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4. Grassmannian resolvent sets: 

4.1 Let E be a complex Branch algebra with 1 and 1 ∈B⊂E	a 

Banach subalgebra, 

Let further ߨ = ቀܽ ܾ
ܿ ݀ቁ 1ߣ		/

ේ  ݎܩଵ(E), we define the n-th 

Grassmannian B-resolvent set of ߨ to be the set ̌n 

ቄ(ߨ; (ܤ = 	of	complement	a	is	�⌊ߪ⌋(ܤ)ݎܩ߳ߪ� ቄ �ቅ. If ߪ =

൬ߙ ߚ
ߛ ൰ߜ ,∝ where	ߣ̅/ ,ߚ ,ߛ ,ߜ ∈ ै(ܤ)is equivalent to requiring 

that  

⎝

⎜
⎜
⎛

ܾ 0
⋱ ߚ

0 ܾ
݀ 0

⋱ ߜ
0 ݀ ⎠

⎟
⎟
⎞
∈ ;2)ܮܩ  (ܧ

 

It is easily seen that ߨ)̅; (ܤ = 	൫̅(ߨ;  is a fully	൯∈ℕ(ܤ

matricial B-set of the Grassmannian. The direct sum property is 

obvious and the similarity property follows from the fact that S. 

**** if  ݏ ∈  is ߪ.is a complement of ****  if  s	ߪ and (ℂ;݊)ܮܩ

"a complement" of s. (ߨ⨁…⨁ߨ). We shall call ߨ)̅;  the full (ܤ

Grassmannian B-resolvent of ߨ.  
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4.2 on ߨ)̅; (ܧ)	we define the ै (ܤ −  analytic݀݁ݑ݈ܽݒ

function ࣽ(ߨ;   be so that .(ܤ

⎝

⎜
⎜
⎛

ܾ 0
⋱ ߚ

0 ܾ
݀ 0

⋱ ߜ
0 ݀ ⎠

⎟
⎟
⎞
= ቀ

∗ ∗
∗  ,ቁߦ

Then we define ࣽ(ߨ; ߬ if ߦߚ = .(ܤ ∈ ,൯(ܤ)൫ै	ଵܮܩ ߬ ∈

,ߚ then replacing ,(ܧ)ଵܮܩ ,ߜ ܾ, ݀	 by  ߚఛ , ,ఛߜ ܾଵ, ݀ଵ will lead to 

replacing ߦ by ߬ିଵక 	. since ߚక =	  ൫߬ିଵక൯ we see that	(ఛߚ)

ै(ߨ; ,ߨ)is well-defined. We will call ै	(ߪ)(ܤ ݊	ℎ݁ݐ(ܤ −

 It is easy to check  .ߨ grassmannian B-resolvent of	ℎݐ

that	ࣽ(ߨ;  is a fully matricial E-valued analytic function on (ܤ

;ߨ)	̅  .(ܤ

 

4.3  as a first step toward fitting the "affine " resolvents into this 

framework, we shall see that happens if ߨ is the graph of an 

element ߛ ∈   that is , if ,ܧ

 

ߨ = ൬0 1
1 ൰ߛ ∋1ߣ̅/  (ܧ)ଵܩ

5. The derivation ∂ത on fully matricial functions of the 

Grassinannian 
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5.1. Let Ω be a fully matricial open B-set of the Grassmannian. 

We shall denote by of (ܤ) the algebra of ℂ-valued 

 fully matricial analytic functions on Ω, under	(ݎ݈ܽܽܿܽ	ݏ݅	ݐℎܽݐ)

pointwise multiplication of the matricial values. More generally 

we get an algebra ℘(Ω)	for a fully multimatricial ൫ܤଵ, …  ൯-setܤ

and we shall denote the corresponding algebra, if Ω is a fully 

matricial open B-set of the Grassmannian, then ΩxΩ	is a fully 

multimatricial(B,B )-set	and	we	shall	denote	the	

corresponding	algebra	by	℘ (ΩxΩ),	more	generally	we	have	

algebra	bras		℘(Ω;… ;Ω).	This	extends	the	construction	in	

the	afϐine	case	[16]	.	the	aim	of	this	section	will	be	to	extend	

the	construction	of	the	derivation	߲	from	the	affine	case	to	a	

derivation	߲̅	in	the	Grassmannian	framework.	Like	in	the	

affine	case	the	construction	rests	on	two	technical	lemmas.		

	

5.2.	Lemma.	Let	Ω = (Ω୬)୬∈		be	an	open	fully	maricial	B-set	

of	the	Grassmannian	and	let.	

ߨ =
ቆ ܽ ܾ

ܿ ݀
ቇ/

ߣ̅ ݊
∈ Ω(݆ = 1,2). 

Then for all N,y,z,1∈ ैభమ(ܤ) 
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⎝

⎜
⎛

ܽ ݔ ܾଵ ݕ
0 ܽଶ 0 ܾଶ
ଵܿ ܾ
݀ ݖ ݀ଵ ݐ
0 ܿଶ 0 ݀ଶ⎠

⎟
⎞
ଵߣ + ݊ଶෛ 	∈ 	భమߗ

Proof.	Since	ߗ	is	open,	for	any	given	x,y,z,t		there	is	ߝ ≠ 0	so	

that	the	conclusion	of	the	lemma	holds	with	N,y,z,t	replaced	

by	ݔߝ, ,ݕߝ ,ݖߝ 	to	suffices	it	,ߝ	without	result	the	obtain	to	.	ݐߝ

use	the	GL	(݊ଵ + ݊ଶ)		invariance	with	ݏ = ൬1 0
0 ଶ݈ߝ

൰	

5.3 Lemma. Let Ω be an open fully marticial B-set of the 

Grassmannian and ݂(ߗ)℘ߝ	݀݊ܽ	ݐ݈݁	 ܽ , ܾ , ܿ , ݀ , 	the	in	like	ܾ݁	ݐ

preceding	lemma.	Then,	there	is	k∈ ैଵమ 	(ℂ)	so	that,	

݂ଵାଶ

⎝

⎜
⎛
൮

ܽ 0 ܾଵ 0
0 ݀ଶ 0 ܾଶ
ଵܿ 0 ݀ଵ ݐ
0 ܿଶ 0 ݀ଶ

൲/ߣଵ + ݊ଶෛ

⎠

⎟
⎞
		 

 

=

⎝

⎜⎜
⎛ ݂ଵቌ

ܽ 0 ܾଵ
0 ݀ଶ 0
ଵܿ 0 ݀ଵ

ቍ/ߣଵ + ݊ଶෛ ݇

0 ݂ଵ ቆ൬
ܽଶ ܾଶ
ܿଶ ݀ଶ

൰ ⎠ଶቇߣ/

⎟⎟
⎞
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And k depends linearly on t. in fact we have  

ቀ0 ݇
0 0ቁ= ௗ

ௗ
 ݂ଵାଶ

⎝

⎜
⎛
൮

ܽ 0 ܾଵ 0
0 ݀ଶ 0 ܾଶ
ଵܿ 0 ݀ଵ ݐ
0 ܿଶ 0 ݀ଶ

൲/ߣଵ + ݊ଶෛ

⎠

⎟
⎞

  

Proof: assume the right hand side of the first equality is ቀݑ ݇
ℎ   ቁݒ

GL൫݊ଵ + ݊ଶ;	ℂ൯ equivariance of ݂భଶ	applied to the similarity 

൬ܫߝଵ 0
ܿଶ ଶܫ

൰ we find that  

൬ ݑ ݁݇
ܫߝ ݒ ൰ converges as ߝ → 0 to 	

=

⎝

⎜
⎛ ݂ଵ ቆ൬

ܽ ܾଵ
ܿଵ ݀ଵ

൰ ଵቇߣ/ 0

0 ݂ଵ ቆ൬
ܽଶ ܾଶ
ܿଶ ݀ଶ

൰ ଶቇߣ/
⎠

⎟
⎞ 

This, then , implies h=0 and that ቀ0 ݇
0 0ቁ is given by the second 

formula in the statement of the lemma, since f as an analytic 

function is differentiable. In turn, this formula which identifies 

the map taking t to k with a partial differential of ݂ଵାଶ	 shows 

that this map is a C-linear map. 

5.4 to define ߲̅ଵାଶ we shall use the isomorphism  

उଵ.ଶ:ैమ⨁ैଶ → उ൫ैଵ,ଶ൯ 

Which takes A⨁B to the linear map ݔ →AXB in उ൫ैଵ,ଶ൯ 
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Which takes A⨁ B to the linear map X→  उ൫ैଵ,ଶ൯	݊݅	ܤܺܣ

Definition. Let ߗଵ, ݂, ܽ , ܾ , ܿ , ݀ be like in 5.3 and let T∈

₰൫ैଵ,ଶ൯ be the linear map, so thatܶ(ݐ) = ݇ when ߬ ∈ ैଵ,ଶ  

(ℂ)⊂ैଵ,ଶ  (B)	and		

ቀ0 ݇
0 0ቁ= ௗ

ௗ
 ݂ଵାଶ

⎝

⎜
⎛
൮

ܽ 0 ܾଵ 0
0 ݀ଶ 0 ܾଶ
ଵܿ 0 ݀ଵ ݐ
0 ܿଶ 0 ݀ଶ

൲/ߣଵ + ݊ଶෛ

⎠

⎟
⎞

  

Then we define 

 

൫߲̅ଵ,ଶ ݂ଵ,ଶ൯ ቆ൬
ܽଵ ܾଵ
ܿଵ ݀ଵ

൰/ߣሙଵ; ൬
ܽଶ ܾଶ
ܿଶ ݀ଶ

൰/ߣሙଶ;ቇ = ܽଵ,ଶିଵ (ܶ) ∈

ैଵ⨁ैଶ 

Note that if ݖ,∈ீభ	൫ैమ()൯ then ൬ݖଵ 0
0 ଶݖ

൰ =   ൯ and(ܤ)ଵ൫ैଶܮܩ

݂ଵାଶ

⎝

⎜
⎛
൮

ܽ 0 ܾଵݖଵ 0
0 ݀ଶ 0 ܾଶݖଶ
ଵܿ 0 ݀ଵݖଵ ଶݖଶܾ߬ߝ
0 ܿଶ 0 ݀ଶݖଶ

൲/ߣଵ + ݊ଶෛ

⎠

⎟
⎞

 

= ݂ଵାଶ

⎝

⎜
⎛
൮

ܽଵ 0 ܾଵ 0
0 ܽଶ 0 ܾଶ
ܿଵ 0 ݀ଵ ଶܾ߬ߝ
0 ܿଶ 0 ݀ଶ

൲/ߣଵ + ݊ଶෛ

⎠

⎟
⎞
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So that ߲̅ଵ,ଶ ݂ଵ,ଶ is well-defined. 

It is also easy to see that ߲̅ extends the definition of ߲ in the 

affine ease ([16]). Indeed if we take ܽ = ,⨁1ܫ ܿ = 0, ܾ =

 in the preceding formulae we get exactly he formulae in ܫ⨁ܫ	

the affine case, corresponding to the embedding. 

 ैଶ(ܤ) ∋ ߚ → ൬ܫ⨁ܫ ܫ⨁ܫ
0 ߚ ൰ ሚߣ/ 	∈  .(ܤ)ݎܩ

5.5 starting with this subsection and continuing in 5.6 and 5.7 

we will check that ߲ turns (ߗ)ܣ into a "topological" 

infinitesimal bialgebra. Since section 5.5-5.7 are just a technical 

extension of the affine case. 

The first step is to check that 

߲̅f =൫߲̅. ݂ା൯(,)∈మ ₰(ߗ;  ,(ߗ

Since analyticity of the ߲̅. ݂ା is obvious, we are left with 

checking ܮܩܺ(݉)ܮܩ(݊) equivariance and the direct sum 

properties. 

In view of the equivariance property of  ∝. ,[16]݁݁ݏ) 7.7) is 

suffices to remark that if S' ∈ ∋"and S (݉)ܮܩ  then (݊)ܮܩ

assuming t,k∈ ै. and  
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ቀ0 ݇
0 0ቁ= ௗ

ௗ
 ݂ା

⎝

⎜
⎛
൮

ܽ 0 ܾଵ 0
0 ݀ଶ 0 ܾଶ
ܿଵ 0 ݀ଵ ଶܾݐߝ
0 ܿଶ 0 ݀ଶ

൲/ߣ + ݊ෛ

⎠

⎟
⎞

  

We also have 

൬0 ܵଵ݇ݏ"ିଵ
0 0

൰ 

 

= ௗ
ௗ

 ݂ା

⎝

⎜⎜
⎛

⎝

⎜
⎛
ܵᇱ ܽܵ ᇱିଵ 0 ܵᇱଵܾଵܵᇱିଵ 0

0 ܵ"ܽଶܵ"ିଵ 0 ܵ"ܾଶܵ"ିଵ

ܵᇱܿଵܵ ᇱିଵ 0 ܵ ᇱ݀ଵܵᇱିଵ ܵݐ′൫ܵߝ "ିଵܵ"ܾଶܵ"ିଵ൯
0 ܵ"ܿଶܵ"ିଵ 0 ݀ଶ ⎠

⎟
⎞
ߣ/ +ෛ݊

⎠

⎟⎟
⎞

 

The last equality is a consequence of the GL(m+n)	

equivariance	of	 ݂ା	applied	to	ቀܵ′ 0
0 ܵ"ቁ	.	we	thus	have	

proved	that	߲̅. ݂ା	satisfies	GL(m+n) equivariance. 

The  direct sum properties to be checked are if ߨ ∈ ߪ,ߗ ∈  ߗ

and  

m =m'+m", ߨ ∈ "ߨ,ߗ ∈  "ߗ

n =n'+n", ߨ′ߪ ∈ "ߪ,ᇲߗ ∈  "ߗ

then 

൫	߲̅. ݂ା൯(ߨ⨁′ߨ", (ߪ = 	 ߲̅ᇱ. ݂ᇱା(ߨᇱ, ".߲̅⨁(ߪ ݂"ା൫ߨ",  ൯ߪ

൫	߲̅. ݂ା൯(ߨ, ("ߪ⨁′ߪ = 	 ߲̅ᇱ.ᇱ ݂ᇱା൫ߨ , ൯⨁߲̅.′ߪ ݂ା൫ߨ  ൯"ߪ,
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We will only discuss the first equality to be checked , the second 

being obtainable along similar lines  

Since the isomorphism ∝ had the property; 

	∝"ାିଵ ( ଵܶ⨁ ଶܶ) = 	 ݂ା(ߨ, ("ߪ⨁′ߪ =	∝ᇲ,
ିଵ ( ଵܶ)⨁ ∝", ( ଶܶ) 

݂݅ ଵܶ ∈ उ൫ैᇲ,൯, ଶܶ ∈ उ൫ैᇲ,൯ it is easily seen that what we 

must prove boils down to the following. 

We have  

= ݂ᇱା"ା

⎝

⎜
⎜
⎜
⎜
⎛

⎝

⎜
⎜
⎜
⎛

ܽ′ଵ 0 0 ଵᇱߚ 0 0
0 ܽଵ" 0 0 ܾଵ" 0
0 0 ܽଶ 0 0 ܾଶ

ܿଵᇱ 0 0 ݀ଵ" 0 ଵݐ

0 ଵܿ
" 0 0 ݀ଵ" "ݐ

0 0 ܿଶ 0 0 ݀ଶ⎠

⎟
⎟
⎟
⎞
ᇱߣ/ +݉" + ݊ෛ

⎠

⎟
⎟
⎟
⎟
⎞

 

 

=

⎝

⎜
⎜
⎜
⎜
⎛
݂݉ቆ൬ܽଵ

ᇱ ܾଵᇱ

ܿଵᇱ ݀ଵᇱ
൰ ᇱේ݉ߣ/ ቇ 0 ݇ଵ

0 ݂݉"൭ቆ
ܽଵ" ܾଵ"

ܿଵ" ݀ଵ"
ቇ ᇱේ݉ߣ/ ൱ ݇"

݀ଵ" 0 ݂݊ ቆ൬ܽଶ ܾଶ
ܿଶ ݀ଶ

൰ ේ݊ቇߣ/
⎠

⎟
⎟
⎟
⎟
⎞

 

Where  
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݂ᇱା

⎝

⎜⎜
⎛

⎝

⎜
⎛
ܽ′ଵ 0 ܾଵᇱ 0
0 ܽଶ 0 ܾଶ

ଵܿ
ᇱ 0 ݀ଵᇱ ଵݐ

0 ܿଶ 0 ݀ଶ⎠

⎟
⎞
ᇱߣ/ + ݊ෛ

⎠

⎟⎟
⎞

 

=

⎝

⎜
⎛
݂݉ቆ൬ܽଵ

ᇱ ܾଵᇱ

ܿଵᇱ ݀ଵᇱ
൰ ᇱේ݉ߣ/ ቇ ݇ଵ

0 ݂݊ ቆ൬ܽଶ ܾଶ
ܿଶ ݀ଶ

൰ ේ݊ቇߣ/
⎠

⎟
⎞

 

and  

݂"ା

⎝

⎜⎜
⎛

⎝

⎜
⎛
ܽ"ଵ 0 ܾଵ" 0
0 ܽଶ 0 ܾଶ

ܿଵ" 0 ݀ଵ" "ݐ
0 ܿଶ 0 ݀ଶ⎠

⎟
⎞
"ߣ/ + ݊ෛ

⎠

⎟⎟
⎞

 

And  

=

⎝

⎜
⎛
݂݉"൭ቆܽଵ

" ܾଵ"

ܿଵ" ݀ଵ"
ቇ ේ"݉ߣ/ ൱ ݇"

0 ݂݊ ቆ൬ܽଶ ܾଶ
ܿଶ ݀ଶ

൰ ේ݊ቇߣ/
⎠

⎟
⎞

 

If we define ݇" by the last two equalities (with lemma 5.3 in mind )	

we	get		
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= ݂ᇱା"ା

⎝

⎜
⎜
⎜
⎜
⎛

⎝

⎜
⎜
⎜
⎛

ܽ′ଵ 0 0 ܾଵᇱ 0 0
0 ܽଵ" 0 0 ܾଵ" 0
0 0 ܽଶ 0 0 ܾଶ
ܿଵᇱ 0 0 ݀ଵᇱ 0 ଵݐ

0 ଵܿ
" 0 0 ݀ଵ" "ݐ

0 0 ܿଶ 0 0 ݀ଶ⎠

⎟
⎟
⎟
⎞
ᇱߣ/ +݉" + ݊ෛ

⎠

⎟
⎟
⎟
⎟
⎞

 

	

=

⎝

⎜
⎜
⎜
⎜
⎛
݂݉ቆ൬

ܽଵᇱ ܾଵᇱ

ܿଵᇱ ݀ଵᇱ
൰ ᇱේ݉ߣ/ ቇ ∗ ∗

0 ݂݉"൭ቆܽଵ
" ܾଵ"

ܿଵ" ݀ଵ"
ቇ ᇱේ݉ߣ/ ൱ ݇"

0 0 ݂݊ ቆ൬ܽଶ ܾଶ
ܿଶ ݀ଶ

൰ ේ݊ቇߣ/
⎠

⎟
⎟
⎟
⎟
⎞

 

and 

݂"ାᇱା

⎝

⎜
⎜
⎜
⎜
⎛

⎝

⎜
⎜
⎜
⎛
ܽ"ଵ 0 0 ܾଵ" 0 0
0 ܽଵᇱ 0 0 ܾଵᇱ 0
0 0 ܽଶ 0 0 ܾଶ
ଵܿ
ᇱ 0 0 ݀ଵ" 0 "ݐ
0 ܿଵᇱ 0 0 ݀ଵᇱ ᇱݐ
0 0 ܿଶ 0 0 ݀ଶ⎠

⎟
⎟
⎟
⎞
"ߣ/ +݉′ + ݊ෛ

⎠

⎟
⎟
⎟
⎟
⎞

 

=

⎝

⎜
⎜
⎜
⎜
⎛
݂݉൭ቆ

ܽଵ" ܾଵ"

ܿଵ" ݀ଵ"
ቇ /ഥ߲݉ߣ"ෛ൱ ∗ ∗

0 ݂݉"ቆ൬ܽଵ
ᇱ ܾଵᇱ

ܿଵᇱ ݀ଵᇱ
൰ ᇱේ݉ߣ/ ቇ ݇ᇱ

0 0 ݂݊ ቆ൬ܽଶ ܾଶ
ܿଶ ݀ଶ

൰ ේ݊ቇߣ/
⎠

⎟
⎟
⎟
⎟
⎞
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Using a similarity which permutes the first two summands in 

ℂᇱ⨁ℂ"⨁ℂ", we get that the 13-block in the formula for  

݂ᇱା"ା(…) is K'. that all we must still do is to show that the 12-

block in that formula is zero. This in turn is immediate from Lemma 

5.3 applied to ݂൫݉ᇱ +݉"൯ + ݊	ܽ݊݀	 ݂ᇱା" . thus we concluded 

checking that  

൫߲̅. ݂ା൯(,)∈ேమ∈₰(ఆ;ఆ). 

5.6. Our next task is to show that ߲̅: (ߗ)₰ →  is a(ߗ:ߗ)ࣹ

derivation. 

Lemma. Let ݂, ݃ ∈  and let (ߗ)₰

ᇱߨ = ቀܽ
ᇱ ܾᇱ
ܿᇱ ݀ᇱቁ 	ߣ/

ේ  ∈ ൬ܽ="ߨߗ
" ܾ"
ܿ" ݀"

൰/ߣ	ේ  ∈ ݐ  andߗ ∈ ै,. 

Then we have 

.൫ഥ߲݉.݊(݂݃)݉+݊൯ߙ �൫ߨᇱ: ൯ቁ"ߨ (ݐ) = ݂(ߨᇱ).൫ഥ߲݉.݊݃݉+݊൯൫ߨ
ᇱ,  (ݐ)൯"ߨ

  = .ߙ ቀഥ߲݉.݂݊݉,݊ቁ �൫ߨ
ᇱ: ൯ቁ"ߨ  ൯"ߨ൫݃(ݐ)

Proof. To simplify notations put  

ξ =ߙ. ቀഥ߲݉.݂݊݉,݊ቁ �൫ߨ
ᇱ: ൯ቁ"ߨ (ݐ) ∈ ै݉,݊. 

.ߙ=ߟ ቀഥ߲݉.݂݊݉,݊ቁ �൫ߨ
ᇱ: ൯ቁ"ߨ (ݐ) ∈ ै݉,݊. 

ξ = ߙ.൫ഥ߲݉.݊(݂݃)݉+݊൯ �൫ߨᇱ: ൯ቁ"ߨ (ݐ) ∈ ै݉,݊. 

and  



110 
 

ߨ

⎝

⎜
⎛
൮

ܽᇱ 0 ܾᇱ 0
0 ܽ" 0 ܾ"
ܿᇱ 0 ݀ᇱ "ܾݐ
0 ܿᇱ 0 ݀"

൲/ߣ" + ݊		݊ ∈ ାෛߗ

⎠

⎟
⎞

 

Then, by Lemma 5.3 and Definition 5.4 we have  

(݂݃)ା(ߨ) =

⎝

⎜
⎜
⎛

݂݉൫ߨ′൯݃݉൫ߨ
′൯ ߦ

0 ݂݉൫ߨ
"൯݃݊൫ߨ

"൯

(ߨ)݂݉ = ቆ
݂݉൫ߨ

′൯ ߦ
0 ݂݊൫ߨ

"൯
ቇ

⎠

⎟
⎟
⎞

 

and  

݃ା(ߨ) = ൭
݃݉൫ߨ

′൯ ߟ
0 ݃݊൫ߨ"൯

൱ 

The Lemma then follows from the equality of matrices derived from  

(݂݃)ା(ߨ) = 	 ݂ା(ߨ)݃ା(ߨ). 

Corollary. → ;ߗ)₰  .is a derivation(ߗ

Proof; take into account that if ݂, ݃ ∈ ;ߗ)₰ (ߗ)₰ then the(ߗ −	bimodule 

structure → ;ߗ)₰ ݂ is given by the homomorphisms (ߗ → ⨁1 and 

݃ → 1⨁݃ where (݂⨁1),൫ߨᇱ, ൯"ߨ = 1⨁݃൫ߨ"൯, and that if ܣ ∈

ै,ܤ ∈ ै, T∈ उ൫ै,൯	then . 

,ߙ
ିଵ .)ܶܣ) (ܤ( = 	 ,ߙ(ܫ⨁ܣ)

ିଵ 	൫ܶ(. )൯	(ܫ⨁ܤ) 

The corollary is immediately inferred from the lemma. 
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5.7 we pass now to the proof of the co-associativity property of ߲̅ . Like 

in the affine case ([16], ;ߗ)₰	݁ܿ݊݅ݏ(7.10 ;ߗ;ߗ)	₰	݀݊ܽ	(ߗ  have not (ߗ

been identified with some topological tensor products of two and 

respectively three copies of ₰(ߗ), we will have to define the maps id⨁ ߲̅; 

;ߗ)₰ (ߗ → ;ߗ)	₰ ;ߗ (ߗ;ߗ)₰ :⨁and  ߲̅id (ߗ → .ߗ;ߗ;ߗ)	₰ ) 

Let ሖ݇ ∈ =and output K (ߗ;ߗ)₰ ሖ݇,ା  which is an analytic function on 

ߗ × ߨ ା with values in ै⨁ैା let furtherߗ = ቀܽ ܾ
ܿ ݀ቁ ߣ/

ේ ∈

 ߗ

ߨ =
൬ܽ

" ܾ"

ܿ" ݀"
൰

ේ݉ߣ
∈  :we define  .ߗ

ቀ൫݅݀⨁ ෨߲൯
.

݇ቁ ൫ߨ, ,ᇱߨ  ൯"ߨ

= 

ා

⎝

⎜
⎛ ௗ
ௗఌ
݇ ൮ߨ; ൮

ܽ 0 ܾᇱ 0
0 ܽ" 0 ܾ"
ܿᇱ 0 ݀ᇱ "ܾ(ௗ⨁1݁)ߝ

0 ܿ" 0 ݀"
൲/ߣ + ෛ ተݖ = 0൲

⎠

⎟
⎞

(,)(,)ାೌ
()⨁

()⨁
()

ூஸ.ஸ
ூஸ,ௗஸ
ூஸ.ஸ

 

Where ݁
  are the matrix-units in ै and he index (ܽ, ܾ)(ܿ, ݊ + ݂) 

indicates the co-efficient of ݁ ()

⨁݁ (ା)

.ା
 of an element of 

ै⨁ैା .	  it is easy to see that if ݇ᇱ = ݂⨁݃, where ݂, ݃ ∈.  (ߗ)₰

then ൫݅݀⨁߲̅൯(݂⨁݃) = ݂⨁߲̅. we also leave it to the reader to check 

that ݅݀⨁߲̅ takes values in ₰(ߗ;ߗ;ߗ).This involves arguments of the 

type used in showing that ߲̅  takes values in ₰(ߗ;ߗ) 

Similarly, we define 
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൫(ത߲⨁݅݀)గ,గᇲ,గ"൯ 

ා

⎝

⎜
⎛
൮
݀
ߝ݀
݇൮

ܽ 0 ܾᇱ 0
0 ܽ" 0 ܾ"
ܿᇱ 0 ݀ᇱ "ܾ(ௗ⨁1݁)ߝ

0 ܿ" 0 ݀"
൲/ߣ + ݊,ෛ ൲"ߨ ተ

ተܿ = 0

⎠

⎟
⎞

(ାௗ),(,)ூஸ௨,ஸ
ூஸ,ௗஸ
ூஸ.ஸ

 

 ݁ ()

⨁݁ ()


 

 Checking that ൫݅݀⨁߲̅൯߲̅, after all these questions are put 

aside, boils down, like in the affine case to permuting the order 

in which we take two derivatives. 

Lemma. ݂݅ℎᇱ ∈ ℎ	݀݊ܽ	(ߗ)ܣ = 	 ℎᇱାା, then 

൫݅݀⨁߲̅൯
,,

ℎ+݊,߲݉̅ = ൫߲̅	ഥ 	⨁݅݀൯݉,݊,+݊,߲݉̅ℎ 

Proof. Using the notations already introduced in this subsection, 

we have  

ቀ൫݅݀⨁߲̅൯
,,

ℎቁ+݊,߲݉̅ = ൫ߨ,ߨ′,  (݂,݁)(݀,݁)(ܾ,ܽ)൯"ߨ

= 

݀
݀ఌమ

⎝

⎜
⎜
⎜
⎜
⎛
݀
݀ఌమ

⎝

⎜
⎜
⎜
⎜
⎛

⎝

⎜
⎜
⎜
⎜
⎛

�ℎ

⎝

⎜
⎜
⎜
⎛

ܽ 0 0 ܾ 0 0
0 ܽᇱ 0 0 ܾᇱ 0
0 0 ܽ" 0 0 ܾ"
ܿ 0 0 ݀ ଵ൫݁,⨁1൯ܾᇱߝ 0
0 ܿᇱ 0 0 ݀ଵ" "ݐ

0 0 ܿ" 0 0 ⎠"ଵ൫݁,⨁1൯ܾߝ

⎟
⎟
⎟
⎞
ାߣ/ + ෛ

⎠

⎟
⎟
⎟
⎞

⎠

⎟
⎟
⎟
⎟
⎞

,ାା

ተ

ተ

⎠

⎟
⎟
⎟
⎟
⎞

	

ተ

ተ

ଶߝ = 0�	

Similarly we have  

ቀ൫߲̅⨁݅݀൯,,+݊,߲݉̅ℎቁ ൫ߨ,ߨ
′,  (݂,݁)(݀,݁)(ܾ,ܽ)൯"ߨ
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݀
݀ఌమ

⎝

⎜
⎜
⎜
⎛
݀
݀ఌమ

⎝

⎜
⎜
⎜
⎜
⎛

⎝

⎜
⎜
⎜
⎛
�ℎ

⎝

⎜⎜
⎜
⎛

ܽ 0 0 ܾ 0 0
0 ܽᇱ 0 0 ܾᇱ 0
0 0 ܽ" 0 0 ܾ"
ܿ 0 0 ݀ ଶ൫݁,⨁1൯ܾᇱߝ 0
0 ܿᇱ 0 0 ݀ᇱ "ଶ൫݁,⨁1൯ܾߝ

0 0 ܿ" 0 0 ݀" ⎠

⎟⎟
⎟
⎞
ାߣ/ + ෛ

⎠

⎟⎟
⎟
⎞

⎠

⎟
⎟
⎟
⎞

,ାା

ተ

ተ

ߝ

⎠

⎟
⎟
⎟
⎟
⎞

	

ተ

ተ
ଶߝ = 0�	

Clearly the two quantities are equal [the only difference is that 

inside the 6x6 matrix we have replaced ߝଵ by ߝଶ and ߝଶ by ߝଵso 

that the equality is just a permutability of partial derivative]. 

6. The resolvent equation and he duality transform. 

6.1. we shall use the same framework as in section 4 and 5,  to 

carry out the computations which yield the functional equation 

for the Grassmannian resolvent (ℜ(ߨ, .)(ܤ )∈ℕ) where  

ߨ = ቀܽ ܾ
ܿ ݀ቁ ⁄ 1ߣ

෪=ܩభ(ܧ) 

Let  

ᇱߪ = ൬ߙ
ᇳ ᇱߚ
ᇱݕ ᇱ൰ߜ ⁄ ߣ

෪݉ 	∈ ;ߨ)̌  (ܤ

and let  

ᇳߪ = ൬ߙ
ᇳ ᇳߚ
ᇳݕ ᇳ൰ߜ ⁄ ߣ

෪݉ 	∈  (ܤ;ߨ)̌

We then consider  

ߪ =

⎝

⎛

ᇱߙ 0 ᇱߚ 0
0 ᇳߙ 0 ᇳߚ
ᇱݕ 0 ᇱߜ ᇳߚݐ
0 ᇳݕ 0 ᇳߜ ⎠

⎞ ⁄ ݉)ߣ + ݊෧ ) ∈ ;ߨ)ା̌  (ܤ
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Where ݐ ∈ ै.(ℂ)⊂ै.(ܤ).	to	compute	ℜା(ߨ; 	(ߪ)(ܤ

we	must	examine	the	matrix.	

≡=

⎝

⎛

ܾ⨁ାܫ ᇱߚ 0
0 ᇳߚ
ᇱߜ ᇳߚݐ

ܾ⨁ାܫ 0 ᇳߜ ⎠

⎞ 

Permuting indices 2 and 3 in the above matrix, viewed as a 4x4 

block-matrix, we get  

ʘ = ൮

ܾ⨁ܫ ᇱߚ 0 0
ܾ⨁ܫ ᇱߜ 0 ᇳߚݐ
0 0 ܾ⨁ܫ ᇳߚ
0 0 ݀⨁ܫ ᇳߜ

൲ 

= ൮

∗ ∗ ݕ
∗ ᇱߦ
0 0 ∗ ∗
0 0 ∗ ᇳߦ

൲ 

where  

ݕ = −ቀ
∗ ∗
∗ ᇱቁߦ ൬

0 0
0 ᇳ൰ߚݐ ቀ

∗ ∗
∗  ᇳቁߦ

=ቀ
∗ ∗
∗ ߦ− +   ᇳቁߦᇳߚ

and ߚᇱߦᇱ = ℜ(ߨ; ;ߨ)ᇳ= ℜߦᇳߚ	,(ᇱߜ)(ܤ   that gives that (ᇱߜ)(ܤ

ʘ = ൮

∗ ∗ ∗ 0
∗ ᇱߦ ∗ ᇱߦ + ᇳߦᇳߚ
0 0 ∗ ∗
0 0 ∗ ᇳߦ

൲ 
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so that switching indices 2 and 3 we get  

≡= ൮

∗ ∗ ∗
0 0 ∗
0 ᇱߦ ᇱߦ + ᇳߦᇳߚ
0 0 ᇳߦ

൲ 

He last formula implies  

ℜା(గ;)(ఙ) = ൬ߚ
ᇱ 0
0 ᇳ൰ߚ ൬

ᇱߦ ᇱߦ + ᇳߦᇳߚ
0 ᇳߦ ൰ 

  = ൬ߚ
ᇱ 0
0 ᇳ൰ߚ ൬

ᇱߦ ᇱߦ + ᇳߦᇳߚ
0 ᇳߦ ൰ 

  = 

൭ℜ ൬
;ߨ) (ᇱߪ)( ℜ(;ߨ)(ߪᇱ)ℜ(;ߨ)ݐ(ߪᇳ)

0 ℜ෪ (ᇳߪ)(;ߨ)
൰൱ 

Comparing this with the definition of	ഥ߲,ା ℜ෪  we find(;ߨ)

that we have proved the following result. 

Lemma. 

ቀ݅݀ா⨁ത߲,(;ߨ)ቁ ;ᇱߪ) (ᇳߪ

= −ℜ෪ ாℜ෪⨁(ᇱߪ)(;ߨ) ;ߨ)  (ᇳߪ)(
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In the statement of the lemma ݅݀ா⨁	ഥ߲, refers to applying 	ഥ߲   

to an E-valued fully matricial analytic function. The ⨁ா  among 

two matrices with entries in E amounts to  

ቌ  ܿ
ᇱ ⨁݁

()

ଵஸଵ,ஸ

ቍ⨁ா ൭  ܿᇳ ⨁݁
()

ଵஸ,ଵஸ

൱ =  ܿ
ᇱ ܿଵᇳ ⨁݁

()⨁
ଵ,,,ଵ

݁ଵ
() 

We can write the resolvent equation also in a more compact  

Proposition:  

൫݅݀ா⨁	ഥ߲ 	൯ℜ(ߨ: (ܤ = 	−	ℜ෩(ܤ:ߨ)⨁ாℜ෩(ߨ:  (ܤ

6.2 Martix entries of resolvents. An extension of the duality transform of 

[16], from the case of ݕ ∈ ߨ to the case of ܧ ∈  includes in ,(ܧ)భܩ

particular also the possibility of working with "unbounded operators Y" 

represented by their graph and therefore the definition of the albebra 

ℜࣸ(ܻ, ,ߨ)in [16] , 9,1 which includes Y, does not appear. By उࣽ(ܤ 	(ܤ

we	shall	denote	the	set	of	matrix	coefficient	of	 

{−ℜ(ߨ; ,ߨ)̅߳ߪ,ℕ߳݊{(ߪ)(ܤ ,ߨ)By उℜ ,(ܤ  we shall denoe the linear(ܤ

span of उℜ(ܤ,ߨ). 

Lemma: उℜ(ߨ, ,ߨ)is closed under multiplication in particular उℜ (ܤ  (ܤ

is a sub-algebra of E. 

Proof. The lemma is a consequence of the computations in 6.1 indeed let 

a,b be the (݅, ݆) and respectively the (݇,  matrix coefficient of (ܫ

ℜ(ߨ; ;ߨ)and −ℜ (ᇱߙ)(ܤ  be defined like in 6.1 with ߙ and let (ᇳߪ)(ܤ

ݐ = ݁  then the computation of −ℜ(ߨ;  we did shows that its  (ߪ)(ܤ

(݅,݉ + ,݂) entry is exactly the -(ܫ   entry of -(ܫ

൫−ℜ(ߨ; ൯ೕೖ(ᇱߙ)(ܤ − ℜ(ߨ;  (ᇳߪ)(ܤ
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Which is ah,  

6.3 he duality transform. Let  ܧூ 	be the closure in E of उℜ(ߨ,  we will (ܤ

define the duality transform associated with ߨ and B on he topological 

dual ܧூௗ of ܧூ in general,  he bialgebra structure is only " partially"  

defined on ܧூௗ for analysis reasons. Which cannot be dealt in this 

generality, we will therefore often look for formulations which avoid 

such problems or we will introduce extra assumptions (as	 we	 did	 in	

[16]).	 Some	 important	 instances	 when	 these	 assumptions	 are	

satisfied	will	be	shown	in	§12.	

If	߮߳ܧூௗ ,	we	define	उ(߮)߳/݀൫ߨ)̅:  ࣯(߮) = (࣯(߮))ఢℕ	by	൯(ܤ

࣯(߮)(ߪ) = ൫݅݀ै⨁߮൯൫ℜ(ߨ;  ൯(ߪ)(ܤ

for ̅߳ߪ(ߨ:  we infer that ࣯(߮) is 	(ܤ) Since ⨁߮ is ै linear on ै	(ܤ

fully matricial since ℜഥ(ߨ:  is fully matricial. He continuity assumption (ܤ

on ߪ is necessary to obtain the analyticity of ࣯(߮) 

we also remark that ࣯(߮) = 0  implies ߮ = 0 that is ࣯ is injective. 

࣯(߮) = 0  implies  ߨ: ܤ = 0 and ܧூ is the closure of उℜ(ߨ: 	(ܤ

up	to	now	 उℜ(ߨ: (ܤ = 0	is	only	an	algebra	so	we	have	only	a	

coalgebra		structure	on	the	dual	(	modulo	technical	problems	).	He	

behavior	of	उ	with	respect	to	this	comultiplication	is	recorded	in	he	

next	proposition.	

Proposition:	if	 ߮߳ܧூௗ :ߨ)̅ᇱ߳ߪ ,    then we have ,(ܤ

                     ൫݅݀ै⨁݅݀ै⨁߮൯ ቀℜഥ(ߨ: ߪ)(ܤ
ᇱ)⨁ாℜഥ(ߨ:  ቁ(ᇱߩ)(ܤ

                                = ߲̅,(उ(ߪ�)ା)(ߪᇱ:   �(ᇳߪ
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Proof. The proposition is exactly what we obtain from Lemma 6.1 when 

we apply ݅݀ै⨁݅݀ै⨁߮ to the equality thee. 

To justify out assertion that the above proposition shows the behavior of 

࣯ with respect to the comultiplication, note that the right hand side is the 

(m,n)	component	of	߲̅	࣯(߮),	while	he	left	hand	side	corresponds	to	

(उ⨁उ)(߮		ߤ)	with	ߤ	denoting	he	multiplication	on	 उℜ(ߨ: 	see)(ܤ

also	the	proof	of	Lemma	6.2	)	

6.4	further	properties	of	the	duality	transform	arise	when	there	is	an	

appropriate	derivation-comultiplication, on उℜ(ܤ:ߨ).	To	avoid	

questions	such	as	the	action	of	the	derivation		on	elements	of	the	

Grassmannian,	we	will	resort	to	a	somewhat	tautological	(	from	the	

point	of	view	of	the	duality	transform)	characterization	of	he	

derivation.	

We	will	assure	there	is	a	derivation.	

߲గ:: उℜ(ߨ: (ܤ → उℜ(ߨ: 	(ܤ:ߨ)उℜ⨁(ܤ

Such	that		

൫݅݀ै⨁߲గ:൯ℜഥ(ߨ: (ߪ)(ܤ = ℜഥ(ߨ: :ߨ)ℜഥै⨁(ߪ)(ܤ 	(ߪ)(ܤ

For	all	݊߳ℕ	and	̅߳ߪ(ߨ: 	(ܤ

 For the universal unitary and hermitian Grassmannian elements 

this will be proved in §12 

 Remark that in view of lemma 6.2 the linear map ߲గ: is 

completely determined by  he relation we assume. Thus he assumption 

means that this unique linear map exist  and that it is a derivation. Note 
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also that Lemma 6.2 similarly implies that ߲గ:, if it exist is co-

associative . 

 

Proposition. If ߮ଵ,߮ଶ, ߮ଷ	߳ܧଵௗ  are such that 

  ߮ଵ, = (ߙ) = (߮ଶ⨁߮ଷ)߲గ: (ߪ) if ߳ߙ	उℜ(ܤ:ߨ)	

Then	we	have		

࣯൫߮ଵ,൯ = ࣯൫߮ଶ,൯࣯൫߮ଷ,൯ 

Proof.  The proposition is almost obvious in view of the way we defined 

߲గ:  

Of course, as the reader probably already observed, the condition 

characterizing  ߲గ: replaces in the Grassmannian context the condition 

ܤ߲ = 0,߲ܻ = 1⨁1 we required in the affine case ([16]݁݁ݏ, 9.2), which 

corresponds to ߨ = ൬0 1
1 ൰ݕ /ᆋ1

തതതത. 

6.5 he duality transform of traces.  In this section we return to the context 

of 6.3 , that is we will not use the derivation – comultiplication of 

उℜ(ܤ:ߨ).	We	will	record	here	that	[16],	proposition	9.5	on	

transforms	of	traces	in	the	affine	case	extends	immediately	to	the	

Grassmannian	setting.	

Proposition.		An	element	߮߳ܧଵௗ 	satisfies	he	trace-condition	

,ଵܧ])߮ ([ଵܧ = 0	if	and	only	if.	

߲̅,൫࣯(�߮)ା)(ߪଵ: (ଶߪ = ,߲̅ߝ �(࣯(�߮)ା)(ߪଵ:  �(ଵߪ

for  all ߪଵ߳̅(ߨ; ,(ܤ ;ߨ)̅ଶ߳ߪ  and indices I,j,k,I. the last equality is (ܤ

then  equivalent, by proposition 6.3 to  
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߲̅,൫࣯(�߮)ା)(ߪଵ: (ଶߪ = ,߲̅ߝ �(࣯(�߮)ା)(ߪଶ:  �(ଵߪ

7.  More on the fully matricial affine space  

Roughly, a large part of this section is about the analogue of polynomials 

in he context of fully matricial analytic function on the fully matricial 

affine space. Besides providing a way to construct fully matricial analytic 

function, this material will also underline the series expansions in §13. 

7.1 The polynomial sub-bialgebra ऀ(ܤௗ) of d൫ै(ܤ)൯. throughout 7.1 it 

will suffice to assume that B is a complex Banach space and 1߳ܤ is a 

non-zero vector(  used in the definition 	of		߲),	there	is	no	need	for	a	

multiplication	on	B	here.	

	 The	 full matricial affine space over B that is the largest fully 

matricial B-set will be  denoted ै(ܤ)ఢℕ. 

 By ߳. ݀൫ै(ܤ)൯ we denote the unit element  = (ܫ⨁1)ఢℕ 

(constant	functions).	If	߮߳ܤௗ 	(the	topological	dual	of	B)	we	define	

(߮)ݖ = 	by	൯(ܤ)ఢℕ߳݀൫ै((߮)ݖ)

൮ቌ(߮)ݖ
ܾଵଵ ⋯ ܾூ
⋮ ⋮
ܾூ ⋯ ܾ

ቍ൲	=ቌ
߮(ܾଵଵ) ⋯ ߮(ܾூ)

⋮ ⋮
߮(ܾூ) ⋯ ߮(ܾ)

ቍ ߳ै(ঃ) 

Since ݖ(߮) is linear the definition of ߲ immediately gives  

(߮)ݖ߲ = ߮(1)⨁ 

We shall denote by y(ܤௗ) the subalgebra of d൫ै(ܤ)൯ generated by  and 

൜ܤ⃒߳߮(߮)ݖௗൠ, it is easy to see that y(ܤௗ) is isomorphic to the tensor –

algebra I(ܤௗ) over the vector space ܤௗ. Indeed if ߮ଵ,…߮ are linearly 

independent in ܤௗ we can find ܾଵ,…ܾ߳ܤ so that ߮൫ ܾ൯ = ܲ߳ঃ	݂݅	ߜ <
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ଵܺ, … , ܺ > is a polynomial in the noncommulting indeterminates  

ଵܺ, … , ܺ, so that P≠ 0, then there is ܰ߳ℕ so that we can find ܰ × ܰ 

matrices ܣ߳ै(ঃ) , 1 ≤ ݇ ≤ ݊ so that ൫ܣଵ,…,ܣ൯߳ै(ℂ). thus 

,(ଵ߮)ݖ … . ,  are algebraically free. His suffices to guarantee that the (߮)ݖ

natural nuital homomorphism ܶ(ܤௗ) → ݀൫ै(ܤ)൯		 defined by the linear 

map ܤௗ ∋ ߮ →   ൯ is injunctive(ܤ)൫ै݀	߳(߮)ݖ

The fact that ߲z(߮) = ߮(1)⨁ implies that ݕ(ܤௗ)	is a subcoalgebra of 

݀൫ै(ܤ)൯  that is 

(ௗܤ)ݖ߲ ⊃  (ௗܤ)ݕ⨁(ௗܤ)ݕ

Also the structure of ߲ on ݕ(ܤௗ) is easy to identify.  Let 1ୄ =

ቊ߮߳ܤௗ⃒߮(1) = 0ቋand choose some element ߳ܤௗ so that (1) = 1. Let 

then 1ୄݖ ⊂ ൯(1ୄ)ݕidentifies with  ൫ (ௗܤ)ݕ  then clearly .(1ୄ)ݕ <

()ݖ > and (1ୄ)ݖ is in ker ߲ while ߲ݖ() = 1⨁1.	This	means	that	he	

bialgebra		ݕ(ܤௗ)	with	he	structure	induced	from	d൫ै(ܤ)൯	is	

isomorphic	to	�൫(1ୄ)ݕ൯ < ܺ >,߲:൫ଵ఼൯ቁ noted in particular that. 

Ker ߲⋂ (ௗܤ)ݕ =  (1ୄ)ݕ	

Moreover, if B is a Banach space with  a continuous conjugate-linear 

involution ൫ݖ(߮)൯
∗
= (ܾ)∗where߮ (∗߮)ݖ = ߮(ܾ∗)തതതതതതതത.  

Also, at the end of 8.2  we will point out in a remark an additional feature 

of  ݕ(ܤௗ). 

7.2  Decomposable and reducible points in ै(ܤ). Like in 7.1 we will 

only require that B be a Banach space. 
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 In view of the similarity and direct sum requirements  for "fully 

matricial" objects, we are led to look at properties of points connected 

with these requirements . 

Definition: An element ै߳ߚ(ܤ)	 is decomposable if there are 

,(ܤ)ᇱ߳ैߚ :݊)ܮܩand S߳ (ܤ)ै߳"ߚ ℂ),so that ݊ = ,  > 0, ݍ > 0 and 

ܵିଵ =  is reducible if there are (ܤ)ै߳ߚ an element . "ߚ⨁ଵߚ

,(ܤ)ᇱ߳ैߚ :݊)ܮܩ߳ܵ and (ܤ)௬ै߳ݕ ,(ܤ)ै߳"ߚ ℂ)so that. 

ଵ=൬ିܵߚܵ
ᇱߚ ݕ
0 "ߚ

൰ 

and  > 0, ݍ > 0. an element ै߳ߚ(ܤ) is approximately decomposable 

(resp,	reducible)	if	it	is	in	the	closure	of	the	decomposable	 (resp,	

reducible) elements. Elements which are not decomposable (reducible	,	

approximately	decomposable,	approximately	educible)	will	be	called	

indecomosable	(resp,	irreducible,	strongly	indecompsable,	strongly	

irreducible).	

7.3		to	conclude	this	section	of	remarks	about	the	fully	matricial	

affine	space,	we	should	point	out	that	there	is	a	fully	matricial	action	

of	the	additive	group	B	on	ै(ܤ).	for	each		ℎ߳ܤ	there	are	fully	

matricial	maps	ܶ(ܾ) = (ܶ(ܾ))ఢℕ : ै(ܤ) where ܶ(ܾ)(ߚ) = ߚ +

 .(ܤ)ै which give an action of B onܫ⨁ܾ

In case B is a Banach algebra, there is also a multiplication action given 

by fully matricial maps (ܮ(ܾ))ఢℕ ܴ(ܾ) = (ܴ(ܾ))ఢℕ so that  ߚ(ܾ)ܮ =

  .(ܫ⨁ܾ)ߚ(ܾ)ܴ and ߚ(ܫ⨁ܾ)

Note also that even if B is only a Banach space there is a multiplicative 

action of ℂ on ै(ܤ). 
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8. More on the fully matricial B-Grassmannian and on ߲̅ 

In this section we present further properties of the fully matricial 

B-Grassmannian ܩ(ܤ) = ቀܴ(ܤ)ቁఢℕ
 . This includes the 

action by fully matricial automorphisms of 2)ܮܩ;  (ܤ)	ܩ	݊	(ܤ

and the existence of a coderivation A such that A-id plays the 

role of a grading of the bialgebras ݀(ߗ). We also discuss the 

properties of A in connection with the duality transform. 

 

8.1 The GL(2;B)	action	on	Gr	(B).	we	recall	that	in	3.2	we	

defined	݃ߨ	݂݅		

ℎ = ൬ܾଵଵ ܾଵଶ
ܾଵଶ ܾଶଶ

൰߳2)ܮܩ;  (ܤ

Gives rise to elements ℎ߳ܮܩଶ൫ै(ܤ)൯ where ℎ =

൬ܮ⨁ܾଵଵ ⨁ܾଵଶܮ
⨁ܾଵଶܮ ⨁ܾଶଶܮ

൰ we define ܥ(ℎ);  ܩߨ by mapping (ܤ)ܩ

to ℎߨ	it is easy to check that ℎା(ߨ⨁ߨ) = (ℎߨ)⨁ 

(ℎߨ) and that ℎ(ߜ, (ߨ = ;݊)ܮܩ߳ߜ	݂݅	(ߨℎ) ߜ ℂ).	 this 

establishes that ℂ(. )is an action of (ܤ;2)ܮܩ by fully marticial 

automorphisms of ܩ(ܤ). 

It is easily seen that ܥ(ℎ) preserves transversality in each ܩ(ܤ). 
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Clearly, when B=	ℂ the 2)ܮܩ; ℂ) - action on ݎܩଵ(ℂ) is the usual 

action on the remann sphere by fractional linear transformation. 

2.8 the education A Let ݂ = ( ݂)ఢℕ߳݀(ߗ),	where ߗ = (ߗ)ఢℕ 

is a fully matricial open B-set of he Grassmannin. We define   

Af =൫ܣ൯ఢℕ߳݀(ߗ). By 

݂ܣ =
݀
݀ఌమ

ቆ�݁ᇱ݂ܥ ൬ቀ1 0
0 ݁ᇱቁ

ቤ݂		൰ቇߨ = 0� 

Which, componentwise amounts: 

ܣ) ݂)(ߨ)
݀
݀ఌమ

ቆ�݁ᇱ݂ ൬ቀ1 0
0 ݁ᇱቁ

ቤ݂		൰ቇߨ = 0�	

Since  

݂ܣ = ݂
݀
݀ఌమ

ቆ�݂ܥ ൬ቀ1 0
0 ݁ᇱቁ

ቤ݂		൰ቇߨ = 0� 

It follows that A-id is it derivation of ݀�(ߗ)� 

To prove that A is a coderivation amounts to proving that  

ܣ߲̅ = ݀݅⨁ܣ) +  ߲̅(ܣ⨁݀݅

This will be a consequence of the following lemma 

Lemma. We have  

߲̅ ቆ�݂ܥ ቆቀ1 0
0 ݁ᇱቁቇ൱ 	=

� ݁ᇱ൫߲݂̅൯ ቆܥ� ቆቀ1 0
0 ݁ᇱቁቇ൱	×

� ܥ� ቆቀ1 0
0 ݁ᇱቁቇ൱ 
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Proof. Let ߨ = ൬ܽଵ ܾଵ
ܿଵ ݀ଵ

൰ /ᆋ݉തതതത	, ߨ = ߨ = ൬ܽଶ ܾଶ
ܿଶ ݀ଶ

൰ /ᆋ݊തതതത	and let 

T and ܶᇱ be define  

T=߲̅. ቆ߲̅. ቆ�݂ܥ ቆቀ
1 0
0 ݁ᇱቁቇ൱൫ߨ,ߨ൯	�ቇ 

T=߲̅. ൬߲̅.(݂) ൬�൬ቀ
1 0
0 ݁ᇱቁ

,൰ߨ ቀ
1 0
0 ݁ᇱቁߨ൰	

�൰ 

Since ߲̅. is an isomorphism, it will suffice to prove that T(ߨ) 

=ܶᇱ(݁ᇱݏ) for all ै߳ߜ,(ℂ). indeed,  we have. 

݂, ൮ቀ
1 0
0 ݁′

ቁ
ା

൮

݀ଵ 0 ܾଵ 0
0 ܽଶ" 0 ܾଶ
ܿଵ 0 ݀ଵ ଶܾݏ
0 ܿଶ 0 ݀ଶ

൲/ߣ" + ݊		ෛ ൲ 

=	

݂,

⎝

⎜
⎛

⎝

⎛

݀ଵ 0 ܾଵ 0
0 ܽଶ" 0 ܾଶ
݁ᇱܿଵ 0 ݁ᇱ݀ଵ ݁ᇱܾݏଶ
0 ݁ᇱܿଶ 0 ݀ଶ ⎠

"ߣ/⎞ + ݊		ෛ

⎠

⎟
⎞

 

=

൮
݂ ൬ቀ1 0

0 ݁ᇱቁ
൬ܽଵ ܾଵ
ܿଵ ݀ଵ

൰ /ᆋ݉തതതതത൰ (ݏ)ܶ

0 ݂ ൬ቀ
1 0
0 ݁ᇱቁ

൬ܽଶ ܾଶ
ܿଶ ݀ଶ

൰ /ᆋ݉തതതതത൰
൲ 

⎝

⎜
⎛ ݂ ቆ൬

ܽଵ ܾଵ
݁ᇱ ଵܿ ݁ᇱ݀ଶ

൰/ᆋ݉തതതതതቇ ܶ(݁ᇱݏ)

0 ݂ ቆ൬
ܽଶ ܾଶ
݁ᇱܿଶ ݁ᇱ݀ଶ

൰ /ᆋ݉തതതതതቇ
⎠

⎟
⎞
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Which implies ܶ(ܺ) = ܶᇱ൫݁′ݏ൯ 

To conclude the proof of the fact that A is a conderivation it will 

suffice to remark that taking the derivative ௗ
ௗ

 at t=0  of the equality 

in the preceding lemma gives  

݂ܣ)߲̅ − ݂) = ߲݂̅ + ൫(ܣ − ܣ)⨁݀݅⨁(݀݅ − ݅݀)൯߲݂̅ 

Which immediately implies. 

݀݅⨁ܣ)=തതതത݂ܣ߲ +  ݂߲̅(ܣ⨁݀݅

Proposition. A-id is a derivation of (ߗ)ݏ and A is also a 

coderivation , that is ߲̅ܣ = +݀݅⨁ܣ)  ߲̅(ܣ⨁݀݅

8.3 he derivation D of (ܤ;ߨ)ܴݕ. in the next section we will show 

that the coderivation A discussed in the previous section is natural 

form the point of view of the duality transform. This will involve 

describing what the natural coderivation l on yR (ߨ;  should be so (ܤ

that for the duality described in [1.5], theorem 5.3, he dual 

coderivation corresponds under the duality transform to A. since in 

6.4 we assumed the existence of a derivation-comultiplication 

߲గ;݊	ߨ)ܴݕ;  we will handle L similarly based on an additional ,(ܤ

assumption. 

Remark. In the affine case of (B),	we	have	ݎܣ(ܤௗ) ⊂ 		and	൯݀ܤ൫ݎ

A൫ݖ(߮ଵ)… ൯(߮)ݖ = (݊ + 1)௭(߮ଵ)… 	(߮)ݖ

Like	in	6.2		we	let	ݎܩ߳ߨଵ(ܧ)	and	we	consider	ߨ)ܴݕ, 	the	.(ܤ

assumption	about	L  is roughly that on	(ܤ,ߨ)ܴݕ.	there is a 
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linear map D corresponding to the infinitesimal deformation of  

into ቀ1 ,ߨ 0
0 ݁ᇱቁଵ

ݐ	ℎݐ݅ݓ	ߨ → 0. we will show that D must then 

be a derivation of  ߨ)ܴݕ,  with values in itself. [in (ܤ

case	ߨ	ݏ݅	ℎ݁	݃ܽݎℎ	݂	݊ܽ	ݐ݈݊݁݉݁݁	ܧ߳ݕ, the deformation is  

ݕ → ݁௧ݕ with ݐ → 0. 

More precisely our assumption can be formulated as follows: we 

assume there is a linear map D:	ߨ)ܴݕ, (ܤ →   so that ܧ

(݅݀ै⨁ܦ) തܴ(ߨ, (ߪ)(ܤ =
݀
ݐ݀

തܴ 	൬�ቀ
1 0
0 ݁ᇱቁ

,ߨ ݐฬ		൰ܤ = 0� 

For all ̅߳ߪ(ߨ; ,(ܤ ݊߳ℕ. there is a simple identity which we will 

use to show that D takes values in ߨ)ܴݕ,  .(ܤ

Lemma. We have 

̅߳ߪ ቆ�ቀ
1 0
0 ݁ᇱቁଵ

,ߨ ൰ቇܤ ݂݂݅ �ቀ1 0
0 ݁ᇱቁ

൰ ,ߨ)̅߳ߪ   moreover (ܤ

                              

തܴ 	 ��ቀ
1 0
0 ݁ᇱቁଵ

,ߨ ൰ܤ (ߪ) = 	݁ିଵ തܴ(ߨ; 	(ܤ �ቀ
1 0
0 ݁ିଵቁ

 	�ቇ(ߪ)

Proof. Let 

ߨ� �ቀ1 0
0 ݁ᇱቁ ߣ̅/

� 1, ߪ = ൬ߙ ߚ
ߛ ൰ߜ 	ݏ݈ܽ		ݐ݈݁	݀݊ܽ		ߣ̅/

� 

൬ܫ⨁ܽ ܾ⨁ܫ
ܿ⨁ܫ ݀⨁ܫ

൰/̅ߣ 
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and ߙୀூ⨁ܽ, ܾ
ᇱ = ݀ᇱ	ܿ,	⨁b,ܫ 	then	⨁݀.ܫ	=

̅߳ߪ ቆ�ቀ
1 0
0 ݁ᇱቁଵ

,ߨ ൰ቇ means ቀܤ ߙ ߚ
݁ᇱ݀ᇱ ߜ

ቁ	 is invertible and this 

is obviously equivalent to ൬ܾ
ᇱ ߚ
݀ᇱ ݁ିଵߜ

൰ being invertible, which 

is that �ቀ1 0
0 ݁ᇱቁଵ

;ߨ)̅߳ߪ  �(ܤ

moreover ൬ ܾᇱ ߚ
݁ᇱ݀ᇱ ߜ

൰
ିଵ

= ቀ
∗ ∗
∗ ߙቁ and ቀߦ ߚ

݀ᇱ ݁ᇱߜ
ቁ
ିଵ
= ቀ

∗ ∗
∗  ቁߦ

then ߦ = ݁ᇱߦ. 

He last part of the lemma follows from the two Grassmannian 

resolvents being equal toߦߚandߦߚ respectively. 

with the notations used in the proof of the lemma , to show that  

D൫	ߨ)ܴݕ, ൯(ܤ ⊂ ,ߨ)ܴݕ  (ܤ

We must prove in view of the definition of D hat the entries of 
ௗ
ௗ௧
�൫݁ିଵ(ݐ)ߦߚ൯หଵି are in (ܤ,ߨ)ܴݕ or equivalently he entries of 

ௗ
ௗ௧
�൫݁ିଵ(ݐ)ߦߚ൯หଵି since (0)ߦߚ =  is a resolvent, its (0)ߦߚ

entries are in  ߨ)ܴݕ,  so we are left with showing ,(ܤ

ߚ �൬ ௗ
ௗ௧
൰ቚ(ݐ)ߦ

ଵି
has entries in	ߨ)ܴݕ,  we have (ܤ

൬
∗ ∗
∗ ௗ

ௗ௧
=൰ߦ ௗ

ௗ௧
൬ܾ

ᇱ ߚ
݀ᇱ ݁ିଵߜ

൰
ିଵ
= ቀ

∗ ∗
∗ ቁߦ = ቀ0 0

0 ݁ିଵߜቁቀ
∗ ∗
∗  ቁߦ

hence we infer that. 
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�൭
݀
ݐ݀
൱อ(ݐ)ߦ

ଵି

=  (0)ߦߜ(0)ߦ	

and we must show that (0)ߦߜ(0)ߦߚ has entries in ߨ)ܴݕ,  It is .(ܤ

easily seen that the (2,4)	block	entry	of	the	4x4	block	matrix	

ଵ൮ି߁

ܾᇱ ߚ 0 0
݀ᇱ ߜ 0 ߜ
0 0 ܾᇱ ߚ
0 0 ݀ᇱ ߜ

൲ 

Is precisely (0)ߦߜ(0)ߦon the other hand if S is the permutation 

matrix. 

ܵ = ൮

ଵܫ 0 0 0
0 0 ଵܫ 0
0 ଵܫ 0 0
0 0 0 ܫ

൲ 

We see that  

ଵܵିଵି߁ܵ = ൮

ܾᇱ 0 ߚ 0
0 ܾᇱ 0 ߚ
݀ᇱ 0 ߜ ߜ
0 ݀ᇱ 0 ߜ

൲ = ቀ∗ ∗
∗ ܼቁ 

Where ൬ߚ 0
0 ൰ߚ ܼ is an ܴ(ߨ, ߤ for some(ߤ)(ܤ = ,ߨ)ଶ̅  .(ܤ

Hence he entries of ൬ߚ 0
0 ,ߨ)ܴݕ ൰ܼ are inߚ  ଵି߁ returning to .(ܤ

we see that the (2,4)	block	entry	of	ି߁ଵ	coincides	with	the(3,4)	

block	entry	of	ܵି߁ଵܵିଵ	which	is	the	(1,2)	–	block	entry	of	Z	

(the	blocks	are	n	x	n).	this	concludes	the	proof	that	D		maps	

,ߨ)ܴݕ 	.itself	into(ܤ
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To	prove	that	D	is	a	derivation	we	return	to	the	proof	of	

lemma	6.2	where	we	showed	ߨ)ܴݕ, 	under	closed	is	(ܤ

multiplication.	With	the	notation	of	Lemma	6.2	we	have		

-	ܴା(ߨ, .ାଵ(ߪ)(ܤ = ܴ൫(ߨ, ,ߨ)൯ܴ൫(ᇱߪ)(ܤ ߪ)(ܤ
ᇱᇱ)൯	

Where	ߪᇱ, ,ᇱᇱߪ (݆݅), (݆݇)	were	given.	then	the	definition	of	D	

applied	to	the	above	equality	shows	that	D	is	a	derivation.	

Concluding	we	have	proved.	 

Proposition: Under our assumption D is a derivation of 

,ߨ)ܴݕ  .into itself (ܤ

 

8.4 The coderivation L of ߨ)ܴݕ,  In this section we assume .(ܤ

the existence of ߲గ with the properties outlined in 6.4 and we 

also assume the existence of the linear map D like in 8.3  and 

which implies that D is a derivation ߨ)ܴݕ,  In addition, we  .(ܤ

will assume that ߲గ is closed as an operator on ߨ)ܴݕ,  (ܤ

endowed with the  norm from E. 

We define 

L:D+id:	ߨ)ܴݕ, (ܤ →  (ܤ,ߨ)ܴݕ

Clearly L-id is a derivation of ߨ)ܴݕ,  .(ܤ

           Lemma.  The map L is a coderivation of ߨ)ܴݕ,  ,(ܤ

,ߨ)ܴݕ	) ,(ܤ ߲గ) that is  
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, ߲గ ܮ		 = 	 ܮ⨁݀݅) + ,(݀݅⨁ܮ ߲గ 

Proof. since ߨ)ܴݕ, ,ߨ)ܴݕ is the linear span of (ܤ  it suffices (ܤ

to check that the equality to be proved holds for the entries of 

,ߨ)ܴݕ , In view of the definitions of .(ܤ ߲గ  and L this boils 

down to showing that	

�൫݅݀ै⨁,߲గ൯ ൭
݀
ݐ݀

തܴ	(ߨ, (ܤ ൬ቀ
1 0
0 ݁ିଵቁ

อ			൰൱ߪ
௧ୀ

 

It is immediate that the right hand side equals.	

݀
ݐ݀
�ቆ തܴ	(ߨ, ൬ቀ(ܤ

1 0
0 ݁ିଵቁ

൰⨁ैߪ
തܴ	(ߨ, (ܤ ൬ቀ

1 0
0 ݁ିଵቁ

ቤ			൰ቇߪ
௧ୀ

 

= ௗ
ௗ௧
�൫݅݀ै⨁,߲గ൯ തܴ	(ߨ, (ܤ ൬�ቀ

1 0
0 ݁ିଵቁ

ฬ			�൰ߪ
௧ୀ

 

Thus the equality to be proved reduces to showing that. 

݀
ݐ݀
��൫݅݀ै⨁	,߲గ൯ തܴ(ߨ, (ܤ ൬ቀ

1 0
0 ݁ିଵቁ

ቤ			൰ቇߪ
௧ୀ

 

�= �൫݅݀ै⨁	߲గ൯ ൬
݀
ݐ݀ 	

തܴ(ߨ, (ܤ ൬ቀ
1 0
0 ݁ିଵቁ

ฬ			�൰ߪ
௧ୀ

ቇ. 

Clearly, the last equality is a consequence of the assumption that 

߲గ is closed.  

8.5 the coderivation L and A and the duality transform. In this 

section the same assumptions as in 8.4 will hold throughout. 
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     Let ܧଵ be the closure of ߨ)ܴݕ, ߳߮ in E and let (ܤ ߲
ௗ 	 so that߮ 

is in the domain of ܮௗ, that is ߮ o L defined on	ߨ)ܴݕ,  is (ܤ

bounded (extends	to	an	element	of	ܧଵௗ 	).	

Recall	that	the	n-th	component	of	the	duality	transform	is	

defined	by		

Y=(߮)(ߪ) = ൫݅݀ै⨁	߮൯൫ തܴ(ߨ, 	.൯(ߪ)(ܤ

We have 

Y=(ܮௗ߮)(ߪ) = ൫݅݀ै⨁	߮൯൫݅݀ै⨁	ܮ൯൫ തܴ(ߨ, 	.൯(ߪ)(ܤ

�= �൫݅݀ै⨁߮൯
݀
ݐ݀ 	

തܴ(ߨ, (ܤ ቆቀ
1 0
0 ݁௧ቁ

ቇቤ(ߪ)
௧ୀ

�.	

	 	 = ௗ
ௗ௧
�൫݅݀ै⨁߮൯	൭ തܴ(ߨ, (ܤ ቆቀ

1 0
0 ݁௧ቁ

ቇ൱อ(ߪ)
௧ୀ

	

= −
݀
ݐ݀
�Y(߮) 	൭�ቀ

1 0
0 ݁௧ቁ

ቇ൱อ(ߪ)
௧ୀ

	

=	−൫(ܣ − (ߪ)൯(߮)ݕ(݀݅ = (݅݀ − 	(ߪ)(߮)ݕ(ܣ

Thus	we	have	proved	the	following	proposition.	

Proposition	we	have	ݕ(ܮௗ߮) = (݅݀ − 	.(߮)ݕ(ܣ

Note	that	the	way	the	coderivation	should	be	transformed	

under	duality	given	in	[15].	Them.	5.3.	is	in	agreement	with		

the	above	proposition.	
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9.	The	Grassmannian	involution:	

	 Throughout	this	section	B	will	be	a	unital	Banach	

algebra	with	involution.	We	will	discuss	the	corresponding	

involutions	on	Gr	(B)	and	bialgebras	d	(ߗ),	and	the	

properties	of	the	duality	transform	related	to	the	

involutions.	

9.1	the	involution	on	Gr	(B).	On	the	afϐine	fully	matricial	

space	the	involution	amounts	simply	to	the	conjugate-linear	

antiautomorpism	ܶ → ܶ∗on	ै(ܤ),	݊߳ℕ.	he	extension	to	an	

antiholomorphic	automorphism	of	he	fully	matricial	B-

Grassmannian	has	some	additional	technical	points.	

We	will	first	define	he	orthogonal	ୄߨ	of	݊߳ݎܩ(ܤ)and	then	

we	shall	define,	ߨ∗ ቀ 0 1
−1 0ቁ

	ୄߨ

ߨ݂݅ = ቀܽ ܾ
ܿ ݀ቁ/̅݊ߣ	we	define	ߨ

ୄ = ൬ݖ
∗ ∗ݔ
∗ݐ ൰∗ݕ 	where	݊ߣ̅/

ቀݔ ݕ
ݖ ቁݐ = ቀܽ ܾ

ܿ ݀ቁ
ିଵ
	

To	check	that	ୄߨ	is	well	defined	we	begin	with	a	simple	

algebraic	lemma.	
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Lemma.	Suppose	that	ቀܽ ܾ
ܿ ݀ቁ

ିଵ
=ቀݔ ݕ

ݖ ቀ		and	ቁݐ
ܽᇱ ܾ
ܿᇱ ݀ቁ

ିଵ
=

൬ݔ
ᇱ ᇱݕ
ᇱݖ ᇱݐ

൰	thenቀ
ݔ ݕ
ᇱݖ 	invertible	w	is	there	and	invertible	is	ᇱቁݐ

so	that	wx	=	ݔᇱ,wy=ݕᇱ		

Proof.	Since	ቀ
ݔ ݕ
ᇱݖ ᇱቁቀݐ

ܽ ܾ
ܿ ݀ቁቀ

1 0
∗ 1ቁ	

Is	invertible,	we	inter	ቀ
ݔ ݕ
ᇱݖ 	.invertible	is	ᇱቁݐ

On	the	other	hand	ቀ
ݔ ݕ
ᇱݖ ݐ ᇱቁ ቀ

ܽᇱ ܾᇱ
ܿᇱ ݀ᇱቁ = ቀݓ 0

∗ 1ቁ	

Is	invertible,	so	that	w	is	invertible	and	we	have		

ቀ
ݔ ݕ
ᇱݖ ᇱቁݐ = ቀݓ 0

∗ 1ቁ ൬
ᇱݔ ᇱݕ
ᇱݖ ᇱݐ

൰	

Which	gives	ݔ = ,ଵିݔݓ ݕ = 	.ଵିݕݓ

Corollary.		The	map	ߨ → 	.well-define	is	ୄߨ

Proof.	We	have	two	things	to	check.	

First,	using	the	same	notation	as	in	the	lemma,	since		

ߨ = ቀܽ ܾ
ܿ ݀ቁ ݊ߣ̅/ = ቀܽ

ᇱ ܾ
ܿᇱ ݀ቁ/̅݊ߣ	

We	must	show	that	൬ݖ
∗ ∗ݔ
∗ݐ ൰∗ݕ ݊ߣ̅/ = ൬ݖ

ଵ∗ ∗ଵݔ
∗ଵݐ 	݊ߣ̅/ଵ∗൰ݕ

this	is	indeed	so,	since	ݓ∗	is	invertible	and	ݔ∗, ∗ݓ =

,∗ݔ	 ,∗ݕ ∗ݓ = ∗ݕ .	
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Secondly	if	u	is	invertible	and	ቀ
ݔ ݕ
ᇱݖ ᇱቁݐ = ቀܽ ݑܾ

ܿ ቁݑ݀
ିଵ
	

Then	it	is	easily	seen	that	ݔ = 	.clearly	hence	and	ᇱᇱݕ	=	,yݔ

൬ݖ
∗ ∗ݔ
∗ݐ ∗൰ݕ ݊ߣ̅/ = ൬ݖ

∗ ∗ݔ
∗ݐ ൰∗ݕ 	݊ߣ̅/

Remark	also	that	the	definition	of	ୄߨ	can	also	be	written.	

ୄߨ = ൭ቀܽ ܾ
ܿ ݀ቁ

∗ିଵ
ቀ0 1
1 0ቁ൱/̅݊ߣ = ቆቀܽ ܾ

ܿ ݀ቁ ቀ
0 1
1 0ቁ

∗ିଵ
ቇ/̅݊ߣ	

Proposition	.	we	have	ߨ∗∗ = ߨ	maps	the	ߨ = ߨ	and	∗ߨ → 	ୄߨ

are	antiholomorphic	automorphisms	of	ݎܩ(ܤ).	

The	antiholomorphicity	needs	only	to	be	checked	in	charts.	

ቊቆቀܽ ܾ
ܿ ݀ቁቀ

1 ݂
0 1ቁቇ ݊ߣ̅/

|݂߳ै(ܤ)�ቋ.	

If	ߨ = ቆቀܽ ܾ
ܿ ݀ቁቀ

0 1
1 0ቁቇ ߨ	ℎ݁݊ݐ	݊ߣ̅/

⊥ = ൭ቀܽ ܾ
ܿ ݀ቁ

∗−1
൬0 1
1 0൰൱ 	݊ߣ̅/

which clearly is antiholomorphic as a function of ߳ै(ܤ) 

that the definition of ߨ∗ extends the definition of the involution 

on the affine space is easily seen. Indeed , then ߨ =

ቀ0 1
1 0ቁ ,݊ߣ̅/ ߨ

⊥ = �ቀ1 −݀∗
0 1 ቁ� ∗ߨ and ݊ߣ̅/ = �൬ 0 1

−1 ݀∗൰
�  ത݊ߣ/

we conclude this subsection remarking that in the formula for ୄߨ 

the matrix ቀ0 1
1 0ቁ can be replaced by ቀ 0 1

−1 0ቁ,	 since this does 
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not affect the second column in the result. Hence the formula for 

	can be written also in the form ∗ߨ

∗ߨ = ൬−ቀ 0 1
−1 0ቁ ቀ

ܽ ܾ
ܿ ݀ቁ

∗ିଵ
൰ �ቀ 0 1
−1 0ቁ

ିଵ
൰/̅݊ߣ	

note	also	that	this	gives	(ߨ(݃)ܥ)∗ = ൫ܥ ܹ
∗ିଵܹିଵ൯ߨ∗	where	

W=	ቀ 0 1
−1 0ቁ	and	݃߳2)ܮܩ. 	(ܤ

9.2	the	involution	and	he	bialgebras	݀(ߗ).	it	is	easy	to	see	

that		

∗(ߪ⨁ߨ) = 	∗ߪ⨁∗ߨ

and that (ߜ. ∗(ߨ = ܵ∗ିଵ. ,(ܤ)ݎܩ߳ߪ where ∗ߨ  .(ℂ;݊)ܮܩ߳ߜ

 It follows that if ߗ = -ఢℕ is a fully matricial set of the B(ߗ)

Grassmannian hen the same holds for ߗ∗ = ∗ߗ) )ఢℕ where ߗ∗  

∗ߗ= = ∗ߗ∗ߨ�}  .is open ∗ߗ is open if ߗ }. clearlyߗ߳ߨ|

If ݂: ߗ →ै we define ݂
∗: ∗ߗ →ै by ൫ ݂(ߨ)൯

∗
 = ݂

 ,(∗ߨ)∗

where ߗ߳ߨ if ݂ is analytic then so it ݂
∗	ܽ݊݀	݂݅	݂ =

( ݂)ఢℕ߳	݀(ߗ) then ݂∗ = ( ݂
∗)ఢℕ	݀(ߗ) and the map ݂ = ݂∗ is a 

conjugate linear antisomorphism. More generally there is a 

conjugate  linear antiisomorphism ݂ = ݂∗of ݀൫ߗଵ: ;ଶߗ … ;  ൯ߗ

and ݀൫ߗଵ∗:ߗଶ∗ ;… ;   ∗൯ whereߗ

݂భ….
∗ ൫߱ଵ∗ ;… ; ߱∗൯ = ൬ ݂భ….൫߱ଵ;… ;߱൯൰

∗
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If	ߗ = 	More	involution.	with	algebra	an	is	(ߗ)݀	then	∗ߗ

generally	ߗ = ,∗ߗ 1 ≤ ݆ ≤ 	.

The	automorphism	permuting	the	variables,	that	is		

൫ߪଵ,ଶ݂൯,(ߪ, (ߨ = ,ܧ ݂,(ߪ, 	(ߨ

With	ܧ,:ै⨁ै 	→:ै⨁ै	the	tensorial	permutation	

isomorphism.	

Proposition:	݂݅	݂	߳	݀(ߗ),	then		

߲݂̅∗ = ଵ,ଶ൫߲݂̅൯ߪ
∗ 

In	particular	if	ߗ = 	the	of	compatibility	the	is	this	,∗ߗ

involution	and	comultiplication	of	݀(ߗ).	

Proof.	If	߳ܮ	ݕ൫ै,൯	and	߳∗ܮ	ݕ൫ै,൯	is	defined	by	

(ݕ)∗ܮ = ߳,	then	∗�(∗ݕ)∗ܮ) ቀቀߙ,(ܮ)ቁ
∗
ቁ		

In	view	of	this	it	is	easily	seen	that	the	proposition	will	

follow	if	we	prove	that.	

݂,
∗ ൮	൮ܵ߁൮

ܽ ܾ 0 0
ܿ ݀ 0 ′ܾݐ

0 0 ܽ′ ܾ′

0 0 ܿ′ ݀′
൲1−߁൲ ݊ߣ̅/ + ݊ෛ ൲ 
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ܵ

⎝

⎜
⎛

݂,

⎝

⎛	

⎝

߁ܵ⎛

⎝

⎛
′ߙ ′ߚ 0 0
′ݕ ′ߜ 0 ߚ∗ݐ
0 0 ߙ ߚ
0 0 ݕ ߜ ⎠

⎞ 1−߁

⎠

⎞ ݊ߣ̅/ + ݊ෛ

⎠

⎞

⎠

⎟
⎞

∗

ܵ−1 

Where߁,߁′, ܵ are permutation matrices, the first two having the 

effect by conjugation of permuting second and third rows and 

columns in 4x4 block matrices and S permuting first and second 

rows and columns in a 2x2 block matrix (	the	sizes	of	blocks	

corresponding	to	m+m+n+n,	n+n+m+m	and	n+m	

respectively).	The	other	notations	used	are	ै߳ݐ,(ℂ)and	

ቆቀܽ ܾ
ܿ ݀ቁ ,݊ߣ̅/ ቇ

∗

= �൬ߙ ߚ
ݕ ൰ߜ

�   ݊ߣ̅/

ቆቀܽ
ᇱ ܾᇱ
ܿᇱ ݀ᇱቁ/̅݊ߣ, ቇ

∗

= �൬ߙ
ᇱ ᇱߚ
ᇱݕ ᇱ൰ߜ

�  ݊ߣ̅/

 Remarks that the right hand side of the equality to be proved is 

equal to. 

⎝

⎜
⎛
݂݉,݊൮ܵ	൮ܵ߁൮

′ߙ ′ߚ 0 0
′ݕ ′ߜ 0 ߚ∗ݐ
0 0 ߙ ߚ
0 0 ݕ ߜ

൲ 1൲−′߁ ത݊ߣ/ + ݉ෛ ൲

⎠

⎟
⎞

∗

 

Hence by the definition of ݂, it will suffice to show that  

= ܵ

⎝

′߁⎛ 	

⎝

⎛
′ߙ ′ߚ 0 0
′ݕ ′ߜ 0 ߚ∗ݐ
0 0 ߙ ߚ
0 0 ݕ ߜ ⎠

1−′߁⎞

⎠

⎞ ݊ߣ̅/ + ݊ෛ  
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Writing the equality in the form A//ߣത݊+ ݊ෛ  = B//ߣത݊+ ݊ෛ  the 

problem amounts to showing that ିܣଵܤ is a lower triangular 2x2 block 

matrix with invertible diagonal blocks. Denoting by ⊙ and Ξ the 4x4  

explicitly written matrices in A and B and by Σ and W the matrices  

ቀܵ 0
0 ܵቁ 	ܽ݊݀	 ቀ

0 1
−1 0ቁ . we have  

ܣ = ଵି∗⊙߁ܹ  ଵܹିଵି߁

B = ߁ߑᇱି߁ߌଵିߑଵ 

Hence  

ܤଵିܣ = ∗⊙߁ܹ−  ଵିߑᇱିଵ߁ߌᇱ߁ߑଵܹିଵି߁

∗⊙߁ܹ	- = ∗⊙߁ܹ	ଵି߁ଵିܷߌܷ  ଵܹିଵି߁

Where U=ି߁ଵܹିଵ	߁ߑᇱ it is easily seen that  

ܷ൮

0 0 0 ܫ−
0 0 ܫ 0
0 ܫ− 0 0
ܫ 0 0 0

൲ 

And hence that  

ଵ൮ିܷߌܷ

ߜ ݕ− 0 0
ߚ− ߙ 0 0
ߚ∗ݐ 0 ᇱߜ ᇱݕ−
0 0 ᇱߚ− ᇱߙ

൲ 

to compute ିߌܷ∗ߌଵ remark first that in view of the formula for 

  we may assume ,∗ߨ
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ቀܽ ܾ
ܿ ݀ቁ

ିଵ
=	൬−ߜ

∗ ∗ߚ
∗ݕ  ൰∗ߙ−

And its primed analogue. We get. 

⊙∗ ଵିܷߌܷ

⎝

⎜
⎛
ቀܽ ܾ
ܿ ݀ቁ

∗ 0 0
0 0

�0 0
0 ܾᇱ∗ݐ∗

� ቀܽ
ᇱ ܾᇱ
ܿᇱ ݀ᇱ

ቁ
∗

⎠

⎟
⎞
൮

ߜ ݕ− 0 0
ߚ− ߙ 0 0
ߚ∗ݐ 0 ᇱߜ ᇱݕ
0 0 ᇱߚ ᇱߙ

൲ 

                 =   ൮

ܫ 0 0 0
0 ܫ 0 0

ܽᇱ∗ߚ∗ݐ 0 ܫ 0
0 ܾᇱ∗ߙ∗ݐ 0 ܫ

൲             

this in turn gives  

∗⊙)߁ܹ− 1ܹିଵ−′߁(ଵିܷߌܷ =	−ܹ=   ൮

ܫ 0 0 0
ܽᇱ∗ߚ∗ݐ ܫ 0 0
0 0 ܫ 0

0 0 ݐ∗′ܾ
∗
ߙ ܫ

൲ 

																																																																	= 	−൮

ܫ 0 0 0
ܾᇱ∗ߙ∗ݐ ܫ 0 0
0 0 ܫ 0
0 0 ߚ∗ݐ∗′ܽ ܫ

൲		

Which	is	a	matrix	of	the	desired	kind.	

9.3	The	involution	and	he	coderivation	A.	in	this	subsection	

we	check	the	compatibility	of	A	with	the	involution.	

Proposition.	݂݅	݂	߳݀(ߗ)	then	we	have		

∗݂ܣ = 	∗(݂ܣ)



141 
 

൫ݐℎ݁	݁݉ܽݏ	ܣ	ݏ݁ݐ݊݁݀	ݐℎ݁	ܿݏ݊݅ݐܽݒ݅ݎ݁݀	݊݅	(ߗ)݀	݀݊ܽ	݊݅	(∗ߗ)݀൯	

													Proof.	݂݅	ߨ=ቀܽ ܾ
ܿ ݀ቁ 		then	,ߗ߳݊ߣ̅/

൬ቀ1 0
0 ݁ᇱቁ

൰ߨ
∗
= ቀ 0 1

−1 0ቁ
ቀ1 0
0 ݁ᇱቁ

∗ିଵ
ቀ 0 1
−1 0ቁ

ିଵ
	ߨ

=ቀ݁
ିଵ 0
0 1

ቁߨ∗ = ቀ1 0
0 ݁ᇱቁ

∗ିଵ
	∗ߨ

From	which	the	proposition	follows	immediately	using	he	

formula	for	a.	

9.4.	the	involution	and	Grassmannian	resolvents.	In	this	

subsection	we	check	the	behavior	of	resolvents	with	respect	

to	the	involution.	

We		will	need	an	algebraic	lemma	which	provides	explicit	

formulae	for	resolvents.	

ቀܽ ܾ
ܿ ݀ቁ

ିଵ
= ቀݔ ݕ

ݖ ൬	and	ቁݐ
ߙ ߚ
ߛ ൰ߜ

ିଵ
= ቀݎ ݏ

ݑ 	ቁݒ

Then	the	matrix	൬ߙ ߚ
ߛ 	,invertible	is	ߜߛ	+ߚ	x	if	invertible	is	൰ߜ

which	is	also	iff rb+sd	is	invertible.	Moreover	we	then	have	

	൬ߙ ߚ
ߛ ൰ߜ

ିଵ
= �ቌ

ܾݎ) + ݎଵ–(݀ݏ ܾݎ) + ݏଵି(݀ݏ
ߚݔ) + ݔଵି(ߜݕ ߚݔ) + 	�ቍݕଵି(ߜߛ
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Proof.	Since		

ቀݔ ݕ
ݖ ቁݐ ൬

ߙ ߚ
ߛ ൰ߜ = 	 ൬

0 ߚݔ + ߜݕ
1 ߚݖ + ൰ߜݐ 	

We	get	the	"iffx	+ߚ	ߜݕ	is	invertible"	part	of	the	statement		

And	

	൬ߙ ߚ
ߛ ൰ߜ

ିଵ
=	൬0 ߚݔ + ߜݕ

1 ߚݖ + ൰ߜݐ
ିଵ
ቀݔ ݕ
ݖ 	ቁݐ

=�൭
∗ ∗

ߚݔ) + ଵି(ߜݕ 0 ൱ቀݔ ݕ
ݖ ቁݐ

�	

=�൭
∗ ∗

ߚݔ) + ଵି(ߜݕ ߚݔ) + 	�ଵ൱ି(ߜݕ

Similarly	since:	

ቀݕ ߜ
ݑ ቁቀݒ

ܾ ߚ
݀ ቁߜ = ൬ߚݔ + ߜݕ

ߚݖ + 		൰ߜݐ

We	get	he	"iff	rb+sd	is	invertible"	part	of	the	statement	and		

ቀܾ ߚ
݀ ቁߜ

ିଵ
=	ቀܾݎ + ݀ݏ 0

ܾݑ + ݀ݑ 1ቁ
ିଵ
ቀݎ ݏ
ݑ 	ቁݒ

=	ቀܾݎ + ݀ݏ 0
∗ ∗ቁ ቀ

ݎ ݏ
ݑ 	ቁݒ

= 	ቀ(ܾݎ + ݎଵି(݀ݏ ܾݎ) + ݏଵି(݀ݏ
∗ ∗

ቁ
ିଵ
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The	framework	for	resolvent	will	be	a	unitasl	Banach	

algebra	with	involution	E	and	abanach	subalgebra	with	the	

same	involution	ߚ߳ܫ ⊂ 	ܧ

Proposition:	

Let	ݎܩ߳ߨଵ(ܧ)	and	ݎܩ߳ߪ	be	such	that	̅߳ߪ(ܤ;ߨ)then	

;∗ߨ)̅߳∗ߪ ൫	and(ܤ തܴ(ߨ; ൯(ߪ)(ܤ
∗ = തܴ(ߨ∗; 	.(∗ߪ)(ܤ

Proof.	Remark	that	it	suffices	to	prove	the	proposition	when	

B=E	and	n=1	indeed,	replacing	E	by	ै(ܧ)	we	get		the	

reduction	to	the	case	m=1.	

Let	ߨ = ቀܽ ܾ
ܿ ݀ቁ ,݊ߣ̅/ ߪ =

�൬ߙ ߚ
ݕ ൰ߜ

� 	notation	the	use	and	݊ߣ̅/

for	the	inverses	of	the	two	matrices	which	we	used	in	the	

Lemma	.	then	we	have	.	 തܴଵ(ߨ; (ߪ)(ܧ = ߚݔ)ߚ + 	and	ݕଵି(ߜߛ

on	the	other	hand	we	have	.	

∗ߨ ቀ−ݐ
∗ ∗ݕ−

∗ݖ− 	1ߣ̅/ቁ∗ݔ−

∗ߪ ൬−
∗ −ఙ∗

∗ݑ− ൰∗ߛ− 	1ߣ̅/

and		

ቀ−ݐ
∗ ∗ݕ

∗ݖ ቁ∗ݔ
ିଵ

= ቀ−݀
∗ ܾ∗

ܿ∗ ܽ∗ቁ	
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Applying	again	the	lemma,	to	these	new	matrices,	we	get	

that	̅߳∗ߪଵ(ߨ∗; 	of	invertibility	the	to	equivalent	is	(ܧ

∗ݏ∗݀− − 	and	∗ݎ∗ܾ തܴଵ(ߨ∗; (∗ߪ)(ܧ = ∗ݏ∗݀)∗ݏ− − 	∗ଵܾି(∗ݎ∗ܾ

Since	−݀∗ݏ∗ − 	the	invertible,	is	rb+sd	iff	invertible	is	∗ݎ∗ܾ

equivalence	of	̅߳∗ߪଵ(ߨ∗; ;ߨ)ଵ̅߳ߪ	with	(ܧ 	the	precisely	is(ܧ

equivalence	of	he	invertibility	of	rb+sd	and	of	x	ߚ + 	.݀ݕ

To	conclude	the	proof	of	he	proposition	we	must	show	that		

ߚݔ)ߚ) + ∗(ݕଵି(ߜݕ + ∗ݏ∗݀)∗ݏ + ∗ଵܾି(∗ݎ∗ܾ = 0	

Or	equivalently,	that		

ߚݔ)ߚ� + �ݕଵି(ߜݕ + ܾݎ)ܾ + ݏଵି(݀ݏ = 0	

This	is	a	consequence	of	the	last	assertion	of	the	lemma,	

which	gives	that		

ቀܾ ߚ
݀ ቁߜ = 	൬

ܾݎ) + ݎଵି(݀ݏ ܾݎ) + ݏଵି(݀ݏ
ܾݎ) + ݔଵି(݀ݏ ܾݎ) + ൰ݕଵି(݀ݏ ቀ

∗ 0
∗ ∗ቁ	

9.5.	the	involution	and	he	duality	transform.	Like	in	the	

previous	section	ܤ߳ܫ ⊂ 	with	algebras	Banach	be	will	ܧ

involution.	Since	we	will	consider	the	duality	transforms	

with	respect	to	ߨ,	B	and	with	respect	to	ߨ∗,	B	will	use	the	

notations	ݕ௭(. )	and	respectively	ݕ௭(. )	to	distinguish	the	two.	
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Proposition:	

We	have	൫ߨ)ܴݕ; ;∗ߨ)ܴݕ∗൯(ܤ 		௭(߮∗)൯ݕ൫	and		(ܤ

He	proof	is	a	straightforward	consequence	of	proposition	9.4		

and	of	the	definition	of	ߨ)ܴݕ∗; 	duality	the	of	and	(ܤ

transform	and	will	therefore	be	omitted.	

	

10.	Dual	Positively		

10.1.	The	definition:	the	grassmannian	extension	of	the	

notion	of	dual	positivity	is	quite	straightforward.		Here	B	will	

be	a	unital	Banach	algebra	with	involution.	

Definition:	if	Ω=ߗ∗		an	element	݂߳݀(ߗ)	is	dual-positive	if	

݂ = ݂∗	and	∆.(ߪ, 	for	ै		to	in	ै	of	map	positive	a	is	(∗ߪ

all	ߗ߳ߪ	and	݊߳ℕ(∇.݂)(ߪᇱ, 	map	the	denotes	ᇱᇱ)ߪ

,ᇱߪ�.߲̅.݂൫ߙ 		.ᇱᇱ)൯ߪ

Like	in	the	affine	case	we	have	a	few	equivalent	conditions.	

Proposition.		If	ߗ = 	are	following	the	(ߗ)݂݀߳	and	∗ߗ

equivalent:	

i. f	is	dual	positive.	

ii. ݂ = ݂∗	and	for	any	ߗ߳(݆)ߪ(),	the	map	1 ≦ ݆ ≦

,(ଵ)ߪ൫∇(),()݂൯൫	ଵ≦,≦⨁, 	linear	positive	a	is	൯∗()ߪ

map	of⨁,ै(1) + ⋯+ 	.itself	into	()݊
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iii. 		݂ = ݂∗	and	for	any	ߗ߳ߪ,	the	map	

൫∇,൯(ߪ, ै:(∗ߪ →ै	is	completely	positive.	

The	proof	from	the	afϐine	case	[16]	prop.	8.2,	

immediately	carries	over	to	this	more	general	case	and	

will	not	be	repeated.	

10.2	he	duality	transforms	of	the	positive	functional	.	here	

1߳ ⊃ 	with	algebras	Banach	unital	of	inclusion	an	be	will	ܧ

involution.	By	ܧଵ		we	shall	denote	the	closure	of	ݕ. 	(ܤ;ߨ)ܴ

where	ߨ = 	,	positive	is		ଵܧ߳߮	functional	A	.(ܧ)ଵܩ߳∗ߨ

denoted	߮ ≧0,	if	߮ = ߮∗	and	߮(ݕ∗ݕ) ≧ 0		for	all	ܧ߳ݕଵ	(the	

hermiticity	follows	actually	from	the	second	requirement)	

Proposition.	݂݅ܧ߳ߜଵௗ		then	߮ ≧0	iff-ݑ(߮)	is	dual	positive	in	

݀൫(ߨ, 	.൯(ܤ

Proof.	(ܽ)	߮ ≧ 0 	use	shall	We	positive.	dual(߮)ݑ−	⇒

proposition	6.3	which	implies	that	

൫݅݀ै⨁݅݀ै߮൯ ቀ ෨ܴ(ߨ; ாߪ(ߪ)(ܤ ෘܴ(ߨ; ߪ)(ܤ
∗)ቁ = 	− ෨߲,ߪ)(߮)ݕ, 	(∗ߪ

Since	ߨ = 		have	we	∗ߨ

෨ܴ(ߨ; (ߪ)(ܤ = ൫ܴ(ߨ∗; ൯(∗ߪ)(ܤ
∗
	

Hence,	if	߯߳ܧଵ	are	such	that	 ෨ܴ(ߨ; (ߪ)(ܤ = ∑ ݁⨁߯, 	then	

− ෨߲,ߪ)(߮)ݕ, (∗ߪ = 	 ߮൫ ܺ ܺ
∗ ൯݁௬⨁݁

భರ.ೕ,ೖ,ರ
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We	must	check	that:	

.ݑ ቀ− ෨߲.ߪ)(߮)ݕ, ቁቌܿܿ௬݁௬(∗ߪ
,௬

ቍ ≥ 0	

In	view	of	the	definition	of	ߙ,	this	is	equivalent	to		

 ߮
ଵஸ,,ଵஸ

൫ߙߙ∗൯ ݁ ≥ 0	

Or	equivalently,	for	all	ߣ…ߣ߳ܥ,	

 ߮
ଵஸ,,ଵஸ

൫ߙߙ∗൯ߣሚߣఫ෩ ≥ 0	

Putting		

ݕ =  ,ߙሚߣ
ଵஸଵஸ

(∗ߛߛ)߮	ݐ݁݃	݁ݓ ≥ 0	

(ܾ) − ⇒	positive	dual	(߮)ݕ ߮ ≥ 0	we	have		

൬ቀ−∇୬,୬y(߮)(ߪ, ቁ(∗ߪ ݁݇൰

߮ቆ൫ ෨ܴ(ߨ; ௬൯(ߪ)(ܤ ቀ ෨ܴ(ߨ; ቁ(ߪ)(ܤ



∗
ቇ
∗
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