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Chapter (2) 

Duality transform for the coalgebra of ߲ x:B 

Section 1:- 

1. Introduction: 

The main aim of this chapter is to construct a suitable 
framework for the dual GDQ structure in the case of a operator Y 
and a noncommutative algebra of scalars B. Approaching duality 
via a map of the dual E’ of the Banach algebra containing B and 
Y into matrices indexed by corepresentations, we need a certain 
GDQ structure on the matricidal functions. Since in case B = C  
the dual is a GDQ of analytic functions with respect to the 
difference quotient on the resolvent set of Y, dealing with 
general B requires a generalization of this. It turns  out that we 
need to consider collections of metrical objects at all levels, very 
much like in K-theory or in the theory of operator spaces. Thus, 
for instance, instead of the scalar resolvent set, we will have an 
object combining all matricial B-resolvent sets, tied together by 
natural relations involving conjugation by matrices I GL (n;C) 
and direct sums. Quite generally, on such a matricially 
generalized open set Ω, he corresponding matricially generalized 
scalar analytic functions form a noncommutative algebra A(Ω) 
and there is a generalization ߲  of the difference quotient 
derivation comultiplication which yields a topological GDQ ring 
structure. In the ܿ∗-context, if Ω = Ω* in a suitably defined 
sense, A(Ω) becomes a a *-algebra and there is also a notion of 
dual positivity. 

The duality map appears as a transformation from E’ to an 
A(Ω), where Ω is he matricially generalized resovent set and the 
transformation intertwines GDQ ring structures  and positivity on 
E’ with dual positivity on A(Ω)  . 
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Besides section 1 to 6. Section 2 contains preliminaries on 
GDQ rings . section 3 is about the new corepresentations we 
found  in section 4, we introduce multivariable GDQ ring and we 
give a reduction result to a one-variable GDQ ring in case݊ =
 ଶ, with n the number of “variables.” We also prove a result݌
about how ߲ݔ.  arises in general GDQ rings. Section 5 dealsܤ
with full B-resolventss and resolvent sets, which are the metrical 
B-valued generalizations of usual resolvents and resolvent sets. 
Section 6 takes up the matricial generalization of functions and 
sets which go with the generalized resolvents. Section 7 gives the 
construction of the topological GDQ ring structure on the 
algebras A(Ω)  of fully matricial functions. We have preferred to 
define the derivation –comultiplication as taking values in some 
“two-variable” A(Ω;Ω)instead of entering here the technical 
problems about tensor products and topologies on the  A(Ω)’s. 
section  8  contains a discussion of dual positivity in A(Ω). 
Section 9  introduces the duality U-transform and discusses its 
intertwining properties of GDQ structure and positivity. 

 

1. Preliminaries on GDQ rings: 

Definition 2.1. A generalized difference quotient ring (a GDQ 
ring) is an object (ߤ,ܣ, ߲) where A is an algebra over C and  

 (GDQ1) ߤ: ܣ ⊗ →,ܣ  .is the multiplication map ܣ

(GDQ2) ߲: ܣ →   is linear and coassoclative, that is ܣ⊗ܣ

(߲ ⊗ ݅݀஺	)°߲ = (݅݀஺⊗߲)°߲ 

 (GDQ3)߲ is a derivation, that is ߲°ߤ = 	 (݀݅஺⊗ߤ)°(߲ ⊗
݅݀஺) + ߤ) ⊗ ݅݀஺)°൫݅݀஺⊗߲൯. 
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In general, A is not required to have a unit if 1∈A  is a unit, then 
the GDQ ring will be called unital. 

Remark 2.2.  A GDQ ring can always be made uital by adjoining 
a unit  and putting ߲1 = 0 

Definition 2.3 A quadruple (ܣ, ,ߤ ߲,  is a graded GDQ ring if(ܮ
,ܣ) ,ߤ ߲) is a GDQ ring and there is a linear map L:A→ A (the 
grading ) so that. 

 (L1) ܮ − ݅݀஺ is a derivation of the algebra (ܣ,  .(ߤ

           (L2) L is a coderivation of the coalgebra(ܣ,  that is ,(ߤ
ܮ°߲ = 	 ܮ) ⊗ ݅݀஺ + ݅݀஺⊗ ݈)°߲. 

Definition 2.4. An involution of a GDQ ring (ܣ, ,ߤ ߲) is a 
conjugate linear involution ܣ ∋→ ∗ߙ ∈  of the vector space A ܣ
so that 

,ܣ) (11)  .is an algebra in involution(∗,ߤ

(∗ߙ)߲ (12) = ଵଶ൫(߲ఈ)ߪ ∗൯,where * on A⊗A is given by 
ݔ) ⊗ ∗(ݕ = ݔ)ଵଶߪ and∗ݕ⊗∗ݔ ⊗ (ݕ = ⊗ݕ  .ݔ

If L is a grading, compatibility with the involution means that  

(∗ߙ)ܮ(13) = ൫(ߙ)൯∗. 

 If V is a vector space, we will denoted by V* its dual 
endowed with the topology of pointwise convergence. By ⊗෢ we 
denote the projective tensor product. The duality theorem  can be 
restated in the following form. 

Theorem 2.5.if(ܣ, ,ߤ ߲)is a GDQ ring, then (ܣ∗, ߲∗,  satisfies (∗ߤ
the GDQ rig conditions with ⊗	replaced	by	⊗෢	if	L	is	a	grading	
and	 *	 is	 an	 involution	 for	 ,ܣ) ߲, 	,(ߤ then	 ܣ = ݅݀஺∗ +
(ߙ)∗ߝ	݀݊ܽ∗݈ = 	the	and	grading	the	respectively,	satisfy,	(∗ߙ)ߝ
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involution	 	 conditions	 for	
,∗ܣ) ߲∗, 	ℎݐ݅ݓ൫(∗ߤ ⊗ ݕܾ	݈݀݁ܿܽ݌݁ݎ ⊗෢൯	

	 By	2ߨ௣(ܣ)	we	denote	the	Pxp	matrices	over	A,	an	
individual	matrix	written	either	in	the	form	൫ߙ௜௝൯ଵஸ௜,௝ஸ௣or	in	

the	form	∑ ௜௝ߙ ⊗ଵஸ௜,௝ஸ௣ 	matrix	the	௜௝are݁	݀݊ܽ	ܣ	௜௝߳ߙ	were	௜௝ଵߝ
units.	A	corepresentation	of	(ܣ, ,ߤ ߲)	is	a	matrix	(ܣ)	so	that.		
	

∑ ∂஑౟ౡ⊗௜.௞ ݁௜.௞ = ∑ ∂஑౟ౡ⊗௜.௝.௞ ݁௜.௞																																																(2.1)	

This	can	also	be	written		

(߲ ⊗)݅݀ଶగ೛ߙ																																																						(2.2)	

The	main	result	about	corepresentation	(see)	[14]	is	the	
following	the	orem.	

Theorem	2.6	Let(ܣ, ,ߤ ߲)	be	a	unital	GDQ	ring	and	assume	
that		ݔ	 ∈ ݔ߲	that	so	is	ܣ		 = 1⊗ 1.	if	invertible,	the	following	
are	equivalent.	

								(I)	ߙis	a	corepresentation,	

							(II)ߙ = ቀ൫݊௜௝ − ௜௝൯ߜݔ
ିଵቁwhere	݊௜௝ ∈ ܰ = ker 	.ߜ

					Since	this	is	a	functional	analysis	study,	the	algebraic	facts	
will	 guide	our	 functional	 analysis	 constructions,	even	 if	 hey	
are	 not	directly	 applicable.	 This	 is	 a	 familiar	 situation	 from	
the	 theory	 of	 kac	 algebras	 and	 	quantum∗ܥ groups,	 where	
finding	 the	 appropriate	 topological	 tensor	 products	 and		
topological	duals	are	subtle	analysis	questions.	

	 In	particular,	the	vague	idea	that	the	dual	object	should	
be	 constructed	 by	 map	 ping	 	∗ܣ߳߮ into	 the	 direct	 sum	 of	
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ቀ߮൫ߙ௜௝൯ቁ 1 ≤ ݅, ݆ ≤ 	௣ߨ2߳	݌ where	 ∝	= ൫∝௜௝൯݅ ≤ ݆ ≤ 	݌ runs	
over	 a	 sufficiently	 large	 set	 of	 corepresentation	 of	 ,ܣ) ,ߤ ߲)	
poses	many	analytical	problems.	

2. More corepresentation: 
Throughout this section (ܣ, ,ߤ ߲)  will denote a unital GDQ 
ring and ܣ߳ݔ will be an element so that ߲ݔ = 1⊗ 1. we will 
exhibit corepresentations which enlarge the set provided by 
theorem 2.6. 
As in [14], it will be convenient to use d:2ߨ௣(ܣ ⊗ ,(ܣ ݀ =
߲ ⊗ ݅݀ଶగ೛which is a derivation with respect to the bimodule 
structure given by the homomorphisms ߮ଵ, ߮ଶଶగ೛(஺)→ଶగು(஺⊗஺) 

So that ߮ଵ൫ߙ௜௝൯1 ≤ ݅. ݆ ≤ ௜௝ߙ൫=	݌ ⊗1൯1 ≤ ݅. ݆ ≤ ,݌ ߮ଶ൫ߙ௜.௝൯1 ≤
݅. ݆ ≤ ݌ = ൫1⊗ ௜௝൯1ߙ ≤ ݅, ݆ ≤ ݔ we will also denote.݌ ⊗ 1௣by 
ݔ ∈ ⊗௣(A) and write 1 for  the unit 1ߨ2 1௣ of 2ߨ௣ (A) 

 

Proposition 3.1 if N ∈ ,ଵߚ and	߲ݎ݁݇ ଷߚ,ଶߚ ∈  ௣(ܰ)are such thatߨ2
,ଶߚ ݔଵ,൫ߚ− ⊗ 1௣൯ߚଷ, is invertible, then. 

 ∝= ݔଵ൫ߚଶିߚଷ൫ߚ ⊗ 1௣൯ߚଷ൯
ିଵ
 ଵ    (3.1)ߚ

Is  acorepresentation 

Proof. Let ݕ = ଶߚ − ݔଵ൫ߚ ⊗ 1௣൯ߚଶ = ଵߚ −   ଷ.weߚݔଵߚ
have݀(ିݕଵ)݀(ݕ)߮ଶ(ିݕଵ)      
 (3.2) 

Hence: 

 ݀(∝) = (ଵߚଵିݕଷߚ)݀ =  (ଵߚ)2߮(ଵିݕ)݀(ଷߚ)ଵߚ

 (ଵߚ)ଶ߮(ଵିݕ)൯߮ଶ(ଷߚ)ଶ߮(ଵߚ)൫−߮ଵ(ଵିݕ)ଵ߮(ଷߚ)ଵߚ− = 

 = ߮ଵ(ߙ)߮ଶ(ߙ)       (3.3) 
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Which is the desired result. 

 We also have he following general procedure for producing 
more corepresentations. 

Lomma 3.2 Letߝ	߳	ै௣(ܣ)be a corepresentation and let ߚ ∈
	ै௣	(݇݁ݎ	߲). ݂݅	1 − =∝ is invertible, then	ߚߝ (1 −  is a ߝଵି(ߚߝ
corepresentation. 

If 1 − ݕ is invertible, then ߝߚ = 1)ߝ	 −   ଵ is a corepresentationି(ߝߚ

Proof because of symmetry , we will  only prove he first assertion  

We have  

݀((1 − (ߝଵି(ߚߝ
= ߮ଵ((1 − ଵି(ߚߝ

− 1)݀൫(1 − ൯߮ଶ((1(ߚߝ − (ߝ)ଵ)߮ଶି(ߚߝ
+ ߮ଵ((1 −  (ߝ)ଶ߮(ߝ)ଵ)߮ଵି(ߚߝ

=߮ଵ((1 − ଶ((1߮(ߚ)ଶ߮(ߝ)ଶ߮(ߝ)ଵ)߮ଵି(ߚߝ −  (ߝ)ଵ)߮ଶି(ߚߝ

+߮ଵ((1 −  (3.4)      (ߝ)ଶ߮(ߝ)ଵ)߮ଵି(ߚߝ

=߮ଵ((1 − ߝ)ଶ߮(ߝଵି(ߚߝ + 1))(ߚߝ −  (ߝଵି(ߚߝ

= ߮ଵ(ߙ)߮ଶ(ߝ + ((1 − ଵି(ߚߝ −  (ߝ(1

=߮ଵ(∝)߮ଶ(ߙ) 

 

3. Reduction of multivariable GDQ rings: 
Studying ߲௫ఉ dose not mean a limitation to one variable. In 
this section, we briefly explain how multivariable situations 
can easily be reduced to the ߲௫ఉ setting. 

4.1 

The typical multivariable situation deals with A=B ൫ܺଵ,….ܺ௡൯, the 
ring of noncommutative polynomials in the noncommutative 
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variables ൫ܺଵ,….ܺ௡൯ and with noncommutative scalars B. This 
means that monomials are of the form  1ݔଵ = ௝1ݔ =		  ଵ. This nݔ
partial difference quotients ଵ߲: ܣ → 		ܣ ⊗  are the derivations ܣ
such that ߲௜ݔ௝ = ⊗ఓ1ߜ ߚଵߚ	݀݊ܽ	1 = 0 thus each (ܣ, ,ߤ ߲) is a 
GDQ ring and he compatibility relations hold 
൫ܣ, ,ߤ ∑ ఓߣ ଵ߲…∑ ଵଵଵߚ௜௡ߣ ൯ is again a multivariable GDQ. 

4.2  

In case ݊ = ,ܣଶ, multivariable GDO ring ൫݌ ,ߤ ଵ߲… . , ߲௉మ൯can be 
replaced by a one variable ൫ܣ, ,ߤ̅ ߲̇ ൯ more precisely , we take 
ܣ = ैଵ(ܣ) = ै௣⊗ܣ where ै௣ is short for ै௣(ঃ). We may 
reindex 
ଵ߲…., ௣߲ ൬

݂݅	݊݋݅ݐܽ݉ݎ݋݂ݏ݊ܽݎݐ	ݎ݈ܽ݁݊݅	ܽ	ݕܾ	݀݁݀݊݁ܿ݁ݎ݌	ݕ݈ܾ݅ݏݏ݋݌
	݊݋݅ݐݑ݈݋ݒ݊݅	݁݉݋ݏ	݁ݒݎ݁ݏ݁ݎ݌	݋ݐ	ݐ݊ܽݓ	݁ݓ	 ൰ܽ݊݀	݈݁ܿܽ݌݁ݎ	ݐℎ݁݉b

y ߲௜.௝1 ≤ ݅, ݆ ≤ Further let  .݌



pki

kie ,
ै௣⊗ै௣		 	

	 	 	 	 	 (4.2)	

Note	that	

⊤⊗ ⎪௉∆ூ,௃= ∆ூ,௃ ቀ⎪௉ ⊗⊤ቁ	 	 	 	 	 (4.3) 
if ⊤ ∈ ै௣We then define   

߲: →,ܣ̅ ̅ܣ ⊗ 	(4.4)        ܣ̅

By  

߲(⊤⊗ (ߙ =෎ ቆቀ⊤⊗⎪௉ቁ ∆μቇ
1≤i,j≤p

⊗ ఓ߲ߙ ∈ ൫ै௣൯
⊗మ మ⊗ܣ⊗ ≈ 	మ(4.5)⊗ܣ̅

Where	the	isomorphism	takes	(⊤ଵ ⊗ ⊤ଶ)⊗ 1ߙ) ⊗ ଵ⊤)	݋ݐ	(2ߙ ⊗
⊤ଶ)⊗ (⊤ଶ ⊗ 	have	also	we	that	note	ଶ)ߙ
        


ij

pji
pji

,1
, 1     (4.6) 
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That ߲ is a derivation is seen by the computation ൫߲(⊤ଵ ⊗
(ߙ⊗ଵ⊤ଶ⊤)߲=൯(ଶߙ⊗ଶ⊤)(ଵߙ =

∑ ቀ൫⊤ଵ⊤ଶ⊗ ⃓
௣൯∆ఓቁ⊗௜,௝ ߲௜,௝ߙଵߙଶ    (4.7)=

∑ ቀ(⊤ଵ ⊗ ⊤ଶ)∆௜,௝൫⃓ ௣ ⊗ ⊤ଶ൯ቁ௜,௝ ⊗ ቀ(1ߙ ⊗ ⃓)൫߲݅,݆2ߙ൯ + ൫߲݅,݆2ߙ൯(⃓ ⊗ ቁ(2ߙ =

ቀ(⊤ଵ ⊗ (݇ߙ ⊗ ൫ ⃓݌ ⊗ ൯⃓ቁ ߲(⊤1 ⊗ ߙ
2
) + ൫߲(⊤ଵ ⊗ ൯(2ߙ ቀ൫⃓ ݌ ⊗ ⃓൯ ⊗ (⊤ଵ ⊗  ቁ(2ߙ

Before checking coassociativity remark that  
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߲(݁௥௦) = ∑ ൫݁௥௝ ⊗ ௝߲௦൯௜,௝ ⊗൫߲௜௝ߙ൯                                       (4.8) 

We have  

൫(߲ ⊗ ݅݀)°߲൯( ௥߲௦⊗ߙ) =෍(߲⊗ ݅݀) ቀ൫߲௥௜ ⊗ ௝߲௦൯ ⊗ ߲௜௝ߙቁ
௜,௝

 

    

																																															= 	෍෍(߲௥௞⊗ ߲௜௦)
௜,௝௞,௝

⊗ ൬ቀ൫߲௞௝⊗ ݅݀൯°߲௜௝ቁߙ൰ 

While on the other hand, 

൫(݅݀ ⊗ ߲)°߲൯( ௥߲௦⊗ߙ)

=෍(݅݀ ⊗ ߲) ቀ(݅݀ ⊗ ߲)൫(݁௥௞⊗ ݁௜௦)൯⊗ ߲௞௜ߙቁ
௞,௜

 

    

෍෍(݁௥௞⊗ ݁௟௜ ⊗݁௜௦)
௞,௜௜,௝

⊗൬ቀ൫݅݀ ⊗ ߲௞௝൯°߲௞௜ቁߙ൰ 

and the coassociativity follows compatibility of ௜߲௝and ߲௞௝ . 

4.3 

If here are elements ∈ ⊗௦௝1ߜ௥௜ߜ so that ܣ 1, then it is easily 
seen that 

  

෍ ݁௜௝⊗ం೔ೕ∈஺෨
ଵஸ௜.௝ஸ௣

(4.11) 

Will have the property ߲ం൫⃓௣⊗1൯⊗ ൫⃓௣⊗1൯ also if 

= ∑	ݖ ݁௜௝⊗௭೔ೕ,ଵஸ	௜௝	ஸ	௣        (4.12) 
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Then ߲ݖ = 0	is equivalent to ௥߲௦ݖ௜௝ = 0 for all 1 ≤ ,ݎ ,ݏ ݅, ݆ ≤  ݌
that 

Ker ߲ = ै௣⊗൫∩ଵஸ௜,௝ஸ௣ ker ߲௜௝൯																																														(4.13)	

 

4.4 

Returning to the multivariable GDQ ring A =B 〈ܺଵ, … , ܺ௉మ〉 and 

the partial free difference quotients ߲ଵ,…,డ೛మwith respect to 

ଵܺ, … , ܺ௉మ , he preceding construction combined with a linear 

transformation, gives the following. We consider ܣሚ = ै௉ ⊗

,ଵܺ〉ܤ … , ܺ௉మ〉 which is isomorphic to D 〈ܺଵ〉, where D = 

ै௉  The replacement for the multivariable GDQ rig is then .ܤ⊗

D 〈ܺଵ〉 with comultiplication derivation ߲௫:  .ܦ

Note that in case B = ঃ or B = ै௉, this reduction has the 

pleasant feature that D, which is ै௉ or ै௉௤. Is finite 

dimensional. 

 

Proposition: 4.1. Let (ܣ, ,ߤ ߲) be a GDQ ring with unit and 
assume that there is ܺ, ߲ܺ such that ܣ,∋ = 1⊗ 1. further let 
N=ker ߲. 

Then he canonical homomorphism ߰:ܰ〈ܺ〉 is endowed with the 
comultipliation ߲௫: ܰ. 

Proof. A derivation being completely determined by the way it 
acts on the generators of an algebra, the only assertion we really 
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need to prove is the injectivity of ψ. Let ߰௞: ܰ⊗(௞ାଵ)→ A be the 
linear maps so that. 

߰௞(݊଴⊗…⊗݊௞) = ௡ଵܺ…݊௞ݔ°݊     (4.14) 

We must prove that ker߰௞ = 0 and the ranges of the ߰௞, ݇ ≥ 0 
are linearly independent iterating ߲, we define ߲(௞) =
(߲ ⊗ ݅݀௞ିଵ)°߲(௞ିଵ), ߲(ଵ) = ߲. Then 
߲(௞)߰௞൫ே⊗(ೖశభ)൯⊂ே⊗(಼షభ)ܰ⊗(௞ାଵ)⃓߲(௄)°߰௄ୀ݅݀ே⊗(௄ିଵ), and 

߲(௄)°߰ଵ = 0	݂݅	1 < ݇. The assertion follows from these facts. 

 

4. The full B-resolvent 

Let E b a Banach algebra with unit, let ∈ ܤ ⊂  be a closed ܧ

subspace containing the unit, and let Y ∈ E be an element. 

The concepts we examine I this section will also serve as 

motivating examples in section 6 and it is good to note that the 

case when B is a banach subalgebra is of particular interest. 

Definition 5.1 the set: 

:ܻ)ߩ (ܤ = ൛{ܾ ∈ ै௡(ܤ)}⃓ ܻ ⊗ ⃓௡ −  ൟ	݈ܾ݁݅ݐݎ݁ݒ݊݅	ܾ

Will be called the nth B-resolvent of Y. The operator valued 
function ܴ௡(ܻ: .)(ܤ ): 

:ܻ)௡ߩ (ܤ → ै௡(∈)defined by ܴ௡(ܻ:ܤ)(ܾ) = (ܻ ⊗ ⃓௡ − ܾ)ିଵ 
will be called the nth B-resolvent of Y. The collection of 
functions ൫ܴ௡(ܻ;  .൯௡ஹଵwill be called the full B-resolvent of Y(ܤ

Some basic about these concepts are summarized in the next  
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proposition. 

Proposition 5.2:  

I. The set ߩ௡(ܻ: ⊗(ܤ :ܻ)௡ߩ (ܤ ∩ ൫ै௠(ܤ) ⊗ै௠(ܤ)൯ 
II. ߩ௡(ܻ: (ܤ ⊗ :ܻ)௡ߩ (ܤ = :ܻ)௠ା௡൫ߩ (ܤ ∩ै௠(ܤ) ⊗ै௡(ܤ)൯ 

III. (5⊗)ߩ௡(ܻ: ⊗5)(ܤ 1)ିଵ= ߩ௡(ܻ: ܵ	݂݅	(ܤ ∈ ;݊)ܮܩ ঃ) 

ifܾᇱ(ݒ݅) ∈ ,(ܤ:ܻ)௠ߩ ܾ"	 ∈ :ܻ)௡ߩ ߚ and ,(ܤ ∈ ै௠,௡(ܤ) is an    m 

x n matrix with entries in B then. 

 

ቆ
ܾᇱ		ߚ
ቇ"ܾ			ߪ ∈ ௠ା௡ߩ

(ܻ:  (5.2)(ܤ

;ܻ)௡ܴ(ݒ)  is a complex analytic function(ܤ

∋ ’if b (݅ݒ) :ܻ)௡ߩ ∋ ”and b (ܤ ;ܻ)௡݌ :ܻ)௠ା௡ܴ(ܤ ⊗′ܾ)(ܤ

ܾ′) 	⊗ ܴ௡(ܻ;  .(′′ܾ)(ܤ

∋if b(݅݅ݒ) ै௡(ܤ)and S ∈ ;݊)ܮܩ ঃ), then  

ܴ௡(ܻ:ܤ)(ܵ ⊗ 1)ܾ(ܵ ⊗ 1)ܴ௡(ܻ; ⊗ܵ)(ܤ 1)ିଵ(5.3) 

 

Proof: most assertions are rather obvious and will be left to the 
reader we will only prove (iv). In view of (ii), b⊗.b’ ∈  ,௠ା௡(B)݌
and in view of (i), 

 

5. Fully matricia functions and sets 
Let G and H Banach spaces over ঃ if S ∈ ;n)	ܮܩ ঃ)	ܽ݊݀	⊤ ∈
ै௡, we denote by AdS the automorphism of ै௡ so 
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that(ܵ݀ܣ)(⊤) = ܵܶܵିଵ. The corresponding automophism of 
ै௡⊗ܪ will be denoted by AdS⊗⃓ℵ or simply AdS ⊗1 
and its action is (ܵ݀ܣ⊗	)(⊤⊗ ℎ) = ܵܶܵିଵ⊗ℎ. 

 

Definition 6.1 a fully matricial G-set is a sequence (Ω௡) is open 
or closed, respectively  

Proposition 6.2: if (Ω௡)௡ஹ௜ is a fully matricial open set and if g’ 
∈ Ω௡, and ߛ ∈ ै௠,௡(ܩ), ଽ"൯			௬ఙ			൫ଽᇱ	ℎ݁݊ݐ ∈ Ω௠ା௡ 

The proof is along the same lines as the proof of (iv) in 
proposition 5.2 in case G-ঃ using the Jordan form of a matrix, it 
is possible to describe the fully matricial ঃ	ݏݐ݁ݏ 

 

Proposition 6.3 (1)A fully matricialঃ-set (Ω௡)௡ஹଵis described n a 
unique way by giving for each ߛ ∈ ঃ an additive subsemigroup 
(ߣ)ܮ ⊂ ܰ.	then ⊤∈ Ω௡	if	and	only	if	for	each	eigenvaleߣ ∈
	he	I	blocks	Jordan	corresponding	the	of	length	the,(⊤)ߪ
Jordan	form	of	⊤are	in	(ߣ)ܮ.	

(ii) (Ω௡)௡ஹଵis a closed (ݏ݁ݎ. ,  fully matricial ঃ-set if and (݊݁݌݋
only if Ωଵis closed 
⊤)}݀݊ܽ	(݊݁݌݋	ݕ݈݁ݒܿ݁݌ݏ݁ݎ) ∈ ै௡	⃓ߪ(⊤) ⊂)Ωଵ}in particular, if 
the fully matricial ঃ-set  is closed or open, the (ߣ)ܮᇱݏ can only be 
 .(ܰ	ݎ݋	∅)

The proof of (1) is an exercise of combining the Jordan form 
with the similarity and direct sum properties of fully matricialses, 
which we leave to the reader we will only explain he different 
reasons in (ii), whenΩ௡ is closed o open, why the (ߣ)ܮᇱݏ can 
only be N or ∅, in both cases, using ( FMS3), the discussion 
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breaks down to showing that if ⊤ ∈ Ω௡ is an upper triangular 
matrix, then its (1,1),-entryߣଵ will be in Ω௡. 

If he fully matricial set is closed, let S(ߣ) be the diagonal matrix 
with entries 1, ,ߣ  then,ߣ

  
limఒିஶ ܵܶ(ߣ)ݏ ଵି(ߣ) = ܶᇱ,      (6.1) 

Where ⊤ is the direct sum of the 1 x 1 matrix ߣ௝ and an (݊ −
݊)ݔ(1 − 1) matrix Since Ω௡ is closed,⊤’	∈ Ω௡,	and	by	∈ Ωଵ	

	 If	Ω௡is	open,	we	can	find	⊤′ ∈ Ω௡	so	that	൫
ఒ,				∗
ఙ			ௌ൯,	where	

ܵ ∈ ै௡ିଵ	is	so	that	ߣ∄(ܵ)ߪଵ.thenusing	(3ܵܯܨ)and	fully	
material	G-sets,	then	൫∩ଵ∈ଵ Ωଵ

(ଵ)൯௡ஹଵis	a	fully	matricial	G-set.	

	 In	particular,	the	family	of	open	fully	matricial	G-set	is	

stable	under	such	finite	componentwise	intersections.	

Similarly	,	the	family	of	closed	fully	matricial	G-set	is	stable	

under	arbitrary	componentwise	intersection.	

	 It	seems	natural	to	consider	the	topology	

൫ݓ݁݅ݒ	ݎ݋݂	݁ܿ݊ܽݐݏ݊݅	ݏܽ	ݏݐ݁ݏݒݑݏ	݂݋	∐௡ஹଵै௡(ܩ)൯generaed	by	

the	open	fully	matricial	G-sets.	

Deϐinition	6.5	A	fully	maricial	H-valued	function	on	a	fully	

matricial	G-set	(Ω௡)is	a	sequence	(ܴ௡)௡ஹଵso	that		

	 Ω௡	௡:ܴ(1ܨܯܨ) → ै௡(ܪ)	Is	a	function,	

if݃ᇱ(1ܨܯܨ) ∈ Ω௡	ܽ݊݀	݃" ∈ Ω௡	then	ܴ௠ା௡(݃′⊗ ݃") =
																							ܴ௡(݃′)⊗ ܴ௡(݃").	
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	 ݏif(1ܨܯܨ) ∈ ;݊)ܮܩ ঃ)ܽ݊݀	݃ ∈ Ω௡,	then	ܴ௡൫(ܵ݀ܣ ⊗
⃓ீ)(݃)൯ = ܵ݀ܣ) ⊗ Іு)൫ܴ௡(݃)൯	

	 As	fully	matricial	function	is	continuous	if	each	
component.	A		fullymatricial	function	is	analytic	if	the	fully	
matricial	G-set	on	which	it	is	defined	is	open	and	the	
components	ܴ௡	are	analytic.	

Remarks	6.6	A	fully	matricial	function	amounts	to	a	sequence	
of	functions	whose	graphs	form	a	fully	matricialGx	H-set.	

Lemma	6.7	Let	(ܴ௡)௡ஹଵbe	a	continuous	fully	matricial	H-
valued	function	o	the	fully	matricial	G-set	(Ω௡)௡ஹଵ.	Assume	
that	9’	∈ Ω௠ଵ݃" ∈ Ω௡, ߛ	݀݊ܽ ∈ ै௠,௡(ܩ).	then	for	some	
ℎ ∈ ै௠.௡(ܪ)ଵ	

ܴ௠ା௡ ൭ቆ
݃ᇱ			ݕߣ
"݃			ߪ

ቇ൱ = ቆ
ܴ௠(݃′)							ߣℎ
			О									ܴ௡(݃")

ቇ (6.2)	

For	all	ߣ ∈ ঃ	

Proof.	Let	ܴ௠ା௡ ൬ቀ௚
ᇲ			௒

ఙ			௚"ቁ൰ = ቀ ௛ᇲ௛భ.మ
௛మ.భ			௛ᇲ

ቁ	and	let	S(∈) = ⊗௠⃓ߝ

⃓௡ ∈ ݉)ܮܩ + ݊; ঃ).	then	if	ߣ ≠ О.	

ܴ௠ା௡ ൭ቆ
݃ᇱ			ݕߣߝ
"݃			ߪ ቇ൱ = ܴ௠ା௡ ൭(ߣߝ)ܵ݀ܣ⊗ ⃓ீ ቆ

݃ᇱ			ݕ
	ቇ൱"݃			ߪ

	 	 	 	 (ߣߝ)ܵ݀ܣ	= ⊗ ⃓ீ ቆ
௛ᇲ௛భమ

௛మభ			௛"
ቇ (6.3)	

																																							=ቀିߣଵߝ − 1ℎଶଵ
ℎᇱ												ߣߝℎଵଶ

ℎ"
ቁ	

Since݁	ܴ௠ା௡e is continuous and  ݈݅݉ఌ→О ቀ ߣߝ							′݃
			О						݃"		ቁ ቀ

݃′							О	
			О						݃"		ቁ ∈

Ω௠ା௡ we inter  



66 
 

lim
ఌ→О

ቀିߣଵߝ − 1ℎଶଵ
ℎᇱ												ߣߝℎଵଶ

ℎ"
ቁ =ቆ

ܴ݉(݃′)							О
			О									ܴ݊(݃")

ቇ (6.4) 

And hence = ℎଶଵО, ℎ′ = ܴ݊(݃′),				 and h” =				ܴ௡(݃") 

Remark 6.8. The reader has probably recognized by now that the 

full B. resolvent set and that full B-resolvent are examples of a 

fully matricial B-set and of an analytic B-valued fully matricial 

function defined o an open fully matricial B-set respectively.  

 

  



67 
 

Definition 6.9A full matricial G-set (Ω௡)௡ஹଵ will be called finite 
if it also satisfies. 

ቆ
ߣ							′݃
			О						݃"		

ቇ ∈ (Ω݉)݊≥1 ⇒ ݃ᇱ ∈ 	Ω݉݃ᇱ ∈ 	Ω݉(6.5) 

Remarks 6.10, full resolvent sets in a finite von Neumann 
provide examples of finite fully matricial sets. On the other hand, 
taking E=B =ℬ൫݅ଶ(ܰ)൯, ܻ = О	ܽ݊݀	݉ = ݊ = ݅,	the full B-
resolvent of Y is not a finite fully matricial B-set since ൫ ௌ							௄	

			О						ௌ"		൯, 
Where is the unilateral and K a rank-one operator making the matrix 
the bilateral shift, is in ݌ଵ + 1(О;ܤ)without S;S” being in ݌ଵ1(О;ܤ). 

 

5.1 Returning to the context of proposition 6.4  we associate 
with an open fully matricial G-set Ω=(Ω௡)௡ஹଵ the set Ωሖ  = 
∐௡ஹଵΩ௡ ⊂ ∐௡ஹଵै௡(ܩ). it is then also natural to 
associate with Ωthe analytic or continuous fully 
matricial H-valued functions on Ω and the sheaves on 
∐௡ஹଵै௡(ܩ) which they generate. 

5.2 Abbreviations: 
From now on, we will also use the abbreviations FMGS  
for full matricial G-set and FMF for full matricial G-
function. Also FMS will abbreviate fully matricial set 
and FMAF will abbreviate fully matricial analytic 
function. 
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Section (2):-  

2. The GDQ ring of scalar fully matricial analytic function. 

2.1 let (Ω௡)௡ஹଵbe an open FMG.S.to avoid amending our 
assumptions on G to introduce more structure, we will assume 
that G is an operator system, that is, it is isomorphic to a space of 
operators on Hillbert space which is selfedjointand unital, is 
correspondingly endowed with involution and unit, and is matrix, 
normed. (the reader could simplify and assume that G is a 
unitalܥ∗-algebra). We should also clarify from the beginning that 
the term GOQ ring in the title of this section has been used rather 
loosely: the tensor product required for hecomultiplication would 
be a topological one, and we will actually circumvent this 
question interpreting  the tensor product as “some. 

 

Two-variable functions “our aim here is to clarify the function 
theory aspect of the comultiplication and to return to the precise 
topological GDQ ring structure later. 

2.2 

Let A Ω denote the ঃ-valued FMAF on Ω if ݎ = ݏ	݀݊ܽ	௡ஹଵ(௡ݎ) =

ݎ A Ω, then	݁ݎܽ	௡ஹଵ(௡ݏ) + 1 = ݏݎ	݀݊ܽ	௡ஹଵ(௡ݏ௡ݎ) =

  which is thus naturally a non-commutative	A Ω	݊݅	݁ݎ௡ஹଵܽ(௡ݏ௡ݎ)

ring. Moreover 1 = (1௡)௡ஹଵ.  1௡ denotes the constant	݁ݎℎ݁ݓ

function on Ω௡with value the identity ݊ݔߙ matrix is the unit in 

A	Ω. 

     Let Ω∗ = (Ω௠௡ )௡ஹଵwhere Ω௠௡ = (⊤∗⃓⊤ ∈ Ω௡)݂݅	ݎ ∈ A	Ω, we 
define ݎ∗ = ௡ஹଵ(∗௡ݎ) ∈A(Ω)by ݎ௡∗(݃) = ൫ݎ௡(9∗)൯

∗ thus ݎ →  is ∗ݎ
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a conjugae linear antisomorphism of A	Ω and A(Ω∗) in case 
Ω = Ω∗. This makes A	Ω	a unital algebra with involution. 

7.3 Let k = (݇௡)௡ஹଵbe a sequence of subsets ݇௠ 	 ⊂ Ω௠ 
satisfying FMS1 and FMS2. we will say that  K is properly 
included in Ω if 

 

݌ݑݏ
௡∈ே

݌ݑݏ
௡∈ே

 

and if there is ߝ > О such that ݇௡ + ൯ଵ(ܩ)൫ै௡ߝ 	⊂ 	Ω௡ for all 

݊ ∈ ܰ. (ℎ݁݁ݎ, ∥. 		⃦௡)is the norm and ൫ै௡(ܩ)൯௜ the unit hall 
inै௡(ܩ) clearly, this definition uses the fact that G is matrix 
normed if ݂݅	ݎ ∈  .We define .(Ω)ܣ

∥ .ݎ 		⃦௞		 ݌ݑݏ
௡∈ே

݌ݑݏ
௞௡∈௞೙

∥ .௡ݎ (݇௡)		⃦௞		 

Where ∥ .ݎ 		⃦௡		is the norm on ै௡(ܥ).	 unless ∥ .ݎ 		⃦௞	ழஶ	 for all 
properly included k, it may be natural to add this consider 
the corresponding subalgebra ܣ௣௥(Ω)of A(Ω). 

2.4  

The comultiplication derivation will be defined plecewise. That 
is for fixed matrix sizes. We will use algebras of matrix-valued 
analytic functions ݊ଵ,…….,௡మ൫Ω೙భ,…..Ω೙భ,൯, where ݊ = ݊ଵ +⋯+
݊௣ଵconsisting of analytic maps ݂݅ → Ω௡ x …xΩ௡ →ै௡,⊗ …⊗
ै௡ 

Which are GL൫݊௣൯ −  :ݐ݊ܽ݅ݎܽݒ݅ݑݍ݁

݂ ቀܵ݀ܣ,⊗ ݈ீ൫݃(ଵ)൯ቁ ,… , ቀܵ݀ܣ௣,⊗ ݈ீ൫݃(௣)൯ቁ 

            = ቀܵ݀ܣ,⊗…⊗ ൫ܵ݀ܣ௣൯ቁ݂൫݃(ଵ)… .݃(௣)൯ 



70 
 

Where S,∈ ,(ଵ݊)ܮܩ ݃(ଵ) ∈ Ω௡ 

      A result similar to Lemma 6.7 holds for function in 
 .௠ା௡(Ω௠ା௡)ܣ

Lemma 7.1 Let ௠݂ା௡ ∈  ,௠ା௡(Ω೘శ೙), thenܣ

(i) If ݃′ ∈ Ω௡ and 9"′ ∈ Ω௡ there are ܽ′ ∈ ै௡ and ߙ" ∈ ै௡ so 
that  

௠݂ା௡(9′⊗ 9") = "ߙ ⊗  (2.3)                                              ;"ߙ

Where ௝ܵ ∈ ൫ܮܩ ௝݊൯9(ଵ) ∈ Ω௡ 

A result similar to Lemma 6.7 holds for function in 
 ௠ା௡(Ω௠ା௡)ܣ

Lemma.2.1 ݐ݁ܮ	 ௠݂ା௡	 ∈  ௠ା௡(Ω௠ା௡), thenܣ

(i) ݂݅9′ ∈ Ω௡and 9” ∈ Ω௡, there are ߙ′ ∈ ै௡ so that  
௠݂ା௡(9′⊗ 9") = ᇱߙ  (2.4)                             ;"ߙ⊗

(ii) ݂݅9ᇱ, 9", ,′ߙ ∋ are as in(i) and Y"ߙ ै௠ା௡(G). there is 
ℎ ∈ ै௠ା௡so that  

௠݂ା௡ ቌቆ
ଽᇲ							ఒఊ

О							ଽ"
ቇቍ = ቆ

ఈᇲ								ఒ௛

О						ଽ"
ቇ∀λ∈																																	(2.5)	

Proof.(i)	if ௠݂ା௡(9′⊗ 9")= ቀ௛
ᇲ								ఒଵଶ
௛ଶଵ						௛" ቁ, then in view of the 

equivariance applied to S= ݈ߝ௠ ⊗ ݈௡, we get ℎଵଶ = ℎଵଶ, ℎଶଵ =
ଵℎଶଵ so that  ℎଶଵ 0, ℎଶଵିߝ = 0 

௠݂ା௡ ቌቆ
ଽᇲ							ఊ

О							ଽ"
ቇቍ = ቆ

௛ᇲ௛భమ

௛మభ					௛"
ቇ  (2.6) 

Conjugation  with݈ߝ௠ 	⊗ ݈௡ yields 
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௠݂ା௡ ቌቆ
ଽᇲ							ఌఊ

О							ଽ"
ቇቍ = ቆ

௛ᇲ௛భమ

ఌషభ௛మభ					௛"
ቇ                            (2.7)               

 

 

And since  

lim
ε → 0 =ቌ

ℎᇱߝℎଵଶ

"ℎ					ଵℎଶଵିߝ
ቍቌ

ℎ′							0

О							ߙ"
ቍ																											(2.8) 

 

 

we infer that  ℎᇱ = ,ᇱߙ ℎ" = and ℎଶଵ	,"ߙ = 0 hence  

௠݂ା௡ ቌቆ
ଽᇲ							ఌఊ

О							ଽ"
ቇቍ = ቆ

ఈᇲ							ఌ௛భమ

଴								ଽ"
ቇ                           [2.9] 

2.5 

There is a canonical identification ∝  ௡ with the linearै	݂݋
operators ൫ℒै௠,௡൯on ൫ℒै௠,௡൯if ߙ ∈ ै௡ܾ ∈ ै௡,and 
ܿ ∈ ै௠,௡, 

 

൫ߙ)ߙ ⊗ ܾ)൯(ܿ) = ܾܽܿ ∈ ै௠,௡(2.10) 

 If m and n need to be specified, we will write ߙ௠,௡, 

2.6 

We define  

߲௠,௡: ௠ା௡(Ω௠ା௡)ܣ → :௠ା௡(Ω௠ܣ	 Ω௡)                           (2.11) 
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As follows.Let ݂ ∈ ,௠ା௡(Ω௠ା௡)ܣ ℎ ∈ ै௠,௡, 1 ∈ ,ܩ 9′ ∈ Ω௡, 
and let ߛ௠,௡:	ै௠,௡ be the map which puts ै௠,௡ into the right 
m x n  corner of ै௠,௡ that is , ߛ௠,௡൫ߝ௝௞൯ = ௝݁,௠,௞ and ߛ௠,௡ is 
linear. By Lemma 7.1 

 

ௗ
ௗఌ
݂൫9′ ⊗ 9" + ߝ ௠ܻ,௡(ℎ) ⊗ ݈൯⃓ఌୀ଴ = ௠ܻ,௡(ℎ)           (2.12) 

for some ℎ′ ∈ ै௠,௡. Hence, for each (9ᇱ, 9") ∈ Ω௠ ⊗

Ω௡, ௠,௡ै	݌ܽ݉	ܽ	ݐ݁݃	݁ݓ ∋ ℎ → ℎ′ ∈ ै௠,௡applying ିߙଵ to this 

map gives an element in ै௠ ⊗ै௠which is our definition of 

(߲௠ା௡݂)(9ᇱ, 9") ∈ ै௠ ⊗ै௠. This can also be written as a 

formula. Since the differential of f at 9′ ⊗ 9" is linear map, we 

have  

(߲௠ା௡݂)(9ᇱ, 9")

= ෍ ൭
݀
݀ܿ
݂൫9′⊗ 9" + ߝ ௝݁.௞ା௠ ⊗1൯൱

ଵஸ	௜௝	ஸ	௠
ଵஸ௞ஸ௡	 ௜,௠ାଵ

௜݁௝
(௠) 

Where (. )௜,௠ାଵ denotes the ݅, ݉ + 1 entry of the (m+n)x(m+n) 
matrix, 

 It is clear that ߲௠.௡݂ defined in this way is an analytic function 
Ω௡ݔΩ௡ →ै௠ ⊗ै௡ 

 

2.7 

To check that ߲௠,௡݂ is a GL(݉)	ݔ	ܮܩ(݊) equivariant map, remark 
first that if ܵᇱ ∈ "ܵ	݀݊ܽ	(݉)ܮܩ ∈ ,(݊)ܮܩ  ℎ݁݊ݐ
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݀
ߝ݀ ݂

′ܵ݀ܣ) ⊗ ݈ீ ⊗ ݈)9" ⊗ ⊗"ܵ݀ܣ) ݈ீ ⊗ ݈)݃" +  ௠,௡(ܵᇱℎܵ"ିଵ)⃓ఌୀОߛ߳

= ′ܵ)݀ܣ ⊗ ܵ") ൬
݀
݀ ݂൫9′ ⊗ 9" + ௠,௡(௛)൯ߛߝ ⊗ 1൰⃓ఌୀО 

=  ௠,௡(ℎ′)ܵିଵߛ′ܵ

Thus, we must check that if ⊤߳ℒ൫ै௠,௡൯	is	given	by	⊤෩(ܵᇱℎܵ"ିଵ) =	

ܵ′൫⊤(ℎ)൯ܵ"ିଵthenିߙଵ(⊤ሖ ) = ൫(ܵ݀ܣ′)⊗  ଵ(⊤). this is theିߙ൯("ܵ݀ܣ)
same as he following equivariance for ߙ: if ⊤ =  and (ℒ)ߙ
⊤ሖ ⊗′ܵ݀ܣ)൫ߙ ℒ൯, then ⊤ሖ("ܵ݀ܣ (ܵᇱℎܵ"ିଵ) = ܵᇱ⊤(ℎ)ܵ"ିଵ 

It suffices to see this forℒ = ܽ⊗ ܿ, then ⊤(ℎ) = ܽℎܿ and⊤(ℎ) =
ℎ(ܵ"ܿܵ"ିଵ)  so that ⊤ሖ(ଵି′ܵߙ′ܵ) (ܵℎܵ"ିଵ) = ܵ′ܽℎܿܵ"ିଵ =
ܵ′⊤(ℎ)ܵ"ିଵ, that is the equivariance we wanted to check. 

Hence ߲௠,௡ ௠݂,௡߳ܣ௠,௡(Ω݉:Ω݊) 

The derivation property will be obtained from the following lemma. 

Lemma 7.2 if ݂, ݂ ∈ ,௠,௡൫Ω݉,݊൯ܣ 9′ ∈ Ω݊9"	 ∈ Ω݊ሖ ܽᇱ, ܾᇱ ∈
ै௠, b,ߙ ∈ ै௡, (9′⊗ ݃") = ܽᇱ⊗ܽᇱ, and ሚ݂(9ᇱ,⊗ 9") = ܾ′ ⊗ ܾ", 
then. 

ቀ߲௠,௡൫݂ ሚ݂൯ቁ (9ᇱ, 9")

= (ܽ′ ⊗ ⃓௡)൫߲௠,௡ ሚ݂൯(9ᇱ, 9")
+ ൫߲௠,௡݂൯(9ᇱ, 9")(⃓௠ ⊗ܾ")(2.15) 

Proof, I view of Lemma 7.1 we have  

݂൫9′ ⊗ 9" + ⊗௠,௡(ℎ)ߛߣ 1൯ = ݂(9′ ⊗ 9") + ߣ
݀
ߝ݀ ݂൫9′ ⊗ 9" +  ௠,௡(௛)⊗ଵ൯⃓ఌୀ଴ߛߝ

And the same holds with f replaced by ሚ݂ multiplying, we get  

൫݂ ሚ݂൯(9′ ⊗ 9" + ⊗௠௡(ℎ)ߛߣ 1) = ݂(݃′⊗ 9")෨݂(݃′ ⊗ ݃") 

′݃)݂ߣ+                             ⊗ 9") ௗ
ௗఌ

ሚ݂൫9′⊗ 9" + ⊗௠,௡(ℎ)ߛߝ 1൯⃓⃓ఌୀ଴ 
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ߣ + ௗ
ௗఌ
݂൫9ᇱ⊗ 9" + ݊,݉ߛߝ (ℎ)⊗ 1൯⃓⃓0=ߝ ෨݂(݃′ ⊗ 9") 

                              + О(ߣଶ)                                                                   (2.17) 

 

This gives 

݀
ߝ݀ ൫݂

ሚ݂൯(9′⊗ 9" + ⊗௠௡(ℎ)ߛܿ  0=ߝ⃓⃓(1

= (ܽ′ ⊗ ܽ" +)
݀
ߝ݀

෤݂൫݃′ ⊗ 9" + ⊗௠,௡(ℎ)ߛߝ 1൯⃓⃓ఌୀ଴ 

                + ௗ
ௗఌ
݂൫9′⊗ 9" + ⊗௠,௡(ℎ)ߛߝ 1൯⃓⃓ఌୀ଴(ܾ′⊗ ܾ", ).     (2.18) 

Taking result follows from  

(ℎ)(ℒ)ߙᇱߙ = ′ߙ)൫ߙ ⊗ ⃓௡)ℒ൯(ℎ). 

ℎ"ܾ(ℒ)ߙ = ൫ℒ(⃓௠ߙ ⊗ܾ")൯(ℎ) 

If ℒ߳ै௠⊗ै௠. 

Corollary 2.3 ݂݅	ݎ = ,(Ω)ܣ௡ஹଵ߳(௡ݎ) ݏ = ,(Ω)ܣ௡ஹଵ߳(௡ݏ) 9′߳Ω௠ 
and 9” ߳Ω௡ 

Then. 

൫߲௠,௡(ݎ௦)௠ା௡൯(9ᇱ, 9") = ⊗௠(9′)ݎ) ⃓௡)൫߲௠,௡ܵ௠ା௡൯(9ᇱ, 9") 

                                             + ൫߲௠,௡⊤௠ା௡൯(9ᇱ, 9")൫⃓௠ ⊗
ܵ௡(9")൯   (2.21) 

 This is immediate from Lemma 7.2 when we take into 
account that ⊤௠ା௡(9′⊗ 9") = ⊤௠(9′)	ܽ݊݀	ݏ௠ା௡(9′⊗ 9") =
௠(9′)ݏ 	⊗ ܵ௡(9"). 

 

2.8 
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To combine the maps ߲௠,௡ into a derivation for A(Ω), we will 
need to define “several variables FMAFS,” 

 Let Ω(ଵ), ݆ = 1,… .ܩܯܨ	ܾ݁	݌ ܵ 

 We define the scalar p-variables FMAPS on Ω(ଵ) 
x…xΩ(ଵ)to be families of analytic functions⊗…⊗ै௡ 

Are GL(݊ଵ)ݔ … . (ଵ݊)ܮܩݔ −  	ݐℎܽݐ	݋ݏ	݀݊ܽ	ݐ݊ܽ݅ݎܽݒ݅ݑݍ݁

௡݂ଵ….௡ଵିଵ,௡ଵା௡ଵି௡ଵାଵ……௡ଵ൫9ଵ…….9௝ᇱ ⊗9௝", … . 9௣൯ 

																	= ௡݂ଵ….௡ଵିଵ,௡ଵା௡ଵି⋯…௡ଵ൫9ଵ…….9௝ᇱ , … . 9௣൯                          
(2.22) 

																		⊗ ௡݂ଵ….௡ଵି௡ଵି௡ଵାଵ……௡ଵ൫9ଵ…….9௝", … . 9௣൯ 

The scalar p-variables FMAFS on 
Ω(ଵ)	ݔ …;൫Ω(ଵ)ܣ	ݕܾ	݀݁ݐ݋݊݁݀	ܾ݁	݈݈݅ݓΩ(௣)ݔ… . : Ω(௣)൯݈ܿ݁ܽݕ݈ݎ, ,Ω(௣)ܣ … ;Ω(௣)

 is an algebra with unit. 

݂݅	݂ ∈ ,Ω(ଵ)ܣ …Ω(௣)and ሖ݂ ∈ ,Ω(ଵ)ܣ … ; Ω(ସ),	 then we define 
݂⊗ ݂ ∈ ,Ω(ଵ)ܣ … ; Ω(௣): Ω(ଵ);… ;Ω(௣); Ω(ଵ); … .ሖ Ω(ସ)	ܾݕሖ  

൫݂ ⊗ ሖ݂൯௡;…..௡௣,..௡,….௡௢൫9ଵ, … , 9௣, 9௜ , … . , 9ସ൯   (2.23) 

݂௡,….,௡೛൫ଽభ,…ଽ೛൯⊗௙ሖ೔,…….೙ೌ൫ଽభ,…..ଽ೏൯
 (2.24) 

Lomma7.4 if ݎ ∈ then ൫߲௠,௡⊤௠ା௡൯௠ஹଵ ,(Ω)ܣ ∈   (Ω:Ω)ܣ

Proof: Analytical and equivariance have already been checked 
and we are left with 
൫߲௠,௡⊤௠ା௡൯(9′⊗ 9", 9) =
൫߲௠,௡⊤௠ଶ௡൯(9ᇱ, 9)⊗ ൫߲௠ଶ,௡⊤௠ଶା௡൯(9ᇱ, 9), where ݃′ ∈
Ωैଶ݃" ∈ Ωैଶ, ݃ ∈ Ωैଶ݉ = ݉ଶ +݉ଶand 
൫߲௠,௡ା௠ଶ⊤௠ା௡൯(݃. 9′ ⊗ 9")= ൫߲௠,௡ା௠ଵ⊤௠ା௡ଶ൯(9⊗ 9′) ⊗
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൫߲௠,௡ଶା௠ଶ⊤௠ା௡ଶ൯(9′9") where now ݃ ∈ Ω, ݃′ ∈ Ω௠ଵ,݃"݃ ∈
Ω௡ଶ, ܽ݊݀	݊ = ݊ଵା݊ଶ he direct sums are in the sense of  

 (ै௠ ⊗ै௡) ⊗ (ै௠ଶ⊗ै௡)=(ै௠ଵ⊗ै௡ଶ) ⊗ै௡ ⊂
ै௡ଵା௠ଶ ⊗ै௡, 

and in the second case  

(ै௠ ⊗ै௡ଵ)⊗ (ै௠⊗ै௡ଶ)=ै௠⊗(ै௠ଵ,ै௡ଶ) ⊂ ै௠ ⊗
ै௡ା௡, 

We will only sketch how one checks the first of the two 
equalities for ߲௠,௡the second one being similar. 

First, remark that ିߙଵ behaves well with respect to direct sums, 
that is , if ⊤ଵ ∈ £൫ै௠,௡൯, ⊤ଶ ∈ £൫ै௠,௡൯ and⊤ଵ,⊗
⊤ଶ൫∈ £ै௠ଵ,௡

�⊗ै௠ଶ,௡
�൯ =∈ £൫ै௠ଵା௠ଶ,௡൯ then 

௠ଵା௠ଶ,௡ߙ
ିଵ ൫⊤ଵ,⊗⊤ଶ൯ = ௠ଵା௠ଶ,௡ߙ

ିଵ ൫⊤ଵ,൯ߙ௠ଵା௠ଶ,௡ିଵ ൫⊤ଶ,൯ thus , it 
will suffice to check that.൫ߙ௠ଵା௠ଶ,௡߲ఈ೘శ೘,೙ఛ೘శ೙൯(݃′⊗ ݃") ⊗
൫ߙ௠ଵା௠ଶ,௡߲ఈ೘శ೘,೙ఛ೘శ೙൯(݃′⊗ ݃") 

=൫ߙ௠ଶା௠ଶ,௡߲ఈ೘మశ೘,೙ఛ೘మశ೙మ൯(݃′݃′)    (2.26) 

In view of Lemma7.1 and of the direct sum property of an 
FMAF, what we must prove amounts to the following Let 
ℎ′ଵ∈ै೘శ೙ and ℎଶ,ℎ′ଶ ∈ ै௠ଶା௡ be such that. 

Where ߙ, (’9) =′ߙ" = 	⊤݉ଶ(9"), and ߙ =	⊤௡(9), then we will 
have  

߬௠ା௡ ቆቀ
9′ ℎଵ⊗⃓
0 9

ቁቇ =൬ߙ′ ℎ௝
0 ߙ

൰(2.27) 

߬௠ା௡ ቆቀ
9" ℎଶ⊗⃓
0 9 ቁቇ =ቀߙ" ℎ′ଶ

0 ߙ
ቁ 
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⊤௠ଵା௠ଶା௡ቌ൭
9′ 0 ℎଵ ⊗⃓
0 9" ℎଶ ⊗⃓
0 0 9

൱ቍ=൭
′ߙ 0 ℎ௝
0 "ߙ ℎଶ
0 0 ߙ

൱(2.28) 

Since  

⊤௠ଵା௠ଶା௡ ቌ൭
9′ 0 ℎଵ⊗⃓
0 9" ℎଶ⊗⃓
0 0 9

൱ቍ= 

⎝

⎛
⊤௠ଵା௠ଶ ቆቀ

9ᇱ 0
0 9"ቁቇ ∗

0	
௡(9)ݎ ⎠

⎞2.29) 

By Lemma.2.1 and ⊤௠ଵା௠ଶ(9′ ⊗ 9") = ′ߙ ⊗  all we need to ,"ߙ
check is that the (1,3) and (2,3) blook entries of the result are ℎ௝ 
and ℎ௝. This can be done b  several application  of direct sum and 
GL equivariance properties. 

⊤௠ଵା௠ଶା௡

⎝

⎜
⎜
⎜
⎜
⎜
⎛

⎝

⎜
⎜
⎜
⎜
⎛

9′ ℎଵ⊗⃓ 0

0 9 0

0 0 9"

0 0 0

0

0

ℎଶ⊗⃓

9
⎠

⎟
⎟
⎟
⎟
⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎞

 =

⎝

⎜
⎜
⎜
⎛

ߙ ℎ௝ᇱ 0 0

0 ߙ 0 0

0 0 "ߙ ℎ௝ᇱ

0 0 0 ⎠ߙ

⎟
⎟
⎟
⎞

 

⊤௠ଵା௠ଶା௡

⎝

⎜
⎜
⎜
⎜
⎜
⎛

⎝

⎜
⎜
⎜
⎜
⎛

9′ 0 ℎଵ⊗⃓

0 9" 0

0 0 9

0 0 0

0

ℎଶ⊗⃓

0

9
⎠

⎟
⎟
⎟
⎟
⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎞

 =

⎝

⎜
⎜
⎜
⎛

′ߙ 0 ℎ௝ᇱ 0

0 "ߙ 0 ℎ௝ᇱ

0 0 0 0

0 0 0 ⎠ߙ

⎟
⎟
⎟
⎞

 

⊤௠ଵା௠ଶା௡

⎝

⎜
⎜
⎜
⎜
⎜
⎛

⎝

⎜
⎜
⎜
⎜
⎛

9′ 0 ℎଵ ⊗⃓

0 9" ℎଶ⊗⃓

0 0 9

0 0 0

0

ℎଶ ⊗⃓

0

9
⎠

⎟
⎟
⎟
⎟
⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎞

 =

⎝

⎜
⎜
⎜
⎛

′ߙ 0 ℎ௝ᇱ 0

0 "ߙ ℎ௝ᇱ ℎ௝ᇱ

0 0 ߙ 0

0 0 0 ⎠ߙ

⎟
⎟
⎟
⎞
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On the one hand, and on the other hand, he last equality can be 
continued with  

⎝

⎜
⎜
⎜
⎜
⎛
⊤௠ଵା௠ଶା௡

⎝

⎜⎜
⎛

⎝

⎜
⎛
9ᇱ 0 ℎଵ⊗⃓

0 9" ℎଵ⊗⃓

0 0 9 ⎠

⎟
⎞

⎠

⎟⎟
⎞
				 ∗

																									0																																															0 ⎠

⎟
⎟
⎟
⎟
⎞

 

 

ݎ	݂݅ ∈ we will denote by ௥߲ the element ൫߲௠,௡⊤௠ା௡൯௠ஹଵ	Ωଵ,ܣ ∈
 before going further, we also record he following fact(Ω:Ω)ܣ
which appeared in the preceding roofs. 

Lemma 7.5 Let 9ᇱ ∈ Ω௠ , 9" ∈ Ω௡,	 and ℎଵℎᇱ ∈ ै௠,௡ be such 
that  

⊤௠ା௡ ቌ൭
9′ ℎ⊗⃓

0 9"
൱ቍ = ൭

௠(9′)ݎ ℎ′

0 ⊤௡(9")
൱(2.32) 

Then ℎᇱ = ቀߙ௠.௡൫߲௠,௡⊤௠ା௡൯(9ᇱ, 9")ቁ (ℎ) 

 In particular, he map taking h is linear and takes sht to 
sh’t݂݅	ݏ ∈ ݐ and(݉)ܮܩ ∈  .(݊)ܮܩ

 

2.10 

We pass to the coassociativityproperty  of߲ since we have not 
identified ܣ(Ω;Ω)with a tensor product ܣ(Ω)⊗  we will ,(Ω)ܣ
define maps (݅݀ ⊗ ;Ω)ܣ	(߲ Ω) → ,Ω;Ω)ܣ Ω)and respectively 
(߲ ⊗ (Ω;Ω)ܣ	(݀݅ →  he most convenient seems to ,(Ω;Ω,Ω)ܣ
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use the formula for matrix  entries given at the end of section 2.6  thus, 
for ݇ ∈ ;;௠,௡ା௣൫Ω௠ܣ , Ω൯, 9 ∈ Ω௠;, 9′ ∈ Ω௡  and 9”∈ Ω௣;, we define 

 

൫݅݀ ⊗ ߲௠.௡.௣݇൯(9,9ᇱ, 9,9") 

෍ ൬
݀
ߝ݀
݇(9; 9ᇱ ⊗ 9" + ௡ା௘)⃓ఌୀ଴൰݀݁ߝ

(௔,௕)(௖,௡ା௙)
݁௔௕
(௠) ⊗ ݁௘௙

(ୃ)

ଵஸ	௔,௕	ஸ	௠
ଵஸ௖,ௗஸ௡	
ଵஸ௘ஸ௙ஸ௣

 

          (2.33) 

Where the index (ܽ, ܾ)(ܿ, ݊ + ݂) sands for the coefficient ݁௔௕
(௠) ⊗݁௖,௡ା௙

(௡ା௣). 

In particular , if ∈ ௠(⊗௠) and ሖ݂ܣ ∈ ݀݅) ௡ା௣൫Ω௡ା௣൯, thenܣ ⊗
߲)௠,௡௣൫݂ ⊗ ሖ݂൯ = ݂ ⊗ ൫߲௡,௣ ሖ݂൯ 

 We leave it to the reader to check that 
(݅݀ ⊗ ߲)௠,௡,௣൫Ω௠,Ω௡,, Ω௣,൯ part of the verification can e done 
using 9	 ∈ Ω௠ , 9" ∈ Ω௠, functional ߮ ∈ (ै)′௠,	 the functions 
(߮⊗ ݅݀)݇(9; . ) ∈  ൫Ω௡ା௣൯, he fact thatܣ

ቀ൫߮⊗ ݅݀ै೙⊗݅݀ै೙൯(݅݀ ⊗ ߲)௠,௡.௣݇ቁ (9; 9ᇱ; 9") =

߲௡,௣ ൬ቀ߮⊗ ݅݀ै೙శ೛ቁ ݇(݃; )൰ (9′9"),	and he results we already 

have for ߲௡,௣ using this type of argument, one then checks that 
k=൫݇௡ଵ,௡ଶ൯௡ଵஹଵ,௡ଶஹଵ ∈  then ,(Ω,Ω)ܣ

൫(݅݀ ⊗ ߲)௡ଵ,௡ଶ,௡ଷ݇௡ଵ,௡ଶ,௡ଷ൯௡ଵஹଵ,௡ଶஹଵ,௡ଷஹஹଵ ∈  and a(Ω,Ω,Ω)ܣ

similar result is obtained for ߲ ⊗ ݅݀ 

 Checking that (߲ ⊗ ݅݀)°߲ = (߲ ⊗ ݅݀)°߲, after we have 
put aside all these questions, boils down to the following result.. 

Lemma 7.6 ݂݅	݇ ∈ ௠ା௡௣൫Ω௠ା௡ା௣ܣ , ൯ then (݅݀ ⊗ ߲)௠,௡,௣߲௠,௡,௣݇ =
(߲ ⊗ ݅݀)௠,௡,௣߲௠ା௡ା௣݇. 
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Proof.Let ∈ Ω௠,݃" ∈ Ω௠,9′ ∈ Ω௡, and 9”∈ Ω௣. We have  

 ൫(݅݀ ⊗ ߲)௠,௡,௣°߲௠,௡ା௣݇൯(݃, ݃ᇱ, ݃")(௔,௕)(௖,ௗ)(௘,௙) 

=
݀
݀ఌଶ

൬
݀
݀ఌଵ

ቀ݇൫9⊗ ݃′⊗݃" + ଵ݁௠ାௗ,௠ା௡ା௘ߝ

+ ଶ݁௕,௠ା௖)ቁ௔,௠ା௡ା௙ߝ
⃓ఌమసబ൰ 

 

The equality of the two quantities is thus quite obvious  

Lemma 7.7 ݐ݁ܮ	Ωଵ ⊂ ঃ be an open set, G=	ঃ, and Ωଶ =Ω௡ =
(ܽ ∈ ै௡⃓ߪ(ܽ) ⊂ Ωଵ). Further let ݂ = ( ௡݂)௡ஹଵ ∈  where ,(Ω)ܣ
Ω = (Ω௡)௡ஹଵ so that ௡݂(ߙ) = ଵ݂(ܽ), where the right hand side 
has he meaning of  functional calculus. Then if ݖଵ,ݖଶ ∈
(Ωଵ, ଵݖ ≠  (ଶݖ

 

൫ ଵ߲,ଵ ଶ݂൯൫ݖଵ,ݖଶ൯ =
௙భ(೥భ)ష೑భ(೥మ)

௭భି௭మ
                                              (2.36) 

Proof Let ൫ ଵ߲,ଵ ଶ݂൯൫ݖଵ,ଵݖଶ൯= ߣ ∈ ैଵ
⊗ଶঃ. Then  

൭
ଵ݂(ݖଵ) ߣ

0 ଵ݂(ݖଶ)
൱=ݖଵ ቌ൭

ଵݖ 1

0 ଶݖ
൱ቍ(2.37) 

 

Since ቌ൭
ଵݖ 1

0 ଶݖ
൱ቍ=݀ܣ൮

1

0
ቌ
1(௭భି௭మ)

ିଵ

0 1
ቍ൲൭

ଵݖ 0

0 ଶݖ
൱, It follows that  

൭
ଵ݂(ݖଵ) ߣ

0 ଵ݂(ݖଶ)
൱=Ad ൭

1 ଵݖ) − (ଶݖ

0 1
൱ቌ

(1ݖ)1݂ ߣ

0 (2ݖ)2݂
ቍ(2.38) 
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Which gives the desired result. 

 

 

8. Dual positivity in A Ω 

Let Ω	 be an openFMG-S over the operator space G and assume 
Ω =Ω∗. We will see the map ߪߙ = I particular, if ݂9′ .ߘ ∈ Ω௡, 
then ൫ߘ௠,௡ ௠݂ା௡൯(݃ᇱ, ݃")is an element in ℒ൫ै௠,௡൯ 

Definition 8.1 an element ݂ ∈ ݂ is dual positive if(Ω)ܣ = ݂∗ and 
for any ݃ ∈ Ω௡,, n∈ ܰ, 

൫ߘ௡,௡݂൯(݃, ݃∗):ै௡ → ै௡                                                               (8.1) 

 

Is a positive map 
(݅. ݁,
 (	ݏݎ݋ݐܽݎ݁݌݋	݁ݒ݅ݐ݅ݏ݋݌	݋ݐ݊݅	ݏݎ݋ܽݎ݁݌݋	݁ݒ݅ݐ݅ݏ݋݌	ݏ݉ݎ݋݂ݏ݊ܽݎݐ

Proposition 3.2 ݂݅	݂ ∈  the following are equivalent(Ω)ܣ

(i) f is dual positive. 
(ii) f=݂∗ and for any 

݃(ଵ) ∈ Ω௡(ଵ),	1 ≤ ݆ ≤
ଵஸ௜,௝ஸ௣⊗,݌ ൫ߘ௡(ଵ),௡(ଵ)݂൯൫݃(ଵ), ݃(ଵ)

∗൯	݅ݏ	ܽ	݁ݒ݅ݐ݅ݏ݋݌	ݎ݈ܽ݁݊݅	݌ܽ݉	݂݋	 
⊗௜,௝,ै௡(ଵ),௡(ଵ),, identified with ै௡(ଵ)ା⋯ା௡(௣),into 
itself. 
 

(iii) ݂ = ݂∗,	and for any 9	 ∈ Ω݊,, the map ൫ߘ௡,௡݂൯(9ᇱ, 9∗):ै݊ →
ै݊ is completely positive. 

Proof. Clearly (݅݅) ⟹ (݅) and (݅݅݅) ⟹ (݅) 
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 (1) ⟹ (݅݅).  it suffices to show that the .ܫܫ
map⊗ଵஸ௜,௝ஸ௣ ൫ߘ௡(ଵ),௡(௝) ௡݂(ଵ)ା௡(ଵ)൯൫9(ଵ), ݃(௜), ݃(௝)∗൯ coincides with the 
map. 

 ൫ߘ௡,௡ ௡݂,௡൯൫݃(ଵ)⊗….⊗݃௣, ݃(ଵ)∗⊗…⊗݃(௣)∗൯,                                  (3.2) 

Where ݊ = ݊(1) + ⋯+   indeed, in view of the definition .(݌)݊
ofߙ, this is the same as establishing hat 
⊗ଵஸ௜,௝ஸ௣ ߲௡(௜),௡(ଵ) ௡݂(ଵ)ା௡(௝)൫9(ଵ), 9(ଵ)∗൯ as an element of 
⊗ଵஸ௜,௝ஸ௣ै௡(ଵ)⊗ै௡(ଵ)⊂ै௡⊗ै௡	coincides	with	
߲௡,௡ ௡݂ା௡൫9(ଵ)⊗…⊗9(௣),9(ଵ଴)∗,⊗…⊗9(௣)∗,൯ ∈ (ै௡,⊗
ै௡).	This	in	turn	is	an	immediate	consequence	of	the	fact	
that	߲݂ ∈ 	.(Ω,Ω)ܣ

	 (݅݅) ⟹ (݅݅݅). ݂݅݅௜௝ ∈ ै௡, 1 ≤ ݅, ݆ ≤ 	matrix	p	x	p	a	form.݌
with	n	x	n	block,	which	is	positive	in	ै௡௣,	we	must	show	that	
the	np	x	np	matrix	formed	from	the	blocks	
ቀߘ௡,௡ ௡݂ା௡(݃,݃∗)ቁ ൫ݐ௜,௝൯	is	also	positive.	This	is	precisely	he	
statement	in	(ii)	in	case	݊(1) = ⋯ = 	and	n=(݌)݊
9(ଵ) = ⋯ = ݃(௣) = ݃.	

	

9.		The	full	resolventtransform	

4.1		

The	dual	GDQ	ring	corresponds	to	a	map	of	the	dual	of	the	
GDQ	ring	into	a	GDQ	ring	of	the	ܣ(Ω)	type.	As	long	as	we	do	
not	use	an	involution	we	will	use	the	context	of	Section	5	
thus.	E	will	be	a	Banach	algebra	with	unit,	1 ∈ ܤ ⊂ 	a	ܧ
Banach	subalgebra,	and	ܻ ∈ (ܤ:ܻ)݌	Let	element	an	ܧ =
൫݌௡(ܻ:ܤ)൯௡ஹଵbe	the	full	B-resolvent	set	of	Y	and	R(Y;B)	=	

൫ܴ௡(ܻ: 	.B-Resolvent	full	the	൯௡ஹଵ(ܤ
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	 By	ℛA(ܻ:ܤ);	we	will	denote	the	subalgebra	of	E	generated	by	B,	
〈ܻ〉,	and	the	matrix	coefficients	of	{ܴ௡(ܻ; 	݊		⃓(ܾ)(ܤ ∈ ܰ. ܾ ∈
;ܻ)௡݌ 	{(ܤ

	

4.2		

We	will	assume	that	there	is	a	derivation	comultiplication	

	 ߲: ℛܣ(ܻ; (ܤ → ℛܣ(ܻ; (ܤ ⊗ℛ(ܤ;ܻ)ܣ	

So	that	ℛܣ(ܻ; ܤ߲	,	ring	GDQ	a	is	(ܤ = 0,	and	߲ݕ = 1⊗ 1.	if	
such	a	߲	exists,		then	it	is	unique,	that	is,		completely	
determined	by	he	condition	߲ܤ = 0	and	߲ݕ = 1⊗ 1	indeed,	
the	ܴ௡(ܻ; 	the	and	corepresentation,	be	then	will	(ܾ)(ܤ
corresponding	equation	determines	߲on	the	matrix	
coefficients.	Thus,	߲	is	completely	determined	on	the	
generators	of	ℛܣ(ܻ; 	is	it	derivation,	a	being	hence,;(ܤ
completely	determined	on	ℛ(ܤ;ܻ)ܣ.	

4.3	

We	will	also	assume	that	ℛܣ(ܻ; 	E	in	dense	is	(ܤ

	 Let	(ܻ; 	of	coefficients	matrix	he	dente	(ܤ
ܴ௡(ܻ;ܤ)(ܻ; ܾ)(ܾ)(ܤ ∈ ;ܻ)௡݌ ,(ܤ ݊ ∈, ܰ)	

Lemma	9.1	ܴࣝ(ܻ;ܤ)is	closed	under	multiplication.	The	
assumptions	in	section	4.3	imply	that	the	linear	span	of	
R(ܻ; 	.E	in	dense	is	(ܤ

Proof.Remark		first	that	if	ߙ ∈ ै௠(߃),	ݔ ∈ ै௠.௡(߃),	and	
		then	ଵexist,ିߙ

ቆ
ߙ ݔ−

0 ߙ́
ቇ
ିଵ

=൭
ଵିߙ ଵିߙුݔଵିߙ

0 ଵିߙ́
൱(4.2) 
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In	particular,	the	(݅, ݈ + ݉),	entry	of	this	2x2	block	matrix	is	

the	(݅, ݈)entry	of	ܽିଵିܽݔଵሗ choosing	x	to	be	the	(݆, ݇)	matrix	
unit,	we	find	that	for	this	choice	of	x,	one	of	the	matrix	

coefficients	of	ቀߙ ݔ−
0 ߙ́ ቁ

ିଵ
	is	he	product	of	the	(݇, ݈)	entry	of	

݀ିଵ	taking	a	and	a’	to	be	ߚ − ܻ ⊗ 	that	get	we	௡,respectively,ܫ
ࣝR(ܻ; 	.multiplication	under	closed	is(ܤ

	 Thus,	the	linear	span	of	ࣝR(ܻ; 	to	and	algebra,	an	is(ܤ
prove	the	second	assertion,	it	suffices	to	prove	that	its	
closure	contain		and	B.		since	the	linear	span	of	invertible	
elements	in	B	is	B	it	will	suffice	to	prove	that	the	invertible	
elements	in	B	and	Y	are	in	the	closure	of	the	linear	span	of	
ࣝR(ܻ; ܾ	if(ܤ ∈ ܾߣ)	is	so	then	invertible,	is	ܤ − ܻ)for	ߣ	large	
enough.	(ܾߣ − ܻ)ିଵ ∈	ࣝR(ܻ;ܤ),	and	limఒ→ஶ ଵିߣ ܾߣ) −
ܻ)ିଵ=ܾିଵ.	The	assertion	about	Y	follows	from.	

ݕ = limఌ→଴ ݁ିଵ ଵିߝ)ଵିߝ) − ܻ)ିଵ − ଶିߝ)ଶିߝ − ܻ)ିଵ)(4.3) 

4.4 

Let E’ denote the dual of the banach space E the full resolvent 
transform is defined to be the map. 

 ⊔: ′߃ → ;ܻ)൫݌ܣ  ൯      (4.4)(ܤ

So that ⊔ (߮) = ൫⊔௡ (߮)൯௡ஹଵ,where  

⊔௡ (߮)(. ) = (߮ ⊗ ݅݀ै௡) ቀܴ௡൫ܻ: .)ܤ )൯ ∈ :ܻ)௡݌)௡ܣ  ቁ (4.5)(�ܤ

൫ܴ݁݉ܽ݇ݎ	ݐℎܽݐ ⊔௡ (߮)(. )൯is fully matricial analytic because ܴ௡(ܻ: .)(ܤ ) 
is fully matricial an-alytic 

 

Proposition 8.2 ݂݅	߮ଵ,߮ଶ߮ଷ = ∈   are such that ′߃
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 ߮ଵ(ߙ) = (߮ଶ ⊗߮ଷ)(߲ߙ)(4.6) 

For all ܽ ∈ 	ℛܣ(ܻ;   then ,(ܤ

 ⊔(Ωଵ) =⊔ (Ωଶ) ⊔ (Ωଷ)(4.7) 

 

Proof: it is actually sufficient that the assumption  holds for a 
∈ 	ℛܣ(ܻ;  in order to get the conclusion indeed, applying the(ܤ
assumption to each matrix coefficient of ܴ௡(ܻ; (ܾ)(ܤ =  we ,ߙ
have that. 

⊔௡ (߮ଵ)(ܾ) = ൫߮ଶ⊗ ݅݀ै೙൯൫߲ ⊗ ݅݀ै೙ߙ൯ 

= ൫߮ଶ⊗ ݅݀ै೙൯൫߲ ⊗ ݅݀ै೙ߙ൯(4.8) 

                          =   ⊔௡ (߮ଶ)(ܾ) ⊔௡ (߮ଷ)(ܾ) 

 

4.5 

Before stating the duality property involving he co-multiplication 
of ܣ൫ܲ(ܻ;  ൯, we need to clarify a notation we will use. If(ܤ

ܾ = ∑ ܾ௜,௝ ⊗݁௜,௝
(௠) ∈ ै௡௜,௝ ∑(ܤ) ܾ௞,ூᇱ ⊗ ݁௜,௝

(௠) ∈ ै௡௞,ூ  and(ܤ)

ܾᇱ = ∑ ܾ௞,ூᇱ ⊗ ݁௜,௝
(௡) ∈ ै௡௞,ூ ܾ We denote by ,(ܤ) ⊗஻ b’ 

∈ ै௠௡(ܤ) the mn x mn matrix, or equivalently, the element in 
ै௠ ⊗ै௡given by ∑ ݁௜,௝௠ 	⊗௜,௝,௞௟ ݁௞௜௡ ⊗൫ܾ௜,௝ܾ௞௟ᇱ ൯. Equivalently, 
if ߙ ⊗ ߚ ∈ ै௡ ᇱߙ and ܤ⊗ ᇱߚ⊗ ∈ ै௡⊗ܤ,	then (ߙ′⊗ ′ߚ ∈
ै௡⊗ܤ) then(ߙ ⊗ ஻⊗(ߚ ′ߙ) ⊗ ߙ = (′ߚ ⊗  	.ᇱߚߚ⊗ᇱߙ

 

Proposition 4.3  ݂݅	߮ ∈⊗ ,ᇱܧ ܾଵ ∈ ;ܻ)௠݌ and ܾଶ,(ܤ ∈ ;ܻ)௡݌   then ,(ܤ

  ൫߮ ⊗ ݅݀ै೙൯൫ܴ௠(ܻ; (ଵܾ)(ܤ ⊗ா ܴ௡(ܻ;  ൯(ଶܾ)(ܤ

  = −߲௠,௡൫⊔௠ା௡ (߮)൯(ܾଵ௜:ܾଶ) 
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Proof. Returning to the computations on which the proof of Lemma 9.1 
relies,  Letߙ = ܾଵܻ ⊗ ⃓௠  and let ݔ = 1⊗ ݁௜,௝

(௠)so that 

(ܴ௠)(ܻ; (ଵܾ)(ܤ ⊗ா ܴ௡൫ܻ; ൯(௜,௝)(௞,௜)(ଶܾ)ܤ =	ቌቆ
ߙ ݔ−

0 ߙ́
ቇ
−1

ቍ

௜,௟ା௠

(4.10) 

On the other hand, section 7.6 and Lemma 7.1 give that  

ቀ߲௠,௡൫⊔௠ା௡ (߮)൯(ܾଵܾଶ)ቁ
(௜,௝)(௞,௜)

= ቌ− ⊔௠ା௡ (߮) ൭
ܾଵ ݔ−

0 ܾଶ
൱

ିଵ

ቍ

௜,௠ାଵ

 

= -ቌ(߮) ⊗ ݅݀ै೙శ೙ ቆ
ߙ ݔ−

0 ߙ́
ቇ
ିଵ

ቍ

௜,௠ାଵ

 

Which	implies	the	desired	result.	
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Remark	4.4	proposition	4.2	and	4.3	express	the	fact	that	the	
⊔-transform	relates	“	dual	GDQ	structure”	on	E’	with	the	“	
topological	GDQ	structure”	of	ܣ൫݌(ܻ; 	he	with	endowed	൯(ܤ
comultiplication	– ߲	these	duality	statements	take	this	
indirect	form	because	of	he	rather	algebraic	setting	of	our	
discussion	݅. ݁.  ℎ݁ݐ݊݋ݏ݊݋݅ݐ݌݉ݑݏݏܽܿ݅ݐݕ݈ܽ݊ܽݐݑ݋ℎݐ݅ݓ

;ܻ)ܣℛ݂݋݊݋݅ݐ݈ܽܿ݅݌݅ݐ݈ݑ݉݋ܿ  ݊݋݅ݐܽ݊݅݉ܽݔ݁ݎ݁ݏ݋݈ܿܽ݀݊ܽ(ܤ

	of	structure	GDQ	the	in	product	tensor݈ܽܿ݅݃݋݈݋݌݋ݐ	ℎ݁	݂݋
;ܻ)݌൫ܣ 	൯(ܤ

	

Proposition.4.5	(i)	the	map	⊔is	injective.	

(ii	)An	element	߮ ∈ 	trace-condition	the	satisfies	’ܧ
߮([਻, ਻]) = 0	if	and	only	if		

	

߲௠,௡൫⊔௠ା௡ (߮)൯( ଵܾܾଶ) = ௡,௠൫⊔௠ା௡߲°ߝ (߮)൯(ܾଶܾଵ)(4.13)	

	

Which	follows	from	the	trace	condition.	The	converse,	that	is,	
all	these	equalities	taken	together	imply	that	߮is	a	trace,	
follows	from	Lemma	9.1	

	

4.6	

We	will	now	consider	dual-positivity.	We	assume	for	the	rest	
of	section	4	that	৓	and	B	are	ܥ∗-algebras	and	that	ܻ = ܻ∗.	
Note	that	൫݌௡(ܻ; ൯(ܤ

∗ = ;ܻ)ܴ௡	and∗(ܤ;ܻ)௡݌ (ܾ)(ܤ =
൫ܴ௡(ܻ; ൯(∗ܾ)(ܤ

∗=	ܴ(ܻ; 		assumptions	these	under	(ܤ
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Propositions	4.6	Let	߶ ∈ ਻′	then		

(i) ൫⊔ (߮∗)൯
∗	

(ii) ⊔ (�߮�)∗=⊔ (�߮�)if	ad	only	if	߮߮∗	
(iii) ߮⊗≥ 0	if	and	only	if	⊔ (߮) ≥0	in	the	sense	of	dual	

positivity	in	ܣ൫݌(ܻ; 	൯(ܤ

	

Proof.(݅)ifܾ ∈ ;ܻ)௡݌ 	,matrix	a	of	transpose	denotes	t	and	(ܤ
then	

�൫⊔௡ (߮∗)൯(ܾ) = ൫߮∗⊗ ݅݀ै೙൯൫(ܾ − ܻ ⊗⃓௡)൯
ିଵ

= ൫ఝ⊗௜ௗै೙൯(((௕ି௒⊗⃓೙)షభ)∗೟)
ୀ൫ఝ⊗௜ௗै೙൯(((௕ି௒⊗⃓೙)షభ)∗೟)

�	

(iii) It	follows	from	(݅)	and	the	injectivity	of	⊔.	
(iv) We	first	prove	the	only	if	part.	Assume	߮ ≥ 0	and	

let	ℎ ∈ ै௡, ℎ ≥ 0.	By	Lemma	7.1	and	he	deϐinition	
of	dual	positivity	,	we	must	check	that	in	the	2n	x	

2n	matrix	߮ ⊗ ݅݀ैమ ൬ቀܾ ⊗ ܾ∗ − ܻ ⊗⃓ଶ௡ − 1⊗

௡ܻ,௡(ℎ)൯
ିଵቁ,	The	right	n	x	n	corner	block	is	positive	

since	this	block	is	precisely	൫߮ ⊗ ݅݀ैమ൯((ܾ −⊗
⃓௡)ିଵ),	the	assertion	follows	from	the	
assumptions	߮ ≥ 0	ܽ݊݀	ℎ ≥ 0.	
	

To	prove	the	converse,	note	that	from	the	proof	of	the	only	
if	part,	the	dual	positivity	of	− ⊔ (߮)	implies	ቀ൫߮ ⊗

݅݀ैమ)((ܾ − ܻ⊗ ⃓⃓௡)ିଵ)(1⊗ ℎ)(ܾ∗ − ܻ ⊗ ⃓⃓௡)ିଵቁ ≥ 0ℎ ∈
ै݊.	this	is	turn	implies	߮(££∗) ≥ 0for	any	£in the linear 
span of ܴࣝ(ܻ; indeed, if £ =ܿଵŋ1 .(ܤ + ⋯+ ܿଵŋ1 
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Where ௝ܿ ∈ ܽ݊݀	ŋ1 is some matrix coefficient of(ܾଵ − ܻ ⊗ ⃓௡)ିଵ 

Then	it	is	easily	seen	that	

££∗=(1⊗ ݇)(ܾ − ܻ ⊗ ⃓௡)ିଵ(1 ⊗ ℎ)൫ܾ∗− ܻ⊗ ⃓⃓݊൯
−1
(1 ⊗ ݇)	

For	some	ℎ ≥ 0, ℎ ∈ै݊.	݊ = 	and		,݌݊+⋯+1݊
݌ = ܾଵ⊗…⊗ ܾ௣	hence	߮(££∗)=	k߮ ⊗
݅݀ै2

൫(ܾ − ܻ ⊗ ⃓݊)�ିଵ(1 ⊗ ℎ)(ܾ∗ − ܻ ⊗ ⃓⃓݊)−1 �݇∗ ≥ 0 �	

Remark	4.7	the	dual	positivity	of	⊔ (߮)is	equivalent	to	the	
dual	positivity	of	⊔ഥ (߮)with		respect	to	– ߲	which	is	then	in	
agreement	with	߲	intertwining	the	GDQ	structures	of	£ᇱ	and	
൫ܣ൫݌(ܻ; 	൯,−߲൯(ܤ

Remarks 4.8 to characterize states in ৓ via their ⊔-transform, in 
addition to dual.Positivity  of⊔ (߮) one requires ߮(1) = 1, 
which is equivalent to ln ݈݅݉௡∞݊ ⊔ଵ (߮)(݊1) = 1 

(݊1 ∈ ݊)for(��ܤ;ܻ)݌)ଵ݌ ≥ ‖ܻ‖) 

Remark 4.9 one situation in free probability, where the dual 
multiplication appears, is the definition of the conjugate variable 
∋ (ܺ;  see [13,15,16] in the corresponding ܹ∗probability (ܤ
context, (ܯ, ,(ݐ 1	with	M,⊃(ܺ)ܤ ∈ 	Neumann	von	a	ܤ
subalgera	t	a	trace	state,	and	assuming	ܤ(ܺ)	to	be	weakly	
dense	in	M,	let	߮(. ) = ߬൫3(ܺ: 	defined	functional		ℎ݁ݐ	൯ܾ݁(ܤ
by	߲(ܺ: ߙ	if	,	then	(ܤ ∈ (ߙ)߮	have	we		,(ܺ)ܤ = (߬ ⊗
߬)(߲௫:஻ఈ)or,	denoting	by	≠,	he	dual	multiplication	߬ ≠ ߬߮	
identifying	݈ଶ(ܯ, ߬)with	a	part	of	the	predual	ܯ∗	of	M	and	
hence	߬	with	1,	the	same	relation	would	be	written	in	the	
form	1 ≠ 1 = 3(ܺ; .ܤ )	

Similarly, the higher conjugates see 13 amount to(݌ + 1) fold 
dual products ߬ ≠ ⋯ ≠ ߬ or in the other notation ߬ ≠ ⋯ ≠ ߬ 
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Note added in proof. We have recently learned more about work 
in combinatorics on bialgebras with derivation comultiplication. 
Around the same time with our paper .the selfduality of the 
structure was also found independently by Aguiar in [1]. Besides 
“infinitesimal bialgebras” and “GDQ rings,” other names for 
related structures have been used: “eHopfalbebras,” “ 
infinitesimalHopfalbebras,” and “Newtonian bialgebras.”  

 Concerning the compatibility relations [4]  satisfied by the 
partial difference quotient derivations, we have learned that 
certain structures with several comultiplications satisfying such 
compatibility relations have been considered by Leroux in [8]  

 

 


