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Chapter (1) 

Introduction: 

Definition (1-1): 

In this dissertation a survey of approximation theory and methods is given. Some 

algorithms are written and implemented. The theory mainly depends on 

approximation in normed linear spaces and inner product spaces. 

In this chapter basic definitions existence and convergent the norms are given. 

The remaining chapter cover some standard method for approximation.  

Given a continuous function f defined on a closed interval [ a, b] and a positive 

integer n , can we represent f by a polynomial : 

(ݔ)݌ = 	∑ ܽ௥ 	௔௡
௞ୀ଴  ௞ , of degree at most n in such a way that the maximum error atݔ

any point x in [ a, b ] is controlled.  

In particular, is it possible to construct P so that the error: 

max ܽ	 ≤ ݔ ≤ (ݔ)݂|	ܾ −   is minimized |(ݔ)݌

Best Approximations in Normed spaces: 

Chebysher’s problem is perhaps best understood by rephrasing in modern terms. 

What we have here is a problem of best approximation in normed Linear space. 

Recall that a norm on a (real) vector space x is a nonnegative function on x 

satisfying:- 

ห|ݔ|ห ≥ 0	ܽ݊݀	ห|ݔ|ห = 0	 ⟺ ݔ = 0  



2 
 

ห|ݔߙ|ห = ,ห|ݔ|ห	|ߙ| ݔ	ݕ݊ܽ	ݎ݋݂ ∈ ,ݔ ݔ ∈   ܴܫ

ห|݇ + ห|ݕ ≤ ห|ݔ|ห + 	 ห|ݕ|ห, ,ݔ	ݕ݊ܽ	ݎ݋݂ ݕ ∈ ܺ  

Any norm on X induces a in a metric or distance function by setting: ݀݅ݏ	ݔ)	(ݕ =

ห|ݔ −   :ห. The abstract version of vector problem(s) can now be restated|ݕ

Given a subset (or even subspace) Y of X and point ݔ	 ∈ ܺ, is there an element 

	ݔ ∈ ܻ that is nearest to x ?? that is, can we find a vector ݔ	 ∈ ܻ such that  

ห|ݔ − ห|ݕ = min௭∈௒ห|ݔ − ܼ|ห. 

It’s not hard to see that a satisfactory answer to this question will require that we 

take Y to be a closed set in X, for otherwise point in തܻ 	|	ܻ (sometimes called the 

boundary of the set Y) will not have nearest points indeed which point in the 

interval [0,1] is nearest to 1. 

Less obvious existence (and certainly the uniqueness) of nearest points. For the 

time being we will consider. 

The case where Y is a closed subspace of a normed Liner space X.  

Finite, Dimensional Vector Spaces: 

The key to the problem of polynomial approximation is the fact that each of the 

spaces Pn, is finite dimensional. To see how finite dimensional subspaces of 

arbitrary normed spaces. 

Lema (1.2): Let V be a finite – dimensional vector space. Then all norms on V  

are equivalent. That is if ||.|| and |||.||| are norms on V, then there erist constant  

0 < A < B < ∞ such that  
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ห|ݔ|หܣ ≤ ቚห|ݔ|หቚ ≤ ݔ ห, it vectors|ݔ|หܤ ∈ ܸ 

Proof: suppose that V is n-dimensional and that ||.|| is norm on V. fix a basis 

݁ଵ, … ݁௡ for V and consider the norm. 

ቮอ෍ܽ௜݁௜

௡

௜ୀଵ

อቮ = ෍|ܽ௜|
௡

௜ୀଵ

= ห|(ܽ௜)௖ୀଵ௡ |หଵ 

For ݔ = ∑ ܽ݅݁݅௡
௜ୀଵ ∈ ܸ. Because ݁ଵ, … ݁௡ is a basis for V, It’s not hard to see that 

ห|. |หଵ	is indeed a norm on V. 

The map (ܽ݅)௜ୀଵ௡ → ∑ ܽ݅݁݅௡
௜ୀଵ  is obviously both one-to-one and onto. In fact this 

correspondence is an isometry between ቀܴܫ௡, ห|. |หଵቁ and ቀܸ, ห|. |หଶቁ it now suffices 

to show that ห|. |ห and ห|. |หଵ are equivalent. 

One inequality is easy to show, indeed notice that  

ቮอ෍ܽ௜݁௜

௡

௜ୀଵ

อቮ ≤ ෍|ܽ௜|
௡

௜ୀଵ

ห|݁௜|ห ≤ ቀmax
ଵஸ௜ஸ௡

ห|݁௜|หቁ෍|ܽ௜|
௡

௜ୀଵ

= ܤ ቮอ෍|ܽ௜݁௜|
௡

௜ୀଵ

อቮ 

The real work comes in establishing the other inequality now the inequality we’ve 

just established shows that the function ݔ → ห|ݔ|ห is continuous on the space 

ቀܸ, ห|. |หଵቁ indeed ห|ݔ|ห − ห|ݕ|ห ≤ ห|ݔ − ห|ݕ ≤ ݔ|หܤ − ,ݔ หଵ, for any|ݕ 	ݕ ∈ ܸ. 

Thus ห|. |ห assumes a minimum value on the compact set ܵ = ቄݔ ∈ :ݒ ห|ݔ|หଵ = 1ቅ,  

in particular, there is a some ܣ > 0 such that ห|ݔ|ห >   whenever ܣ
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ห|ݔ|หଵ = 1,  the inequality we need now follows from the homogeneity of the  

norm ቤฬ ௫
ห|௫భ|ห

ฬቤ ≥ ܣ ⟹ ห|ݔ|ห ≥  หଵ|ݔ|หܣ

Corollary (1.3): 

Every finite – dimensional normal space is complete [that is, every Cauchy 

sequence converges]. in particular if Y is a finite – dimensional subspace of a 

normed Linear space X, then Y is a closed subset of X. 

 

Corollary (1.4): 

Let Y be a finite – dimensional normed space, let  ݔ	 ∈ ܯ and Let ݕ > 0. Then any 

closed ball: 

൛ݕ ∈ ܻ: ห|ݔ − ห|ݕ ≤  .ൟ is compactܯ

Proof: 

Because translation is an isometry, it clearly suffices to show that the set ൛ݕ ∈

ܻ: ห|ݕ|ห ≤  .ൟ (i.e. the ball about 0) is compactܯ

Suppose now that Y is n-dimensonal and that ݁ଵ, … ݁௡is a basis for Y. (from 

Lemma (1-2), we know that there is some ܣ > 0 such that : 

|෍|ܽ௜ܣ
௡

௜ୀଵ

≤ ቮอ෍ܽ௜݁௜

௡

௜ୀଵ

อቮ  ݈݈ܽ	ݎ݋݂			,		

ݔ =෍ܽ௜݁௜

௡

௜ୀଵ

∈ ܻ. 
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In particular: 

|௜ܽ|ܣ ≤ ቮอ෍ܽ௜݁௜

௡

௜ୀଵ

อቮ ≤ ܯ ⟹ |ܽ௜| ≤
ܯ
ܣ
, ݅	ݎ݋݂ = 1, … , ݊ 

Thus, ൛ݕ ∈ ܻ: ห|ݕ|ห ≤   :ൟ is a closed subset of the compact setܯ

൝ݔ =෍ܽ௜݁௜

௡

௜ୀଵ

= |ܽ௜| ≤ ,ܣ/ܯ ݅ = 1, … , ݊ൡ 

=  ௡[ܣ/	ܯ,	ܣ/ܯ−]

Theorem (1.5): Let Y be a finite – dimensional subspace of anormed Linear space 

X, and Let ݔ	 ∈ ܺ,	then there exist a (not necessarily unique) vector ݕ∗ ∈ ܻ: 

ห|ݔ − ห|∗ݕ = min
௬∈௒

ห|ݔ −  	ห|ݕ

for all  ݕ ∈ ܻ	 that is there is best approximation to x by elements from Y. 

Proof: 

First notice that because ܱ ∈ ܻ, we know that any nearest point ݕ∗ will satisfy: 

ห|ݔ − ห|∗ݕ ≤ ห|ݔ|ห = ห|ݔ − 0|ห 

Thus it suffices to look for ݕ∗ in the compact: 

set : ݇ = ݕ} ∈ ܻ: ห|ݔ − ห|ݕ ≤ ห|ݔ|ห}  

we need only note that the function  ݂(ݕ) = ห|ݔ −  : ห is continuous|ݕ

(ݕ)݂| − |(ݖ)݂ = ݔ‖| − ‖ݕ − ݔ‖ − ‖ݖ ≤ ݕ‖ −  and hence attains a minimum ,|‖ݖ

value at some point ݕ∗ ∈  .ܭ
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Corollary (1.6): for each  ݂ ∈ ܿ[ܽ, ܾ] and each +ve integer n, there is a (not 

necessarily unique). 

Polynomial ௡ܲ
∗ ∈ ௡ܲ = ห|݂ − ௡ܲ

∗|ห = 	min௣∈௉೙ห|݂ −  .ห|݌

Lemma (1.7): Let Y be a finite dimensional subspace of anormed Linear space X, 

and suppose that each ݔ ∈ ܺ has aunique nearest point ݕ௫ ∈ ܻ. 

Then the nearest point map ݔ →  .௫ is continuousݕ

Proof: 

Let’s write (ݔ)݌ = ௡ݔ ௫ for the nearest point map and Let’s suppose thatݕ →  in ݔ

X. we want to show that ݌(ݔ௡) ⟶  and for this it’s enough to show that there ,(ݔ)ܲ

is a subsequence of ݌(ݔ௡) that converges to (ݔ)݌. 

Because the sequence (ݔ௡) is bounded in X. 

Say ห|ݔ௡|ห ≤  :for all n, we have ܯ

ห|ܲ(ݔ௡)|ห ≤ ห|ܲ(ݔ௡) − ௡|หݔ + ห|ݔ௡|ห ≤ 2ห|ݔ௡|ห ≤  .ܯ2

Thus ܲ(ݔ௡) is bounded sequence in Y, a finite, dimensional space.  As such, by 

passing to subsequence we may suppose that ൫ܲ(ݔ௡)൯ converges to some element 

଴݌ ∈ ܻ. 

Now we need to show that ଴ܲ =   But .(ݔ)ܲ

ห|ܲ(ݔ௡) − ௡|หݔ ≤ ห|ܲ(ݔ) −  ௡|ห , for any nݔ

Hence letting ݊ ⟶ ∞ we get: 

ห| ଴ܲ − ห|ݔ ≤ ห|ܲ(ݔ) −  ห|ݔ
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Because nearest point in Y are unique, we must have ଴ܲ =  .(ݔ)ܲ

Theorem (1.8): Let Y be a subspace of a normed Linear space X, and Let ݔ ∈ ܺ. 

The set ௫ܻ, consisting of all best approximation to x out of y, is bounded convex 

set. 

Proof: 

As we’ ve seen, the set ௫ܻ is a subset of the ball {ݕ ∈ ݔ = ห|ݔ − ห|ݕ ≤ ห|ݔ|ห} and as 

such is bounded. 

[more generally, the set ௫ܻ is a sub set of the sphere ൛ݕ ∈ ݔ ∶ ห|ݔ − ห|ݕ = ݀ൟ where 

݀ �= ,ݔ)ݏ݅݀ (ݕ = ݂݅݊
ݕ ∈ ܻห|ݔ −  . หൠ|ݕ

Next recall that a subset K of a vector space V is said to be convex if K contains 

the Line segment joining any pair of it’s points. 

Specifically, K is convex if: 

,ݔ ݕ ∈ 	0				,			ܭ ≤ ߣ ≤ 	1 ⟹ ݔߣ + (1 − ݕ	(ߣ ∈ ݇. 

Thus given ݕଵ , ଶݕ ∈ ௫ܻ and 0	 ≤ ߣ ≤ 	1 , we want to show that the vector ݕ∗ =

ଵݕߣ + (1 − ଶݕ(ߣ ∈ ௫ܻ. 

But ݕଵ, ଶݕ ∈ ௫ܻ means that: 

ห|ݔ − ଵ|หݕ = ห|ݔ − ଶ|หݕ = min
௬∈௒

ห|ݔ −  ห|ݕ

Hence: ห|ݔ − ห|∗ݕ = ห|ݔ − (ଵݕߣ) + (1 −  ଶ|หݕ(ߣ

                              = ห|ݔ)ߣ − (ଵݕ + (1 − ݔ)(ߣ −   ଶ)|หݕ

                               ≤ ݔ)|หߣ − (ଵݕ + (1 − ݔ)(ߣ −   ଶ)|หݕ
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                               = min௬∈௒ห|ݔ −   ห|ݕ

Consequently, ห|ݔ − ห|∗ݕ = min௬∈௒ห|ݔ − ∗ݕ ห, that is|ݕ ∈ Yଡ଼	. 

Corollary (1.9): if X has strictly convex norm, then for any subspace Y of X and 

any point ݔ ∈ X.  

There can be at most one best approximation to x out of Y. that is Yଡ଼	is either 

empty or consist of a single point. 

In order to arrive at condition that’s a somewhat eiser to check it’s translate our 

original definition  into a statement about the triangle inquality in X. 

Lemma (1.10): A normed space X has astrictly convex norm if and only if the 

triangle inequalify is strict on nonparallel vector, that is if: 

	ݔ ≠ ,ݕݔ	 	ݕ ≠ ,ݔߙ	 ߙ	݈݈ܽ ∈ ܴܫ → ห|ݔ + ห|ݕ < ห|ݔ|ห + ห|ݕ|ห	 

Proof: 

First suppose that X is strictly convex, and Let x and y be nonparallel vactor in X, 

then in particular the vectors ݔ/ห|ݔ|ห and y/ห|y|ห must be different 

Hence: 

ተቮቌ
ห|ݔ|ห

ቚห|ݔ|ห + ห|ݕ|หቚ
ቍ

ݔ
ห|ݔ|ห

+ ቆ
ห|ݕ|ห

ห|ݔ|ห + ห|ݕ|ห
ቇ

ݕ
ห|ݕ|ห

ቮተ < 1 

That is ห|ݔ − ห|ݕ < ห|ݔ|ห + ห|ݕ|ห. 
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Next suppose that the triangle inequality is strict on nonparallel vectors, and let 

ݔ ≠ ݕ ∈ ܺwith ห|ݔ|ห = ݎ = ห|ݕ|ห. if x and y are parallel, then we must have y = -x. 

in this case. 

ห|ݔߣ + (1 − ห|(ߣ = ߣ2| − 1|ห|ݔ|ห <  ݎ

Because −1 < ߣ2 − 1 < 1 whenever	0 < ߣ < 1. Otherwise x and y are 

nonparallel. 

Thus for any 0 < ߣ < 1, the vectors ݔߣ and (1 −  are likewise nonparallel and ݕ(ߣ

we have: 

ห|ݔߣ + (1 − ห|ݕ(ߣ < ห|ݔ|หߣ + (1 − ห|ݕ|ห(ߣ =  ݎ

Examples (1.11): 

(1) The usual norm on C[a,b] is not strictly convex (and so the problem of 

uniqueness of best approximation is all the more interesting to tockle). For 

example if ݂(ݔ) = (ݔ)݃ and ݔ = ݂ ଶ in C[0,1] , thenݔ ≠ ݃ and ห|݂|ห = 1 =

ห|݃|ห while ห|݂ + ݃|ห = 2. 

(2) The usual norm on ܴܫ௡ is strictly convex as is any one of the norms ห|. |ห݌ 

for 1 < ݌ < ∞. 

The norm ห|. |ห1 and ห|. |ห∞, on the other hand are not strictly convex. 

(2) Approximation by Algebraic Polynomials  

(2-a) The weierstrass theorem: 

Let’s begin with some notation here we’ll be concerned with the problem of the 

best (uniform) approximation of a given function ݂ ∈ ,ܽ]ܥ ܾ] by elements from ௡ܲ 

the subspace of algebraic polynomial of degree at most n in c[a, b]. we know that 
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the problem has solution (possibly more than one), which we’ve chosen to write as 

௡ܲ
∗ we set:  

(݂)௡ܧ = min
௉∈௉೙

ห|݂ − ܲ|ห = ห|݂ − ௡ܲ
∗|ห 

Because ௡ܲ < ௡ܲାଵ for each n, it’s clear that ܧ௡(݂) ≥  ௡ାଵ(݂) for each n. our goalܧ

here is to prove that ܧ௡(݂) → 0. We’ll complish this by proving. 

Theorem (2.1): (the weierstrass theorem, 1885). 

Let ݂ ∈ ܿ[ܽ, ܾ]. Then for every ∈> 0, there is a polynomial p such that 

 ห|݂ − ห|݌ <∈. 

[we have more than one proof for this theorem]. 

(1) It follows from weierstrass theorem that for some sequence of rolesnomials 

݂|we have ห (௞ݍ) − ௞|หݍ → 0, we may suppose that ݍ௞ ∈ ௡ܲೣ  where (݊௞) is 

increasing. 

Where it follows that ܧ௡(݂) → 0; that is ௡ܲ
∗ → ݂ this an important first step 

in determining the exact of ܧ௡(݂)as a function of ݂ and ݊. We’ll look for 

much more precise information by show the all proofs of weierstrass 

theorem. 

Lemma (2.2): if the weierstrass theorem holds for c[0,1], then it also holds for  

c [a, b] and conversely. In fact c [0,1] and c [a, b] are for all practical purpose, 

identical they are linearly isometric as normed spaces, order isomorphic as lattices, 

and isomorphic as algebras (Rings). 

Proof: 

First notice that the function: 
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(ݔ)ߪ = ܽ + (ܾ − ݋																													,	ݔ(ܽ ≤ ݔ ≤ 1 

Defines a continuous, one-to-one map from [0,1] onto [a, b]. Given ݂ ∈ ܿ[ܽ, ܾ], it 

follows that ݃(ݔ) =  defines an element of c[0,1], moreover ((ݔ)ߪ)݂

max
଴ஸ௫ஸଵ

|(ݔ)݃| = max
௔ஸ௧ஸ௕

 |(ݐ)݂|

Now given ߪ > 0, suppose that we can find apolyuomial p such that ห|݃ − ห|݌ <∈ , 

in other words suppose that: 

max
଴ஸ௫ஸଵ

|݂(ܽ + (ܾ − |(ݔ(ܽ <∈ 

Then:                                   max௔ஸ௧ஸ௕ ቚ݂(ݐ) − ݌ ቀ௧ି௔
௕ି௔

ቁቚ <∈ 

But if (ݔ)݌ is a polynomial in x, then (ݐ)ݍ = ݌ ቀ௧ି௔
௕ି௔

ቁ <∈ is a polynomial in t 

satisfying ห|݂ − ห|ݍ <∈. 

← if ݃(ݔ) is an element of c[0,1], then ݂(ݐ) = ݃ ቀ௧ି௔
௕ି௔

ቁ 		ܽ ≤ ݐ ≤ ܾ, defines an 

element of c[a, b]. Moreover if (ݐ)ݍ is a polynomial in ݐ approximating ݂(ݐ), then 

(ݔ)݌ = ܽ)ݍ + (ܾ −  .(ݔ)݃ is a polynomial in x approximating (ݔ(ܽ

Bernstein’s Proof: 

The proof of the weierstrass theorem we present there is due to the great Russian 

mathematician S.N Bernstein in 1912. Bernestein’s proof is of interest of a variety 

of reasons, perhaps most important is that Besenstein actually displays a sequence 

of polynomials that approximate a given ݂ ∈ ܿ[0,1]. 

Moreover, as well see later, bernestein’s proof generalites bo yield a powerfull, 

unifying theorem called the (Bohmall-Korovkin theorem), if f is any bounded 

function on [0,1], we define the sequence of berestein polynomials for f by:- 
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൫ܤ௡(݂)൯(௫) =෍݂൬
݇
݊
൰

௡

௞ୀ଴

. ቀ݊݇ቁ ݔ
௞(1 − 0										௡ି௞,(ݔ ≤ ݔ ≤ 1 

Note that ܤ௡(݂) is apolynomial of degree at most n. 

Also it is easy to see that ൫ܤ௡(݂)൯(0) = ݂(0) and (ܤ௡(݂)(1)) = ݂(1). in general 

൫ܤ௡(݂)൯(ݔ) is an average of the numbers ݂ ቀ௞
௪
, ݇ = 0, … , ݊, ቁ 

Berestien’s theorem states ܤ௡(݂) ⇉ ݂ for each ݂ ∈ ܿ{0,1} surprisingly, the proof 

actually only requires that we check three easy cases: 

଴݂(ݔ) = 1	, ଵ݂(ݔ) = ,ݔ ଶ݂(ݔ) =  ଶݔ

Lemma (2.3):  

(i) ܤ௡( ଴݂) = ଴݂    and    ܤ௡( ଵ݂) = ଵ݂ 

(ii) ܤ௡( ଶ݂) = ቀ1 − ଵ
௡
ቁ ଶ݂ +

ଵ
௡ ଵ݂	,  and hence ܤ௡( ଶ݂) ⇉ ଶ݂ 

(iii) ∑ ቀ௞
௡
− ቁݔ

ଶ௡
௞ୀ଴ ቀ݊݇ቁ ݔ

௞(1 − ௡ି௞(ݔ = ௫(ଵି௫)
௡

≤ ଵ
ସ௡
,				݂݅	0 ≤ ݔ ≤ 1 

(iv) Given ߜ > 0 and 0 ≤ ݔ ≤ 1, let F denots the k in {0, …, n}for which 

ቚ௫
௡
− ቚݔ ≥  Then .ߜ

෍ቀ݊݇ቁ ݔ
௞(1 − ௡ି௞(ݔ

௞∈ி

≤
1

ଶߜ4݊
 

Proof:  that ܤ௡( ଴݂) = ଴݂ follows from the binomial formula  

෍ቀ݊݇ቁ ݔ
௞(1 − ௡ି௞(ݔ

௡

௞ୀ଴

= ݔ] + (1 − ௡[(ݔ = 1 

To x that ܤ௡( ଵ݂) = ଵ݂, first notice that for ݇ ≥ 1we have: 
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݇
݊
ቀ݊݇ቁ =

(݊ − 1)!
(݇ − 1)! (݊ − ݇)!

= ቀ݊ − 1
݇ − 1ቁ 

 

Consequently: 

                   ∑ ௞
௡
ቀ݊݇ቁ ݔ

௞(1 − ௡ି௞௡(ݔ
௞ୀ଴ = ∑ݔ ቀ݊ − 1

݇ − 1ቁ ݔ
௞ିଵ(1 − ௡ି௞௡(ݔ

௞ୀଵ  

                                                              = ∑ݔ ൬݊ − 1
݆ ൰ (1 − ݇)(௡ିଵ)ି௝௡ିଵ

௝ୀ଴ =  ݔ

Next, to compute ܤ௡( ଶ݂), we rewrite twice 

 ቀ௞
௡
ቁ
ଶ
ቀ݊݇ቁ =

௞
௡
ቀ݊ − 1
݇ − 1ቁ =

௡ିଵ
௡
. ௞ିଵ
௡ିଵ

ቀ݊ − 1
݇ − 1ቁ +

ଵ
௡
ቀ݊ − 1
݇ − 1ቁ , ݂݅	݇ ≥ 1 

                                     = ቀ1 − ଵ
௡
ቁ ቀ݊ − 2
݇ − 2ቁ +

ଵ
௡
ቀ݊ − 1
݇ − 1ቁ , ݂݅	݇ ≥ 2 

Thus: 

෍൬
݇
݊
൰
ଶ

ቀ݊݇ቁ ݔ
௞(1 − ௡ି௞(ݔ

௡

௞ୀ଴

= ൬1 −
1
݊
൰෍ቀ݊ − 2

݇ − 2ቁ
௡

௞ୀଶ

௞(1ݔ −  ௡ି௞(ݔ

+
1
݊
෍ቀ݊ − 1

݇ − 1ቁ
௡

௞ୀଵ

௞(1ݔ − ௡ି௞(ݔ = ൬1 −
1
݊
൰ ଶݔ +

1
݊
 ݔ

Which establishes (ii) because. 

ห|ܤ௡( ଶ݂) − ଶ݂|ห =
1
݊
ห| ଵ݂ − ଶ݂|ห → ݊	ݏܽ	0 → ∞ 

To prove (iii) we combine the result in (i), (ii) and simplify. Because 
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൫(݇/݊) − ൯ݔ
ଶ
= 

      ∑ ቀ௞
௡
− ቁݔ

ଶ௡
௞ୀ଴ ቀ݊݇ቁ ݔ

௞(1 − ௡ି௞(ݔ = ቀ1 − ଵ
௡
ቁ ଶݔ + ௫

௡
− ଶݔ2 +  ଶݔ

                                                       = ଵ
௡
1)ݔ − (ݔ ≤ ଵ

ସ௡
, 0	ݎ݋݂ ≤ ݔ ≤ 1 

Finally to prove (iv) note that 1 ≤ ൫(݇/݊) − ൯ݔ
ଶ
 ଶߜ/

for ݇ ∈  :and hence ,ܨ

෍ቀ݊݇ቁ ݔ
௞(1 − ௡ି௞(ݔ ≤

1
ଶߜ

௞∈ி

෍൬
݇
݊
− ൰ݔ

ଶ

ቀ݊݇ቁ ݔ
௞(1 − ௡ି௞(ݔ

௞∈ி

 

                                                     ≤ ଵ
ఋమ
∑ ቀ௞

௡
− ቁݔ

ଶ
ቀ݊݇ቁ ݔ

௞(1 − ௡ି௞௡(ݔ
௞ୀ଴  

                                               < ଵ
ସ௡ఋమ

			,		(from (iii)) 

Now we’re ready for the proof of Bernstin’s theorem:- 

Proof: 

Let ݂ ∈ ܿ[0,1] and let ∈> 0. Then because f is uniformly continuous, there is a 

ߜ > 0 such that: 

(ݔ)݂| − |(ݕ)݂	 <	∈/2 whenever |ݔ − |ݕ <  Now we use the previous lemma to .ߜ

estimate ห|݂ −  .௡(݂)|หܤ

First notice that because the numbers ቀ݊݇ቁ ݔ
௞(1 −  ௡ି௞ are nonnegative and sum(ݔ

to 1, we have  
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(ݔ)݂| − |(ݔ)(݂)௡ܤ = อ݂(ݔ) −෍ቀ݊݇ቁ ݂ ൬
݇
݊
൰ ௞(1ݔ − ௡ି௞(ݔ

௡

௞ୀ଴

อ 

= อ෍(݂ݔ) − ݂ ൬
݇
݊
൰ ቀ݊݇ቁ ݔ

௞(1 − ௡ି௞(ݔ
௡

௞ୀ଴

อ 

≤ ෍ฬ݂(ݔ) − ݂ ൬
݇
݊
൰ฬ ቀ݊݇ቁ ݔ

௞(1 − ௡ି௞(ݔ
௡

௞ୀ଴

 

Now fix n (to be specified in a moment) and let F denote the set of k in {0, … , n} 

for which |(݇/݊) − |ݔ ≥ (ݔ)݂|  Then .ߜ − ݂(݇/݊)| <∈/2 for  ݇ ∉  .ܨ

While  |݂(ݔ) − ݂(݇/݊)| ≤ 2ห|݂|ห	for ݇ ∈   Thus .ܨ

ห݂(ݔ) − ൫ܤ௡(݂)൯(ݔ)ห ≤
∈
2
	෍ ቀ݊݇ቁ ݔ

௞(1 − ௡ି௞(ݔ

௞∉ி

+ 2ห|݂|ห෍ ቀ݊݇ቁ ݔ
௞(1 − ௡ି௞(ݔ

௞∉ி

 

                                      < ∈
ଶ
. 1 + 2ห|݂|ห. ଵ

ସ௡ఋమ
  , from (iv) of     Lemma (2.3) 

<∈, ݊	ݐℎܽݐ	݀݁݀݅ݒ݋ݎ݌ > ห|݂|ห/∈  ଶߜ

Landau’s proof: 

Just because it’s good for us, let’s give a second proof of weierstrass’s theorem. 

This one to landau in 1908. First given ݂ ∈ ܿ[0,1], notice that it saffice’s to 

approximate f-p, where p is any polynomial. In particular by subtracting the Linear 

function ݂(0) + ൫݂(1)ݔ − ݂(0)൯, 

may suppose that ݂(0) = ݂(1) = 0 and, that ݂ ≡ 0 out side [0,1]. That is we may 

suppose that f is defined and uniformly continuous an all of IR.  
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Again we will display a sequence of polynomials that converge uniformly to f, this 

time we define: 

(ݔ)௡ܮ = ௡ܥ	 න݂(ݔ + 1)(ݐ − (ଶݐ
ଵ

ିଵ

 ݐ݀

where ܥ௡ is chosen so that:  

௡ܥ න(1 − ଶ)௡ݐ
ଵ

ିଵ

ݐ݀ = 1 

Note that by our assumptions on f we may rewrite  ܮ௡(ݔ) as: 

(ݔ)௡ܮ = ௡ܥ	 න ݔ)݂ + 1)(ݐ − ଶ)௡ݐ
ଵି௫

ି௫

ݐ݀ = 1)(ݐ)௡න݂ܥ	 − ݐ) − ଶ)௡(ݔ
ଵ

଴

 ݐ݀

Written this way, it’s clear that ܮ௡ is a polynomial in ݔ of degree at most ݊. 

We first need to estimate ܥ௡. An easy induction argument will convince you that 

(1 − ଶ)௡ݐ ≥ 1 −  :ଶ and so we getݐ݊

න(1 − ଶ)௡ݐ
ଵ

ିଵ

ݐ݀ ≥ 2 න (1 − (ଶݐ݊

ଵ/√௡

଴

ݐ݀ =
4
3√݊

>
1
√݊

 

from which it follows that ܥ௡ < √݊. 

In particular, for any 0 < ߜ < 1. 

௡න(1ܥ − ଶ)௡ݐ
ଵ

ఋ

ݐ݀ < √݊(1 − ଶ)௡ߜ → 0						(݊ → ∞) 
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Which is the inequality we’ll need. 

Next, let ∈> 0 be given, and choose 0 < ߜ < 1 such that: 

(ݔ)݂| − |(ݕ)݂ ≤∈/2 when ever |ݔ − |ݕ ≤  .ߜ

Then because ܥ௡(1 − ଶ)௡ݐ ≥ 0 and integrates to 1 we get  

(ݔ)௡ܮ| − |(ݔ)݂ = ቮܥ௡ න[݂(ݔ + (ݐ − 1)[(ݔ)݂ − ଶ)௡ݐ
ଵ

ିଵ

 ቮݐ݀

≤ ௡ܥ න|݂(ݔ + (ݐ − 1)	|(ݔ)݂ − ଶ)௡ݐ
ଵ

ିଵ

 ݐ݀

≤
∈
2
௡ܥ න 	(1 − ଶ)௡ݐ

ఋ

ିఋ

ݐ݀ + 4ห|݂|หܥ௡න(1 − ଶ)௡ݐ
ଵ

ఋ

 ݐ݀

 

≤
∈
2
+ 4ห|݂|ห√݊(1 − ଶ)௡ߜ <∈ 

Provided that n is sufficiently large. 

Improved Estimates: 

To begin, we will need a bit more notation. The modulus of continuity of abounded 

function f on the interval [a,b] is defined by: 

(ߜ)௙ݓ = ,ܽ])௙ݓ ܾ], (ߜ = (ݔ)݂|}	݌ݑݏ − :|(ݕ)݂ ,ݔ ݕ ∈ [ܽ, ܾ], ݔ| − |ݕ ≤  {ߜ

For any ߜ > 0. 
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Note that  ݓ௙(ߜ) is a measure of the (∈) that goes a long with  , Literally we have 

written ∈=  .ߜ as a function of (ߜ)௙ݓ

Lemma (2.5): Let f be abounded function on [a,b] and Let ߜ > 0. Then ݓ௙(݊ߜ) ≤

݊ for (ߜ)௙ݓ݊ = 1,2, …. 

Consequently, ݓ௙(ߜߣ) ≤ (1 + ߣ for any (ߜ)௙ݓ(ߣ > 0. 

Proof: 

Given ݔ < ݔ| with ݕ − |ݕ ≤  split the interval [x, y]into n pieces, each of ,ߜ݊

Length at most ߜ. 

Specifically, if we set ܼ௞ = ݔ + ݕ)݇ − ݇ for ,݊/(ݔ = 0,1, … , ݊ 

Then |ܼ௞ − ܼ௞ିଵ| ≤ ≤ for any ߜ 1 , and so 

(ݖ)݂|    − |	(ݕ)݂ = |∑ (௞ݖ)݂ − ௞ିଵݖ)݂ − 1)௡
௞ୀଵ | 

     ≤ ∑ (ݔݖ)݂| − ௞ିଵݖ)݂ − 1)|௡
௞ୀଵ  

     ≤  (ߜ)௙ݓ݊

Thus ݓ௙(ߜ) ≤  .(ߜ)௙ݓ݊

Theorem (2.6): for any bounded function f on [0, 1] we have: 

ห|݂ − ௡(݂)|หܤ ≤
3
2
௙ݓ ൬

1
√݊

൰ 

In particular, if ݂ ∈ (݂)௡ܧ then [0,1]ܥ ≤
ଷ
ଶ
௙ݓ ቀ

ଵ
√௡
ቁ → 0 as → ∞ . 

Proof: we first do some term juggling: 
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(ݔ)݂| − |(ݔ)(݂)௡ܤ = อ෍൬݂(ݔ) − ݂ ൬
݇
݊
൰ ቀ݊݇ቁ ݔ

௞(1 − ௡ି௞൰(ݔ
௡

௞ୀ଴

อ 

																																≤ ෍ ฬ݂(ݔ) − ݂ ൬
݇
݊
൰ฬ ቀ݊݇ቁ ݔ

௞(1 − ௡ି௞(ݔ
௡

௞ୀ଴

 

																												≤ ෍ݓ௙ ൬ฬݔ −
݇
݊
ฬ൰ ቀ݊݇ቁ ݔ

௞(1 − ௡ି௞(ݔ
௡

௞ୀ଴

 

																																																		≤ ௙ݓ ൬
1
√݊

൰෍ �ൣ1 + √݊൧ ฬݔ −
݇
݊
ฬ൨ ቀ݊݇ቁ ݔ

௞(1 − ௡ି௞(ݔ
௡

௞ୀ଴

 

																														≤ ௙ݓ ൬
1
√݊

൰ ൥1 + √݊෍ ฬݔ −
݇
݊
ฬ ௞(1ݔ − ௡ି௞(ݔ

௡

௞ୀ଴

൩ 

Where the third inequality follows from lemma (2.5) (by taking  

ቀߣ = √݊ ቚݔ −
௞
௡
ቚ ߜ		݀݊ܽ = ଵ

√௡
ቁ. 

All that remains is to estimate the some, and for this we’ll use coachy-schwart, 

(and our earlier observations about Bernstein Polynomials).  

Because each of the terms ቀ݊݇ቁ ݔ
௞(1 −   :௡ି௞ is nonnegative we have(ݔ

෍ฬݔ −
݇
݊
ฬ ቀ݊݇ቁ ݔ

௞(1 − ௡ି௞(ݔ
௡

௞ୀ଴

= 

෍ฬݔ −
݇
݊
ฬ ቂቀ݊݇ቁ ݔ

௞(1 − ௡ି௞ቃ(ݔ
ଵ
ଶ . ቂቀ݊݇ቁ ݔ

௞(1 − ௡ି௞ቃ(ݔ
ଵ
ଶ

௡

௞ୀ଴

 

≤ ൥෍ ฬݔ −
݇
݊
ฬ
ଶ

ቀ݊݇ቁ ݔ
௞(1 − ௡ି௞(ݔ

௡

௞ୀ଴

൩

ଵ
ଶ

. ൥෍ ቀ݊݇ቁ
௡

௞ୀ଴

௞(1ݔ − ௡ି௞൩(ݔ

ଵ
ଶ
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≤ ൤
1
4݊
൨
ଵ
ଶ
=

1
2√݊

 

Finally |݂(ݔ) − |(ݔ)(݂)௡ܤ ≤ ௙ݓ ቀ
ଵ
√௡
ቁ ቂ1 + √݊.

ଵ
ଶ√௡

ቃ = ଷ
ଶ
௙ݓ ቀ

ଵ
√௡
ቁ 

The Bohman – Korovkin theorem: 

The real value to us in Bernstein’s approach is that the map ݂ →  ௡(݂), whileܤ

providing a simple formula for an approximating polynomial, is also Linear and 

positive. In other words: 

݂)௡ܤ + ݃) = (݂)௡ܤ +  (݃)௡ܤ

(݂ߙ)௡ܤ = ,(݂)௡ܤߙ ߙ ∈ ܴ											ܽ݊݀ 

(݂)௡ܤ ≥ ݂			ݎ݁ݒℎ݁݊݁ݓ			0 ≥ 0 

Lemma (7.8): if T : c[a, b] →	c[a,b] is both positive and Linear, then T is 

continuous. 

Proof: 

First note that a positive, Linear map is also monotone. 

That is, T satisfies ܶ(݂) ≤ ܶ(݃) whenever ݂ ≤ ݃.  

Thus for any ݂ ∈ ܿ[ܽ, ܾ] we have: 

−݂, ݂ ≤ |݂| ⟹ −ܶ(݂), ܶ(݂) ≤ ܶ(|݂|) . 

That is |ܶ(݂)| ≤ ܶ(|݂|). But now |݂| ≤ ห|݂|ห. 1 

Where 1 denotes the constant 1 function, and so we get: 

|ܶ(݂)| ≤ ܶ(|݂|) ≤ ห|݂|หܶ(1) 

Thus:                                  ห|ܶ(݂)|ห ≤ ห|݂|หห|ܶ(1)|ห 

For any ݂ ∈ ܿ[ܽ, ܾ]. Finally, because T is Linear it follows that T is Lipchitz with 

constant ห|ܶ(1)|ห: 

ห|ܶ(݂) − ܶ(݃)|ห = ห|ܶ(݂ − ݃)|ห ≤ ห|ܶ(1)|หห|݂ − ݃|ห 

Consequently T is continuous. 
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Now positive, Linear maps abound in analysis, so this is fortunate turn of events. 

What’s more, Bernstein’s theorem generalizes very nicely when placed in this new 

setting. 

The following elegant theorem was proved (independently) by Bohman-Korovkin 

in roughly 1952. 

Theorem (2.9): Let ௡ܶ = ܿ[0,1] → ܿ[0,1] be a sequence of positive, Linear maps, 

and suppose that ௡ܶ(݂) → ݂uniformaly in each of the three cases ଴݂(ݔ) = 1 , 

ଵ݂(ݔ) = (ݔ)ଶ݂ , ݔ =  .ଶݔ

Then ௡ܶ(݂) → ݂uniformaly for every ݂ ∈ ܿ[0,1]. 
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Chapter (2) 

Least–squares Approximation of a function 

(2.1.1) Least–squares Approximation of a function 

We have describe least-squares approximation to fit a set of discrete data. Here we 

describe continuous least-squares approximation of a function ݂(ݔ) by using 

polynomials. 

- First – consider approximation with monomial basis: 

{1, ,ݔ ,ଶݔ … ,  {௡ݔ

Least-squares approximation of a function using monomial polynomial:- 

Given a function ݂(ݔ), continuous on [a,b], find a polynomial ௡ܲ(ݔ) of degree at 

most ݊: 

௡ܲ(ݔ) = ܽ଴ + ܽଵݔ + ܽଶݔଶ +⋯+ ܽ௡ݔ௡ 

Such that the integral of the square of the error is minimized. That is: 

ܧ = න[݂(ݔ) − ௡ܲ(ݔ)]ଶ
௕

௔

 .݀݁ݖ݅݉݅݊݅݉	ݏ݅						ݔ݀

The polynomial ௡ܲ(ݔ)	is called least-squares polynomial sinse E is a function of 

ܽ଴, ܽଵ, … , ܽ௡, we denote this by E (ܽ଴, ܽଵ, … , ܽ௡). 

For minimization we must have: 

ܧ߲
߲ܽ௜

= 0,						݅ = 0,1, … , ݊ 
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As before, these condition, will give rise to a system of (n+1) normal equations in 

(n+1) unknowns: ܽ଴, ܽଵ, … , ܽ௡ solution of these equations will yield the unknowns 

ܽ଴, ܽଵ, … , ܽ௡. 

(2.1.2) Setting up the Normal equations:- 

Since:  

ܧ = න[݂(ݔ) − ܽ଴ − ܽଵݔ − ܽଶݔଶ −⋯− ܽ௡ݔ௡]ଶ
௕

௔

 ݔ݀

ܧ߲
߲ܽ଴

= −2න[݂(ݔ) − ܽ଴ − ܽଵݔ − ܽଶݔଶ −⋯− ܽ௡ݔ௡]ଶ
௕

௔

 ݔ݀

ܧ߲
߲ܽଵ

= −2න(ݔ)݂]ݔ − ܽ଴ − ܽଵݔ − ܽଶݔଶ −⋯− ܽ௡ݔ௡]ଶ
௕

௔

 ݔ݀

⋮ 

ܧ߲
߲ܽ௡

= −2නݔ௡[݂(ݔ) − ܽ଴ − ܽଵݔ − ܽଶݔଶ −⋯− ܽ௡ݔ௡]ଶ
௕

௔

 ݔ݀

ܧ߲
߲ܽ଴

= 0 ⟹ ܽ଴න1݀ݔ
௕

௔

+ ܽଵනݔ݀ݔ
௕

௔

+ ܽଶනݔଶ݀ݔ
௕

௔

+⋯+ ܽ௡ නݔ௡݀ݔ
௕

௔

= න݂(ݔ)݀ݔ
௕

௔

 

Similarly: 
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ܧ߲
߲ܽ௜

= 0 ⟹ ܽ଴නݔ௜݀ݔ
௕

௔

+ ܽଵනݔ௜ାଵ݀ݔ
௕

௔

+ ܽଶනݔ௜ାଶ݀ݔ
௕

௔

+⋯+ ܽ௡ නݔ௜ା௡݀ݔ
௕

௔

= නݔ௜݂(ݔ)݀ݔ
௕

௔

 

݅ = 1,2,3, … , ݊ 

So the (݊ + 1) normal equations in this case are: 

݅ = 0:	ܽ଴න1݀ݔ
௕

௔

+ ܽଵනݔ݀ݔ
௕

௔

+ ܽଶනݔଶ݀ݔ
௕

௔

+⋯+ ܽ௡නݔ௡݀ݔ
௕

௔

= න݂(ݔ)݀ݔ
௕

௔

 

݅ = 1:	ܽ଴නݔ݀ݔ
௕

௔

+ ܽଵනݔଶ݀ݔ
௕

௔

+ ܽଶනݔଷ݀ݔ
௕

௔

+⋯+ ܽ௡ නݔ௡ାଵ݀ݔ
௕

௔

= නݔ݀(ݔ)݂ݔ
௕

௔

 

⋮ 

݅ = ݊:	ܽ଴නݔ௡݀ݔ
௕

௔

+ ܽଵනݔ௡ାଵ݀ݔ
௕

௔

+ ܽଶනݔ௡ାଶ݀ݔ
௕

௔

+⋯+ ܽ௡ නݔଶ௡݀ݔ
௕

௔

= නݔ௡݂(ݔ)݀ݔ
௕

௔

 

Denote: 

නݔ௜
௕

௔

ݔ݀ = ௜ߜ 		,					݅ = 0,1,2,3,… 2݊			ܽ݊݀	 
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ܾ௜ = නݔ௜
௕

௔

݅					,				ݔ݀ = 0	, 1	, 2	, 3	, … , ݊			 

Then the above (n+1) equations can be written as: 

ܽ଴ߜ଴ + ܽଵߜଵ + ܽଶߜଶ +⋯+ ܽ௡ߜ௡ = ܾ଴ 

ܽ଴ߜଵ + ܽଵߜଶ + ܽଶߜଷ +⋯+ ܽ௡ߜ௡ାଵ = ܾଵ 

ܽ଴ߜ௡ + ܽଵߜ௡ାଵ + ܽଶߜ௡ାଶ +⋯+ ܽ௡ߜଶ௡ = ܾ௡ 

or in matrix notation: 

൮

଴ߜ ଵߜ ଶߜ ⋯ ௡ߜ
ଵߜ
⋮
௡ߜ

ଶߜ

௡ାଵߜ

ଷߜ

௡ାଶߜ

⋯

⋯

௡ାଵߜ

ଶ௡ߜ

൲൮

ܽ଴
ܽଵ
⋮
ܽ௡

൲ = ൮

ܾ଴
ܾଵ
⋮
ܾ௡

൲ 

Denote: 

ߜ = ܽ			,		(௜ߜ) = ൮

ܽ଴
ܽଵ
⋮
ܽ௡

൲ ,			ܾ = ൮

ܾ଴
ܾଵ
⋮
ܾ௡

൲ 

Then we have the system of normal equations: 

ܵܽ = ܾ 

The solution of these equations will yield the coefficients ܽ଴, ܽଵ, … , ܽ௡ of the least-

squares polynomial ௡ܲ(ݔ). 

A special case: let the interval be [0,1], then  
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௜ߜ = නݔ௜
ଵ

଴

ݔ݀ =
1

݅ + 1
	,					݅ = 0	, 1	, … , 2݊		 

Thus in this case the matrix of the normal equations: 

ߜ =

⎝

⎜
⎜
⎜
⎛
1

1
2 ⋯						

1
݊

1
2

1
3 ⋯

1
݊ + 1

⋮
1
݊

1
݊ + 1

⋯					
	
⋯
				 1

2݊⎠

⎟
⎟
⎟
⎞

 

Which is Hilbert Matrix. It is well-known to be ill conditioned. 

Algorithm (2.2): (Least-squares approximation using monomial polynomials). 

Inputs: (i)  ݂(ݔ) - A continuous function on [ a, b] 

  (ii) ݊ – The degree of the desired Least-squares polynomial. 

Output: the coefficients ܽ଴, ܽଵ, … , ܽ௡ of desired least-squares polynomial:  

௡ܲ(ݔ) = ܽ଴ + ܽଵݔ,… , ܽ௡ݔ௡ 

Step 1: compute,  ߜ଴	, ,	ଵߜ … ,  :ଶ௡ߜ

for i = 0 , 1 , … , 2n do 

௜ߜ = නݔ௜
ଵ

଴

 ݔ݀(ݔ)݂

End: 

Step 2 : compute ܾ଴, ܾଵ, … , ܾ௡: 
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for ݅ = 0, 1, … , ݊	do 

ܾ௜ = නݔ௜
௕

௔

 ݔ݀(ݔ)݂

End 

Step 3. Form the matrix ߜ from the numbers ߜ଴, ,ଵߜ …	 ,  ଶ௡and the vector b fromߜ

the numbers ܾ଴	, ܾଵ	, …		 , ܾ௡ 

ߜ = ൮

଴ߜ ଵߜ ⋯
ଵߜ ଶߜ ⋯
⋮
௡ߜ ௡ାଵߜ ⋯

				

௡ߜ
௡ାଵߜ

ଶ௡ߜ

൲ ,			ܾ = ൮

ܾ଴
ܾଵ
⋮
ܾ௡

൲ 

Step 4: 

Solve the (݊ + 1) × (݊ + 1) system of equations for ܽ଴	, ܽଵ	, … , ܽ௡ 

ܵܽ = 	ܽ			݁ݎℎ݁ݓ				,			ܾ = ൮

ܽ଴
ܽଵ
⋮
ܽ௡

൲ 

Example (2.3): 

Find Linear and quadratic Least-squares approximation  

to ݂(ݔ) = ݁௫ ,	1−]					݊݋					 1] 

Solution: 

Linear Approximation: n = 1 , ଵܲ(ݔ) = ܽ଴ + ܽଵݔ 

଴ߜ = න݀ݔ
ଵ

ିଵ

= ଵߜ				,					2 = නݔ݀ݔ
ଵ

ିଵ

= 	 ቈ
ଶݔ

2
቉
ିଵ

ଵ

=
1
2
−
1
2
= 0 
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ଶߜ = නݔଶ
ଵ

ିଵ

ݔ݀ = ቈ
ଷݔ

3
቉
ିଵ

ଵ

=
1
3
− ൬−

1
3
൰ =

2
3

 

Thus: ߜ = ൬ߜ଴ ଵߜ
ଵߜ ଶߜ

൰ = ቆ
2 0
0 ଶ

ଷ
ቇ 

ܾ଴ = න݁௫
ଵ

ିଵ

ݔ݀ = ݁ −
1
݁
		= 		2.3504 

ܾଵ = නݔ	݁௫
ଵ

ିଵ

ݔ݀ =
2
݁
		= 0.7358 

The normal system is: ቆ
2 0
0 ଶ

ଷ
ቇ ቀ
ܽ଴
ܽଵቁ = ൬ܾ଴ܾଵ

൰ 

This gives ܽ଴ = 1.1752		,			ܽଵ = 1.1037 

The Linear Least-squares polynomial is  

ଵܲ(ݔ) = 1.1752 +  ݔ	1.1037

Accuracy check: ଵܲ(0.5) = 1.7270		,				݁଴.ହ = 1.6487 

Relative Error:  

|݁଴.ହ − ଵܲ(0.5)|
݁଴.ହ

=
|1.6487 − 1.7270|

|1.6487|
= 0.0475 

Quadratic fitting:  n = 2 ,  ଶܲ(ݔ) = ܽ଴ + ܽଵݔ + ܽଶݔଶ 

଴ߜ = ଵߜ				,			2 ଶߜ  ,   0= =
ଶ
ଷ
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ଷߜ = නݔଷ
ଵ

ିଵ

ݔ݀ = ቈ
ସݔ

4
቉
ିଵ

ଵ

= 0	, ସߜ = නݔସ
ଵ

ିଵ

ݔ݀ = ቈ
ହݔ

5
቉
ିଵ

ଵ

=
2
5
	 

ܾ଴ = න݁௫
ଵ

ିଵ

		ݔ݀ = 		݁ −
1
݁
		= 		2.3504 

ܾଵ = නݔ	݁௫
ଵ

ିଵ

ݔ݀ =
2
݁
		= 0.7358 

ܾଶ = නݔଶ݁௫
ଵ

ିଵ

ݔ݀ = ݁ −
5
݁
		= 0.8789 

The system of normal equations is  

⎝

⎜
⎜
⎛
2 0

2
3

0
2
3

0

2
3

0
2
5⎠

⎟
⎟
⎞

⎝

⎛

ܽ଴

ܽଵ

ܽଶ⎠

⎞ =

⎝

⎜
⎛
2.3504

0.7358

0.8789⎠

⎟
⎞

 

The solution of this system is  

ܽ଴ = 0.9963				, ܽଵ = 1.1037				,					ܽଶ = 0.5368 

The quadratic least-squares polynomial is  

ଶܲ(ݔ) = 0.9963	 + 	ݔ1.1037		 +  ଶݔ	0.5368		

Accuracy check: ଶܲ(0.5) = 1.6889	, ݁଴.ହ = 1.6487 

Relative error =  
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| ଶܲ(0.5) − ݁଴.ହ|
|݁଴.ହ|

=
|1.6824 − 1.6487|

|1.6487|
= 0.0204 

Example (2.4): Find Linear and Quadratic Least-squares polynomial 

approximation to ݂(ݔ) = ଶݔ + ݔ5 + 6		݅݊	[0,1]. 

Solution: 

Linear fit: ଵܲ(ݔ) = ܽ଴ +	ܽଵݔ 

଴ߜ = න݀ݔ
ଵ

଴

= 1		, ଵߜ = නݔ		ݔ݀
ଵ

଴

=
1
2
			 , ଶߜ = නݔଶ݀ݔ

ଵ

଴

=
1
3

 

		ܾ଴ = න(ݔଶ + ݔ5 + 6)
ଵ

଴

		ݔ݀ = 	
1
3
+
5
2
+ 6	 =

53
6

 

ܾଵ = නݔ	ݔ)ଶ + ݔ5 + 6)
ଵ

଴

ݔ݀ =
1
4
+
5
3
+
6
2
	=

59
12

 

The normal equation are: 

൮
1

1
2

1
2

1
3

൲൭
ܽ଴

ܽଵ
൱ = ቌ

53/6

59/12
ቍ 		⟹ 			

ܽ଴ = 5.8333

ܽଵ = 6											
 

The linear least-squares polynomial ଵܲ(ݔ) = 5.8333 +  ݔ6

Accuracy check  

Exat value ݂(0.5) = 8.75	, ଵܲ(0.5) = 8.833 

Relative error : 
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|8.833 − 8.75|
|8.75|

= 0.0095 

Quadratic least squares approximation. 

ଶܲ(ݔ) = ܽ଴ + ܽଵݔ + ܽଶ	ݔଶ 

ߜ =

⎝

⎜
⎜
⎛
1

1
2

1
3

1
2

1
3

1
4

1
3

1
4

1
5⎠

⎟
⎟
⎞
, ܾ଴ =

53
6
			 , ܾଵ =

59
12

 

ܾଶ = නݔଶ(ݔଶ + ݔ5 + 6)
ଵ

଴

		ݔ݀ = න(ݔସ + ଷݔ5 + (ଶݔ6
ଵ

଴

	ݔ݀ = 	
1
5
+
5
4
+
6
3
=
69
20

 

The solution of the Linear system is: 

ܽ଴ = 6			,			ܽଵ = 5			, ܽଶ = 1 

ଶܲ(ݔ) = 6 + ݔ	5  ଶݔ	+

(2.1.3) Use the orthogonal polynomial in least-squares Approximation:  

The least-squares approximation using monomial polynomials as described above 

is not numerically effective, since the system matrix ߜ of normal equations is very 

often ill-conditioned, for example, when the interval [0,1], we have seen that ߜ is 

Hilbert matrix, which is notoriously ill-conditioned for even modest values of n. 

When n=5 , the condition number of this matrix cond(s) = O(105). Such 

computations can, however be made computationally effective by using aspecial 

type of polynomials, called Orthogonal polynomials. 
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Definition (2.5): the set of functions {߶଴, ߶ଵ, … , ߶௡}is called a set of orthogonal 

functions, with respect to a weight function (ݔ)ݓif:- 

න(ݔ)ݓ߶௝(ݔ)߶௜(ݔ)݀ݔ
௕

௔

= ൜
0		, ݂݅			݅	 ≠ ݆
௝ܿ, ݂݅			݅ = ݆

� 

Where ܥ௝ is a real positive number. 

Furthermore, if ܥ௝ = 1	, ݆ = 0, 1,… , ݊,then the orthogonal set is called an 

orthonormal set. 

Using this interesting property, least-squares compatations can be more 

numerically effective as shown below. 

Without any loss of generality, let’s assume that (ݔ)ݓ = 1. 

Idea: the idea is to find a least-squares approximation of ݂(ݔ) on [a,b] by means of 

a polynomial of the form: ௡ܲ(ݔ) = ܽ଴߶଴(ݔ) + ܽଵ߶ଵ(ݔ) + ⋯+ ܽ௡߶௡(ݔ),	where 

{߶௡}௞ୀ଴௡  is a set of orthogonal polynomials. That is the basis for generating ௡ܲ(ݔ) 

in this case is a set of orthonormal polynomials. 

Given the set of orthogonal polynomials {߶௜(ݔ)}௜ୀ଴௡ , a polynomial ௡ܲ(ݔ)of degree 

< n, can be written as:  

௡ܲ(ݔ) = ܽ଴߶଴(ݔ) + ܽଵ߶ଵ(ݔ) + ⋯+ ܽ௡߶௡(ݔ) 

For some ܽ଴, ܽଵ, … , ܽ௡. 

Finding a least-squares approximation of ݂(ݔ) on [a,b]. 

Using orthogonal polynomials, then can be stated as follows: 
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Least-squares approximation of a function using orthogonal polynomials: 

Given ݂(ݔ), continuous on [a,b], find ܽ଴, ܽଵ, … , ܽ௡ using a polynomial of the form: 

௡ܲ(ݔ) = ܽ଴߶଴(ݔ) + ܽଵ߶ଵ(ݔ) + ⋯+ ܽ௡߶௡(ݔ), where  {߶௞(ݔ)}௞ୀ଴௡ is agiven set of 

orthogonal polynomials on [a, b], such that the error function: 

,଴ܽ)ܧ ܽଵ, … , ܽ௡) = නൣ݂(ݔ) − ൫ܽ଴߶଴(ݔ) + ܽଵ߶ଵ(ݔ) + ⋯+ ܽ௡߶௡(ݔ)൯൧
ଶ

௕

௔

 ݔ݀

Is minimized. 

As before we set  

డா
డ௔೔

= 0, ݅ = 0,1,… , ݊ now: 

ܧ߲
߲ܽ଴

= −2න߶0(ݔ)
௕

௔

(ݔ)݂ൣ − −(ݔ)0߶0ܽ ,(ݔ)1߶1ܽ … ,  ݔ൧݀(ݔ)݊߶݊ܽ

Setting this equal to zero, we get: 

න߶0(ݔ)
௕

௔

ݔ݀(ݔ)݂ = නቀܽ0߶0(ݔ) + ⋯+ ቁ(ݔ)݊߶݊ܽ
௕

௔

 ݔ݀(ݔ)0߶

Since: 

{߶௞(ݔ)}௞ୀ଴௡  is an orthogonal set, we have: 

න߶0
ଶ(ݔ)݀ݔ

௕

௔

= (ݔ)݅߶(ݔ)න߶0					ܽ݊݀				଴ܥ
௕

௔

ݔ݀ = 0,			݅ ≠ 0 
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Applying the above orthogonal property, we see from above that  

න߶0(ݔ)݂(ݔ)
௕

௔

ݔ݀ =  ଴ܽ଴ܥ

that is 

ܽ଴ =
1
଴ܥ
න߶0(ݔ)݂(ݔ)
௕

௔

 ݔ݀

Similarly 

ܧ߲
߲ܽଵ

= −2න߶1(ݔ)
௕

௔

(ݔ)݂ൣ − −(ݔ)0߶0ܽ ,(ݔ)1߶1ܽ … ,  ݔ൧݀(ݔ)݊߶݊ܽ

Again from the orthogonal property of  ൛߶௝(ݔ)ൟ௝ୀ଴
௡  we have : 

න߶1
ଶ(ݔ)݀ݔ

௕

௔

= (ݔ)݅߶(ݔ)න߶1					ܽ݊݀				ଵܥ
௕

௔

ݔ݀ = 0,			݅ ≠ 1 

So, sitting డா
డ௔భ

= 0, we get : ܽଵ
ଵ
஼భ
∫ (ݔ)݂(ݔ)1߶
௕
௔  : in general , we have ݔ݀

ܽ௞
1
௞ܥ
න߶݇(ݔ)݂(ݔ)
௕

௔

݇				,		ݔ݀ = 0,1,… , ݊ 

Where  
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௞න߶௞ܥ
ଶ(ݔ)

௕

௔

 ݔ݀

(2.1.4) Expressions for ࢑ࢇ with weight function (࢑)࢝. 

If the weight function (ݔ)ݓ is included, then ܽ௞is modified to: 

ܽ௞ =
1
௞ܥ
න(ݔ)݇߶(ݔ)݂(ݔ)ݓ
௕

௔

,						ݔ݀ ݇ = 0,1,… , ݊ 

Where 

௞නܥ =
௕

௔

න(ݔ)ݓ߶݇
(ݔ)2

௕

௔

 ݔ݀

Code(2.6): least-squats approximation using orthogonal polynomials  

clc 

syms x  

f= @(x) exp(x);  

n = 2;  

n= 2*n;  

a = -1;  

b = 1;  

s = [];  

B= [];  

for 

i=1:(n-1)     

r = (i-1);     
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s(i) = int(x.^r,a,b);  

end 

S= [s(:,1:n-2); s(:,2:n-1)];  

for 

i=1:(n-2)     

r = (i-1);     

B(i) = int((f* x.^r),a,b);  

end 

B=B';  

A = inv(S)*B; 

%the solution is 

%  the linear leas-squares  

A =     1.1752     

1.1036 
S =    2.0000         0          

0    0.6667 

B =    2.3504   

  0.7358 
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Chapter (3) 

Lagrang approximation 

The most straightforward method of computing the interpolation polynomial 

is to form the system ݔܣ = ܾ, where ܾ݅ = ,݅ݕ ݅ = 0, … , ݊ and the entries of are 

defined by ܽ௜ೕ = ௝ܲ(݅ݔ), ݅, ݆ = 0, … , ݊, where ݔ଴, ,ଵݔ … ,  ௡ are the points at whichݔ

the data ݕ଴, ,ଵݕ … , (ݔ)௡ are obtained, and ௝ܲݕ = ௝ݔ , ݆ = 0, … , ݊. The basis 

{1, ,ݔ … ,  ௡} of the space of polynomials of degree n + 1 is called the monomialݔ

basis, and the corresponding matrix A is called the Vandermonde matrix for the 

points ݔ଴, ,ଵݔ … ,  .௡ݔ

Unfortunately, this matrix can be ill-conditioned, especially when interpolation 

points are close together. In Lagrange interpolation, the matrix A is simply the 

identity matrix, by virtue of the fact that the interpolating polynomial is written in 

the form: 

௡ܲ(ݔ) = ෍ݕ௜

௡

௝ୀ଴

ℒ௡ೕ(ݔ), 

where the polynomialsቄℒ௡ೕቅ௝ୀ଴
௡

 have the property that : 

ℒ௡ೕ(ݔ௜) = ቐ
1 , ݂݅				݅ = ݆

0 , ݂݅				݅ ≠ ݆
� 

The polynomials ቄℒ௡ೕቅ௝ୀ଴
௡

 are called the Lagrange polynomials for the 

interpolation points ݔ଴, ,ଵݔ … ,   ௡. They are defined byݔ
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ℒ௡ೕ(ݔ) =ෑ
ݔ − ௞ݔ
௝ݔ − ௞ݔ

௡

௞ୀ଴		,௞ஷ௝
 

As the following result indicates, the problem of polynomial interpolation can be 

solved using Lagrange polynomials.  

Theorem: Let ݔ଴, ,ଵݔ … ,  be a function (ݔ)݂ ௡  be n + 1 distinct numbers, and letݔ

defined on a domain containing these numbers. Then the polynomial defined by:  

௡ܲ(ݔ) = ෍݂൫ݔ௝൯
௡

௝ୀ଴

ℒ௡ೕ 

is the unique polynomial of degree n that satisfies  

௡ܲ൫ݔ௝൯ = ݂൫ݔ௝൯	, ݆ = 0,1, … , ݊ 

The polynomial ௡ܲ(ݔ) is called the interpolating polynomial of ݂(ݔ). We say that 

௡ܲ(ݔ)interpolates ݂(ݔ) at the points ݔ଴, ,ଵݔ … ,  .௡ݔ

Example: We will use Lagrange interpolation to find the unique polynomial 

ଷܲ(ݔ), of degree 3 or less, that agrees with the following data: 

 ௜ݕ ௜ݔ ݅

0 -1 3 

1 0 -4 

2 1 5 

3 22 -6 

 

In other words, we must have ଷܲ(−1) = 3, ଷܲ(0) = −4, ଷܲ(1) = 5, ଷܲ(2) = −6 
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First, we construct the Lagrange polynomials ቄℒଷೕቅ௝ୀ଴
ଷ

 using the formula: 

ℒ௡ೕ(ݔ) = ∏ ௫ି௫೔
௫ೕି௫೔

ଷ
௜ୀ଴		,			௜ஷ௝   this yields: 

ℒଷ,଴(ݔ) 	= 	
ݔ) − ݔ)(ଵݔ − ݔ)(ଶݔ − (ଷݔ
଴ݔ) − ଴ݔ)(ଵݔ − ଴ݔ)(ଶݔ − (ଷݔ

 

=
ݔ) − ݔ)(0 − ݔ)(1 − 2)

(−1 − 0)(−1 − 1)(−1 − 2)
	= 	

ଶݔ)ݔ − ݔ3 + 2)
(−1)(−2)(−3)

 

= −
1
6
ଷݔ) − ଶݔ3 +  (ݔ2

ℒଷ,ଵ(ݔ) 	= 	
ݔ) − ݔ)(଴ݔ − ݔ)(ଵݔ − (ଶݔ
ଵݔ) − ଵݔ)(଴ݔ − ଵݔ)(ଶݔ − (ଷݔ

 

=
ݔ) + ݔ)(1 − ݔ)(1 − 2)
(0 + 1)(0 − 1)(0 − 2)

	 

= (௫మିଵ)(௫ିଶ)
(ଵ)(ିଵ)(ିଶ)

	         

=
1
2
ଷݔ) − ଶݔ2 − ݔ + 2) 

ℒଷ,ଶ(ݔ) 	= 	
ݔ) − ݔ)(଴ݔ − ݔ)(ଵݔ − (ଷݔ
ଶݔ) − ଶݔ)(଴ݔ − ଶݔ)(ଵݔ − (ଷݔ

 

=
ݔ) + ݔ)(1 − ݔ)(0 − 2)
(1 + 1)(1 − 0)(1 − 2)

	 

= ௑(௫మି௫ିଶ)
ଶ(ଵ)(ିଵ)

	         = − ଵ
ଶ
ଷݔ) − ଶݔ −  (ݔ2

ℒଷ,ଷ(ݔ) 	= 	
ݔ) − ݔ)(଴ݔ − ݔ)(ଵݔ − (ଶݔ
ଷݔ) − ଷݔ)(଴ݔ − ଷݔ)(ଵݔ − (ଶݔ
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=
ݔ) + ݔ)(1 − ݔ)(0 − 1)
(2 + 1)(2 − 0)(2 − 1)

	 

= ௫(௫మିଵ)
(ଷ)(ଶ)(ଵ)

	         

=
1
6
ଷݔ) −  (ݔ

By substituting ݔ௜ for ݔ in each Lagrange polynomial ℒଷೕ(ݔ), for j = 0, 1, 2, 3 it 

can be verified that: 

ℒଷೕ(ݔ௜) = ቐ
1 , ݂݅				݅ = ݆

0 , ݂݅				݅ ≠ ݆
� 

It follows that the Lagrange interpolating polynomial ଷܲ(ݔ) given by: 

ଷܲ(ݔ) = ∑ ௜ଷݕ
௝ୀ଴ ℒଷೕ(ݔ)  

= (ݔ)଴ℒଷ,଴ݕ + +(ݔ)1ℒ3,1ݕ +(ݔ)2ℒ3,2ݕ   (ݔ)3ℒ3,3ݕ

= 	 (3) ቀ− ଵ
଺
ቁ ଷݔ) − ଶݔ3 + (ݔ2 + (−4) ቀଵ

ଶ
ቁ ଷݔ) − ଶݔ2 − ݔ + 2) +

(5) ቀ− ଵ
ଶ
ቁ ଷݔ) − ଶݔ + (ݔ2 + (−6)(ଵ

଺
ଷݔ)( +   (ݔ

= − ଵ
ଶ
ଷݔ) − ଶݔ3 + (ݔ2 + ଷݔ)(2−) − ଶݔ2 − ݔ + 2) − ହ

ଶ
ଷݔ) − ଶݔ −

(ݔ2 − ଷݔ) −   (ݔ

= 	ቀ− ଵ
ଶ
− 2 − ହ

ଶ
− 1ቁ ଷݔ + ቀଷ

ଶ
+ 4 + ହ

ଶ
ቁ ଶݔ + (−1 + 2 + 5 + ݔ(1 − 4  

= ଷݔ6− + ଶݔ8 + ݔ7 − 4  
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Substituting each ݔ௜ 	, ݅			ݎ݋݂ = 0,1,2,3  into ଷܲ(ݔ) , we can verify that we obtain 

ଷܲ(݅ݔ) =   .in each case ݅ݕ

While the Lagrange polynomials are easy to compute, they are difficult to work 

with. Furthermore, if new interpolation points are added, all of the Lagrange 

polynomials must be recomputed. Unfortunately, it is not uncommon, in practice, 

to add to an existing set of interpolation points. It may be determined after 

computing the k’th-degree interpolating polynomial ௞ܲ(ݔ) of a function ݂(ݔ) that  

௞ܲ(ݔ) is not a sufficiently accurate approximation of ݂(ݔ) on some domain. 

Therefore, an interpolating polynomial of higher degree must be computed, which 

requires additional interpolation points.  

To address these issues, we consider the problem of computing the interpolating 

polynomial recursively. More precisely, let ݇ > 0, and let ௞ܲ(ݔ) be the polynomial 

of degree k that interpolates the function ݂(ݔ) at the points ݔ଴, ,ଵݔ … , ௞ݔ  . Ideally, 

we would like to be able to obtain ௞ܲ(ݔ) from polynomials of degree k−1 that 

interpolate ݂(ݔ) at points chosen from among ݔ଴, ,ଵݔ … ,  ௞. The following resultݔ

shows that this is possible.  

Theorem: Let n be a positive integer, and let ݂(ݔ) be a function defined on a 

domain containing the n+1 distinct points ݔ଴, ,ଵݔ … ,  be the (ݔ)௡, and let ௡ܲݔ

polynomial of degree n that interpolates ݂(ݔ) at the points ݔ଴, ,ଵݔ … ,  .௡ݔ

For each ݅ = 0,1, … , ݊, we define ௡ܲିଵ,௜(ݔ) to be the polynomial 4 of degree n− 1 

that interpolates ݂(ݔ) at the points ݔ଴, ,ଵݔ … , ,௜ିଵݔ ,௜ାଵݔ … ,  ௡. If i and j are distinctݔ

nonnegative integers not exceeding n, then  

௡ܲ(ݔ) =
൫ݔ − ௝൯ݔ ௡ܲିଵ,௝(ݔ) − ݔ) − (௜ݔ ௡ܲିଵ,௜(ݔ)

௜ݔ − ௝ݔ
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This result leads to an algorithm called Neville’s Method that computes the value 

of ௡ܲ(ݔ) at a given point using the values of lower-degree interpolating 

polynomials at k.  

Algorithm in detail: Let ݔ଴, ,ଵݔ … ,  be a (ݔ)݂ ௡ be distinct numbers, and letݔ

function defined on a domain containing these numbers. Given a number 	

∗ݕ the following algorithm computes , ∗ݔ = ௡ܲ(ݔ∗), where ௡ܲ(ݔ) is the nth 

interpolating polynomial of ݂(ݔ) that interpolates ݂(ݔ) at the points ݔ଴, ,ଵݔ … ,  .௡ݔ

function [ y ] =lagrange(x,pointx,pointy) 

%x=0:10; 

%y=x.^2-1; 

%xx = linspace(0,10); 

%yy = lagrange(xx,x,y); 

%plot(x,y,'r-',xx,yy,'g.') 

%legend ('truth','lagrange poly') 

n = size(pointx,2); 

L = ones(n,size(x,2)); 

%Error cheching 

if (size(pointx,2)~=size(pointy,2)) 

fprintf(1,'\n ERROR! \n Pointx and Pointy must have the same number of 
elements\n'); 

             %initialize your sum     

y=NaN; 

else 

                 %Initialize Li 

For 
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      i=1:n 

for 

              j=1:n 

if (i~=j) 

             L(i,:)=L(i,:).*(x -pointx(i)) / (pointx(i)-pointx(j)); 

end 

end 

end 

y=0;     

for 

i=1:n 

y= y + pointy(i) * L(i,:);     

end 

end 

end 
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Theorem [interpolation error] 

If f is n+1 times continuously differentiable on [a,b] and ௡ܲ(ݔ) is the unique 

polynomial of degree n that interpolates ݂(ݔ) at the n+1 distinct points 

,଴ݔ ,ଵݔ … ,  :௡ in [a,b] then for each x ߳ [a, b]ݔ

(ݔ)݂ − ௡ܲ(ݔ) =ෑ൫ݔ − ௝൯ݔ
௡

௝ୀ଴

݂(௡ାଵ)൫� ൯(ݔ){
(݊ + 1)!

 

where � (ݔ){ ∈ [ܽ, ܾ] 
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Chapter (4) 

Chebyshev Polynomials 

(4.1) 

Here we try to reduce the error in the polynomial approximation by minimizing the 

term: 

ෑ(ݔ − (௞ݔ
௡

௞ୀ଴

 

Note that for any ݔ ∈ [−1,1] there exist a ∈ such that ݔ = cos  .ߠ

Let us define the set of polynomial ௡ܶ(ݔ) = cos ݊  .	ߠ

where cos ߠ = 	ݎ݋݂		ݔ − 1 ≤ ݔ ≤ 1. These polynomials called chebyshev 

polynomials we recall the trigonometric formula: 

cos(݊ + ߠ(1 + cos(݊ − 1) cos ߠ = 2 cos ߠ	݊ cos ߠ …………(4.1) 

Note that we can rewrite the trigonometric identity given in (4.1) as: 

௡ܶାଵ(ݔ) + ௡ܶିଵ(ݔ) = 2 ௡ܶ(ݔ)ݔ, 

Which can be Rearrange to give the recurrence relation: 

௡ܶାଵ(ݔ) = ݔ2 ௡ܶ(ݔ) − ௡ܶିଵ(ݔ)																			………(4.2) 

The chebyshev polynomials can be generated by: 

଴ܶ(ݔ) = cos ߠ = 1 

ଵܶ(ݔ) = cos ߠ1 =  ݔ

ଶܶ(ݔ) = cos ߠ2 = ଶݔ2 − 1 
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ଷܶ(ݔ) = cos ߠ3 = ଶݔ2)ݔ2 − 1) − ݔ = ଷݔ4 −  ݔ3

ସܶ(ݔ) = cos ߠ4 = ଷݔ4)ݔ2 − (ݔ3 ଶݔ2)	− − 1) = ସݔ8 − ଶݔ8 + 1 

ହܶ(ݔ) = cos ߠ5 = ଷݔ4)ݔ2 − (ݔ3 ଶݔ2)	− − 1) = ହݔ16 − ଷݔ20 +  ݔ5

 ..ܿݐ݁…

Observe that if n is even ௡ܶ(ݔ) contains even powers of n and if n odd then ௡ܶ(ݔ) 

contains odd powers of ݔ. 

Properties of the Chebyshev Polynomials: 

1) | ௡ܶ(ݔ)| ≤ 1  for   −1 ≤ ݔ ≤ 1			, ∀݊ 

2) | ௡ܶ| attains its maximum value of 1 on ݔ ∈ [−1,1] at n+1 points, including 

both endpoints and takes the values + 1 alternately on these points. 

3) ௡ܶ has n distinct zeros in the interior of [-1,1]. 

Proof: 

(1) −1 ≤ cos݊ߠ ≤ 1, so by definition −1 ≤ ௡ܶ(ݔ) ≤ 1 for ݔ ∈ [−1,1] 

(2) The maximum of | ௡ܶ(ݔ)| = 1 since the maximum of |ܿߠ݊ݏ݋| = 1, now 

ߠ݊ݏ݋ܿ =+1  

when            ݊ߠ = ݇   ,        ߨ݇ = 0, 1,… , ݊ 

ߠ																										 = ௞గ
௡

        ,   ݇ = 0, 1, … , ݊                                    …… (4.3) 

So, ݔ = ߠݏ݋ܿ = cos ቀ௞గ
௡
ቁ, ݇ = 0,1, … , ݊ 

There are (n+1) values of ߠ ቀ0, గ
௡
, ଶగ
ଶ
, … , | ቁ for whichߨ ௡ܶ(ݔ)| = |ߠ݊ݏ݋ܿ| = 1. 

Hence there are (n+1) values of ݔ ∈ [−1,1](݇ = 1), cos గ
ଶ
, cos ଶగ

ଶ
, … , cos (௞ିଵ)గ

௡
, at 

which | ௡ܶ(ݔ)| = 1. We call this set of (n+1) points. 
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The extreme points of ௡ܶ(ݔ). 

Furthermore, observe that ܿߠ݊ݏ݋ = cos(݇ߨ) = (−1)௞ , ݇ = 0,1, … , ݊. So ௡ܶ(ݔ) 

oscillates between +1 and -1 at these (n+1) points. 

Proof of property (3): 

Obviously, between each maximum and minimum of +1 and -1 is a zero and 

hence, there are n zeros in [-1,1] given by: 

ߠ	݊ݏ݋ܿ = ߠ݊				,				0 = (2݇ + 1)
ߨ
2
	,			݇ = 0, 1, 2, … , (݊ − 1) 

                           ⟹ ߠ = (2݇ + 1) గ
ଶ௡
	,			݇ = 0, 1, 2, … , (݊ − 1) 

In terms of x let use denote the kth zero as 

௞ݔ  = ߠ	ݏ݋ܿ = ݏ݋ܿ ൬(2݇ + 1) గ
ଶ௡
൰ 	,			݇ = 0, 1, 2, … , (݊ − 1) 

Observe that:  ݔ଴ = ߠ	ݏ݋ܿ = cos ቀ గ
ଶ௡
ቁ ௡ିଵݔ	݀݊ܽ = ݏ݋ܿ ቀ(ଶ௡ିଶାଵ)గ

ଶ௡
ቁ 

                            = ݏ݋ܿ ቀߨ − గ
ଶ௡
ቁ, which implies  

଴ݔ                        =  ௡ିଵݔ	−

So in general, we have: 

௞ݔ −  ௡ିଵି௞ݔ

i.e. the zeros are placed symmetrically about x = 0 in [-1 , 1]. 
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(4.2) Minimizing the Error Bound: 

The objective here is to minimize: 

max ൝อෑ(ݔ − (௞ݔ
௡

௞ୀ଴

อൡ 

Over ݔ଴ ≤ ݔ ≤ ,଴ݔ ௡ by selecting sceitable nodesݔ ,ଵݔ … ,  .௡ for interpolationݔ

Consider ∏(ݔ − ௞) for −1ݔ ≤ ݔ ≤ 1 

ෑ(ݔ − (௞ݔ
௡

௞ୀ଴

= ݔ) − ݔ)(଴ݔ − ݔ)	…(ଵݔ − ,(௡ݔ ௞ݔ ∈ [−1,1] 

= ௡ାଵݔ − ௞ݔ௡෍ݔ +⋯+ …ଵݔ଴ݔ . ௡ݔ

௡

௞ୀ଴

 

i.e. a polynomial of degree (n+1) with leading coefficient 1. This polynomial has 

n+1 roots (zeros) namely the nodes ݔ଴, ,ଵݔ … , ௞ݔ , … ,  .௡ݔ

Now we know that ௡ܶାଵ(ݔ) is a polynomial of degree (n+1) with (n+1) zeros in  

[-1,1] and: 

| ௡ܶାଵ(ݔ)| ≤ 	ݔ	∀						,								1 ∈ [−1	, 1] 

From the recurrence relation ௡ܶାଵ = ݔ2 ௡ܶ − ௡ܶିଵ we can see that: 

௡ܶାଵ(ݔ) = 2௡ݔ௡ାଵ +⋯. 

And so has leading coefficient 2௡. 

If we choose the nodes of the interpolation (ݔ଴, ,ଵݔ … , ௞ݔ , … ,  ௡)to be equal toݔ

zeros of ௡ܶାଵ(ݔ). 
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Then this is equivalent to saying: 

ෑ(ݔ − (௞ݔ
௡

௞ୀ଴

=
1
2௡ ௡ܶାଵ.													ܰݓ݋ 

| ௡ܶାଵ(ݔ)| ≤ 1 ⟹ อෑ(ݔ − (௞ݔ
௡

௞ୀ଴

อ ≤
1
2௡

⟹ max
ିଵஸ௫ஸଵ

ෑ(ݔ − (௞ݔ
௡

௞ୀ଴

=
1
2௡

 

Thus: ห|∏ ௡(ݔ)
௞ୀ଴ |หஶ = ଵ

ଶ௡
 

Is this the minimum value for ห|∏ ௡(ݔ)
௞ୀ଴ |หஶ	we can find: 

Theorem: 

ቤฬ
1
2௡ ௡ܶାଵฬቤ

ஶ
≤ ห|(ݔ)ݍ|หஶ				,								ݔ ∈ 	 [−1,1] 

for all (ݔ)ݍ ∈ ௡ܲାଵ [set of polynomial of degree n+1]. 

With leading coefficients of 1. 

Proof: 

Suppose the theorem is false, that is assume there exist a polynomial (ݔ)ݎ of 

degree n+1, with leading coefficients 1, such that: 

ห|(ݔ)ݎ|หஶ <
1
2௡

= ቤฬ
1
2௡ ௡ܶାଵฬቤ

ஶ
 

Consider ቂ(ݔ)ݎ − ଵ
ଶ೙ ௡ܶାଵቃ. This is a polynomial of degree n since the leading 

terms cancel (both have same coefficient of 1). 
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From the 2nd property of ௡ܶାଵwe know it has n+2 extreme points which oscillate in 

sign. 

Also from the definition of (ݔ)ݎ, we know these extremes are larger than the 

extremes of (ݔ)ݎ. 

Hence at the extreme points of ௡ܶାଵ ቂ(ݔ)ݎ − ଵ
ଶ೙ ௡ܶାଵቃ will oscillate in sign this 

means ቂ(ݔ)ݎ − ଵ
ଶ೙ ௡ܶାଵቃ has (n+1) zeros (at least). 

But a polynomial of degree n has at most n zeros. 

Thus there can be no such (ݔ)ݎ, which implies that: 

min
௤(௫)∈௉೙శభ

ห|(ݔ)ݍ|หஶ = ቤฬ
1
2௡ ௡ܶାଵฬቤ

ஶ
 

Where  (ݔ)ݍ ∈ ௡ܲାଵ is of the form (ݔ)ݍ = 	 ௡ାଵݔ +⋯  

since ∏ ݔ) − ௞)௡ݔ
௞ୀ଴ = ݔ) − ݔ)(଴ݔ − …(ଵݔ ݔ) −  ௡)in a polynomial belonging toݔ

௡ܲାଵ leading coefficient 1. 

We have:- 

min ൝ max
ିଵஸ௫ஸଵ

อෑ(ݔ − (௞ݔ
௡

௞ୀ଴

อൡ = min ቮอෑ(ݔ − (௞ݔ
௡

௞ୀ଴

อቮ

ஶ

=
1
2௡

 

Where  ∏ ݔ) − (௞ݔ =௡
௞ୀ଴

ଵ
ଶ೙ ௡ܶାଵ. in other words, ∏ ݔ) − ௞)௡ݔ

௞ୀ଴  is minimized 

(with minimum value ଵ
ଶ೙

), by choosing ݔ଴, ,ଵݔ … ,  ௡ as the zero of the chebyshevݔ

polynomial ௡ܶାଵ(ݔ). 
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