feature of surfactant	7
1.8classification and applications of surfactants	9
1.9 PolyEthyleneGlycol ester surfactants	13
1.10 emulsion	15
1.11 type of emulsions	15
1.12 pharmaceutical applications of emulsion	17
1.13 hydrophilic hydrophobic HLB system	18
1.14 emulsification process	18
1.15 stability	19
1.16 the effect of defferent process variable on emulsion stability	27
1.17 emulsification equipments	28
1.18 foaming during agitation process	29
1.19 emulsion stability assessment	30
1.20 test for identification emulsion type	30
1.21 how to measure stability	31
1.22 objective	38
Chapter tow material and method	
2.1 material and method	39
2.2 methods	39
Chapter three results and discussions	
3.1 results and discussions	42
3.2 HLB calculations	42
3.3 Emulsion type test	44
3.4 Emulsion stability	44
3.5 conclusions	35

List of tables

Table	Page
	No
Table 1.1 Types of colloidal systems	3
Table 1.2Cmmon colloid types	5
Table 1.3 Some commonly used emulsifying agents, their HLB values,	6
characteristics and functions.	
Table 1.4 Classification of emulsifying agents on the basis of presence of formally charged groups in their heads	7
Table 1.5Common hydrophilic groups found in commercially available surfactants	10
Table 1.6Hydrophobic groups used in commercially available surfactants	10
Table 1.7PEG Monoleate Surfactants Corresponding nonylphenolethoxylates	14
Table 2.1The phases and surfactant ratio in emulsion	40
Table 3.1 Emulsion diluted with acetone and water	44
Table 3.2variation of separated volume (Vx) vs time h	45
Table 3.3V _x /V _∞ ratio with time	46

List ofFigure

figure	Page No
Figure 1.1 Types of solutions	1
Figure 1.2 Chemical structure of typical double-chain surfactants.	11
Figure 1.30/W emulsion.	16
Figure 1.40/W emulsion	16
Figure 1.5Three cases of interdrop repulsion	23
Figure 1.6Three cases of variation of the interdrop forces versus intedrop distance according to the extension of the DLVO theory	17
Figure 1.7Instability types of emulsion.	25
Figure 1.8Variation of the separated phase volume vs. time	33
Figure 1.9 Comparison of the stability of two emulsions (A and B)	36
according to the criterion defined in figure 1.8	
Figure 3.1 IR spectroscopy	43
Figure 3.2 variation of separated volume V _x Vs time	45
Figure 3.33.3 comparison of the stability of the three	46
emulsionaccordingto criterion defined in in figure 3.1 . V_x/V_∞ against	
time	

PEG 4 poly ethylene glycol with 4 ethylene group

NPE nonyl phenol ethoxylate

HLB hydrophilic-lipophilic balance

w\o water in oil emulsion

o\w oil in water emulsion

v velocity separation

D_r density deference

R sphere radius

D diameter of the particle

Vx separated volume at time t

V∞ Separated volume at infinite time

η viscosity

g gravitational acceleration

psdispersed phase density

po continuous phase density

cmccritical micelles concentration

Sudan University of Science and Technology

College of Graduate Studies

POLY ETHYLENE GLYCOL SYNTHESIS AND APPLICATION IN EMULSION

تخليق مادة ايثايلين جلايكول وتطبيقه في المستحلبات

ADISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE DEGREE OF M.Sc IN CHEMISTRY

BY:

MOHAMMED AHMED SAAD MOHAMMED

B.Sc. CHEMISTRY ,PGA(CHEMISTRY)

SUPERVISOR:

DR. ELFATIH AHMED HASSAN

May .2016