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Chapter Two 

Laplace Transform 

In this chapter, we will review only the basic concepts of the Laplace 
transform method. The details can be found in any text of ordinary 
differential equations. The Laplace transform method is a powerful tool 
used for solving differential and integral equations. The Laplace 
transform changes differential equations and integral equations to 
polynomial equations that can be easily solved, and hence by using the 
inverse Laplace transform gives the solution of the examined equation. 
 
Sec (2.1): Definition of Laplace Transform 
 
Definition (2.1.1)[13]: Let )(xF  be defined for 0x . The Laplace 
transform of )(xF , denoted by )(sF  or  )(xfL , is an integral transform 
given by the Laplace integral 

  dxxfexfLsF sx )()()(
0



                                            (1) 

Where s is real, and L is called the Laplace transform operator.  
The Laplace transform is an operation that transforms a function of t (i.e., 
a function of time domain), defined on ),0[  , to a function of s (i.e., of 
frequency domain)  . )(sF , is the Laplace transform, or simply transform, 
of )(xf . Together the two functions )(xf and )(sF are called a Laplace 
transform pair. For functions of t continuous on  ),0[  , the above 
transformation in the frequency domain is one-to-one. That is, different 
continuous functions will have different transforms. 
Theorem (2.1.2) [13]: Suppose that:  
1. f ,  is piecewise continuous on the interval Ax 0 for any 0A .  
2.  axKexf )( , when Mx  , for any real constant a, and some positive 
constants K  and M . (This means that f is “of exponential order”, i.e. its 
rate of growth is no faster than that of exponential functions.) Then the 
Laplace transform ,  )()( xfLsF  ,  exists for as  . 
 
The Convolution Theorem for Laplace Transform 

This is an important theorem that will be used in solving integral 
equations. 

The kernel ( , )K x t of the integral equation: 
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( )

( )

( ) ( ) ( , ) ( ) ,
h x

g x

u x f x K x t u t dt                                                (2) 

is termed difference kernel if it depends on the difference x t  examples 

of the different kernels are ,sin( )x te x t   , and cosh( )x t . The integral 
equation (2) can be expressed as 

( )

( )

( ) ( ) ( ) ( ) ,
h x

g x

u x f x K x t u t dt                                       (3) 

Consider two functions 1( )f x  and 2 ( )f x that possess the conditions needed 
for the existence of Laplace transform for each. Let the Laplace 
transforms of the functions 1( )f x   and 2 ( )f x be given by 

 
 

1 1

2 2

( ) ( ),

( ) ( ),

f x F s

f x F s








                                                       (4) 

The Laplace convolution product of these two functions is defined by 

 1 2 1 2
0

( ) ( ) ( ) ,
x

f f x f x t f t dt                                                  (5) 

Or 

 2 1 2 1
0

( ) ( ) ( ) ,
x

f f x f x t f t dt                                                  (6) 

Recall that 

   1 2 2 1( ) ( )f f x f f x                                                  (7) 

We can easily show that the Laplace transform of the convolution product 

 1 2 ( )f f x , is given by: 

  1 2 1 2 1 2
0

( ) ( ) ( ) ( ) (s).
x

f f x f x t f t dt F s F
 

    
 
                              (8) 

 

 



30 
 

Example (2.1.3) [13]: 

Find the Laplace transform of 

2

0

( )
x

x tx e y t dt                                                   (9) 

Solution: 

Notice that the kernel depends on the difference x t  . The integral 
includes 1( ) xf x e and 2 ( ) ( )f x y x . The integral is the convolution 
product.  This means that if we take Laplace transform of each term we 
obtain 

 2 2

0

( ) ( )
x

x t xx e y t dt x e y t 
            

 
                              (10) 

Using the table of Laplace transforms gives 

3

2 1 ( )
1
Y s

s s



 

Example (2.1.3) [13]: 

Find the Laplace transform of 

0

( )
x

x x txe e y t dt                                                       (11) 

Solution: 

Notice that 1( ) xf x e and 2 ( ) ( )f x y x . The right hand side is the 
convolution product  1 2 ( )f f x . This means that if we take Laplace 
transforms of both sides we obtain 

 
0

( ) ( )
x

x x t xxe e y t dt e y t 
        

 
                                          (12) 

Using the table of Laplace transforms gives 

 

2

1 1 ( )
( 1) 1

Y s
s s


 

                                              (13) 
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That gives 

1( )
1

Y s
s




                                                        (14) 

From this we find the solution is 

1 1( )
1

xy x e
s

    
 

  
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Sec (2.2): Laplace Transform Variational Iteration Method  

Consider the following general nonlinear differential equation: 
)()()( xfxNyxLy                                                  (15) 

where L  is a linear operator, N  is a nonlinear operator and )(xf is a 
known analytical function. Before we begin the implementation, we shall 
present the variational iteration method scheme in constructing the 
correction functional. 
The (VIM) admits the use of the correction functional for Eq. (15) given 
by 

  1
0

( ) ( ) ( ) Ny ( ) f( ) ,
x

n n n ny x y x Ly d           0,1,2,...n   (16)    

where  is a general Lagrange multiplier, which can be identified 
optimally via the variational theory. The subscript n denotes, the n th 
approximation and ny is a restricted variation  0ny  . In a will of 
problems that appear in the literature, the general form of Lagrange 
multiplier is found to be of the form 
 

 x     
In this section, we will make the assumption that  is expressed in this 
latter way. In such a case, the integration is, basically, the convolution; 
hence Laplace transform is appropriate to use. Operating with Laplace 
transform of both sides of (16) the correction, functional will be 
constructed in the following manner: 

     1
0

( ) ( ) (x ) ( ) Ny ( ) f( ) ,
x

n n n ny x y x Ly d     

 
     

 
    0,1,2,...n   

Therefore  

     1( ) ( ) ( ) ( ) ( )n n n ny x y x Ly x Ny x f x           

   ( ) ( ) ( ) ( ) ( ) .n n ny x x Ly x Ny x f x                          (17) 

To find the optimal value of  x  we first take the variation with 
respect to ( )ny x . Thus 

     1( ) ( ) ( ) ( ) ( ) ( ) ,n n n n
n n n

y x y x x Ly x Ny x f x
y y y
  


             (18) 

and hence upon applying the variation this simplifies to 

     1 .n n ny y y                                              (19) 
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We assume that L  is a linear differential operator with constant 
coefficients contain given by 

( ) ( 1) ( 2)
1 2 2 1 0( ) ... ,n n n

n n nL y a y a y a y a y a y a y 
                        (20) 

where ja 's are constants. It is important to note that if the coefficients 
contain only non-constant terms of the form k , then the Laplace 
variation approach is still valid. 

The Laplace transform of the operator L is given by 

 ( ) 1 ( )

1

(0),
n

n n k n k
n n n

k

a y a s y a s y 



                               (21) 

is ythe variation with respect to  so 

 ( ) .n n
n na y a s y     )22(                                             

yields ( 1)
1 1 0,...,n

na y a y a y
  , namely LThe other term in the operator  

similar results. Hence, using (22), Eq. (19) reduces to 

       1
0 0

1
n n

k k
n n k n k n

k k
y y a s y a s y     

 

                     
      )23(

   
 

. This means that 1 0ny  requires that    1ny The extremum condition of  
the right-hand side of Eq. (23) should be set to zero. Hence, we have the 
stationary condition 

0

1
n

k
k

k
a s





    




                                       (24)           

 

ion gives the optimal value of Taking the Laplace inverse of the last equat
the following iteration formulation: , we haveFor this value  . 

     1
0

( ) ( ) ( ) ( ) ( ) ( ) ,
x

n n n ny x y x x Ly Ny f d     

 
     

 
  

 

0.n where   
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Example (2.2.1) [14]: 

Consider the boundary-value problem 

 2 2 1 sin ,
(0) 0, (0) 1

y y y x
y y

    

 
                                           (25) 

Solution: 

The Laplace variational iteration functional will be constructed in the 
following manner: 

     2 2
1

0

( ) ( ) ( ) ( ) ( ) 1 sin ,
x

n n n n ny x y x x y y y x d   

 
        

 
   (26) 

or equivalently, upon applying the properties of  Laplace transform, we 
have 

     2 2
1( ) ( ) ( ) ( ) ( (x)) ( ) 1 sinxn n n n ny x y x x y x y y x

               

 

 

2 2

2 2 2
2

( ) ( ) ( ) ( (x)) ( ) 1 sinx

1 1( ) ( ) ( ( )) (0) (0) ( (x)) ( ( ))
1

n n n n

n n n n n n

y x x y x y y x

y x x s y x sy y y y x
s s





           
              

  

    

Taking the variation with respect to ( )ny x  on both sides of the latter 
equation, leads to 

    2 2 2
1 2

1 1( ) ( ) ( ) ( ( )) 1 ( (x)) ( ( )) ,
1n n n n n

n n n

y x y x x s y x y y x
y y y s s
   
  

            
     

and upon simplification we get 

         2 2
1 1n n n ny y s y y s                                     (27) 

The extremum condition of  1ny   requires that 1 0.ny    This means that 
the right-hand side of Eq. (27) should be set to zero. Hence, we have 

21 0,s     that is, 2

1
s

      . Therefore: 

( )x x                                                              (28) 

Substituting Eq. (28) into Eq. (26) result in the following iterative scheme 
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     

   

2 2
1

0

2 2

( ) ( ) ( ) ( ) ( ) ( ) y ( ) 1 sin

( ) (x) ( ) (x) y (x) 1 sinx

x

n n n n n

n n n n

y x y x x y y d

y x x y y

     

 
        

 
        

  

  

    (29) 

Let 0 siny x  

     
   
 

2 2
1 0 0 0 0

2 2

2

1 sin

sin sin cosx sin 1 sin

sin
1

1

y y x y y y x

x x x x x

x

s

        
        






   

  


                     (30) 

Inverse Laplace transform yields 

1 siny x  

And so on, then the exact solution 

siny x  

Example (2.2.2) [14]: 

Consider the boundary-value problem 

21 , (0) 0y xy y y       

Solution: 

The Laplace variational iteration  correction, functional is expressed as: 

     2
1

0

( ) ( ) ( ) ( ) 1 y( ) ( ) ,
x

n n ny x y x x y y d      

 
      

 
               (31) 

Appling the Laplace transform, Eq. (31) becomes 

     2
1( ) ( ) (x) 1n ny x y x y xy y

           

    21( ) ( ) (0)n n n nx s y x y xy y
s

             
                        (32) 

Taking the variation with respect to ( )ny x  and making the above 
correction, functional stationary, noting that 0,ny   we have: 
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    1 1 0.n ny y s                                             (33) 

 

This implies that 1
s

      ; hence 

( ) 1x                                            (34) 

Substituting Eq. (34) into Eq. (31), we get: 

     

     

2
1

0

2
1

( ) ( ) ( ) 1 ( )

( ) ( ) 1 ( ) 1 xy ( ) ( )

x

n n n n n

n n n n n

y x y x y y y d

y x y x y x x y x

   



 
     

 
      

  

    .                        (35) 

Let 0 (0) 0.y y   Then form the scheme (35), the first iteration is 

       1 2

1 1 10 1 1y
s s s
       
 

     

Take inverse Laplace 

1y x   

      2 2
2 2

11 1 1y x x x
s

               

2y x   

And so on , then the exact solution is: 

y x   
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Sec (2.3): Solution of Differential Equations of Lane-Emden 

Type by Combining Integral Transform and Variational 

Iteration Method 
In this section, we introduce a dependable joined the modified Laplace 

Transform  and the new modified variational iteration  method to solve  

some nonlinear differential equations for Lane-Emden type. This method 

may be efficient and not difficult.  

 

The basic definition of the modification of Laplace Transform is given as 

below: 

the transform of the function ( )f t  is 

 
0

( ) (t)stf t e f dt


                                             (36) 

let us consider the following general differential equation 

   ( , ) ( , ) ( , ), ( ,0) ( ),L u x t N u x t g x t u x h x                                (37) 

where L  is a linear operator of the first order, N  is a nonlinear operator 

and ( , )g x t  is inhomogeneous term. According to the variational iteration 

method, we can construct a correction functional as 

 1
0

( , ) ( , ) ( , ) ,
t

n n n nu u Lu x s Nu x s g x s ds                                    (38) 

where   is a Lagrange multiplier  1 ,    the subscript n denotes the nth 

approximation, nu  is considered as a restricted variation, i.e. 0.nu    

The successive approximation 1nu    of the solution u  will be readily 

obtained upon using the determined Lagrange multiplier and any 

selective function 0 .u   

Consequently, the solution is given by lim .nn
u u


   In this section, we 

assume that L is an operator of the first order 
t



  in the equation (37). 
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Let us take the modified Laplace Transform of both sides and apply the 

differentiation property of new transform. Then we get 

   ( , ) ( , ) [ ( , )]Lu x t Nu x t g x t                            (38) 

and 

   1 1 1( , ) [ ( , )] ( ) ( , ) ,u x t g x t h x Nu x t
s s s

                          (39) 

Applying the inverse of modified Laplace Transform of both sides of the 

equation, we have 

 1 1( , ) ( , ) ( ( , ) ,u x t G x t N u x t
s

      
                                   (40) 

where ( , t)G x   represents the terms arising from the source term and the 

prescribed initial condition. Taking the first partial derivative with respect 

to t , we have 

 1 1( , ) ( , ) ( ( , ) 0.tu x t G x t N u x t
t t s

         
                            (41) 

Or, alternatively 

 1
1

1( , ) ( , ) ( ( , ) ,n nu x t G x t N u x t
s




     
                                   (42) 

Thus, we can obtain the solution u by 

( , ) lim ( , )nn
u x t u x t


                                           (43) 

 

Illustrative examples 

In this section, we solve some examples of nonlinear differential 

equations of Lane-Emden type by using the modified Laplace Transform 

variational iteration method. 

 

Example (2.3.1) [20]: (The isothermal gas sphere equation) The 

isothermal gas sphere equation is 
2 0yy y e
x

                                           (44) 
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subject to the boundary conditions,  (0) 0, (0) 0y y    . This model can be 

used to view the isothermal gas spheres, where the temperature remains 

constant. 

Solution: 

Now, taking the transform on the given equation, we have: 

 

 

 

2

2

2 0

2( )

1 2( )

y

y

y

y y e
x

s y x y e
x

y x y e
s x

      
     

     

 

 

 

                                  (45) 

 taking the inverse to obtain, 

1
2

1 2( ) yy x y e
s x

        
                                     (46) 

According to the equation (42), the correction function is given by 

 1
1 2

1 2( ) ny
n ny x y e

s x




       
                                              (47) 

Now let us apply the modified Sumudu transform variational iteration 

method, the solution in the series is given by 

 0

2

1

0

1 1 2
1 02 2

1
1 1 2

2 12 2

1 2 4 6
2

2 4 6 8

0,

1 2 1 11 ,
2

1 2 1 2

1 1 3 151 x ...
2! 4! 6!

1 1 1 1 ...
2 24 240 2688

y

xy

y

y y e x
s x s

y y e e
s x s

x x
s

x x x x

 

 





                  
                     

            

    

   

   

 

 

Continue this process, and we can obtain the solution in the form: 

2 4 6 81 1 1 1( ) ...
2 24 240 2688

y x x x x x                                       (48) 
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Example (2.3.2) [20]: The Emden-Fowler type equations 
2 sin( ) 0,( 0)y y y x
x

                                                         (49) 

subject to the boundary conditions,  (0) 1, (0) 0y y    .  

Solution: 

Now, taking the transform on the given equation, we have 

 

 

 

2

2

2 sin 0

2( ) sin

1 1 2( ) sin

y y y
x

s y x s y y
x

y x y y
s s x

      
      
     

 

 

 

                                          (50) 

 taking the inverse to obtain 

1
2

1 2( ) 1 siny x y y
s x

         
                                                (51) 

According to the equation (51), the correction function is given by 

1
1 2

1 2( ) 1 sinn n ny x y y
s x




        
                                     (52) 

Now let us apply the modified Laplace transform variational iteration 

method, the solution in the series is given by 

 

0

1 1 21
1 0 0 12 2

1 1 21
2 1 1 12 2

2 3
1 2 3 41 2 1 1

1 12

1,

1 2 11 sin 1 sin(1) 1 x , k sin(1).
2

1 2 11 sin 1 2 sin(1 x )
2

11 2 x .
2! 3! 4!

y

ky y y
s x s

ky y y k
s x s

k k k kk k x x
s

 

 





                   
                        

       

   

   

  2

2 3
2 4 5 61 1 2 1 1

.. , cos(1)

1 ...
2 24 120 720

k

k k k k kx x x x

  
  

  

     

 (53) 

Continue this process, we obtain the solution in the form: 
2 3

2 4 5 61 1 2 1 1( ) 1 ...
2 24 120 720
k k k k ky x x x x x                                 (54) 
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Example (2.3.3) [20]: The Emden-Fowler type equations 
2 sinh( ) 0, ( 0)y y y x
x

                                         (55) 

subject to the boundary conditions (0) 1, (0) 0y y    .  

Solution: 

Now, taking the transform on the given equation, we have: 

 

 

 

2

2

2 sinh 0

2( ) sinh

1 1 2( ) sinh

y y y
x

s y x s y y
x

y x y y
s s x

      
      
     

 

 

 

                            (56) 

then we follow the same procedure in the previous examples to get 

1
1 2

1 2( ) 1 sinhn n ny x y y
s x




        
                               (57) 

and apply the modified Laplace Transform variational iteration method, 

to get 

 

0

2
1 1 2 21

1 0 0 12 2

2
1 1 2

2 1 1 12 2

1 1 2
1 12

1,

1 2 1 11 sinh 1 sinh(1) 1 x 1 x ,k sinh(1).
2 4

1 2 1 11 sinh 1 2 sinh(1 x )
4

211 2
2!

y

k ey y y
s x s e

ey y y k
s x s e

k kk k x
s

 

 





                      
                     

    

   

   

 
3

2 41
2

3
2 4 61 1 2 1

2 4 6 4 2
2 4 6

2 3

10 x ... , cosh(1)
4!

2 101 ...
2! 24 720

1 1 3 3 11 ...
4 48 576

k k

k k k kx x x

e e e e ex x x
e e e

  
    

  

    

    
    

  

Continue this process, we obtain the solution in the form: 
2 4 6 4 2

2 4 6
2 3

1 1 3 3 1( ) 1 ...
4 48 576

e e e e ey x x x x
e e e
    

      


