Chapter (2)

Duality transform for the coalgebra of d x:B
Section 1:-

1. Introduction:

The main aim of this chapter is to construct a suitable
framework for the dual GDQ structure in the case of a operator Y
and a noncommutative algebra of scalars B. Approaching duality
via a map of the dual E’ of the Banach algebra containing B and
Y into matrices indexed by corepresentations, we need a certain
GDQ structure on the matricidal functions. Since in case B = C
the dual is a GDQ of analytic functions with respect to the
difference quotient on the resolvent set of Y, dealing with
general B requires a generalization of this. It turns out that we
need to consider collections of metrical objects at all levels, very
much like in K-theory or in the theory of operator spaces. Thus,
for instance, instead of the scalar resolvent set, we will have an
object combining all matricial B-resolvent sets, tied together by
natural relations involving conjugation by matrices I GL (n;C)
and direct sums. Quite generally, on such a matricially
generalized open set €, he corresponding matricially generalized
scalar analytic functions form a noncommutative algebra A(Q)
and there is a generalization d of the difference quotient
derivation comultiplication which yields a topological GDQ ring
structure. In the c*-context, if Q = Q* in a suitably defined
sense, A({2) becomes a a *-algebra and there is also a notion of
dual positivity.

The duality map appears as a transformation from E’ to an
A(Q), where Q is he matricially generalized resovent set and the
transformation intertwines GDQ ring structures and positivity on
E’ with dual positivity on A(€2) .
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Besides section 1 to 6. Section 2 contains preliminaries on
GDQ rings . section 3 is about the new corepresentations we
found in section 4, we introduce multivariable GDQ ring and we
give a reduction result to a one-variable GDQ ring in casen =
p?, with n the number of “variables.” We also prove a result
about how 0x. Barises in general GDQ rings. Section 5 deals
with full B-resolventss and resolvent sets, which are the metrical
B-valued generalizations of usual resolvents and resolvent sets.
Section 6 takes up the matricial generalization of functions and
sets which go with the generalized resolvents. Section 7 gives the
construction of the topological GDQ ring structure on the
algebras A(Q) of fully matricial functions. We have preferred to
define the derivation —comultiplication as taking values in some
“two-variable” A(Q;Q)instead of entering here the technical
problems about tensor products and topologies on the A(€)’s.
section 8 contains a discussion of dual positivity in A(€).
Section 9 introduces the duality U-transform and discusses its
intertwining properties of GDQ structure and positivity.

1. Preliminaries on GDQ rings:

Definition 2.1. A generalized difference quotient ring (a GDQ
ring) is an object (4, u, d) where A is an algebra over C and

(GDQI1) u: A ® A, — A is the multiplication map.
(GDQ2) 0: A = A @ A is linear and coassoclative, that is
(0 ®idy)°0 = (idy ® 9)°0

(GDQ3)d is a derivation, that is d°u = (diy @ u)°(0 Q
ldA) + (,Ll ® ldA)o(ldA®a)
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In general, A is not required to have a unit if IEA 1is a unit, then
the GDQ ring will be called unital.

Remark 2.2. A GDQ ring can always be made uital by adjoining
a unit and putting 01 = 0

Definition 2.3 A quadruple (4,u,d,L)is a graded GDQ ring if
(A,u,0) is a GDQ ring and there is a linear map L:A— A (the
grading ) so that.

(L1) L — id, is a derivation of the algebra (4, u).

(L2) L is a coderivation of the coalgebra(4, u), that is
0°L= (L®id, +idy Q 1)°0.

Definition 2.4. An involution of a GDQ ring (4,u,d) is a
conjugate linear involution A 3= a* € A of the vector space A
so that

(11) (A, u,*)is an algebra in involution.
(12) d(a*) = 012((6a) *),where * on AQA is given by
xQy)' =x"®y'and o, (x ®y) =y Q x.

If L is a grading, compatibility with the involution means that

(13)L(a*) = ((@)) .

If V is a vector space, we will denoted by V* its dual
endowed with the topology of pointwise convergence. By ® we
denote the projective tensor product. The duality theorem can be
restated in the following form.

Theorem 2.5.if(A, u, d)is a GDQ ring, then (A%, 0%, u*) satisfies
the GDQ rig conditions with & replaced by & if L is a grading
and * is an involution for (A4,d,u), then A =id,, +

[*and €*(a) = e(a*) satisfy, respectively, the grading and the
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involution conditions for
(4*,0%, ,u*)(with & replaced by @)

By 2m,(A) we denote the Pxp matrices over A, an

individual matrix written either in the form (ai j)1<i i<p°T in

the form ¥, .; i<, @;; & €;j; were a;j€ A and e;jare the matrix
units. A corepresentation of (4, u, d) is a matrix (A4) so that.

2ik0u;y® €ik = 2ijk 0oy ® Cik (2.1)
This can also be written
(0 ®)idyy,a (2.2)

The main result about corepresentation (see) [14] is the
following the orem.

Theorem 2.6 Let(4, i, ) be a unital GDQ ring and assume
that x € Aissothatdx = 1 @ 1.ifinvertible, the following
are equivalent.

() ais a corepresentation,
(IDa = ((nij — x(Sij)_l)where n;j € N = keré.

Since this is a functional analysis study, the algebraic facts
will guide our functional analysis constructions, even if hey
are not directly applicable. This is a familiar situation from
the theory of kac algebras and C*quantum groups, where
finding the appropriate topological tensor products and
topological duals are subtle analysis questions.

In particular, the vague idea that the dual object should
be constructed by map ping @eA* into the direct sum of
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((p(aij)) 1<i,j<peln, where x= (ocl-j)i <j<p runs
over a sufficiently large set of corepresentation of (4, u,d)
poses many analytical problems.

2. More corepresentation:
Throughout this section (4,u,d) will denote a unital GDQ
ring and xeA will be an element so that dx =1 @ 1. we will
exhibit corepresentations which enlarge the set provided by
theorem 2.6.
As in [14], it will be convenient to use d:27,(A ® A),d =

0K idzﬂpwhich is a derivation with respect to the bimodule
structure given by the homomorphisms ¢;, P22, (A)-21p (AR A)
So that ¢y ()1 < ij < p=(a;; ® 1)1 < i.j < p,p,(a;;)1 <
Lj<p= (1 X aij)l < i,j < pwe will also denote x @ 1,by
x € 2m,(A) and write 1 for the unit 1 @ 1, of 2m, (A)

Proposition 3.1 if N € kerd and 3, 5, 3 € 2m,,(N)are such that
Ba, — By, (x ® 1,)Bs, is invertible, then.

= f3 (,32—,31(35 ® 1p):83)_1181 G.1)

Is acorepresentation

Proof. Lety = 8, — ,31(X X 1p),32 = f1 — B1xB3 we

haved(y~1)d(y) g, (y™)
(3.2)

Hence:
d(e) = d(Bzy~'B1) = B1(B3)d(y~ ) p2(B,)
= —B1(B:) 01 (D (=01 (B2 (B3)) 92y 2 (By)
= ¢1(a)g,(a) (3.3)
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Which is the desired result.

We also have he following general procedure for producing
more corepresentations.

Lomma 3.2 Lete € M, (A)be a corepresentation and let § €
M, (ker 0).if 1 — g is invertible, then <= (1 —ef)'eisa

corepresentation.
If 1 — Be is invertible, then y = £(1 — Be)~1 is a corepresentation
Proof because of symmetry , we will only prove he first assertion

We have

d((1—¢ep)'e)
=, (1 —ep)™
- 1)d((1 - 5,3))(172 (1 =¢eB) He,(e)
+ @1 (1 = eB) De1()p,(e)

=p1((1 — eB) D@1 (E) @2 (e) P2 (B (1 — eB) ™, (€)
+0,((1 = eB) o1 (&), (e) (3.4)
=p1((1 — ef) ' e)p (e + ef)((1 —ef)Me)

= p1(@)@, (e + (1 —ef)™ — 1e)

=1 ()@, ()

3. Reduction of multivariable GDQ rings:
Studying 0,z dose not mean a limitation to one variable. In

this section, we briefly explain how multivariable situations
can easily be reduced to the d,p setting.

4.1

.....

ring of noncommutative polynomials in the noncommutative
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variables (X 1
means that monomials are of the form 1x; = x;1 = x;. Thisn

Xn) and with noncommutative scalars B. This

.....

partial difference quotients d;: A - A & A are the derivations
such that 9;x; = 8,1 ® 1 and B, = 0 thus each (4, u,d) is a
GDQ ring and he compatibility relations hold

(A, w1 Au0q . 2 Ainﬁl) is again a multivariable GDQ.

4.2

In case n = p?, multivariable GDO ring (4, 14, 9; ...., dp, )can be

replaced by a one variable (A, i, 6) more precisely , we take
A =M (A) =M, ® A where M, is short for M, (c). We may

reindex

0. 8 (possibly precended by a linear transformation if
L™P we want to preserve some involution

y0;j1 <i,j <p.Furtherlet A= Y o <M, QM,

i<k<p

) and replace themb

(4.2)
Note that
T® |PAI,]= AI,](|p®T) (43)
if T € M, We then define
0:4,-AQRA (4.4)

By

1<ij<p

Where the isomorphism takes (T; ® T2) ® (¢, ® a,) to (T ®
2) ® (T, ® a,) note that we also have

area)= YA, l,81)®d,a (4.6)

I<i,j<p
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That 0 is a derivation is seen by the computation (6 (T, ®

) (T2 ® a,))=0(T1 T, @ a) =

Yij ((T1T2 X lp)Aﬂ) X 0;jaia; (4.7)=
Yij ((T1 @ THA;( e Tz)) ® ((oc1 ® Do)+ (0,0)(1® az)) =
(oo (1. 10)a6.)+(0T10:)) (e Ne(Tiow)

Before checking coassociativity remark that
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d(ers) = X1 (er; @ 05) ® (0;) (4.8)
We have

(0® id)°0)(0 ® ) = ) (0 ®id) (2 ® 3)s) ® 0y0)
Lj

= > > 0 ® ) @ (0 ® id)0,) )

kj i,j

While on the other hand,

((id X a)oa)(ars X a)
= (14 ® 0) ((id ® )((ere ® €10)) ® dyit)
k,i

z Z(erk Re; ®ei) & (((id X akj)oaki) a)

i ki
and the coassociativity follows compatibility of d; jand dy;.
4.3

If here are elements € A so that 6,;85;1 ® 1, then it is easily
seen that

z eij@YijEA (411)

1<i.j<p
Will have the property ay( l, & 1) X ( l, & 1) also if

=Z Y=< ij<pCijQz;; (4.12)
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Then 0z = 0 is equivalent to 0,4z;; = 0 forall 1 <r,s,i,j <p
that

Ker d = 9ﬁp®(ﬂlsi,jsp ker al]) (413)

4.4

Returning to the multivariable GDQ ring A =B (X, ..., X p2) and

the partial free difference quotients d; 5 ,with respect to
e

X4, ..., Xp2 , he preceding construction combined with a linear
transformation, gives the following. We consider 4 = M, @
B(X;, ..., Xpz) which is isomorphic to D (X;), where D =

Mp @ B. The replacement for the multivariable GDQ rig is then

D (X;) with comultiplication derivation d,: D.

Note that in case B = ¢ or B = Mtp, this reduction has the
pleasant feature that D, which is Mp or Mp,,. Is finite

dimensional.

Proposition: 4.1. Let (4, u, ) be a GDQ ring with unit and
assume that there is X, €, A such that 0X = 1 & 1. further let
N=ker 0.

Then he canonical homomorphism : N(X) is endowed with the
comultipliation d,: N.

Proof. A derivation being completely determined by the way it
acts on the generators of an algebra, the only assertion we really
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need to prove is the injectivity of y. Let i,: N®K+D> A be the
linear maps so that.

Uiy ® ... @ my) = Noxyy X .oy (4.14)

We must prove that kerip;,, = 0 and the ranges of the y;,, k = 0
are linearly independent iterating @, we define %) =

(0 ® ide_1)°0% 1 9D = 3. Then

0Py vty yor-nNEETD 100y _idyeg 1), and

90Uy, = 0if 1 < k. The assertion follows from these facts.

4. The full B-resolvent
Let E b a Banach algebra with unit, let € B € E be a closed
subspace containing the unit, and let Y € E be an element.
The concepts we examine I this section will also serve as
motivating examples in section 6 and it is good to note that the

case when B is a banach subalgebra is of particular interest.
Definition 5.1 the set:
p(Y:B) = {{b e M, (B)}YY ® 1, — b invertible }

Will be called the nth B-resolvent of Y. The operator valued
function R,,(Y: B)(.):

p,(Y:B) - M, (€)defined by R,(Y:B)(h) =Y & I,—b)"?!
will be called the nth B-resolvent of Y. The collection of
functions (Rn (Y; B))n>1will be called the full B-resolvent of Y.

Some basic about these concepts are summarized in the next
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proposition.
Proposition 5.2:

. Theset p,(Y:B) ® p,(Y:B) N (M,,(B) ® M,,(B))
L pp(Y:B) @ pp(Y:B) = prsn((Y: B) N My (B) @ My (B))

ML (5®)p,(Y:B)(5® 1)~ 1= p,(Y:B) if S € GL(n; ©)

(iv)ifb’ € p,,(Y:B),b" € p,(Y:B),and f € M,,, ,(B) isan m

X n matrix with entries in B then.

b’ B |
(0 b") € Prnan(Y: B)(5.2)

(v)R,,(Y; B)is a complex analytic function

(i) if b’ € p, (Y: B) and b” € p,,(Y; B)Rypyr(Y: B) (' ®
b") & R, (Y; B)(b").

(vii)if be M, (B)and S € GL(n;c), then

R, (Y:B)(S ® 1)b(S @ DR, (Y; B)(S® 1)7*(5.3)

Proof: most assertions are rather obvious and will be left to the
reader we will only prove (iv). In view of (i1), b&.b’ € p,, 1 (B),
and in view of (1),

5. Fully matricia functions and sets
Let G and H Banach spaces over cif S € GL (n;c) and T €
I, we denote by AdS the automorphism of IM,, so
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that(AdS)(T) = STS™1. The corresponding automophism of
M, ® H will be denoted by AdSK) I or simply AdS & 1
and its action is (AdS ® )(T ® h) = STS™! ® h.

Definition 6.1 a fully matricial G-set is a sequence (£2,,) is open
or closed, respectively

Proposition 6.2: if (Q,,),,5; is a fully matricial open set and if g’
€ Qp, andy € My, (6), then (0 ) € U

The proof is along the same lines as the proof of (iv) in
proposition 5.2 in case G-¢ using the Jordan form of a matrix, it
is possible to describe the fully matricial ¢ sets

Proposition 6.3 (1)A fully matricialc-set (Q,,),,»11s described n a
unique way by giving for each y € c an additive subsemigroup
L(A) c N.then T€E Q,, if and only if for each eigenvaled €
o(T),the length of the corresponding Jordan blocks I he
Jordan form of Tare in L(A).

(i1) (Q,),»118 a closed (res., open) fully matricial c-set if and
only if Q41s closed

(respecvely open) and{(T € IMM,, 16(T) ©)Q, }in particular, if
the fully matricial c-set is closed or open, the L(4)'s can only be

(@ or N).

The proof of (1) is an exercise of combining the Jordan form
with the similarity and direct sum properties of fully matricialses,
which we leave to the reader we will only explain he different
reasons in (ii), when{,, is closed o open, why the L(4)'s can
only be N or @, in both cases, using ( FMS3), the discussion
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breaks down to showing that if T € (1, is an upper triangular
matrix, then its (1,1),-entryA; will be in £),,.

If he fully matricial set is closed, let S(1) be the diagonal matrix
with entries 1, A4, A,then

limy_, sA)TS V)1 =T, (6.1)
Where T is the direct sum of the 1 x 1 matrix 4; and an (n —

1)x(n — 1) matrix Since (1,, is closed, T’ € Q,,, and by € Q,

If Q,,is open, we can find T’ € Q, so that ('}‘ s)' where
S € M,,_, is so that 0(S§)AA,.thenusing (FMS3)and fully
material G-sets, then (nlel Ql(l))n21is a fully matricial G-set.
In particular, the family of open fully matricial G-set is
stable under such finite componentwise intersections.
Similarly, the family of closed fully matricial G-set is stable

under arbitrary componentwise intersection.

It seems natural to consider the topology
(view for instance as suvsets of |[;,1 I, (G))generaed by

the open fully matricial G-sets.

Definition 6.5 A fully maricial H-valued function on a fully

matricial G-set (£2,,)is a sequence (R,,),,>150 that

(FMF1)R,,: Q,, —» 9, (H) Is a function,

(FMF1)ifg’ € Q, and g" € Q, thenR,,,(9' ® g") =
Rn(9) ® Rn(g")-
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(FMF1)ifs € GL(n; c)and g € Q,, then Rn((AdS %)
16)(9)) = (4dS ® 1) (Rn(9))

As fully matricial function is continuous if each
component. A fullymatricial function is analytic if the fully
matricial G-set on which itis defined is open and the
components R,, are analytic.

Remarks 6.6 A fully matricial function amounts to a sequence
of functions whose graphs form a fully matricial Gx H-set.

Lemma 6.7 Let (R,,),,»1be a continuous fully matricial H-
valued function o the fully matricial G-set (Q,,),,>1. Assume
that 9’ € Q,,19" € Qy, and y € M, ,(G). then for some

h € M, ,(H),

9" \\_[(Rnlg) 2n
(4 2)) = (5 o) 02

Forall A € ¢

Proof. Let R, 1, ((‘g, g}i)) = (hhzlillﬁ,) andletS(e) =¢ 1,, ®

l, € GL(m + n; c).thenif A # O.

Rm+n <(g’ 8/1"}])) = Rm+n <Ad5(8/1) 03y e (g’ X.))
o g o g

h,hlz
=AdS(ed) Q Ig ( ) (6.3)
h21 h”
_ h' Ah
=(17"e - 1hs4 o 12)

. . . . g' A g' 0
Sincee R, .n€ 1s continuous and lim,_,q ( 0 g ) ( o g ) €

Qpin WE inter
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-0 0 Rn(g")

And hence = h,;0,h = R,(g"), andh”= R,(g")

! R ! 0
lim (171 - 1h,, " " ‘9’”112) =( n(g) >(6.4)

Remark 6.8. The reader has probably recognized by now that the
full B. resolvent set and that full B-resolvent are examples of a
fully matricial B-set and of an analytic B-valued fully matricial

function defined o an open fully matricial B-set respectively.
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Definition 6.9A full matricial G-set (Q,,),,1 Will be called finite
if it also satisfies.

A
( 0 o )e (Undnz1 = ' € Qng' € 2 (65)

Remarks 6.10, full resolvent sets in a finite von Neumann
provide examples of finite fully matricial sets. On the other hand,

taking E=B =B(i*(N)),Y = 0 and m = n = i, the full B-
resolvent of Y is not a finite fully matricial B-set since ( 50 15< ,

Where is the unilateral and K a rank-one operator making the matrix
the bilateral shift, is in p; + 1(0; B)without S;S” being in p; 1(0; B).

5.1 Returning to the context of proposition 6.4 we associate
with an open fully matricial G-set Q=((,,),,»; the set Q =
151 € [1ns1 0, (G). it is then also natural to
associate with (the analytic or continuous fully
matricial H-valued functions on () and the sheaves on
[ 151, (G) which they generate.

5.2 Abbreviations:

From now on, we will also use the abbreviations FMGS
for full matricial G-set and FMF for full matricial G-
function. Also FMS will abbreviate fully matricial set
and FMAF will abbreviate fully matricial analytic
function.
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Section (2):-
2. The GDQ ring of scalar fully matricial analytic function.

2.1 let (Q,,),,=1be an open FMG.S.to avoid amending our
assumptions on G to introduce more structure, we will assume
that G is an operator system, that is, it is isomorphic to a space of
operators on Hillbert space which is selfedjointand unital, is
correspondingly endowed with involution and unit, and is matrix,
normed. (the reader could simplify and assume that G is a
unitalC*-algebra). We should also clarify from the beginning that
the term GOQ ring in the title of this section has been used rather
loosely: the tensor product required for hecomultiplication would
be a topological one, and we will actually circumvent this
question interpreting the tensor product as “some.

Two-variable functions “our aim here is to clarify the function
theory aspect of the comultiplication and to return to the precise
topological GDQ ring structure later.

2.2

Let A Q denote the c-valued FMAF on Q if r = (17,) .5, and s =
(S;)nsr are AQ, thenr +1 = (1,5,) > and rs =

(1, Sp)ns1are in A Q which is thus naturally a non-commutative
ring. Moreover 1 = (1,,),,51. Where 1,, denotes the constant

function on (},,with value the identity axn matrix is the unit in

A (.

Let Q* = (Q}),s;where Q) = (T IT € Q,)if r € AQ, we
define r* = (1)) ;51 EA(Q)by 15, (g) = (rn(9*))* thusr - r* is
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a conjugae linear antisomorphism of A  and A(*) in case
Q. = Q". This makes A (1 a unital algebra with involution.

7.3 Let k = (k,,),,=1 b€ a sequence of subsets k,,, < Q,,
satisfying FMS1 and FMS2. we will say that K is properly
included in Q if

Sup sup
neN nenN

and if there is £ > O such that k, + (M, (6)), < Qy forall
n € N. (here, I.||,,)is the norm and (smn (G))l, the unit hall

indt,, (G) clearly, this definition uses the fact that G is matrix
normed if if r € A(Q2). We define.

I 7.l sup sup |l 1. (k)llk

neN kn€k,

Where || 7.]|,, is the norm on M, (C). unless|| .||y <o forall
properly included k, it may be natural to add this consider
the corresponding subalgebra A, (Q) of A(Q).

2.4

The comultiplication derivation will be defined plecewise. That
is for fixed matrix sizes. We will use algebras of matrix-valued

analytic functions n, On1) wheren = ny + -+ +

......... no (in,.....

ny,qconsisting of analytic maps if - Q, x ...xQ,; > M;,Q ... Q
M,

Which are GL(np) — equivariant:

£ (4ds,® 15(9™)), ... (4dS,® 1(g™))

- (4dS,® .. ® (4ds,,)) f(g@ ....gP)
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Where S,€ GL(n,), g™ € Q,

A result similar to Lemma 6.7 holds for function in
Am+n (-Qm+n)-

Lemma 7.1 Let frn4n € Amin(a,,,,)> then,

(i)If g’ € Q,, and 9" € O, there are a’ € M,, and a" € M, so
that

fm+n(9l ® 911) — an ® an; (2.3)
Where S; € GL(n;)9™ € Q,
A result similar to Lemma 6.7 holds for function in

Am+n (-Qm+n)

Lemma.2.1 Let f,,, 15, € Appin(Qin), then

(1) if9' € Qpand 9” € Q,, there are a’ € M, so that
fmin(9'®9") =a' ® a'; (2.4)

(ii) if9',9", a',a"are as in(i) and Y € M., ,,,(G). there is
h € M., 50 that

9 Ay al Ah
frsn (0 9,,) = ( o )vxe (2.5)
Proof. (i) iffynsn (9’ ® 9= (",, *17). then in view of the

equivariance applied to S=¢l,,, K L, we get hy, = hy,,hyq =
8_1h21 so that h21 O, h21 =0

9 y h'hq,p
fm+n (0 9..> :(h21 h") (2.6)

Conjugation withel,,, & L, yields
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9" gy h'hq,
fman (0 9..> :(s—1h21 h") (2.7)

And since
h'ehy, R 0
lim

= 2.8
€20 \elhy, h"J\O & (28)

we infer that b’ = a', h" = a",and h,; = 0 hence

9" gy a'  ehqy
fm+n (0 9,,> =( 0 9,,) [2.9]

2.5

There is a canonical identification o< of M,, with the linear
operators (Limm,n)on (Limm,n)if a € M, b € M,,and
c € My n,

(a(a O%) b))(c) = acb € M, ,(2.10)

If m and n need to be specified, we will write a,;, ,,
2.6

We define

am,n: Amin (Qm+n) = Amin (Qm: Qn) (2.11)
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As follows.Let f € Apyn(Qpen), h €My, 1 € G,9" € Oy,
and let ¥y, 2 My, , be the map which puts I, ;, into the right
mx n corner of M, ;, thatis, vy, , (ejk) = € mk and Y, 5 18

linear. By Lemma 7.1

% F(9'® 9"+ eV (R) @ 1) lgeg = Y () (2.12)
for some h' € M, ,,. Hence, for each (9°,9") € Q,,, @
Qn, we get amap My, ,, 3 h > h' € M, ,applying @~ to this
map gives an element in P,,, @ WPi,,, which is our definition of
(Omanf)(9,9") € M,,, @ M,,,. This can also be written as a

formula. Since the differential of fat 9" @ 9" is linear map, we

have
(am+nf) (9,9
d
= Z (d_cf(9’ ® 9" + Sej.k+m ® 1)) eij(m)

1sijsm

Where (. ); 41 denotes the i, m + 1 entry of the (m+n)x(m-+n)
matrix,

It is clear that d,, ,f defined in this way is an analytic function

QpxQ, > My, K My,

2.7

To check that d,, ,,f is a GL(m) x GL(n) equivariant map, remark
first that if S’ € GL(m) and S" € GL(n), then
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d
Ef(AdS' Rl QD" ®(AdS" Q lg ® DG" + €Vimn(S'hS"™) Ie—o

d
= Ad(S' ® S") (Ef(()’ ® 9"+ &Vmnm) @ 1) leo
= S,ym,n(h,)s_l
Thus, we must check that if Te[,(imm,n) is given by T(S'hS""1) =

S'(T(h))S" thena =1 (T) = ((4dS") ® (AdS™))a~1(T). this is the
same as he following equivariance for a: if T = a(£) and
Ta((AdS' ® AdS™)L), then T(S'hS"™1) = S'T(h)S"?

It suffices to see this forL = a @ c, then T(h) = ahc andT(h) =
(S’aS" " h(5"cS""1) sothat T(ShS"™1) = S'ahcS" ! =
S'T(h)S"1, that is the equivariance we wanted to check.

Hence am,nf mn EAm,n ('Qm: 'Qn)

The derivation property will be obtained from the following lemma.

Lemma 7.2 if f,f € Am,n(ﬂm’n),b' €N,9" €Q,a',b' €
M, ab€eM,(9R®g)=a®a,and f(9,Q09") =b'"Q® b",
then.

CHGAICKY
=@ ® |n)(am,nf)(9l; 9")
+ (B f)(9,9( 1y ® b")(2.15)

Proof, I view of Lemma 7.1 we have

f(®9 + Ama() ®1) = F(9' ®9") + A%f(‘y ® 9"+ &V mum@1) le=o

And the same holds with freplaced by f multiplying, we get

(FHO'® "+ (W) ® 1) = f(g' ® 9 (g’ ® g")
(g ® 9= f(9' ® 9" + e¥mn(h) ® 1) lecy
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+A%f(9, ® 9" + gym,n(h) ® 1) |£=0f(g, ® 9")

+0(12) (2.17)

This gives
d , .
= (FF)O' ® 9"+ c¥ymn(h) @ 1) I,—g

d .
=(a ®a"+) d—gf(g' ® 9"+ e¥ma(h) ® 1) l.—g

(9@ + Hma() @ 1) (B’ ® "), (2.18)
Taking result follows from
a'a(L)(h) = a((@ @ 1,)L)(h).
a(L)b"h = a(L( 1y, @ b™))(h)
If LeM,, @ M.,

Corollary 2.3 if v = (15,)n51€A(Q), s = (5,)n=1€4(Q),9°€Q,,
and 9” €Q,,

Then.
(am,n(rs)m+n)(9’r 9) = (1, (9) ® |n)(am,n5m+n)(9’r 9")

+ (am,nTm+n)(9’r9")( |m ®
S,(9") (2.21)

This is immediate from Lemma 7.2 when we take into
account that T,,,,(9"® 9") = T,,(9") and s,,,,,(9' ® 9") =
sm,(9) ® S,(9").

2.8

74



To combine the maps 0, , into a derivation for A(Q), we will
need to define “several variables FMAFS,”

Let 0, j =1,..p be FMG.S

We define the scalar p-variables FMAPS on Q)
x...x0Wto be families of analytic functions® ... @ M,

Are GL(ny)x ....xGL(n,) — equivariant and so that

fnl....nl—l,n1+n1—n1+1 ...... ni (91 ....... 9]’ ® 9"'7 e 9p)

Q fa1..n1-n1-n1+1.... n1(91 ....... 9]"';----9;;)

The scalar p-variables FMAFS on
QW x .. xQPwill be denoted by A(QW; ....: QP)clearly, AQW, ...; P
is an algebra with unit.

if f €AW, .. .aPandf € AQW, ...; @), then we define
fQfeAdn, ;qb: Si(l); 0@, 0@, ..0@ by

(f ® f)n;.....np,..n,....no (91’ B 9P’ 9i’ e 94) (2-23)

........

Lomma7.4 ifr € A(Q), then (Om,nTm+n)m>1 € A(Q:Q)

Proof: Analytical and equivariance have already been checked
and we are left with

(am,nTm+n)(9, ® 97, 9) =
(am,nTmZn)(gly 2R (amz,nTm2+n)(9’r 9), where g' €
Q29" € Qanz, g € Qqpam = m, + myand

(am,n+m2 Tm+n)(g- 9, ® 9"): (am,n+m1Tm+n2)(9 ® 9,) ®
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(am,n2+m2 Tm+n2)(9,9") where now g € Q,g’ € le,g"g €
Q,,, and n = n,;,n, he direct sums are in the sense of

(M, @ My) @ (W @ M)=(M, @ M) @ M, ©
SUt‘nl+m2 ® gﬁn;

and in the second case

M, @ M) @ (M, @ E):R‘nz):gjtm@) (D1, Mpz) € My, ®
My 4ns

We will only sketch how one checks the first of the two
equalities for d,, ,the second one being similar.

First, remark that @1 behaves well with respect to direct sums,
thatis ,if T, € E(Emm,n), T, € E(Smm,n) andT; &

TZ(E EMp1n® smmz,n) =€ £(smm1+m2,n) then
a;l11+m2,n(T1, 03¢ Tz) = a;l11+m2,n(T1,)ar7111+m2,n(Tz,) thus , it
will suffice to check that.(am1+m2,n6am+m,nfm+n)( g9
(Um1+m2m0amsmntmin) (9 @ 9"

:(amz +m2,n a“m2+m,n‘fm2+n2) (g,g,) (2.26)

In view of Lemma7.1 and of the direct sum property of an
FMAF, what we must prove amounts to the following Let
hiem,, ., and hy 'y € Moy, be such that,

Where a'=(9”) ,a" = Tm,(9"), and a = T,(9), then we will
have

S () RPN
(5 290G )
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9 0 h QI a 0 hj
Tmi+mz+n <0 9" h,® |> (O a" h2>(2.28)
0 O 9 0 0 «a

Since

9 0 b Tm+m(9' 0)
twenn((3 3 18 :))/ (G 30) ),
0 0 ) \ 17,(9) /

By Lemma.2.1 and T,14m2(9' ® 9") = a’ @ ", all we need to
check is that the (1,3) and (2,3) blook entries of the result are h;
and h;. This can be done b several application of direct sum and
GL equivariance properties.

o

/9’ h; ® 1 0

0 9 0 O

Tm1+m2+n

o

0 9"h, ® |

/o— -~
o <
]
=

~N @

o
o
o
O

0

2
)
>
S

X

o
Ne)
o
>
IN)

X |

o
S
o

\4.:‘\

Tm1+m2+n

o
o
O
o

/—__\
o o
o o 3
o o
) o
h—__/

2
)

M1 0

o
Q

Q\

o

o

o

h, ® 1h, ® |

(=)
R
G
N

Tm1+m2+n

o
o
o

9

/— __\
o o
o o 3
= S
Q o
~N

o
o

0

Ne}

= /o— -~ —
o
o
O
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On the one hand, and on the other hand, he last equality can be
continued with

I

h® 11

Tm1+m2+n| | *
\\0 oo ) /

if r € AQ,, we will denote by 09, the element (Omn m+n)

ma1 €
A(Q: Q)before going further, we also record he following fact
which appeared in the preceding roofs.

Lemma 7.5 Let 9’ € Q,,,9" € Q,, and h;h’ € M, ,, be such
that

(9' he ,) (rm (99 h' )
Tm+n = (2.32)
0 9" 0 T,09"

Then h' = (am.n (am,nTm+n)(9’r 9")) (h)

In particular, he map taking h is linear and takes sht to
sh’tif s € GL(m)and t € GL(n).

2.10

We pass to the coassociativityproperty ofd since we have not
identified A(Q; Q)with a tensor product A(Q) ® A(Q), we will
define maps (id ® 0) A(Q; Q) - A(Q; Q, Q)and respectively
(0 Qid) A(Q; Q) - A(Q; Q,Q), he most convenient seems to
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use the formula for matrix entries given at the end of section 2.6 thus,
fork € Apmpnip(Qn;,Q),9 € O, 9" € Q, and 97€ O, we define

(id ® Omnpk)(9,9',9,9"

d
(d—k(9; 9 ® 9" + ced i) |£=0) e @ ey
1sabsm € (a,b)(c,ntf)
1<c,d=n
l<esf=sp
(2.33)

Where the index (a, b)(c,n + f) sands for the coefficient ec(lgl) X e*P).

cn+f
In particular , if € 4,,(®,,) and f € Apip (Qn+p), then (id @
a)m,np(f X f) =f® (an,pf)

We leave it to the reader to check that
(id @ Dmnyp (Qm’ﬂn’, Qp’) part of the verification can e done
using 9 € Q,,,9" € Q,,, functional ¢ € (M),,,, the functions
(p ® id)k(9;.) € A(Qn+p), he fact that

((¢ ® idy,gid, ) (id ® D)nypk) (99597 =
Onp (((p X idgmmp) k(g; )) (9'9"), and he results we already

have for 0y, ,, using this type of argument, one then checks that
1<=(/!<nl’nz)mm1221 € A(Q,Q), then

((id X a)nl,nZ,nB knl,nz,n3)n121’n221’n3221 € A(©,Q,0)and a

similar result is obtained for d & id

Checking that (0 @ id)°0 = (0 & id)°0, after we have
put aside all these questions, boils down to the following result..

Lemma 7.6 if k € Apinp(Qnsnsp, ) then (id & 8)pn pOmnpk =
(a & id)m,n,p am+n+pk-
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Proof.Let € Q,, g" € 0, 9" € O, and 97€ ;. We have

((id 03¢ a)m,n,poam,‘nﬂ)k) (9.9 g")(a,b)(c,d)(e,f)

d (d
= (- (MO ®9'® g" + eremiaminte
dsz dsl

+ &,e ) le.,_ )
2 b,m+c) am+n+f E2=0

The equality of the two quantities is thus quite obvious

Lemma 7.7 Let {); C ¢ be an open set, G=c, and (), =Q,, =
(a € M, lo(a) € Q). Further let f = (f,,)51 € A(Q), where
Q = (Q,)n>1 so that £, (a) = f; (a), where the right hand side
has he meaning of functional calculus. Then if z; z, €

Q4,21 # 2Z,)

f zZ1)— zZ
(01,112)(21,2,) = 22 (2.36)

Z1—2Z3

Proof Let (61,1 fz)(zl,lzz)z AE SUE? %c. Then

f1(z1) A Zq 1
( ) ( ) 03
0 f1(z2) 0 Z2

Zl 1 1 1(Zl_Z2)_1 Zl O
Since (( ) Ad( ( ))( ) It follows that
0 Z 0 0 1 0 zy

(fl (z1) A ) 1 (zy — 23) <f1(21) A )
=Ad ( ) (2.38)
0 f1(z2) 0 1 0 f2(22)
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Which gives the desired result.

8. Dual positivity in A Q
Let {1 be an openFMG-S over the operator space G and assume
0 =0". We will see the map ac = V. I particular, if f9" € Q,,
then (Vm’n fm+n)(g’, g")is an element in L(imm’n)
Definition 8.1 an element f € A(Q)is dual positive if f = f* and
forany g € ,,, n€E N,

(Vn,nf)(gfg*): N, - DMy (8.1)

Is a positive map
(i.e,
transforms positive operaors into positive operators)

Proposition 3.2 if f € A(Q)the following are equivalent

(1) fis dual positive.
(11) f=f" and for any
g(l) € 'Qn(l), 1 S] <

D, Q1<i,j<p (Vn(l),n(l)f)(g(l),g(l)*) Is a positive linear map of
®i,j, mn(l),n(l),a identified with EUtn(l)_F....Fn(p)’intO
itself.

(iiiy f =/ and forany9 € Qy, the map (V,,f)(9’,9"): M, -

I, 1s completely positive.

Proof. Clearly (ii) = (i) and (iii) = (i)
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(1) = (ii).1I. it suffices to show that the

mapQ 1< j<p (Vn(l),n(j)fn(1)+n(1))(9(1)fg(i)f g(j)*) coincides with the
map.

(Vn,nfn,n) (g(l)®....®gp’ g(l)*®-..®g(p)*)’ (3.2)

Where n = n(1) + -+ + n(p). indeed, in view of the definition
ofa, this is the same as establishing hat

®1<ij<p Onyn@ fawy+ncy (9, 91*) as an element of

Q1< j<p M) @ My (1) M, oMy, coincides with
Onnfuin(9P ® .. ® 9?1910 & ® 9P)*) € (M,,®
It,). This in turn is an immediate consequence of the fact
that df € A(Q, Q).

(ii) = (iii).ifiV € M,,1 < i,j < p.form a p x p matrix
with n x n block, which is positive in 3,,,,, we must show that
the np x np matrix formed from the blocks
(Vn,nfnm (g, g*)) (t7) is also positive. This is precisely he

statement in (ii) in case n(1) = - = n(p)=n and
9(1) — ee — g(p) — g

9. The full resolventtransform

4.1

The dual GDQ ring corresponds to a map of the dual of the
GDQ ring into a GDQ ring of the A(Q) type. As long as we do
not use an involution we will use the context of Section 5
thus. E will be a Banach algebra with unit,1 € B C E a
Banach subalgebra, and Y € E an element Let p(Y:B) =
(pn (Y: B))n21be the full B-resolvent set of Y and R(Y;B) =

(R, (Y: B))n21 the full B-Resolvent.
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By RA(Y: B); we will denote the subalgebra of E generated by B,
(Y), and the matrix coefficients of {R,,(Y;B)(b) | n € N.b €

Pn v; B)}

4.2

We will assume that there is a derivation comultiplication
0: RA(Y;B) » RA(Y;B) Q RA(Y; B)

So that RA(Y;B) isaGDQring,dB = 0,and dy =1 @ 1. if
such a 0 exists, then itis unique, thatis, completely
determined by he condition 0B = 0 and dy = 1 ® 1 indeed,
the R,,(Y; B)(b) will then be corepresentation, and the
corresponding equation determines don the matrix
coefficients. Thus, d is completely determined on the
generators of RA(Y; B);hence, being a derivation, it is
completely determined on RA(Y; B).

4.3
We will also assume that RA(Y; B) is dense in E

Let (Y; B) dente he matrix coefficients of
R,(Y;B)(Y; B)(b)(b € pp(Y; B),n €,N)

Lemma 9.1 CR(Y; B)is closed under multiplication. The
assumptions in section 4.3 imply that the linear span of
R(Y; B) is dense in E.

Proof.Remark first thatifa € IMM,,(E), x € IMN,,,,,(E), and
a~lexist, then

a  —x\7U st arlxat?t
() ( )<4.2>
0 a 0 G
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In particular, the (i, L + m), entry of this 2x2 block matrix is

the (i, Dentry of a"'xa~! choosing x to be the (j, k) matrix
unit, we find that for this choice of x, one of the matrix

a

0
d~! takingaanda’tobe f — Y @ I, respectively, we get that

CR(Y; B)is closed under multiplication.

— -1
coefficients of( dx) is he product of the (k, [) entry of

Thus, the linear span of CR(Y; B)is an algebra, and to
prove the second assertion, it suffices to prove that its
closure contain and B. since the linear span of invertible
elements in B is B it will suffice to prove that the invertible
elements in B and Y are in the closure of the linear span of
CR(Y; B)if b € B is invertible, then so is (Ab — Y)for A large
enough. (Ab — Y)™! € CR(Y; B), and lim; _,,, 171 (Ab —
Y)~1=p~1. The assertion about Y follows from.

y=lim._ e (e (et =-Y)1—e2(c2-Y) " 1)4.3)
44

Let E’ denote the dual of the banach space E the full resolvent
transform 1s defined to be the map.

U:E' - Ap((Y; B)) (4.4)
So that U (¢) = (un ((p))nzl'where
Un (0)() = (¢ ® idypy) (Ra(Y:B()) € Ap(pn(Y:B))(4.5)

(Remark that U, (p)( ))is fully matricial analytic because R,,(Y: B)(.)
is fully matricial an-alytic

Proposition 8.2 if @1 ¢,¢3 =€ E' are such that
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@1(a) = (02 ® @3)(0a)(4.6)
For all a € RA(Y; B), then

L(Q) =u (Qy) U (Q3)(4.7)

Proof: it is actually sufficient that the assumption holds for a
€ RA(Y; B)in order to get the conclusion indeed, applying the
assumption to each matrix coefficient of R,,(Y; B)(b) = a, we
have that.

Ly ((Pl) (b) = ((Pz X l'dimn)(a X idimna)
= (¢, ® idy )(0 ® idgy, @)(4.8)

= Uy (p2)(b) Uy, (@3)(b)

4.5

Before stating the duality property involving he co-multiplication
of A(P (Y; B)), we need to clarify a notation we will use. If
b=Yb,; @e " €M, (B) i b, @ el €My, (Bland
b' =Y bp; ® e’ € M, (B), We denote by b @ b’

i.Jj
€ M,,,,(B) the mn x mn matrix, or equivalently, the element in

M, ® Mygivenby ¥, i e Qe ® (b ;by;)- Equivalently,
fa@BeEM @Banda' ® B €M, ® B, then (' ® B’ €
M, Q B) then(a Q@ f) Qp (' ® B =a @ a’ ® BB

Proposition 4.3 if ¢ €Q E’, b, € p,,(Y; B),and b, € p,,(Y; B), then
(¢ ® idm, ) (Rm(Y; B)(b1) @k Rn(Y; B)(b2))

= —am'n(um+n ((p))(bli:bZ)
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Proof. Returning to the computations on which the proof of Lemma 9.1

relies, Leta = ;Y @ I, andletx =1 Q& el.('rjn) so that

a  —x\!
R (V3 BY) ® R BB) ) = (O )@
a
il+m

On the other hand, section 7.6 and Lemma 7.1 give that

b, —x\ !
(am,n(um+n ((p))(ble))(i,j)(k,i) =| — Umin ((P) ( )

0 b,
a —x\ 1
=- (‘P)®idsmn+n< )
0 a ,
l,m+1

Which implies the desired result.
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Remark 4.4 proposition 4.2 and 4.3 express the fact that the
LI-transform relates “ dual GDQ structure” on E’ with the “
topological GDQ structure” of A(p(Y; B)) endowed with he

comultiplication - d these duality statements take this
indirect form because of he rather algebraic setting of our
discussion i. e. withoutanalyticassumptionsonthe

comultiplicationofRA(Y; B)andacloserexamination

of he topologicaltensor product in the GDQ structure of
A(p(Y;B))

Proposition.4.5 (i) the map Uis injective.

(ii )An element ¢ € E’ satisfies the trace-condition
@ ([E, E]) = 0if and only if

Omn (Uman (©))(byby) = €°0p 1 (Upmin (9))(boby)(4.13)

Which follows from the trace condition. The converse, that is,
all these equalities taken together imply that ¢is a trace,
follows from Lemma 9.1

4.6

We will now consider dual-positivity. We assume for the rest
of section 4 that E and B are C*-algebras and thatY = Y".
Note that (p, (Y; B)) = p,(Y; B)*and R,(Y; B)(b) =

(R, (Y; B)(b*))*= R(Y; B) under these assumptions
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Propositions 4.6 Let ¢ € E' then

@ (ule))
(i) U (@)*=U (¢)if ad only if ¢~
(iii) ¢ ®= 0 if and only if U (¢) =0 in the sense of dual

positivity in A(p(Y; B))

Proof.(i)ifb € p,,(Y; B) and t denotes transpose of a matrix,
then

(Un (@D)B) = (9" ® idp J(b—Y ® 1))
_ (p®ida, ) (b-YR® 1,)~1)*)
T =(e®idm, ) (=Y 1)~1)*)

(iii) It follows from (i) and the injectivity of LI.

(iv)  We first prove the only if part. Assume ¢ > 0 and
leth € M, h = 0. By Lemma 7.1 and he definition
of dual positivity , we must check that in the 2n x

2n matrix ¢ ® idgy, ((b Qb -V ® I, —1®

Yon (h))_l), The right n x n corner block is positive

since this block is precisely ((p (%) idgmz)((b -
l,,)”1), the assertion follows from the
assumptions ¢ = 0 and h = 0.

To prove the converse, note that from the proof of the only
if part, the dual positivity of — U (¢) implies (((p X
idyp,)(b—Y ® 1) DNA®M( ~Y ® 1,)7!) = 0h €

I, this is turn implies @ (E£*) > Ofor any £in the linear
span of CR(Y; B). indeed, if £ =c11); + - + ¢11)4
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Where ¢; € and 1), is some matrix coefficient of(b; — Y ® )t

Then it is easily seen that

EE=1QB-Y® L) A@MN(B —Y® 1) (18K

Forsomeh>0,he M, n=ny +---+n,, and
p=>b; ® ..Q b, hence p(t£)=kp &
idgp,(b-Y® 1) @NB -Y® 1)k =0

Remark 4.7 the dual positivity of U (¢)is equivalent to the

dual positivity of U (¢)with respect to - d which is then in
agreement with 0 intertwining the GDQ structures of £’ and

(A(p(Y; B)), ~9)

Remarks 4.8 to characterize states in E via their U-transform, in
addition to dual.Positivity ofll (¢) one requires ¢ (1) = 1,
which is equivalent to In lim,,,n U; (¢)(nl) =1

(nl € p;(p(Y; B)for(n = ||Y|])

Remark 4.9 one situation in free probability, where the dual
multiplication appears, is the definition of the conjugate variable
3 (X; B) see [13,15,16] in the corresponding W *probability
context, (M, t), B(X)cM, with 1 € B a von Neumann
subalgera t a trace state, and assuming B(X) to be weakly
densein M, let p(.) = T(S(X: B))be the functional defined
by d(X: B) then,ifa € B(X), we have p(a) = (t ®
7)(0,.5,)0r, denoting by #, he dual multiplication T # 7¢
identifying [, (M, T)with a part of the predual M, of M and
hence t with 1, the same relation would be written in the
form1l #1=3(X;B.)

Similarly, the higher conjugates see 13 amount to(p + 1) fold
dual products T # --- # T or in the other notation 7 # -+ # T
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Note added in proof. We have recently learned more about work
in combinatorics on bialgebras with derivation comultiplication.
Around the same time with our paper .the selfduality of the
structure was also found independently by Aguiar in [1]. Besides
“infinitesimal bialgebras” and “GDQ rings,” other names for
related structures have been used: “eHopfalbebras,” *
infinitesimalHopfalbebras,” and “Newtonian bialgebras.”

Concerning the compatibility relations [4] satisfied by the
partial difference quotient derivations, we have learned that
certain structures with several comultiplications satisfying such
compatibility relations have been considered by Leroux in [8]
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