Chapter Four

Variation Iteration Method for Solving Poruos Meduim
Equation and Solving Fourth Order Parabolic PDEs with
Variable Coefficients

The aim of this chapter, is to apply a new method called Variation Iteration
perturbation method ((VIM)) to the porous medium equation. This method is a
combination of the new integral “Variation Iteration” and the perturbation method.

The nonlinear term can be easily handled by perturbation method. The porous
medium equations have importance in engineering and the sciences.

And we apply a new Modified Variational Iteration Method (MVIM) to solve one
dimensional fourth order parabolic linear partial differential equations with variable
coefficients. This method is a combination of the two initial conditions.

Sec (4.1): Variation Iteration Method for Solving Poruos Meduim
Equation

Many of the physical phenomena and processes in various fields of
engineering and science are governed by partial differential equations.
The nonlinear heat equation describing various physical phenomena
called the porous medium equation, is where m is a rational number.
There are a number of physical applications where this simple model
appears in a natural way, mainly to describe processes involving fluid
flow, heat transfer or diffusion.

In this section, we apply a new method called Variation Iteration
perturbation method ((VIM)) to solve porous medium equation. This
method is a combination of the new integral “Variation Iteration” and the
perturbation method.

The porous medium equation is:

a_“:i(um a_“j 1)
ot ox OX

Where m is a rational number.

The correction, functional for the porous medium equation is

un+1(x,t)=un(x,t)+j/l(§){auéx§’§)—um d L;E(XZ'@ —mum‘l(%j }15 2)
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The Variation iteration method is used by applying two essential steps. It
is required first to determine the Lagrange multiplier A that can be
identified optimally via integration by parts and u is a restricted variation

which means &, =0. Having determined the Lagrange multiplier 1(¢)

the successive approximations u_,,n >0 of the solution u will be readily

n+1?

obtained upon using any selective function u,. Consequently, the
solution:

u=Ilimu,

n—oo

Example (4.1.1) [43]:

Let us m =-1 in equation (1), we get,

@_i((u —1)5_“j @3)

ot ox ox
With the initial condition as u (x ,0)=1.
X

Solution:

The correction, functional for this equation is given by:

u,,,(x ,t)=un(x,t)+J',1(§) a“g;’ﬁ)_u_la L;(szlg)_i_u—Z(aUé))((vg)j }15

Where we used 1=-1 for first order porous medium equation as
shown (3) we can use the initial condition to select,

Uy(X,t) =u,(x,0) N Using this selection into the correction functional
X

gives the following successive approximation,

1
uo(x,O)zx—.

U, (X 1) =y (x,8) -

[ux.8) | 2 0(x.8) _z(au(x,ﬁ)f et
oc 0 " o X’

UZ(X,t)=U1(X,t)—J. aug;,ﬁ) _ul-laJa(xleg)_i_ul-z(aug)((’g)j }52%

O —)
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Proceeding in a similar manner we can obtain further values, we get a

solution in the form of a series,

1t t? 1
ux,t)=—+—+—5+..=——
X X° X X —t

This is the solution of (3) and which is exactly the exact solution given

above,
Example (4.1.2) [43]:
Letus m =1 inequation (1), we get,

a—uzi(ua—uj , u(x,0)=x
ot ox\' ox

Solution:

The correction, functional is:

au(8) 0, (x¢) _[aun(x,df)ﬂd :

U, (X,t) =un(x,t)—.|./1(§){ o P i

Consider1=-1, and u,(x,t)=u,(x,0)=x .

Then:

ul(x,t):uo(x,t)—] auy(6,8) _, azuo(x,f)_[auo(x,«:)j ]di:w

o& ° x? ox

(.8 | Px,8) _(aul(x ,ﬁ)ﬂdg et

uz(x,t)zul(x,t)—.([ Py 1T oy 2 ox

u(x,t) =x+t+0+0=x+t
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Example (4.1.3) [43]:

Let us m =-4/3 in equation (1), we get:

ou _ i(u 43 a_“j (6)
ot oX OX

With initial condition as u(x,0)=(2x)¥* .

Solution:

The correction, functional is:

(&) e 07T, (08) 4 u_7/3£aun(x,5)ﬂd :

Un+1(X,t)=Un(X,t)+£ |: ag aXZ 3 oX

Consider 1 =-1, andu(x,0) =(2x)™* .

0y (x,8) | s 0Ty (%8) , 4 -7/3[auo(x,fs)j2 0
O& 0 ox? 3° OX

ul(x’t) =U0(X,t)—j. {

t
=(2x)¥ —H‘—“(ZX )" +3(2x )ﬂd C=(2x) ¥ 9% 27 sx T xt

4
0

t 2 ~ 2
0, (1) =, (X ’t)_J- {aulgéi) _U1—4/3 0 Ug(Xz,g) +%u1—7/3[aulg)iy§)J :|d§=189><2_31/4x_11/4><t2
X

0

Then:
U(X,E)=(2x) ¥ +9x 279 5x M xt +189x 274 x T xt?

This result can be verified through substitution.
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Sec (4.2): Modified Variational Iteration Method for Solving Fourth
Order Parabolic PDEs With Variable Coefficients

Numerous issues of physical hobby are portrayed by direct halfway
differential comparisons with beginning and limit conditions. One of
them is fourth request illustrative fractional differential mathematical
statements with variable coefficients; these comparisons arise on the
transverse vibration issue [51]. As of late, numerous exploration
specialists have paid consideration on to discover the arrangement of
these mathematical statements by utilizing different strategies. Among
these is the variation cycle technique [Bazaar and Ghazvini (2007)],
Adomian deterioration strategy [Wazwaz (2001) and Biazaretal (2007)],
homotopy irritation strategy [Mehdi Dehghan and JalilManafian (2008)],
homotopy examination technique [NajeebAlam Khan (2010)] and
Laplace disintegration calculation [Majid Khan, Muhammad AsifGondal
and Yasir Khan (2011)]. In this section, we utilize the Modified
Variational Iteration Method. This strategy is a valuable procedure for
illuminating straight and nonlinear differential mathematical statements.
The guideline purpose is to incorporate beginning conditions for
fathoming higher request straight fractional differential mathematical
statements with variable coefficients. This technique gives the
arrangement as joined arrangement prompts the accurate arrangement.

Consider a one dimensional, linear, non-homogeneous fourth order
parabolic partial differential equation with variable coefficients of the
form,
ou o'u

(7)

oz T ) =00,

Where, y(x)Is a variable coefficient, with the following initial
conditions,

u(x,0)=f (x), and aa—f(x,O)zh(x), (8)

and the boundary conditions are,

u@t)=pgyt)ub.t)=B(t),
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(t) (b )= B.(), ©)

Apply modified variational iteration method of Eq. (7),

oy, (x, &)

o',
TS - dE (10)

t
Uy (1) =U, (1) + [ A(E)
0
where 1 is a Lagrange multiplier (1=¢&-t), the subscripts n denote the n
th approximation, u, is considered as a restricted variation, i.e. su, =0.
Equation (10) is called a correction functional.

The successive approximation u__,of the solution uwill be readily

n+l

obtained by using the determined Lagrange multiplier and any selective
function u, , consequently, the solution is given by,

u=Ilimu,

n—oo

To show that the method is effected, we have solved homogeneous and
non-homogeneous one dimensional fourth order linear partial differential
equations with the initial and boundary conditions.

Example (4.2.1) [51]:

Consider the fourth order homogenous partial differential equations,

2 4
a_L;Jr £+_ ou =0, i<x <1t>0 11)
ot x 120 )ot* 2

With the following initial conditions,

u(x,0) = O—(x 0)= 1+m (12)

and the boundary conditions,

5
u(0.5t)= 1+@ sint,u(Lt)= Esint,
120 120

az ) (13)
—(0.5,t) =0.02084sint —(1t)_—smt

Appling Modified Variational Iteration Method to Eq.(11), we get:
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u (x ) o'a,
Upa (X, 1) = U, (X t)+jx(5){ [X+120j 2 (x 5)}

take 1 =¢&-t , then:

u,,,(x,t)=u,(x ,t)+J'(§_t){a“ (§X 6) L [x +120J2(—u2(x,§)}d§,

5

take, u,(x,t) =u(x,0) =[1+X70jt , then:

5 x5 t x° 1 x*!
uz(x’t):[lﬁ-ﬁjt—[l Oj E').(g_t)|: [ zojt‘l‘[;—ﬁj(x

5 3 5 5
us(x,t) = 1+ 25 1+ X t—+ 1425 t —+
120 120 ) 3! 120 ) 5!
t X5 t3 1 X4 53 55
- 1+— || t+— |+ —— || XE X Z—+X =
[0 [vog [+ 5 (e 5 e
5 5 3 5 5 5 7
= 1+X— t— 1+X— t—+ 1+X— v 1+X— i
120 120 ) 3! 120 ) 5! 120 ) 7!

5 3 5 5 5 7
O T PN M P S L Y. Sl L S O S S
120 120 )31 120 5! 120 ) 71

X5 t3 t5 t7
= l+—||t-——=+——=+...
120 3t 5 7!

The exact solution is:

X5
u(x,t)=|1+-—|sint
120

68

(14)

(15)



Example (4.2.2) [51]:

Consider fourth order homogenous partial differential equation,

2 4
5_g+(_L_1ja—Li=0,0<x <1t >0 (16)
ot sinx 194

with the following initial conditions,

u(x,O)=x—sinx,g—$(x,O)=—x +sinx a7)

And the boundary conditions,
u(0,t)=0,u(,t)=e"(1-sinl),

2 2 18
a (Ot) Oa ~(Lt)=e"sinl. (18)

Solution:

Appling Modified Variational Iteration Method to Eq.(16), we get:
u,.,(x,t)=u_(x t)+J‘l(§){8u (X, €) ( au (X, 5)}15
smx

take ,A =¢&-t , then:

uM(x,t):un(xlt)JrJ'(g_t){@ ua(gx 6) L (Smx au (x 5)}jg

Using initial conditions from Eq. (17), we get:
Ug(X,t) = (X —sinx )+ (=x +sinx)t

u, (x,t) =u,(x ,t)+]'(§_t){02 o(X, 5){

smx

tz
E_TJ

(¢ £) =y (x, t)+I(5 t){a X, 5)+[ X a his 5)}15

a“ o(x 5)}15

=(X =sinX)+(=x +sinx)t +(x —sinx)

smx

4

=(X —sinX)+(—=x +sinx )t +(x —sinx) tz—zl——j+(x —smx)(z—aj
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u,(x,t) =(x —sinx)+(=x +sinx )t +(x —smx)[ﬁ—;—sjﬂx —smx)(%—ts—ijf..

=(x —sinx){l—t et ———t...

The exact solution:
u(x,t)=(x —sinx)e™
Example (4.2.3) [51]:
Consider fourth order homogenous partial differential equation,

o o'u 4 s 6 4
—+(1+x)—_ x*+x®—=x"|cost, 0<x <1t >0 (19)
ot? ox* 7!

with the following initial conditions,
u(x, O)_—x7 8_u(x 0)=0. (20)
And the boundary conditions,

u(0,t) =0,u(1,t)=£cost,

ou 0’ (21)
—(0 t)=0, —u(lt)——ocost

Solution:

Appling Modified Variational Iteration Method to Eq. (19), to find:

Uy 106, ) =U, (X ,t>+}z(¢>{%+(ux )%—(xuxs_%xjcmg}g

take, A =& -t , then:
u,,(x,t)=u_(x t)+I(§ t){au 0 (X,0) (1+x)%—(x4+x3—%x7jcosf}if

Using initial condltlons from Eq. (20), to get:
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uo(x,t)=$x7

u,(X,t) =uy(x ,t)+](§—t){amg(—;2’§)+(l+x)%—[x4+x3—%x7jcos§}i§

_6 4 4,3 E 4, o3\1_
=X cost —(x * +x )2!+(x +x°)(L-cost)

= %x " cost + (x ‘X 3)(1—cost)+ noiseterms

uz(x,t)=ul(x,t)+_t[(§—t){aul(gX 5) +(1+ X)éul(x ) (x4+x3—%x7jcos§}j§

2
=£x7cost—(1+x)t—
7! 2!

6 - :
=ﬁx cost + noiseterms

u,(x,t) =%x7cost

This is the approximate solution.
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