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Chapter Five 

Comparison of Laplace Variational Iteration Method with 
Different Methods 

In this chapter we study a comparative between Variations Iteration 
Method (VIM) and different powerful methods to solve ordinary  and 
nonlinear partial differential equations, the Laplace  Transform method 
(LTM), Adomian decomposition method (ADM), the Homotopy 
perturbation method (HPM) for nonlinear equations using He’s 
polynomials, and the Laplace Transform Variations  Iteration Method 
(LTVIM). 

Sec (5.1): Comparing of Variations Iteration Method with  
the Combined Laplace Transform and Variations Iteration 
Method to Solve ODEs and PDEs  

In this section, the main objective is to introduce a comparative study to 
solve ordinary and nonlinear partial differential equations using the 
variation iteration method and Laplace Transform. 

5.1.1: Basic of Idea (VIM): 

To illustrate the basic idea of this method, we consider the following 
differential equation 

( )Lu Nu g x                                                (1) 

where L is a linear operator, N  is a nonlinear operator, and ( )g x is an 
inhomogeneous term. Then, we can construct a correct function as 
follows: 

 1
0

( ) ( ) ( ) ( ) ( )
x

n n n nu x u x Lu Nu g d          ,  0,1, 2,...n          (2)  

where   is a general Lagrange multiplier, which can be identified 
optimally via variational theory. The second term on the right is called 
the correction and nu  is considered as restricted variation, i.e. 0.nu   
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5.1.2: Basic of Idea (LTVIM): 

From eq. (1), we take Laplace Transform on both sides the correction, 
functional will be constructed in the following manner: 

 1
0

[ ( )] [ ( )] ( ) ( ) ( )
x

n n n nu x u x Lu Nu g d    

 
    

 
    ,  0,1, 2,...n          (3) 

Example (5.1.3): 

Solve the first nonlinear ordinary differential equation 

2 1,y y   (0) 0.y                                          (4)  

I: Using (VIM): 

The correction, functional for equation (4) is 

 2
1

0

( ) ( ) ( ) ( ) ( ) 1
x

n n n ny x y x y y d                                     (5) 

The stationary conditions 

1 | 0,
| 0,

x

x












 

 
 

To follow immediately. This in turn gives: 

1    

Substituting this value of the Lagrange multiplier 1,    into the 
functional (5) gives the iteration formula: 

 2
1

0

( ) ( ) ( ) ( ) 1 , 0
x

n n n ny x y x y y d n                                    (6) 

We can select 0 ( ) (0) 0y x y   from the given condition. Using this 
selection into (6) we obtain the following successive approximations 
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 

 

 

 

0

2
1 0 0

0

2 3
2 1 1

0

3 2 3 5 7
3 2 2

0

3 5 7 2
4 3 3

0

3 5 7

( ) 0,

( ) 0 ( ) y ( ) 1 ,

1( ) ( ) y ( ) 1 x ,
3

1 1 2 1( ) x ( ) y ( ) 1 x x x ,
3 3 15 63

1 2 1( ) x x x ( ) y ( ) 1
3 15 63

1 2 17x x x ...,
3 15 315

x

x

x

x

y x

y x y d x

y x x y d x

y x x y d x

y x x y d

x

  

  

  

  



    

     

        

      

    









 

: 

3 5 7 91 2 17 62( ) x x x x ...,
3 15 315 2835ny x x       

The VIM admits the use of  

( ) lim ( ),nn
y x y x


  

That gives the exact solution by 

(x) tanx .y                                                    (7) 

II: Using (LTVIM) 

Taking the  Laplace Transform for two sides in eq.(4): 

   

 

 

 

2

2

2

2
2

' 1 ,

1(0)

1

1 1

y y

s y y y
s

s y y
s

y y
s s

   

    

    

    

  

 

 

 

                                (8) 

Now, take the inverse Laplace Transform: 

 1 21( )y x x y
s

      
                                           (9) 
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The correction functions: 

 1 2
1

1( ) ( )n ny x x y x
s




     
                                    (10) 

Choose, 0 ( ) 0y x   

Then, 

 

 

 

 

1 2
1 0

3
1 2

2 1

3 7
1 2 5

3 2

3 7
1 2 5 9

4 3

1( ) ( ) ,

1( ) ( ) ,
3

1 2( ) ( ) ,
3 15 63

1 2 17 38( ) ( ) ...
3 15 315 2835

y x x y x x
s

xy x x y x x
s

x xy x x y x x x
s

x xy x x y x x x x
s









     

      

        

          

 

 

 

 

      (11) 

          : 

         

3 7
5 92 17 38( ) ...

3 15 315 2835n
x xy x x x x       

Then: 

( ) tanx .ny x �                                                 (12) 

Example (5.1.4) : 

 Consider the nonlinear partial differential equation, 

2 0,t xu u u  ( ,0) 2 , 0u x x t                               (13) 

where  ( , )u u x t .  

I: Using (VIM): 

Proceeding as in the previous example, we find: 

1.                                                           (14) 

This gives the iteration formula: 

2
1

0

( , ) ( , )( , ) ( , ) ( , ) , 0.
t

n n
n n n

u x u xu x t u x t u x d n 
 

 

  
      

                   (15) 



76 
 

Choose 0 ( , ) 2u x t x  from the given initial condition yields the successive 
approximations, 

0

2
1

2 3 2 4 3
2

2 3 2 4 3
3

2 3 2 4 3 5 4

( , ) 2 ,
( , ) 2 8 ,

640( , ) 2 8 64 ...
3

( , ) 2 8 64 640 ...
:

( , ) 2 8 64 640 7168 ...n

u x t x
u x t x x t

u x t x x t x t x t

u x t x x t x t x t

u x t x x t x t x t x t



 

    

    

     

                    (16) 

As concluded before, we can easily observe that: 

( , t) 2 xu x   ,          0,t                                              (17) 

And for 0,t   the series solution (17) can be formally expressed in a 
closed form by, 

 1( , ) 1 16 1 .
4

u x t xt                                                (18) 

Combining (17) and (18) gives the solution in the form: 

 
2 , t 0,

( , ) 1 1 16 1 , 0.
4

x
u x t

xt t


 

  

                                        (19) 

II: Using (LTVIM) 

Taking  the  Laplace Transform for two sides in eq.(13): 

 
 
 

 

2

2

2

2

0

( , ) ( ,0) 0

( , ) 2

2 1( , )

t x

x

x

x

u u u

s u x t u x u u

s u x t x u u

xu x t u u
s s

   
    

    

    

 

 

 

 

                                    (20) 

Now, take the inverse Laplace Transform: 

 1 21( , ) 2 xu x t x u u
s

      
                                      (21) 

The correction functions: 
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 1 2
1

1( , ) 2n n nxu x t x u u
s




     
                                      (22) 

Take 0 ( , ) 2 ,u x t x  

Then 

 

 

 

0

1 2 2
1 0 0

1 2 2 3 2 4 3 5 4
2 1 1

1 2 2 3 2 4 3 5 4
3 2 2

2 3 2 4
1

( , ) 2
1( , ) 2 2 8

1 640( , ) 2 2 8 64 256
3

1( , ) 2 2 8 64 640 4608

:
( , ) 2 8 64 640

x

x

x

n

u x t x

u x t x u u x x t
s

u x t x u u x x t x t x t x t
s

u x t x u u x x t x t x t x t
s

u x t x x t x t x











      
         
         

   

 

 

 

3 5 47168 ...t x t 

   (23)       

If  0,t   then ( , ) 2u x t x .And if 0,t   then   1( , ) 1 16 1 .
4

u x t xt    

Then:   
2 , t 0,

( , ) 1 1 16 1 , 0.
4

x
u x t

xt t


 

  

 

Notes on (VIM) and (LTVIM): 

From the past examination, we can watch that:  

The two methods are effective and productive. Laplace Transform and 
Variation Iteration method   gives the exact solution, where these 
components  given in (3). However, application of the Laplace Transform 
to the solution of linear partial differential equations has been illustrated. 
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Sec (5.2): Comparison Between  Laplace Transform and 
Variations Iteration Method and  Homotopy  Perturbation 
Transform Method for Nonlinear Equations Using He’s 
Polynomials 

In this section, a combined form of the Laplace transform method with 
the homotopy perturbation method is proposed to solve nonlinear 
equations. This method is called the homotopy perturbation transform 
method (HPTM). The nonlinear terms can be easily handled by the use of 
He’s polynomials. The proposed scheme finds the solution without any 
discretization or restrictive assumptions and avoids the round-off errors. 
The fact that the proposed technique solves nonlinear problems without 
using Adomian’s polynomials can be considered as a clear advantage of 
this algorithm over the decomposition method. Nonlinear phenomena 
have important effects on applied mathematics, physics and issues related 
to engineering; manysuch physical phenomena are modeled in terms of 
nonlinear partial differential equations. For example, the advection 
problems which are of the form 

( , t) uu ( , ),t xu x h x t  ( ,0) ( )u x g x                     (24) 

A rise in various branches of physics, engineering and applied sciences. 
The importance of obtaining the exact or approximate solutions of 
nonlinear partial differential equations in physics and mathematics is still 
a significant problem that needs new methods to discover exact or 
approximate solutions.  

5.2.1:Basic Idea of HPTM 

To illustrate the basic idea of this method, we consider a general 
nonlinear non-homogeneous partial differential equation with initial 
conditions of the form: 

( , ) ( , ) ( , ) ( , ),Du x t Ru x t Nu x t g x t                                  (25) 

( ,0) ( ),u x h x ( ,0) ( )tu x f x  

where D  is the second order linear differential operator 2 2D t    , R is 
the linear differential operator of less order than ,D N  represents the 
general non-linear differential operator and ( , )g x t  is the source term. 
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Taking the Laplace transform (denoted throughout this section by L ) on 
both sides of Eq. (25): 

       ( , ) ( , ) ( , ) ( , ) .L Du x t L Ru x t L Nu x t L g x t                       (26) 

Using the differentiation property of the Laplace transform, we have: 

       2 2 2 2

( ) ( ) 1 1 1( , ) ( , ) ( , ) ( , ) .h x f xL u x t L Ru x t L gu x t L Nu x t
s s s s s

        (27) 

Operating with the Laplace inverse on both sides of Eq. (27) gives: 

 1
2

1( , ) ( , ) ( , ) (x, t) ,u x t G x t L L Ru x t Nu
s

      
                                (28) 

where ( , )G x t  represents the term arising from the source term and the 
prescribed initial conditions. Now, we apply the homotopy perturbation 
method, 

0
( , ) ( , )n

n
n

u x t p u x t




                                        (29)  

and the nonlinear term can be decomposed as, 

0
( , ) ( )n

n
n

Nu x t p H u




                                             (30) 

For some He’s polynomials nH  that are given by: 

   0
0 0

1,..., , 0,1, 2,3,...
!

n
i

n n in
i p

H u u N p u n
n p



 

         
                           (31) 

Substituting  Eqs. (29) and (30) in Eq. (28) we get: 

1
2

0 0 0

1( , ) ( , ) ( , ) (u) ,n n n
n n n

n n n

p u x t G x t p L L R p u x t p H
s

  


  

            
        (32) 

Which is the coupling of the Laplace transform and the homotopy 
perturbation method using He’s polynomials. Comparing the coefficient 
of like powers of  p , the following approximations are obtained: 
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 

 

 

0
0

1
1 0 02

2
2 1 12

3
3 2 22

: ( , ) ( , ),
1: ( , ) ( , ) ( ) ,

1: ( , ) ( , ) ( ) ,

1: ( , ) ( , ) ( ) ,

:

p u x t G x t

p u x t L Ru x t H u
s

p u x t L Ru x t H u
s

p u x t L Ru x t H u
s



  

  

  

                             (33) 

 

5.2.2: Application 

In order to elucidate the solution procedure of the homotopy perturbation 
transform method, we first consider the nonlinear advection equations. 

Example (5.2.3) [66]: 

Consider the following homogeneous advection problem: 

0,
( ,0) .
t xu uu

u x x
 

 
                                                       (34) 

 I: Using (HPTM) 

By applying the aforesaid method subject to the initial condition, we 
have, 

 1( ,s) .x
xu x L uu
s s

                                       (35) 

The inverse of the Laplace transform implies that: 

 1 1( , t) x .xu x L L uu
s

       
                                  (36) 

Now, we apply the homotopy perturbation method 

1

0 0

1( , ) (u) ,n n
n n

n n
p u x t x p L L p H

s

 


 

   
          

                            (37) 

where ( )nH u  are He’s polynomials [48,49] that represent the nonlinear 
terms.The first few components of He’s polynomials, for example, are 
given by: 
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0 0 0

1 0 1 1 0

2 0 2 1 1 2 0

( ) ,
( ) ,
( ) ,

:

x

x x

x x x

H u u u
H u u u u u
H u u u u u u u


 

  
                                          (38) 

Comparing the coefficient of like powers of p, we have: 

 

 

0
0

1 1
1 0

2 1 2
2 1

: ( , ) ,
1: ( , ) ( )

1: ( , ) ( )

p u x t x

p u x t L L H u xt
s

p u x t L L H u xt
s





 

      
     

                                        (37) 

Proceeding in a similar manner, we have: 

3 3
3

4 4
4

: ( , ) ,
: ( , ) ,

:

p u x t xt
p u x t xt

 

                                                    (38) 

so that the solution ( , )u x t  is given by: 

 2 3 4( , ) 1 ... ,u x t x t t t t                                               (39) 

in series form, and 

( , ) ,
1

xu x t
t


                                               

(40) 

in closed form. 

II: Using (LTVIM) 

Taking the Laplace transform of the equation (32), subject to the initial 
condition, we have: 

   1(x, t) x
xu uu
s s

                                            (41) 

The inverse Laplace transform implies that: 

 1 1(x, t) x xu uu
s

      
 

                                        (42) 

By the  correction function, we find: 
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 1
1

1(x, t) xn n n x
u u u

s



        

                                       (43) 

Now we apply the variational iteration Laplace transform method, 

 

            0 (x, t) xu    

            
 1 1

1 2

1(x, t) x xu x x x xt
s s

                  
    

1 2 3
2 2 3 4

1 2 2 1(x, t) x ( )
3

u x x xt xt xt
s s s

             


                   
(44) 

                 :                         : 

So we deduce the series solution to be, 

2 3(x, t) x(1 t t t ...)
1

xu
t

      


                             (45)                          

Which is the exact solution. 

Example (5.2.4) [66]: 

We now consider the nonhomogeneous advection problem, 

3 22 ,
( ,0) 0.
t xu uu t x t xt

u x
    


                                        (46) 

I: Using (HPTM) 

In a similar way as above, we have: 

4 3
2 1

0 0

1( , ) ( ) .
4 3

n n
n n

n n

t tp u x t t xt x p L L p H u
s

 


 

               
               (47) 

Comparing the coefficient of like powers of  p , we have: 
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4 3
0 2

0

1 4 3 5 6 7 8
1

2 12 11 10 9
2

8 7 6 5

: ( , ) ,
4 3

1 1 2 7 1 1: ( , ) ,
4 3 15 72 63 98
5 2 2783 38: ( , )

8064 2079 302400 2835
143 22 7 2 ,
2880 315 12 15

:

t tp u x t t xt x

p u x t t t xt t xt t

p u x t t xt t xt

t xt t xt

   

      

   

   

 

It is imperative to review here that the commotion terms show up 
between the parts 0( , )u x t  and 1( , )u x t where the clamor terms are those sets 
of terms that are indistinguishable yet conveying inverse signs. All the 
more exactly, the clamor terms between the segments 0 ( , )u x t and 0( , ),u x t

can be cancelled and the remaining terms of  0( , )u x t  still satisfy the 
equation.The exact solution is therefore, 

2( , ) .u x t t xt                                                      (48) 

II: Using (LTVIM) 

Taking  the  Laplace Transform for two sides in eq. (46) : 

   

   

   

3 2

2 4 3

3 2 5 4

2 ,

2 3! 2!( , ) ,

2 3! 2! 1( , )

t x

x

x

u uu t x t xt

x xs u x t uu
s s s s

x xu x t uu
s s s s s

      

    

    

  

 

 

                                    (49) 

Then we have: 

 
4 3

2 1 1( , )
4 3 x
t xtu x t t xt uu

s
         
                                     (50) 

by the  correction function, we find: 

 
4 3

2 1
1

1( , )
4 3n n nx
t xtu x t t xt u u

s



        

                              (51) 

Choose, 0 ( , ) 0u x t   

then: 
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 

 

0
4 3 4 3

2 1 2
1 0 0

4 3 4 5 5 6 7 8
2 1 2

2 1 1

4 3 6 6 7
2 3 2

( , ) 0,

1( , ) ,
4 3 4 3

1( , ) ,
4 3 24 5 90 24 63 96

:
19 66u ( , ) .

4 3 120 45 2160

x

x

n

u x t

t xt t xtu x t t xt u u t xt
s

t xt xt t xt t xt tu x t t xt u u t xt
s

t xt t xt tx t t xt t xt







           

               

         

 

 

4 3
2

..,

u ( , )
4 3

 n
t xt noise termx t t xt    

The exact solution is  

4 3
2u( , )

4 3
t xtx t t xt                                              (52) 
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Sec (5.3): A comparison Between the Variational Iteration 
Method and Adomain Decomposition Method 
 
In this section, we present a comparative study between the variational 
iteration method and Adomian decomposition method. The study outlines 
the significant features of the two methods. The analysis will be 
illustrated by investigating the homogeneous and the nonhomogeneous 
advection problems. 
This section outlines a reliable comparison between two powerful 
methods that were recently developed. The first is the variational iteration 
method (VIM) developed by He and used by many others. Thesecond is 
the  decomposition method (ADM) developed by Adomian in [72,73], 
and used heavily in the literaturein [76,77] and the references therein. The 
two methods give rapidly convergent series with specific significant 
features for each scheme. The homogeneous and the nonhomogeneous 
advection problem 
 

( , )t xu uu f x t                                              (53) 
where ( , )u u x t , will be utilized as a vehicle for this study. For ( , ) 0,f x t   
Eq.(53) lessens to the homogeneous shift in the weather conditions 
model. The nonlinear shift in the weather conditions equation (53) 
emerges in the portrayal of different physical procedures. The presence of 
nontrivial careful arrangements is the subject of physical interest. Such 
correct arrangements are critical on the grounds that numerical 
arrangements may not distinguish the exploratory marvel under scrutiny . 
A considerable measure of exploration work has been coordinated for the 
investigation of the nonlinear issues, and on the shift in weather condition 
issue specifically. In this section, our work stems for the most part of two 
of the most as of late created strategies, the VIM and ADM. The two 
techniques, which precisely process the arrangements in an arrangement 
structure or in a definite structure, are of awesome enthusiasm for 
connecting sciences . 
The principle point of interest of the two techniques is that it can be 
connected specifically for a wide range of different and essential 
conditions, homogeneous or inhomogeneous. Another critical favorable 
position is that the strategies are prepared to do extraordinarily decreasing 
the measure of computational work while as yet keeping up the high 
precision of the numerical arrangement. The viability what's more, the 
value of both strategies is exhibited by finding accurate answers for the 
models that will be researched. In any case, every strategy has its own 
particular trademark and note worthiness that will be inspected. 
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5.3.1: Basic Idea of (ADM): 
 
Adomian decomposition method defines the unknown function ( )u x by an 
infinite series, 

0
(x) (x),n

n
u u





                                                             (54)       

 
where the components (x)nu  are usually determined recurrently. The 
nonlinear operator ( )F u can be decomposed into an infinite series of 
polynomials given by: 
 

0
(u) A ,n

n
F





                                                              (55) 

 
where An are the so-called Adomian polynomials of 1, ,  . . . , un nu u defined 
by: 

 1
!

0 0

,  n=0, 1, 2,...,n

n

n
id

n in d
i

A F u





 

  
   

  
                                          (56) 

or equivalently: 
 
                                       0 0(u ),A F  

                                       1 1 0(u ),A u F   

                                      
21

2 2 0 1 02(u ) (u )A u F u F                                       (57) 

          
31

3 3 0 1 2 0 1 03(u ) (u ) (u ),A u F u u F u F                                       
2 2 4 (iv)1 1 1

4 4 0 1 3 2 0 1 2 0 1 02 2 24(u ) ( u ) (u ) (u ) u F (u ).A u F u u F u u F        
 
It is presently surely understood that these polynomials can be created for 
all classes of nonlinearity as indicated by particular calculations 
characterized by (56). As of late, an option calculation for building 
Adomian polynomials. The variational cycle strategy gives a few 
progressive approximations through utilizing the emphasis of the 
rectification useful . 
In what takes over, a homogeneous and a nonhomogeneous shift in 
weather condition issue will be analyzed by utilizing the two plans 
exhibited previously. The two physical models will be utilized for 
illustrative purposes with respect to the examination objective. 
 
 
 
 
Example (5.3.1) [72]: 
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We first consider the homogeneous advection problem, 
                                         0,t xu uu   

(x,0) x.u                                                       (58) 
 

I: Using (VIM) 
 

The correction, functional for (58) reads as: 


1
0

u (x, ) u (x, )(x, t) u (x, t) ( ) (x, ) ,
t

n n
nn nu u d

x
    



  
     

                   (59) 

This yields the stationary conditions 
( ) 0,

1 ( ) 0.
 

 
 
                                        

 (60) 

 
This in turn gives 
 

1   .                                                         (61) 
Substituting this value of the Lagrangian multiplier into functional (59) 
gives the iteration formula 


1

0

u (x, ) u (x, )(x, t) u (x, t) (x, ) ,n 0
t

n n
nn nu u d

x
  



  
      

 .               (62) 

 
As stated before, we can use any selective function for 0u ; preferably we 
use the initial condition 0u x  . Consequently, using (62) yields the 
following successive approximations:

                

0

1
2 31

2 3

2 3 42
3 3

2 3 4 514
4 15

2 3 4 5
5

(x, t) x,
u (x, t) x xt,
u (x, t) x xt xt ,

(x, t) x xt xt  ,

(x, t) x xt xt  ,

(x, t) x xt xt  ,                      
:
u

u

xt

u xt xt small terms

u xt xt xt small terms

u xt xt xt small terms

 
  

    

      

       

       

2 3 4 5(x, t) x xt xt  .                                                          n xt xt xt small terms       

 

 
Recall that 

lim nn
u u




                                          
(63) 

which gives 
 

  
2 3 4(x, t) x(1 t t .....),u t t                                (64) 
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which leads to the closed form solution 
(x, t)

1
xu

t



.                                                        (65) 

 
II: Using (ADM) 

 
We first rewrite Eq. (58) in an operational form 
                                    ,xLu uu   

(x,0) xu   ,                                                          (66) 
where the differential operator L is, 

L
t





.                                                              (67) 

The inverse 1L is assumed as an integral operator given by: 
1

0

(.) (.)dt
t

L   .                                                                   (68) 

Applying the inverse operator 1L on both sides of (66) and using the 
initial condition we find, 

1(x, t) (uu )xu x L   .                                                            (69) 
Substituting (54) and (55) into the functional equation (66) gives: 

1

0 0
(x, t)n n

n n
u x L A

 


 

 
    

 
  ,                                                     (70) 

 
where nA   are the so-called Adomian polynomials. Identifying the zeroth 
component 0 (x, t)u by −x, the remaining components (x, t),  n 1nu  , can be 
determined by using the recurrence relation 
 
                                     0 (x, t) x,u    

       
1

1(x) L (A ),  k 0  k ku 
    ,                                     (71) 

where  kA are Adomian polynomials that represent the nonlinear term, 
xuu and given by: 

                                

0 0 0

1 0 1 1 0

2 0 2 1 1 2 0

,

,

,

x

x x

x x x

A u u

A u u u u

A u u u u u u



 

  

 

:                                                                              (72) 
Other polynomials can be generated in a similar way to enhance the 
accuracy of the approximation. 
Combining (71) and (72) yields: 
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0

1
2

2
3

3
4

4

(x, t) ,
(x, t) xt,

u (x, t) xt ,

(x, t) xt ,
(x, t) xt ,

u x
u

u
u

 
 

 

 

 

 

:                                                                              (73) 
 
In view of (73), the solution ( , )u x t is readily obtained in a series form by: 
 

2 3 4(x, t) x(1 t t .....)u t t       ,                                 (74) 
 
or in a closed form by: 
 

(x, t)
1

xu
t




.                                                           (75) 

 
Example (5.3.2) [72]: 
 
We first consider the nonhomogeneous advection problem, 
 

32t xu uu t x t xt     .                                          (76) 
 
I: Using (VIM) 
The correction, functional for (76) reads as 
 

 3 2
1

0

u (x, ) u (x, )(x, t) u (x, t) ( ) (x, ) (2 x x )
t

n n
nn nu u d

x
       



  
         

  

Proceeding as before, we find the stationary conditions, 
( ) 0,    

1 ( ) 0   .                                            (77) 
 
This in turn gives 
 

1   .                                                  (78) 
 
Substituting this value of the Lagrangian multiplier into functional, gives 
the iteration formula, 

2 4 31 1
1 4 3

0

u (x, ) u (x, )(x, t) xt t xt u (x, t) ( ) (x, )
t

n n
nn nu t u d

x
    



  
        

 , 
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Acquired after incorporating the source nonhomogeneous term, 0n   . As 
expressed some time recently, we can utilize any specific function for 0u ; 
ideally we utilize the initial condition ( ,0) 0.u x   

            

2 4 31 1
0 4 3

2 4 31 1
1 4 3

2 5 672
2 15 72

2
3

2
4

2
5

2

(x,t) xt t xt ,

u (x,t) xt t xt ,

u (x, t) xt xt t ,

(x,t) t  ,
(x, t) t  ,

(x, t) t  ,                      
:
u (x,t) t  n

u t

t

t

u xt small terms
u xt small terms

u xt small terms

xt small ter

   

   

   

  

  

  

   .                                                                                     ms

(79) 

Recall that 
lim nn

u u


 ,                                                             (80) 
which gives the exact solution, 
 

  
2u(x, t) t xt  .                                                (81) 

 
II: Using (ADM) 
 
We first rewrite Eq. (75) in an operational form, 
                                           

3 22 xLu t x t xt uu     ,                                                                 
(x,0) 0u                                                        (82) 

where the differential operator L is, 
L

t





.                                                         (83) 

The inverse 1L is assumed as an integral operator given by: 
1

0

(.) (.)dt
t

L   .                                                   (84) 

Applying the inverse operator 1L on both sides of (82) and using the 
initial condition we find: 
 

2 4 3 11 1
4 3(x, t) (uu )xu t xt t xt L     .                          (85) 

Substituting (54) and (55) into the functional equation (82) gives: 
2 4 3 11 1

4 3
0 0

(x, t)n n
n n

u t xt t xt L A
 



 

 
      

 
  ,                                (86) 

where nA are the so-called Adomian polynomials. Identifying the zeroth 
component 0 (x, t)u by 2 4 31 1

4 3t xt t xt   , the remaining components
(x, t),  n 1nu  , can be determined by using the recurrence relation, 
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2 4 31 1
0 4 3(x, t) ,u t xt t xt     

1
1(x) L (A ),  k 0,k ku 
                                         (87) 

where Ak are Adomian polynomials that were evaluated before in the 
homogeneous case. This in turn gives the components 
 
                           

2 4 31 1
0 4 3(x, t) ,u t xt t xt     

  

4 3 5 6 7 871 1 2 1 1
1 4 3 15 72 63 96(x, t) xt t xt t ,

:
u t xt      

                 
(88) 

 
It is essential to review here that the commotion terms show up between 
the two parts 0u  and 1u . The noise terms are distinguished as the 
indistinguishable terms with inverse signs. We then drop the noise terms 
between the parts 41

4
t  and 31

4
xt , and legitimize that the remaining 

terms of fulfill the condition. Thus, the exact solution  is 
 

2(x, t)u t xt  .                                                   (89) 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 


