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Chapter Three 
 

Combined Laplace Transform and 
Variational Iteration Method 

 
It is well known that there are many nonlinear differential equations which 
are used in the study of several fields for example, physics, mechanics, etc. 
The solutions of these equations can give more understanding of the 
described process. But because of the complexity of the nonlinear 
differential equations and the limitations of mathematical methods, it is 
difficult to obtain the exact solutions for these problems. Thus, this 
complexity hinders further applications of nonlinear differential equations. A 
broad class of analytical and numerical methods were used to handle these 
problems such as Backlund transformation ,Hirota’s bilinear method, 
Darboux transformation Symmetry method, the inverse scattering 
transformation, the tanh method, the A domain decomposition method ,the 
improved Adomian decomposition method, the exp-function method and 
other asymptotic methods for strongly nonlinear equations. In 1978, 
Inokutiet al. proposed a general use of Lagrange multiplier to solve 
nonlinear problems, which was intended to solve problems in quantum 
mechanics. Subsequently, in 1999, the variational iteration method(VIM) 
was first proposed by Ji-Huan. 
 The idea of the VIM is to construct an iteration method based on a 
correction functional that includes a generalized Lagrange multiplier. The 
value of the multiplier is chosen using variational theory so that each 
iteration improves the accuracy of the solution. 
In this chapter, we have applied the modified variational iteration method 
(VIM) and Laplace transform to solve a new type of equations called 
convolution differential equations. 
 
Sec(3.1):Combined Laplace Transform and Variational 
Iteration Method to Solve Convolution Differential Equations 
 
In this section  we combine Laplace transform and modified variational 
iteration method to solve new type of differential equation called 
convolution differential equations, it is possible to find the exact solutions or 
better approximate solutions of these equations. In this method, a correction 
functional is constructed by a general Lagrange multiplier, which can be 
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identified via variational theory. This method is used for solving a 
convolution differential equation with given initial conditions. The solutions 
obtained by this method show the accuracy and efficiency of the method. 
Definition(3.1.1) [26]: 
Let ( ), ( )f x g x   be integrable functions, then the convolution of ( ), ( )f x g x  is 
definedas 

0

(x)*g(x) (x t)g(t)dt
x

f f   

And the Laplace transform is defined as 
 

0

[ (x)] F(s) (x)dxsxL f e f


    

 
where ݔ >  0 and is complex value. 
And further the Laplace transform of first and second derivatives are given 
by 

2

(i) L[f (x)] sL[f(x)] f(0)
(ii) L[f (x)] s L[f(x)] f(0) f (0)s

  

   
 

More generally 
(n) 1 2 (n 2) (n 1)L[f (x)] s L[f(x)] f(0) f (0) ... sf (0) f (0)n n ns s          

 
Theorem (Convolution Theorem) (3.1.2)[26]: 
 
     If [f(x)] F(s),      L[g(x)]=G(s),  L       ( , ) ( , ) ( , )L u x t N u x t g u x t   then: 

[f(x) * g(x)] [f(x) g(x)] f(s) g(s)L L   

or equivalently, 
1[F(s)G(s)] f(x)*g(x)L   

Consider the differential equation 
*[y(x)] R[y(x)] N[y(x)] N [y(x)] 0 L                                    (1) 

With the initial conditions 
(0) h(x)    ,             y (0)=k(x)y                                        (2) 

Where ܮ is a linear second order operator, ܴ is a linear operator less than L   
, ܰ is the nonlinear operator, and ܰ∗[(ݔ)ݕ] is the nonlinear convolution term 
which is definite by 



44 
 

. ( , )u u x t * (n) (n)N [y(x)] (y, y , y ,....., y )*g(y, y , y ,...., y )f      
According to the variational iteration method, we can construct a correction 

functional as follows 

  *
1

0

(x) y (x) ( )[Ly ( ) R y ( ) y ( ) N y ( )]d
x

n n n n n ny N           
        

(3) 

 *( ), N y ( ) and y ( )n n nRy N   , are considered as restricted variations, i.e. 

  *y 0, N y 0 and N y 0,   =-1n n nR       

Then the variational iteration formula can be obtained as 

*
1

0

(x) y (x) [Ly ( ) R ( ) ( ) N y ( )]d
x

n n n n n ny y Ny                               (4) 

Eq. (4), can be solved iteratively using 0(x)y  as the initial approximation. 

Then the solution is (x) lim (x)nn
y y


  

Consider the nonlinear convolution ordinary differential equation 
*[y(x)] R[y(x)] N[y(x)] N [y(x)] 0 L                                (5)               

With the initial conditions 

(0) h(x)    ,             y (0)=k(x)y                             (6) 

Where ܮis a linear operator, ܴ is a linear operator less than ܮand ܰis the 

nonlnonlinear operatord * (n) (n)N [y(x)] (y, y , y ,....., y )*g(y, y , y ,...., y )f      is the 

nonlnonlinear convolutionm. 

In this section we assume that
2

2

dL
dx

  

Take Laplace transform of both sides of eq (5), to find 

 *[Ly(x)] [Ry(x)] [Ny(x)] [N y(x)] 0                                  (7) 
2 *(0) y (0) {Ry(x) Ny(x) N y(x)} 0 s y sy                                          (8) 

By using the initial conditions and taking the inverse Laplace transform we 

have 
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1 *
2

1(x) p(x) Ry(x) Ny(x) N y(x) 0 y
s

        
                                      (9) 

Where ( ݔ)݌ represents the terms arising from the source term and the 

prescribed initial conditions. 

Now the first derivative of eq (9) is given by 

1 *
2

(x) (x) 1 {Ry(x) Ny(x) N y(x)} 0 dy dp d
dx dx dx s

        
                       (10) 

By the correction function of the irrational method we have 

1 *
1 2

0

1(x) y (x) (y ( )) ( ) {Ry( ) Ny( ) N y( )}  
x

n n n
d dy p d

d d s     
 




           
    

Then the new correction function (new modified VIM) is given by 

1 *
1 2

1(x) y (x) {Ry (x) Ny (x) N y (x)}   ,  n 0n n n n ny
s




       
 

                 
(11) 

In the last we find the solution in the form (x) lim (x)nn
y y


 , if inverse Laplace 

transform exist. 

In particular, consider the nonlinear ordinary differential equations with 

convolution terms 
21  y (x)-2+2y  *y -y  *(y ) 0 , y(0)=y (0)=0                             (12) 

Take Laplace transform of eq (12), and making use of initial conditions, we 

have 

 22 2(x) y  * y -2y  *ys y
s

          

The inverse Laplace transform implies that 

 22 1
2

1(x) y  * y -2y  *yy x
s

           
   

By using the new modified (eq (11)), we have the new correction function 
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 21
1 2

1(x) (x) y  * y -2y  *yn ny y
s




          
   

or 

 21
1 2

1(x) (x) (y ) * y -2 (y ) * (y )n ny y
s




          
    

                  
(13) 

Then we have 

                         
2

0 (x) xy   

                        
2 1 2

1 2
1(x) x [ (4) (2 x) 2 (2 x) (2)y x
s

      
 

      

                        
2 2 2

2 3(x) x   ,    y (x) x ,   .......... , y (x) xny     

This means that  
2

0 1 2(x) (x) y (x) ....... y (x) xny y      

Then the exact solution of  Eq.(12) is 2(x)y x  

 22 y -(y ) -2x+y  * y 0 , y(0)=1                                                       (14) 

Take Laplace transform of  Eq. (14), and use the initial condition, we obtain 

   2 2
2

21 y  -y  * ys y
s

          

Take the inverse Laplace transform to obtain 

   2 22 1 1(x) 1 y  -y  * yy x
s

           
   

Using eq (11) to find the new correction function in the form 

   2 21
1

1(x) (x) y  -y  * yn n n ny y
s




         
   

or 

   2 21
1

1(x) (x) [ y ] - [y ] [ y ]n n n ny y
s




         
                                  (15) 

 

Then we have 
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2

0 (x) 1 xy    

 2 1 2 2 1 2
1 3 2

1 1 8 2 4(x) 1 x (4 ) (2 x) (4) 1 1y x x x
s s s s s

                 
   

      

           ……………………………………….. 

         
2

0 1 2(x) (x) y (x) ....... y (x) 1 xny y       

Then the exact solution of  Eq. (14) is:  
2(x) 1y x   
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Sec(3.2): Solution of Nonlinear Partial Differential Equations 
by the Combined Laplace Transform and the New Modified 
Variational Iteration Method 
 
In this section, we present a reliable combined Laplace transform and the 
new modified variational iteration method to solve some nonlinear partial 
differential equations. The analytical results of these equations have been 
obtained in terms of convergent series with easily compute able components. 
The nonlinear terms in these equations can be handled by using the new 
modified variational iteration method. This method is more efficient and 
easy to handle such nonlinear partial differential equations. 
 
The basic definition of the Laplace transform is given as follows: 
Laplace transform of the function ( )f t  is 

0

[ (x)] F(s) (x)dx,      Re s >0         sxL f e f


                                   (16) 

And the inverse Laplace transform is given by 
 

1 1[ ( )] ( ) ( )d ,       >0         
2

i
st

i

L F s f t e F s s
i








 


 

    

Obviously ܮand ିܮଵare linear integral operators. 
In this section, we combined Laplace transform and variational iteration 
method to solve nonlinear partial differential equations. 
To obtain Laplace transform of partial derivative we use integration by parts, 
and then we have: 

  
(x, t) (x,s) f(x,0) ,   fL sF
t

     
 

 

 (x, t) (x,s) ,   f dL F
t dx

    
 

 
2 2

2 2

(x, t) (x,s) . f dL F
t dx

 
  

 

where ( , )f x s is the Laplace transform of ( , )x t . 
We can easily extend this result to the nth partial derivative by using 
mathematical induction. 

2
2

2
(x, t) (x,0)(x,s) f(x,0)    f fL s F s
t t

  
     
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To illustrate the basic concept of the He's VIM, we consider the following 
general differential equations 

[ ( , )] [ ( , )] ( , )L u x t N u x t g x t                                    (17) 
 
with the initial condition 

( , 0) ( )u x h x                                                    (18) 
where ܮis a linear operator of the first order, ܰis nonlinear operator and 

( , )g x t is inhomogeneous term. According to variational iteration method we 
can construct a correction functional as follows. 

  
1

0

, (x,s) g(x,s)
t

nn n nu u Lu x s N u ds
     

                        
(19) 

where  is a Lagrange multiplier  1   , the subscripts n  denote the 

ℎ approximation, nuݐ݊  is considered as a restricted variation, i.e.  0nu  . 
Equation (19) is called a correction functional. 
The successive approximation 1nu  , of the solution u  will be readily obtained 
by using thedetermined Lagrange multiplier and any selective function 0u , 
consequently, the solution is given by  

lim nu
u u


  

In this section we assume that L is an operator of the first order 
t



 in 

equation (17). 
Taking Laplace transform on both sides of equation (17), to get 
 

     (x, t) (x, t) ,L Lu L Nu L g x t                                 (20) 

Using the differentiation property of Laplace transform and initial condition 
(18), we have: 

     (x, t) (x) L (x, t) (x, t)sL u h g L Nu                          (21) 
Appling the inverse Laplace transform on both sides of equation (21) to find: 

1 1(x, t) (x, t) L [x, t] ,u G Nu
s

     
                                     

(22) 

where ݔ)ܩ ,  represents the terms arising from the source term and the ( ݐ
prescribed initialcondition. 
Take the first partial derivative with respect to t of equation (22), to obtain: 
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 1 1(x, t) (x, t) L (x, t)u G L Nu
t t t s

                                         
(23) 

By the correction function of the variational iteration method 
 

                       
   1

1
0

1(x, ) (x, ) L ( , t)
t

n n nu u u G L Nu d


   
  




   
         

  

or 

 1
1

1(x, t) L (x, t)n nu G L Nu
s




    
                                          

(24) 

Equation (24) is the new modified correction functional of Laplace 
transform and the variational iteration method, and the solution ݑis given by 

(x, t) lim (x, t)nu
u u


  

 
In this section, we solve some nonlinear partial differential equations by 
using the new modified 
variational iteration Laplace transform method, therefore we have: 
 
Example (3.2.1) [32]: 
Consider the following nonlinear partial differential equation 
 

0   ,            u(x,0)=-xt xu uu                                   (25) 
 
Taking Laplace transform of equation (25), subject to the initial condition, 
we have: 
 

   1(x, t) x
xL u L uu
s s

    

The inverse Laplace transform implies that: 

 1 1(x, t) x L xu L uu
s

      
 

 

 
by the new correction function we find: 
 

 1
1

1(x, t) x Ln n n x
u L u u

s



        

 

Now we apply the new modified variational iteration Laplace transform 
method, 
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0(x, t) xu    

 1 1
1 2

1(x, t) x L L xu L x x x xt
s s

                  
 

1 2 3
2 2 3 4

1 2 2 1(x, t) x L ( )
3

u x x xt xt xt
s s s

             
 

.                   .                  . 

.                    .                 . 

.                    .                 . 
So we deduce the series solution to be 

2 3(x, t) x(1 t t t ...)
1

xu
t

      


, 

which is the exact solution. 
 
Example (3.2.2) [32]: 
Consider the following nonlinear partial differential equation 

2 2
2

2    ,     u(x.0)=xu u uu
t x x

                                           
(26) 

Taking Laplace transform of equation (26), subject to the initial condition, 
we have: 
 

 
22 2

2
1(x, t) x u uL u L u

s s x x
           

 

Take the inverse Laplace transform to find that: 
 

2 2
2 1

2
1(x, t) x u uu L L u
s x x


                

 

The new correction functional is given as 
 

2 2
2 1

1 2
1(x, t) x n n

n n
u uu L L u

s x x




                
 

 
This is the new modified variational iteration Laplace transform method. 
The solution in series form is given by: 
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2

0 (x, t) xu   

                  

2
2 1 2 2

1 2

6(x, t) x 6xu L x x t
s

  
    

 
 

                   
2 2 3

2 (x, t) x (1 6 t 36 t 72 t )u      
                   .                  .                  . 
                   .                  .                  . 
                   .                  .                  .  
 
The series solution is given by 

2
2 2 3(x, t) x (1 6 t 36 t 72 t ...)

1 6
xu

t
     


 

 
Example (3.2.3) [32]: 
Consider the following nonlinear partial differential equation 

2 2
2

2

12    ,     u(x.0)=
2

u u u xu u
t x x

                                 
(27) 

Using the same method in the above examples to find the new correction 
functional in the form: 
 

2 2
1 2

1 2
1 1(x, t) 2

2
n n

n n n
u uxu L L u u

s x x




                 
 

 
Then we have: 
 

                               0
1(x, t)

2
xu 

  

                             
1

1 2
1 1 1 1(x, t) 1

2 4 2 2
x x x tu L

s
              

 

                            
2 3 4

2
1 t 3 1 1(x, t) (1 t t t )

2 2 8 8 64
xu 

      

                             .                  .                  . 
                             .                  .                  . 
                             .                  .                  .  
 
The series solution is given by 

 
1
221 t 3 1(x, t) (1 t ...) 1 ,

2 2 8 2
x xu t  

       

which is the exact solution of equation (27). 
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Example (3.2.4) [32]: 
Consider the following nonlinear partial differential equation 

22
2

2 =te   ,     u(x.0)=0,x xu u uu u e
t x t

                                 
(28) 

Taking the Laplace transform of the equation (28), subject to the initial 
conditions, we have: 
 

 
2

2 2(x, t) x x us L u e L te u u
x

 
           

 

 
Take the inverse Laplace transform to find that: 

2
1 2

2
1(x, t) x x uu te L L te u u
s x

  
                

 

 
The new correct functional is given as 
 

2
1 2

1 2
1(x, t) x x n

n n n
uu te L L te u u

s x
  



                
 

 
This is the new modified variational iteration Laplace transform method. 
The solution in series form is given by: 
 
                 0 (x, t) xu te   

1(x, t) xu te                                                                              (29) 

                    2 (x, t) xu te   
                     : 
The series solution is given by 

(x, t) xu te                                                       (30) 
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Sec(3.3):  A Comparative Study of Variational Iteration Method and 

He- Laplace Method 

Consider the following nonlinear differential equation: 

1 2 3 (y) f(x)y p y p y p f                                                 (31) 

(0) ,           y (0)=y                                                      (32) 

where 1 2 3, , , ,p p p     are constants. ( )f y  is a nonlinear function and ( )f x  is 

the source term. Taking Laplace transformation (denoted throughout this 

section by L) on both side of Equation (31), we have  

         1 2 3 (y) (x)L y L p y L p y L p f L f                               (33) 

By using linearity of Laplace transformation, the result is  

         1 2 3 (y) (x)L y p L y p L y p L f L f                              (34) 

Applying the formula on Laplace transform, we obtain  

          2
1 2 3(0) y (0) (0) (y) (x)s L y sy p sL y y p L y p L f L f             (35) 

Using initial conditions in Equation (5), we have  

       2
1 1 2 3(s s) L f( ) (x)p y s p p L y p L y L f                              (36) 

or  

       31 2
2 2 2

1 1 1

( s p ) (y) (x)
(s p s) (s p s) (s p s)

ppL y L y L f L f   
   

            
(37)  

Taking the inverse Laplace transform, we have  
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   1 1 32
2 2

1 1

(x) F(x) L (y)
(s p s) (s p s)

ppy L y L L f    
         

               (38)  

where (x)F represents the term arising from the source term and the 

prescribed initial conditions.  

Example (3.3.1) [38]:  

Consider the following first order nonlinear differential equation:  

2 0,    y 0y y                                                        (39)  

(0) 1y                                                                   (40) 

If 0y  is an initial approximation or trial-function then we can write down 

following expression for correction:  

 2
1

0

(t) y (t) ( ) ( )
t

n n n n ny y y d                                          (41) 

where the last term of right is called “correction”, n  is a general Lagrange 

multiplier. The above functional is called correction functional, the Lagrange 

multiplier in the functional should be chosen such that its correction solution 

is superior to its initial approximation (trial- function) and is the best within 

the flexibility of the trial- function, accordingly we can identify the 

multiplier by variational theory. Making the above correction, functional 

stationary with (0) 1y  so that, we can obtain following stationary 

conditions:  

( ) 2 y ( ) ( ) 0n n                                                        (42) 

01 ( ) | 0n                                                            (43) 
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The Lagrange multiplier, therefore, can be identified as follows:  

exp 2 ( ) dn n
t

y


  
     
  
                                           (44) 

To simplify the multiplier, we approximate Equation (44) as follows:  

0( ) exp 2 ( )dn
t

y


   
     
  
                                            (45)  

Substituting Equation (45) in Equation (41) yields following variational 

iteration formula  

 2
1 0(t) y (t) ( ) exp 2 ( )d ( ) y ( )n n n n n

t

y y y d


      

 
     

 
             (46)  

We start with by above iteration formula, we can obtain the following 

results,  

2( t) 2 21 1
1 2 2

0

(t) 1 1 (1 e ) (1 e )
t

t ty e d                                                 (47)  

 2 2( t) 2 2 21 1
2 2 4

0

(t) (1 e ) (1 e )
t

t ty e e d          
 

 2 2( t) 2 41 1 1 1
2 4 2 4

0

(1 e ) e e
t

t e d                                              (48)  

                     
2 2 2 21 1 1 1

2 8 2 8(1 e ) (1 e ) e (e e 4 )t t t tt t            

                     
2 2 41 1 1

2 2 8(1 e ) e (1 e )t t tt        

if, suppose, 2( )y t is sufficient, the approximation at 20.4 is y (0.4) 0.6678,x    

while its exact one is 2y (0.4) 0.6667, , the 0.17% accuracy is remarkably 
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good in view of the crudeness of its initial approximation. The process can, 

in principle, be continued as far as desired, however, the resulting integrals 

quickly become very cumbersome, so some simplification in the process of 

identification of Lagrange multiplier will be discussed at below:  

We re-consider the correction, functional Equation (41) as follows:  

 2
1

0

(t) y (t) ( ) ( )
t

n n n ny y y d                                                  (49)  

Where the nonlinear term 2
ny is considered as non-variational variation or 

constrained variation i.e. 2 0ny  .The Lagrange multiplier, therefore, can be 

readily identified and the following variation iteration formula can be 

obtained:  

 2
1

0

(t) y (t) ( ) ( )
t

n n n ny y y d                                                      (50)  

Putting  0,1,n  in Equation (50), we can obtain the following 

                     
1

0

(t) 1 (0 1) 1
t

y d t    
 

                    
 2 2 31

2 3
0

(t) 1 1 (1 ) 1
t

y t d t t t          
 

Similarly, putting 2,3,..., 1n n   the nth approximation can be obtained, 

which converges to its exact solution, a little more slowly due to the 

approximate identification of the Lagrange multiplier.  
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Remark  

The variational iteration technique mentioned above can  be readily 

extended to partial differential equations (PDEs). We will illustrate its 

process. 

Example (3.3.2) [38]:  

Consider the following equation  

2
2 42uu y x

y
 

       

2

(0, y) 0,              u(1,y)= y + a
(x,0) ax,                u(x,1)=x

u
u ax



 
                                    (51) 

which has the exact solution (xy a)u x   .  

Supposing the initial approximation equation (51) is 0u , its correction 

variational functional in x -direction and y -direction can be expressed 

respectively as follows: 

 
2

2 2
4

1 1 2 2
0

( , y) ( , y) ( , y)( , ) ( , ) 2
t

n nn
n n

u u uu x y u x y y d
y y

  
  



                 
  

 
2

2 2
4

1 2 2 2
0

( , ) ( , ) ( , )( , ) ( , ) 2
t

n nn
n n

u x u x u xu x y u x y x d
x

  
  

 

                 
    (52)    

where nu is a non variational. Their stationary conditions are written down 

respectively as follows 
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2
1 1

12

( ) ( )0,    ( ) | 0,   1- | 0x x 
   

 
  

 
  

 
                             (53)  

and 

2
2 2

2

( ) ( )0,    ( ) | 0,   1- | 0y y 
   


  

 
  

 
                             (54) 

The Lagrange multipliers can be easily identified  

1 2,       x y                                    (55) 

The iteration formulae in x-direction and y-directions can be, therefore, 

expressed respectively as follows  

22 2
4

1 2 2
0

( , y) ( , y) ( , y)( , ) ( , ) ( x) 2
x

n n n
n n

u u uu x y u x y y d
y y

  
  



    
             


 

22 2
4

1 2 2
0

( , ) ( , ) ( , )( , ) ( , ) ( y) 2
y

n n n
n n

u x u x u xu x y u x y x d
x

  
  

 

    
             

  

(To ensure the approximations satisfy the boundary conditions at x=0 and 

y=0, we modify the varittional iteration formulae in x-direction and y-

direction as follows 

22 2
4

1 2 2
1

( , y) ( , y) ( , y)( , ) ( , ) ( x) 2
x

n n n
n n

u u uu x y u x y y d
y y

  
  



    
             


 

    (56) 

22 2
4

1 2 2
1

( , ) ( , ) ( , )( , ) ( , ) ( y) 2
y

n n n
n n

u x u x u xu x y u x y x d
x

  
  

 

    
             

  

Now we start with an arbitrary initial approximation: 
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0 ,u A Bx  where A and B are constant to be determined, by the variational 

iteration formula in x-direction, we have    

4
1

0

( , ) ( x) 0 0 2
x

u x y A Bx y d                                         (57) 

                             2 1
30

A Bx x y x     

By imposing the boundary conditions at x = 0 and y = 0 and B = a − 1/30, 

thus we have  

5
1

1(x, y) (xy a) (x 1)
30

u x x                                 (58) 

By (56) we have: 

5 4 4 41
2 30

0

(x, y) (xy a) (x 1) ( x) 2 0 2
x

u x x y y d                          (59) 

                (xy a)x   

which is an exact solution. The approximation can also be obtained by  

y-direction. 

Example (3.3.3) [38]: 

Consider the following nonlinear PDE: 

2 21
4 ( )

(x,0) 0

u ux
t x

u

 
 

 


                                                         (60) 

Its t-direction correction functional can be constructed as  
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
2

2 1
1 4

0

(x, ) (x, )( , ) ( , t)
t

nn
n n

u uu x t u x x d
x

 
 



              
                       (61)                                   

In which nu  is a non variational variation.The multiplier can be identified 

and its variational iteration formula t-direction can be obtained  

2
2 1

1 4
0

(x, ) (x, )( , ) ( , t)
t

n n
n n

u uu x t u x x d
x

 
 



            
                         (62) 

We start with an initial approximation 0 0,u   by above iteration, we can 

obtain successively its approximation:  

                 
2

1
0

( , ) 0 ( x ) ,
t

u x t d  
 

                 

2 2 2 21
2 4

0
2 2 31

3

( , ) x x (2 ) ,

x x ,

t

u x t x t x d

t t

      

 



 

                 

2 2 3 2 2 2 2 3 21 1 2
3 3 4 3

0

2 2 3 2 4 2 61 2 1
3 3 9

0
2 2 3 2 3 2 71 2 1

3 15 63

( , ) x x (2 x ) ,

x x x

x x x x

t

t

u x t x t x t t x x d

t t x d

t t t t

  

  

        

      

   





 

 

 

  

 


