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Abstract

This study is fundamentally centering on the application of the Adomian
decomposition method and Sumudu transform for solving the linear and nonlinear
partial differential equations.

It has instituted some theorems, definitions, and properties of Adomian
decomposition and Sumudu transform. This study is an elegant combination of the
Adomian decomposition method and Sumudu transform. Consequently, it provides
the solution in the form of convergent series. Then, it is applied to solve linear and
nonlinear partial differential equations.

Finally, the solutions of linear and nonlinear partial differential equations
by this method, and other methods are compared.
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Introduction:-

Many of nonlinear phenomena are a necessary part in applied science and
engineering fields. Nonlinear equations are noticed in a different type of physical
problems such as fluid dynamics, plasma physics, solid mechanics, quantum field
theory, propagation of shallow water waves, and many other models are controlled
within its domain of validity by partial differential equations. The wide use of these
equations is the most important reason why they have drawn mathematician's
attention. Despite this, they are not easy to find an answer, either numerically or
theoretically. In the past, active study attempts were given a large amount of attention
to the study of getting exact or approximate solutions of this kind of equations.

Therefore, it becomes increasingly important to be familiar with all traditional
and recently developed methods for solving partial differential equations. For some
examples of the traditional methods, such as, the separation of variables method, the
method of characteristics, the o - expansion method [60], the integral transforms and
Hirota bilinear method [61].Moreover, the recently developed methods like, Adomian
decomposition method (ADM), He’s semi — inverse method, the tanh method, the
sinh — cosh method, the homotopy perturbation method (HPM) [62-73], the
differential transform method (DTM) , the variational iteration method (VIM) [74-78],
and the weighted finite difference.

Other techniques including the Laplace decomposition method (LDM) [79-85],
the homotopy perturbation transform method (HPTM) [86-88], and variational
iteration algorithms using the Laplace transform [89], have been also used.

In this research, our presentation will be based on applying the new method
namely, the Adomian Decomposition Sumudu Transform Method (ADSTM) for
solving linear and nonlinear differential equations, ordinary or partial and integral
equations. This method is an elegant combination of the Sumudu transform method
and decomposition method. The method has advantages of converting to the exact
solution and can easily handle a wide class of both linear and nonlinear differential
and integral equations.
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CHAPTER (1)
Linear Partial Differential Equations

1.1: Sumudu Transform

A long time ago, differential equations warred a necessary part in all aspects of
applied science and engineering fields. Despite this, they are not easy to find an
answer, either numerically or theoretically for these equations. In order to develop
new techniques help in obtaining exact and approximate solutions of these equations
is still a big problem need new methods.

Watugula [1] introduced a new integral transform and called it as Sumudu transform,
which is defined as:

F(u)=s[f(t)]= j e[ jf(t)olt; (1)

Watugula [1] applied this transforms to the solution of ordinary differential equations.
Because of its useful properties, the Sumudu transforms helps in solving complex
problems in applied sciences and engineering mathematics. Henceforward, is the
definition of the Sumudu transforms and properties describing the simplicity of the
transform.

Definition (1.1.1): The Sumudu transform of the function f (t) is defined by:

o)

Fu) =Sf(t)=j _jf(t)dt (2)

Or
FU)=S[F@]= ] fut)e 3)

For any functionf (t) and -z, <u <z,

Theorem (1.1.2): If s[f(t)]= F(u) and
flt-7z) , t>r



Then

t

Se@)]- ¢ /o)

Theorem (1.1.3) [2]: If ¢,>0,¢c,> 0 andc > 0 are any constant, f,(t), f,(t)
and f (t)any functions having the Sumudu transform G,(u), G,(u)andG (u)
respectively then:

. S[Cl fl(t) + G, fz(t)] =0 S[fl(t)]+C2 S[fz(t)]
= ¢G(ul+¢,G,(u)

i. S[f(ct)]=G(cu)

iii. lim £(t)= f(0)= lim G(u)

t—>0
Further are worded more, for several functions f(t)defined for t>0 in the
neighborhood of infinity (i.e. ast — )
lim £(t)= lim G(u)

1.1.1: The Relation Between Sumudu and Laplace Transform

The Sumudu transform F, (U)of a function f(t) defined for all real numbers
t >0. The Sumudu transform is essentially identical with the Laplace transform.
Given an initial f(t) its Laplace transform G(u) can be translated into the Sumudu

transform F, (U) of f by means of the relation;

F(u)= ﬂ

u

G(s) = F@

S

And it's inverse

Theorem (1.1.4): Let f(t) with Laplace transform G(S) then the Sumudu
transform F(u) of f(t) is given by



F(u)= G(lﬂ .

u

Proof:
Form definition (1.1.1) we get:

F(u)=[ef(ut)dt
0
dw
If we set W= Ut and dt = Tthen

Fol v w17 ()
F(u)= Yi(w)— == “f(w)d
(u) !e (w = !e (w)dw
By definition of the Laplace transform we get:

)

u

F(u)=

Theorem (1.1.5): It deals with the effect of the differentiation of the function f(t),
k times on the Sumudu transform F(u) if S[f(t)] = F(u)then:

L s[r@]= S[FE) - f0)]
i S[O)= A FEI- 2 10)- 1)

i, s[f™()]= uin[F(U)]‘ uikzlouk F0) = u™ | Flu) - knzjouk He)

Where f©(0)=f(0) , f®(0), k =1,2,3,---, n-1 are the nth-order derivatives of the

function f(t) evaluated att = O .

Proof:
I.  using integration by parts,



0

s[f'(t)] = {%exp(—& f (t)ﬂ + %I%exp(—&j f(t)dt

0

:—%f(0)+%F(U)

S[H'©]= L [F ) - 10)
Il.  Using integration by parts;
s[v@ﬂl&Jujrai +%TﬁJ%jramt
From (i) - L)+ %S[f’(t)]

S[HO]= - [F@)]- - 10) - = £(0)

iii. By definition the Laplace transform for ™(t) is given by
n-1
G,(s)=5s"G(s)- > s" k" Vik)(0)
k=0

By using the relation between Sumudu and Laplace transform;

1

o[u)
1) \u = f©(0)
Gn(aj - un kzoun—(k+1)

Since F,(u)= ﬁ

o we get:
uF@Uu) & £9(0)
F = - _—
u n(u) Un kZ:Oun—ku—l

F )= ) S0

FW)=u"F(@)- zuu < £ (o)
s[f OO Fu)= u| Fu)- zu £ 6(0)



Theorem (1.1.6): Let f(t) be a function with the Sumudu transform F(u) then;

sl £ (1)) = 1_1au F(l—uauj

o0

Sle £ ()] = [ f(ut)em e dt = [ F(ut)ett-=m ot

0 0
dw
1- au

sk 10)]= L 1 (1_au]e—de

0

sk 0] 7 Fl )

Theorem (1.1.7) [3]: This theorem deals with multiplication of the function f(t) by a
power series of t | if:

i s[tf@)]-= UZ%F(U)+ uF @)

. J d?
. St f(t)=u?
I | ()] du2

i S}“f(t)]=u“kia£uka(u)

Proof:

Let w=(01-au)t = dt=

) + 4u3%F(u)+ 2u2 F (u)

n+1

iV. S tn+1 f(t)]— un+1z an+1uk Fk (U)

Theorem (1.1.8): Let f(t)and g(t)having Laplace transforms F(s)and G(s)
respectively, and Sumudu transform M (u) and N(u), respectively.
Then the Sumudu transform of the convolution of f and .

00

(t+g)t)= | F(O)gle - r)de

0

Is given by:

S[(f+g)(t)]=uM (uN(u)



Proof:
First, recall that the Laplace transforms of (f *g) is given by:

L[(f *g)(t)] = F(s)G(s)

By using the relation between Sumudu and Laplace transform;

[+ g)O)] = - LI(f+g)(0)]

And since M(u)@, N(u)@

The Sumudu transform of (f *g) is obtained as follows;
1 1

S[(f+)(1)] = m : ) <) M UNQ)

u u u

s[(fxg)(®)]=u M @UuN()

Theorem (1.1.9): Let G(u) denote the Sumudu transform of the function f (t) let
f ®)(t) denote the nth derivative of f (t) with respect to t and let F,(u) denote the
nth derivative of F (u) with respect to, u, then the Sumudu transform of the function
t" f ™(t) is given by:
sl t @)= u"F, @)
Proof:
Let the Sumudu transform of f (t);

00

F(u)= j f(ut)e ' dt

0

Therefore, forn = 0,1, 2,... we get:
T d’ —t i n —t
F,(u)= -([du” f(ut)e ' dt = J;t f(ut)e ' dt
F)= @ et d = 2 she fr@)]
0

= sfmfr@)]=u"F, @)



Corollary (1.1.10) [2]:
Let F,(u) denote the nth derivative of F, (u) = S[f(t)], then

FEORIEIACET

i, slt? ()] =u? 2R, () + uF,(u)]
iii. S|t /()= u?[6F, (u) + 6uF,(u) + u* Fy (u)
f

iv. S|t f(t)]=u*fi2F,(u) + 8uF,(u)+ u?F,(u)]

wn

wn

The Sumudu transform method will be illustrated by discussing the following

examples.

Example (1.1.11): Consider the following inhomogeneous partial differential

equation [24]:
U,(x,y)+U,(x,y)=x+Y;
With the initial conditions;
U(x,00=0 , U(0,y)=0.
Taking the Sumudu transform of (4) we get:
SU, (Yl +s U, (xy)|=s[x +y]

%U(x,u)+%[U(x,u)—U(x,O)]zx+u

d 1
—U((x,u)+=U(x,u)=x+u
LU(xu)+u(u)

Thus we have the ordinary differential equation:
d 1
—U(x,u)+-=U(x,u)=x+u
L)+ U(xu)

The integrating factor is;

1 X
J.fdx =
F=ev =g

Then
U(x,u)= “De x+u)dx+c} XU +ce

Since U(x,0) = 0 then ¢ -0
Then

—-X

(4)

()

(6)

(7)

(8)



U(x,u)= xu (9)

Taking the inverse Sumudu transform;
U(x,y)= 7[xu] (10)
(11)

U(x,y)=xy

Example (1.1.12): Consider the following one — dimensional heat equation [25]:
Uy =4U,(x,Y) (12)

With initial condition:
U(x,0) = Zsin%x : (13)
(14)

And boundary conditions:
u(,t)=0 , U(2t)=0.

Taking the Sumudu transform of (12) and using initial condition (13) we get:
(15)

d? 4 8 . &
—-U(x,u)——-U(X,u)=—-—=sin—x
dXZ ( ) u ( ) u 2
This is the second order differential equation.
First we find the homogeneous solution:
(16)

2y 2
U.(x,u) = Ae'" +Be

Using boundary conditions:
u(,t)=0 =U(0,u)

0
U@2t)=0 =U(2,u)=0

This gives
0 =A+B —(i)

4 4
0 = Ae'" + Be ¥ —(ii)
From (i) and (ii) we have only a trivial solution A=B =0 .
Second we find particular solution:

sinﬁx
2
= { (17)

2

/]
:|Sln—X



The general solution is:

. T
Uix,u) =U +U_ = 32| ———— [sIn—X
( ) P eru +16} 2 (18)
Taking the inverse Sumudu transform we get:
U(x,t) = Zsin%xe_lﬁt | (19)

Example (1.1.13): Consider the following Laplace equation [25]:
U, +U,=0; (20)
With initial conditions:
U(x,0)=0 , U,(x,0) = cosx . (21)
Taking the Sumudu transform of (20) and using initial condition (21) we get:

2

uz%u(x,u)JrU(x,u):ucosx; (22)

This is the second order differential equation which has the particular solution in the
form:

ucosx UCoSX
Uix,u) = =
() u?’D*+1 -u’+1°
If we take the inverse Sumudu for Eq. (23), we obtain the solution of Eqg. (20) in the
form:

(23)

U(x,t) = cosxsinht . (24)

Example (1.1.13): Consider the following wave equation [25]:
U, —4U,, =0 (25)
With initial conditions:
U(x,0)=sinax ,U,(x,0)=0 . (26)
Taking the Sumudu transform of (25) and using initial condition (26) we get:

2
4u2%u(x,u)—u(x,u):—sinnx : (27)



This is the second order differential equation which has the particular solution in the
form:

U(x,u) = —sinzax _ sinzx
T APD’ -1 APrt 4+l
If we take the inverse Sumudu for Eq. (28), we obtain the solution of Eq. (25) in the
form:

(28)

U(x,t) = cos2zt sinax . (29)

1.2: Adomian Decomposition Method

Partial differential equations are a necessary part in applied science and
engineering fields. The wide use of these equations is the most important reason why
they have drawn mathematician's attention. Despite this, they are not easy to find an
answer, either numerically or theoretically. However, most of the methods developed
in mathematics are used in solving differential equations.

In this section, a semi — analytical method named, Adomian decomposition
method (ADM) will be applied. The Adomian decomposition method (ADM) was
developed between the 1970s and 1990s by George Adomian [4-9] have been
attracting the attentions of many mathematicians’, physicists, engineers, and various
graduate researchers. The method has the advantage of converging to the exact
solution and can easily handle a wide class of both linear and nonlinear differential
and the integral equations. The assumptions made by Adomian be modified in
(1999) by Wazwaz [10-20].

The purpose of this method is to find the solution of complex systems without
usual modeling. This method generates a solution in the form of a series whose terms
are determined by a recursive relationship.

Into the Adomian decomposition method (ADM) showed that this method can be
successfully used to solve intricate problems in engineering mathematics and applied
science.

To give a clear view of Adomian decomposition method, we first consider the
linear differential equation written in an operator form by:

10



Lu+Ru=g ; (30)
Where L is a lower order derivative which is assumed to be invertible, Ris another

linear differential operator, and g is a source term.

Now apply the inverse operator L™* to both sides of Eq. (30) and using the given
condition to obtain:

u=f - L*(Ru). (31)
where the function f represents the terms arising from integrating the source term g

and from using the given conditions that are assumed to be prescribed.
The Adomian decomposition method consists of decomposition the unknown function
u of any equation into a sum of an infinite number of components defined by the

decomposition series:

u= iun ; (32)

n=0
where the components U,,U,,...,U, are usually recurrently determined.

Substituting Eq. (32) into both sides of (31) leads to:

iun =f - L{R[iunn . (33)

To construct the recursive relation needed for the determination the components

Ug,Ug,...,U, it is important to note the Adomian method suggests that the zeroth

components U, is usually defined by the function f described above , i.e.
According, the formal recursive relation is defined by:
Up= f;

Uy =— L (R(u, ); k=0. (34)

11



Having determined these components, we then substitute it into Eq. (32) to obtain the
solution in a series form. As state above, the (ADM) produces a convergent series

solution. The issue of convergence is addressed by several researchers [21-23].

The essential features of the decomposition method for linear and nonlinear equations;
homogeneous and inhomogeneous; can be out lined as follows [24]:
1. Express the PDE, linear or nonlinear, in operator form.
2. Apply the inverse operator to both sides of equation written in an operator
form.
3. Set the unknown function u into a decomposition series:
u=24, (35)
n=0
We next substitute the series (35) into both sides of the resulting equation.
4. ldentify the zeroth components U, as the terms arising from the given
conditions and from integrating the source term.

5. Determine the successive components of the series solution U, ; Kk =0 by

applying the recursive scheme (34).
6. Substitute the determined components into (32) to obtain the solution in a series
form.
The essential steps of the Adomian decomposition method will be illustrated by

discussing the following examples.

Example (1.2.14): Consider the following inhomogeneous partial differential
equation [24]:
u, +U,=X+Yy ; (36)
With the initial conditions:
u(x,0)=0 , u(0,y)
In an operator form, Eq. (36) becomes:

0. (37)

12



Lu=x+y-Lu:; (38)

Applying LX_1 to both sides of (38) and using initial condition; hence we find:

2

X .

u(x,y)=?+xy—LX 1(Lyu) , (39)
As stated above, the decomposition method identifies the unknown function u(x, y) as
an infinite number of components un(x, y), n=0 given by:

u(x,y) = iun(x, y): (40)

n=0
Substituting (40) into both sides of (39) we find:

U, (%) = X—22+xy —Lxl(Ly(:Zoun(x, y)D . (41)

n=0

Consequently, the recursive scheme that will enable us to completely determine the

successive components is thus constructed by:

2

u0 =—+X y1
: (42)
U.=— L (L, (), k=0.
This in turn gives;
X2
Uy=—+ XY,
. x?
u=-1L, 1(|—y(uo)):—7’ (43)
u,=— L, (L, (u,))=0
Accordingly, U, (x,y)=0,k>2 .
Having determined the components ofu(x, y), we find:
u(x,y)=xy . (44)

13



It is important to note here the exact solution given by (44) can also be obtained by

determined the y- solution as discussed above.

Example (1.2.15): Consider the following one — dimensional heat equation [25]:

1
Zuxx :ut ; (45)

With the initial condition:
u(x,0)= Zsin%x : (46)

And boundary conditions:
u(0,t)=0 , wu(2t)=0. (47)

In an operator form, Eq. (45) becomes:
1

Ltu = ZLxxu : (48)

Operating L, on both sides of (48) and using initial condition; hence we get:
u(x,t) = Zsin%x +% L (L) . (49)
Using the decomposition (32) to both sides of (49) we obtain the recursive relation:

. T
Uy = 2SIN—X,
2

50
b= L) 0. o0

In view of (50) the components un(x,t) , =0 are determined by:

u0=28in£X,
2
1. - ’t .
ulzzl—t 1(Lxx(u0)):_% SII’]%X, (51)
1, - 12

And so on. The solution in a series given by:

14



2 442
u(x,t)=sinZ x /RIS
2 8 256 ’

In a closed form:
2

u(x,t) = Zsin%xe16t .

Example (1.2.16): Consider the following Laplace equation [25]:

u, +Uu, =0:
With the initial conditions:
u(x,0)=0 , u,(x,0) = cosx .
In an operator form, Eq. (54) becomes:

Lttu =~ Lxxu ;
Applying L, on both sides of (56) gives:

u(x,t)=tcosx — L, (L) .

(52)

(53)

(54)

(55)

(56)

(57)

Substituting decomposition (32) into both sides of (57), and proceeding as before we

obtain;

Uy = tcosx,
4 t°
ulz_l‘t (LXX(UO))ZECOSX’

5

4, ==L (L) = oosx.

And so on. The solution in a series given by:

t* t°
u(x,t)= cosx£t+ §+—+...) :

ol

In a closed form:

u(x,t)= cosxsinht

15
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Example (1.2.17): Consider the following wave equation [25]:
U, —4u, =0; (61)
With the initial conditions:
u(x,0) =sinzx ,u,(x,0)=0 . (62)
In an operator form, Eq. (61) becomes:

Lu= 4L, ; (63)

Applying L, on both sides of (63) gives:

u(x,t)=sinzx +4L, " (L,u) . (64)
Substituting decomposition (32) into both sides of (64), and proceeding as before we
obtain:
U, = Sinzx,
u1:4Lt_1(Lxx(u0)):_ZﬂthSinﬂx; (65)
444
UZZ_LI_l(Lxx(ul)): em 1 sinzx .
And so on. The solution in a series given by:
. (27rt)2 (27rt)4
u(x,t)_smnx[l— ot (66)
In a closed form:
u(x,t)=sinzxcos2zt . (67)

Definition (1.2.18): The Noise Terms Phenomena
The idea of noise terms it means that opposite signs show in the first two

components of the series solution that are happening only in inhomogeneous

equations of any order.

16



The objective of this concept is demonstrating a fast convergence of the series
solution.
In view of these remarks, we now outline the ideas of the noise terms [4, 10]:
1. The noise terms are defined as the identical terms with opposite signs that may
appear in the components U, and U, .
2. The noise terms appear only for specific of inhomogeneous equations whereas
noise terms, do not appear for homogeneous equations.
3. The noise terms appear if the exact solution is part of zeroth component U, .
4. Verification that the remaining non-canceled terms satisfy the equation is
necessary and essential.
The phenomenon of the useful noise terms will be explained by the following

examples.

Example (1.2.19): Consider the inhomogeneous PDE [24]:
u, +u,=(1+xje’ ; (68)
With the initial conditions:

u(0,y)=0. (69)
The inhomogeneous PDE can be rewritten in an operator form by:

Lu=(1+x)e’ - Lu ; (70)

ApplyingL,™ to both sides of (36) and using the given condition leads to:

2

u(x, y) = (x%}ey ~L L) (71)

Substituting the decomposition (32) into both sides of (71), and proceeding as before,

the components Uy, U, ,...,U, are determined in a recursive manner by:

17



2 3 (72)
g X X
u=-L (Ly(uo)) = —£E+§]ey.
Considering the first two components U, andU, in (72), it is easily observed that the
X X
noise terms Eey and —Eey appears in U, andU, respectively. By canceling the

noise terms inU,, and by verifying that the remaining non-canceled terms of U,
satisfying Eg. (68), we find that the exact solution is given by:
u(x,y)=xe’ . (73)

Example (1.2.20): Consider the inhomogeneous PDE [24]:
uy +u,=(y+x) ; (74)

With the initial conditions:
u(0,y)=0. (75)

Proceeding as before, and applying the inverse operator LX_1 to both sides of (74),

and using the given condition we obtain;
2

u(y)=xy+ -1 (L) (76)

Preceding as before, the first two components U, andU, are given by:

2 (77)
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Considering the first two components U, andU, in (77), it is easily observed that the

x? x?

noise terms o and o appears in U, and U, respectively. By canceling the noise

terms inU,, and by verifying that the remaining non-canceled terms of Ujsatisfying

Eqg. (74), we find that the exact solution is given by:
u(x,y)=xy . (78)

1.2.1: The Modified Decomposition Method

In this section, we purpose to establish a new technique provides a rapid
convergence of the series solution above the usualness of the decomposition method
for linear and nonlinear differential equations called the modified decomposition
method.

The modified decomposition method was developed by Wazwaz [11, 12]. Despite, the
new technique is a slight variation in the Adomian recursive relation.
To give a clear description of the technique, we consider the PDE in an operator

form:
Lu+Ru=g ; (79)
Where L is the highest order derivative, R is a linear differential operator of less

order or equal order toL , and g is the source term.
Now apply the inverse operator L™ to both sides of Eq. (79) we obtain:

u=f - L*(Ru). (80)
where the function f represents the terms arising from integrating the source term

g and using the given conditions that are assumed to be prescribed. We then proceed

as discussed in section (1.2) and define the solution u as an infinite sum of

components defined by:
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u= iun ; (81)

n=0
To achieve this goal, the decomposition method admits the of the recursive relation:
Up= f;
U= — L2 (R(U,)): k20. (82)
The modified decomposition method introduces a slight variation to the recursive

relation (82) that will lead to the determination of the components of u in a faster
and easier way. For specific cases, the function f can be set as the sum of two partial
functions, namely f, and f, . In other words, we can set:

f="1f+1,; (83)
Using (83), we introduce a qualitative change in the formation of recursive relation
(82). The modified recursive relation can be identified by:

u,= f,,

u = f, L (R(u,)) (84)

U, =— L (R(u,)); k>1.
It is worth mentioning that the modified decomposition method will be used for linear

and nonlinear equations of any order. In the upcoming chapters, it will be used

wherever it is appropriate [24].

The modified decomposition method will be illustrated by discussing the following
examples.
Example (1.2.21): Consider the inhomogeneous PDE [24]:
u, +u, =3x*y* +3x°y* ; (85)
With the initial conditions:
u(0,y)=0. (86)
The inhomogeneous PDE can be rewritten in an operator form by:

Lu=3x"y* +3x°y* - Lu ; (87)
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ApplyingL,™ to both sides of (87) and using the given condition leads to:
u(x,y)=x’y* + %X4 y -1 (L) . (88)

The function consists of two terms, hence we set:

3,3 f2:%x4y2 ; (89)

In view of (89) we introduce the modified recursive relation:

Uy = x3 ys ’
3 1
U, = ZX4 y* =L (L ) (90)
U= — 2L, () k=L
This gives:
Up= X"y°,
3 _
U= ZX4 y2- L (L, () =0, (91)
u.,=0, k=L
It then follows that the solution is:
u(x,y)=x>y* . (92)

Example (1.2.22): Consider the inhomogeneous PDE [24]:

u, +Uu, =coshx +coshy ; (93)

With the initial conditions:
u(x,0) = sinhx . (94)
To effectively use the given condition, we rewrite (93) in an operator form by:

L,u=coshx +coshy-Lu ; (95)

Applying Ly_l to both sides of (95) and using the given condition gives:

21



u(x, y) =sinhx +ycoshx+sinhy — L, (L,u) . (96)
To determine the components ofu(x, y), we set the modified recursive relation:

U, = Sinhx+sinhy,

= yooshx- L, (L, 1) =0. %
U, =0; k=L

The exact solution is:
u(x,y)=sinhx +sinhy . (98)

1.3: Adomian Decomposition Method and Sumudu Transform
Method for Solving Linear Partial Differential Equations

The Adomian decomposition method proves to be powerful, effective and
successfully used to handle most types of linear or nonlinear ordinary or partial
differential equations, and linear or nonlinear integral equations. The method
characteristics various advantages, which considerably from the usual methods. This
method is a simple and directly without any restrictive assumption as usual is going in
other methods.

In this section, we propose a new method, namely Adomian Decomposition
Sumudu Transform Method (ADSTM) for solving linear partial differential equations.
This method is a combination of Sumudu transform and decomposition method which
was introduced by Devendra Kumar, Jagdev Singh and Sushila Rathore [26].

The objective of algorithm is to provide the solution in a rapid convergent series
which can lead to the solution in a closed form.

To illustrate the basic idea of this method, we consider a general non-
homogeneous partial differential equation with the initial conditions of the form:
LU(x,t)+ RU(x,t) = g(x,t),

U(x,0) = h(x),U,(x,0)= f(x). (99)
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: . : : 0° : :
Where Lis the second order linear differential operator L = prell R is other linear

differential operator of less order than L, and g is a source term.

Taking the Sumudu transform of both sides of Eq. (99), we get:
S[LU(x,t)]+S[RU(x,t)]=S[a(x,t)]; (100)

Using the differentiation property of the Sumudu transform and given initial

conditions, we have:

S[U(x,t)]=h(x)+u f(x)+u®S[g(x,t)] -u?S[RU(x,t)] . (101)

If we apply the inverse operator S™'to both sides of the equation (101), we obtain:
U(x,t)=G(x,t) - S Hu?S[RU(x,1)]] . (102)
Where, the function G(x,t) represents the terms arising from integrating the source

term g and the prescribed initial conditions.
Using the Adomian decomposition method which defines the solution by an infinite
series of components given by:

U(x.t)= Y U, (x.1); (103)

where the components U,,U,,U,,--- are usually recurrently determined.
Substituting (103) into both sides of (102) leads to:

niun(x,t)zG(x,t)— slluzs{R(rﬁOUnm . (104)

For simplicity, Equation (104) can be rewritten as;

Up+ U+ U, +U +---=G - S*|u?S[R(U,+U, +U, +U,+---)]| (105)
To construct the recursive relation needed for the determination of the components
U,U,,U,, -, it is important to note that the Adomian decomposition method
suggests that the zeros component U, is usually defined by the function G described
above, i.e. Accordingly, the formal recursive relation is defined by:

U, = G(x,t),

U, =-s*u?s[rRu,)]]

U, =-5*u?s[RW,)] (106)
U,=-5 l[uzs R,
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Substituting these components in the equation (103), we obtain the solution in a series
form.

The Adomian decomposition Sumudu transform method will be illustrated by
discussing the following examples.

Example (1.3.23): Consider the following inhomogeneous partial differential
equation [24]:
U (x,y)+U,(x,y)=x+y; (107)
With the initial conditions;
U(x,00=0 , U(0,y)=0; (108)

The X-—solution:
Following discussion presented above, we obtain the recursive relation:

U, = X—22+xy,
u, =-s*lu’s[u,), ] =-% (109)
U, =-s*u?s[u,),] =o.

Therefore the solution U (x,t)in series form is given by;
U(x,t)=U,(x,t)+U,(x,t)+U,(x,t) +---

x? x? (110)
2 2
And in closed form given as;
U(x,t)=xy (111)

It is important to note here the exact solution given by (111) can also be obtained by

determined the y- solution as discussed above.

Example (1.3.24): Consider the following one — dimensional heat equation [25]:
1
2U 1) =Ui(x.1) (112)

With the initial condition:
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U(x,0)=23in%x ,

(113)
In a similar way above, we have the recursive relation:
U, = Zsinzx,
1. Tt . &
U, = 87 us[U), [ = - =sin " x (114)
1 _._ VG -
U2 = Z S 1[u2 S[(Ul)xx]] = 256 SInEX'
And so on. The solution in a series form given by:
. ’t  xtt?
Uix,t)= —X|2 - - ..
(x,t) = sin > x( BT ] (115)
And in a closed form of,
U(x,t) = Zsin%xe_16t , (116)
Example (1.3.25): Consider the following wave equation [25]:
U,(x,t) —4U(x,t)=0; (117)
With the initial conditions:
U(x,0)=sinz ,U,(x,0)=0 . (118)
Proceeding as before, we obtain:
U, =sinzx,
U1:4S_1(Lxx(u0)):_27T2t23in7zx; (119)

-1 27T4t4 .
U,=45"(L,(u)) = sinzx .

And so on. The solution in a series given by:

. 27t} (2xt)
U(X,t):S|n7zX£1— ( 72T') + ( Z') —...]; (120)
In a closed form:
U(x,t)=sinzxcos2at (121)
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1.4: Adomian decomposition Method and Sumudu Transform
Method for Solving Linear Systems Partial Differential
Equations

In this section, we will present the combined Sumudu transform and Adomian
decomposition method to solve some examples of linear system of partial differential
equations; we first consider the system of partial differential equations written in an
operator form;

Ut + Vx = gl 1
: 122
Vt + U X = gz’ ’ ( )
With the initial conditions;

V(x,0) = f,(x). °
Using the differential operator property of the Sumudu transform and above initial
conditions, we get;

s[u(x,t)]= f,(x)+ us[g, -V,]

124
S (x.t)] = 1,(x)+ us[g, - U, ] (124)
Now, applying the inverse Sumudu transform on both sides of (124), we get:
Uux,t)=f S Hus -V
()= 100+ S *fusfo, - v, ] 129

V(x.t)= f,(x)+ sus[g, -U, ]
where g,(x,t), g,(x,t) represents the term arising from the source term and the
prescribed initial conditions. We apply the Adomian decomposition method:

u@@:éy&m)

) (126)
V(x,t)= >V, (xt)
Now, applying the Adomian decomposition method, we get:
i U,(x,t)= f,(x)+ S{us{gl - [ivn(x,t)
n=20 n=0 X
-z (127)

DMV, (xt)= f,(x)+ S{us{gz - [Zun(x,t)
n=20 n=0
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Following Adomian analysis, the system (127) is transformed into a set of recursive
relation given by:

Uo(x,t) = f,(x) + $*[uS]g, ]I,

Upalet)= -5 s [w,),] k20, (128)

And

Vo(x,t)= f,(x)+ S *[us[g,].

Vk+1(X’t):_871 [US[(UK)X]], k >0. (129)

To have a clear overview, forthwith are several examples to demonstrate the
efficiency of the method.

Example (1.4.26): Consider the following system of partial differential equations
[24]:

u,+VvV, =0 (130)
V,+U, =0
With the initial conditions;
U(x,0)=¢e"
( ) ) (131)
V(x,0)=¢ "

To derive the solution by using the decomposition method, we follow the recursive
relation (128) and (129) to obtain:
U,(x,t)=e",

132
Upalt)= =5 us[v,), ] k20 ()
And
Vo(x,t)=e,
133
Vo 0e) = 2 fusfu,) ] k0. 1)
The remaining components are thus determined by:
U,(x,t)=te™ , V,(x,t) = —te* ,
t? t>
Uz(x,t)=5e ,Vz(x,t)=Ee , (134)

3 3

| |
Us(x,t)=§e ,VS(x,t)=—§e ,

And so on. Using (134) we obtain:
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t2 t4 t3 t5
U(x,t)= ex(l+—+— +J + ex(t+—+— +J
21" 41 3l

ol

(135)
t? t 3 t°
V(x,t)=e™ (l+—+— +J —e (t+—+— +J
2! 41 3! 5l
This has an exact analytical solution of the form;
(U,V)=(e*cosht +e sinht , e *cosht — e* sinht) . (136)

Example (1.4.27): Consider the following system of partial differential equations:
U,- V, =2x’-e

, t (137)

V, + U, =2t + xe

With the initial conditions;
U(x,0)=0 , U,(x,0)=0, V(x,0)=x (138)
Taking Sumudu transform of equations (137) subject to the initial conditions, we get;

2
S[U(x,t)] = 2x?u?® - 1u—u +u?sv,]

y (139)
S[V(x,t)] = 4u® + n uu +x-usu,]
The inverse Sumudu transform implies that:
U(x,t)= xt2+t+1-¢e' + S*u?slv,]|
140
V()= S xe s Puspu,] (140)
Now applying the Adomian decomposition method, we get;
(141)

ZU(xt)_xt+t+l—e+S[ [i }]
ivn(x,t): %t3+ xe'—S [uS ZU ]

The modified decomposition method defines the recursive relations in the form;
U,(x,t) =x°t,
Ul(X,t) =t +1—et+S_l[UZS[VO]X] : (142)
U, (x.t)= s*[uspv, ]| k=1

And
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V,(x,t) =xe',

V,(x,t) = %ﬁ - s*usfu,]. ],

Ve, (xt)= = sHus[u, ], ], k=1

We obtain the following pairs of components;
Uy, ) = (X212, x '),
(U1 ’Vl) = (0’0)’
(Uz ’Vz) = (0’0)-
This has an exact analytical solution of the form;
U.V)= (22, xe').
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1.5: Adomian Decomposition Method and Sumudu Transform for
Solving Higher Dimensional Heat and Waves Equations

Heat and wave like models are the integral part of applied mathematics and
engineering mathematics that arises from different physical phenomena. Several
techniques such as characteristic, modified variation iteration, Adomian
decomposition method, Hé s polynomials, and homotopy perturbation Sumudu
transform method [27] have been used for solving these problems.

It is significant to note that the (ADM) is applied without any restrictive

assumption or transformation. The main advantage of the (ADM) IS that it can be
applied straight to all types of differential equations both homogeneous and in-
homogeneous boundary conditions.

In this section we introduce a new method called Adomian decomposition
Sumudu transform method (ADSTM) for solving the heat and wave like equations in
two and three dimensional spaces. It importance that the proposed method is an
elegant combination of the Sumudu transforms method and the Adomian
decomposition method which was introduced by D. Kumar, J. Singh and S. Rathore
[26].

(ADSTM) provides the solution for nonlinear equations in the form of
convergent series. These forms the motivation for us to apply (ADSTM) for solving
nonlinear equations in understanding different physical phenomena.

1.5.1: Adomian  Decomposition Method and Sumudu
Transform Method (ADSTM)

To illustrate the basic idea of this method, we consider a general
nonlinear non-homogenous partial differential equation with the initial conditions of
form [27];

(146)
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2

Where D is the second order linear differential operatorD:aaT R s linear

o
differential operator of less order than D , N represent the general nonlinear operator
and g(x,t) is the source term.
Taking the Sumudu transform of both sides of Eq. (146), we get;

S[DU (x,t)]+S[RU(x,t)]+S[N (x,t)] = S[g (x,t)]. (147)
Using the differentiation property of the Sumudu transform and given initial
conditions, we have;

S[U(x,t)] = u?S[g(x,t)] +h(x) + u f(x) — u? S[RU(x,t) + NU (x,t)]. (148)
Now, applying the inverse Sumudu transform of both sides of (148), we get,
U(x,t)=G(x,t)= S [u?S[RU(x,t)+ NU (x,t)] . (149)

Where G(x,t)represents the term arising from the source term and the prescribed
initial conditions. Now, apply the Adomian decomposition method;

Uxt)= U, (xt) | (150)
The nonlinear term can be decomposed as; "
NU(x,t):iAn(u) , (151)
For some Adomian polynomials A, (U) that are g:\;gn by;
A U,.U, U, , ..., U“):%dd;tn l:N(:OA”UnH n=012,. , (152)
Substituting Eq. (150) and Eq. (151) in Eq. (149), we getl;_O
iou (1) =G(xt) =5 {ms{@ou n(x,t)+§0An(u)ﬂ . (153)

So that the recursive relation is given by;

U,(x,t)=G(x,t),

Uea(,t)= -5 u?s[Ru, + A ], k =0. (154)

1.5.2: Two Dimensional Heat Flow
The Adomian decomposition Sumudu transform method (ADSTM) can be used for
solving the heat equation in a two dimensional space [24]:

U=k, +U,) 0<x<a,0<y<b,t>0; (155)

With boundary conditions:
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u@,y,t)=0 ,U(a,y,t)=0,

U(x,0,t)=0 ,U(x,b,t)=0, (156)

And initial condition:

U(x,y,0)= f(x,y) . (157)
Where U =U(x,y,t) the temperature of any point is located at the position
(x,y ) ofarectangular plate at any time t , and k is the thermal diffusivity.

The distribution of heat flow in two dimensional spaces is governed by the
following initial boundary value.

Example (1.5.28): Consider the following two-dimensional initial boundary value
problem which describes the heat-like models [28];

Ut:%[xzuxx+yUW],O<x,y<1,t>O (158)

With boundary conditions as;
U@,y,t)=0 ,U(L y,t)= 2sinh t

U(x,0,t)=0 ,U(x,1,t)=2cosh t ' (159)

And the initial condition as;

U(x,y,0)=y? . (160)
Taking Sumudu transform of both sides of (158) subject to the initial condition, we
get;

slu(x,y,t)] = y2+%y2u8 [UXX]+%x2uS u, 1. (161)
The inverse of Sumudu transform implies that;
U(x,y,t)=y? +%y28‘1[u8 U, ]]+%x28‘1[u8 u, 1. (162)
The decomposition method defined the solution U (x, y,t) as a series given by;
U(x,y,t):i)un(x,y,t) . (163)
Now, applying the Adomian decomposition method, we get;

SR Y
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This leads to the recursive relation;
Uo(x,y.t)=y*,

165
Ukﬂ(x,y,t):%yzsl[uS[(Uk)XX]]+%XZS1[uS[(Uk)W]],k20. (163)
This gives;
UO(X’y’t): yz,
1 201 1 2qa 2
U0yt = SysluslUo) wll+ 5 x°s usluo), I=x,
2
Uty )= 2yt fusfu,), I+ 2 s =usfu,), - v 2o, (469
1 . 1 . t°
U0y ) = Sy s lus[u,), D5 es sy, = x5
And so on. Therefore the solution U (x, y, t)in series form is given by;
) t* t° ) t2  t!
U(x,y,t)=x t+§+a+--- +y 1+Z+E+m : (167)
And in closed form given as;
U(x,y,t)= x*sinh t+y®cosh t . (168)

Example (1.5.29): Consider the following two-dimensional initial boundary value
problem which describes the heat-like models [24];
u =u,+U,-U, O0<x,y<z,t>0; (169)
With boundary conditions as;
Uu@,y,t)=U(z,y,t)=0

170
U(x,0,t)=U(x,7,t)=e *sin x (170)
And the initial condition as;
U(x,y,0)=sinxcosy . (171)
In a similar way as above, we have;
i U,(x,y, t)=sin xcos y + Sl[usl[iun(x,y, t)J ”+
n=0 n=0 X
(172)

st [uS [{ﬁoun(x, Y, t)JW”+ +S‘{US{2OUH(X’ Y, t)ﬂ

This gives;
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U,(x,y,t) = sin xcos y
U, 0y, ) = 8 [usfU), T s usfw,), e s*fusiu, ]

= —3tsin xcos y (173)
U, 06y, )= s fus[u,), +s*usfuy), J+s s, ]

= (?’zisin X COS Y

Therefore the solution U (x, y, t)in series form is given by;

U(x,y ,t)= (1—3t+ (3t)2 _ (St)3 n (3;?4 _...Jsin XCOS Y ; (174)

2! 3!
And in closed form given as;
U(x,y,t)=e *sin xcos y . (175)

1.5.3: Three Dimensional Heat Flow
The Adomian decomposition Sumudu transform method (ADSTM) can be used of
solving the heat equation in a three dimensional space [24]:
U=k, +U, +U,) 0<x<a,0<y<b,t>0,0<z<c,t>0 ; (176)
With the boundary conditions:
u@,y,z,t)=0 ,U(a,y,z,t)=0,
U(x,0,z,t)=0 ,U(x,b,z,t)=0, (177)
Uu(x,y,0,t)=0,U(x,y,c,t) =0,
And the initial condition:
U(x,y,z,0)= f(x,y,z) . (178)
Where U =U(x,y,z,t) the temperature of any point is located at the position
(x,y,z) ofarectangular plate at any time t , and k is the thermal diffusivity.

The distribution of heat flow in three dimensional spaces is governed by the following
initial boundary value.
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Example (1.5.30): Consider the following three-dimensional inhomogeneous initial
boundary value problem which describes the heat-like models as [28];

Ut:x4y4z4+%(xzuxx+yzuw+22UZZ), 0<x,y,z<1l,t>0 (179
With the boundary conditions as;
U@O,y,z,t)=0, U(z,y,z,t)= y*z*(e' -1)
U(x,0,z,t) =0, U(x,z,z,t) = x*z*(e" -1) (180)
U(x,y,0,t)=0, U(x,y,z,t)= x"y*(e' -1)
And the initial condition as;
U(x,y,z,0)=0 (181)

Taking Sumudu transform of both sides of the equation (179) subject to the initial
condition, we get;

Sju(x,y,z,t)] = x4y4z4t+%us [XZU o+ YU, +2°U ZZ] (182)
The inverse of Sumudu transform implies that:
U(x,y,z,t)= x"y*zt+— 2% S’l[uS [XZU ot YU, +2°U ZZ]] (183)

Now, applying the Adomian decomposition method, we get;

ZU X,Y,2,t)=x'y z4t+3—16x28l[usl[iun(x,y,z,t)J “
n=0 XX

el ) Joaes (qlgpenna) |

This gives;

(184)
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U,(x,y,z,t)=x"y*z",

U,(x,y,2.0) = s uslU,) o1+ oo ysusfug) ]
E s luslu,) D= xtye
U,(x,y,z,t)= 3—16X23‘1[u slu,) . [+ 3—16y28‘1[u slu.),, ] (185)

1 - t°
+£ZZS l[us[(ul)zz]]: X4y4z4a’
1 _ 1 _
Usley,z.t) = 2o usfu,) e ooy?slusfu,), |
+i228‘1[us[(u ) ]]=x4y4z4ﬁ.
36 2/ 1z 4!
Therefore the solution U (x, y, z,t)in series form is given by;

i 4a t2 13 t4
U(X,y,z,t):xyz(t+z+§+z—--}, (186)
And in closed form given as;
U(x,y,z,t):x“y“z“(e‘t—l) . (187)

1.5.4: Two Dimensional Wave Equation

In this section, we will apply the newly developed Adomian decomposition
method and Sumudu transform to handle the wave equation.
The propagation of waves in a two dimensional vibrating membrane of length
a and width b is governed by the following initial-boundary value problem [24];
Utt:cz(UXX+Uyy), O<x<a,0<x<b,t>0 (188)
Subject to the boundary conditions;
Uu@,y,t)=U(a,y,t)=0 (189)
U(x,0,t)=U(x,b,t)=0
And the initial condition;
U(x,y,0)= f(x,y) , Ux,y,0)=g(x,y)  (190)
As discussed before, the solution in the t- direction, in the x—space , or in the
y—space will lead to identical results. However, the solution in the t-direction
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reduces the size of calculations compared with the other space solutions because it
uses the initial conditions only. For this reason the solution in the t—direction will be
discussed in this section.

Example (1.5.31): Consider the following two-dimensional initial boundary value
problem which describes the heat-like models as [24];
U,=2U,+U,), O0O<x,y<z,t>0 (191)
With the boundary conditions as;
Uu@,y,t)=U(r,y,t)=0 (192)
U(x,0,t)=U(x,7,t)=0
And the initial condition as;
U(x,y,0)=sinxsiny, U/((x,y,0)=0 (193)
Taking Sumudu transform of both sides of the equation (191) subject to the initial
condition, we get;

S[U(x,y,t)]=sin xsin y + 2u?s[u, +uU ] (194)
The inverse of Sumudu transform implies that:
U(x,y,t)=sin xsin y+ ZS’I[UZS[UXX+UW]] (195)

Now, applying the Adomian decomposition method, we get;

nioun(x,y, t) = sin xsin y + 2 Slluzsl[ﬁoun(x,y, t)L”JF

) (196)
+28 [uzsl[nzoun(x,y, t)J ”
This gives;
U,(x,y,t) = (sinx)(siny)
Uiy 0= 25 s[0,) T2t sfu,), I - B imeing)
0,(y.0)= 257k s[u,), Jr2s e sfuy), J- &Y (197)

(sinx)(sin y)
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U,(x,y,t)=2 S‘l[u2 S[(UZ)XX]]+28‘1[U2 S[(Uz)yy: = - (26%)6(sin x)(siny)

Therefore the solution U (x, y, t) in series form is given by;
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2t (2t)"  (2t) o
U(x,y,t):(l—(z!) +(4!) _(6!) —---Jsm xsiny ; (198)
And in closed form given as;

U(x,y,t)=sin xsin y cos(2t) . (199)

Example (1.5.32): Consider the following two-dimensional initial boundary value
problem which describes the heat-like models as [28];

Uﬁ:%(xzuxx+y2Uw), 0<x,y<1l,t>0 (200)

Subject the Neumann boundary conditions as;

U,(0,y,t)=0, U (1, y,t)=4cosht

U,(x,0,t)=U,(x,1,t)= 4sinh t
And the initial condition as;

U(x,y,0)=x*, U/x,y,0)=y’ (202)
Taking Sumudu transform of both sides of the equation (194) subject to the initial
condition, we get;

(201)

S[U(x,y,t)]= x*+u y4+%x2u28[u XX]+%y2u28[uyy] (203)
The inverse of Sumudu transform implies that:
U(x,y,t)=x*+ty*+ %Sl[uzs[xzuxx+yzuw]] (204)

Now, applying the Adomian decomposition method, we get;

Z‘O“Un(x,y,t):x“+ty“+%x28‘l u’s [iun(x,y,t)J +
n=0 n=0 XX _|

LoL T . (205)
+iy23—1 u2S [ZUn(x,y,t)J
12 n=0 vy

This gives;

38



U,(x,y,t)= x*+ty*,
1 _ 1 _
U0y )= st sfU) Tl oys o sfUo), ]

~ 4t2 4t3

TR (206)

1 - 1 _

U, Gy )= st s[U) Tl oys 7ot sf.),, |
5

t? t
_4_ 4_
REATIA AT

And in closed form given as;
U(x,y,t)= x*cosh t+y*sinh t . (208)

1.5.5: Three Dimensional Wave Equation
The propagation of waves in a three dimensional volume of length a, width b, and
height d is governed by the following initial boundary value problem [24];

Uy=c?U, +U, +U,), t>0 ; (209)
With the boundary conditions:
u@,y,z,t)=0 ,U(a,y,z,t)=0,
U(x,0,z,t)=0 ,U(x,b,z,t)=0, (210)
Uu(x,y,0,t)=0,U(x,y,c,t) =0,
And the initial condition:
U(x,y,z,0)= f(x,y,z), UJlx,y,z,0)=g(x,y,2) (211)
Where0 <x <a,0<y<b,0<z<d,and U=U(x,y,z,t) is the displacement of any
point located at the position (x,y,z) of a rectangular volume at any timet, and c is the
velocity of a propagating wave.
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Example (1.5.33): Consider the following three-dimensional inhomogeneous initial
boundary value problem which describes the wave-like models [24];
Uﬁ=3(UXX+UW+UZZ), 0O<x,y,z<rm ,t>0 (212
Subject to the following boundary conditions;
u@,y,z,t)=U(z,y,z,t)=0
U(,0,z,t) =U(x,7,z,t)=0 (213)
U,y ,0,t)=U(x,y,7,t)=
And the initial condition as;
U(x,y,z,0)=0 , U,(x,y,z, 0)= 3sin xsin ysin z (214)
Taking Sumudu transform of both sides of the equation (206) subject to the initial
condition, we get;
S[U(x,y,z,t)] = 3usin xsin ysin z+3u?S[U, +U, +U,]| (215)
The inverse of Sumudu transform implies that:
U(x,y,z,t)=3tsin xsin ysin z+3S *|u?s[u, +U y U (216)
Now, applying the homotopy perturbation method, we get;

iun(x,y,z, t) = 3tsinxsin ysinz +3 S{uzsﬁiun(x,y,z, t)}
n=0 n=0

XX

+38{uz{[ﬁ)un(x,y,z,t)}wﬂws{msﬁni)un(x,y,z,t) ﬂ

This gives;

(217)

U,(x,y,z,t)= 3t sin xsin ysin z

U0 y,2,t) =38 Ju*s[U,)  Jr3slus[u,),, ]

+38‘1[u2 s[(uo)ZZ ]]: - (?’Sﬁsin Xsin ysin z (218)

U,(xy,2,0)= 3z s[u,), J+3s*fuz s[v,),, ]
+35uzs[u,).]l= (t)ssmxsmysmz

Therefore, the solution U (x, y, z, t)in series form is given by;

U(x,y,z,t)=3sin xsin ysin Z(Bt _BY + B @Y —J ;(219)

31! 5! 71

And in closed form given as;
U(x,y,z,t)=sin xsin ysin zsin(3t) . (220)
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Example (1.5.34): Consider the following three-dimensional inhomogeneous initial
boundary value problem which describes the heat-like models [28];

U, :(x2+y2+22)+ %(XZUXX+y2UW+22UZZ), 0<x,y,z<1l,t>0 (221)

Subject to the following boundary conditions;
U0.y,2,t) = y(e' -1)+22* -1), U@Ly.z, 1) =1+y?)(e 1)+ 26 -1)
U(x,0,2,t) =x2(e' ~1)+2°(e 1), U(x,7,2,t) = (1+x?)(e" 1)+ 22(e* -1) (222)
U(x,y,O,t):(x2+zz)(et —1) L U(xy,7,t) = (x +y2)( 1)+( 1)
And the initial condition as;
U(x,y,z,0)=0 , U(x,y,z,0), = x> +y?— 2° (223)

Taking Sumudu transform of both sides of the equation (221) subject to the initial
condition, we get;

S[U(x,y,z,t)] = (x2+y2+22)u?+(x* +y? -z )u

224
+%UZS[X2UXX+y2UW+ZZUZZ] (224)
The inverse of Sumudu transform implies that:
2
U(x,y,z,t)= (x? + y? +zz)t_+(x2+ y? - 2% )t
2 (225)

+ % Sfl[uzs[xzu o+ YU, +2°U ZZ]]
Now, applying the Adomian decomposition method, we get;

> U,(x,y,z,t) = (X* +y? +2° ﬁ+ x*+y? -2t
2, 2

+%xzsl[ l[z xy,z,tw (226)
el [ {of(goena) ]

This gives;
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2

Uy(x,y,z,t)= (x2 +y2+22)?+ (x2 +y? —22)t

naih or ol
Ualxy.z.)= (¢ +y2+22)t6_i+ (x? +y? _22)t5_5!

i sl

Therefore the solution U (x, y, z, t)in series form is given by;

2 3 4
U(X’y,Z,t):(x2+y2)[t+t— + L + v

+22 _t+£ — ﬁ + i_
21 3! 41

And in closed form given as;

(227)

U(x,y,z,t):(x2+y2)et + z%e™" —(x2+y2+22) . (229)
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CHAPTER (2)
Nonlinear Partial Differential Equations

2.1: Adomian Decomposition Method

Many of nonlinear phenomena are a necessary part in applied science and
engineering fields. Nonlinear equations are noticed in a different type of physical
problems such as fluid dynamics, plasma physics, solid mechanics, and quantum field
theory.

The wide use of these equations is the most important reason why they have
drawn mathematician's attention. Despite this, they are not easy to find an answer,
either numerically or theoretically.

In the past, active study attempts were given a large amount of attention to the study
of getting exact or approximate solutions of this kind of equations. It is significant to
note that several powerful methods have been advanced for this purpose.

The Adomian decomposition method will be used in this chapter and in other
chapters to deal with nonlinear equations. The Adomian decomposition method
proves to be powerful, effective and successfully used to handle most types of linear
or nonlinear ordinary or partial differential equations, and linear or nonlinear integral
equations. This method is a simple and directly without any restrictive assumption as
usual is going in other methods.

In the following, the Adomian scheme for calculating a wide variety of forms of
nonlinearity.

2.1.1: Calculation of Adomian Polynomials
It is well known that the Adomian decomposition method suggests the unknown
linear function umay be represented by the decomposition series;

u= iun : Q)

where the components u,,n>0 can be elegantly computed in a recursive way.

However, the nonlinear termF (u), such as u?,u®,u* sinu,e",uu,,u’ etc. can be

X1¥x 1
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expressed by an infinite series of the so- called Adomian polynomials A given in the
form;

F(u)ziAn(uo,ul,u2 ..... u,). (2)

The Adomian polynomials A, for the nonlinear term F(u) can be evaluated by using
the following expression;

1 d" LB
A =— F Au. ,h=0,1,2,... 3
"ol dA” l: [z UIIIH) " 3)

i=0

Assuming that the nonlinear function isF(u), therefore, by using (3), Adomian
polynomials are given by;

A = F(uo)’
A=y F’(uo)’
A, =u, F'(u,) + 1 u,” F"(u,), 4)

2!
’ 14 l m
A, =uF (uo)+ uu, F (uo)+ 5“13 F (uo)'

Other polynomials can be generated in a similar manner.
Substituting (4) into (2) gives;
Flu)= A +A +A +A +...

= F(up )+ (u, +u, +uy+...)F'(uy ) + %(ul2 +2u, U, +u,’ +...)F"(u0) +
1( 3 3 2 3 2 )Fm )
gl 307Uy 30" U (Ug) + ...
’ 1 "
= F(up) + (u—uy)F'(uy) + E(U—uo)2 F(Ug) + ...
The last expansion confirms a fact that the series in A, polynomials is a Taylor series

about a function u, and not about a point as is usually used.

In the following, we will calculate Adomian polynomials for several forms of
nonlinearity.
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. Nonlinear Polynomials
IfF(u)=u?
The polynomials can be found as follows:
A = F(uo) :uozi
A =u, F'(u,) =2u,u,,

A, =u,F'(u,) + % u,’ F"(u,) = 2u,u, +u,”,

A, =u, F'(uy)+u,u, F"(ugy) + %uf F"(uy)=2Uy U, +2U, U,.

And so on. Proceeding as before, we findu®,u*,u®,..., etc.

1. Nonlinear Derivatives

Casel. Fu)=(u,)
The Adomian polynomials for this nonlinearity given by;
A = u0x2 '
A = 2uy U,

2
Az = 2u0x Uy, +Ug,
A, =2u,, u, +2u, U, .

And so on. In a similar, we get u’,u*,u’,..., etc.

Case2. F(u)=uu, :%Lx(uz)
The A, polynomials in this case given by;
A :F(uo) = Uy Uy,

1

A :ELX (Zuo ul): Ugy Uy +Uo Uy
5 L ugu, vy

A, :ELX 2U, U, +U," )=Ug U, +Ug U, Ug+Up U,
1

A, = ELX (2Uy Uy +2U, U, ) =Uy Uy +Uy U, +U, Uy +Uj Uy

And so on.
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I11.  Trigonometric Nonlinearity
IfF(u) =sinu
The Adomian polynomials for this form nonlinearity are given by;

A, =sinu,,
A, =u,cosu,,

1 .
A, =u, cosu, —Eulz sinu,

. 1
A, = u, cosu, —u, U, Sin u, —guf cosu, .

And so on. In a similar way, we find F (u) = cosu .

V. Hyperbolic Nonlinearity

IfF (u) = sinhu
The A, polynomials for this case are given by;
A, =sinhu,,

A =u,coshu,,

1 .
A, =u,coshu, +Eu12 sinhu,,

. 1
A, =u, coshu, +u, u,sinh u, +§u13 coshu, .

And so on. In a parallel manner, Adomian polynomials can be calculated for
F(u) = coshu .

V. Exponential Nonlinearity
IfF(u)=e"
The Adomian polynomials in this form of nonlinearity are given by;
A, =",
A =ue”,

1 U

A, =[u2+5u12je ,
1 3) 4,
A = u3+u1u2+§u1 ew,

And so on. Proceeding as a before, we find F (u) = e™
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VI. Logarithmic Nonlinearity
IfF(u)=1Inu,u>0
The A, polynomials for logarithmic nonlinearity are given by;

A, =Inuy,
u
A=
l'IO
Azzu_Z_iﬁ
2
U 2 u,

And so on. In a similar way, we find F (u) = In(l+u) ,~1<u<1 .

2.1.2: A new Algorithm for Calculating Adomian Polynomials
(The Alternative Algorithm for Calculating Adomian Polynomials)

It is well known about the main disadvantage of the calculating Adomian
polynomials A , that it is a difficult method to perform calculation so called
nonlinear terms. There is an alternative algorithm to reduce the demerits of formula
introduced before, which depends mainly on algebraic, trigonometric identities and on
Taylor expansions.

In the alternative algorithm which is a simple and reliable may be employed to

calculate Adomian Polynomials A, .

The new algorithm will be clarified by discussing the following suitable forms of
nonlinearity [13].

. Nonlinear Polynomials

IfF(u)=u?
We first set
u=>u,. (5)
n=0

Substituting (5) into F(u) = u? gives;
F(u)=(ug+Uy +U, +Us +u, +..)° . (6)

Expanding the expression at the right- hand side gives;
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F(U) =u,” +2Uq Uy +2Ug Uy +U,° +2Ug Uy +2U, Uy +... (7)
The expansion in (7) can be rearranged by grouping all terms with the sum of
subscripts of the components is the same. This means that we can rewrite (7) as;

F(u)=%i + 2U U, +2Ug U, +U,° + 2U Uy +2U, U, +... . (8)
A A Ay Ay
This gives Adomian polynomials for F (u) = u? by;
Ao = uoza
A = 2l'Io u,,

A, =2uyu,+u,’,
A, =2u,u;+2u, U, .
And so on. Proceeding as before, we getu®,u*,u’,...., etc.

1. Nonlinear Derivatives

Casel. If F(u)=u’
We first set;
ux = iunx ) (9)
n=0

Substituting (9) into F (u) = u,?giving;
F(u) = (Ug, +Uy, +U,, +Uy +U, +...] . (10)
Squaring the right — hand side gives;
F(u)=up,” +2Ug, Uy, +2Ug, Uy, +Uy, °+2Ug Uy +2U; Uy +... . (11)
Grouping the terms as discussed above, we find;

2 2
F(u)= up,” + 2Uy, Uy, + 2Ug, Uy +U, * + 2Ug Uy +2U, Uy +... . (12)

A A A Ay
Adomian polynomials are given by;
A = u0x2 ,
Al - 2u0x ul ’

Case2. F(u)=uu
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Note that this form of nonlinearity appears in advection problems and in nonlinear
Burgers equations. We first set;

u= iun , u = iunx : (13)
n=0

n=0
Substituting (13) into F(u) = uu, yields;
F(U) = (Ug+Uy +U, +Ug +U, +...)x(Ug, +Uy, +U, +Ug +U, +...). (14)

Multiplying the two factors gives;
F (U) = l'IOl'IOX +U0XU1 +U0U1X +u0xu2 +u1xu1 +u2xu0 +u0xu3 + l'leuZ +

15
+U,, Uy +Ug, Uy +Ug Uy +UgUy,, +U; U +U Uy +UoU, +... (19)
Proceeding with grouping the terms are obtain;
F (U) = UgUy, +Ug, Uy +Ugly, +Ug U, +Uy Uy +U, Uy +
\ﬁr_J
A A A,
+Ug, Uy + Uy, Uy +U, Uy +Ug Uy ... (16)
A

Consequently, the Adomian polynomials are given by;
Ay = U, Ug,
A = U, Uy +Ug Uy
A, = U, U, +UyU, Ug+uU U,
A; =Ug Uz +U; Uy +U, Uy +Ujz Ug.

Proceeding as before, we find F(u)=u®u, .

I11.  Trigonometric Nonlinearity
If F(u)=sinu
First, we should be separate A, = F(u,) from other terms. To achieve this goal, we first

substitute;
u=3u, ; (17)
n=0
Into F(u)=sinu to obtain;
F(u)=sinfu, +(u, +u, +u, +u, +...)] . (18)

To separate A, , recall the trigonometric identity;
sin(@+¢) = sinfcos¢ + cosBsing . (19)
This means that;
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F(u) = sinu, cos(u, +U, +U, +U, +...)+C0SU, Sin(u, +U, +U, +u, +...) . (20)
Separating  F(u,)=sinu, from other factors and using Taylor expansion for

cos(u, +U, +Uu, +U, +....)andsin(u, +u, +u, +u, +....)giVes;

F(u) = sin uo(l—%(ul+u2 +...) +%(u1+u2 +...)° —J +
' ' . (21)

+cosuo((u1+u2+...)—%(ul+u2+...)3+...J
So that;
. 1( > 1 3
F(u):smuo(l—g(u1 +2u1u2+...)+...J+cosuo((u1+u2+...)—§u1 +J (22)

The last expansion can be rearranged by grouping all terms with the same sum of
subscripts. This leads to;

. 1 5.
F(u) = sinu, +Uu, cosu, +U, COSU, ——u,” sinu, +
A A

; . (23)
+U, COSU, —U,U, sinu, —guls cosu, +...

Ay
This completes the calculation of the Adomian polynomials for nonlinear operator
F (u) = sinu, therefore we write;

A, =sinu,,
A, =u,cosu,,

1 .
A, =u, cosu, —Eulz sinu,
. 1 5
A, =u,cosu,—u, u,sinu, —§u1 cosu, .

And so on. In a similar way, we find F (u) = cosu .

IV. Hyperbolic Nonlinearity
If F(u)=sinhu
We first substitute

u=iun X (24)

Into F(u) = sinhu to obtain;
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F(u) = sinh[ug +(u, +u, +us+u, +..)] (25)
To calculate A, , recall the hyperbolic identity;
sinh(6+¢) = sinh@cosh¢ + coshPsinh ¢ . (26)
Accordingly, Eq. (26) becomes;
F(u) = sinh u, cosh(u, +U, +U, +U, +...)+coshu, sinh (u, +u, +U, +u, +...). (27)
Separating  F(u,)=sinhu, from other factors and using Taylor expansion for

cosh(u, +U, +U, +U, +....)andsinh (u, +u, +U, +Uu, +....)giVes;

F(u) = sinh uo(l+%(ul+u2 +..) +%(u1+u2 +...)° +J +

+ coshuo((ul+u2 +...)+%(ul+u2 +..) +J

= sinh uo(l+%(u12 +2u, U, +)+J + cosh uo((u1 +U, +...)+%ul3 +j
By grouping all terms with the same sum of subscripts we find

: 1 .
F(u) =sinhu, +u, coshu, +u, coshu, +=u,”sinh u, +
A A

Ay

. 1
+U, coshu, +u,u, sinh u, —guf coshu, +...

A
Consequently, the Adomian polynomials for F (u) = sinhu are given by;
A, =sinhu,,
A =u,coshu,,

1 .
A, = u,coshu, +—u,’sinhu,,
21

. 1
A, =u, coshu, +Uu, u, sinh u, +§u13 coshu,.

Similarly as before, we find F (u) = coshu .

V.  Exponential Nonlinearity
If F(u)=e"
Substituting

u=iun; (28)

n=0
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Into F(u)=e" gives;

F(U): e(u0+ul+u2+u3+u4+...) . (29)
Or equivalently;
F (U) _ euo Xe(ul+U2+U3+U4+...) . (30)
Keeping the term F(u,)=e" and using Taylor expansion for the other factors we
obtain;
F(u)=e" ><(l+(u1 +U, +U, +...)+%(u1 Uy Uy +..) +J . (31)
By grouping all terms with an identical sum of subscripts we find
F(u)=e" +ue” + (uz +lu12Je“° + (us +U,U, +1u13Je“° +.. (32
e 2! 3
% A
Ay Ay

It then follows that;

A =",

A =ue”,

A = [u +1u je“
2!

A = [ +U U, +— uj

And so on. Proceeding as a before, we find F(u) =e™ .

VI. Logarithmic Nonlinearity
If F(u)=Inu,u>0
Substituting

=S, (33)
n=0
Into F(u)=Inu gives;
F(u)=In(uy+u, +u, +u, +u, +...) . (34)
Eqg. (34) can be written as;
F(u)= In[u0 (l+£+u—2+u—3+...n . (35)
uO uO uO

Using the identity In(a 8) = Ina + In 8, Eq. (35) becomes;
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F(u)=In(u,)+ In[l+ﬁ+u—2+u—3+..} . (36)
uO uO uO

Separating F(u,)=In(u,) and using Taylor expansion of the remaining term, we

obtain;
u 1 u i 1 ’
(ﬁ+u—2+—3+..j—5(u—l+u—2+—3+..} +§(£+u_2+u_3+mj
u u u u u u u u u
F(U):In(uo)-i- 0 0 0 0 ) 0 0 0 0 0 (37)
u
- l(ﬂ+u_2+_3+m} +...
4\ u, U, U,
Proceeding as before, Eq. (37) can be rewritten as;
2 3
F(u)=In(u,) T R _lu_12+u_3_%+lu_13+m . (38)
—— U, U, 2u,” Uy u, 3 u,
——
A A, A
Based on this, the Adomian polynomials are given by;
A = In(uo)’
_ Y
l'IO
N
U, 2 uo2
a2 lUs WU 1u°
2

And so on. In a like manner, we obtain F (u) = In(L+u) ,~1<u<1 .
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2.2: Adomian Decomposition Method and Sumudu Transform
Method for Solving Nonlinear Partial Differential Equations

In this section, we will concentrate our study on the nonlinear PDEs. There
are many nonlinear partial differential equations which are quite useful and applicable
in engineering and physics.

The nonlinear phenomena that appear in the many scientific fields' such as solid state
physics, plasma physics, fluid mechanics and quantum field theory can be modeled by
nonlinear differential equations. The significance of obtaining exact or approximate
solutions of nonlinear partial differential equations in physics and mathematics is yet
an important problem that needs new methods to develop new techniques for
obtaining analytical solutions. Several powerful mathematical methods are used for
this purpose.

In this section, we propose a new method, namely Adomian Decomposition
Sumudu Transform Method (ADSTM) for solving nonlinear equations. This method
IS a combination of Sumudu transform and decomposition method which was
introduced by D. Kumar, J. Singh and S. Rathore [26].

(ADSTM) provides the solution for nonlinear equations in the form of convergent
series. This forms the motivation for us to apply (ADSTM) for solving nonlinear
equations in understanding different physical phenomena.

To illustrate the basic idea of this method, we consider a general non-
homogeneous partial differential equation with the initial conditions of the form:
DU(x,t) + RU(x,t) + NU (x,t) = g(x,t)

U (x,0) = h(x) ,U, (x,0) = (x). ; (39)

2

: : : : 0 -
where D is the second order linear differential operatorDza?,Rls linear

differential operator of less order than D , N represent the general nonlinear operator

and ¢ (x ,t) is the source term.
Taking the Sumudu transform of both sides of Eq. (39), we get:
S[DU (x,t)]+S[RU(x,t)]+S[N (x,t)] = S[g (x,t)] ; (40)
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Using the differentiation property of the Sumudu transform and given initial
conditions, we have:
S[U (x,t)] = u?S[g(x,t)] +h(x) + u f(x) —u?S[RU(x,t) + NU (x,t)] .  (41)
If we apply the inverse operator S™'to both sides of equation (41), we obtain:
U(x,t)=G(x,t) - S [u?S[RU (x,t) + NU (x,t)]] . (42)
Where G(X ,t) represents the term arising from the source term and the prescribed
initial conditions. Now, apply the Adomian decomposition method:

U(x,t)= iu C(x,1) , (43)
The nonlinear term can be decomposed as:
NU(x,t):iAn(u) ; (44)

For some Adomian polynomials A, U) thatare given by:

AU, U, U, )= 2N S, ,n=0,12,..
nldA" = o

Substituting Eq. (43) and Eq. (44) in Eq. (42), we get:
iu (x,t) =G(x,t)- s {UZS{R?‘U n(x,t)+iAn(u)ﬂ . (45)
n=0 n=0 n=0
Accordingly, the formal recursive relation is defined by:
U, (x,t) = G(x,t),
U, (x,t) = —s*[u?s[rRU, + A ]|. k=o0.
The Adomian decomposition Sumudu transform method will be illustrated by
discussing the following examples.

(46)

Example (2.2.1): Consider the nonlinear ordinary differential equation [24]:

y' -y*=1,y(0)=0 ; (47)
Taking the Sumudu transform to both sides (47) and using the initial condition gives:
s[y(x)]=u+us|y?| (48)
Applying S~ to both sides of (48) gives:
y(x)=x+s*us|y?] . (49)
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The decomposition method suggests that the solution y(X) can be expressed by the
decomposition series:

y(X) = Zyn : (50)
n=0

The components of y(x) can be elegantly determined by using the recursive relation:
yo(x) =X,

YeaX) =S us[A]l, k=0. (51)

Note that the Adomian polynomials A, for the nonlinear term y® were determined
using Eq. (8), and we found:

A = y02’

A =2Y, Y,

A=2Yo Y, + Vs

A; =2Y,Y; +2Y1Y,.

And so on. Using these polynomials into (51), the first few components can be
determined recursively by:

Yo (X) =X,
_ x>
V(%)= S us(A)] ==
() =5 us(a)] = 2 ¢, (52)
. 17
Va(x) =S us(A, )] = 25 X
Consequently, the solution in a series form is given by;
1 2 17
y(x):x+§ X3+EX5+EX7+”' : (53)
And in a closed form of:
y(x)=tanx . (54)
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Example (2.2.2): Consider the nonlinear ordinary differential equation [24]:

y'=1-x+y*, y(0)=0 ;
In a similar way as above, we have:

Sui-x-berstus(Eal
n=0
The modified recursive relation is defined by:
Yo = X,
1 .
Y1 = —§X3 + S [us(A)]

yk+2(X) = S_l[u S(AK )], k>0.
Consequently, the first few components are given by:

Yo =X,
v =5+ 5us(A )]0,
yk+2(X) = 0’ kZO
The exact solution is given by:
y(x)=x

Example (2.2.3): Consider the nonlinear ordinary differential equation [24]:
y"+(y') + y? =1-sinx, y(0)=0, y'(0)=1 .

In a similar way above, we have:

2

ni)yn(x):%+sinx—8{uzs[iAnﬂ .

n=0

This leads to the recursive relation;
X2
Yo(X)=sinx + >

Veu(x)==s[u?s(A )], k>0.
This relation leads to the identification:
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2
Yo (x) = sin x +X7,

y,(x)=— s-{u2 s{(yo'jz ; yozﬂ - §+

The zeroth component contains the trigonometric function sin X , therefore it is

recommended that the noise term phenomenon be used here. By canceling the noise
2 2

X
terms7 and — o between yo(X) and Y, (X) , the exact solution given by:

(63)

y(x)=sinx . (64)

Example (2.2.4): Consider the following nonlinear partial differential equation [24]:
U,+UU, =0 ; (65)
With the initial condition:
U(x,0)=x . (66)
Taking the Sumudu transform of both sides of Eq. (65) and using the initial condition,
we have:

S[U(x,t)]=x-usfuu,] . (67)
Applying S~ to both sides of Eq. (67) implies that:
U(x,t)=x-S*[us[uu,]] : (68)

Following the technique, if we assume an infinite series of the form (68), we obtain:

un(x,t)=x—8{u8{:§;An(u)H. (69

Where A, (U ) are Adomian polynomials that represent the nonlinear terms.
The first few components of the Adomian polynomials are given by;

AO(U):UoUoX 1
Al(U):UoU1X+U1UoX’ (70)

[Ms

n=0

This gives the recursive relation:
U,(x,t)

Ua(xt)= - 87 us[A]], k0.
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The first few components are given by:

U,(x,t)=x,

U,(x,t)= —s™*[us[A]]=- xt,

U,(x,t)= - S [us[A]]= xt?, (72)
U (x,t)= =S [us[A,]]=—xt®

And so on. The solution in a series form is given by:

U(x,t) = x(-t+t?—t3+..) ; (73)
And in a closed form of:
X
Uix,t)=——
(X ) 1+t ° (74)

Example (2.2.5): Consider the following nonlinear partial differential equation [29,
11]:
U, +UU, = x+xt?; (75)
With the initial condition:
U(x,0)=0 . (76)
Proceeding as in Example (2.2.4), Eq. (75) becomes:
iun(x,t): Xt+ X?P - s{us[iAn(u)H N
n=0 n=0

The modified decomposition method admits the of a modified recursive relation given
by:
U,(x,t) = xt,

Ul(x,t)=%t3—3‘l[us[Ao]] (78)

Ua(xt)=-s7[us[A]] k=1
Consequently, we obtain:
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U,(x,t) = xt,

3
Ul(x,t):%—S‘l[uS[thH:O 79)
U,..(x,t)=0, k=1
In few of Eq. (79), the exact solution is given by:
U(x,t)= xt . (80)

Example (2.2.6): Consider the nonlinear partial differential equation [11]:
U, +U2+U -U2=te* ; (81)
With the initial condition
U(x,0)=0,U,(x,0)=e* . (82)
By taking Sumudu transform for (81) and using (82) we obtain:
S[U(x,t)]=u’e™ +ue™-u’sS [UXZ ~U?+ UJ . (83)
Applying S to both sides of (83) we obtain;

U(x,t)=te™* +%t3e‘x—8‘1 [uZS[UX2 ~U? +U]], (84)

Substituting;

U(x,t)=>U,(x.t); (85)
n=0
And the nonlinear terms of;
szziAn Uzzisn (86)
n=0 n=0

Into (84) gives;
iun(x,t):te’X + %tSeX - 81|:u2 S (iAn + ZUn(x,t)—i B, H (87)

This gives the modified recursive relation;
U,(x,t)=te™,

U, ()= ¢t = L7 (A +U, - By) (88)

U, (x,t)== L (A +U, - B,), kx1.
The first few of the components are given by;
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U (x,t)=te™,
l 3 X

Et e — L (A +U, -B,)=0, (89)

U,.(x,t)=0, k>1,

The solution in a closed form is given by;
U(x,t)=te™ . (90)

U,(x,t)

Example (2.2.7): Consider the following nonlinear partial differential equation [24]:
U,+Uu, =-t+U (91)
With the initial conditions
U(x,0)=sinx ,U,(x,0)=1. (92)
By applying the aforesaid method subject to the initial condition, we have:
S[U(x,t)]=u+sinx—u®+ u?S|U + UU,,|. (@3)

The inverse of Sumudu transform implies that:

t3
U(x,t)=t+sinx— . stu’slu+u,u,,] . (94)

Now, applying the same procedure as in the previous Example (2.2.6), we arrive in

recursive relation given below:
: t?
U, (x,t)=t+sinx— 5

(95)
U, (x.t)= s?uzs[u, + A]]. k=o0.
This relation leads to the identification:
3
U, (x,t) = t+sinx— % ,
3 44 5 (96)
Ul(x,t):t— +Lsinx- L,
6 4l 51

The zeroth component contains the trigonometric function sin X , therefore it is

recommended that the noise term phenomenon be used here. By canceling the noise
3 3

X
terms? and — ?betweenUo(X) andUl(X) , the exact solution given by:

U(x,t)=t+sinx . (97)
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Example (2.2.8): Consider the following nonlinear partial differential equation [24]:

U, +U?-U,2=0 : (98)
With the initial conditions

U(x,0)=0,U,(x,0)=¢* (99)
By taking Sumudu transform for (98) and using (99) we obtain:

S[U(x,t)]:ueXnLUZS[UX2 —U2J . (100)

By applying the inverse Sumudu transform of (100), we get:

U(x.t)=te*+ s |u?slu 2-u?] ; (101)
This assumes a series solution of the function U (x ,t) is given by:

U(xt)= ZOUn(X,t); (102)

Using (102) into (101), we get:
iUn(X,t): teX+ S{UZS{iAn(U)— iBn(U)}} . (103)

Where A, (U )and B, (U )are Adomian polynomials that represents nonlinear terms.
The few components of the Adomian polynomials are given as follows:

AO(U):UOXZ ' A1(U): 2U0XU1X '

B,(U)=U, , BU)=2U,U, , (104
And so on. From the above equations we obtain:
U,(x,t)=te*,
U,,(x.t)= s*luzs[a - B]].kz0. (199
The first few terms of U (X ; t) follows immediately upon setting:
U,(x,t)= s*uzs[A - B,]]=s[u?s|u,? - u%|]=0
U,,(x,t)=0,k>1. (106)
Therefore the solution obtained by ADSTM is given as follows:
U(x,t)= te*. (107)
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2.3: Adomian Decomposition Method and Sumudu Transform Method for
Solving Systems of Nonlinear Partial Differential Equations

In this section, the system of nonlinear PDEs will be examined by using
(ADSTM). Systems of nonlinear PDEs arise in many scientific models such as the
propagation of shallow water waves and the Brusselator model of chemical reaction —
diffusion model. To achieve our goal in handling systems of nonlinear PDEs, we write
a system as:

U (x,t)+ V,(x,t) + N;U V) = g,,
V,(x,t) + U (x,0)+ N,(UV) = gy, (108)

With initial data:
U(x,0) = f.(x), V(x,0)= f,(x) (109)
Where N, and N, are nonlinear terms, and d,, g, are source terms. Applying the

Sumudu transforms to the system (108) and using (109) yields:
S[U(x.t)]= f,(x)+us|g, ]-uslv, (x,t)]-us[N, (U V)],

sfv(x,] = f,()+us[g,J-uspu, (x,l-us[n, L V) O
Using inverse Sumudu transform of (110) gives:
U(x,t)= f,(x)+57[us[g,]]-s*uslv,(x.t)]]-s *us[N,(U.V)]], a

V(x,t)= f,(x)+S™us[g, |- *[us[u, (x,t)]]-s*us[N, U, V)]
The linear unknown function U (x,t)andV (x,t) can be decomposed by infinite
series of components:

U(x,t)= goun(x,t) | V(x,t):évn(x,t) : (112)

However, the nonlinear terms N; and N,should be represented by Adomian

polynomials A, (U )and B, (U ) as follows:
NUV)=A L NUV)=DB, (113)

Substituting (112) and (113) into (111) gives:
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iVn (x.t)= (114)

fz(x)+S1[uS[gz]]—S1[uS[UX(x,t)]]—S1{u8{:208nﬂ.

The recursive relations can be constructed from (114) given by:
Uo(x.t)= f,(x) + s*{us[g,]].
Upalxt)= -5 s ] ]-s7us[a] k=0, ()
And
Vo(x,t)= f,(x)+ 57[us]g, ]|,
Viua(x,t)= =s*us[u, ] ]-s7[us[B]] k=0.

To have a clear overview, forthwith are several examples to demonstrate the
efficiency of the method.

(116)

Example (2.3.9): Consider the following nonlinear system of partial differential
equations [30]:

U,(x,t)+ VU, +U =1,

V,(x,t) —UV, -V =1,
With the initial conditions:

U(x,0) = e*, V(x,0)=e™* . (118)

Taking the Sumudu transform of the system (117) and using initial conditions (118)
we obtain:

(117)

s[U(x,t)]=e* + u-us[u]-uspvu,],

SV(x,t)]=e™*+u+ uS|V]+us[uv,]. (119)
Using inverse Sumudu transform from (119) gives:

U(x,t)=e* + t =S [us[u]]-s*usjvu.]]

V(x,t)=e™ + t+ SHusV]]+s*us[uv, ] (120)
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The modified decomposition method defines the recursive relations in the form:

U,(x,t) =e*
U,(x,t) =t=s7[usu, + A, (121)
U,,(x,t)==S"us[u, + A]], k=0.
And
Vy(x,t) =e™
Vi(x,t) =t+Suslv, +B]], (122)

V,..(x,t)= S*uslv, +B.]], k>o0.
The Adomian polynomials for the nonlinear term VU , are given by:
A =VoU, , A=VU, +V,U, ,
A, =V,U, +V,U, +V, U,
And so on. And for the nonlinear term UV, by:
By =U,V,, , B =U)V, +U.V, ,
B, =U,V, +U,V, +U,V,

And so on. Using the derived Adomian polynomials into (121) and (122), we obtain
the following pairs of components:

(Uo ’Vo) = (ex ’e_x)’
U,.Vv,)= (— te” ,te‘x),

t ot

(UZ’VZ)ZLEe ,Ee ), (123)
£t

(U3,V3)=[—§e ,ge \J

And so on. Accordingly, the solution in a series form is given by:
t?2 3 t2 3
u,v)= {ex (l—t+———+...J , ex(l+t+—+—+...D ; (124)
21 3 21 3

And in a closed form of:
U,V)=(e"t e*) . (125)
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Example (2.3.10): Consider the following nonlinear coupled of partial differential
equations [24]:

U, -V,W, =1,
Vi =W U, =5, (126)
W, - UV, =5,

With the initial conditions:
U(x,y,0) = x+2y , V(x,y,0) = x-2y ,W(x,y,0) = —x+2y . (127)
Following the analysis presented above, we obtain:
U(x,y,t)=x+ 2y +1t + S‘l[uSB/XWy]],
V(X,y,t)=x-2y + 5t+S‘l[uSMXUyH, (128)
W(x,yt)=—x+2y +5t + S‘l[uS[UXVy]].

Substituting the decomposition representations for linear and nonlinear terms into
(128) yields:

goun(x,y,t)zm 2y +t +s{us{:zoAnﬂ,

c — v_ -1
;vn(x,y,t)_x 2y +5t+S uS_nOBn ' a29)

NgE

iwn(x,y,t): —X+2y +5t + S usS iCn
n=0

_:0

>

For brevity, we list the first three Adomian polynomials for A, , B, and C, as follows:
ForV,W, , we find:
Po=VoWo o A=V, Wy +V, W,
A, =V, Wy +V, W, +V, W,
ForW,U, , we find:
B, =W, U, , B, =W, U, +W, U, ,
B, =W, U, +W, U, +W, U,

ForU .V, , we find:
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C, :UOXVOV , C, :levoy +U0XV1y :
C,=U, Vo +U V, +U, V,
Substituting these polynomials into the appropriate recursive relations we find:
U, .V, W, )= (x+2y+t,x—2y+5t,—x+2Yy+5t),
U, v, W)= (2t,-2t,— 2t),
(Uz WV, ’Wz) = (0’0’0)’ (130)
U, .V, .W,)=(0,0,0),k>3.

The exact solution of the system of nonlinear PDE is given by:
U,V W)= (x+2y+3t, x—2y+3t,—x+2y+3t) .  (131)
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CHAPTER (3)
Linear and Nonlinear Physical Models

In this chapter, we will concentrate our study on the linear and nonlinear
particular applications that appear in applied science. The wide use of these physical
significant problems is the most important reason why they have drawn
mathematician's attention in recent years.

Nonlinear partial differential equations have witnessed remarkable
improvement. Nonlinear problems appear in the many scientific fields' such as
gravitation, chemical reaction, fluid dynamics, dispersion, nonlinear optics, plasma
physics, acoustics, and others. Several approaches have been used such as the
Adomian decomposition method, the variational iteration method, and the
characteristics method and perturbation techniques to examine these problems.

(ADSTM) gives the solution of nonlinear equations in the form of convergent
series. The main advantage of this method is its potentiality of combining two
powerful methods for deriving exact and approximate solution of nonlinear equations.
This forms the motivation for us to apply (ADSTM) for solving nonlinear equations in
understanding different physical phenomena.

The following section offers the effectiveness of the Adomian decomposition Sumudu
transform method (ADSTM) in solving linear and nonlinear physical models.

3.1: The Nonlinear Advection Problem
The nonlinear partial differential equation of the advection problem is of the
form;
U, +UU, = f(x,t) ; (1)
With the initial condition
U (x,0)=g(x) . (2)
In this section, we approach the advection problem by utilizing the Adomian
decomposition Sumudu transform method to find a rapidly convergent power series
solution.
Operating Sumudu transform from Eqg. (1) and using initial condition yields;
S[u(x,t)] = g(x) + us[f(x,t)] - usjuu | (3)
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Taking the inverse Sumudu transform of (3) gives;

U(x,t)=g(x) +S7[us[f(x,t)]] + sus[uu, ] . 4)
Substituting the linear termU(x,t), by the series;
Ux,t)= U, (x,) ; (5)
1=0
And the nonlinear term UU, the a series of the Adomian polynomials;
ungﬁ; (6)

Into Eq. (4), gives;
iun(x,t) = g(x)+ S us[f(x,t)]] + 81|:u S{iAnﬂ )
Following Adomian approach, we obtain the recursive relation;
Uo(x,t)=g(x) + S [us[f (x,1)]]
Uk+1(X’t) =~ Sil[u S[Ak ]],kZO.
The following examples will be used to illustrate the algorithm discussed above.

(8)

Example (3.1.1): Consider the homogeneous nonlinear partial differential equation
[31]:
U,+UU, =0 ; 9)
With the initial condition:
U(x,0)=x . (10)
Taking the Sumudu transform of both sides of Eq. (9), and using the initial condition,
we have:
S[U(x,t)]=x-uS[uu,] (11)
Applying S~ to both sides of Eq. (11); implies that:
U(x,t)=x-S*[us[uu,]] : (12)
Following the technique, if we assume an infinite series of the form (12); we obtain:

un<x,t>=x—s{us{:zo/«n<u>ﬂ. )

Where A, (U ) are the Adomian polynomials that represent the nonlinear term.
The first few the components of the Adomian polynomials are given by;

[Ms

n=0
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A =UU 0,

A =UU, +UU,,

A, =UU, +UU, +UU,
This gives the recursive relation:

U,(x,t)=x

Upa(xt)= =87 [us[A]], k=0.

The first few the components are glven by:

U, (x, t):x,
U,(x.t)
U,(x.t)
U, (x.t)

And so on. The solution in a series form is given by:
U(x,t) = xI-t+t2—t3+..) ;

s |us[A]]=-xt,
s [us[A]]= xt,
S*us[A,]]=—xt3.

And in a closed form of:

X
U(X,t):m .

(14)

(15)

(16)

(17)

(18)

Example (3.1.2): Consider the following inhomogeneous advection problem [32]:

U, +UU, =2t + x+t° + xt?;
With the initial condition:
U(x,0)=0.

Following discussion presented above, we obtain the recursive relation;

4
U,(x,t) = t2+xt+tz+%t ,

U,..(x,t)= = S7*[us[A, ]} k>0.

This gives;
t*  xt®
U, (x,t t? + Xt + —+ —,
J(x) = e 2
4 3
Ul(x,t)z—t——ﬂ—ixtf’—lt‘i—i
4 3 15 72 63
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It is easily observed that two noise term appears in the components U, (x,t)andU,(x,t)
. By canceling these terms fromuU(x,t), the remaining non-canceled term of U (x,t)

may provide the exact solution.
The exact solution is given by;
U(x,t) =t + xt . (23)

3.2: The Goursat Problem

The Goursat partial differential equation arises in a variety of physical
phenomenon and applied sciences.
The Goursat problem arises in partial differential equation with mixed derivatives, and
its standard form given by;
u,, = f(x,y,uu,,u,),
u(x,0)=g(x), u(0,t)=h(y), (24)
9(0)=h(0)=u(0,0), 0<x<a, 0<y<h.
In this section, we outline a reliable strategy of (ADSTM) of solving the Goursat
problem. To mention the basic idea of this method, we consider a general nonlinear no
homogeneous Goursat problem of the form;
DU (x,t)+RU(x,t)+NU(x,t) = g(x,t)
U(x,0)=h(x), U(0,t)=f(t).
Where D is the second order linear mixed differential operator, N represent the general
nonlinear operator, and g(x,t)the source term.
Taking the Sumudu transform of both sides of Eq. (25) with respect to t and using
initial condition, we get;

(25)

S[U, (x,t)]=h(x)+us[g(x,t)]-uS[RU(x,t) + NU(x,t)]  (26)
Now, applying the inverse Sumudu transform of both sides of (26) gives;
U, (x,t)=h(x)+G(x,t)- S [uS[RU(x,t) + NU(x,t)]] (27)
Again, taking the Sumudu transform of both sides of (27) with respect to x, we get;
s[U(x,t)]= f(t)+us[h(x)]+us[G(x,t)]-us[s*[us[RU(x,t) + NU(x,t)]] (28)
Now, again applying the inverse Sumudu transform of both sides of (28) gives;
U(x,t)= H(x,t)- S [us[s*[us[RU(x,t) + NU (x,t)]]] (29)
Where H(x,t)represent the term arising from the source term and the prescribed initial
conditions. We represent solution as an infinite series;
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U(x,t):iun(x,t) , (30)
n=0
And the nonlinear term can be decomposed as;
NU (x,t) = iAn ; (32)
n=0

Then Eqg. (29) becomes;
iun(x,t): H(x,t)-S™ {u S{ st {u Sl:F{iU”(X’t)j JriAn :Hﬂ (32)

The recursive relation is given by;
Uo(x,t)=H(x1),

33
Upalit)=— s> us[s *luslru,) + Al k0. &
The following examples will be used to illustrate the algorithm discussed above.
Example (3.2.3): Consider the following homogeneous Goursat problem [33]:
U.,=U,
(34)

U(x,0)=e* ,U(0,t)=e",U(0,0)=1.
Following discussion presented above, we obtain the recursive relation is given by;
U,(x,t)=e*-1+e¢",

Uyuit)= 57 s[5 fus[,) 1], k=0 %)
The first few of the components are;
U,(x,t)=e*~1+e,
U,(x,t)= —x+xe' —xt—t+te*, (36)
2 2 2 2 2 2 2 2
Uz(x,t):—Et —%Jr%et—%tz—!— xtz—!—%+t2—!ex.
And so on. Therefore the solution in a closed form is;
U(x,t)=e*" . (37)
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3.3:  The Klein- Gordon Equation

The linear and nonlinear Klein-Gordon equations are considered one of the
most important partial differential equations in quantum field theory. Those equations
arise in the study of relativistic physics and are used to describe dispersive wave
phenomena in general. In addition, it also appears in nonlinear optics and plasma
physics.

3.3.1: The Linear Klein- Gordon Equation
The linear Klein-Gordon equation is very important in quantum mechanics. It
is derived from the relativistic energy formula, and it is standard form given by;
U,(x,t) -U,_ (x,t)+au(x,t) = h(x,t) ; (38)
Subject to the initial conditions:
U(x,0)=f(x), U/(x,t)=g(x) . (39)
Where a isa constant, h(x,t) isa source term. Itis interesting to note that if a=0
Eqg. (38) becomes inhomogeneous wave equation.

In this section, the (ADSTM) will be applied to handle the linear Klein-Gordon
equations. To achieve this goal, we apply the Sumudu transform of both sides of Eqg.
(38) and using the initial condition, we obtain;

S[U(x,t)]= f(x)+ug(x)+u?h(x,t)+u?sfu  (x,t)]-u?s[au(x,t)]  (40)
Now, applying inverse Sumudu transform and using the decomposition series for the
linear term,U(x,t) and proceeding as before we obtain the a recursive relation;

U,(x,t)= f(x)+tg(x)+ S’l[u2 S[h(x,t)]]

Ueabe)=sbeslu,), J- s b sl keo. P
The following examples will be used to illustrate the algorithm discussed above.
Example (3.3.4): Consider the following linear Klein — Gordon equation [34]:
u,-u,+U=0; (42)
Subject to the initial conditions
U(x,0)=0, U,(x,t)=x . (43)
Following the discussion presented above, we find a recursive relation;
U,(x,t) = xt
(44)

Upa(,8) = 8727 s[U,),. ] - s s[U, )] ko,
That in turn gives;
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U,(x,t) = xt

U,(x,) = 52z s[U,), - s o s[u, )= - X

3
T Al t° (45)
U (c0) = 5[ s[0), - s 7 s[5
-1f, 2 2l t’
US(X,t)ZS [u S[(UZ)XX]]_S [u S[(Uz)]]:_XT'
And so on. In view of (45) the series solution is given by;
2 t° t’ )
U(X,t)=X[t—§+§—ﬁ+...j y (46)
And the exact solution is given by;
U(x,t) = xsint . (47)

Example (3.3.5): Consider the following linear Klein — Gordon equation [34]:

U,-U,+U=2sinx ; (48)
Subject to the initial conditions:
U(x,0)=sinx , U (x,t)=1. (49)

Proceeding as in Example (3.3.4), we set the relation;
U,(x,t) = sinx +t + t?sinx,

50
U= sk sfu), - s e s[w ] keo. )
That in turn gives;
U,(x,t) = sinx +t +t?sin x,
3 4
_— 2 1 — e 1
U,(x,t) = —t?sin x R
6 5 4 (5]_)
Uz(x,t):t—sinx+t—+t—sinx ,
90 of 4l
6 7 8
Us(x,t)z—t—sinx L2 Gy
90 7! 7!
Therefore the solution in series form is given by;
: t* ot ot
U(x,t)=smx+[t—§+a—ﬁ+..}, (52)
And the exact solution is given by;
U(x,t) =sinx + xsint . (53)
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3.3.2: The Nonlinear Klein- Gordon Equation

The nonlinear Klein-Gordon equation comes from quantum field theory and
describes the nonlinear wave interaction and it is standard form given by;

U,(x,t) =U_ (x,t) +au(x,t) + FU(x,t)) = h(x,t) ; (54)
Subject to the initial conditions
U(x,0)=f(x), U (x.t)=g(x) . (55)

Where a is a constant and h(x,t) is a source term and F(U(x,t)) is a nonlinear
function ofU (x,t) .

In this section, the (ADSTM) will be applied to handle the nonlinear Klein-
Gordon equations. To achieve this goal, we apply the Sumudu transform of both sides
of Eq. (54) and using the initial condition, we obtain;

S[U(x,t)]= f(x)+ug(x)+u?h(x,t)+u?s[u . (x,t)]- u?s[au(x,t) + FU(x,t))] (56)
Now, applying inverse Sumudu transform and using the decomposition series for the
linear term,U(x,t) , the infinite series of the Adomian polynomials for the nonlinear
term, F(U(x,t)) , and proceeding as before we obtain the a recursive relation;

Uo(x,t) = f(x)+tg(x)+ S *[u? S[h(x,b)]]

57
U, (x.t)=su?s[u,), ]- s u?sfa@u,)+ A, k=o0. ®7)
The following examples will be used to illustrate the algorithm discussed above.
Example (3.3.6): Consider the following nonlinear Klein — Gordon equation [24]:
U,-U, +U?=xt>; (58)
Subject to the initial conditions:
U(x,0)=0, U,(x,t)=x . (59)
Following the discussion presented above, we find a recursive relation;
l 244
t)= xt+-— x*t*,
U,(x,t) = xt + TR (60)

U, (xt)=su?s[u,),]- s*u”s[A]]. k=0.
So the Adomian polynomials A are given as follows;
A, = U7,
A =2U,U,,
A, =2U,U, +U,’.
And so on. Using modified recursive relation Eq. (60) can be rewritten in the scheme;
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U,(x,t) = xt,
U(x) = — xtt +s 1o sfiug), - s esia] (e

Uk+1(x’t)= Sil[u2 S[(Uk)xx]]_ Sil[u2 S[Ak]]’ kZl
This lead to;
U,(x,t) = xt,
U.(ct) = et 45 fusfu,), ] - s sfa] <o, (62)
U,,(x,t)=0, k=1

Therefore, the exact solution is given by;
U(x,t) = xt . (63)

Example (3.3.7): Consider the following nonlinear Klein — Gordon equation [24]:
U,-U,+U?=2x"-2t* + x*t*; (64)
Subject to the initial conditions:
U(x,0)=0, U,(x,t)=0 . (65)
Proceeding as in Example (3.3.6), we set the relation;
U,(x,t)= x*t?,
U,(x,t)= - %t“ + %x“t6 + s us|u,), J- s *u?s[a] =0, (66)
U, .(x,t)= 0, k>1.

This formally gives the exact solution;
U(x,t)= x*t>. (67)

3.3.3: The Sine - Gordon Equation

The sine — Gordon equation appeared first in differential geometry. This
equation becomes the focus of a lot of research work because it appears in many
physical phenomena such as the propagation of magnetic flux and the stability of fluid
motion.

The standard form of the sine — Gordon equation is given by;
U,(x,t) - c?U_(x,t) + asinU =0 ; (68)
Subject to the initial conditions
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U(x,0)= f(x) , U (x,t)=g(x) . (69)
Where ¢ and « are constants.

In this section, the sine — Gordon equation will be handled by using (ADSTM).
Taking the Sumudu transforms of both sides of (68) and using the initial conditions
we have;

S[u(x,t)]= f(x)+ug(x)+u?c?s[U ,(x,t)]- u®S[asinU] (70)
Applying inverse Sumudu transform to (70) gives;
U(x,t)= f(x)+tg(x)+S*|uzc? s (x,t)]- S *[u? S[asinU]| (71)
Using the decomposition series for the linear termU(x,t) , the infinite series of the
Adomian polynomials for the nonlinear termsinU, and proceeding as before we
obtain the recursive relation;
Uo(x,t) = f(x) +tg(x),
) ] (72)
U, (x.)=su?c? s[u,), |- s *ues[A]]. k=o0.
This will lead to the determination of the solution in a series form. This can be
illustrated as follows.

Example (3.3.8): Consider the following Sine-Gordon equation with the given initial
conditions [24]:

U,(x,t) = U_(x,t)= sinU ; (73)
Subject to the initial conditions;
U(X,O):% LU (x,t)=0 . (74)
Using the recursive scheme (72) yields;
T
U,(x,t)=—,
o(6.1) 2 (75)
U,.,(x.t)=su’s[u,), ]|+ s *u>s[ A ], k=o0.
The first few the Adomian polynomials for sinU are given as;
A, =sinU,,
A = U, cosU,,
A, = U,cosU, —%Ulz sinU,, (76)

A, = U,cosU, —U,U,sinU, — %Uls cosU, .

Combining (75) and (76) leads to;
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v % 21
U,(x,t)=s"u*s[w,), ]+ s*us[a]l=0 . (77)
U,(x,t)= S’l[uzs (UZ)XX]]+S’1[UZS[A2]]=— 2%0 6
And so on. The series solution is;
U(x,t)=%+t2—!—2%0t6+... . (78)

3.4: The Burgers Equation

The Burgers equation is considered one of the fundamental model equations in
fluid mechanics. This equation demonstrates the coupling between diffusion and
convection processes.

The equation appears in various areas of applied mathematics and physics, such
as modeling of gas dynamic and is used to describe the structure of shock waves. In
addition, it also appears in traffic flow and acoustic transmission.

The standard form of Burgers equation is given by;

U,(x,t) +UU, =V U_(x,t) ,t>0 ; (79)
Subject to the initial conditions:
U(x,0)= f(x). (80)
Where V is a constant that defines the kinematic viscosity.

In this section, we apply the (ADSTM) to solve nonlinear Burgers equation.
Taking the Sumudu transforms of both sides of (79) and using the initial conditions
we have;

s[u(x,t)]= f(x)+vus[uU,(x,t)] —u S[uu,] . (81)
Applying the inverse operator S of (81) leads to;
U(x,t)= f(x)+S*[avus[u, (x,t)]]- s ™*[us[uu,]] (82)

Using the decomposition series for the linear term U(x,t) and the series of the
Adomian polynomials for the nonlinear term UU  gives;
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s o] o]

Identifying the zeroth componentU,(x,t) by the terms that arise from the initial
condition, and following the decomposition method, we obtain the recursive relation;
U,(x,t) = f(x),
Ui, ) =87V us[u,),]I- s *us[A ], k=o0.
The Adomian polynomials for the nonlinear term UU, have been derived in the form;
Ay =U,U,,
A =U,U, +U, U,

(84)

(85)
A=U,U,+U U +U,U,,
A=UU;+ U U,+U,U, +U,U,.
In view of (84) and (85), the first few the components can be identified by;
U,(x,t) = f(x),
U,(x,t)=S*Vus|U — S7*us :
000 = 57psfu,), ] - s us[ A -

U, (x,t)= s us[u,), ]l - s*us[A],
Us(x,t) =87 usf,),, I - s[us[ A, ]].

The following examples will be used to illustrate the discussion carried out above by
using Sumudu decomposition method.

Example (3.4.9): Consider the following one — dimensional Burgers equation [24]:

Ut = Uxx _UUX ; (87)
Subject to the initial conditions:
U(x,0) = x. (88)
Following the discussion presented above, we find a recursive relation;
U,(x,t) = x
. . (89)
Uk+l(x’t) = S [us[(Uk)xx]] - S [US[AK]] ' kZO
Using the Adomian polynomials we obtain;
U,(x,t) = x
U, (x.t) = S*l[auS[ ol s us[A ] =—xt |
4 (90)
U, (x.t)=s7[aus|U,), ]l - s*us[ A ]| = xt*
US( ) =S~ [aUS[ 2 xx]] S 1[US[AQ]] __th'
Summing these iterates gives the series solution;
U, t) = x@L—t+t2 -3 +..); (91)
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Consequently, the exact solution is given by;

U(x,t):ﬁ . (92)

Example (3.4.10): Consider the following one — dimensional Burgers equation [24]:

Ut = Uxx _UUX ; (93)
Subject to the initial conditions:
U(x,o)=1—§,x>o. (94)
Proceeding as in Example (3.4.9), we set the relation;
2
U,(x,t)=1-—,
() =1-2 5
Uk+l(x’t) = Sil[us[(uk)xx]] - Sil[us[Ak]] ! kZO
That gives;
2
UO(X,t):l— ;,
U,(x,t) = - %t ,
" (96)
U,(x,t) = —th,

4

U,(x,t)= —XitS.

The Eq. (96) can be rewritten as series form;

2 t t* ot _
U(x,t):l—;[ljt;jtx—2 +?+...j, (97)
Thus, the exact solution is given by;
2
Ux,t)=1- —— . 98
() =1- = (98)

3.4.1: System of (1+2)-Dimensional Burgers Equations

Systems of partial differential equations have attracted much attention in
studying evolution equations describing wave propagation, in investigating the
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shallow water waves, and in examining the chemical reaction—diffusion model of
Brusselator. Several numerical methods used for solving this system [35-41].

In this section, we present (ADSTM) to obtain a closed form solution of the
system of (1+2)-dimensional Burgers equations.

Consider the following system of two — dimensional Burgers equation [35]:
ou U L aU 1 [azu o°U ]
+V =— :

+U —+—

ot O X oy R{oOx oy

N N N 1(oN oV (99)
+U +V =— =t — |-

ot 0 X oy Rlox oy

With the initial conditions;
U(x,y,0)=f(x,y), x,yeD,V(x,y,0)=g(x,y), x,yeD.  (100)
And the boundary conditions;
U(x,y,t) =f(x,y,t),x,yedD,V(x,y,t)= f,(x,y,t),x,yedD (101)
where D={(x,y)la<x<b,a<y<b}jand oDis its boundary, U(x,y,t) and V(x,y,t) are
the velocity components to be determined, f,g, f, and f,are known functions, and R

Is the Reynolds number.
Taking the Sumudu transform of the system (99) and using initial conditions (100),
we obtain;

X oy

S[U(x,y,u)l= f(x,y)- US{UZ—U Va—U} uS[%(VZU)},

(102)
oV oV 1/,
SIV(x,y,u)|= : S| U—+V — [+uS|=|VV)|.
V(% y,u)l=g(x,y) -u { v ay} [R( )}
Using inverse Sumudu transform from (102) gives;
| AU 1
t)=f ~SHuS|U—+ St us|=(VU)||,
- (103)
oV 6V 1
Vv t)=g(x,y)-S | uS|U—+ SHuS|=(VV)]||
(x.y,0)=g(xy) _u N 6yﬂ+ {U [R( )ﬂ
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Using the decomposition series for the linear termsU(x,y,t),V(x,y,t), the infinite
series of the Adomian polynomials for the nonlinear termsuu, ,vU ,Uv,, W, ; and

y
proceeding as before, we obtain the recursive relations;
U,(x,y,t)= f(x,y)

U, (x,t) =—S*[us[A +B.]] +S‘{u s[%(vz(uk))ﬂ k>0, (104)

And
Vo(x,y,t)=g(x,y)

V. (x,t) == s*[us[c, + D,]] +s-{u s[%(w(vk))ﬂ k>0, (105)

The Adomian polynomials for the nonlinear term U U, are given by;
Ay :UoUoX oA :UluoX +U0U1X '
A, =U,U, +U U, +UU,

And so on.

And the nonlinear term VU is given by;

B, :VOUOy , B :V1UOy +V0U1y :
B, =V2on +V1U1y +V0U2y
And so on. And for the nonlinear termuV,;
Co=UsV,, » C=UV, +U,V, ,
C,=U,V, +U,V, +U,V,
And so on. And for the nonlinear termv v, ;
D, :VOVOy , D, :VlvOy +V0V1y :
D, =V, VOy + V1V1y +V, sz
And so on. The following example will be used to illustrate the discussion carried out
above by using (ADSTM).

Example (3.4.11): Consider the following system of two — dimensional Burgers
equation (99), with the following the initial conditions [35]:

U(x,y,0)=x+y,x,yeD,V(x,y,0)=x -y, x,yeD (106)
Following the discussion presented above, we find recursive relations;
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UO(X’y’t): X+ y;

U, (x,t) ==s[us[A +B.]] +S‘{u s[%(vz(uk))ﬂ k>0, (07)

And
VO(X’y’t): X — y y

V, ,(x,t) == S *us[c, + D, ]] +s-{u s[%(w(vk))ﬂ k>0, (108)

Using the derived the Adomian polynomials above into (107) and (108), we obtain
the following pairs of components, upon setting R=1, we have;

Ug.Vo)=(x+y,x-y),
U,.V,) = (-2xt,-2yt),
(U,.V,)=(2xt? + 2yt?,2xt? - 2yt?),

(109)
(U, .V,)=(-4xt®, —4yt®)
(U,.V,)=(4xt' +4yt*, 4xt*—4yt!)
And so on. Accordingly, the solution in a series form is given by;
2 4 _ 2 2 4
(U, _ x(1+2t +4t +) 2xt(l+2t +...)+y(l+2t +4t +) : (110)
X (l+2t2+4t4 +) - 2yt(l+2t2+...)— y(l+2t2+4t4+...)
And in a closed form of;
X+y—-2xt x—y-2yt
t),V t)) = : : 111
Oy vy = R

3.5: The Telegraph Equation

Telegraph equations appear in the propagation of electrical signals along a
telegraph line, digital image processing, telecommunication, signals and systems.
The general linear telegraph equation is;

aU,(x,t)+bU, (x,t) +cU(x,t)= U,_(x,t); (112)
Subject to the initial conditions:
U(x,0)=a , U/(x,t)=23 . (113)
Wherea, band, c are constants related to the inductance, capacitance, and
conductance of the cable respectively, and, «, g are functions of , x .
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Assuming a=0 andc =0 phecause of electrical properties of the cable, then we
obtain:

U, (x,t)=bU,(x,t) ; (114)
Which is the standard linear heat equation mentioned before in chapter one.
On the other hand, the electrical properties may lead to b=0 andc=0_hence we

obtain:
U,(x,t)=auU,(xt) ; (115)
Which is the standard linear wave equation presented before in chapter one.

In this section, we apply the Sumudu transform method to solve general linear
telegraph equation.
Applying Sumudu transform of the equation (112) and making use the initial
conditions to find,;

a[M—i—ﬁ}+b[M—g}+cG(x,u)= d” G(x,u)  (116)

u u x°
Or equivalently;

u’ d” G(x,u) - (@a+bu+cu®)G(x,u) = —(aa+au+bau)  (117)

X2

This is the second order linear differential equation. The particular solution of this
equation is obtained as:

_ —(aa+auB+bau) _d
G(X,U) - uz Dz —(a+bu+cu2)_ F(U)G(X) ) D_H (118)

Now apply the inverse Sumudu transform to find the solution of the general telegraph
equation (109) in the Form;

U(x,t)= G(x)S*[F(u)] = G(x) f (t) - (119)
The following examples will be used to illustrate the algorithm discussed above.

Example (3.5.12): Consider the following telegraph equation [42]:
U, +2U, +U=U_; (120)
Subject to the initial conditions;
U(x,0)=¢e* , U,(x,t)=-2¢* . (121)
Following the discussion presented above, we find;
—e" e

G(x,u) = =
(x.u) u’D? —(1+u ) 1+2u

(122)

84



Now apply the inverse Sumudu transform to find the solution;

U(x,t)=e* S L+12u} = | (123)

Example (3.5.13): Consider the following telegraph equation [42]:

U, +4U, +4U =U_ ; (124)
Subject to the initial conditions;
U(x,0)=1+e** , U, (x,t)=-2 . (125)
Proceeding as in Example (3.6.12), we find;
2X
G(x,u) = -@+2u)  (+4uke 1, (126)

WD? ~@+2u)  uiD? —(l+2u) 1+2u
Now apply the inverse Sumudu transform to find the solution;
U(x,t)=e?" +e?* . (127)

3.6:  The Schrodinger Equation

Linear and nonlinear Schrddinger equations are one of the most important
partial differential equations in quantum mechanics.
Those equations arise in the study of time evolution of the wave function.

3.6.1: The Linear Schrodinger Equation
The linear Schrodinger equation describes the time evolution of a free particle
with massm, and it is standard form given by;
U, =iuU,,i’=-1,t>0 ; (128)
Subject to the initial conditions:
U(x,0) = f(x). (129)
Where f(x) is continuous function and square integrable.

In this section, the (ADSTM) will be applied to handle the linear Schrodinger
equations. To achieve this goal, we apply the Sumudu transform of both sides of Eqg.

(128) and using the initial condition, we obtain;

85



S[U(x,t)]= f(x)+iusSu,] (130)
Applying inverse Sumudu transform of (130) gives;
U(x,t)= f(x)+S*[ius[u,]] (131)
Using the decomposition series for the linear termU(x,t) and proceeding as before,
we obtain the recursive relation;

U,(x,t) = f(x),

132
Uealet)= s fus[u,),] . ko .
We can easily determine the first few the components by;
Uo(x,t)= f(x),
U,(x,t)=S"]iuS XX ,
(1) = fus[u,), ] .
UZ(X’t): [IUS[ xx]] !
US(X’t): [ S[ 2 xx]]'

Other components can be determined as well. This completes the determination of the
series solution.

The analysis introduced above will be illustrated by discussing the following
examples.

Example (3.6.14): Consider the following linear Schrédinger equation [43]:

U, =iu, ; (134)
Subject to the initial conditions:
U(x,0)=¢e". (135)
Following the discussion presented above, we find;
U,(x,t)=¢'
U,(x,t)= s [ius|U,), ]]= —ite™,
Uz(x,t)=S1[iuS[(U1)XX]]=—%t2e”, (136)

U (x,) =5 fius[u,), ] Site.
Accordingly, the series solution is given by;
U(x,1) = e (1_n+%(n)2 BRI J (137)

That gives the exact solution by;
U(x,t)=e'*"" . (138)
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Example (3.6.15): Consider the following linear Schrédinger equation [24]:
U =iu, ; (139)
Subject to the initial conditions:
U(x,0) = sinhx. (140)
Proceeding as in Example (3.6.14), we find;
U, (x,t) =sinh x,,
U,(x,t)=s[ius|[u,), J]= ite™,

U,(x,t)=sius[u,),. ] = —%tz sinh x, (141)

U,(x,t)=s"fius|U,), ]| = - %itssinh X.
Accordingly, the series solution is given by;

U(x,t) = sinh x (l+ it+ %(it)2 + %(it)3 + J . (142)

That gives the exact solution by;
U(x,t)=e"sinh x . (143)

3.6.2: The Nonlinear Schrodinger Equation

The nonlinear Schrodinger equation is a solitary wave equation, where the
speed of propagation is independent of the amplitude of the wave function, and it is
standard form given by;

iU, +U, +aUfu=0 ; (144)
Subject to the initial conditions:
U(x,0)=g(x). (145)
where « is constant term and U(x,t) is complex.

In this section, the (ADSTM) will be applied to handle the nonlinear
Schrddinger equations. To achieve this goal, we apply the Sumudu transform of both
sides of Eq. (144) and using the initial condition, we obtain;

S[u(x,t)]= g(x)+iu S[U, ]+ iua ShU|2UJ (146)
Applying inverse Sumudu transform of (146) gives;
U(x,t)= g(x)+S*fiusu, J]+ S fiua S[|U|2UJJ (147)
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Using the decomposition series for the linear termU(x t) , the infinite series of
Adomian polynomials for the nonlinear term F (U (x |U| U=U2U, and proceeding

as before, we obtain the recursive relation;
U, (x,t) = g(x),

U,..(x,t)=s[ius|U, ), [+ s *iuaS[ A ], k=0. (148)
Besides, some the components of A, are computed below:
Ay =U,"U,,
A =2UU,U, +U,U,, (149)

A, = 2U,U,U, +U,°U, +2U,U,U, +U,’U,.

And so on. In conjunction with (148) and (149), we can easily determine the first few
the components by;

)= [luS[ ) ]+ S fuas[A ],
(X, t) stius|(u, XX]]+ S*fiuas[ A ],
U,(x,t)= S ius[u,), ]|+ S *fiuas[ A,]].

Other components can be determined as weII. This completes the determination of the
series solution. The analysis introduced above will be illustrated by discussing the
following examples.

(150)

Example (3.6.16): Consider the following nonlinear Schrodinger equation [44]:

iU, +U,-2U[U=0 ; (151)
Subject to the initial conditions:
U(x,0)=¢e". (152)
Following the discussion presented above, we find;
U,(x,t)=¢
U (x,t) [luS[ ). |- S [2ius[ A, ]| = -3ite™,

U,(x0) = 5 fius[u,), ] - s aius[ A = 2 Ginfe”,  (159)

U,(x,t)=sius[U,), ]]- S *[2ius[ A, ] = - % (3it)e’™
In a few of (153), the series solution is given by;

U(x,1) = e [1_ @it) + @it - Z@it) + J . (154)
The exact solution is;

88



U(x,t) = e't-2 (155)

Example (3.6.17): Consider the following nonlinear Schrodinger equation [44]:
iU, +U,+2U[U=0 ; (156)
Subject to the initial conditions:

U(x,0)=¢e". (157)
Proceeding as in Example (3.6.16), we find;
U,(x,t)=e",
U,(x,t)= ite',
U,(xt)=— %tze“, (158)

_ 1 s 4+340X
Us(x,t)_—alt e’
In a few of (158), the series solution is given by;
U(x,1) = e (1+ (it) + S(itf 42 (it + J ; (159)
The exact solution is;
U(x,t)=e'®) (160)

3.7:  The Korteweg — de Vries Equation (KdV)

The nonlinear KdV equation is an important mathematical model with wide
applications in quantum mechanics and nonlinear optics.

The KdV equation has several applications to physical problems. It
approximately describes the evolution of long water waves. In addition, it used in
various fields such as, shallow water waves, acoustic waves in a plasma, and long
internal waves in a density.

In this section, we consider the nonlinear KdV in the following form:
U, +aluU, +bU_ =0 ; (161)
Subject to the initial condition:
U(x,0) = f(x) . (162)
Where aand b are constants.
The solutions of (161) are called Solitons or Solitary waves.
In this section, we will use (ADSTM) to study the nonlinear KdV equation.

89



Applying Sumudu transform of both sides of (161) and using initial condition yields;

s[u(x,t)]= f(x)-bu su,,]-ausuu ] (163)
Applying inverse Sumudu transform to (163) gives;
U(x,t)= f(x)-S*[ousu,, JJ- S *[ausuu, ]| (164)

Using the decomposition series for the linear term,U(x,t) , the infinite series of the
Adomian polynomials for the nonlinear term,F(U(x,t))=UU,, and proceeding as
before, we obtain the recursive relation;

U,(x,t) = f(x),

U,alet) == s bus[,),, ] - s Hfaus[A] k=0, %)
The components; U_,n>0 can be elegantly calculated by:
Uy (x.t) = ()
U,(x,t)= -5 bus[U,),, ]| - s *aus[ A ], (166

t)=-
U, (x,t)= - 57 bus[U, ), ]I - s *[aus[ AT,
Us(x.t) =~ 57 [bus[(U, ), ]| - 5 [aus[ A

Where the Adomian polynomials A  for the nonlinearity UU _ were derived before

and used in advection and Burgers problems.
The discussion presented above will be illustrated as follows:

Example (3.7.18): Consider the following homogeneous nonlinear KdV equation
[24]:

U -6UU, +U_ =0 ; (167)
Subject to the initial condition;
U(x,0)=6x . (168)
Following the discussion presented above, we find a recursive relation;
U,(x,t)=6X,
oLt (169)

U,..(x,t)==s*us[u, ), ]|+ s [6us[ A ]|, k=0.
That gives the first few the components by;

U,(x,t) = 6Xx,

U,(x,t)=-s*[us[U,),, ]| +5[6us[ A ]|= 6° xt,

U,(x,t)= - s bus|u,), J]+S [aus[ A J]= 6° xt?,

U,(x,t)= - S*[bus[u, ), J]+ s [6us[ A,]]= 67 xt*.
In a few of (170), the series solution is given by;

(170)
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U(x,t)=6x [+ (36t) + (36t)7 + (36t + ..); (171)
The exact solution is;
6 X

U(x,t):l_36t 36t <1 . (172)

Example (3.7.19): Consider the following homogeneous nonlinear KdV equation
[24]:
U -6uu, +U, =0, (A73)
Subject to the initial condition;
U(x,0)=(x 1) . (174)
Proceeding as in Example (3.7.18), we find recursive relation;

Uo(x,t)=%(x—1),

(175)
Uk+l(x’t) == Sil[us[(uk)xxx]] + Sil[6us[Ak]] ' kZO
That gives the first few the components by;
U, (%) = %(x—l),
U, x.t)= = 8 [us[,), ]+ fous[ A T ¢ (x-1),
(176)
U, () == 8 bus[U,),, Jl+ 5 faus ATl < (-1,
U() = - 8 [ousU,),. ]+ s *feus[ A, T-- ¢ (x-2)°
In a few of (176), the series solution is given by;
U(x,t):%(x—l)(l+ t+ 2+ + )] (77)
The exact solution is;
1(x-1
U(x,t):g()l(_tJ Jtl <1 (178)

Example (3.7.20): Consider the following inhomogeneous nonlinear mKdV equation
[45]:

U -UM, + U, =x1-t3x) ; (179)
Subject to the initial condition:
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U(x,0)=0 . (180)
Following the analysis presented before, we obtain:

4
U(x,t)= xt - %xz ~s*[usu . ]+ st lusfu?u, ] (181)
This gives the modified recursive relation;
U,(x,t) = xt,
4
U,(x,t)=- %xz — 57 us[U,),, I+ s [us[A], (182)

Uk+1(X’t) == Sil[us[(uk)xxx]] + Sil[US[Ak]] ! kZl
The first few components of the solution are given by;
U,(x,t) = xt,
4
U,(x,t)=- %xz - s [us[Uo), 1+ s fus[A D=0, (183)
U,.(x,t)=0, k>1.

The exact solution is;
U(x,t) = xt . (184)

Example (3.7.21): Consider the following homogeneous nonlinear FKdV equation
[46]:

U, +uv®uy, +uU U, _ -200U,_ +U_ =0 (185)
Subject to the initial condition:
U(x,0) :% . (186)

Taking Sumudu transform of both sides of Eq. (185) subject to the initial condition,
we get;

~u,-UU,-UU,] (187)

X XX

s[u(x,t)= % +usfouu U

The inverse of Sumudu transform implies that;
~u,-uu,-uu, ] (188)

XXXXX X XX

U(x,t)= <+ sfusfouu , U
X
Using the decomposition series for the linear term,U(x,t) , the infinite series of the

Adomian polynomials for the nonlinear terms, and proceeding as before, we obtain
the recursive relation;

)

UO(X,t)=

< | =

Uk+l(x’t): Sil[US[ZOAk -B -G _(Uk) _(Uk)x]] , k=0. (189)

XXXXX
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The first few components of adomian polynomials are given by;

A =UZU,,. , A=2U0,UU, +UX,

A, =2U,U,U, +UU, +2U,UU, +UX, .;
B,=UU,, , B =2U,UU, +UX, .,

B, =2U,U,U,  +UX, +2U,UU, +U,. : (190)
C,=U,U,, . C=U, U,  +U, U,
c,=U,U,,+U, U, +U, U, .

And so on. In conjunction with (189) and (190), we can easily determine the first few
the components by;

UO(X,t)=§,
Ul(x’t)= Sil[US[ZOAo - Bo _Co _(UO)xxxxx - (Uo)x]]:%’
U 2(X7t): Sil[US[ZOAl -B, -C, - (Ul)xxxxx - (Ul)x]]z)t(_z’ (191)

_ t?
US(X,'[)= S 1[US[20A2 -B, -G, _(Uz)xxxxx _(Uz)x]]:_'

In a few of (191), the series solution is given by;

1 t t>  td )
U(X,t):;(l+;+x—2+F+...J , (192)
The exact solution is;
1
U(x,t)= . 193
()= (193)

Example (3.7.22): Consider the following homogeneous nonlinear FKdV equation
[46]:

U, +UU, -UU_ +U
Subject to the initial condition:

XXXXX = 0 (194)

U(x,0)=¢e" . (195)
Proceeding as in Example (3.7.21), we find recursive relation;
U,(x,t)=¢e",
Uk+l(x’t)= Sil[US[Ak - Bk - (Uk)xxxxx]] ! kZO (196)
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That gives the first few the components by;
U, (x,t) =

Ul(X’t)= Sil[us[ AO - BO_(UO)xxxxx]]= —te” !

U 2(X,t)= Sil[us[ Al - Bl_ (Ul)xxxxx]]ztz_!ex’ (197)

U.(ct)= 57us[ A, B, (U, ] e

Summing these iterations yields the series solution;

I
U(X,t):e (1—1:4‘5—54'...}, (198)
That leads to the exact solution;
U(x,t)=e*"" . (199)

3.8:  The Fourth Order Parabolic Equation

The fourth order parabolic equation with variable equation arises in the
transverse vibration, and it is standard form given by;

2 4
2 LZJ Jrz//(x)a Li = f(x,t), w(x)>0,a<x<b,t>0 ; (142)
ot 0 X
Subject to the initial conditions:
U(x,0)=g(x) ,U,(x,0)=h(x); (143)

And the boundary conditions:

U= p0 6.0= () (144)

U, (a,t)=s(t), U, (b.t)=q(t).

Where the functions g(x), h(x), p(t) , r(t), s(t) and q(t) are continuous functions.
In this section, we use coupling of new integral transform Sumudu transform and
Adomian decomposition method to solve one dimensional fourth order parabolic
linear partial differential equation with variable coefficients.
Applying Sumudu transform of both sides of Eq. (142) and using initial conditions,
we have;

SIU(x 1= g(x)+ uh(x)+u? S[f (x,t)]_uz{w(x)g“xﬂ (145)

Operating inverse Sumudu transform of both sides of (145) gives;
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U(x,t)=G(x,t)- S {uzs{w(x)a“u”

ox?

(146)

Where G(x,t) represents the term arising from the source term and prescribed initial

conditions.

Using the decomposition series for the linear termuU(x,t) and proceeding as before, we

obtain the recursive relation;
U, (x,t) = G(x,t),

U (x.t) = - s u?sly(x)U, ), ]| k=0.
The discussion presented above will be illustrated as follows:

(147)

Example (3.8.23): Let us consider fourth order homogeneous parabolic PDE [47]:

2 4\ A4
aU + £+X_ aU :0 , £<X<1,t>0 ,
ot? x 120 )ox* 2

Subject to the initial conditions:

5

X
U(x,0)=0 ,U,(x,0)=1+ 20
And the boundary conditions:
5
U[E,tj = (1+(1/2) jsint JU@Lt) = 12l ant,
2 120 120

3
U, Le)=2(L] sint ,Uxx(l,t):isint.
2 6\2 6

Following the discussion presented above, we find a recursive relation;

X5
UO(X,t)Z[l_i_mJt,

U, (x,t)= - sl{ uzsﬁi + %J(Uk)mﬂ , k>0.

That gives;
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4 5 5
U,(x,t)=- s u’s 3+X—J(U1)wx = (1+X—jt_, (152)

5 3 5 7
U(x,t)=[l+x—j [t—t—+t——t—+...j; (153)
120 3 5 7
And in a closed form solution of;
5
U(x,t) = [1 + 1X2—Ojsint . (154)

3.9: The Pade’ Approximants

In this section, we purpose to establish a new technique gives better
approximation of the function than truncating its Taylor series, and it may well still
work where the Taylor series does not converge. It is significant to note that several
powerful methods [19, 38, 48-50] have been advanced for this purpose by using this
new technique. The new technique was developed around (1890) by Henri Pade’ and
called Pade’ approximant. A Pade’ approximant are the fraction of two polynomials
constructs from the coefficients of the Taylor expansion of a function.

The Pade’ approximation of a function symbolized by [m / n] and defined by:
a, +a, X+a, X* +...+a, x"

1+b, x+b, x> +...+b, X"
Where we consideredb, =1, and numerator, denominator have no common factors. If

we selected m = n, then the approximants [n / n] are called diagonal approximants.

In the following, we will introduce the simple and the straightforward method to
construct Pade’ approximants. We denote the m, n Pade’ approximants to f (x).
Suppose that f(x) has a Taylor series given by;

[m/n]= (155)
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F(x)= S, ¥ (156)

Assuming that f(x) can be manipulated by the diagonal Pade’ approximant defined in
(155), where m = n. This admits the use of;
a,+a, X+a, X +...+a, x"
1+b, x+b, x> +...+b, X"
By using cross multiplication in (157), we find;
a,+a, X+a, X +...+a, X"=c,+(c, +b,c,)x+(c, +b, ¢, +b,c,) x* +

= Cy+C, X+Cy X2 +...4Cyy X2 (157)

158
+(cs +b, ¢, +b, ¢, +by ¢y ) X3 ... (158)

Equating powers of x leads to;
dy =Co,
a, =C,+b,c,,
a, =C,+b,c, +b,c,,
a, =C,+b,c, +b,c, +b,C,

a'n = Cn +Zbkcn—k

k=1
Notice that x"**,x"*?,...,x*" should be equated to zero.

The simple procedure outlined above will be illustrated by discussing the following
examples.

Example (3.9.24): Find the Pade’ approximants [2/2] for the function [24]:

)= [ (159)

The Taylor series for f(x) of (149) is given by;

f(x)=1+x— gxz + gxs - %x“ + %xs - %xe + 71—23x7 + o(xg) . (160)
The [2/2] approximant is defined by;
2
2/2] = a, +a, X+a, X (161)

1+b, x+h, X

To determine the five coefficients of the two polynomials, the [2/2] approximant must

fit the Taylor series of f(x) in (160) through the orders of1, x, ..., x*, hence we set;
a,+a, X+a, X° 3, 5.5 37,

TR =1+X—EX oK X (162)
1 2
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Cross multiplying yields;

a, +a, x+a, X’ :1+(1+b1)x+£b1+b2 - g} X2 +

{E — Eb1 +b2jx3 + [Ebl — Eb2 _3r j.x“
2 2 2 2 8

. (163)

Equating powers of x leads to;
a, =1,
a, =1+b,,

)
N
|
=g
+
o
N
[
N w

o
Il

|

| wo
o
+
o
N

N

3 37

o
I
N
oo

N oo
O
K
|
I
O
N
|

The solution of this system of equations is;

O
[N
(o]

7
aozl,alzz,azz—,blzz,bzz— :

Consequently, the [2/2] Pade’ approximant is;

9 19 ,
1+ X+— X
[2/2] = 3 41 . (164)
1+~ x+— x°
2 4

However, the limit of Pade’ approximant (164) as x —owis Z—Z . In other words, as
2

X —oo We obtain;

lim f(x) = /3 ~ 1.73205 ; (165)
And
. 19
lim[2/2] = 1 ~L72nen (166)

Example (3.9.25): Consider the coupled Burgers system of equation [48]:
U -2uU, -U, +Uv) =0,

167
V,-2W, -V, + (Uv), =0. (167)

With the initial data;
U (x,0)=sinx , V(x,0)=sinx. (168)
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Applying L, of the system (167) and using the initial data (168) yields;

U(x,t)=sinx+ L ‘[u,]+2L 7 uu,]- L uv, +VvU ],

(169)
V(x,t)=sinx+ L '[V,] +2L, v, ]- L uv, +vU ].

The Adomian decomposition method suggests that the linear terms U(x,t)and V(x,t)

is decomposed by an infinite series of components:

U (x,t)= YU, (1), V(xt)=3V,(xt). (170)

n=0 n=0

However, the nonlinear termsuu,,Uv,, VU, and VV, should be represented by the
Adomian polynomials A and B, C, and D, respectively as follows;

0

WU,= 3 W, =38, WU, = 3C, W, - 3D, (171)

n=0
Substituting (170) and (171) into (169), gives the recursive relations by;
U, (x,t)=sinx,

Upale)= L2[0,),]% 2L A ]- LB, + ¢, ) k0. 7D

And
V,(x,t) =sinx,

Voo (0= L0, ]+ 247, ]~ L e, + ¢ ] k0. T

Using the derived Adomian polynomials in Burgers equation Example (3.5.8), we
obtain the following pairs of components;

U,.V,)=(sinx, sinx),

U,.V,)=(-tsinx ,—tsinx),

t? t?
U,.V,)=| —sinx,—sinx |,
2 (174)

u,.v,)= —Esinx —Esinx
A U TR |

And so on. Accordingly, the solution in a series form is given by;
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t? ot
U(x,t) =sin x(l—t+5——+...}

3
. (175)
V(x,t)=sin x(l—t+t——t—+...J .
21 3
Applying the Sumudu transform to U (x,t)and V, (x,t) yields;
S[U(x,t)] = sin x(1—u+u?—u® +..), (176)

SV (x,t)]= sin x(1—u+u? —u® +...).
The [m / n] Pade’ approximant of each one of Eq. (155) with m>1and n>1 yields;

[m} = 1 sin x a77)
n 1+u

Using the inverse Sumudu transform to [m / n], the exact solution is obtained;

U(x,t) = e 'sinx,

178
V(x,t)=e"sinx. (178)
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CHAPTER (4)
Volterra Integro-Differential Equations

It is well known that linear and nonlinear Volterra integro — differential equation
arise in many scientific fields such as the population dynamic, neutron diffusion and
semiconductor devices.

The Volterra integro — differential equation appears in the form:

U®(x)= f(x)+ A_X[K(x,t)u (t)dt | )

WhereU ”(x):ji and the initial conditions U(0),U(0),........, U"*(0)are prescribed.
X

n 1

The kernel K(x,t) and the function f(x) are given real- valued functions.

It is our goal in this chapter to study the nonlinear Volterra integro — differential
equations of the second and first kind given by:

UP()= £+ [KGHFUEKE @)

However, the standard form of the nonlinear Volterra integro — differential equation
(1) of the first kind is the form:

[, (COF Q) + [K, (6,00 (@)dt = £(x) @3)

Several techniques such that , homotopy perturbation method [51-54], modified
Laplace Adomian decomposition method [55], variation iteration method, the series
solution method, the differential transform method [56] and combined Laplace
transform — Adomian decomposition method [14] has been used for solving these
problems.

It is the aim of this chapter to develop a combined form of the Sumudu transform
method with the Adomian decomposition method to establish the exact solution or
approximations of high degree of accuracy for the nonlinear Volterra of a second and
first kind (2) and (3) respectively.

The advantage of these methods is its capability of combining the two powerful
methods for obtaining exact solutions for nonlinear equations.
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4.1: Nonlinear Volterra Integro — Differential Equations of The Second
Kind

To illustrate the basic idea of this section, we consider the kernel K(x,t) of the
equation (2) as difference kernel that depends on the difference (x-t) .
The nonlinear Volterra integro- differential equation (2) can be expressed as;

UM(x)= f(x jK x—t) F(U(t))dt (4)

Consider two functions f,(x)and f,(x )that possess the conditions.
Let Sumudu transform of the functions f,(x) and f,(x)given by:

s[hx)l=FRl) . s[fLKx)]=F) (5)
The Sumudu convolution product of these two functions is defined by;
(8 )01 [ L0 0| - u 0 0 ©)

To solve the nonlinear Volterra integro- differential equation by using Sumudu
transform, it is essential to use the Sumudu transform of the derivatives of U(x) are

defined by;

s[u<n>(x)]:S[L:n(X)]_U(§) v’ U 7)

This simply gives;

SU'(x)] = S[UU<X>] VO _ iy )utuo),

u
SU"(x)]=u*U(u)-u*u(0)-u"u’(), (8)
SU"(X)] =u=U(u)-u2uU(0)-u2U’(0)-u"*uU"(0).

And so on for derivatives of higher order, where U (u) = S[U(x)].

Applying Sumudu transform of both sides of Eq. (2), to get;

u"S[U(x)]-u"u(0)-ut"uU’0)-..—utu"*0) =

9
SH(alrusk-sEOR]
Or equivalently;
S[u()]=U(©0)+uu(©)+ ..+ u™*U"(0) + (10)
u" S[f (x)]+u"* S[K (x-t)]S[FU (x))]
Taking the inverse Sumudu transform of both sides of Eq. (10), to get;
u(x)=U(0)+xU"(0)+ ...+ mu "(0) + (11)

57 [un [t (oll s um sk (x-S [F U ()]

Now, we apply the Adomian decomposition method;
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_ iun(x) : (12)

And the nonlinear terms can be decomposed as;

= 2 A,0) . (13)
For some the Adomian polynomials An (U) that are given by;
A "U =0,1,2,...
B4 P28 LU

Substituting Eq. (12) and Eqg. (13) into Eq. (11) Ieads to;

nz:()un(x): U(0)+ xU(0)+ ... ( _1)

el

So that the recursive relation is given by;
U,(x)=U(0)+xU"(0)+......+

U™ (0)+ s u" [t ()]
(15)

CEVRY O )
Ua(0)= s s[K(x-t)]s[A]], k=0.

The combined Sumudu transform — Adomian decomposition method for solving
nonlinear Volterra integro- differential equations of the second kind will be illustrated
by studding the following examples.

Example (4.1.1): Consider the initial value problem [57]:
L IV S S S TR _
U(x)_4 S XX -3e e +£(x t)U2(t)dt, U(0)=2 . (17)
Notice that the kernel K(x-t)= (x-t) . Taking Sumudu transform of both sides of Eq.

(17) gives;
slu'(x)]=s [g—Ex—lx2 ~3e7* —%e“ } +S[(x—t)xu?(x)] (18)

So that:

uU(u)-u"u(o) =% - gu —u? - 1fu - 4(1i2u) rutsuz(x),  (19)

Or equivalently;
9 5 3u u
2+ 2y - 20wl - _ 3 2 20
U(u)=2+ PR L ey 4(1+2u)+u S[U (x)] (20)

Applying the inverse Sumudu transform of both sides of Eq. (21) gives;
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9 5, X° B I 2
U(x)=2+ JX X g T 3Be g TS uesuz(x)]. 1)
Or equivalently;
U(x)= 2xaix 2o 2y Lysy ig e su? )] (22)
2 3 41 ol
Substituting the series assumption for U(x) and the Adomian polynomials for U?(x)
as given above in Eqg. (12) and Eq. (13) respectively, and using the recursive relation
(16) to obtain;
U, (x)= 2—x+%x2—%x3+%x4—éx5+ ..... , 23)
Uk+1(X) =S [us S[AK ]] , k20,
Recall that the Adomian polynomials for F(U (x))= U?2(x) are given by;
A= Uo2 '
A=2U,U,,
A,=2U,U,+U2,
A,=2U,U,+2U,U,.
Substituting these polynomials into the recursive relation (23) to find;

U, (x)= 2oxaix 2 2xt ey
2 3 4l ol (24)
2 .01, 1 .
U,(x) = 2 —=x* +=-x* +..,,
3 6 20
Using (12), to find the series solution of eq. (17), in the form;
U(x)= 2oxaixtyoptye Lysi (25)
2 3 4l ol
This is converging to the exact solution;
U(x)=1+e". (26)

Example (4.1.2): Consider the following integro-differential equation [57]:
U(x)=-1- %(sin X + Sin 2X) + 208X + jsin(x—t)u 2(t)dt,U(0)=-1,U'(0)=1 (27)
Taking Sumudu transform of (27), to find;0
sju ”(x)]zs[—l— %(sin X+8in 2X)+2¢0s x} + slsin (x—t)xU%(x)],  (28)
So that;
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u 2u 2

wEU()-u VO U= 1 g ) )

s “
(L+u?) ’
Or equivalently;
3 2u’® 2u®  ut
U(u) =—1+u-u? —— - su*(x)]. (30
) i 3(L+u?) 3(1+4u2)+1+u2+1+u2 CROINEY
Applying inverse Sumudu of both sides of Eq. (30) gives;
2
U(x) =—1 PN ST SV SN
21 3 12 40 (31)
1 ., 11 o u? 2
X X 4487 ——s[u?(x)]
360 5040 1+u
Proceeding as before, we find,;
2
U,(x) :—1+X+X——£x3—ix4+ix5+ix6—ix7+...,
203" 127 40" 360 5040 (32)
1., 1.5 1 ¢ 1 4
U,(x)= =x* ——x*———x"+—x"+..,,
41 60 720 504
Using (12), to find the series solution of eq. (27), in the form;
3 5 7 2 4 6
U(x) [___j[l___j ; (33)
3 57 20 41 ol
Which is converges to the exact solution;
U(x)=sinx —cosx . (34)

4.2:  Nonlinear Volterra Integro — Differential Equations of the First Kind

To illustrate the basic idea of this section, we consider the kernelsK,(x,t) and
K,(x,t) of equation (3) as difference kernel that depends on the difference (x-t).
The nonlinear Volterra integro- differential equation (3) can be expressed as;

[K,(—OFU )t + [K, (x-DU"{)dt = F(x) ; (35)
Recall that; O O
sl (] = SBWI VO _uv© _ _u0) (36)
u" u" u"t u
Applying Sumudu transform of both sides of Eqg. (35) to get;
S[K, (x=t)*F (U )]+ 8 [K, (x=t)*u " ()] =s[ f (x)] (37)

Or equivalently;
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UK, (u) S[FU )]+ uK, )s[u"(x)] =F(u) (38)
Using (36) and solving foru (x), we find;

S[U(X)] :unl[F(u)"‘ K, (u)y (u)- uK,(u) S[FU (X))]J : (39)

K, (u)
un—l un—l + "'+U(n71)(0) ' (40)

Now we use the Adomian decomposition method to handle (39), substituting (12) and
(13) into (39), we get;

where w(u)= U0

+U(0)+uU’(0)+...+u"*u"4(0) -

- 41
u”Kl(u)S{ZAn} 4D

K, (u)
The Adomian decomposition method admits the use of the following recursive
relation;

u)=u"" F(u) + +uU’(0)+..+u"ty"t
U,(u) <) U(0)+uU’(0)+... u(0), @
sbuatl- -8 sial o,

Applying the inverse Sumudu transform to the first part of (42) givesU,(x), that will
define A, (U). This in turn will lead to the complete determination of the components
ofU, (x),k>0.

The proposed scheme will be illustrated by using the following examples.

Example (4.2.3): Consider the following first kind of nonlinear Volterra integro —
differential equation [58]:

j(x—t)U 2(t)dt + je“U’(t)dt _ L ke s te, u@)=1. (43)
5 5 4 2 4
Proceeding as before, we find the recursive relation;
U,(u)=1- (-u) Eu(l—u)+ v, _tu
4 2 1-u  4(1-2u) (44)

SUL ()= —uP-u) sl ()] k=0,
Taking the inverse Sumudu transform of Eq. (44) gives;
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Uy(x)=1+ x + x? +%x3 +%x4+ix5 +..,

24
1 1 1 1
U, (X)= = =x" = =x® = =x* = =x° + ..., 45
(%) 2 6 6 12 (45)
1 1
U,(x)= =—x"+—=—x +...,
(%) 12 20
The series solution is given by;
U)=1+ x+ 23 + 2x® 4 Sty Doy (46)
2 3 41 5!
In a closed form given of;
U(x)=e" . (47)

Example (4.2.4): Consider the following first kind of nonlinear Volterra integro —
differential equation [59]:

!(x—t)u ?(t)dt + !(x—t)u "(t)dt = — 2—2 - %xz ; %cost - 3i2cos4x , (48)
u(0)=2,U'(0)=0
Proceeding as before, the recursive relation is;

U (u)=§+§u2 s ___1
T2 20 1+4au® stieu?) (49)
SWea(d]= - su*(x)] k=0.

Taking the inverse Sumudu transform of Eq. (49) gives;

Uy(x)=2 + %x6 Fo,
U,(x)= —2x* + ...,
50
Uz(x):gx4 + ... (50)
3
U,(x)=- Ex6+...,

The series solution is therefore given by;

1.,v 1 s 1,
U(x)=1+(1—5(2x) - (%) +j 1)
That converges to the exact solution;

U(x)=1+ cos2x. (52)
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4.3:  Systems of Nonlinear Volterra Integro — Differential Equations of The
Second Kind

In this section, we will study systems of nonlinear Volterra integro — differential
equations of the second kind by combining Sumudu transform - Adomian
decomposition method.

Consider systems of nonlinear Volterra integro — differential equations of the second
kind as follows:

JIK, (x=1) Fy(u(t) + Ry (x~1)G, (v (t))]at .
X (53)
JIK, (x=1) F, (u(t)) +R, (x~1)G, (v (t) ]dt.
Where F, ,G,,i=1,2nonlinear functions of U(x),V(x) , K,,R,,i=12 are the
kernels and f,(x),i=1,2 are real — valued functions.
Applying Sumudu transform of both sides of (54), we have;
u™"SU(x)]-u"u(0)-u*"U’(0)-...—utU"*(0)=
S[H0} SIK RO () + R GV KL 5y
u™" SV (x)]-u="v(0)-u*"v'(0)-...—utv"*(0) =
S[F, ()]+ S[K,(x)*F, (U (x)) + R, (x)*G, (v (x))]
Or equivalent;

S[U(x)]=U (0)+uU’(0)+...+u"*U "*(0)+u" S[f,(x)]+
SR+ SRV g
SV (x)]=V(0)+uV'(0)+...+u" V"1 (0)+u" S[f,(x)]+

+u" S[K, (x)* F, (U (x))] +u” S[R, (x)*G, (v (x))]

Now, we apply the Adomian decomposition method;

=2 U, (x) . V(%)= V,(x) (56)
And the nonlinear terms can be decomposed as;
= 2 A, () (57)

Substituting (56) and (57) into (55) gives;
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S{ﬁ‘éu n(x)}zu 0)+uU’(0)+...+u" U 0)+u" S[f,(x)]+

+u s{ ZA}u s{ ()*;)Bn] )

8

SLZO;‘)V” (x)}=V(O)+ uV'(0)+...+u"*V "1 (0)+u" S[f,(x)]+
+ U s{ ZC}+U s{ ZD}

The Adomian decomposition method admits the use of the following recursive
relations;
S[U,(u)]= U(O)+uU (0)+ AU tUH0)+um ST, (x)]

S[Uk+1 ]=U S ]+u S[R() Bk],kZO. (59)
And
BV 0w 0 S{00)
s @)u sl (7, ] 07 SR, (D, ] k20 (60

Applying the inverse Sumudu transform to the first part of (59) and (60) gives
U,(x),V,(x), that will define A,,B,,C,,D,. This in turn will lead to the complete

determination of the components U, (x), V, k>0 .

The combined Laplace transform Adomian-decomposition method for solving
systems of nonlinear Volterra integro-differential equations of the second kind will be
illustrated by studying the following examples.

Example (4.3.5): Consider the system of nonlinear Volterra integro — differential
equation [58];

X

’ (61)

With the initial conditions:

uU(0)=1,U'(0)=1,Vv(0)=1,Vv'(0)=2. (62)
Taking Sumudu transforms of both sides of (61) and using initial conditions, we
obtain;
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7u? u? u’ u’ 2 2
V)= T T ) s (l—UJS[U () + V()

(63)
v00=1+2u+-3éﬂl)*'@?ﬁu)+3@51u)+[1fl L) -vie)
By using (59) and (60), we have; , , 2
Uo(u)=1+u + 3(71:) - (1Ezu) - 3(1u—4u) ’ (64)
U, ()= [lu_sujs[Ak +B,], k>0.
And
Vo(u)=1+2u + 3(21Lizu) - (iuzzu) " 3(1{24U) ’ (65)

V., (u)= [lu—sjs[Ak - B,] . k>0.

Taking the inverse Sumudu transform of both sides of (64) and (65), we obtain the
solution as follows:
2 X3 X4
U(x)= 1+X+E+—+—+

3 4 (66)
V(x)= 1+2x + (2x) + (2x) + (2x) +
2! 3! 4!
Then the solution for the above system is given by;
L0, V()= (e &™), (67)
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CHAPTER (5)
Comparison of Adomian Decomposition Method and
Sumudu Transform Method with Other Methods

Our aim of this chapter is to introduce a comparative study between Adomian
Decomposition Sumudu Transform Method (ADSTM) and different powerful
methods to solve several linear and nonlinear partial differential equations, and
nonlinear integral equations, namely, The Sumudu transform method (STM), The
Adomian Decomposition Sumudu Transform Method (ADSTM), The Adomian
Decomposition Sumudu Transform Method with a Pade’ approximant (ADSTM-PA
method), The Homotopy Perturbation Method (HPM), and The Variational Iteration
Method (VIM).

The Adomian decomposition Sumudu transform method is a combination of Sumudu
transform and Adomian decomposition method. This method is a simple and directly
without any restrictive assumption as usual is going in other methods for obtaining
exact or approximant solutions for nonlinear problems.

5.1: Comparison of Adomian Decomposition Method and
Sumudu Transform Method with Sumudu Transform for Solving
Linear Partial Differential Equations

Partial differential equations are a necessary part in applied science and
engineering fields. The wide use of these equations is the most important reason why
they have drawn mathematician's attention. Despite this, they are not easy to find an
answer, either numerically or theoretically.

In this section, the main objective is to introduce a comparative study to solve linear

partial differential equations using Adomian decomposition method and Sumudu
transform method with Sumudu transform method.
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5.1.1: Basic lIdea of (ADSTM)

To illustrate the basic idea of this method, we consider a general nonlinear non-
homogenous partial differential equation with the initial conditions of form;

DU(x,t) + RU(x,t) + NU (x,t) = g(x,t) )
U(x,0)= h(x) ,U,(x,0) = f(x),

Where D is the second order linear differential operatorD=aat—2, R is linear

differential operator of less order than D , N represent the general nonlinear operator
and g(x,t) is the source term.
Taking the Sumudu transform of both sides of Eqg. (1), we get;
S[DU (x,t)]+S[RU(x,t)]+S[N (x,t)] = S[g (x,t)]. (2)

Using the differentiation property of the Sumudu transform and given initial
conditions, we have;

S[U(x,t)] = u?S[g(x,t)] +h(x) + u f(x) —u?S[RU(x,t) + NU(x,t)]. (3)
Now, applying the inverse Sumudu transform of both sides of (3), we get,

U(x,t)=G(x,t) - $*[u* S[RU (x,t) + NU (x,t)]]

Where G(x,t)represents the term arising from the source term and the prescribed
initial conditions. Now, apply the Adomian decomposition method;

= YU, (xt). (5)
The nonlinear term can be decomposed as;
=2A,U) (6)
For some Adomian polynomials A, (U) that are given by;
...... "U = 7
An(UO’Ul’UZ ) ’Un) nldln{ (nzl J:L_O o N 0’1’2’ ( )

Substituting Eq. (5), and Eq. (6), in Eq. (4), we get;
ZU (x,t)-S™* {UZS{RiU n(x,t)+iAn(u)ﬂ (8)
n=0 n=0
So that the recursive relation is given by;

U,(x,t) = G(x,1),

Upa(,t) == [u?s[Ru, + A ], k 20. 9
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5.1.2: Basic Idea of (STM)

The Sumudu transform is an integral transform similar to the Laplace transform,
introduced in the early 1990s by Watugala [1] to solve linear differential equations
and control engineering problems.

Note that these definitions will use in this section.

Definition (5.1.1): The Sumudu transform of a function f(t), defined for all real
numbers t > 0, is the function F(u), defined by:

F@)= S[f@)] = j exp {——}f(t)dt (10)
Or
F@)=s[f@]= [eop [t]f @) (11)

Definition (5.1.2): The double Sumudu transform of a function f (x,t), defined for all
real numbers ( t>0,x>0) , is defined by:

s[f(x,t)]= .[ exp {——}f(x t) dt (12)

In the same line of ideas, the Sumudu transform of the second partial derivative with
respect to t is of the form [3]

S{M} ~F (x, u)——F(x 0)

ot
S{W}_—F(x 1)~ LGy L 2R0L0) (13)

Similarly, the Sumudu transform of the second partial derivative with respect to x is of

the form [3],
S[—afg); t)} —F(x,u)

s{azf(x t)} i _F(x,u) (14)

Ox?
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5.1.3: Application

In this section, we demonstrate the analysis of two methods by applying two
methods to the following of two partial differential equations.

Example (5.1.3): Consider the following one — dimensional heat equation:

1
Zuxx =, ; (15)
With the initial condition:
u(x,0)= Zsin%x : (16)
I: Using (ADSTM)
Following discussion presented above, we obtain the recursive relation:
U, = Zsinzx,
2
1. Tt . &
Ul:ZS l[us[(UO)xx]]:_ 8 SInEX’ (17)
1 _._ V2 G -
U2 :Z l[uzs[(ul)xx]] = 256 SInEX'
And so on. The solution in a series form given by:
. ’t  xtt?
U(x,t)= —X|2 - - ..
(x,t) = sin > x( BT ] (18)
And in a closed form of,
U(x,t)=23in%xe_16t . (19)
I1: Using (STM)
Taking the Sumudu transform of (15) and using initial condition (16) we get:
d? 4 8 . &
—-U(x,u)——=U(Xx,u)=——=sIn—X
dxz()u()u2 (20)

This is the second order differential equation. First, we find the homogeneous
solution;
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RO 1)

U.(x,u) = Ae'" +Be W

Using boundary conditions:

This gives:
0 =A+B —(i)
A _4
0 = Ae'" + Be YU —(ii)
From (i) and (ii) , we have only a trivial solution A=B =0 .

Second, we find particular solution;

sian T
U (X,u)=—— =32. sin—x
(0] u e _4 eru +16} 2 (22)
u
The general solution is:
T
sin—x (23)

U(x,u) =U +U, = 32| ——
() =V, +U, LzuﬂJ 2

Taking the inverse Sumudu transform we get:
L
U(x,t) = Zsin%xe 6 (24)

Example (5.1.4): Consider the following wave equation:
u, —4u, =0 (25)
With the initial conditions:
u(x,0)=sinzx ,u,(x,0)=0 . (26)

I: Using (ADSTM)
Proceeding as before, we obtain:
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U, = Sinzx,
u, =4S (L, (uy)) = —272t?sinzx,

(27)
-1 27T4t4 .
u,=487(L(u,))= sinzx .
And so on. The solution in a series given by:
: (27rt)2 (27rt)4
u(X,t)—Slsz[l— ot (28)
In a closed form:
u(x,t)=sinzxcos2zt (29)
I1: Using (STM)
Taking the Sumudu transform of (25) and using initial condition (26) we get:
2
uz%u(x,uﬂu(x,u):ucosx; (30)
X

This is the second order differential equation which has the particular solution in the
form:

UCoSX UCoSX
Ui(x,u) = =
() u?’D*+1 -u’+1°
If we take the inverse Sumudu for Eq. (31), we obtain the solution of Eqg. (25) in the
form:

(31)

U(x,t) = cosxsinht . (32)

Notes on (STM) and (ADSTM):

From the previous analysis, we can observe that:
The two methods are powerful and efficient. Adomian decomposition Sumudu
transform method provides the components of the exact solution, where these
components must follow the summation given in (5). However, application of the
Sumudu transform to the solution of linear partial differential equations has been
demonstrated.
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5.2: Comparison of Adomian Decomposition Method and
Sumudu Transform Method with Homotopy Perturbation
Method for Solving Nonlinear Partial Differential Equations

In this section, the main objective is to introduce a comparative study to solve
nonlinear partial differential equations using Adomian decomposition Sumudu
transform method and homotopy perturbation method.

5.2.1: Basic Idea of HPM

Consider the following general nonlinear differential equation,

u-N@u)= f, (33)
Where N is nonlinear operator from Hilbert spaceH toH , uis an unknown
function, and f is a known function inH .

The homotopy perturbation method u as a series with componentsu,, and
N(u) as a series with components H
calculated using the formula:

1 dn 0 i
H =— N u; A'
" nldA" (;0 ' J

To illustrate the homotopy perturbation method (HPM), we consider (33) as;
L(v)=v(x)- f(x)-N(v)=0 (35)
with solutionu(x). As a possible remedy, we can define homotopy H (v, p) as
follows:

homotopy polynomials, which can be

n!

(34)

A =0

H(v,0)=F(v) , H(v,1)=L(v)
Where F(v)is an integral operator with known solutions which can be obtained

easily. Typically, we may choose a convex homotopy in the form;

H(v.p)=(-p)F(v)+pLv)= 0 (36)
And continuously trace an implicitly defined curve from a starting point H(v,,0)to a
solution function H(u,0). The embedding parameter p monotonically increase from
zero in the unit as the trivial problem F(v)= 0is continuously deformed to the original
problem
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V=V, + PV + PV, + PR+ (37)
When p —1, Eq. (36) corresponds to Eq. (35) and (37) becomes the approximate

solution of Eg. (35), i.e.
V= limVo+ Vv, +V,+ v+ - (38)
p—

5.2.2: Application

In this section, we demonstrate the analysis of two methods by applying two
methods to the following two Kortewege — deVries (KdV) partial differential
equations.

Example (5.2.5): Consider the following inhomogeneous nonlinear KdV equation
[45]:
U, +UU, +U_ =sinx +tcosx(tsinx —1) : (39)
With the initial condition:
u(x,0)= 0 . (40)

I: Using (HPM)

To solve equation (39)-(40) by homotopy perturbation method, we construct the
following homotopy:

3
oV _0uy [_ua_u _ou +sinx+tcosx(tsinx—1)— %‘)] (41)

ot ot O0X ox®
Assume the solution of Eq. (41) to be in the form:
V=V,+ pV,+pV,+ piv+- - (42)

Substituting (42) into (41) and comparing coefficients of terms with identical powers
of p, leads to:

0.0V, 0OU; _
"0y oy
3
ol A7 —u, OUp _ 9 u3° 4 Sin X + t2CosXSin X — tcosx — S0 (43)
ot o0 X O X ot
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The given initial value admits the use of:

Uy(x,0)= 0 (44)
The solution reads:
Uy(x,t)=0

ot t?
u,(x , t) =tsinx +§smxcosx—zcosx, (45)

t3 . t? t* o, ot
Uy(X, y) = — —SiNXCOSX + — COSX — —SiN’ X ——Sin° X +....
3 2 3 3

Examining the components u, and u, in Eq. (45), we can easily observe that the last
two terms in u, and the first two terms in u, are the self-canceling (noise terms).
Hence, the non-noise terms in u, yields the exact solution of equations (39)-(40),
given by:

u(x,t)= tsinx . (46)

Notes on (HPM):
From the previous analysis, we can observe that:

e HPM can be applied it to various nonlinear problems. The
main disadvantage is that we should suitably choose an initial
guess.

e HPM needs some modification to the rapid convergence of the
series solution.
To overcome these disadvantages of HPM, the following ADSTM method is
suggested.

I1: Using (ADSTM)

By taking Sumudu transform for (39) and using (40) we obtain:
S[U(x,t)]=usinx + 2u®cosxsin x —u?cosx —uS[UU, +U . |. (47)
Applying S to both sides of (47) we obtain;
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3 2

U(x,t):tsinx+%cosxsinx—%cosx—S‘l[uS[UUX +U ]l . (48)

Substituting;

U(x,t):iun(x,t) ; (49)
n=0
And the nonlinear terms of;
W, = YA . . (50)
n=0

Into (48) gives;

0 3 2 o0 0
> U, (x,t)=tsin x + % COSXSiN X — t?cosx -s {u S{ DA+ [zUn(x,t)j H (51)
n=0 XXX

This gives the modified recursive relation;
U,(x,t) = tsinx,
3 2
U,(x,t)= % cosxsin x — %cosx ~stus[ A + (U,),, ] (52)
U (x,t)==S™(A +U,), k=1

The first few of the components are given by;
U,(x,t)=tsinx,

3

2
U,(x,t)= %cosxsin X — t?cosx s 'us[ A, +U,),, =0,  (53)
U,.(x,t)=0, k>1.

The solution in a closed form is given by;
U (x,t) =tsinx . (54)

Example (5.2.6): Consider the following inhomogeneous nonlinear KdV equation
[45]:
U, +UU, + U, =(xt +sinx)(t + cosx) + X + COSX : (55)
With the initial condition:
u(x,0) = sinx . (56)

I: Using (HPM)
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Using a homotopy perturbation method like in Example (5.2.5), we obtain the
following components:

Uy (X, t) =sinx

1 1 ) 1. .
U, (X, t) = xt + = xt® + = xt? cosx + tcosx + tsinxcosx + = t?sinx ,
3 2 2 (57)

i 1, .
U,(X, t) =—tcosx —tsinxcosx — ~t?sinx —....
2

It is obvious that the last three terms in u, and the first three terms in u, are the self-
canceling (noise terms). Keeping the remaining non-noise terms in u, leads to the
exact solution of equations (55)-(56), given by:

u(x,t)= xt+ sinx . (58)

I1: Using (ADSTM)

Proceeding as in Example (5.2.5), Eq. (55) becomes:

< . 1 1 . 1,.,.
DU, (x,t) = xt +sinx + gxt3 + Eth COSX + tCOSX + tsin Xxcosx + Etzsm X—

" _st {u S{ :Z;:?A” ’ (éun(x,t)l“ H

The modified decomposition method admits the of a modified recursive relation given
by:

(59)

U,(x,t)= xt + sinx,

1 1 . 1.,.
U,(x,t)= Sxt + =xt’cosx + tcosx + tsin xcosx + —t?sin x—
' 3 2 2

-sHus[ A + U (), I,
U (x,t) = - Sil[US[Ak + (U, (x.t)) ]]kzj-'

(60)

Consequently, we obtain:
U,(x,t) =xt+sinx,

Ul(x’t) =0, (61)
U,.(x,t)= 0, k=1
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In a few of Eq. (61), the exact solution is given by:
U(x,t)= xt+sinx . (62)

Remarks:

In this section, we accurately employed the modified decomposition method that
accelerates to the rapid convergence of the series solution. The comparison with the
homotopy perturbation method (HPM), the decomposition Sumudu transforms
method (ADSTM) gives better performance in many cases, and this implies the
decomposition Sumudu transforms method an advantage over the homotopy
perturbation method.

5.3: A Comparative Study Numerical Methods for Solving Integro
— Differential Equations

Our aim of this section, is to introduce a comparative study to solve integro-
differential equations by using different numerical methods, namely; the Adomian
decomposition Sumudu transform method (ADSTM), the homotopy perturbation
method (HPM), the Adomian decomposition Sumudu transform Sumudu method
with the Pade approximant (ADST -PA method), and the variational iteration method
(VIM).

In the present study, we consider the nonlinear integro-differential equation of the
following type [51]:

u'(x)= f(x)+ jK(t,u(t),u’(t))dt , (63)

With the initial condition;

u()=a , 0<x<1. (64)
Where f(x) is known as the source term and K(t,u(t),u’(t)) is a linear or nonlinear
function depending on the problem discussed.

5.3.1: Basic Idea of (ADSTM)

In this section, Adomian decomposition Sumudu transform method is applied to the
following classes of nonlinear integro-differential equation (63).
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The method consists of first applying the Sumudu transformation of both sides of Eq.
(63);

ST 0] s[5 [t ) w0 (65
Using the formulas of the Sumudu transform, i/ve get;
ut UK utU( ﬁK } (66)
Using the initial condition (64), we have; O
SU(0]- ausli(les [k u@a] . 67

In the Sumudu decomposition method we assume the solution as an infinite series,
given as follows;

>, (68)

where the terms u, are to be recursively computed. Also the nonlinear term
K(t,u(t),u’(t)) is decomposed as an infinite series of Adomian polynomials:

K(t,u(t),u(t)) = Z}An , (69)

Where A = A (u,,u,,u,,...,u, ) are determined by the following recursive relation:

v 2]
Using (68) and (69), we rewrite (67) as;
s{iu }—a+u8 +USD{ZA} } : (71)

Applying the linearity of the Sumudu transform, we have;

s{gou }— o + us[f +u“23 } . (72)

on=0

Now, we define the following iterative algorithm:
S[U,]= o +us[f(x)],

ST E usﬁAk dt} K0, (73
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As the result, the components U,,U,,U,,U,,..,U_  are identified and the series

solution is thus entirely determined. However, in many cases the exact solution in the
closed form may also be obtained.
From a numerical point of view, the approximation;

U(x)= lim[g,] , (74)

n—oo

Where
¢n = ZUK(X) ! (75)
k=0
Used in the Sumudu decomposition scheme for computing the approximate solution.
It is also clear that a better approximation can be evaluated more components of the
series solution (68) of U(x).

5.3.2: Basic Idea of The Pade/ Approximant

Here we will investigate the construction of the Pade’ approximates for the functions
studied. The main advantage of the Pade’ approximation gives a better approximation
of the function than truncating its Taylor series.
The Pade’ approximation of a function, symbolized by [m / n], is a rational function
defined by;
a, +a, X+a, X* +...+a, x"

1+b, x+b, x> +...+b, X"
Where we consideredb, = 1, and numerator, denominator have no common factors.

In The (ADSTM-PA method) we use the method of the Pade’ approximation as an
after — treatment method to the solution obtained by the Adomian decomposition
Sumudu transform method. This after — treatment method improves the accuracy of
the proposed method.

[m/n]= (76)

5.3.3: Basic Idea of The Homotopy Perturbation Method (HPM)

To explain (HPM), we consider (63) as;
L(u)=u'(x)-f(x)- jK(t,u(t),u’(t))dt =0, (77)
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With solution f(x).Now, we can define homotopy H(u, p) by;

H(u,0)=F(u) , H(u,1)=L(u), (78)
Where F(u) is a functional operator with a solutionv,, obtained easily. Now, we
choose a convex homotopy by;

H(u,p)=@1- p)F(u)+ pLu)=0 . (79)
And continuously trace an implicitly defined curve from a starting point H(v,,0) to a
solution functionH(f,1). Here the parameter p is monotonically increasing from
zero to unit along — with the trivial problem F(u) =0 is continuously deformed to the
original problem L(u) = 0.
The (HPM) uses the homotopy parameter p as an expending parameter to obtain;

U=Vy+pVv,+p2Vv,+piv,+... , (80)
When p —1, Eq. (80) becomes the approximate solution of (13), i.e.
f = limvy+v,+v,+... . (81)
p—-l

Series (79) is convergent for most cases, and the rate of convergence depends on L(u) .

5.3.4: The Variational Iteration Method (VIM)

To clarify the basic ideas of (VIM), we consider Eq. (63) as correction
functional as follows;

X

s (%) =, (%) + Il(é)[(u;(é)— f¢)- TK(r,U(r),u’(r))drB dg . (82)

0
Where 2 is general Lagrange multiplier which can be identified optimally via
integrated by parts. The successive approximations u,.,(x), n>0 for the solution u(x)

will be readily obtained upon using the Lagrange multiplier and by using the selected
function  Consequently, the exact solution may be obtained by using:

u(x)= limu,

n—o
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5.3.5: Application

In this section, we demonstrate the analysis of all the numerical methods by applying
the methods to the following two integro- differential equations. A comparison is also
given in the forms of graphs and tables, presented here.

Example (5.3.7): Consider the following integro- differential equation [51]:
U'(x)=-1+ [U?(t)dt, (83)
0

With the initial condition;
U@)=0, 0<x<1. (84)

I: Use (ADSTM)

Taking the Sumudu transform of both sides of (83) gives;

ut S[U(x)-utu(0)=-1 +sﬁu 2(t)dt} . (85)
Using the initial condition (84), we have;
SJU(x)]= —u +uSﬁU2(t)dt} . (86)

By the assumption (68) and (69), we rewrite (86) as;

s{iun} = —U +uU SU{iAn}dt:l : (87)
n=0 0| n=0
where the nonlinear term  K(t,u(t),u’(t))=U? is decomposed in terms of the Adomian
polynomials as suggested in (69). Few terms of the Adomian polynomials for U? are
given as follows:

A =U,’,

A :2Uo U,,

A, =2U,U, +U,’,

A, =2U,U, +2U,U,.
And so on. Following the Adomian decomposition Sumudu transform method, we
define an iterative scheme;
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U uSﬁAk dt}  k >0. (88)
0
Applying the inverse Sumudu transform, finally we get the value of U,,U, U, ,....
Up= S7'[-u]= —x,
X B X4
U1:SI|:US '([Aodt :E’
— - - X7

U22871USIA1dt :—2_52, (89)

10

L O
iy )
U,=SHuS||A dt]||= ,
s ! 2 ﬂ 6048

X X13
U,=S*us dt || = — .
4 { H A ﬂ 157248

Similarly, we can also find other components. Finally, the solution takes the following
form;

x* X’ X X
UX)= =X+ ————+ - +...
12 252 6048 157248

10 13

(90)

Notes on (ADSTM):
From the previous analysis, we can observe that:
1. ADSTM can obtain a series solution, not converge, which
must be truncated. The truncated series solution is an
inaccurate solution in that region, which will greatly restrict

the application area of the method.

2. ADSTM needs some modification to overcome the Taylor
series does not converge.

To overcome these disadvantages of ADSTM, the following ADSTM -PA method is
suggested.
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I1: The Proposed (ADST -PA Method)

Here, we purpose to establish Pade approximant to give a better approximation of
function truncating its Taylor series see (section 3.9) in chapter three.

The [m / n] Pade’ approximant of the infinite series (28), with m>4andn>4, which
gives the following fraction approximation to the solution:

U(x)= 28 (92)

I11:  Use Homotopy Perturbation Method (HPM)

The homotopy of (83) can be readily written in the form;
H(v,p)=Vv(x)+1- pjuz(t)dt=0 , (92)
0

This homotopy can continuously trace an implicitly defined curve from a starting
point H(v,0) to a solution function H(v,1). Collecting the coefficients of like power of

Pand setting to be equal zero, we have;

p°:v0’(x)+l:0 = V(x)=-x,
' X X4
p':v, (x)—!vozdtzo = vl(x)zﬁ,

X7

!

p2:v, (x) - !(ZVO v)dt =0 = v,(x)=- 255 ! (93)
' X x10
p3:v, (x) - !(Zvovz +v12)dt =0 = v,(x)= 5048
' X x13
p*:v, (x)- !(ZVO V, +2v, v, )dt =0 = v,(x) = - 57248
Therefore, we obtain;
u(x)= limvg,+v, +v, +... (94)

p—-l

Or
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u(x)= —-x+— - —+ - + ...
12 252 6048 157248

X

7

X

10

X

13

(95)

Step Size ADSTM ADST-Pade HPM VIM
0 0 0 0 0
0.1250 - 0.1250 -0.1244 -0.1250 -0.1250
0.2500 - 0.2497 -0.2476 -0.2497 - 0.2497
0.3750 - 0.3734 -0.3691 -0.3734 -0.3734
0.5000 - 0.4948 -0.4882 -0.4948 - 0.4948
0.6250 - 0.6124 -0.6040 -0.6124 -0.6124
0.7500 - 0.7242 -0.7155 -0.7242 -0.7242
0.8750 - 0.8277 -0.8215 -0.8277 -0.8277
1.000 - 0.9205 -0.9205 -0.9205 -0.9205
1.1250 - 1.0000 -1.0112 -1.0000 -1.0001
1.2500 - 1.0638 -1.0926 -1.0638 -1.0640
1.3750 - 1.1097 -1.1635 -1.1097 -1.1104
1.5000 - 11353 -1.2231 -1.1353 -1.1376

Table 1: Comparison of (ADSTM), (HPM), (VIM) and (ADST -PA) for Example 1

The numerical results shown in Table 1: imply the effectiveness of numerical methods
discussed here. These methods give highly accurate in the very little iteration.
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5 combine between ADSTM-HPM,VIM and ADST-PA

5 0 ' ' ADST-PA
b ADSTM-HPM
o ¥ VIM

o -02- ]
[ o

[}

=

=

L o4 .
Il

[#3]

(]

<

= e .
I

=

'_

a

< 08 :
[1h]

£

[=)]

£

3

> -1r ol
0

1))

| o

S

>

0 421 .
[b)

=

£

5

a-1.4 I I

a 0.5 1 15

X

Fig 1: Combine between (ADSTM), (HPM), (VIM) and (ADST-PA), for Example 1.

IV: Use Variational Iteration Method (VIM)

The correction, functional for the equation (83) is given by:

X

u,,(x)=u,(x)- J.(Ur:(t)-i‘ 1- j.urf (r)dr}dt, (96)

0
We used here A =-1 for first order integro- differential equation. We can use the
initial condition to selectu,(x)=u(0)=0. Using this selection into the correction
functional gives the following successive approximations:
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u,=— X,
X4

U,=—X+ —, 97

2 5 (97)

X4 X7 XlO

Ug= =X+ —— — + ,
12 252 12960
x4 X’ x10 37x® 109x*®

Uy =—X+ ——

+ — + . + ...
12 252 6048 7076160 914457600
And so on for other approximations. The (VIM) admits the use of:
u(x)= limu, |, (98)

This gives the following approximation solution:

x* X’ x* 37 x" 109x'®
u(x)=-x+ — — + - +. +...
12 252 6048 7076160 914457600

(99)

Notes on (VIM):
From the previous analysis, we can observe that:

VIM can obtain a series solution, not exactly like Adomian

decomposition method. The VIM may not lead to faster
convergence (repeated calculations) in each step.

Example (5.3.8): Consider the following integro- differential equation [51]:

U'(x)= 1+ [U(t (t)dt, (100)
0
Given the initial condition;
U@)=0, 0<x<1. (101)
With the exact solution:
U(x)=+2 tan[%j . (102)

I: Use (ADSTM)
Taking the Sumudu transform of both sides of (100) gives;
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ut S[U(x)-u?u(0)=1 +SﬁU(t)J ’(t)dt} . (103)
Using the initial condition (101), we have;
SU(x)]= u +uSﬁU(t)J’(t)dt} . (104)

By the assumption (68) and (69), we rewrite (104) as;
s{iun} =Uu+u Slij{i Bn}dt} : (105)

where the nonlinear term  K(t,u(t),u'(t))=U(tU'(t) is decomposed in terms of the
Adomian polynomials as suggested in (69). We have a few terms of the Adomian
polynomials of u(t Ju'(t)which are given by:

B, =U,U,,,

B, =U,U,, +U,U,,,

B, =U,U,, +U, U, +U, U, ,

B, =U,U,, +U,U,, +U, U, +U,U,;.
And so on. Following the Sumudu transform decomposition method, we define an
iterative scheme;

17X

U,=S"us = .
2520

S[U,]= u,
X (106)
slu,..]=us| [B, dt| , k =0.
0
Applying the inverse Sumudu transform, we can evaluateu,,u, ,u,,... as:
Ug= Sil[u]= X,
B X 7] X3
U,=S u%jsom_ =5
[ [ ] 5 107
U,=57|us| [B.dt||= =, (107)
B 1] 30
0

T 1
o
N
o
—
| I |
|

Similarly, we can also find other components. Finally, the solution takes the following
form;
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3 5 7
U(x) = x+ 0 X, 17X

i (108)
6 30 2520

I1: The Proposed (ADST -PA Method)

The [m / n] Pade’ approximant of the infinite series (108), with m>4andn>4, which
gives the following fraction approximation to the solution:

U(x) = a (109)

I11:  Use Homotopy Perturbation Method (HPM)

The homotopy of (100) can be readily written in the form;
H(v,p)=V(x)-1-p ju(t)u’(t)dt =0 , (110)
0
Proceeding as before in Example (5.4.7), we obtain;
p°:v, (X)=1=0 = v,(x) = x,

3

p': Vl’(x)— IVon dt=0 = Vl(X):% ,
0

' ¢ > 111
pZ:v, (x)—j(vovlt TV, Jdt =0 = v,(x) = % : (111)
0
' ! 17x’
p*:v, (x) - .!(vovﬂ + Vv, + vzvm)dt =0 = v,(x)= 5520 °
Therefore, we obtain;
u(x)= limv,+v, +v, +... | (112)

p—-l

Or
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3

5 7
u(x) = NI S Lo (113)
6 30 2520
Step Size Exact Sol. Error (ADSTM) Error (ADST-PA) Error (HPM)

0.0000 0.0000 0.0000 0.0000 0.0000
0.1250 0.1253 0.0000 0.0000 0.0000
0.2500 0.2526 0.0000 0.0000 0.0000
0.3750 0.3840 0.0000 0.0000 0.0000
0.5000 0.5219 0.0001 0.0000 0.0001
0.6250 0.6691 0.0003 0.0000 0.0003
0.7500 0.8292 0.0010 0.0000 0.0010
0.8750 1.0069 0.0030 0.0000 0.0030
1.0000 1.2085 0.0081 0.0000 0.0081
1.1250 1.4431 0.0198 0.0000 0.0198
1.2500 1.7243 0.0452 0.0000 0.0452
1.3750 2.0737 0.0979 0.0000 0.0979
1.5000 2.5275 0.2051 0.0001 0.2051

Table 2: Comparison of (ADSTM), (HPM) and (ADST -PA method), for Example 2.

134



combine between ADSTM ,HPM and ADST-PA

5 3 ‘ .
5 Exact solution

P ADSTM and HPM
S * ADST-PA

>

D 5 £
f oy

o

<

(o}

i

4 oL |
<

=

[a

I..

=

wn 1.5+ 2
O

<

i3]

£

f=)]

£

2 A &
>

fie]

w

c

S

5

205+ -
=

=

B

S

o Q | I

= p 0.5 1 15

Fig 2: Combine between (ADSTM), (HPM) and (ADST-PA), for Example 2.

IV: Use Variational Iteration Method (VIM)

The correction, functional for the equation (100) is given by:

X

u,,(x)=u,(x)- J'(u;(t)— 1- j'un (r)u;(r)dr}dt, (114)

0

Proceeding as before in Example (5.3.7), we obtain;
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u= X,
X3
Uy= X+ —,
6
x2 x> X
Uj= X+ — 4+ — + ——
12 3 504
x2 x* 17x" 19x%°
u,= X+ NEAN

u(x)= limu, |,

n—o

This gives the following approximation solution:

x2 x> 17x" 19x°
u(x)=x+ —+—+

— + + ...
6 30 2520 22680
And so on for other approximations. The (VIM) admits the use of:

+ + .
6 30 2520 22680

Step Size Exact Sol. Error (ADST-PA) Error (VIM)
0.0000 0.0000 0.0000 0.0000
0.1250 0.1253 0.0000 0.0000
0.2500 0.2526 0.0000 0.0000
0.3750 0.3840 0.0000 0.0000
0.5000 0.5219 0.0000 0.0000
0.6250 0.6691 0.0000 0.0000
0.7500 0.8292 0.0000 0.0001
0.8750 1.0069 0.0000 0.0002
1.0000 1.2085 0.0000 0.0009
1.1250 1.4431 0.0000 0.0029
1.2500 1.7243 0.0000 0.0087
1.3750 2.0737 0.0000 0.0242
1.5000 2.5275 0.0001 0.0644

Table 3: Comparison of (ADST -PA method) and (VIM), for Example 2.

(115)

(116)

(117)

Numerical results shown in Table 2, 3: illustrate the importance of (ADST -PA
method) over other numerical methods. In (ADST -PA method), we have used only 4
iterations and [4 /4] Pade’ approximation of the solution obtained by (ADSTM),

(HPM) and (VIM).
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Fig 3: Combine between (ADST-PA) and (VIM), for Example 2.

Concluding Remarks:

In this section, we have studied a few recent familiar numerical methods for solving
integro-differential equations. The numerical studies in this section showed that all the
method gives highly accurate results for given equations. The (ADSTM), the (HPM)
and the (VIM) are simple and easy. Despite this, they are not converging to a closed
form. Since the method of the (ADSTM) is based on an approximation of the solution
function in this study by the truncating of approximation the solution, this kind of
approximation is an inaccurate solution, which will greatly restrict the application area
of the method. To overcome these demerits, we use the Pade approximations. This
fact is also verified by the second example given in the study.
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Table: Laplace and Sumudu transform of some function

f(t) F(s)=L[f ()] F(u)=s[f ()]
1 1 1
s
t 1 u
5?2
n-1 l n-1
t n=12, — N
(n-21)! S
1 1 1
wt Js Ju
2 i 3 \/U
T S?
a-1 1 a-1
t— ,a>0 — !
I(a) s
eat 1 1
s—a 1-au
te® 1 u
(s—a) (1-au)?
1 n-1 .at 1 l,lni1
t"e® ,n=12, -
(n-1)! (s-a) L-au)'
1 k-1 .at 1 lei1
——te® k>0
r(k) (s-a)f (1-au)
1 at bt 1 u
———e* —-e”"),azb
(a—b)( ) az (s—a)(s—b) (1-au)1-bu)
1 at bt S l
-b , b
(a—b)(ae ) ax (5—a)(s—b) (- au)@—bu)
1 . 1 u
—sinwt
WSln s? +w? 1+u?w?
coswt s 1
s? +w? 1+ w?u?
1. 1 u
—sinh at
aSln 3 s? —a? 1-a’u?
coshat S 1
s’ —a? 1-a’u?
1 .. 1 u
—e®sinwt
w (s—a) +w? (1—au)® +w?u?
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e coswt s—a 1-au
(s—a)’ +w? (1-au)* +w?u?
1 1 2
— (1 - coswt u
7 4 cosw) & w) oW
1 . 1 3
—(wt —sin wt u
5 ) I ) oW
1 .. 1 8
(sin wt —wt coswt) u
o) e
Lsinvvt S u’
2W (s +w?f (L+wou?)
Zi(sinwt + Wt coswt) s !
W (s? +w?) (1+W2u2)2
L sin ktsinn kt 5 u’
l2k s” +4k 1+4k*u*
. . 1 3
h kt - u
2k3(sln sin kt) oy T
1 S 2
hkt - !
% (cos coskt) oy T
Jo(at) 1 __t
Vs? +a’ Vv1+a’u?®
H(t-a) 1 _a
S e
s(t-a) e ™ 1 @
o
E(l—cosvvt) s*+w’ In(1+w?u?)
T In SZ —IinlL+w"u
2. s? —a? 1
t(1 cosh at) In x E|n(1_a?uz>
1.
£sin wt tan 1% %tan “wu
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