4. Grassmannian resolvent sets:

4.1 Let E be a complex Branch algebra with 1 and 1 EBCFEa

Banach subalgebra,

Let further m = (? Z

Grassmannian B-resolvent set of 7t to be the set pn

) / 11 Gry(E), we define the n-th

{(n; B) = 0eGr,(B)|o] is a complement of { } Ifo =

(;‘f g) /A, where «, 8,7, 8, € M, (B)is equivalent to requiring

that
b 0
B
0 b
€EGL(2,;E
p 0 (2n; E)
o)
0 d

It is easily seen that p(m; B) = (p,(m; B))neN is a fully
matricial B-set of the Grassmannian. The direct sum property is
obvious and the similarity property follows from the fact that S.
**%* if s € GL(n; C) and o is a complement of **** if 5.0 is
"a complement" of s. (m @ ... ®m). We shall call p(rr; B) the full

Grassmannian B-resolvent of 7.
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4.2 on p(m; B) we define the M, (E) — valuedanalytic
function £,,(1; B). be so that

Then we define £,,(; B). = B¢ if 1 € GL, (S)Jtn(B)),T €
GL,(E), then replacing 8,6, b,d by B, 6;, by, d, will lead to
replacing € by 77 .since B¢ = (B,) (t7%%) we see that
M., (; B) (o) is well-defined. We will call I, (7, B)the n —
th grassmannian B-resolvent of . It is easy to check

that £(r; B) is a fully matricial E-valued analytic function on
p (m; B).

4.3 as a first step toward fitting the "affine " resolvents into this
framework, we shall see that happens if i is the graph of an

element y € E, that is , if

T = ((1) i) JA1€ G, (E)

5. The derivation 9 on fully matricial functions of the

QGrassinannian
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5.1. Let Q be a fully matricial open B-set of the Grassmannian.
We shall denote by of (B) the algebra of C-valued

(that is acalar) fully matricial analytic functions on €, under
pointwise multiplication of the matricial values. More generally
we get an algebra () for a fully multimatricial (B, ... Bp)-set
and we shall denote the corresponding algebra, if Q1 is a fully
matricial open B-set of the Grassmannian, then (x() is a fully
multimatricial(B,B )-set and we shall denote the
corresponding algebra by g (Q1x()), more generally we have
algebra bras (Q; ...; Q). This extends the construction in
the affine case [16] . the aim of this section will be to extend
the construction of the derivation d from the affine case to a
derivation @ in the Grassmannian framework. Like in the

affine case the construction rests on two technical lemmas.

5.2. Lemma. Let Q = (,),en be an open fully maricial B-set

of the Grassmannian and let.

a; b
(% d)/
/1n i

T =

€0, = 1,2).

Then for all N,y,z,1€ M, ,,(B)
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0O a, 0 b,

o3} b /11\4-/712 €y n,
d z d; t

0O ¢, 0 d,

Proof. Since (2 is open, for any given x,y,z,t thereis & # 0 so
that the conclusion of the lemma holds with N,y,z,t replaced

by €x, €y, €z, €t . to obtain the result without ¢, it suffices to

1 0
use the GL (n; + n,) invariance with s = ( m )

5.3 Lemma. Let Q be an open fully marticial B-set of the
Grassmannian and fe({2) and let a;, b;, c;, d;, t be like in the

preceding lemma. Then, there is k€ M, (C) so that,

Clj 0 b1 0
0 d, 0 b —
fn1+n2 c1 02 d1 2 //11 + n;
0 ¢, 0 d,
Clj 0 b1
fnl 0 dz 0 /Al + n, k

0 (82 22) 00)
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And k depends linearly on t. in fact we have

Clj 0 b1 0
0 k\ a 0 d 0 b —
(O O) de fn1+n2 c1 02 d1 tz /Al +n2
0O ¢, 0 d,

Proof: assume the right hand side of the first equality is (Z 5)

GL(n1 + n,. (C) equivariance of f;, ,, applied to the similarity

(81"1 0 ) we find that
c; Iy

u ek
converges as € — 0 to
el, v

/ fn1< X /An1> 0 \

I
a, b,

\ 0 fos ((62 ) /Am) )

This, then , implies h=0 and that (8 l(;) is given by the second

formula in the statement of the lemma, since f as an analytic
function is differentiable. In turn, this formula which identifies
the map taking t to k with a partial differential of f;,;,,,, shows

that this map is a C-linear map.

5.4 to define 0,14, we shall use the isomorphism

’y’nl.nz:‘mnz GBSUtnz - ’y’(gﬁnl,nz)

Which takes A@B to the linear map x -AXB in y)(imnl,nz)
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Which takes A@ B to the linear map X— AXB in y(smm,nz)

Definition. Let 24, f, a;, b;, ¢j, d; be like in 5.3 and let T€
A%(ﬂﬁnmz) be the linear map, so thatT(t) = k when t € M1 4,
((C)Cmnl,nz (B) and

Clj 0 b1 0
0 k\ a 0 d 0 b —
(O O):d_e fn1+n2 c1 02 d1 tz //1111 + n;
0O ¢, 0 d,

Then we define

_ a b x a b x _
(anl,annl,nZ) (( ! di) //1111; (C; di) //1112;) - anll,nZ (T) €

C1

SUt‘nl easrlt‘nZ

: zz O
Note that if z; ¢, | (an,,,s)) then (01 Zz) = GLy (M, (B)) and

Clj 0 b121 0

O dz O szz —
fn1+n2 cy 0 d1Z1 ETbZZZ //1111 + n;
O C2 O dzZz
a 0 b 0
0 a 0 b S
=fn14n2 ’ 2 /A1 + 1

cq 0 dy etb,
0O ¢, 0 d,
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So that a‘nm fn1nz 1s well-defined.

It is also easy to see that 0 extends the definition of d in the
affine ease ([16]). Indeed if we take a; = I,,; @ 1,¢; = 0,b; =
L,; ® I in the preceding formulae we get exactly he formulae in

the affine case, corresponding to the embedding.

M,(B) > L - (1"891 I"B@I) /A € Gr,(B).

5.5 starting with this subsection and continuing in 5.6 and 5.7
we will check that d turns A(£2) into a "topological"
infinitesimal bialgebra. Since section 5.5-5.7 are just a technical

extension of the affine case.

The first step is to check that
a_f:(a_m.nfm+n)(m,n)e.n2 S(12; 1),

Since analyticity of the 0, , fm.n iS Obvious, we are left with
checking GL(m)XGL(n) equivariance and the direct sum

properties.

In view of the equivariance property of «,,,, (see[16],7.7) is
suffices to remark that if S' € GL(m) and S"€ GL(n) then

assuming t,ke I, ,, and
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Clj 0 b1 0

0 ky a 0 d, 0 b, |, —
(o o)z fnen ¢ 0 dy eth, |/t

0O ¢, 0 d,

We also have

(o Slks"-l)
0 0

/ /S'ajS'-l 0 S'1p,S'1 0 \ \
d . 0 S"a,§"1 0 $"h,S" 1 — |
= . . A, +1n
de fn S'c, St 0 S'd;S'7t e(S'tS1S"b,S ") /Am
0 S'c,S" 1 0 d,

The last equality is a consequence of the GL(m+n)
S0
O S"

proved that d,, ,, fn+n Satisfies GL(m+n) equivariance.

equivariance of f,,,, applied to ( ) . we thus have

The direct sum properties to be checked are if w € £2,, 0 € 02,

and

m=m'+m", w €, ™" €
n=n'+n", o'm € N, 0" € N

then
( 5m.nfm+n) (T[IEDT["' U) = 5ml.nfml+n (T[,» U) EBém”.nfm”+n (T["; U)

(5m.nfm+n)(ﬂ' o'®a") = 5ml.nlfml+n(ﬂ 'U’)®5m.nfm+n(n 'U")
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We will only discuss the first equality to be checked , the second

being obtainable along similar lines
Since the isomorphism o had the property;
ocr_n}’+n (TleBTZ) = fm+n(T[: OJEBO-") = OCT_nl,’n (Tl)ED X" n (Tz)

ifT, € y,(imm,’n), T, € y,(imm,‘n) it 1s easily seen that what we

must prove boils down to the following.

We have
/ /a’l 0 0 B 0 0 \
0 a 0 0 b, O
0 0 a, 0 0 b? —
=frem" " A, +m" +n
fm +m"+n C{ 0 0 d1 0 tl / m
0 ¢ 0 0 d; t )
\ 0 0 ¢, 0 0 d, /

/ fm((‘cll Zé) /,1%') 0 ! \
0 fm((‘: 21) /,1%') k'
i o (),

Where

106



a, 0 by O
0 a, 0 b? —
fml+n ! 02 di tl /A'ml + n

and
/ a'y 0 b; O
fm-.m\ f ‘;2 ; ’ZZ /Am+n)
0O ¢, 0 d,
And

(G e I
\ o (& %))

If we define k~ by the last two equalities (with lemma 5.3 in mind )

we get
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ay

0 0

=fmr+m"+n Ci 0
0 ¢

\ 0 0

0
0
and

/ a'y 0
0 o
0 O

fm"+ml+n '

cgc O
0 ¢

\ 0 0

0 b 0
0 0 b
a, 0 O
0 d; 0
0 0 d;
c;, 0 0

0

0 b, O
0 0 b
a, 0 0
0 d, O
0 0 d
c;, 0 0

b
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Using a similarity which permutes the first two summands in

C™@C™' @C’, we get that the 13-block in the formula for

frmr+m+n (-..) is K. that all we must still do is to show that the 12-
block in that formula is zero. This in turn is immediate from Lemma
5.3 applied to f (m’ + m") + n and f,;,,4m"- thus we concluded
checking that

(am.nfm+‘n) (mn)eN?ef(2;0).

5.6. Our next task is to show that 0: () - #(2: )is a

derivation.

Lemma. Let f, g € §(£2) and let

r_(a’ b\ 5 (a b,
T = (C, d') /Ay € QT —(C.. d") [An €2y andt € My,

Then we have
Imn (am.n (fg)m+n) (ﬂ’: ﬂ)) (t) = fm (ﬂ’)m.n (am.ngm+n) (ﬂ" ﬂ“) (t)

= Umn (gm.nfm‘n) (ﬂ’: ﬂ)) (t)gn(ﬂ“)

Proof. To simplify notations put

§=mn (am.nfm,n) (ﬂ’: ﬂ)) (t) € SD’tm,n.
N=QAmn (am.nfm,n) (ﬂ’: ﬂ)) (t) € SD’tm,n.
&= am.n(am.n(fg)mﬁi) (ﬂ’: ﬂ)) (t) € SIJEm,n.

and
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a 0 b 0
0 a 0 b

T CI O dl tb" /Am + nne Qm+n
0O ¢ 0 d

Then, by Lemma 5.3 and Definition 5.4 we have

/ fm(r),,, () ¢ \

(P man () = | 0 fu(m) () |
(fa(m) €
kfm(”) (" fn(n")>

and

In(m) M )

m+n()= "
I (0 g,(m)

The Lemma then follows from the equality of matrices derived from
D min(T) = frnn () Gman (7).
Corollary. — §(£2; 2)is a derivation.

Proof; take into account that if f, g € §(2; 2)then the §(2) — bimodule
structure = §(2; 2) is given by the homomorphisms f - @1 and

g - 1®g where (f®1) (7', 7) = 1,Bg,(7"), and that if A €
My B € My, TE »(Myy,n) then .

an (AT()B) = (A®L)ayk, (T()) (L,DB)

The corollary is immediately inferred from the lemma.
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5.7 we pass now to the proof of the co-associativity property of d . Like
in the affine case ([16],7.10)since §(2; 2) and § (£2; 2; 2) have not
been identified with some topological tensor products of two and
respectively three copies of §(£2), we will have to define the maps id® 0;
A0(2;0) - 8 (2;2;0) and 9idD: §(12; ) — § (2;02;0.)

Let k € §(2; 2) and output K=l€m'n+p which is an analytic function on
. . a b\, —
O X D4y with values in M, @My, let further m = (C d) /T €
2,
a b
o = (c"vd">

m

((idEBg)mnk) (n,n’, ')

€ .(2p. we define:

/ a 0 b 0
d 0 a 0 b’ — |
kz" Tle 0 d eleg@r)y |/ TPZ=0 )
Isa.bsm 0 0 d"
I<c,d< c
Isi.fs; (a,b)(c,n)+fe‘(17,?)®e$)EBeéZ)

Where e]; are the matrix-units in 9, and he index (a, b)(c,n + f)

m) De (n+p) of an element of
ah cn+f

M @M, 4. it is easy to see that if k' = f@g, where f, g €.4(2)

indicates the co-efficient of e

then (id®d)(fdg) = fDa. we also leave it to the reader to check
that id@d takes values in 4({2; £2; 2).This involves arguments of the

type used in showing that d takes values in §(2; 2)

Similarly, we define
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a 0 b 0
§ d 0 a 0 b - .
(dsk ¢ 0 d eleg,®1)b [Apn+n,m |lc=0
0 ¢ 0 d’

Isu,hsm (am+d),(ef)
Isc,dsn
Isc.f<

™) o, @)

ch ef

Checking that (id@d )00, after all these questions are put
aside, boils down, like in the affine case to permuting the order

in which we take two derivatives.

Lemma. ifh’ € A(2) and h = h'p;1p4p, then

(id®d),, . Imn+ph = (0 ®id),, , HOmniph

Proof. Using the notations already introduced in this subsection,

we have

((ldEBa) Omntp ) = (mm ’nn)(a,b)(e.d)(e.f)

a 0 0 b 0 0
0 a 0 0 b’ 0
d |l d 0 0 a 0 0 b
| o hlc 0 0 d sl(eb,cgﬂ)b' 0" [Amn + D
0 ¢ 0 0 d; t
0 0 ¢ 0 0 &1(epH1)b aminss

Similarly we have

((5€Bid)m’n‘p 00mn+tp h) (m,,m) (@b)(ed)(ef)
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a 0 0 b 0 0
0 a 0 0 b’ 0
d| d 0 0 a o0 0 b’
a|a. hle 0 0 d ee,®1)p 0 [min +p €0
2 2 "
0 ¢ 0 0 d &,(ep,c®1)b
0 0 ¢ 0 0 d amintf

Clearly the two quantities are equal [the only difference is that
inside the 6x6 matrix we have replaced &; by €, and &, by &;s0

that the equality is just a permutability of partial derivative].
6. The resolvent equation and he duality transform.

6.1. we shall use the same framework as in section 4 and 5, to
carry out the computations which yield the functional equation

for the Grassmannian resolvent (R,,(1t, B) (. ),,ey) Where

n= (% D)/ 7i=6,, )

Let

o = (a’ g,) /Am € p,(m; B)
and let

" a" n _ y
o= (S0 i)/ T € pata )

We then consider

0= / A(m +1) € Prin(1; B)

a0
O a"
yl O 6/ tB"
O y"
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Where t € IM,,,,,(C)cI,,, ,(B).to compute R,,,,,(7; B)(0)
we must examine the matrix.

[sn®b B 0

__ 0 ﬁ"
- 5’ tﬁ"
I,.hn®b 0 &"

Permuting indices 2 and 3 in the above matrix, viewed as a 4x4

block-matrix, we get

I,® B 0 0
I.®&b & 0 tp

°=\"% o Leb p
0 0 IL,d 6"
k k y
.
N 0 0 =* =
0 0 &"
where
y==( )0 ) &)
:C —¢ +*B"€”)

and B'¢’ =R, (r; B)(8'), B7¢"=R,,,(m; B)(6") that gives that

0
fl + ﬁ"f"

f"

*

* ¥ ¥ ¥

S O * ¥

0
0
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so that switching indices 2 and 3 we get

% % %
__ (0 0 *
—_—— O 5’ 5’ + B"€"
O O fl!

He last formula implies

Rin+n(m:B)(0) = (BO’ ﬁo") (i)’ ¢ +€€"€H)

€ 26 T

” ((ﬂ; B)(d") Ry (m; B)(0") Rt (T; B)(G"))
" 0 Ry (7; B) (0")

Comparing this with the definition of 9., 4 R (m; B)we find
that we have proved the following result.
Lemma.
(idEGDEm,n (1; B)) (c’;0")
= —R,n (1; B) (6")® Ry, (; B) (")
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In the statement of the lemma idg@® 0, ,, refers to applying 9
to an E-valued fully matricial analytic function. The ©; among

two matrices with entries in E amounts to

(5 oo 3, o) 3 casmiont

1<1,jsm 1<k,1<n 1,j,k,1
We can write the resolvent equation also in a more compact
Proposition:
(idz® 0 )R(m: B) = — R(m: B)®R(m: B)

6.2 Martix entries of resolvents. An extension of the duality transform of
[16], from the case of y € E to the case of © € G, (E), includes in
particular also the possibility of working with "unbounded operators Y"
represented by their graph and therefore the definition of the albebra
RA(Y,B)in [16], 9,1 which includes Y, does not appear. By ¢£(1m, B)
we shall denote the set of matrix coefficient of

{—R,.(; B)(0)}neN, gep, (m, B), By 4R (1w, B)we shall denoe the linear
span of yR(m, B).

Lemma: ¢R(m, B) is closed under multiplication in particular ¢R(m, B)
is a sub-algebra of E.

Proof. The lemma is a consequence of the computations in 6.1 indeed let
a,b be the (i, j) and respectively the (k, I) matrix coefficient of
R, (; B)(a') and —R,,(7; B)(¢") and let a be defined like in 6.1 with

t = ej then the computation of =R, (7r; B)(6) we did shows that its

(i, m + I)- entry is exactly the (f,I)- entry of

(—Rpn(; B)(a’))ejk — Ry, (m; B)(a")
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Which is ah,

6.3 he duality transform. Let E,; be the closure in E of ¢R(m, B) we will
define the duality transform associated with = and B on he topological
dual Ef of E; in general, he bialgebra structure is only " partially"
defined on EZ for analysis reasons. Which cannot be dealt in this
generality, we will therefore often look for formulations which avoid
such problems or we will introduce extra assumptions (as we did in
[16]). Some important instances when these assumptions are

satisfied will be shown in §12.
If peEf, we define y(@)e/d(p(m: B)) by U(p) = (U(P)n) nen
U(PIn(0) = (idy, D) (R (m; B)(0))

for oep,, (1r: B) Since @¢ is M, linear on M,, (B) we infer that U(¢p) is
fully matricial since R(m: B) is fully matricial. He continuity assumption

on ¢ is necessary to obtain the analyticity of U(¢)

we also remark that U(¢p) =0 implies ¢ = 0 that is U is injective.
U(p) = 0 implies m: B = 0 and E| is the closure of yR(m: B)

up to now ¢R(m: B) = 0is only an algebra so we have only a
coalgebra structure on the dual ( modulo technical problems ). He
behavior of ¢ with respect to this comultiplication is recorded in he

next proposition.
Proposition: if peEf , o'ep, (m: B), then we have
(iday, ®idan, ®) (Fom(m: BY (0 V5Tin (: B)(0))

= O (4(0)man)(0":0")
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Proof. The proposition is exactly what we obtain from Lemma 6.1 when

we apply idgy @idg, B¢ to the equality thee.

To justify out assertion that the above proposition shows the behavior of
U with respect to the comultiplication, note that the right hand side is the
(m,n) component of d U(¢g), while he left hand side corresponds to
(y®y) (¢ o u) with u denoting he multiplication on y¢R(m: B)(see

also the proof of Lemma 6.2 )

6.4 further properties of the duality transform arise when there is an
appropriate derivation-comultiplication, on ¢R(m: B). To avoid
questions such as the action of the derivation on elements of the
Grassmannian, we will resort to a somewhat tautological ( from the
point of view of the duality transform) characterization of he

derivation.
We will assure there is a derivation.
Or.p: YR (m: B) = yR(m: B)®yR(1: B)
Such that
(ids, 0r.) R (2 B)(0) = Ry, (: B) (@) Dan, R B)(0)
For all neN and gep,,(m: B)

For the universal unitary and hermitian Grassmannian elements

this will be proved in §12

Remark that in view of lemma 6.2 the linear map 0,.5 is
completely determined by he relation we assume. Thus he assumption

means that this unique linear map exist and that it is a derivation. Note

118



also that Lemma 6.2 similarly implies that d,.p, if it exist is co-

associative .

Proposition. If ¢, ¢,, @3 eEZ are such that

@1, = (@) = (90¢3)00,.5 (0) if ae yR(m: B)

Then we have

u(%,) = u(‘Pz,)u(%,)

Proof. The proposition is almost obvious in view of the way we defined
a7'L':B

Of course, as the reader probably already observed, the condition

characterizing 0. replaces in the Grassmannian context the condition

0B = 0,0Y = 11 we required in the affine case (see[16],9.2), which

0 1\ ~
corresponds to T = (1 y) /Al
6.5 he duality transform of traces. In this section we return to the context
of 6.3 , that is we will not use the derivation — comultiplication of
yR(m: B). We will record here that [16], proposition 9.5 on

transforms of traces in the affine case extends immediately to the

Grassmannian setting.

Proposition. An element peE¢ satisfies he trace-condition

@([E41, E1]) = 0 if and only if.

gm,n(u((p)m+n) (01:07) = gogm,n(u((p)m+n) (01:01)

for all o,€p,, (1r; B), 0,€p, (; B) and indices 1,j,k,I. the last equality is

then equivalent, by proposition 6.3 to
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gm,n(u((p)m+n) (01: 02) = gogm,n(u((p)m+n) (02: 01)

7. More on the fully matricial affine space

Roughly, a large part of this section is about the analogue of polynomials

in he context of fully matricial analytic function on the fully matricial

affine space. Besides providing a way to construct fully matricial analytic

function, this material will also underline the series expansions in §13.

7.1 The polynomial sub-bialgebra p(B%) of d(im (B)). throughout 7.1 it
will suffice to assume that B is a complex Banach space and 1€B is a
non-zero vector( used in the definition of d), there is no need for a

multiplication on B here.

The full matricial affine space over B that is the largest fully

matricial B-set will be denoted I(B) ,en-

By le.d(M(B)) we denote the unit element 1 = (I, 1) ey
(constant functions). If peB? (the topological dual of B) we define
Z((p) = (Z((p)n)neNed(gﬁ(B)) by

b1, b ®(b11) @ (br)
z(@)n : : = : : eM,,(c)
bnl o bnn (P(bnl) e (P(bnn)

Since z(¢) , is linear the definition of  immediately gives

9z(p) = (111

We shall denote by y(B?) the subalgebra of d(M(B)) generated by 1 and

{Z((p) |(peBd}, it is easy to see that y(B%) is isomorphic to the tensor —

algebra I(B?) over the vector space B%. Indeed if ¢, ¢, are linearly
independent in B¢ we can find by, .bn€eB so that (pl-(bj) = §;j if Pec <
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X4, ..., X, > 1s a polynomial in the noncommulting indeterminates

X4, -, Xy, so that P# 0, then there is NeN so that we can find N X N
matrices AxeM,(c), 1 < k < nso that p(4; A, )eM,(C). thus
z(¢4), ...., z(@y) are algebraically free. His suffices to guarantee that the
natural nuital homomorphism T(B%) — d(im (B)) defined by the linear

map B 3 ¢ - z(p)e d(M(B)) is injunctive

The fact that 9z(¢) = @ (1)1®1 implies that y(B%) is a subcoalgebra of
d(M(B)) thatis

0z(BY) 2 y(BH)®y(BY)
Also the structure of d on y(B%) is easy to identify. Let 11 =
{(pEBLl(p(l) = O}and choose some element 0eB% so that 0(1) = 1. Let

then z1* < y(11). then clearly y(B%) identifies with (y(11)) <
z(0) > and z(11) is in ker @ while 0z(0) = 1@1. This means that he
bialgebra y(B%) with he structure induced from d(im(B)) is

isomorphic to (y(11)) < X >, GX;g(ll)) noted in particular that.
Kerdn y(BY = y(1h)

Moreover, if B is a Banach space with a continuous conjugate-linear

involution (z(¢)) " = z(¢*) wherep*(b) = @(b").

Also, at the end of 8.2 we will point out in a remark an additional feature

of y(B%).

7.2 Decomposable and reducible points in 9t(B). Like in 7.1 we will

only require that B be a Banach space.
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In view of the similarity and direct sum requirements for "fully
matricial" objects, we are led to look at properties of points connected

with these requirements .

Definition: An element Set,,(B) is decomposable if there are
ﬁ’eilnp(B),ﬁ"eimg(B) and SeGL(n: C),so thatn = p,p > 0,q > 0 and
S™1 = B'@p" . an element BeM,,(B) is reducible if there are
B'eM,(B), B eM,(B), yeM, (B) and SeGL(n: C)so that.

B’ y)

Sﬁ5‘1=(0 e

and p > 0,q > 0. an element BeM,,(B) is approximately decomposable
(resp, reducible) if it is in the closure of the decomposable (resp,
reducible) elements. Elements which are not decomposable (reducible,
approximately decomposable, approximately educible) will be called
indecomosable (resp, irreducible, strongly indecompsable, strongly

irreducible).

7.3 to conclude this section of remarks about the fully matricial
affine space, we should point out that there is a fully matricial action
of the additive group B on M (B). for each heB there are fully
matricial maps T(b) = (T(b);)nen : M(B) where T(b),,(B) =L +
b®I,which give an action of B on 0t(B).

In case B is a Banach algebra, there is also a multiplication action given
by fully matricial maps (L(b);)neny R(D) = (R(b)p)nen so that L(b)B =
(b®1,)L and R(b)B(b®L,).

Note also that even if B is only a Banach space there is a multiplicative

action of C on M(B).
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8. More on the fully matricial B-Grassmannian and on d

In this section we present further properties of the fully matricial

B-Grassmannian G,(B) = (an (B)) . This includes the

neN

action by fully matricial automorphisms of GL(2; B) on G, (B)
and the existence of a coderivation A such that A-id plays the
role of a grading of the bialgebras d (). We also discuss the

properties of A in connection with the duality transform.

8.1 The GL(Z;B) action on Gr (B). we recall that in 3.2 we
defined gm if

by b
h=( . 12)EGL 2;B
by by,) CLEB)

Gives rise to elements h,eGL, (smn (B)) where h,, =

(Ln@bll Ln@blz
Ln@blz Ln@bzz

to h,m,, it is easy to check that h,,, , (7, ®m,) = (h,,m,,)D
(h,,m,) and that h,, (8, ,) = & (h,m,) if 6eGL(n; C). this
establishes that C(.)is an action of GL(2; B) by fully marticial

) we define C(h); G, (B) by mapping ,,G,

automorphisms of G,.(B).

It is easily seen that C (h) preserves transversality in each G, (B).
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Clearly, when B= C the GL(2; C) - action on Gr;(C) is the usual

action on the remann sphere by fractional linear transformation.

2.8 the education A Let f = (f;,)nen€d(2), where 2 = (02,)) nen

is a fully matricial open B-set of he Grassmannin. We define

Afz(Anfn)neNed(.Q). By

Af=di£2(e'foc(((1) eo,)nnn)> ‘f=0

Which, componentwise amounts:

) (1 (3 2),m)) | =0

&2

Since

Af = fd%(fo(? (6 o). n)) ‘f =0

It follows that A-id is it derivation of d(£2)

To prove that A is a coderivation amounts to proving that

00A = (A®id + id®A)od
This will be a consequence of the following lemma

Lemma. We have

(o (0 9)) =e@e(e(3 2)) xe(G
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b\ ~—
Proof. Let r,, = ((Cll d1> /Am, T, =T, = (az
1 4

Zz> /An and let
2

o)
T and T' be define

(B 1o e"))) (ne) )

P (3 (8, 7)( 2)=))

Since d,, ,, is an isomorphism, it will suffice to prove that T(rr)

=T'(e’s) for all §eM,, ,(C). indeed, we have.

d, 0 b, 0

1 0 0 a2" 0 b2 —
1 A "
fmn (O e)m+n ¢cgc 0 d; sb, [Ame 10
0 ¢ 0 d,
/ d, b, 0 \
0 az 0 b2 —
A
e'c; e'd, e'sh, [+ 10
0 ec, O d,



Which implies T(X) = T'(e's)

To conclude the proof of the fact that A is a conderivation it will
: . .. d :
suffice to remark that taking the derivative —at t=0 of the equality

in the preceding lemma gives
d(Af —f) =0f + ((A— id)®id®(A — id))of
Which immediately implies.
0Af=(A®id + id®A)If

Proposition. A-id is a derivation of s(2) and A is also a

coderivation , that is 904 = (A®id + id®A)od

8.3 he derivation D of yR(7r; B). in the next section we will show
that the coderivation A discussed in the previous section is natural
form the point of view of the duality transform. This will involve
describing what the natural coderivation 1 on yR (7; B) should be so
that for the duality described in [1.5], theorem 5.3, he dual
coderivation corresponds under the duality transform to A. since in
6.4 we assumed the existence of a derivation-comultiplication
Or.gon YR(m; B), we will handle L similarly based on an additional

assumption.

Remark. In the affine case of (B), we have Ar(B%) c r(Bd) and

A(z(@1) ... 2(9n)) = (n+ 1), (1) ... 2(¢y)

Like in 6.2 we let meGry(E) and we consider yR(m, B). the
assumption about L is roughly that on yR(m, B). there is a
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linear map D corresponding to the infinitesimal deformation of

T, Into ((1) eo’) T with t - 0. we will show that D must then
1

be a derivation of yR(m, B) with values in itself. [in
case 1w is he graph of an element yeE, the deformation is

y - ety witht - 0.

More precisely our assumption can be formulated as follows: we

assume there is a linear map D: yR(m, B) — E so that

. _ d_ (/1 0
(idM, ®D) Ry (, B)(0) = - R, ((0 e’)n n,B) ’t =0
For all gep,,(m; B), neN. there is a simple identity which we will

use to show that D takes values in yR(m, B).

Lemma. We have

€Dy, (((1) eo’)l T, B)) iff ((1) eo’)n) o€p,, (1, B) moreover

Ro(p o) mB)(@) = e RamB) (g e(_)l)n(a)>

Proof. Let

1 0\ ,5 _(a B\ 5
(5 O)/Ane= (y 5) /1. and let also

L,®a I[,®b\ -
(Ineac Inead)/’l"
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and a,—; Da,b’ =1,,®b, ¢c,d" = I,,®d. then

oep, (((1) eo,)ln,B)> means (eil’ 3) is invertible and this

)
: : : b' B o : :
is obviously equivalent to g e-lg being invertible, which
e

is that ((1) eo’) oep, (m; B)
1

1 -1 x % -1 * X
moreover (el’? 4 g) = (* 5) and (CC;, ja) = (* 5)
then& =e’¢.

He last part of the lemma follows from the two Grassmannian

resolvents being equal toféandf¢ respectively.
with the notations used in the proof of the lemma , to show that
D( yR(m, B)) c yR(m, B)

We must prove in view of the definition of D hat the entries of

% e 1p& (t)) |1_0 are in yR (1, B) or equivalently he entries of

% e‘lﬁf(t))|1_0 since B¢ (0) = B£(0) is a resolvent, its

entries are in yR(m, B), so we are left with showing

g (% & (t))| has entries in yR (1, B) we have
1-0

(oga B) =0 =0 S0 9

hence we infer that.
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= ¢(0)8(0)

1-0

d
Ef(t)

and we must show that £&(0)6&(0) has entries in yR(m, B). It is
easily seen that the (2,4) block entry of the 4x4 block matrix

b B 0 0
ifd 8 0 8
0 0 b B
0 0 d 6

Is precisely £(0)5&(0)on the other hand if S is the permutation

matrix.
I, 0 0 0
(o o 1, o
S=lo 1, 0 o
0 0 0 I,
We see that
b 0 B 0
fdeer [0 B0 B _x o=
SI=57 = d 0 & & (* Z)
0 d 0 ¢
g 0\, . _
Where 0 Z is an R, (m, B) (u)for some u = p,,, (1, B).

Hence he entries of (’g 2) Z are in YR(m, B). returning to I' 1

we see that the (2,4) block entry of I'"* coincides with the(3,4)
block entry of SI'~*S~* which is the (1,2) - block entry of Z
(the blocks are n x n). this concludes the proof that D maps
YR (m, B)into itself.
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To prove that D is a derivation we return to the proof of
lemma 6.2 where we showed yR (1, B) is closed under

multiplication. With the notation of Lemma 6.2 we have
Ry (0, B)(@)ims1 = R ((,B)(0"), R ((m, BY(@™),,

Where o', 0", (ij), (kj) were given. then the definition of D
applied to the above equality shows that D is a derivation.

Concluding we have proved.

Proposition: Under our assumption D is a derivation of

YR (m, B) into itself.

8.4 The coderivation L of yR (7, B). In this section we assume
the existence of d,; 5 with the properties outlined in 6.4 and we
also assume the existence of the linear map D like in 8.3 and
which implies that D is a derivation yR (mr, B). In addition, we
will assume that 0,5 is closed as an operator on YR(m, B)

endowed with the norm from E.
We define

L:D+id: yR(m, B) — yR(m,B)
Clearly L-id is a derivation of yR(m, B).

Lemma. The map L is a coderivation of yR(m, B),

(yR(m, B), 0,p) that is
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0,5 0L = (id®L + LDid)o, 0,5

Proof. since yR (1w, B) is the linear span of yR (1, B) it suffices
to check that the equality to be proved holds for the entries of
YR (1, B). In view of the definitions of , 3,5 and L this boils

down to showing that

0
(idan, @, 075) ( R, (m,B) (( e"l)n 0))
It is immediate that the right hand side equals.

%(En B (g e(_’l)n 7) @u, R (. B) eol)n0)>

= (1, ®.0:)F, B (1) o)

t=0

t=0

t=0

Thus the equality to be proved reduces to showing that.

%(idimn@'aﬂB)R"(ﬂ’ B) (((1) 1) 0)>

n

= (idy, ® aT[B)( Ry (m, B) (( e(_)l)n 0) t=0>.

Clearly, the last equality is a consequence of the assumption that

0,5 1s closed.

8.5 the coderivation L and A and the duality transform. In this

section the same assumptions as in 8.4 will hold throughout.
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Let E; be the closure of yR(1m, B) in E and let <p66jd so thatg

is in the domain of L%, that is ¢ o L defined on yR (m, B) is

bounded (extends to an element of E{).

Recall that the n-th component of the duality transform is

defined by
Y=(@)n(0) = (idg, ® ¢)(Rn (1, B)(0)).
We have

Y=L 9)n(0) = (idum,® ) (idm,® L)(Rn(, B)(0)).

d _
= (l'dgm,n@(/))a Rn(ﬂr B) (((1) eot)n (0)>

t=0

=2 (idy,, D) (Rn(”' B) (((1) eot)n (0)>>

-~ Z¥(p), (((1) o) (a)>)
t=0

= —((4 - id)y(@),)(0) = (id — A)y(@)n(0)

t=0

Thus we have proved the following proposition.
Proposition we have y(L%¢) = (id — A)y(¢p).

Note that the way the coderivation should be transformed
under duality given in [15]. Them. 5.3. is in agreement with

the above proposition.
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9. The Grassmannian involution:

Throughout this section B will be a unital Banach
algebra with involution. We will discuss the corresponding
involutions on Gr (B) and bialgebras ~(£2), and the
properties of the duality transform related to the

involutions.

9.1 the involution on Gr (B). On the affine fully matricial
space the involution amounts simply to the conjugate-linear
antiautomorpism T — T*on IMt,,(B), neN. he extension to an
antiholomorphic automorphism of he fully matricial B-

Grassmannian has some additional technical points.

We will first define he orthogonal 7t of neGr,,(B)and then

we shall define,n*( 01 (1)) mt
- n

*

Z

ifm = (? Z) /An we define mt = (t*

CD=C¢o

To check that rt is well defined we begin with a simple

x*) /An where
y

algebraic lemma.
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Lemma. Suppose that (? Z)_1=(JZC 3;) and (?,’ Z)

! ! x -
(x’ {,) then(Z, i],) is invertible and there is w invertible
A

so that wx = x',wy=y’

Proof. Since (;, 3]/) (? Z) (1 (1))

[s invertible, we inter (x, y’) is invertible.
z t
X Y\(a" b\ _(w 0
On the other hand (z’ t’) (c’ d’) = (* 1)
Is invertible, so that w is invertible and we have
X Y\_(w 0\(x y’)

(z' t') B (* 1) (Z' t!
Which givesx = wx~ 1,y = wy ™1,
Corollary. The map m — n' is well-define.

Proof. We have two things to check.

First, using the same notation as in the lemma, since
_(a b\ ,7. _(a" b\,
= (C d) /in = (C, d) /in

x*\ 5 z* Yy s
) /2 =( ) ) 7
y)/n ¢1 y1 /An

*

Z
We must show that ( £

this is indeed so, since w* is invertible and x*,w* =

x*’y*’ W* —_ y*.
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e : X Y\ _ (a bu
Secondly if u is invertible and (z’ t’) = (c du)

Then it is easily seen that x = x™,y = y"’ and hence clearly.
zZ™ x™\ = z¢ x"\ =
(G )= )

Remark also that the definition of t* can also be written.

el (R I ) e (A T R I

Proposition . we have 7** = mw the maps 7 = n* and 7 - 7+

are antiholomorphic automorphisms of Gr;,(B).

The antiholomorphicity needs only to be checked in charts.

{((? Z) ((1) jlr))/inlfemtn(B)}_
oe((e D0 D)2 570 B

which clearly is antiholomorphic as a function of €t,, (B)

that the definition of T* extends the definition of the involution

on the affine space is easily seen. Indeed , then m =
O 1 y 1 1 _d* - x O 1 —
(1 O)//ln,n _(0 1 )/Anandﬂ _(_1 d*)//m

we conclude this subsection remarking that in the formula for 7+

the matrix ((1) (1)) can be replaced by (_01 (1)), since this does

135



not affect the second column in the result. Hence the formula for

m* can be written also in the form
. 0 1\/a bY"™M\ /0 1\,
T (_ (—1 o) (c d) )(—1 o) )/’1"
note also that this gives (C(g)n)* = C(W,"~'W~)n"* where

0 1) and geGL(2.B)

W= (—1 0

9.2 the involution and he bialgebras d(f2). it is easy to see
that

(m@o)* =n*"@o*
and that (8.m)* = S*~1.n* where oeGr,,(B), 5eGL(n; C).
It follows that if 2 = (2,,),,y is a fully matricial set of the B-

Grassmannian hen the same holds for 2% = (£2;,) .y Where 02,

=0, = {n* 0} |meN,}. clearly 2 is open if 2* is open.

If fo: 2 = My, we define f7: 05 = My by (fu(@) =f (1),
where mef),, if f, is analytic then so it f, andif f =
(fn)nen€ d(2) then f* = (f; )peny d(2) and the map f = f*is a

conjugate linear antisomorphism. More generally there is a
conjugate linear antiisomorphism f = f"of d(.()l:.(Zz; ...;Qp)
and d(.()’{:.(); H .(2;;) where

%
fﬁkl....np (w;; T w;) = (fnl....np (w1; ---;wp))
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If 2 = Q" then d(2) is an algebra with involution. More
generally 2; = 5,1 <j <p.

The automorphism permuting the variables, that is
(Ul,zf)m,n (o,m) = Em,nofn,m (o,m)

With E,, ,: I, @M, —: M, DM, the tensorial permutation

isomorphism.
Proposition: if f € d({2), then
of* = 01,2(5_f)*

In particular if 2 = 27, this is the compatibility of the

involution and comultiplication of d (2).
Proof. If Le y(M,, ) and L*€ y (M, ,,) is defined by
L'(y) = (W) then ey ((tma (L)) )

In view of this it is easily seen that the proposition will

follow if we prove that.

a b 0 0
fanl | sT (C) Bl 2 R Vi
0 0 ¢ d
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AR S AT PRI
o))

Wherel', I’ ', S are permutation matrices, the first two having the
effect by conjugation of permuting second and third rows and
columns in 4x4 block matrices and S permuting first and second
rows and columns in a 2x2 block matrix ( the sizes of blocks
corresponding to m+m+n+n, n+n+m+m and n+m

respectively). The other notations used are tedt,, ,(C)and

(& D) -G D
(& Q) -G 5)

Remarks that the right hand side of the equality to be proved is

equal to.
/ a B 0 0 \
FfolslselY ¢ O UB|r1)/antm
mn 0 0 a B
0O 0 y &6

Hence by the definition of f;, ,, it will suffice to show that

e
\ S

0

B
)

o o O ™.

t'p F’_lj /Zn\:n

<X Q © o
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Writing the equality in the form 4//2n+ n = B//n + n the
problem amounts to showing that A™1B is a lower triangular 2x2 block
matrix with invertible diagonal blocks. Denoting by © and Z the 4x4

explicitly written matrices in A and B and by £ and W the matrices

(f) g) and (_01 (1)) . we have

A=wro=triw-1
B=yr'zr-1y-1
Hence
AT B=-wro*r-*w-ixr'zr-1x-1
=-WrQ*vsu-ir*wror-iw-?

Where U=I""1W ™1 XT" it is easily seen that

0 0 0o -1,
0 0 Ly 0
Ulo =1, 0 o
I, 0 0 0
And hence that
6 -y O 0
1| B @ 0 0
UHU t*ﬁ O 6/ _yl
0 0 —-p ad

to compute Z*UZ~! remark first that in view of the formula for

", we may assume
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=G %)

And its primed analogue. We get.

(a b)* 0 O § —y 0 0
c d 0 0 _B a 0 0
O*UEU? * P
. o, Nt 0 8y
0 0 (a b ) 0 0 B o
0 bt ¢ d
I 0 0 0
[ o I 00
a t*p 0 I 0
0 b"t'a 0 I
this in turn gives
0 0 0
o a*t’p I 0 0
~Wr(Q*UVEUDr-w= = -w= o o I o0
0 0 bta I
I 0 0 0
b"t'a I 0 0
- 0 0 I 0
0 0 a*tf I

Which is a matrix of the desired kind.

9.3 The involution and he coderivation A. in this subsection

we check the compatibility of A with the involution.

Proposition. if f ed(f2) then we have

Af* = (AfY
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(the same A denotes the coderivations in d(2) and in d(.()*))

Proof. if n=(? Z) /Anef,, then
) -1 -1
(o o)) =5 0,6 &), (o) =
*—1

5 D=0 o), ™

From which the proposition follows immediately using he

formula for a.

9.4. the involution and Grassmannian resolvents. In this
subsection we check the behavior of resolvents with respect

to the involution.

We will need an algebraic lemma which provides explicit

formulae for resolvents.

(@ 57 = Nana(“ 5= 3

p
&

which is also iff rb+sdis invertible. Moreover we then have

Then the matrix (;‘f ) is invertible if x f+ y§ is invertible,

« [\ (rb + sd)r (rb + sd)~ s
(y 5) | &B+y6)tx (xB +y8) "ty
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Proof. Since

(i )

G DG 5

We get the "iffx f+ y§ is invertible" part of the statement

And

-1

S\ L
R e
S (AT RS (G4

% %
=<(xﬁ +y6)™ (xB + y5)‘1>
Similarly since:
GG 5=0pt)
u v/’\d § zZf + td
We get he "iff rb+sd is invertible" part of the statement and
b B\' _ (rb+sd O\ '/r s
(d 6) B (ub+ud 1) (u v)
_(rb+sd 0\(r s
_( * *) (u v)

_ ((rb +sd)"'r @b+ Sd)_lS)_l

* *
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The framework for resolvent will be a unitasl Banach
algebra with involution E and abanach subalgebra with the

same involution Ieff C E

Proposition:

Let meGr,(E) and oeGr;, be such that oep,, (7; B)then
0" epp(n’; B)and (R, (; B)(0))" = Ry(n"; B) (0¥).

Proof. Remark that it suffices to prove the proposition when
B=E and n=1 indeed, replacing E by It., (E) we get the
reduction to the case m=1.

Letm = (? Z) /An, o = (5 g) /An and use the notation

for the inverses of the two matrices which we used in the

Lemma . then we have . R, (m; E) (o) = f(xB + y5) 'y and

on the other hand we have.

and
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Applying again the lemma, to these new matrices, we get
that 0" ep; (r*; E) is equivalent to the invertibility of
—d*s* — b*r* and R, (7*; E)(¢*) = —s*(d*s* — b*r*)"1b*

Since —d*s™ — b*r” is invertible iff rb+sd is invertible, the
equivalence of " ep; (*; E) with gep; (m; E)is precisely the

equivalence of he invertibility of rb+sd and of x § + yd.
To conclude the proof of he proposition we must show that
(BB +y8)ry) +s7(d"s™+b'r)7b" =0
Or equivalently, that
L(xB+v8) Yty +b(rb+sd) ls=0

This is a consequence of the last assertion of the lemma,
which gives that
(b ﬁ) _ ((rb +sd)"'r (rb+ Sd)_lS) (* 0)
d 6§/ \ob+sd)'x (b+sd)ly)\x =
9.5. the involution and he duality transform. Like in the
previous section IeB c E will be Banach algebras with
involution. Since we will consider the duality transforms

with respect to r, B and with respect to *, B will use the

notations y, (.) and respectively y,(.) to distinguish the two.
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Proposition:

We have (yR(n; B))*yR(ﬂ*; B) and (}’z(<ﬂ*))

He proof is a straightforward consequence of proposition 9.4
and of the definition of yR(7t*; B) and of the duality

transform and will therefore be omitted.

10. Dual Positively

10.1. The definition: the grassmannian extension of the
notion of dual positivity is quite straightforward. Here B will

be a unital Banach algebra with involution.

Definition: if Q=" an element fed () is dual-positive if

f = f"and A, ,¢(0,0%) is a positive map of M, in to M,, for
all oef,, and neN(V,,, ,f)(a’,0'") denotes the map
am.na_m.nf(alr 0”))-

Like in the affine case we have a few equivalent conditions.

Proposition. If 2 = 2 and fed(£2) the following are

equivalent:
i. fis dual positive.
ii. f = f"and forany o(j)ef, themap1l =j =
D, D1=ij=p (Vn(j),n(f)f)(a(l), a(j)*) is a positive linear
map of®; ;M (1) + --- + n(p) into itself.
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iii. f = f*and for any gef2,, the map
(Vn,nf)(a, o*): M, - M, is completely positive.
The proof from the affine case [16] prop. 8.2,
immediately carries over to this more general case and

will not be repeated.

10.2 he duality transforms of the positive functional . here
lep D E will be an inclusion of unital Banach algebras with
involution. By E; we shall denote the closure of y. R(m; B)
where m = %G, (E). A functional peE? is positive,
denoted ¢ =20, if ¢ = ¢* and @(y*y) = 0 for all yeE; (the

hermiticity follows actually from the second requirement)

Proposition. if 5eEZ then ¢ 20 iff-u(¢) is dual positive in
d(ﬁ(n, B)).

Proof. (a) ¢ = 0 > —u(¢g)dual positive. We shall use
proposition 6.3 which implies that

(idy, ®idy, @) (R(m; BY(0)asR(m; BY(067)) = ~0,¥(9)(0,07)
Since m = ©* we have

R(m; B)(0) = (R(w*; B) (7))
Hence, if y;;€E; are such that R (1; B) (0) = Y.ij€ijDy;j then

_5n,ny((p) (U; U*) = Z (p(Xinj*k)eyEBekl

1<ijkisn
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We must check that:

Unn (_5n.ny((p) (U; U*)) Z CpCyepy >0

D,y

In view of the definition of «, this is equivalent to
Z 0, (aja*)eil >0
1<i,j,k1sn
Or equivalently, for all 4; ... 1,,€C,
0, (ajaf)ii); =0
1<i,j,kl1sn
Putting
y= Z Ao we get o(yy™) 2 0
1<isn

(b) — y(¢) dual positive = ¢ > 0 we have

Y

((—Vn,ny(fp)(a» a*)) ejk> ® ((ﬁn(n; B)(0),) (ﬁn(ﬂ; B)(U));k>

*
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