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Abstract 

 

          This study is fundamentally centering on the application of the Adomian 
decomposition method and Sumudu transform for solving the linear and nonlinear 
partial differential equations. 

           It has instituted some theorems, definitions, and properties of Adomian 
decomposition and Sumudu transform. This study is an elegant combination of the 
Adomian decomposition method and Sumudu transform. Consequently, it provides 
the solution in the form of convergent series. Then, it is applied to solve linear and 
nonlinear partial differential equations. 

            Finally, the solutions of linear and nonlinear partial differential equations 
by this method, and other methods are compared. 
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 الخلاصة   

  

اساسا علي تطبیق طریقتي تفكیك ادومیان وتحویل سمودو  لحل   تتمحورھذه الدراسة
  .المعادلات التفاضلیة الجزئیة الخطیة و غیر الخطیة

ستقوم الدراسة بوضع  بعض النظریات,  التعریفات,  والخصائص لطریقتي تفكیك ادومیان وتحویل 
ایجاد الحل , وبناء علي ذلك, ادومیان وتحویل سمودوتفكیك الدراسة ھي مزیج رائع من طریقتي  ھذه.سمودو

    . من ثم طبقت الدراسة لحل المعادلات التفاضلیة الجزئیة الخطیة وغیر الخطیة.في شكل متسلسلة متقاربة

 .واخیرا تمت مقارنة حلول المعادلات التفاضلیة الجزئیة الخطیة وغیر الخطیة مع طرق مختلفة
 

 



 

V 
 

      Introduction:- 
 
       Many of nonlinear phenomena are a necessary part in applied science and 
engineering fields. Nonlinear equations are noticed in a different type of physical 
problems such as fluid dynamics, plasma physics, solid mechanics, quantum field 
theory, propagation of shallow water waves, and many other models are controlled 
within its domain of validity by partial differential equations. The wide use of these 
equations is the most important reason why they have drawn mathematician's 
attention. Despite this, they are not easy to find an answer, either numerically or 
theoretically. In the past, active study attempts were given a large amount of attention 
to the study of getting exact or approximate solutions of this kind of equations. 
  
       Therefore, it becomes increasingly important to be familiar with all traditional 
and recently developed methods for solving partial differential equations. For some
examples of the traditional methods, such as, the separation of variables method, the 
method of characteristics, the  - expansion method [60], the integral transforms and 
Hirota bilinear method [61].Moreover, the recently developed methods like, Adomian
decomposition method (ADM), He’s semi – inverse method, the tanh method, the 
sinh – cosh method, the homotopy perturbation method (HPM) [62-73], the 
differential transform method (DTM) , the variational iteration method (VIM) [74-78], 
and the weighted finite difference. 
  
       Other techniques including the Laplace decomposition method (LDM) [79-85], 
the homotopy perturbation transform method (HPTM) [86-88], and variational 
iteration algorithms using the Laplace transform [89], have been also used. 
 
        In this research, our presentation will be based on applying the new method 
namely, the Adomian Decomposition Sumudu Transform Method (ADSTM) for 
solving linear and nonlinear differential equations, ordinary or partial and integral 
equations. This method is an elegant combination of the Sumudu transform method 
and decomposition method. The method has advantages of converting to the exact 
solution and can easily handle a wide class of both linear and nonlinear differential 
and integral equations.   
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CHAPTER (1)  

Linear Partial Differential Equations   
 

1.1:  Sumudu Transform 
  
           A long time ago, differential equations warred a necessary part in all aspects of 
applied science and engineering fields. Despite this, they are not easy to find an 
answer, either numerically or theoretically for these equations. In order to develop 
new techniques help in obtaining exact and approximate solutions of these equations 
is still a big problem need new methods. 
 Watugula [1] introduced a new integral transform and called it as Sumudu transform, 
which is defined as: 

      
 






 


0

1 dttfe
u

tfSuF u
t

;                                  (1) 

Watugula [1] applied this transforms to the solution of ordinary differential equations. 
Because of its useful properties, the Sumudu transforms helps in solving complex 
problems in applied sciences and engineering mathematics. Henceforward, is the 
definition of the Sumudu transforms and properties describing the simplicity of the 
transform.  
 
Definition (1.1.1): The Sumudu transform of the function   ( )f t  is defined by: 

      
 






 


0

1 dttfe
u

tfSuF u
t

                                   (2) 

Or 

      



0

dtetuftfSuF t                                    (3) 

For any function ( )f t  and 1 2u     
 
 
Theorem (1.1.2): If     uFtfS   and  

 
 


























t

ttf
tg

,0

,
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Then  

    uGetgS u
t






 

  
 
Theorem (1.1.3) [2]:  If 0,0 21  cc and 0c  are any constant,    tftf 21 ,  
and  tf any functions having the Sumudu transform    uGuG 21 , and  uG  
respectively then: 

i.           tfSctfSctfctfcS 22112211   

                                   
   uGcuGc 2211 

 
ii.     ucGtcfS   

iii.      uGftf
ut 00
lim0lim


  

Further are worded more, for several functions  tf defined for 0t  in the 
neighborhood of infinity (i.e. as t )  

   uGtf
ut 

 limlim  

 
1.1.1: The Relation Between Sumudu and Laplace Transform 

The Sumudu transform  uFs of a function  tf  defined for all real numbers
0t  . The Sumudu transform is essentially identical with the Laplace transform. 

Given an initial  tf  its Laplace transform  uG  can be translated into the Sumudu 

transform  uFs   of f  by means of the relation;  

 
u
u

G
uF











1

 

And it's inverse 

 
s

s
F

sG
s 










1

 
 
 

Theorem (1.1.4): Let  tf  with Laplace transform  sG  then the Sumudu 

transform  uF  of  tf  is given by  
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 
u
u

G
uF











1

 . 

 
Proof: 

Form definition (1.1.1) we get: 

    dttufeuF t



0

 

If we set tuw   and u
dwdt  then 

     dwwfe
uu

dwwfeuF u
w

u
w


 






  






 


00

1
 

By definition of the Laplace transform we get: 

 
u
u

G
uF











1

 

 
Theorem (1.1.5): It deals with the effect of the differentiation of the function  tf , 

k times on the Sumudu transform  uF  if     uFtfS  then: 

i.        01 fuF
u

tfS   

ii.          uf
u

f
u

uF
u

tfS  1011
22  

iii.          





1

0
011 n

k

kk
nn

n fu
u

uF
u

tfS     







 






1

0
0

n

k

kkn fuuFu    

Where         1,,3,2,1,0,000  nkfff k  are the nth-order derivatives of the 

function  tf  evaluated at 0t  . 
Proof: 

i. using integration by parts, 
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      

   

       01

101

exp11exp1

00

fuF
u

tfS

uF
u

f
u

dttf
u
t

uu
tf

u
t

u
tfS











 














  



 

ii. Using integration by parts;  

      
 






 








 















00

111 dttfe
uu

tfe
u

tfS u
t

u
t

 

From (i)                                      tfS
u

f
u


101  

         01011
22 f

u
f

u
uF

u
tfS   

iii. By definition the Laplace transform for   tf n  is given by   

        0
1

0

1 k
n

k

knn
n fssGssG 





  

By using the relation between Sumudu and Laplace transform;  

  
 




















 1

0
1

0
1

1 n

k
kn

k

nn u
f

u
u

G

u
G  

Since   n

n

n u
u

G
uF











1

 we get: 

      

      

      

          













































1

0

1

0

1

0

1

0
1

0

0

0

0

n

k

kknn

n

k

kknn
n

n

k
kn

k

nn

n

k
kn

k

nn

fuuFuuFtfS

fuuuFuuF

u
f

u
uFuF

uu
f

u
uFuuFu
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Theorem (1.1.6): Let  tf  be a function with the Sumudu transform  uF  then; 

   










ua

uF
ua

tfeS ta

11
1

 

Proof: 

          dtetufdteetuftfeS tauttuata 





 
0

1

0
 

Let   
au

dwdttuaw



1

1  

  

   





















 




ua
uF

ua
tfeS

dwe
ua

wuf
ua

tfeS

ta

wta

11
1

11
1

0  

 
Theorem (1.1.7) [3]: This theorem deals with multiplication of the function  tf  by a 
power series of t , if: 

i.       uFuuF
du
dutftS  2  

ii.         uFuuF
du
duuF

du
dutftS 23

2

2
42 24   

iii.     



n

k
k

kn
k

nn uFuautftS
0

 

iv.     




 
1

0

111
n

k
k

kn
k

nn uFuautftS  

 
Theorem (1.1.8): Let  tf and  tg having Laplace transforms  sF and  sG
respectively, and Sumudu transform  uM  and  uN , respectively. 
Then the Sumudu transform of the convolution of f and g. 

        dtgtftgf 



0

 

Is given by:   
       uNuMutgfS   
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Proof: 
First, recall that the Laplace transforms of  gf   is given by: 

       sGsFtgfL   
By using the relation between Sumudu and Laplace transform; 

       tgfL
u

tgfS 
1  

And since                        
u
u

G
uN

u
u

F
uM




















1

,

1

 

The Sumudu transform of   gf   is obtained as follows; 

       

       uNuMutgfS

uNuMu
u
u

G

u
u

F
u

u
u

G
u

F
tgfS







































1111

 

 
 
Theorem (1.1.9): Let  ( )G u  denote the Sumudu transform of the function  tf   let 

  tf n  denote the nth derivative of  tf  with respect to t  and let  uFn  denote the 
nth derivative of  uF  with respect to, u, then the Sumudu transform of the function  

  tft nn  is given by: 
     uFutftS n

nnn   
Proof: 

Let the Sumudu transform of  tf ; 

   



0

dtetufuF t  

Therefore, for ...,2,1,0n  we get:  

     

        
    uFutftS

tftS
u

dtetuftu
u

uF

dtetuftdtetuf
du
duF

n
nnn

nn
n

tnn
nn

tnt
n

n

n




















0

00

11  
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Corollary (1.1.10) [2]: 

Let   uFn  denote the nth derivative of     tfSuFn  , then  

i.       uFu
du

uFdutftS 1  

ii.        uFuuFutftS 21
22 2   

iii.          uFuuFuuFutftS 3
2

21
33 66   

iv.          uFuuFuuFutftS 4
2

32
44 812   

 
The Sumudu transform method will be illustrated by discussing the following 

examples. 

Example (1.1.11): Consider the following inhomogeneous partial differential 
equation [24]:  

                           yxyxUyxU yx  ,, ;                                             (4) 
With the initial conditions;  

    0,0,00,  yUxU . 
Taking the Sumudu transform of (4) we get: 

       yxSyxUSyxUS yx  ,,                                       (5) 

       uxxUuxU
u

uxU
dx
d

 0,,1,  

    uxuxU
u

uxU
dx
d

 ,1,  

Thus we have the ordinary differential equation: 

    uxuxU
u

uxU
dx
d

 ,1,                                           (6) 

The integrating factor is; 

u
xdx

u eeF 
1

                                                     (7) 
Then 

    u
x

u
x

u
x

ecuxcdxuxeeuxU










 ,                          (8) 

Since   00, xU then 0c  
Then 
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  uxuxU ,                                                     (9) 
Taking the inverse Sumudu transform; 

   uxSyxU 1,                                                (10) 
 

  yxyxU ,                                                    (11) 
 
 
Example (1.1.12): Consider the following one – dimensional heat equation [25]:  

                    yxUU txx ,4  ;                                                                   (12) 
With initial condition: 

                       
  xxU

2
sin20, 

  ;                                                                   (13) 

And boundary conditions: 

                             0,2,0,0  tUtU  .                                                              (14) 
Taking the Sumudu transform of (12) and using initial condition (13) we get: 

                         
    x

u
uxU

u
uxU

dx
d

2
sin8,4,2

2 
                                                (15) 

This is the second order differential equation. 
First we find the homogeneous solution: 

                       
x

u
x

u
c eBeAuxU

22

,


                                                                  (16) 
Using boundary conditions: 

                           
   
    0,20,2

0,00,0



uUtU
uUtU

 

This gives 

                            )(0

)(0
44

iieBeA

iBA

uu 



  

From )(i  and )(ii we have only a trivial solution 0 BA  . 
Second we find particular solution: 

                 

  x
u

u
D

x

u
uxU p 2

sin
16

1.32
4

2
sin

.8, 2
2



















                                (17) 
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The general solution is: 

                  
  x

u
UUuxU pc 2

sin
16

1.32, 2


 










                                        (18) 

Taking the inverse Sumudu transform we get: 

                  
  t

extxU 16

2

2
sin2,

 
   .                                                               (19) 

 
 
Example (1.1.13): Consider the following Laplace equation [25]:  

                                            0 ttxx UU  ;                                                      (20) 
With initial conditions: 

                                 xxUxU t cos0,,00,   .                                              (21) 
Taking the Sumudu transform of (20) and using initial condition (21) we get: 

                                
    xuuxUuxU

dx
du cos,,2

2
2  ;                                      (22) 

This is the second order differential equation which has the particular solution in the 
form:  

                                
 

1
cos

1
cos, 222 





u

xu
Du

xuuxU .                                       (23) 

If we take the inverse Sumudu for Eq. (23), we obtain the solution of Eq. (20) in the 
form: 

                                  txtxU sinhcos,   .                                                        (24) 
 
 
Example (1.1.13): Consider the following wave equation [25]:  

                                   04  xxtt UU  ;                                                               (25) 
With initial conditions: 

                                     00,,sin0,  xUxxU t  .                                              (26) 
Taking the Sumudu transform of (25) and using initial condition (26) we get: 

                             
    xuxUuxU

dx
du sin,,4 2

2
2   ;                                      (27) 
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This is the second order differential equation which has the particular solution in the 
form:  

                           
 

14
sin

14
sin, 2222 










u
x

Du
xuxU  .                                       (28) 

If we take the inverse Sumudu for Eq. (28), we obtain the solution of Eq. (25) in the 
form: 

                              xttxU  sin2cos,   .                                                        (29) 
 
 
1.2: Adomian Decomposition Method 
 
         Partial differential equations are a necessary part in applied science and 
engineering fields. The wide use of these equations is the most important reason why 
they have drawn mathematician's attention. Despite this, they are not easy to find an 
answer, either numerically or theoretically. However, most of the methods developed 
in mathematics are used in solving differential equations. 
 
         In this section, a semi – analytical method named, Adomian decomposition 
method (ADM) will be applied. The Adomian decomposition method (ADM) was 
developed between the 1970s and 1990s by George Adomian [4-9] have been 
attracting the attentions of many mathematicians’, physicists, engineers, and various 
graduate researchers. The method has the advantage of converging to the exact 
solution and can easily handle a wide class of both linear and nonlinear differential 
and the integral equations.   The assumptions made by Adomian be modified in 
(1999) by Wazwaz [10-20]. 
 
       The purpose of this method is to find the solution of complex systems without 
usual modeling.  This method generates a solution in the form of a series whose terms 
are determined by a recursive relationship. 
Into the Adomian decomposition method (ADM) showed that this method can be 
successfully used to solve intricate problems in engineering mathematics and applied 
science. 
 
         To give a clear view of Adomian decomposition method, we first consider the 
linear differential equation written in an operator form by: 
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                                              guRuL   ;                                                   (30) 
Where L  is a lower order derivative which is assumed to be invertible, R is another 

linear differential operator, and g  is a source term. 

Now apply the inverse operator 1L to both sides of Eq. (30) and using the given 

condition to obtain: 

                                            uRLfu 1 .                                                 (31) 

 where the function f represents the terms arising from integrating the source term g  

and from using the given conditions that are assumed to be prescribed. 

The Adomian decomposition method consists of decomposition the unknown function 

u  of any equation into a sum of an infinite number of components defined by the 

decomposition series:    

                           






0n

nuu  ;                                                                    (32) 

  where the components nuuu ,...,, 10  are usually recurrently determined. 

Substituting Eq. (32) into both sides of (31) leads to: 

                      


















 








 0

1

0 n
n

n
n uRLfu  .                                               (33) 

To construct the recursive relation needed for the determination the components 

nuuu ,...,, 10  it is important to note the Adomian method suggests that the zeroth 

components 0u  is usually defined by the function f  described above , i.e. 

According, the formal recursive relation is defined by: 

                      .0;

;
1

1

0






 kuRLu

fu

kk
                                                   (34) 
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Having determined these components, we then substitute it into Eq. (32) to obtain the 

solution in a series form. As state above, the (ADM) produces a convergent series 

solution. The issue of convergence is addressed by several researchers [21-23]. 

 

The essential features of the decomposition method for linear and nonlinear equations; 

homogeneous and inhomogeneous; can be out lined as follows [24]:  

1. Express the PDE, linear or nonlinear, in operator form. 

2. Apply the inverse operator to both sides of equation written in an operator 

form. 

3. Set the unknown function u  into a decomposition series: 

                             






0n

nuu                                                                       (35)                                                                                 

We next substitute the series (35) into both sides of the resulting equation. 

4. Identify the zeroth components 0u  as the terms arising from the given 

conditions and from integrating the source term. 

5. Determine the successive components of the series solution 0; kuk  by 

applying the recursive scheme (34). 

6. Substitute the determined components into (32) to obtain the solution in a series 

form. 

The essential steps of the Adomian decomposition method will be illustrated by 

discussing the following examples. 

 

Example (1.2.14): Consider the following inhomogeneous partial differential 
equation [24]:  

yxuu yx    ;                                                 (36) 
With the initial conditions:  

                           0,0,00,  yuxu  .                                         (37) 
In an operator form, Eq. (36) becomes: 
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                          uLyxuL yx   ;                                                     (38) 

Applying 1
xL to both sides of (38) and using initial condition; hence we find: 

                          uLLyxxyxu yx
1

2

2
,   .                                      (39) 

As stated above, the decomposition method identifies the unknown function  yxu ,  as 

an infinite number of components   0,, nyxun  given by: 

                    
   yxuyxu

n
n ,,

0





  ;                                                     (40) 

Substituting (40) into both sides of (39) we find: 

                   
















 








 0

1
2

0
,

2
,

n
nyx

n
n yxuLLyxxyxu  .                       (41) 

Consequently, the recursive scheme that will enable us to completely determine the 

successive components is thus constructed by: 

                  .0,

,
2

1
1

2

0






 kuLLu

yxxu

kyxk

                                                 (42) 

This in turn gives; 

              

  
   .0

,
2

,
2

1
1

2

2

0
1

1

2

0











uLLu

xuLLu

yxxu

yx

yx                                                  (43) 

Accordingly,   2,0,  kyxuk  . 

Having determined the components of  yxu , , we find: 

             yxyxu ,   .                                                                         (44) 



 

14 
 

It is important to note here the exact solution given by (44) can also be obtained by 

determined the y- solution as discussed above. 

 

Example (1.2.15): Consider the following one – dimensional heat equation [25]:  

                                txx uu 
4
1

 ;                                                                             (45) 

With the initial condition: 

                                xxu
2

sin20, 
  ;                                                                  (46) 

And boundary conditions: 

                                  0,2,0,0  tutu  .                                                      (47) 
In an operator form, Eq. (45) becomes: 

                           uLuL xxt 4
1

  ;                                                                      (48) 

Operating 1
tL on both sides of (48) and using initial condition; hence we get: 

                          uLLxtxu xxt
1

4
1

2
sin2, 


 .                                              (49) 

Using the decomposition (32) to both sides of (49) we obtain the recursive relation: 

                               
   .0,

4
1

,
2

sin2

1
1

0






 kuLLu

xu

kxxtk



                                               (50) 

In view of (50) the components   0,, ntxun  are determined by: 

                    

  

   .
2

sin
2564

1

,
2

sin
84

1

,
2

sin2

24

1
1

2

2

0
1

1

0

xtuLLu

xtuLLu

xu

xxt

xxt

















                                   (51) 

And so on. The solution in a series given by: 
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  







 ...

2568
2

2
sin,

242 ttxtxu 
 ;                                   (52) 

In a closed form: 

                  
  t

extxu 16

2

2
sin2,

 
   .                                     (53) 

   
                                                             
Example (1.2.16): Consider the following Laplace equation [25]:  

                                0 ttxx uu  ;                                                                     (54) 
With the initial conditions: 

                          xxuxu t cos0,,00,   .                                                     (55) 
In an operator form, Eq. (54) becomes: 

                           uLuL xxtt   ;                                                                      (56) 

Applying 
1

tL  on both sides of (56) gives: 

                      
   uLLxttxu xxt

1cos,   .                                                     (57) 

Substituting decomposition (32) into both sides of (57), and proceeding as before we 

obtain: 

                       

  

   .cos
!5

,cos
!3

,cos

5

1
1

2

3

0
1

1

0

xtuLLu

xtuLLu

xtu

xxt

xxt











                                           (58) 

And so on. The solution in a series given by: 

             

  







 ...

!5!3
cos,

53 tttxtxu  ;                                  (59) 

In a closed form: 

            

  txtxu sinhcos,     .                                                      (60) 
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Example (1.2.17): Consider the following wave equation [25]:  

                     04  xxtt uu  ;                                                        (61) 
With the initial conditions: 

                        00,,sin0,  xuxxu t  .                           (62) 
In an operator form, Eq. (61) becomes: 

                              uLuL xxtt 4  ;                                             (63) 

Applying 
1

tL  on both sides of (63) gives: 

                      
   uLLxtxu xxt

14sin,    .                           (64) 

Substituting decomposition (32) into both sides of (64), and proceeding as before we 

obtain: 

                   

  

   .sin
3

2

,sin24

,sin

44

1
1

2

22
0

1
1

0

xtuLLu

xtuLLu

xu

xxt

xxt

















                              (65) 

And so on. The solution in a series given by:

      

 

 

      

     








 ...

!4
2

!2
21sin,

42 ttxtxu  ;                   (66)                                       

In a closed form: 

            

  txtxu  2cossin,     .                                                   (67) 

 

 

Definition (1.2.18): The Noise Terms Phenomena    
      The idea of noise terms it means that opposite signs show in the first two 

components of the series solution that are happening only in inhomogeneous 

equations of any order.  
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The objective of this concept is demonstrating a fast convergence of the series 

solution. 

In view of these remarks, we now outline the ideas of the noise terms [4, 10]: 

1. The noise terms are defined as the identical terms with opposite signs that may 

appear in the components 0u  and 1u . 

2. The noise terms appear only for specific of inhomogeneous equations whereas 

noise terms, do not appear for homogeneous equations. 

3. The noise terms appear if the exact solution is part of zeroth component 0u  . 

4. Verification that the remaining non-canceled terms satisfy the equation is 

necessary and essential. 

The phenomenon of the useful noise terms will be explained by the following 

examples. 

 

Example (1.2.19): Consider the inhomogeneous PDE [24]: 

  y
yx exuu  1   ;                                                  (68) 

With the initial conditions:  

                               0,0 yu  .                                                   (69) 
The inhomogeneous PDE can be rewritten in an operator form by: 

                            uLexuL y
y

x  1  ;                                           (70) 

Applying 1
xL  to both sides of (36) and using the given condition leads to: 

                     
   uLLexxyxu yx

y 1
2

!2
, 








  .                       (71) 

Substituting the decomposition (32) into both sides of (71), and proceeding as before, 

the components nuuu ,...,, 10  are determined in a recursive manner by: 
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                            .
!3!2

,
!2

32

0
1

1

2

0

y
yx

y

exxuLLu

exxu






















                   (72) 

Considering the first two components 0u  and 1u  in (72), it is easily observed that the 

noise terms  yex
!2

2

 and yex
!2

2

   appears in 0u  and 1u  respectively. By canceling the 

noise terms in 0u , and by verifying that the remaining non-canceled terms of 0u

satisfying Eq. (68), we find that the exact solution is given by: 

                  

  yexyxu ,   .                                                     (73) 

 

 
Example (1.2.20): Consider the inhomogeneous PDE [24]: 

 xyuu yx    ;                                               (74) 
With the initial conditions:  

                               0,0 yu  .                                               (75) 

Proceeding as before, and applying the inverse operator 
1

xL  to both sides of (74), 
and using the given condition we obtain; 

                        uLLxyxyxu yx
1

2

!2
,   .                     (76) 

Preceding as before, the first two components 0u  and 1u  are given by: 

                            .
!2

,
!2

2

0
1

1

2

0

xuLLu

xyxu

yx 




                           (77) 
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Considering the first two components 0u  and 1u  in (77), it is easily observed that the 

noise terms  !2

2x
 and !2

2x
   appears in 0u  and 1u  respectively. By canceling the noise 

terms in 0u , and by verifying that the remaining non-canceled terms of 0u satisfying 

Eq. (74), we find that the exact solution is given by: 

                  

  yxyxu ,   .                                               (78) 

 

 
1.2.1: The Modified Decomposition Method   
 
       In this section, we purpose to establish a new technique provides a rapid 
convergence of the series solution above the usualness of the decomposition method 
for linear and nonlinear differential equations called the modified decomposition 
method. 
The modified decomposition method was developed by Wazwaz [11, 12]. Despite, the 
new technique is a slight variation in the Adomian recursive relation. 
      To give a clear description of the technique, we consider the PDE in an operator 

form: 

                         guRuL   ;                                                    (79) 
Where L  is the highest order derivative, R  is a linear differential operator of less 

order or equal order to L , and g is the source term. 

Now apply the inverse operator 1L to both sides of Eq. (79) we obtain: 

                              
 uRLfu 1 .                                               (80) 

where the function  f   represents the terms arising from integrating the source term 

g   and using the given conditions that are assumed to be prescribed. We then proceed 

as discussed in section (1.2) and define the solution u  as an infinite sum of 

components defined by: 
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





0n

nuu  ;                                                      (81) 

To achieve this goal, the decomposition method admits the of the recursive relation: 

                                .0;

;
1

1

0






 kuRLu

fu

kk
                              (82) 

The modified decomposition method introduces a slight variation to the recursive 

relation (82) that will lead to the determination of the components of u   in a faster 

and easier way. For specific cases, the function f  can be set as the sum of two partial 

functions, namely 1f   and 2f   . In other words, we can set: 

                                 21 fff   ;                                                    (83) 

Using (83), we introduce a qualitative change in the formation of recursive relation 

(82). The modified recursive relation can be identified by: 

                       
  

   .1;
,

,

1
1

0
1

21

10












kuRLu
uRLfu

fu

kk

                                (84) 

It is worth mentioning that the modified decomposition method will be used for linear 

and nonlinear equations of any order. In the upcoming chapters, it will be used 

wherever it is appropriate [24]. 

 
The modified decomposition method will be illustrated by discussing the following 

examples. 

Example (1.2.21): Consider the inhomogeneous PDE [24]: 
2332 33 yxyxuu yx    ;                                   (85) 

With the initial conditions:  

                               0,0 yu  .                                                          (86) 
The inhomogeneous PDE can be rewritten in an operator form by: 

              uLyxyxuL yx  2332 33  ;                          (87) 
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Applying 1
xL  to both sides of (87) and using the given condition leads to: 

                      uLLyxyxyxu yx
12433

4
3,   .                 (88) 

The function consists of two terms, hence we set: 

                     
24

2
33

1 4
3, yxfyxf    ;                         (89) 

In view of (89) we introduce the modified recursive relation: 

                      
  

   .1;

,
4
3

,

1
1

0
124

1

33
0












kuLLu

uLLyxu

yxu

kyk

yx                                (90) 

This gives: 

                      
  

.1,0

,0
4
3

,

1

0
124

1

33
0











ku

uLLyxu

yxu

k

yx                         (91) 

It then follows that the solution is: 

                   33, yxyxu    .                                                  (92) 

 
 
Example (1.2.22): Consider the inhomogeneous PDE [24]: 

yxuu yx coshcosh    ;                                  (93) 
With the initial conditions:  

                               xxu sinh0,   .                                                 (94) 
To effectively use the given condition, we rewrite (93) in an operator form by: 

                 uLyxuL xy  coshcosh   ;                       (95)                                                  

Applying
1

yL  to both sides of (95) and using the given condition gives:  
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               uLLyxyxyxu xy
1sinhcoshsinh,    .   (96) 

To determine the components of  yxu , , we set the modified recursive relation: 

                 

  
.1;0

,0cosh

,sinhsinh

1

0
1

1

0











ku
uLLxyu

yxu

k

xy                     (97) 

The exact solution is: 

         yxyxu sinhsinh,    .                              (98) 

 
 
1.3: Adomian Decomposition Method and  Sumudu Transform 

Method for Solving Linear Partial Differential Equations 
 
           The Adomian decomposition method proves to be powerful, effective and 
successfully used to handle most types of linear or nonlinear ordinary or partial 
differential equations, and linear or nonlinear integral equations. The method 
characteristics various advantages, which considerably from the usual methods. This 
method is a simple and directly without any restrictive assumption as usual is going in 
other methods. 
 
          In this section, we propose a new method, namely Adomian Decomposition 
Sumudu Transform Method (ADSTM) for solving linear partial differential equations. 
This method is a combination of Sumudu transform and decomposition method which 
was introduced by Devendra Kumar, Jagdev Singh and Sushila Rathore [26]. 
 

The objective of algorithm is to provide the solution in a rapid convergent series 
which can lead to the solution in a closed form. 
 
      To illustrate the basic idea of this method, we consider a general non-
homogeneous partial differential equation with the initial conditions of the form: 

     
       .0,,0,

,,,,
xfxUxhxU

txgtxURtxUL

t 


                                      (99)                      
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Where L is the second order linear differential operator  2

2

t
L




  , R  is other linear 

differential operator of less order than L , and g is a source term. 
Taking the Sumudu transform of both sides of Eq. (99), we get: 

                        txgStxURStxULS ,,,   ;                           (100) 
Using the differentiation property of the Sumudu transform and given initial 
conditions, we have: 

                txURSutxgSuxfuxhtxUS ,,, 22   .    (101) 
If we apply the inverse operator 1S to both sides of the equation (101), we obtain: 

       txURSuStxGtxU ,,, 21  .                            (102) 
Where, the function  txG ,  represents the terms arising from integrating the source 
term g and the prescribed initial conditions. 
Using the Adomian decomposition method which defines the solution by an infinite 
series of components given by: 

                     
   txUtxU

n
n ,,

0





 ;                                            (103) 

where the components ,,, 210 UUU  are usually recurrently determined. 
Substituting (103) into both sides of (102) leads to: 

   































 











0

2

0

1,,
n

n
n

n URSuStxGtxU   .        (104) 

For simplicity, Equation (104) can be rewritten as;  
    

3210
21

3210 UUUURSuSGUUUU    (105) 
To construct the recursive relation needed for the determination of the components

,,, 210 UUU , it is important to note that the Adomian decomposition method 
suggests that the zeros component 0U  is usually defined by the function G  described 
above, i.e.  Accordingly, the formal recursive relation is defined by: 
 

                       

 
   
   
   
















2
21

3

1
21

2

0
21

1

0

,
,,

URSuSU
URSuSU
URSuSU

txGU

                                           (106) 
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Substituting these components in the equation (103), we obtain the solution in a series 
form. 
 
The Adomian decomposition Sumudu transform method will be illustrated by 
discussing the following examples. 
 
Example (1.3.23): Consider the following inhomogeneous partial differential 
equation [24]: 

    yxyxUyxU yx  ,, ;                                 (107) 
With the initial conditions;  

                                                     0,0,00,  yUxU ;                              (108) 
 

The x solution: 
Following discussion presented above, we obtain the recursive relation: 

                     

   
    .0

,
2

,
2

1
21

2

2

0
21

1

2

0











y

y

USuSU

xUSuSU

yxxU

                      (109) 

Therefore the solution  txU , in series form is given by; 

              

       

22

,,,,
22

210

xyxx
txUtxUtxUtxU




        (110) 

And in closed form given as; 

               yxtxU ,                                                          (111) 
 

It is important to note here the exact solution given by (111) can also be obtained by 

determined the y- solution as discussed above. 

 
Example (1.3.24): Consider the following one – dimensional heat equation [25]:  

                               txUtxU txx ,,
4
1

  ;                                       (112) 

With the initial condition: 
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                                xxU
2

sin20, 
  .                                     (113) 

In a similar way above, we have the recursive relation: 

          

   

    .
2

sin
2564

1

,
2

sin
84

1

,
2

sin2

24

1
21

2

2

0
1

1

0

xtUSuSU

xtUSuSU

xU

xx

xx















                  (114) 

And so on. The solution in a series form given by: 

    







 ...

2568
2

2
sin,

242 ttxtxU             (115) 

And in a closed form of, 

                  
  t

extxU 16

2

2
sin2,

 
   .                                   (116) 

 
                                                  
Example (1.3.25): Consider the following wave equation [25]:  

                         0,4,  txUtxU xxtt  ;                                       (117) 
With the initial conditions: 

                      00,,sin0,  xUxxU t  .                             (118) 
Proceeding as before, we obtain: 

                  

  

   .sin
3

24

,sin24
,sin

44

1
1

2

22
0

1
1

0

xtuLSU

xtuLSU
xU

xx

xx

















                   (119) 

And so on. The solution in a series given by: 

      

     








 ...

!4
2

!2
21sin,

42 ttxtxU  ;           (120)                                       

In a closed form: 

      

  txtxU  2cossin,     .                                     (121) 



 

26 
 

1.4: Adomian decomposition Method and Sumudu Transform 
Method for Solving Linear Systems Partial Differential  
Equations 

 
          In this section, we will present the combined Sumudu transform and Adomian 
decomposition method to solve some examples of linear system of partial differential 
equations; we first consider the system of partial differential equations written in an 
operator form; 

                                            ,
,

2

1

gUV
gVU

xt

xt




 ;                                        (122) 

With the initial conditions; 

                                             

   
   .0,

,0,

2

1

xfxV
xfxU




 .                                      (123)                                                           

Using the differential operator property of the Sumudu transform and above initial 
conditions, we get; 

      
      x

x

UgSuxftxVS
VgSuxftxUS




22

11

,
,

                             (124) 

Now, applying the inverse Sumudu transform on both sides of (124), we get: 
      
      x

x

UgSuSxftxV

VgSuSxftxU








2
1

2

1
1

1

,

,
                         (125) 

where    txgtxg ,,, 21  represents the term arising from the source term and the 
prescribed initial conditions. We apply the Adomian decomposition method:  

   

   














0

0

,,

,,

n
n

n
n

txVtxV

txUtxU
                                          (126) 

Now, applying the Adomian decomposition method, we get: 

         

     

     
























































































xn
n

n
n

xn
n

n
n

txUguSSxftxV

txVguSSxftxU

0
2

1
2

0

0
1

1
1

0

,,

,,

                (127) 
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Following Adomian analysis, the system (127) is transformed into a set of recursive 

relation given by: 

                                 
      
      .0,,

,,
1

1

1
1

10










kVSuStxU
gSuSxftxU

xkk

                               (128)                         

And 

                               
      
      .0,,

,,
1

1

2
1

20










kUSuStxV
gSuSxftxV

xkk

                              (129)                           

To have a clear overview, forthwith are several examples to demonstrate the 
efficiency of the method. 
 
Example (1.4.26): Consider the following system of partial differential equations 
[24]: 

0
0




xt

xt

UV
VU

                                                  (130) 

With the initial conditions; 

  

 
  x

x

exV
exU




0,
0,

                                                (131) 

To derive the solution by using the decomposition method, we follow the recursive 

relation (128) and (129) to obtain: 

                                 
 
      .0,,

,,
1

1

0






 kVSuStxU
etxU

xkk

x

                       (132)                         

And 

                               
 
      .0,,

,,
1

1

0










kUSuStxV
etxV

xkk

x

                       (133) 

The remaining components are thus determined by: 

                                        

   

   

    ,
!3

,,
!3

,

,
!2

,,
!2

,

,,,,

3

3

3

3

2

2

2

2

11

xx

xx

xx

ettxVettxU

ettxVettxU

ettxVettxU













                      (134) 

And so on. Using (134) we obtain: 
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 

  .
!5!3!4!2

1,

,
!5!3!4!2

1,

5342

5342











































tttettetxV

tttettetxU

xx

xx

                (135) 

This has an exact analytical solution of the form; 
   teteteteVU xxxx sinhcosh,sinhcosh,    .               (136) 

 
 
Example (1.4.27): Consider the following system of partial differential equations: 

t
xxt

t
xtt

extUV

exVU




2

2

2

2
                                 (137) 

With the initial conditions; 

  
      xxVxUxU t  0,,00,,00,                (138) 

Taking Sumudu transform of equations (137) subject to the initial conditions, we get; 

    

    xx

x

USux
u

uxutxVS

VSu
u

uuxtxUS











1
4,

1
2,

3

2
2

22

                (139) 

The inverse Sumudu transform implies that: 
    
    xx

t

x
t

USuSexttxV

VSuSettxtxU

13

2122

!3
4,

1,








         (140) 

Now applying the Adomian decomposition method, we get; 

 

 
































































xxn
n

t

n
n

xn
n

t

n
n

USuSexttxV

VSuSettxtxU

0

13

0

0

2122

0

!3
4,

1,

        (141) 

The modified decomposition method defines the recursive relations in the form; 
 
    
     .1,,

,1,

,,

21
1

0
21

1

22
0












kVSuStxU

VSuSettxU

txtxU

xkk

x
t

                  (142) 

And 
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 

    
     .1,,

,
!3

4,

,,

1
1

0
13

1

0












kUSuStxV

USuSttxV

extxV

xxkk

xx

t

                       (143) 

We obtain the following pairs of components; 

                  

   
   
   .0,0,

,0,0,
,,,

22

11

22
00






VU
VU

extxVU t

                                            (144) 

This has an exact analytical solution of the form; 
   textxVU ,, 22  .                                        (145) 
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1.5: Adomian Decomposition Method and Sumudu Transform for 
Solving  Higher Dimensional Heat and Waves Equations 

 
          Heat and wave like models are the integral part of applied mathematics and 
engineering mathematics that arises from different physical phenomena. Several 
techniques such as characteristic, modified variation iteration, Adomian 
decomposition method, He̓ s polynomials, and homotopy perturbation Sumudu 
transform method [27] have been used for solving these problems. 
          It is significant to note that the (ADM) is applied without any restrictive 
assumption or transformation. The main advantage of the (ADM) is that it can be 
applied straight to all types of differential equations both homogeneous and in-
homogeneous boundary conditions. 
 
            In this section we introduce a new method called Adomian decomposition 
Sumudu transform method (ADSTM) for solving the heat and wave like equations in 
two and three dimensional spaces. It importance that the proposed method is an 
elegant combination of the Sumudu transforms method and the Adomian 
decomposition method which was introduced by D. Kumar, J. Singh and S. Rathore 
[26]. 
 

    (ADSTM) provides the solution for nonlinear equations in the form of 
convergent series.  These forms the motivation for us to apply (ADSTM) for solving 
nonlinear equations in understanding different physical phenomena.  
 
 
1.5.1: Adomian Decomposition Method and Sumudu 

Transform Method (ADSTM) 
 
           To illustrate the basic idea of this method, we consider a general 
nonlinear non-homogenous partial differential equation with the initial conditions of 

form [27];                                                                                                                       

   
  

       
        ,0,,0,

,,,,
xfxUxhxU

txgtxUNtxURtxUD

t 
                         (146)                                                                                                                            
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Where  D   is the second order linear differential   operator 2

2

t
D




 , R   is linear 

differential operator of less order than D   , N  represent the general nonlinear operator 
and  txg ,  is the source term. 
Taking the Sumudu transform of both sides of Eq. (146), we get; 

                           .,,,, txgStxNStxURStxUDS                     (147)                                                                                               
Using the differentiation property of the Sumudu transform and given initial 
conditions, we have;  

               .,,,, 22 txUNtxURSuxfuxhtxgSutxUS             (148) 
Now, applying the inverse Sumudu transform of both sides of (148), we get,          

          txUNtxURSuStxGtxU ,,,, 21  
 .                               (149) 

Where  txG , represents the term arising from the source term and the prescribed 
initial conditions.  Now, apply the Adomian decomposition method;   

                                 





0

,,
n

n txUtxU   ,                               (150)                                                                                                                            

 The nonlinear term can be decomposed as; 

                         





0

,
n

n UAtxUN     ,                             (151)                                                                                               

For some Adomian polynomials   UAn  that are given by; 

   ...,2,1,0,
!

1......,,,,
00

210 


























 nUN

d
d

n
UUUUA

n
n

n
n

n

nn






  ,          (152) 

Substituting Eq. (150) and Eq. (151) in Eq. (149), we get;  

         



































0 00

21 ,,,
n n

n
n

nn UAtxURSuStxGtxU      .           (153) 

So that the recursive relation is given by; 
 

   
     .0,,

,,,
21

1

0






 kARUSuStxU
txGtxU

kkk

                (154) 

 
 
1.5.2: Two Dimensional Heat Flow 
The Adomian decomposition Sumudu transform method (ADSTM) can be used for 
solving the heat equation in a two dimensional space [24]: 

                 
  0,0,0,  tbyaxUUkU yyxxt ;                     (155) 

With boundary conditions: 
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   
    ,0,,,0,0,

,0,,,0,,0



tbxUtxU
tyaUtyU

                      (156) 

And initial condition: 

                      yxfyxU ,0,,  .                                (157) 
Where  tyxUU ,, the temperature of any point is located at the position 
 yx ,  of a rectangular plate at any time t  , and k  is the thermal diffusivity.    

  
The distribution of heat flow in two dimensional spaces is governed by the 

following initial boundary value.                                                                              
 

Example (1.5.28):  Consider the following two-dimensional initial boundary value 

                 
];s [28like model-problem which describes the heat 

  0,1,0,
2
1 2  tyxUyUxU yyxxt               (158) 

With boundary conditions as; 

 
   
    ttxUtxU

ttyUtyU
cosh2,1,,0,0,
sinh2,,1,0,,0




  ,            (159)                                   

And the initial condition as; 
  20,, yyxU    .                                              (160) 

Taking Sumudu transform of both sides of (158) subject to the initial condition, we 
get; 

      yyxx UuSxUuSyytyxUS 222

2
1

2
1,,  .         (161) 

The inverse of Sumudu transform implies that; 

       yyxx UuSSxUuSSyytyxU 12122

2
1

2
1,,   .         (162) 

The decomposition method defined the solution  tyxU ,,  as a series given by; 

   





0

,,,,
n

n tyxUtyxU   .                            (163) 

Now, applying the Adomian decomposition method, we get; 

   
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














yyn
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xxn
n

n
n
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0
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0
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2
1

,,
2
1,,

     (164)                                  
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This leads to the recursive relation; 
 

          .0,
2
1

2
1,,

,,,

1212
1

2
0






 kUSuSxUSuSytyxU

ytyxU

yykxxkk        
(165) 

This gives; 

)(166    

 

         

         

          .
!32

1
2
1,,

,
!22

1
2
1,,

,
2
1

2
1,,

,,,

3
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2
12

2
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3

2
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1
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1
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2

2
0

12
0
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1

2
0

txUSuSxUSuSytyxU

tyUSuSxUSuSytyxU

txUSuSxUSuSytyxU

ytyxU

yyxx

yyxx

yyxx















  

And so on. Therefore the solution  tyxU ,, in series form is given by; 

           


















!4!2
1

!5!3
,,

42
2

53
2 ttytttxtyxU   ;               (167)                          

And in closed form given as;  
  tytxtyxU coshsinh,, 22    .               (168) 

 
 
Example (1.5.29):  Consider the following two-dimensional initial boundary value 
problem which describes the heat-like models [24]; 

0,,0,  tyxUUUU yyxxt   ;               (169) 
With boundary conditions as;         

   
    xetxUtxU

tyUtyU
t sin,,,0,

0,,,,0
3






                (170) 

And the initial condition as; 
  yxyxU cossin0,,   .                               (171) 

In a similar way as above, we have;  
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n
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  .    (172) 

This gives; 
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 
            

            
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yyxx

cossin
!2

3

,,
cossin3
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
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





        (173) 

Therefore the solution  tyxU ,, in series form is given by; 

        yxtttttyxU cossin
!4

3
!3

3
!2

331,,
432









 ;       (174) 

And in closed form given as;  
  yxetyxU t cossin,, 3   .                       (175) 

 
 
1.5.3: Three Dimensional Heat Flow 
The Adomian decomposition Sumudu transform method (ADSTM) can be used of 
solving the heat equation in a three dimensional space [24]: 

           
  0,0,0,0,0,  tcztbyaxUUUkU zzyyxxt ;              (176)                                                   

With the boundary conditions: 

                  

   
   

,0),,,(,0),0,,(
,0,,,,0,,0,
,0,,,,0,,,0





tcyxUtyxU
tzbxUtzxU
tzyaUtzyU

                           (177) 

And the initial condition: 

                      zyxfzyxU ,,0,,,  .                                (178) 
Where  tzyxUU ,,, the temperature of any point is located at the position 
 zyx ,,  of a rectangular plate at any time t  , and k  is the thermal diffusivity.    

  
The distribution of heat flow in three dimensional spaces is governed by the following 
initial boundary value.  
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Example (1.5.30): Consider the following three-dimensional inhomogeneous initial 
boundary value problem which describes the heat-like models as [28]; 

  0,1,,0,
36
1 222444  tzyxUzUyUxzyxU zzyyxxt       (179) 

With the boundary conditions as; 
     
     
     1,,,,0,0,,

1,,,,0,,0,
1,,,,0,,,0

44
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
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

t

t

t

eyxtyxUtyxU
ezxtzxUtzxU
ezytzyUtzyU







                    (180) 

And the initial condition as; 
  00,,, zyxU                                                                      (181) 

Taking Sumudu transform of both sides of the equation (179) subject to the initial 
condition, we get; 

    zzyyxx UzUyUxuStzyxtzyxUS 222444

36
1,,,         (182) 

The inverse of Sumudu transform implies that: 

    zzyyxx UzUyUxuSStzyxtzyxU 2221444

36
1,,,         (183) 

Now, applying the Adomian decomposition method, we get; 
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      (184) 

This gives; 
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 

         

   
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              (185) 

Therefore the solution  tzyxU ,,, in series form is given by;         

  









!4!3!2
,,,

432
444 ttttzyxtzyxU ;             (186) 

And in closed form given as;  
   1,,, 444   tezyxtzyxU   .               (187) 

 
 
1.5.4: Two Dimensional Wave Equation 
 
     In this section, we will apply the newly developed Adomian decomposition 
method and Sumudu transform to handle the wave equation. 

      The propagation of waves in a two dimensional vibrating membrane of length 
a  and width b  is governed by the following initial-boundary value problem [24]; 

  0,0,0,2  tbxaxUUcU yyxxtt               (188) 
Subject to the boundary conditions;         

   
    0,,,0,

0,,,,0



tbxUtxU
tyaUtyU

                            (189) 

And the initial condition; 
       yxgyxUyxfyxU t ,0,,,,0,,           (190) 

As discussed before, the solution in the t- direction, in the spacex , or in the 
spacey  will lead to identical results. However, the solution in the t-direction 
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reduces the size of calculations compared with the other space solutions because it 
uses the initial conditions only. For this reason the solution in the directiont  will be 
discussed in this section. 
 
Example (1.5.31):  Consider the following two-dimensional initial boundary value 
problem which describes the heat-like models as [24]; 

  0,,0,2  tyxUUU yyxxtt                    (191) 
With the boundary conditions as;          

   
    0,,,0,

0,,,,0



txUtxU
tyUtyU




                         (192) 

And the initial condition as; 
    00,,,sinsin0,,  yxUyxyxU t             (193) 

Taking Sumudu transform of both sides of the equation (191) subject to the initial 
condition, we get; 

    yyxx UUSuyxtyxUS  22sinsin,,             (194) 
The inverse of Sumudu transform implies that: 

    yyxx UUSuSyxtyxU   212sinsin,,             (195)  
    

 
Now, applying the Adomian decomposition method, we get; 
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  .    (196) 

This gives;  

 

    

              

              
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yxtUSuSUSuStyxU

yxtUSuSUSuStyxU
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!6
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!2
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4

1
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2
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0
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0
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0




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







     (197) 

Therefore the solution  tyxU ,,  in series form is given by;     
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        yxttttyxU sinsin
!6

2
!4

2
!2

21,,
642









   ;     (198) 

And in closed form given as; 
   tyxtyxU 2cossinsin,,    .                     (199) 

 
Example (1.5.32):  Consider the following two-dimensional initial boundary value 
problem which describes the heat-like models as [28];  

  0,1,0,
12
1 22  tyxUyUxU yyxxtt               (200) 

Subject the Neumann boundary conditions as;         
   
    ttxUtxU

ttyUtyU

yy

xx

sinh4,1,,0,
cosh4,,1,0,,0




               (201) 

And the initial condition as; 

     44 0,,,0,, yyxUxyxU t                     (202)   
Taking Sumudu transform of both sides of the equation (194) subject to the initial 
condition, we get; 

      yyxx USuyUSuxyuxtyxUS 222244

12
1

12
1,,         (203) 

The inverse of Sumudu transform implies that: 

    yyxx UyUxSuSytxtyxU 222144

12
1,,          (204)  

    
 

Now, applying the Adomian decomposition method, we get; 

   

 
























































































yyn
n

xxn
n

n
n

tyxUSuSy

tyxUSuSxtyxtyxU

0

212

0

21244

0

,,
12
1

,,
12
1,,

  .    (205) 

This gives;  
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)(206     

 

         

         

.
!5!4

12
1

12
1,,

,
!3!2

12
1

12
1,,

,,,

5
4

4
4

1
212

1
212

2

3
4

2
4

0
212

0
212

1

44
0

tytx

USuSyUSuSxtyxU

tytx

USuSyUSuSxtyxU

ytxtyxU

yyxx

yyxx















  

    


















!5!3!4!2
1,,

53
4

42
4 tttyttxtyxU   ;    (207)                          

And in closed form given as;  
  tytxtyxU sinhcosh,, 44    .      (208) 

 
 
1.5.5: Three Dimensional Wave Equation 

The propagation of waves in a three dimensional volume of length a, width b, and 
height d is governed by the following initial boundary value problem [24]; 

           
  0,2  tUUUcU zzyyxxtt ;                                    (209)                                                   

With the boundary conditions: 

                  

   
   

,0),,,(,0),0,,(
,0,,,,0,,0,
,0,,,,0,,,0





tcyxUtyxU
tzbxUtzxU
tzyaUtzyU

                    (210) 

And the initial condition: 
       zyxgzyxUzyxfzyxU t ,,0,,,,,,0,,,          (211) 

Where dzbyax  0,0,0 , and  tzyxUU ,,, is the displacement of any 
point located at the position  zyx ,, of a rectangular volume at any time t , and c  is the 
velocity of a propagating wave. 
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Example (1.5.33): Consider the following three-dimensional inhomogeneous initial 
boundary value problem which describes the wave-like models [24];  

  0,,,0,3  tzyxUUUU zzyyxxtt     (212) 
Subject to the following boundary conditions; 

   
   
    0,,,,0,,

0,,,,,0,
0,,,,,,0





tyxUtyxU
tzxUtzxU
tzyUtzyU





                         (213) 

And the initial condition as; 
    zyxzyxUzyxU t sinsinsin30,,,,00,,,     (214) 

Taking Sumudu transform of both sides of the equation (206) subject to the initial 
condition, we get; 

    zzyyxx UUUSuzyxutzyxUS  23sinsinsin3,,,        (215) 
The inverse of Sumudu transform implies that: 

    zzyyxx UUUSuSzyxttzyxU   213sinsinsin3,,,           (216) 
Now, applying the homotopy perturbation method, we get; 

   

   























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
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
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

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


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
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















































































zzn
n

yyn
n

xxn
n

n
n

tzyxUSuStzyxUSuS

tzyxUSuSzyxttzyxU

0

21

0

21

0

21

0

,,,3,,,3

,,,3sinsinsin3,,,

         (217) 

This gives;  

 

 
         

     

         
      zyxtUSuS

USuSUSuStzyxU

zyxtUSuS

USuSUSuStzyxU
zyxttzyxU

zz

yyxx

zz

yyxx

sinsinsin
!5

33

33,,,

sinsinsin
!3

33

33,,,
sinsinsin3,,,

5

1
21

1
21

1
21

2

3

0
21

0
21

0
21

1

0



















   (218) 

Therefore, the solution  tzyxU ,,, in series form is given by; 

       










!7
3

!5
3

!3
33sinsinsin3,,,

753 ttttzyxtzyxU    ;    (219) 

And in closed form given as; 
   tzyxtzyxU 3sinsinsinsin,,,     .                   (220) 
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Example (1.5.34): Consider the following three-dimensional inhomogeneous initial 
boundary value problem which describes the heat-like models [28];  

    0,1,,0,
2
1 222222  tzyxUzUyUxzyxU zzyyxxtt      (221) 

Subject to the following boundary conditions; 
            
            
           11,,,,1,0,,

111,,,,11,,0,
111,,,1,11,,,0

2222

2222

2222













ttt

tttt

tttt

eeyxtyxUezxtyxU
ezextzxUezextzxU
ezeytzyUezeytzyU



        (222)           

And the initial condition as; 
    2220,,,,00,,, zyxzyxUzyxU t                   (223) 

Taking Sumudu transform of both sides of the equation (221) subject to the initial 
condition, we get; 

      
 zzyyxx UzUyUxSu

uzyxuzyxtzyxUS

2222

2222222

2
1

,,,




                        (224) 

The inverse of Sumudu transform implies that: 

     

  zzyyxx UzUyUxSuS

tzyxtzyxtzyxU

22221

222
2

222

2
1

2
,,,







                        (225) 

Now, applying the Adomian decomposition method, we get; 

     
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
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



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


























zzn
n

yyn
n

xxn
n

n
n

tzyxUSuSztzyxUSuSy

tzyxUSuSx

tzyxtzyxtzyxU

0
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0

212

0

212

222
2
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0

,,,
2
1,,,

2
1

,,,
2
1

2
,,,

  (226) 

This gives;  
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     

     

     

     













!7!8
,,,

!5!6
,,,

!3!4
,,,

2
,,,

7
222

8
222

3

5
222

6
222

2

3
222

4
222

1

222
2

222
0

tzyxtzyxtzyxU

tzyxtzyxtzyxU

tzyxtzyxtzyxU

tzyxtzyxtzyxU

             (227) 

Therefore the solution  tzyxU ,,, in series form is given by;     

   





















!4!3!2

!4!3!2
,,,

432
2

432
22

ttttz

ttttyxtzyxU

     ;   (228) 

 And in closed form given as; 
     222222,,, zyxezeyxtzyxU tt      .   (229) 
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CHAPTER (2) 
 Nonlinear Partial Differential Equations 

 
2.1: Adomian Decomposition Method 
 
               Many of nonlinear phenomena are a necessary part in applied science and 
engineering fields. Nonlinear equations are noticed in a different type of physical 
problems such as fluid dynamics, plasma physics, solid mechanics, and quantum field 
theory. 
 
         The wide use of these equations is the most important reason why they have 
drawn mathematician's attention. Despite this, they are not easy to find an answer, 
either numerically or theoretically. 
In the past, active study attempts were given a large amount of attention to the study 
of getting exact or approximate solutions of this kind of equations. It is significant to 
note that several powerful methods have been advanced for this purpose.  
 
       The Adomian decomposition method will be used in this chapter and in other 
chapters to deal with nonlinear equations. The Adomian decomposition method 
proves to be powerful, effective and successfully used to handle most types of linear 
or nonlinear ordinary or partial differential equations, and linear or nonlinear integral 
equations. This method is a simple and directly without any restrictive assumption as 
usual is going in other methods. 
 
In the following, the Adomian scheme for calculating a wide variety of forms of 
nonlinearity.  
 
2.1.1: Calculation of Adomian Polynomials 
        It is well known that the Adomian decomposition method suggests the unknown 
linear function u may be represented by the decomposition series; 

                                      





0n

nuu  ,                                                        (1) 

where the components 0, nun  can be elegantly computed in a recursive way. 

However, the nonlinear term  uF , such as ,,,,sin,,, 2432
xx

u uuueuuuu etc. can be 
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expressed by an infinite series of the so- called Adomian polynomials nA  given in the 
form; 

                                       





0

210 ,...,,,
n

nn uuuuAuF .                                       (2) 

The Adomian polynomials nA  for the nonlinear term  uF  can be evaluated by using 
the following expression; 

                            ...,2,1,0,
!

1

00

























 nuF

d
d

n
A

n

i
i

i
n

n

n






                        (3) 

Assuming that the nonlinear function is  uF , therefore, by using (3), Adomian 
polynomials are given by; 

                           

 
 

   

     .
!3

1

,
!2

1
,

,

0
3

1021033

0
2

1022

011

00

uFuuFuuuFuA

uFuuFuA

uFuA
uFA








                        (4) 

Other polynomials can be generated in a similar manner. 
Substituting (4) into (2) gives; 

            

 

         

   

          ....
!2

1

......33
!3

1

...2
!2

1...

...

0
2

0000

03
2

12
2

1
3

1

0
2

221
2

103210

3210









uFuuuFuuuF

uFuuuuu

uFuuuuuFuuuuF

AAAAuF

 

The last expansion confirms a fact that the series in nA  polynomials is a Taylor series 
about a function 0u   and not about a point as is usually used. 
In the following, we will calculate Adomian polynomials for several forms of 
nonlinearity. 
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I. Nonlinear Polynomials 
                                        If   2uuF   

The polynomials can be found as follows: 

                                      

 
 

   

      .22
!3

1

,2
!2

1
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,

21300
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1021033

2
1200

2
1022

10011

2
000

uuuuuFuuFuuuFuA

uuuuFuuFuA

uuuFuA
uuFA








 

And so on. Proceeding as before, we find ...,,, 543 uuu , etc. 
 
 

II. Nonlinear Derivatives 
          Case1.                  2

xuuF   
The Adomian polynomials for this nonlinearity given by; 

                                     

.22
,2

,2
,

21303

2
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2
00
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xxx

x

x

uuuuA
uuuA

uuA
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x









 

And so on. In a similar, we get   ....,,, 543
xxx uuu , etc. 

        Case2.                    2

2
1 uLuuuF xx   

The nA  polynomials in this case given by; 
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

 
And so on. 
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III.  Trigonometric Nonlinearity 
                                    If   uuF sin  

The Adomian polynomials for this form nonlinearity are given by; 

                                                
.cos
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1cos
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

 
And so on. In a similar way, we find   uuF cos  . 
 
 

IV.   Hyperbolic Nonlinearity 
                                               If   uuF sinh   

The nA  polynomials for this case are given by; 
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And so on. In a parallel manner, Adomian polynomials can be calculated for  
  uuF cosh  . 
 
 
V.   Exponential Nonlinearity  
                                               If   ueuF    

The Adomian polynomials in this form of nonlinearity are given by; 
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And so on. Proceeding as a before, we find   ueuF   . 
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VI. Logarithmic Nonlinearity 
                                               If   0,ln  uuuF   

The nA  polynomials for logarithmic nonlinearity are given by; 
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,

,ln
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u
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u
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







 
And so on. In a similar way, we find     11,1ln  uuuF . 
 
 
2.1.2:    A new Algorithm for Calculating Adomian Polynomials 
          (The Alternative Algorithm for Calculating Adomian Polynomials) 
 
         It is well known about the main disadvantage of the calculating Adomian 
polynomials  nA  , that it is a difficult method to perform calculation so called 
nonlinear terms. There is an alternative algorithm to reduce the demerits of formula 
introduced before, which depends mainly on algebraic, trigonometric identities and on 
Taylor expansions. 

In the alternative algorithm which is a simple and reliable may be employed to 
calculate Adomian Polynomials nA .  
The new algorithm will be clarified by discussing the following suitable forms of 
nonlinearity [13].  

 
I. Nonlinear Polynomials 
                                                   If   2uuF   

We first set  

                            





0n

nuu .                                                      (5)                                                               

Substituting (5) into    2uuF   gives; 
                          2

43210 ... uuuuuuF  .                       (6) 
Expanding the expression at the right- hand side gives; 
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                 ...2222 2130
2

12010
2

0  uuuuuuuuuuuF .                   (7) 
The expansion in (7) can be rearranged by grouping all terms with the sum of 
subscripts of the components is the same. This means that we can rewrite (7) as; 

                         ...2222
3210

2130
2

12010
2

0 
  

AAAA

uuuuuuuuuuuF  .                  (8)   

This gives Adomian polynomials for   2uuF   by; 

                                                     .22
,2

,2
,

21303

2
1202

101

2
00

uuuuA
uuuA

uuA
uA







 
And so on. Proceeding as before, we get ....,,, 543 uuu , etc. 
 

II. Nonlinear Derivatives 
          Case1.                     If     2

xuuF   .  
We first set;  

                           





0n

xnx uu .                                                      (9)                   

Substituting (9) into   2
xuuF  giving; 

                           2
43210 ... xxxxx uuuuuuF  .                   (10) 

Squaring the right – hand side gives; 
           ...2222 2130

2
12010

2
0  xxxxxxxxxx uuuuuuuuuuuF  .  (11) 

Grouping the terms as discussed above, we find; 
         


...2222

3210

2130
2

12010
2

0 
    

A

xxxx

A

xxx

A

xx
A

x uuuuuuuuuuuF  .  (12) 

Adomian polynomials are given by; 

                                                .22
,2

,2
,

21303

2
1202

101

2
00

xxxx

xxx

x

x

uuuuA
uuuA

uuA
uA

x









 
 
 

             Case2.                             xuuuF   
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Note that this form of nonlinearity appears in advection problems and in nonlinear 
Burgers equations. We first set; 

                                 





0n

nuu   ,    





0n

xnx uu   .                           (13) 

Substituting (13) into   xuuuF  yields; 

              ...... 4321043210  xxxxx uuuuuuuuuuuF ;     (14) 
Multiplying the two factors gives;  

         
 

...22313140400312

2130021120101000





xxxxxxx

xxxxxxxx

uuuuuuuuuuuuuu
uuuuuuuuuuuuuuuuuF

  .    (15) 

Proceeding with grouping the terms are obtain; 

         

 

...
3

210

03122130

021120101000

  

  

A

xxxx

A

xxx

A

xx

A

x

uuuuuuuu

uuuuuuuuuuuuuF





              (16) 

Consequently, the Adomian polynomials are given by; 

                                                .

,

,

,

031221303

11020202

10101

000

uuuuuuuuA

uuuuuuuA

uuuuA

uuA

xxxx

xxx

x

x

x









 
Proceeding as before, we find    xuuuF 2   .  
 
 

III. Trigonometric Nonlinearity      
                                            If   uuF sin  
First, we should be separate  00 uFA   from other terms. To achieve this goal, we first 
substitute;  

                         





0n

nuu  ;                                                          (17) 

Into   uuF sin  to obtain;  
                         ...sin 43210  uuuuuuF  .                        (18) 

To separate 0A , recall the trigonometric identity; 
                sincoscossinsin   .                         (19) 

This means that; 
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             ...sincos...cossin 4321043210  uuuuuuuuuuuF  .   (20) 
Separating   00 sin uuF   from other factors and using Taylor expansion for 

 ....cos 4321  uuuu and  ....sin 4321  uuuu gives; 

                    
     

    





 







 

......
!3

1...cos

......
!4

1...
!2

11sin

3
21210

4
21

2
210

uuuuu

uuuuuuF
  ,     (21)   

So that; 

      





 






  ...

!3
1...cos......2

!2
11sin 3

121021
2

10 uuuuuuuuuF .       (22) 

The last expansion can be rearranged by grouping all terms with the same sum of 
subscripts. This leads to; 

 

...cos
!3

1sincos

sin
!2

1coscossin

3

2
10

0
3

102103

0
2

102010





  

  


A

A
AA

uuuuuuu

uuuuuuuuF

          (23) 

This completes the calculation of the Adomian polynomials for nonlinear operator
  uuF sin , therefore we write; 

                                                 
.cos

!3
1sincos

,sin
!2

1cos

,cos
,sin

0
3

1021033

0
2

1022

011

00

uuuuuuuA

uuuuA

uuA
uA








 
And so on. In a similar way, we find   uuF cos  . 
 
 

IV. Hyperbolic Nonlinearity 
                                               If   uuF sinh  

We first substitute  

                          





0n

nuu  ;                                                  (24) 

Into   uuF sinh  to obtain; 
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                       ...sinh 43210  uuuuuuF  .               (25) 
To calculate 0A , recall the hyperbolic identity; 

             sinhcoshcoshsinhsinh   .            (26) 
Accordingly, Eq. (26) becomes; 

        ...sinhcosh...coshsinh 4321043210  uuuuuuuuuuuF .  (27) 
Separating   00 sinh uuF   from other factors and using Taylor expansion for 

 ....cosh 4321  uuuu and  ....sinh 4321  uuuu gives; 

     

   

    





 






 







 







 

...
!3

1...cosh......2
!2

11sinh

......
!3

1...cosh

......
!4

1...
!2

11sinh

3
121021

2
10

3
21210

4
21

2
210

uuuuuuuu

uuuuu

uuuuuuF

 

By grouping all terms with the same sum of subscripts we find 

          

 

...cosh
!3

1sinhcosh

sinh
!2

1coshcoshsinh

3

2
10

0
3

102103

0
2

102010





  

  


A

A
AA

uuuuuuu

uuuuuuuuF

  

Consequently, the Adomian polynomials for   uuF sinh  are given by; 

             
.cosh

!3
1sinhcosh

,sinh
!2

1cosh

,cosh
,sinh

0
3

1021033

0
2

1022

011

00

uuuuuuuA

uuuuA

uuA
uA








 
Similarly as before, we find   uuF cosh  .  

 
 
V. Exponential Nonlinearity  
                                 If    ueuF    .   

Substituting  

                           





0n

nuu ;                                                                  (28) 
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Into     ueuF   gives; 
                        ...43210  uuuuueuF    .                                             (29) 

Or equivalently; 
                         ...43210  uuuuu eeuF    .                                             (30) 

Keeping the term   0
0

ueuF   and using Taylor expansion for the other factors we 
obtain; 

                           





  ......

!2
1...1 2

321321
0 uuuuuueuF u  .          (31) 

By grouping all terms with an identical sum of subscripts we find 

                        ...
!3

1
!2

1

3

0

2

0

1

0

0

0 3
1213

2
121 






 






 

    
A

u

A

u

A

u

A

u euuuueuueueuF  .       (32) 

It then follows that; 

                                            
.

!3
1

,
!2

1
,

,

0

0

0

0

3
12133

2
122

11

0

u

u

u

u

euuuuA

euuA

euA

eA







 







 





 
And so on. Proceeding as a before, we find   ueuF   . 
 
 

VI. Logarithmic Nonlinearity 
                                     If   0,ln  uuuF   

Substituting  

                             





0n

nuu ;                                                            (33)                                                                            

Into   uuF ln    gives; 
                            ...ln 43210  uuuuuuF  .                            (34) 

Eq. (34) can be written as; 

                          

















 ...1ln

0

3

0

2

0

1
0 u

u
u
u

u
uuuF  .                           (35) 

Using the identity    lnlnln  , Eq. (35) becomes; 
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                           







 ...1lnln

0

3

0

2

0

1
0 u

u
u
u

u
uuuF  .                      (36) 

Separating    00 ln uuF   and using Taylor expansion of the remaining term, we 
obtain; 

   

































































......
4
1

...
3
1...

2
1...

ln
4

0

3

0

2

0

1

3

0

3

0

2

0

1
2

0

3

0

2

0

1

0

3

0

2

0

1

0

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

uuF  (37)                                                                                                                               

Proceeding as before, Eq. (37) can be rewritten as; 

                      


...
3
1

2
1ln

321

0

3
0

3
1

2
0

21

0

3
2

0

2
1

0

2

0

1
0 

  


AAA
A

u
u

u
uu

u
u

u
u

u
u

u
uuuF   .     (38) 

Based on this, the Adomian polynomials are given by; 
 

.
3
1

,
2
1

,

,ln

3
0

3
1

2
0

21

0

3
3

2
0

2
1

0

2
2

0

1
1

00

u
u

u
uu

u
uA

u
u

u
uA

u
uA

uA









 

And so on. In a like manner, we obtain     11,1ln  uuuF . 
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2.2: Adomian Decomposition Method and Sumudu Transform 
Method for Solving Nonlinear Partial Differential Equations 

 
             In this section, we will concentrate our study on the nonlinear PDEs. There 
are many nonlinear partial differential equations which are quite useful and applicable 
in engineering and physics. 
  
 The nonlinear phenomena that appear in the many scientific fields'  such as solid state 
physics, plasma physics, fluid mechanics and quantum field theory can be modeled by 
nonlinear differential equations. The significance of obtaining exact or approximate 
solutions of nonlinear partial differential equations in physics and mathematics is yet 
an important problem that needs new methods to develop new techniques for 
obtaining analytical solutions. Several powerful mathematical methods are used for 
this purpose. 
   
            In this section, we propose a new method, namely Adomian Decomposition 
Sumudu Transform Method (ADSTM) for solving nonlinear equations. This method 
is a combination of Sumudu transform and decomposition method which was 
introduced by D. Kumar, J. Singh and S. Rathore [26]. 
 
(ADSTM) provides the solution for nonlinear equations in the form of convergent 
series.  This forms the motivation for us to apply (ADSTM) for solving nonlinear 
equations in understanding different physical phenomena.  
 
       To illustrate the basic idea of this method, we consider a general non-
homogeneous partial differential equation with the initial conditions of the form: 

                            
        .0,,0,

,,,,
xfxUxhxU

txgtxUNtxURtxUD

t 
     ;                            (39)                                                                      

where D  is the second order linear differential operator 2

2

t
D




 , R is linear 

differential operator of less order than D , N represent the general nonlinear operator 
and  txg ,  is the source term. 
Taking the Sumudu transform of both sides of Eq. (39), we get: 

           txgStxNStxURStxUDS ,,,,   ;                  (40)                                         
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Using the differentiation property of the Sumudu transform and given initial 
conditions, we have: 

              txUNtxURSuxfuxhtxgSutxUS ,,,, 22   .     (41) 
If we apply the inverse operator 1S to both sides of equation (41), we obtain: 

             txUNtxURSuStxGtxU ,,,, 21     .              (42)                                    

Where  txG ,  represents the term arising from the source term and the prescribed 
initial conditions.  Now, apply the Adomian decomposition method:   

   





0

,,
n

n txUtxU   ;                                         (43) 

 The nonlinear term can be decomposed as: 

                   





0

,
n

n UAtxUN      ;                                              (44) 

For some Adomian polynomials  UAn   that are given by: 

   
  ....,2,1,0,

!
1...,,,,

00
210 



























 nUN

d
d

n
UUUUA

n
n

n
n

n

nn






   

Substituting Eq. (43) and Eq. (44) in Eq. (42), we get:  

        



































0 00

21 ,,,
n n

n
n

nn UAtxURSuStxGtxU    .      (45) 

Accordingly, the formal recursive relation is defined by: 

          
   
     .0.,

,,,
21

1

0






 kAURSuStxU

txGtxU

kkk

                   (46) 

The Adomian decomposition Sumudu transform method will be illustrated by 
discussing the following examples. 
 
Example (2.2.1):  Consider the nonlinear ordinary differential equation [24]:  

                             00,12  yyy    ;                                           (47) 
Taking the Sumudu transform to both sides (47) and using the initial condition gives: 

                                     2ySuuxyS    .                                                  (48) 

Applying 1S  to both sides of (48) gives: 

                                    21 ySuSxxy    .                                      (49)                                                    
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The decomposition method suggests that the solution  xy  can be expressed by the 
decomposition series:  

                              





0n

nyxy  ;                                                        (50)                                            

The components of  xy  can be elegantly determined by using the recursive relation:  

      
 
     .0,

,
1

1

0






 kASuSxy
xxy

kk
                             (51) 

Note that the Adomian polynomials nA  for the nonlinear term 2y  were determined 
using Eq. (8), and we found: 

                                                        .22
,2

,2
,

21303

2
1202

101

2
00

yyyyA
yyyA

yyA
yA








 
And so on. Using these polynomials into (51), the first few components can be 
determined recursively by: 

                        

 

    

    

     .
315
17

,
15
2

,
3

,

7
2

1
3

5
1

1
2

3

0
1

1

0

xASuSxy

xASuSxy

xASuSxy

xxy















                         (52) 

Consequently, the solution in a series form is given by; 
  

                         ...
315
17

15
2

3
1 753  xxxxxy    ;            (53) 

And in a closed form of: 
                        xxy tan  .                                                    (54) 
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Example (2.2.2):  Consider the nonlinear ordinary differential equation [24]:  
                         00,1 22  yyxy  ;                              (55) 

In a similar way as above, we have: 

               



















 








 0

13

0 3
1

n
n

n
n ASuSxxxy .           (56) 

The modified recursive relation is defined by:  

                       

     .0,

,
3
1
,

1
2

0
13

1

0












kASuSxy

ASuSxy

xy

Kk

                       (57) 

Consequently, the first few components are given by: 

                    
  .0,0

,0
3
1
,

2

0
13

1

0











kxy

ASuSxy

xy

k

                  (58) 

The exact solution is given by: 
                      xxy    .                                             (59) 

 
 
Example (2.2.3):  Consider the nonlinear ordinary differential equation [24]:   

                         10,00,sin122  yyxyyy  .      (60) 
In a similar way above, we have: 

              



















 








 0

21
2

0
sin

2 n
n

n
n ASuSxxxy   .      (61) 

This leads to the recursive relation; 

                 
 

     .0,

,
2

sin

21
1

2

0






 kASuSxy

xxxy

kk

                     (62) 

This relation leads to the identification: 
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 

  ,...
2

,
2

sin

2
2

0

2

0
21

1

2

0























 



 xyySuSxy

xxxy

  (63) 

The zeroth component contains the trigonometric function  xsin  , therefore it is 
recommended that the noise term phenomenon be used here. By canceling the noise 

terms 2

2x
 and 2

2x
 between  xy0  and  xy1  , the exact solution given by: 

             xxy sin    .                                                (64) 
 
 

Example (2.2.4):  Consider the following nonlinear partial differential equation [24]:   
                     0 xt UUU   ;                                            (65) 

With the initial condition: 
                            xxU 0,  .                                             (66) 

Taking the Sumudu transform of both sides of Eq. (65) and using the initial condition, 
we have: 

                     xUUSuxtxUS , .                             (67) 

Applying 1S   to both sides of Eq. (67) implies that: 

                    xUUSuSxtxU 1,  ;                   (68) 
Following the technique, if we assume an infinite series of the form (68), we obtain: 

      



















 








 0

1

0
,

n
n

n
n UASuSxtxU .           (69) 

Where  UAn   are Adomian polynomials that represent the nonlinear terms. 
The first few components of the Adomian polynomials are given by; 

            

 
 

....

,

,

01101

000

xx

x

UUUUUA

UUUA





                               (70) 

This gives the recursive relation: 

             
 
     .0,,

,,
1

1

0






 kASuStxU
xtxU

kk
               (71) 
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The first few components are given by: 

            

 
    
    
     .,

,,

,,

,,

3
2

1

2
1

1
2

0
1

1

0

3
txASuStxU

txASuStxU

txASuStxU

xtxU















                (72) 

And so on. The solution in a series form is given by: 
              ...1, 32  tttxtxU ;                       (73) 

And in a closed form of: 

                
t

xtxU



1

, .                                            (74) 

 
 
Example (2.2.5):  Consider the following nonlinear partial differential equation [29, 
11]:    

                               2txxUUU xt  ;                                    (75) 
With the initial condition: 

                                      00, xU  .                                           (76) 
Proceeding as in Example (2.2.4), Eq. (75) becomes:  

             



















 








 0

1
3

0 3
,

n
n

n
n UASuStxtxtxU .        (77) 

The modified decomposition method admits the of a modified recursive relation given 
by: 

                 

 

    

     .1,,
3

,

,,

1
1

0
1

3

1

0












kASuStxU

ASuStxtxU

txtxU

kk

                   (78) 

Consequently, we obtain: 
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 

    
  .1,0,

0
3

,

,,

1

21
3

1

0











ktxU

txSuStxtxU

txtxU

k

                   (79) 

In few of Eq. (79), the exact solution is given by: 
                           txtxU ,  .                                               (80) 

 
 
Example (2.2.6): Consider the nonlinear partial differential equation [11]: 

  
x

xtt etUUUU  22   ;                               (81) 
With the initial condition  

                                 x
t exUxU  0,,00, .                                (82) 

By taking Sumudu transform for (81) and using (82) we obtain: 

                       UUUSueueutxUS x
xx   2223, .    (83)                                                 

Applying 1S  to both sides of (83) we obtain; 

    UUUSuSettetxU x
xx   22213

6
1, .    (84) 

Substituting;  

                              txUtxU
n

n ,,
0





  ;                                           (85) 

And the nonlinear terms of; 

                            









0

2

0

2 ,
n

n
n

nx BUAU  .                             (86)                                           

Into (84) gives; 

                  



















 
















 000

213

0
,

6
1,

n
n

n
n

n
n

xx

n
n BtxUASuSettetxU          (87)                                                               

This gives the modified recursive relation;  

                         

 

   

    .1,,
6
1,

,,

1
1

000
13

1

0














kBUALtxU

BUALettxU

ettxU

kkktk

t
x

x

                (88)                                                    

The first few of the components are given by; 
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 

   

  .1,0,

,0
6
1,

,,

1

000
13

1

0













ktxU

BUALettxU

ettxU

k

t
x

x

         (89)  

The solution in a closed form is given by; 
                          xettxU , .                                                  (90) 

 
 

Example (2.2.7):  Consider the following nonlinear partial differential equation [24]:   
                 UtUUU xxttt    ;                                   (91) 

With the initial conditions 
                      10,,sin0,  xUxxU t .                            (92) 

By applying the aforesaid method subject to the initial condition, we have: 
            xxtUUUSuuxutxUS  23sin, .    (93) 

The inverse of Sumudu transform implies that: 

            xxt UUUSuStxttxU   21
3

6
sin, .    (94) 

Now, applying the same procedure as in the previous Example (2.2.6), we arrive in 
recursive relation given below: 

           
 

     .0,,

,
6

sin,

21
1

3

0






 kAUSuStxU

txttxU

kkk

       (95) 

This relation leads to the identification: 

          

 

  ,
!5

sin
!46

,

,
6

sin,

543

1

3

0

txtttxU

txttxU





                         (96) 

The zeroth component contains the trigonometric function  xsin  , therefore it is 
recommended that the noise term phenomenon be used here. By canceling the noise 

terms 6

3x
 and 6

3x
 between  xU 0  and  xU1  , the exact solution given by: 

                     xttxU sin,    .                                         (97) 
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Example (2.2.8):  Consider the following nonlinear partial differential equation [24]:   

                   022  xtt UUU  ;                                      (98) 
With the initial conditions 

                 x
t exUxU  0,,00, .                             (99) 

By taking Sumudu transform for (98) and using (99) we obtain: 

                      222, UUSueutxUS x
x  .                  (100) 

By applying the inverse Sumudu transform of (100), we get: 

                      2221, UUSuSettxU x
x   ;              (101) 

This assumes a series solution of the function  txU , is given by: 

                  





0

,,
n

n txUtxU  ;                                     (102) 

Using (102) into (101), we get: 

 
     




















  












 0 0

21

0
,

n n
nn

x

n
n UBUASuSettxU .    (103) 

Where  UAn and  UBn are Adomian polynomials that represents nonlinear terms.  
The few components of the Adomian polynomials are given as follows: 

        
   
    ,2,

,2,

101
2

00

101
2

00

UUUBUUB

UUUAUUA
xxx




                   (104) 

And so on. From the above equations we obtain: 

         
 
     .0,,

,,
21

1

0






 kBASuStxU
ettxU

kkk

x

        (105)  

The first few terms of    txU n ,   follows immediately upon setting: 

         
       
  .1,0,

0,

1

0
22

0
21

00
21

1









ktxU

UUSuSBASuStxU

k

x     (106) 

Therefore the solution obtained by ADSTM is given as follows: 
        xettxU , .                                                  (107) 
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2.3: Adomian Decomposition Method and Sumudu Transform Method for 
Solving Systems of  Nonlinear Partial Differential Equations 

 
         In this section, the system of nonlinear PDEs will be examined by using 
(ADSTM). Systems of nonlinear PDEs arise in many scientific models such as the 
propagation of shallow water waves and the Brusselator model of chemical reaction – 
diffusion model. To achieve our goal in handling systems of nonlinear PDEs, we write 
a system as: 

              
     
      ,,,,

,,,,

22

11

gVUNtxUtxV
gVUNtxVtxU

xt

xt




                     (108) 

With initial data: 
                   xfxVxfxU 21 0,,0,                           (109) 

Where 1N  and 2N are nonlinear terms, and 1g , 2g  are source terms. Applying the 
Sumudu transforms to the system (108) and using (109) yields: 

      
            
            .,,,

,,,,

222

111

VUNSutxUSugSuxftxVS
VUNSutxVSugSuxftxUS

x

x




     (110) 

Using inverse Sumudu transform of (110) gives: 
              
              .,,,

,,,,

2
11

2
1

2

1
11

1
1

1

VUNSuStxUSuSgSuSxftxV
VUNSuStxVSuSgSuSxftxU

x

x







  (111)   

The linear unknown function  txU , and  txV ,  can be decomposed by infinite 
series of components:  

                   









00

,,,,,
n

n
n

n txVtxVtxUtxU     ;                (112) 

However, the nonlinear terms 1N  and 2N should be represented by Adomian 

polynomials  UAn and  UBn  as follows: 

               









0

2
0

1 ,,,
n

n
n

n BVUNAVUN          ;                  (113) 

Substituting (112) and (113) into (111) gives: 
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 

        

 

         .,

,

,,

,

0

11
2

1
2

0

0

11
1

1
1

0











































































n
nx

n
n

n
nx

n
n

BSuStxUSuSgSuSxf

txV

ASuStxVSuSgSuSxf

txU

    (114) 

The recursive relations can be constructed from (114) given by: 

                   
      
        .0,,

,,
11

1

1
1

10










kASuSVSuStxU
gSuSxftxU

kxkk
          (115)                                  

And 

                   
      
        .0,,

,,
11

1

2
1

20










kBSuSUSuStxV
gSuSxftxV

kxkk
         (116) 

To have a clear overview, forthwith are several examples to demonstrate the 
efficiency of the method. 
 
Example (2.3.9): Consider the following nonlinear system of partial differential 
equations [30]: 

                  
 
  ,1,

,1,



VVUtxV
UUVtxU

xt

xt
  ;                                      (117) 

With the initial conditions: 
              xx exVexU  0,,0,    .                                (118) 

Taking the Sumudu transform of the system (117) and using initial conditions (118) 
we obtain: 

           
      
      .,

,,

x
x

x
x

VUSuVSuuetxVS
UVSuUSuuetxUS




                     (119) 

Using inverse Sumudu transform from (119) gives: 

            
       
       .,

,,
11

11

x
x

x
x

VUSuSVSuStetxV
UVSuSUSuStetxU








         (120) 
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The modified decomposition method defines the recursive relations in the form: 

         

 
    
     .0,,

,,
,

1
1

00
1

1

0












kAUSuStxU
AUSuSttxU

etxU

kkk

x

                     (121) 

And 

       

 
    
     .0,,

,,
,

1
1

00
1

1

0














kBVSuStxV
BVSuSttxV

etxV

kkk

x

                       (122) 

The Adomian polynomials for the nonlinear term xVU are given by:  

                                             xxx

xxx

UVUVUVA

UVUVAUVA

2011022

10011000 ,,





 
And so on. And for the nonlinear term xUV  by: 

                                               xxx

xxx

VUVUVUB

VUVUBVUB

2011022

10011000 ,,





 
And so on. Using the derived Adomian polynomials into (121) and (122), we obtain 
the following pairs of components: 

       

   
   
 

  .
!3

,
!3

,

,
!2

,
!2

,

,,,

,,,

33

33

22

22

11

00

































xx

xx

xx

xx

etetVU

etetVU

etetVU

eeVU

                               (123) 

And so on. Accordingly, the solution in a series form is given by: 

            
























  ...

!3!2
1,...

!3!2
1,

3232 tttettteVU xx ;   (124) 

And in a closed form of: 
         txtx eeVU  ,, .                                          (125) 
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Example (2.3.10): Consider the following nonlinear coupled of partial differential 
equations [24]: 

                 
,5
,5
,1







yxt

yxt

yxt

VUW
UWV
WVU

 ;                                          (126) 

With the initial conditions: 
          yxyxWyxyxVyxyxU 20,,,20,,,20,,   .   (127)             

Following the analysis presented above, we obtain: 

      

    
    
    .52,

,52,,

,2,,

1

1

1

yx

yx

yx

VUSuStyxtyxW

UWSuStyxtyxV

WVSuStyxtyxU













       (128) 

Substituting the decomposition representations for linear and nonlinear terms into 
(128) yields: 

     

 

 

  .52,,

,52,,

,2,,

0

1

0

0

1

0

0

1

0

































































































n
n

n
n

n
n

n
n

n
n

n
n

CSuStyxtyxW

BSuStyxtyxV

ASuStyxtyxU

     (129) 

For brevity, we list the first three Adomian polynomials for nA , nB  and nC as follows: 

For yxWV , we find: 

                                                 yxyxyx

yxyxyx

WVWVWVA

WVWVAWVA

2011022

10011000 ,,





    
For yxUW , we find: 

                                             yxyxyx

yxyxyx

UWUWUWB

UWUWBUWB

2011022

10011000 ,,





 
For yxVU , we find: 
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                                             yxyxyx

yxyxyx

VUVUVUC

VUVUCVUC

2011022

10011000 ,,





 
Substituting these polynomials into the appropriate recursive relations we find: 

          

   
   
   
    .3,0,0,0,,

,0,0,0,,
,2,2,2,,

,52,52,2,,

222

111

000







kWVU
WVU

tttWVU
tyxtyxtyxWVU

kkk

   (130) 

The exact solution of the system of nonlinear PDE is given by: 
             tyxtyxtyxWVU 32,32,32,,  .       (131) 
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CHAPTER (3) 
 Linear and Nonlinear Physical Models  

 
         In this chapter, we will concentrate our study on the linear and nonlinear 
particular applications that appear in applied science. The wide use of these physical 
significant problems is the most important reason why they have drawn 
mathematician's attention in recent years. 
 
         Nonlinear partial differential equations have witnessed remarkable 
improvement. Nonlinear problems appear in the many scientific fields' such as 
gravitation, chemical reaction, fluid dynamics, dispersion, nonlinear optics, plasma 
physics, acoustics, and others. Several approaches have been used such as the 
Adomian decomposition method, the variational iteration method, and the 
characteristics method and perturbation techniques to examine these problems. 
 
      (ADSTM) gives the solution of nonlinear equations in the form of convergent 
series. The main advantage of this method is its potentiality of combining two 
powerful methods for deriving exact and approximate solution of nonlinear equations. 
This forms the motivation for us to apply (ADSTM) for solving nonlinear equations in 
understanding different physical phenomena. 
  
The following section offers the effectiveness of the Adomian decomposition Sumudu 
transform method (ADSTM) in solving linear and nonlinear physical models. 
 
3.1: The Nonlinear Advection Problem 
       The nonlinear partial differential equation of the advection problem is of the 
form; 

                    txfUUU xt ,  ;                                                (1) 
With the initial condition 

                                xgxU 0,  .                                                (2)                                                                            
In this section, we approach the advection problem by utilizing the Adomian 
decomposition Sumudu transform method to find a rapidly convergent power series 
solution. 
Operating Sumudu transform from Eq. (1) and using initial condition yields; 

                              xUUuStxfuSxgtxUS  ,,                            (3) 
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Taking the inverse Sumudu transform of (3) gives; 
                                   xUUSuStxfSuSxgtxU 11 ,,    .           (4) 

Substituting the linear term  txU , , by the series; 

                            





0

,,
n

n txUtxU  ;                                                   (5) 

And the nonlinear term xUU  the a series of the Adomian polynomials; 

                            





0n

nx AUU ;                                                           (6)                                          

Into Eq. (4), gives; 

                        



















 








 0

11

0
,,

n
n

n
n ASuStxfSuSxgtxU  .      (7) 

Following Adomian approach, we obtain the recursive relation; 

                      
       
     .0,,

,,,
1

1

1
0










kASuStxU
txfSuSxgtxU

kk

                                  (8) 

The following examples will be used to illustrate the algorithm discussed above. 
 
Example (3.1.1):  Consider the homogeneous nonlinear partial differential equation 
[31]:   

                     0 xt UUU   ;                                                  (9) 
With the initial condition: 

                            xxU 0,  .                                                (10) 
Taking the Sumudu transform of both sides of Eq. (9), and using the initial condition, 
we have: 

                     xUUSuxtxUS ,                                (11) 

Applying 1S   to both sides of Eq. (11); implies that: 

                    xUUSuSxtxU 1,  ;                      (12) 
Following the technique, if we assume an infinite series of the form (12); we obtain: 

      



















 








 0

1

0
,

n
n

n
n UASuSxtxU .             (13) 

Where  UAn   are the Adomian polynomials that represent the nonlinear term. 
The first few the components of the Adomian polynomials are given by; 
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.

,

,

0211202

01101

000

xxx

xx

x

UUUUUUA

UUUUA

UUA







                               (14) 

This gives the recursive relation: 

             
 
     .0,,

,,
1

1

0






 kASuStxU
xtxU

kk
                 (15) 

The first few the components are given by: 

            

 
    
    
     .,

,,

,,

,,

3
2

1

2
1

1
2

0
1

1

0

3
txASuStxU

txASuStxU

txASuStxU

xtxU















                  (16) 

And so on. The solution in a series form is given by: 
              ...1, 32  tttxtxU ;                          (17) 

And in a closed form of: 

                
t

xtxU



1

, .                                                (18) 

 
Example (3.1.2): Consider the following inhomogeneous advection problem [32]:  

                  232 txtxtUUU xt   ;                            (19) 
With the initial condition: 

                          00, xU  .                                                    (20) 
Following discussion presented above, we obtain the recursive relation; 

                       
 

     .0,,

,
34

,

1
1

4
2

0






 kASuStxU

txttxttxU

kk

                      (21) 

This gives; 

                      
 

  .
98
1

63
1

72
7

15
2

34
,

,
34

,

8765
34

1

34
2

0

ttxttxtxttxU

txttxttxU




    (22) 
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It is easily observed that two noise term appears in the components  txU ,0 and  txU ,1

. By canceling these terms from  txU ,0 , the remaining non-canceled term of  txU ,0

may provide the exact solution. 
The exact solution is given by; 

                         txttxU  2,  .                                          (23) 
 
 
3.2: The Goursat Problem  
  
        The Goursat partial differential equation arises in a variety of physical 
phenomenon and applied sciences. 
The Goursat problem arises in partial differential equation with mixed derivatives, and 
its standard form given by; 

                          
 

       
      .0,0,0,000

,,0,0,
,,,,,

byaxuhg
yhtuxgxu

uuuyxfu yxyx






                            (24) 

In this section, we outline a reliable strategy of (ADSTM) of solving the Goursat 
problem. To mention the basic idea of this method, we consider a general nonlinear no 
homogeneous Goursat problem of the form; 

                             
       .,0,0,

,,,,
tftUxhxU

txgtxNUtxRUtxUD


                                (25) 

Where D is the second order linear mixed differential operator, N represent the general 
nonlinear operator, and  txg , the source term. 
Taking the Sumudu transform of both sides of Eq. (25) with respect to t  and using 
initial condition, we get; 

                             txNUtxRUSutxgSuxhtxUS x ,,,,        (26) 
Now, applying the inverse Sumudu transform of both sides of (26) gives; 

                                txNUtxRUSuStxGxhtxU x ,,,, 1       (27) 
Again, taking the Sumudu transform of both sides of (27) with respect to x , we get; 

                 txNUtxRUSuSSutxGSuxhuStftxUS ,,,, 1            (28) 
Now, again applying the inverse Sumudu transform of both sides of (28) gives; 

            txNUtxRUSuSSuStxHtxU ,,,, 11           (29) 
Where  txH , represent the term arising from the source term and the prescribed initial 
conditions. We represent solution as an infinite series; 



 

72 
 

                          





0

,,
n

n txUtxU  ,                                                   (30) 

And the nonlinear term can be decomposed as; 

                       





0

,
n

nAtxNU  ;                                                         (31) 

Then Eq. (29) becomes; 

     


























































 












 00

11

0
,,,

n
n

n
n

n
n AtxURSuSSuStxHtxU   (32) 

The recursive relation is given by; 

                    
   
        .0,,

,,,
11

1

0






 kAURSuSSuStxU
txHtxU

kkk

            (33) 

The following examples will be used to illustrate the algorithm discussed above. 
 
 
Example (3.2.3): Consider the following homogeneous Goursat problem [33]:  

                       
      .10,0,,0,0,

,





UetUexU

UU
tx

tx                                  (34) 

Following discussion presented above, we obtain the recursive relation is given by; 

                       
 
        .0,,

,1,
11

1

0






 kUSuSSuStxU
eetxU

kk

tx

                         (35) 

The first few of the components are; 

                         
 
 

  .
!2!2!2!2!2!2!2!2

,

,,

,1,

22222222

2

1

0

xt

xt

tx

etttxtxexxtxtxU

etttxexxtxU

eetxU







 (36) 

And so on. Therefore the solution in a closed form is; 
  txetxU ,   .                                                                 (37) 
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3.3: The Klein- Gordon Equation 
 
          The linear and nonlinear Klein-Gordon equations are considered one of the 
most important partial differential equations in quantum field theory. Those equations 
arise in the study of relativistic physics and are used to describe dispersive wave 
phenomena in general. In addition, it also appears in nonlinear optics and plasma 
physics. 
 
3.3.1: The Linear Klein- Gordon Equation 
           The linear Klein-Gordon equation is very important in quantum mechanics. It 
is derived from the relativistic energy formula, and it is standard form given by; 

                    txhtxUatxUtxU xxtt ,,,,       ;                                (38)                                                                    
Subject to the initial conditions: 

                                   xgtxUxfxU t  ,,0, .                                (39) 
Where  a   is a constant,   txh ,    is a source term. It is interesting to note that if 0a  
Eq. (38) becomes inhomogeneous wave equation. 
 
           In this section, the (ADSTM) will be applied to handle the linear Klein-Gordon 
equations. To achieve this goal, we apply the Sumudu transform of both sides of Eq. 
(38) and using the initial condition, we obtain; 

              txUaSutxUSutxhuxguxftxUS xx ,,,, 222         (40) 
Now, applying inverse Sumudu transform and using the decomposition series for the 
linear term,  txU ,  and proceeding as before we obtain the a recursive relation; 

            
         
          .0,,

,,
2121

1

21
0










kUaSuSUSuStxU
txhSuSxgtxftxU

kxxkk

              (41) 

The following examples will be used to illustrate the algorithm discussed above. 
 
Example (3.3.4): Consider the following linear Klein – Gordon equation [34]:  

                        0 UUU xxtt  ;                                                     (42) 
Subject to the initial conditions  

                                 xtxUxU t  ,,00, .                                         (43) 
Following the discussion presented above, we find a recursive relation; 

           
 
          .0,,
,

2121
1

0






 kUSuSUSuStxU
txtxU

kxxkk

     (44) 

That in turn gives; 
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 

         

         

          .
!7

,

,
!5

,

,
!3

,

,

7

2
21

2
21

3

5

1
21

1
21

2

3

0
21

0
21

1

0

txUSuSUSuStxU

txUSuSUSuStxU

txUSuSUSuStxU

txtxU

xx

xx

xx















         (45) 

And so on. In view of (45) the series solution is given by; 

               







 ...

!7!5!3
,

753 ttttxtxU  ;                                   (46) 

And the exact solution is given by; 
               txtxU sin,   .                                                               (47) 

 
 
Example (3.3.5): Consider the following linear Klein – Gordon equation [34]:  

                     xUUU xxtt sin2  ;                                                    (48) 
Subject to the initial conditions:  

                             1,,sin0,  txUxxU t .                                          (49) 
Proceeding as in Example (3.3.4), we set the relation; 

           
 
          .0,,

,sinsin,
2121

1

2
0






 kUSuSUSuStxU
xttxtxU

kxxkk

         (50) 

That in turn gives; 

            

 

 

 

  .sin
!7

2
!7

sin
90

,

,sin
!4!5

sin
90

,

,sin
!4!3

sin,

,sinsin,

876

3

456

2

43
2

1

2
0

xttxttxU

xttxttxU

xttxttxU

xttxtxU









                             (51) 

Therefore the solution in series form is given by; 

  







 ...

!7!5!3
sin,

753 ttttxtxU  ;                        (52) 

And the exact solution is given by; 
            txxtxU sinsin,   .                                                 (53) 

 



 

75 
 

3.3.2: The Nonlinear Klein- Gordon Equation 
 
          The nonlinear Klein-Gordon equation comes from quantum field theory and 
describes the nonlinear wave interaction and it is standard form given by; 

                       txhtxUFtxUatxUtxU xxtt ,,,,,   ;          (54) 
Subject to the initial conditions 

                                    xgtxUxfxU t  ,,0, .                                    (55) 
Where a  is a constant and  txh ,  is a source term and   txUF ,  is a nonlinear 
function of  txU , . 
  
        In this section, the (ADSTM) will be applied to handle the nonlinear Klein-
Gordon equations. To achieve this goal, we apply the Sumudu transform of both sides 
of Eq. (54) and using the initial condition, we obtain; 

                 txUFtxUaSutxUSutxhuxguxftxUS xx ,,,,, 222    (56) 
Now, applying inverse Sumudu transform and using the decomposition series for the 
linear term,  txU , , the infinite series of the Adomian polynomials for the nonlinear 
term,   txUF ,  , and proceeding as before we obtain the a recursive relation; 

            
         
          .0,,

,,
2121

1

21
0










kAUaSuSUSuStxU
txhSuSxgtxftxU

kkxxkk

     (57) 

The following examples will be used to illustrate the algorithm discussed above. 
                                                                                    
Example (3.3.6): Consider the following nonlinear Klein – Gordon equation [24]:  

            222 txUUU xxtt   ;                                               (58) 
Subject to the initial conditions: 

                     xtxUxU t  ,,00, .                                          (59) 
Following the discussion presented above, we find a recursive relation; 

               
 

         .0,,

,
12
1,

2121
1

42
0






 kASuSUSuStxU

txtxtxU

kxxkk

       (60) 

So the Adomian polynomials nA  are given as follows; 

                                                    .2

,2
,

2
1202

101

2
00

UUUA

UUA
UA






 
And so on. Using modified recursive relation Eq. (60) can be rewritten in the scheme; 
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 

        
         .1,,

,
12
1,

,,

2121
1

0
21

0
2142

1

0












kASuSUSuStxU

ASuSUSuStxtxU

txtxU

kxxkk

xx   (61) 

This lead to; 

            

 

        
  .1,0,

,0
12
1,

,,

1

0
21

0
2142

1

0











ktxU

ASuSUSuStxtxU

txtxU

k

xx (62) 

Therefore, the exact solution is given by; 
              txtxU ,  .                                                                  (63) 

 
 
Example (3.3.7): Consider the following nonlinear Klein – Gordon equation [24]:  

                 44222 22 txtxUUU xxtt   ;                                   (64)                                                                             
Subject to the initial conditions: 

                      0,,00,  txUxU t .                                           (65) 
Proceeding as in Example (3.3.6), we set the relation; 

 

        
  .1,0,

,0
30
1

6
1,

,,

1

0
21

0
21644

1

22
0











ktxU

ASuSUSuStxttxU

txtxU

k

xx  (66) 

This formally gives the exact solution; 
    22, txtxU   .                                                                            (67) 

 
 
3.3.3:  The Sine - Gordon Equation 
 
         The sine – Gordon equation appeared first in differential geometry. This 
equation becomes the focus of a lot of research work because it appears in many 
physical phenomena such as the propagation of magnetic flux and the stability of fluid 
motion. 
The standard form of the sine – Gordon equation is given by; 

                  0sin,, 2  UtxUctxU xxtt   ;                                        (68) 
Subject to the initial conditions 
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                                    xgtxUxfxU t  ,,0, .                                    (69) 
Where c  and   are constants.  
 
         In this section, the sine – Gordon equation will be handled by using (ADSTM). 
Taking the Sumudu transforms of both sides of (68) and using the initial conditions 
we have; 

                      USutxUScuxguxftxUS xx sin,, 222               (70) 
Applying inverse Sumudu transform to (70) gives; 

                          USuStxUScuSxgtxftxU xx sin,, 21221            (71) 
Using the decomposition series for the linear term  txU , , the infinite series of the 
Adomian polynomials for the nonlinear term Usin , and proceeding as before we 
obtain the recursive relation; 

            
     
         .0,,

,,
21221

1

0






 kASuSUScuStxU
xgtxftxU

kxxkk 
         (72) 

This will lead to the determination of the solution in a series form. This can be 
illustrated as follows. 
  
Example (3.3.8): Consider the following Sine-Gordon equation with the given initial 
conditions [24]: 

                         UtxUtxU xxtt sin,,  ;                                          (73) 
Subject to the initial conditions; 

     0,,
2

0,  txUxU t
 .                                          (74) 

Using the recursive scheme (72) yields; 

                      
 

         .0,,

,
2

,

2121
1

0






 kASuSUSuStxU

txU

kxxkk


         (75) 

The first few the Adomian polynomials for Usin  are given as; 

                     

.cos
!3

1sincos

,sin
!2

1cos

,cos
,sin

0
3

1021033

0
2

1022

011

00

UUUUUUUA

UUUUA

UUA
UA








                (76) 

Combining (75) and (76) leads to; 
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 

        
        
         .

240
1,

,0,

,
!2

,

,
2

,

6
2

21
2

21
3

1
21

1
21

2

2

0
21

0
21

1

0

tASuSUSuStxU

ASuSUSuStxU

tASuSUSuStxU

txU

xx

xx

xx

















           (77) 

And so on. The series solution is; 

                         ...
240
1

!22
, 6

2

 tttxU      .                                     (78) 

 
 
3.4: The Burgers Equation  
 
          The Burgers equation is considered one of the fundamental model equations in 
fluid mechanics. This equation demonstrates the coupling between diffusion and 
convection processes. 
         The equation appears in various areas of applied mathematics and physics, such 
as modeling of gas dynamic and is used to describe the structure of shock waves. In 
addition, it also appears in traffic flow and acoustic transmission. 
        The standard form of Burgers equation is given by; 

             0,,,  ttxUVUUtxU xxxt  ;                                     (79) 
Subject to the initial conditions: 

                           xfxU 0, .                                                          (80) 
Where V  is a constant that defines the kinematic viscosity. 
  
         In this section, we apply the (ADSTM) to solve nonlinear Burgers equation. 
Taking the Sumudu transforms of both sides of (79) and using the initial conditions 
we have; 

                      xxx UUSutxUSVuxftxUS  ,, .                 (81) 
Applying the inverse operator  1S   of (81) leads to; 

                          xxx UUSuStxUSaVuSxftxU 11 ,,                   (82) 
Using the decomposition series for the linear term  txU ,  and the series of the 
Adomian polynomials for the nonlinear term xUU gives; 
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              



















































 













 0

1

0

1

0
,,

n
n

xxn
n

n
n ASuStxUSVuSxftxU          (83) 

Identifying the zeroth component  txU ,0   by the terms that arise from the initial 
condition, and following the decomposition method, we obtain the recursive relation; 

            
   
         .0,,

,,
11

1

0






 kAuSSUuSVStxU
xftxU

kxxkk

              (84) 

The Adomian polynomials for the nonlinear term xUU  have been derived in the form; 

                    

..

,

,

,
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UUUUUUA
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xxxx

xxx

xx

x









                      (85) 

In view of (84) and (85), the first few the components can be identified by; 

                    

   
        
        
         .,
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2
1

2
1

3

1
1

1
1

2

0
1

0
1

1

0

AuSSUuSVStxU

AuSSUuSVStxU

AuSSUVuSStxU
xftxU

xx

xx

xx















                        (86) 

The following examples will be used to illustrate the discussion carried out above by 
using Sumudu decomposition method. 
 
Example (3.4.9): Consider the following one – dimensional Burgers equation [24]: 

                         xxxt UUUU   ;                                                  (87) 
Subject to the initial conditions: 

                            xxU 0, .                                                      (88) 
Following the discussion presented above, we find a recursive relation; 

                   
 
         .0,,

,,
11

1

0






 kAuSSUuSStxU
xtxU

kxxkk

              (89) 

Using the Adomian polynomials we obtain; 

                     

 
        
        
         .,
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1
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2
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1
1

1
2

0
1

0
1

1

0

txAuSSUuSaStxU

txAuSSUuSaStxU

txAuSSUuSaStxU
xtxU

xx
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xx















            (90) 

Summing these iterates gives the series solution; 
                         ...1, 32  tttxtxU  ;                                      (91) 
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Consequently, the exact solution is given by; 

                      
t

xtxU



1

, .                                                            (92) 

 
 
Example (3.4.10): Consider the following one – dimensional Burgers equation [24]: 

                         xxxt UUUU   ;                                                (93) 
Subject to the initial conditions: 

            0,210,  x
x

xU .                                               (94) 

Proceeding as in Example (3.4.9), we set the relation; 

                   
 

         .0,,

,21,
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1
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
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x
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kxxkk

             (95) 

That gives; 
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 
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x
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x
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







                                                      (96) 

The Eq. (96) can be rewritten as series form; 

              







 ...121, 3

3

2

2

x
t

x
t

x
t

x
txU  ;                       (97) 

Thus, the exact solution is given by; 

         
tx

txU



21, .                                                   (98) 

 
 
3.4.1: System of (1+2)-Dimensional Burgers Equations 
 
        Systems of partial differential equations have attracted much attention in 
studying evolution equations describing wave propagation, in investigating the 
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shallow water waves, and in examining the chemical reaction–diffusion model of 
Brusselator. Several numerical methods used for solving this system [35-41]. 
 
         In this section, we present (ADSTM) to obtain a closed form solution of the 
system of (1+2)-dimensional Burgers equations. 
 
         Consider the following system of two – dimensional Burgers equation [35]: 
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                            (99)                                                 

With the initial conditions; 
        DyxyxgyxVDyxyxfyxU  ,,,0,,,,,,0,, .      (100) 

And the boundary conditions; 
          DyxtyxftyxVDyxtyxftyxU  ,,,,,,,,,,,,, 21    (101) 

where   byabxayxD  ,|, and D is its boundary,  tyxU ,,  and  tyxV ,,  are 
the velocity components to be determined, 1,, fgf  and 2f are known functions, and R

is the Reynolds number.    
Taking the Sumudu transform of the system (99) and using initial conditions (100), 
we obtain; 
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Using inverse Sumudu transform from (102) gives;   
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Using the decomposition series for the linear terms    tyxVtyxU ,,,,, , the infinite 
series of the Adomian polynomials for the nonlinear terms xyx UVVUUU ,, , yVV  ; and 
proceeding as before, we obtain the recursive relations; 

   

   

        .0,1,

,,,

211
1

0













 




 kU

R
SuSBASuStxU

yxftyxU

kkkk
     (104)                                       

And 

  

   

        .0,1,

,,,

211
1

0













 




 kV

R
SuSDCSuStxV

yxgtyxV

kkkk
  (105) 

The Adomian polynomials for the nonlinear term xUU  are given by;  

                               xxx

xxx

UUUUUUA

UUUUAUUA

2011022

10011000 ,,





 
And so on.  
And the nonlinear term yUV is given by; 

                                yyy

yyy

UVUVUVB

UVUVBUVB

2011022

10011000 ,,





 
And so on. And for the nonlinear term xVU ; 

                                xxx

xxx

VUVUVUC

VUVUCVUC

2011022

10011000 ,,





 
And so on. And for the nonlinear term yVV ; 

                                yyy

yyy

VVVVVVD

VVVVDVVD

2011022

10011000 ,,





 
And so on. The following example will be used to illustrate the discussion carried out 
above by using (ADSTM). 
 
Example (3.4.11): Consider the following system of two – dimensional Burgers 
equation (99), with the following the initial conditions [35]: 

            DyxyxyxVDyxyxyxU  ,,0,,,,,0,,          (106) 
Following the discussion presented above, we find recursive relations; 
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 

        .0,1,

,,,

211
1

0













 




 kU

R
SuSBASuStxU

yxtyxU

kkkk
    (107)                                      

And 

  

 

        .0,1,

,,,

211
1

0













 




 kV

R
SuSDCSuStxV

yxtyxV

kkkk
    (108) 

 Using the derived the Adomian polynomials above into (107) and (108), we obtain 
the following pairs of components, upon setting 1R , we have; 

     

   
   
   
   
   4444

44

33
33

2222
22

11

00

44,44,
.4,4,

,22,22,
,2,2,
,,,

tytxtytxVU
tytxVU

tytxtytxVU
tytxVU
yxyxVU










                        (109)                                                               

And so on. Accordingly, the solution in a series form is given by; 

             
      
















...421...212...421
,...421...212...421

,
42242

42242

ttyttyttx
ttyttxttx

VU ;  (110)  

And in a closed form of; 

          













 22 21
2,

21
2,,,,,

t
tyyx

t
txyxtyxVtyxU .           (111) 

 
 

3.5: The Telegraph Equation  
 
         Telegraph equations appear in the propagation of electrical signals along a 
telegraph line, digital image processing, telecommunication, signals and systems. 
The general linear telegraph equation is; 

                         txUtxUctxUbtxUa xxttt ,,,,   ;                       (112) 
Subject to the initial conditions: 

                                    txUxU t ,,0, .                                  (113) 
Where a , b and, c  are constants related to the inductance, capacitance, and 
conductance of the cable respectively, and, ,   are functions of , x  . 
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 Assuming 0a  and 0c , because of electrical properties of the cable, then we 
obtain: 

        txUbtxU txx ,,  ;                                          (114) 
Which is the standard linear heat equation mentioned before in chapter one. 
On the other hand, the electrical properties may lead to  0b  and 0c , hence we 
obtain: 

                                  txUatxU ttxx ,,  ;                                         (115) 
Which is the standard linear wave equation presented before in chapter one. 
 
          In this section, we apply the Sumudu transform method to solve general linear 
telegraph equation. 
Applying Sumudu transform of the equation (112) and making use the initial 
conditions to find; 

           uxG
xd

duxGc
uu

uxGb
uuu

uxGa ,,,,
2

2

22 



 



 

        (116) 

Or equivalently; 

            ubuaauxGucbuauxG
xd

du   ,, 2
2

2
2        (117) 

This is the second order linear differential equation. The particular solution of this 
equation is obtained as: 

        
     

xd
dDxGuF

ucubaDu
ubuaauxG 




 ,, 222

              (118) 

Now apply the inverse Sumudu transform to find the solution of the general telegraph 
equation (109) in the Form; 

                   tfxGuFSxGtxU  1,   .                                     (119) 
The following examples will be used to illustrate the algorithm discussed above. 
 
Example (3.5.12): Consider the following telegraph equation [42]: 

                               xxttt UUUU  2  ;                                           (120) 
Subject to the initial conditions; 

                                    x
t

x etxUexU 2,,0,  .                                       (121) 
Following the discussion presented above, we find;  

                             
  u

e
uDu

euxG
xx

211
, 222 





                                    (122) 
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Now apply the inverse Sumudu transform to find the solution; 

                             txx e
u

SetxU 21

21
1,  










   .                                   (123) 

 
 
Example (3.5.13): Consider the following telegraph equation [42]: 

                                 xxttt UUUU  44  ;                                         (124) 
Subject to the initial conditions; 

                                    2,,10, 2  txUexU t
x .                                  (125) 

 Proceeding as in Example (3.6.12), we find; 

       
 

 
 

x
x

e
uuDu

eu
uDu

uuxG 2
222

2

222 21
1

21
41

21
21, 











         (126) 

Now apply the inverse Sumudu transform to find the solution; 
                               xt eetxU 22,     .                                               (127) 

 
 
 
3.6: The Schrödinger Equation  
 
          Linear and nonlinear Schrödinger equations are one of the most important 
partial differential equations in quantum mechanics. 
Those equations arise in the study of time evolution of the wave function. 
 
3.6.1: The Linear Schrödinger Equation  
        The linear Schrödinger equation describes the time evolution of a free particle 
with mass m , and it is standard form given by; 

              0,1, 2  tiUiU xxt  ;                                       (128) 
Subject to the initial conditions: 

                           xfxU 0, .                                                   (129) 
Where  xf  is continuous function and square integrable. 
 
          In this section, the (ADSTM) will be applied to handle the linear Schrodinger 
equations. To achieve this goal, we apply the Sumudu transform of both sides of Eq. 
(128) and using the initial condition, we obtain; 
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                   xxUSuixftxUS ,                                        (130) 
Applying inverse Sumudu transform of (130) gives; 

                  xxUuSiSxftxU 1,                                   (131) 
Using the decomposition series for the linear term  txU ,  and proceeding as before, 
we obtain the recursive relation; 

              
   
      .0,,

,,
1

1

0






 kUuSiStxU
xftxU

xxkk

                        (132) 

 We can easily determine the first few the components by; 

             

   
     
     
      .,

,,

,,
,,

2
1

3

1
1

2

0
1

1

0

xx

xx

xx

UuSiStxU

UuSiStxU

UuSiStxU
xftxU















                                 (133) 

 
Other components can be determined as well. This completes the determination of the 
series solution.  
The analysis introduced above will be illustrated by discussing the following 
examples. 
 
Example (3.6.14): Consider the following linear Schrödinger equation [43]: 

                     xxt UiU   ;                                                          (134) 
Subject to the initial conditions: 

                      xiexU 0, .                                                         (135) 
Following the discussion presented above, we find;  

                

 
     

     

      .
!3

1,

,
!2

1,

,,
,,

3
2

1
3

2
1

1
2

0
1

1

0

xi
xx

xi
xx

xi
xx

xi

etiUuSiStxU

etUuSiStxU

etiUuSiStxU
etxU















                    (136) 

Accordingly, the series solution is given by; 

                       





  ...

!3
1

!2
11, 32 tititietxU xi  ;           (137) 

That gives the exact solution by; 
                    txietxU ,   .                                                    (138) 
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Example (3.6.15): Consider the following linear Schrödinger equation [24]: 
                     xxt UiU   ;                                                     (139) 

Subject to the initial conditions: 
                  xxU sinh0,  .                                                    (140) 

Proceeding as in Example (3.6.14), we find; 

           

 
     

     

      .sinh
!3

1,

,sinh
!2

1,

,,

,sinh,

3
2

1
3

2
1

1
2

0
1

1

0

xtiUuSiStxU

xtUuSiStxU

etiUuSiStxU

xtxU

xx

xx

xi
xx















              (141) 

Accordingly, the series solution is given by; 

                   





  ...

!3
1

!2
11sinh, 32 tititixtxU  ;     (142) 

That gives the exact solution by; 
               xetxU ti sinh,    .                                               (143) 

 
 
3.6.2: The Nonlinear Schrödinger Equation 
  
          The nonlinear Schrödinger equation is a solitary wave equation, where the 
speed of propagation is independent of the amplitude of the wave function, and it is 
standard form given by; 

              02  UUUUi xxt   ;                                   (144) 
Subject to the initial conditions: 

                           xgxU 0, .                                                   (145) 
where     is constant term and   txU ,   is complex. 
  
         In this section, the (ADSTM) will be applied to handle the nonlinear 
Schrödinger equations. To achieve this goal, we apply the Sumudu transform of both 
sides of Eq. (144) and using the initial condition, we obtain; 

                     UUSuiUSuixgtxUS xx
2,                      (146) 

Applying inverse Sumudu transform of (146) gives; 
                         UUSiuSUuSiSxgtxU xx

211,            (147) 
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Using the decomposition series for the linear term  txU , , the infinite series of 
Adomian polynomials for the nonlinear term    UUUUtxUF 22,  , and proceeding 
as before, we obtain the recursive relation; 

              
   
         .0,,

,,
11

1

0






 kASiuSUuSiStxU
xgtxU

kxxkk 
    (148) 

Besides, some the components of nA  are computed below: 

            
.22

,2

,

2
2

01100
2

10202

1
2

00101

0
2

00

UUUUUUUUUUA

UUUUUA

UUA







     (149) 

And so on. In conjunction with (148) and (149), we can easily determine the first few 
the components by; 

             

   
        
        
         .,

,,

,,
,,

2
1

2
1

3

1
1

1
1

2

0
1

0
1

1

0

ASiuSUuSiStxU

ASiuSUuSiStxU

ASiuSUuSiStxU
xgtxU

xx

xx

xx





















            (150) 

Other components can be determined as well. This completes the determination of the 
series solution. The analysis introduced above will be illustrated by discussing the 
following examples. 
 
Example (3.6.16): Consider the following nonlinear Schrödinger equation [44]: 

           02 2  UUUUi xxt  ;                                    (151) 
Subject to the initial conditions: 

                          xiexU 0, .                                      (152) 
Following the discussion presented above, we find;  

                

 
        

          

           .3
!3

12,

,3
!2

12,

,32,
,,

3
2

1
2

1
3

2
1

1
1

1
2

0
1

0
1

1

0

xi
xx

xi
xx

xi
xx

xi

etiAiuSSUuSiStxU

etiAiuSSUuSiStxU

etiAiuSSUuSiStxU
etxU















(153) 

In a few of (153), the series solution is given by; 

                         





  ...3

!3
13

!2
131, 32 tititietxU xi  ;           (154) 

The exact solution is; 
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                    txietxU 3,    .                                                           (155) 
 
Example (3.6.17): Consider the following nonlinear Schrödinger equation [44]: 

           02 2  UUUUi xxt  ;                                             (156) 
Subject to the initial conditions: 

                          xiexU 0, .                                                 (157) 
Proceeding as in Example (3.6.16), we find; 

                

 
 

 

  .
!3

1,

,
!2

1,

,,
,,

3
3

2
2

1

0

xi

xi

xi

xi

etitxU

ettxU

etitxU
etxU









                                                     (158) 

In a few of (158), the series solution is given by; 

                         





  ...

!3
1

!2
11, 32 tititietxU xi  ;              (159) 

The exact solution is; 
                    txietxU ,   .                                                           (160) 

 
 
3.7: The Korteweg – de Vries Equation (KdV) 
 
         The nonlinear KdV equation is an important mathematical model with wide 
applications in quantum mechanics and nonlinear optics.  
         The KdV equation has several applications to physical problems. It 
approximately describes the evolution of long water waves. In addition, it used in 
various fields such as, shallow water waves, acoustic waves in a plasma, and long 
internal waves in a density. 
In this section, we consider the nonlinear KdV in the following form: 

                0 xxxxt UbUUaU   ;                                             (161) 
Subject to the initial condition: 

                           xfxU 0,  .                                              (162) 
Where a and b  are constants. 
The solutions of (161) are called Solitons or Solitary waves. 
In this section, we will use (ADSTM) to study the nonlinear KdV equation. 
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Applying Sumudu transform of both sides of (161) and using initial condition yields; 
                            xxxx UUSuaUSubxftxUS ,                           (163) 

Applying inverse Sumudu transform to (163) gives; 
                         xxxx UUSauSUuSbSxftxU 11,                  (164) 

Using the decomposition series for the linear term,  txU , , the infinite series of the 
Adomian polynomials for the nonlinear term,    xUUtxUF , , and proceeding as 
before, we obtain the recursive relation; 

                      
   
         .0,,

,,
11

1

0






 kAauSSUuSbStxU
xftxU

kxxxkk

       (165) 

The components; 0, nU n  can be elegantly calculated by: 

                       

   
        
        
         .,
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2
1

2
1

3

1
1

1
1

2

0
1

0
1

1

0

AauSSUbuSStxU

AauSSUuSbStxU

AauSSUuSbStxU
xftxU

xxx

xxx

xxx















                 (166) 

Where the Adomian polynomials nA  for the nonlinearity xUU  were derived before 
and used in advection and Burgers problems. 
The discussion presented above will be illustrated as follows: 
 
Example (3.7.18): Consider the following homogeneous nonlinear KdV equation 
[24]: 

                  06  xxxxt UUUU   ;                                         (167) 
Subject to the initial condition; 

                            xxU 60,   .                                        (168) 
Following the discussion presented above, we find a recursive relation; 

                     
 
         .0,6,

,6,
11

1

0






 kAuSSUuSStxU
xtxU

kxxxkk

        (169) 

That gives the first few the components by; 

                    

 
        
        
         .66,

,6,

,66,
,6,

37
2

1
2

1
3

25
1

1
1

1
2

3
0

1
0

1
1

0

txAuSSUbuSStxU

txAauSSUuSbStxU

txAuSSUuSStxU
xtxU

xxx

xxx

xxx















    (170) 

In a few of (170), the series solution is given by; 
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                         ...63636316, 32  tttxtxU  ;              (171) 
The exact solution is; 

                      136,
361

6, 


 t
t

xtxU    .                                      (172) 

 
 
Example (3.7.19): Consider the following homogeneous nonlinear KdV equation 
[24]: 

                  06  xxxxt UUUU   ;                                         (173) 
Subject to the initial condition; 

                        1
6
10,  xxU  .                                        (174) 

Proceeding as in Example (3.7.18), we find recursive relation; 

                     
   

         .0,6,

,1
6
1,

11
1

0






 kAuSSUuSStxU

xtxU

kxxxkk

     (175) 

That gives the first few the components by; 

                 

   

          

          

           .1
6
16,

,1
6
1,

,1
6
16,

,1
6
1,

3
2

1
2

1
3

2
1

1
1

1
2

0
1

0
1

1

0

txAuSSUbuSStxU

txAauSSUuSbStxU

txAuSSUuSStxU

xtxU

xxx

xxx

xxx















    

(176) 

In a few of (176), the series solution is given by; 

                     ...11
6
1, 32  tttxtxU  ;                               (177) 

The exact solution is; 

                      1,
1

1
6
1, 











 t
t

xtxU    .                                           (178) 

 
Example (3.7.20): Consider the following inhomogeneous nonlinear mKdV equation 
[45]: 

                   xtxUUUU xxxxt
32 1   ;                                    (179)                                                                    

Subject to the initial condition: 
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                            00, xU  .                                                 (180) 
Following the analysis presented before, we obtain: 

                      xxxx UUSuSUuSSxttxtxU 2112
4

4
,               (181) 

This gives the modified recursive relation; 

                 

 

        

         .1,,

,
4

,

,,

11
1

1
0

12
4

1

0












kAuSSUuSStxU

AuSSUuSSxttxU

txtxU

kxxxkk

kxxx          (182) 

The first few components of the solution are given by; 

                 

 

        
  .1,0,

,0
4

,

,,

1

1
0

12
4

1

0











ktxU

AuSSUuSSxttxU

txtxU

k

kxxx   (183) 

The exact solution is; 
                   txtxU ,   .                                                              (184) 

 
Example (3.7.21): Consider the following homogeneous nonlinear FKdV equation 
[46]: 

                  020 22  xxxxxxxxxxxxxxt UUUUUUUU                 (185)                                                                   
Subject to the initial condition: 

                           
x

xU 10,   .                                                 (186) 

Taking Sumudu transform of both sides of Eq. (185) subject to the initial condition, 
we get; 

    xxxxxxxxxxxxxx UUUUUUUUSu
x

txUS  22201,    (187) 

The inverse of Sumudu transform implies that; 

    xxxxxxxxxxxxxx UUUUUUUUSuS
x

txU   221 201,  (188) 

Using the decomposition series for the linear term,  txU , , the infinite series of the 
Adomian polynomials for the nonlinear terms, and proceeding as before, we obtain 
the recursive relation; 

 

        .0,20,

,1,

1
1

0






 kUUCBAuSStxU

x
txU

xkxxxxxkkkkk  (189) 
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The first few components of adomian polynomials are given by; 

                   

.
,,

;22

,2,

;22

,2,

2011022

10101000

2
2
01100

2
10202

1
2
001010

2
00

2
2
01100

2
10202

1
2
001010

2
00

xxxxxxxxx

xxxxxxxxx

xxxxxxxx

xxxxxx

xxxxxxxxxxxx

xxxxxxxxx

UUUUUUC
UUUUCUUC

UUUUUUUUUUB

UUUUUBUUB

UUUUUUUUUUA

UUUUUAUUA













        (190) 

And so on. In conjunction with (189) and (190), we can easily determine the first few 
the components by; 

 

       

       

        .20,

,20,

,20,

,1,

4

3

22222
1

3

3

2

11111
1

2

200000
1

1

0

x
tUUCBAuSStxU

x
tUUCBAuSStxU

x
tUUCBAuSStxU

x
txU

xxxxxx

xxxxxx

xxxxxx















     (191) 

In a few of (191), the series solution is given by; 

                   







 ...11, 3

3

2

2

x
t

x
t

x
t

x
txU  ;                                           (192) 

The exact solution is; 

                     
tx

txU



1,    .                                                                     (193) 

 
 
Example (3.7.22): Consider the following homogeneous nonlinear FKdV equation 
[46]: 

                  0 xxxxxxxxxt UUUUUU                                         (194)                                                                   
Subject to the initial condition: 

                            xexU 0,  .                                                       (195) 
Proceeding as in Example (3.7.21), we find recursive relation; 

 
      .0,,

,,
1

1

0






 kUBAuSStxU
etxU

xxxxxkkkk

x

                   (196) 
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That gives the first few the components by; 
 
     

     

      .
!3

,

,
!2

,

,,
,,

3

222
1

3

2

111
1

2

000
1

1

0

x
xxxxx

x
xxxxx

x
xxxxx

x

etUBAuSStxU

etUBAuSStxU

etUBAuSStxU
etxU















                (197) 

Summing these iterations yields the series solution; 

  







 ...

!3!2
1,

32 tttetxU x  ;                                   (198) 

That leads to the exact solution; 
                      txetxU ,    .                                                                (199) 

 
 

3.8: The Fourth Order Parabolic  Equation 
 
        The fourth order parabolic equation with variable equation arises in the 
transverse vibration, and it is standard form given by; 

                     0,,0,,4

4

2

2







 tbxaxtxf

x
Ux

t
U

  ;              (142) 

Subject to the initial conditions: 
                                      xhxUxgxU t  0,,0,  ;                               (143) 

And the boundary conditions:  

                                       
       .,,,

,,,,
tqtbUtstaU

trtbUtptaU

xxxx 
                                 (144) 

Where the functions  xg ,  xh ,  tp  ,  tr ,  ts  and  tq  are continuous functions. 
In this section, we use coupling of new integral transform Sumudu transform and 
Adomian decomposition method to solve one dimensional fourth order parabolic 
linear partial differential equation with variable coefficients. 
Applying Sumudu transform of both sides of Eq. (142) and using initial conditions, 
we have; 

                      










 2

4
22 ,,

x
UxSutxfSuxhuxgtxUS               (145) 

Operating inverse Sumudu transform of both sides of (145) gives; 
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                    


















 
2

4
21,,

x
UxSuStxGtxU                                 (146) 

Where  txG ,  represents the term arising from the source term and prescribed initial 
conditions. 
Using the decomposition series for the linear term  txU , and proceeding as before, we 
obtain the recursive relation; 

            
   
       .0,,

,,,
21

1

0






 kUxSuStxU
txGtxU

xxxxkk 
                        (147) 

The discussion presented above will be illustrated as follows: 
 
Example (3.8.23): Let us consider fourth order homogeneous parabolic PDE [47]: 

                    0,1
2
1,0

120
1

4

44

2

2
















 tx

x
Ux

xt
U  ;                      (148) 

Subject to the initial conditions: 

                                  
120

10,,00,
5xxUxU t   ;                             (149) 

And the boundary conditions:  

                             

   

  .sin
6
1,1,sin

2
1

6
1,

2
1

,sin
120
121,1,sin

120
2/11,

2
1

3

5

ttUttU

ttUttU

xxxx 































            (150) 

Following the discussion presented above, we find a recursive relation; 

               
 

    .0,
120

1,

,
120

1,

4
21

1

5

0










































 kUx

x
SuStxU

txtxU

xxxxkk

      (151) 

That gives; 
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 

   

   

    .
!7120

1
120

1,

,
!5120

1
120

1,

,
!3120

1
120

1,

,
120

1,

75

2

4
21

3

55

1

4
21

2

35

0

4
21

1

5

0

txUx
x

SuStxU

txUx
x

SuStxU

txUx
x

SuStxU

txtxU

xxxx

xxxx

xxxx






































































































































   (152) 

And so on. The solution in a series form is; 

                 
















 ...

!7!5!3120
1,

7535 ttttxtxU  ;                        (153) 

And in a closed form solution of; 

                 txtxU sin
120

1,
5









    .                                                     (154) 

 
 
3.9: The Pade/ Approximants 
   
            In this section, we purpose to establish a new technique gives better 
approximation of the function than truncating its Taylor series, and it may well still 
work where the Taylor series does not converge. It is significant to note that several 
powerful methods [19, 38, 48-50] have been advanced for this purpose by using this 
new technique. The new technique was developed around (1890) by Henri Pade/ and 
called Pade/ approximant. A Pade/ approximant are the fraction of two polynomials 
constructs from the coefficients of the Taylor expansion of a function.  
The Pade/ approximation of a function symbolized by [m / n] and defined by: 

                               n
n

m
m

xbxbxb
xaxaxaa

nm




...1
...

/ 2
21

2
210                                 (155) 

Where we considered 10 b , and numerator, denominator have no common factors. If 
we selected nm  , then the approximants [n / n] are called diagonal approximants. 
In the following, we will introduce the simple and the straightforward method to 
construct Pade/ approximants. We denote the m, n Pade/ approximants to  xf . 
Suppose that  xf  has a Taylor series given by; 
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                                 





0k

k
k xcxf   ;                                                (156) 

Assuming that  xf  can be manipulated by the diagonal Pade/ approximant defined in 
(155), where nm  . This admits the use of;  

              n
nn

n

n
n xcxcxcc
xbxbxb
xaxaxaa 2

2
2

2102
21

2
210 ...

...1
...



      (157) 

By using cross multiplication in (157), we find; 
   
  ...

...
3

0312213

2
221120110

2
210





xcbcbcbc
xcbcbcxcbccxaxaxaa n

m     (158) 

Equating powers of x  leads to; 

                                                      














1

03122133

021122

0111

,00

....

,
,

k
knknn cbca

cbcbcbca
cbcbca

cbca

ca

    

Notice that  nnn xxx 221 ,...,, 
 should be equated to zero. 

The simple procedure outlined above will be illustrated by discussing the following 
examples. 
 
Example (3.9.24): Find the Pade/ approximants [2/2] for the function [24]: 

                           
 

x
xxf





1

31  ;                                                (159) 

The Taylor series for  xf  of (149) is given by; 

   8765432

16
753

16
327

8
75

8
37

2
5

2
31 xoxxxxxxxxf   .    (160) 

The [2/2] approximant is defined by; 

  2
21

2
210

1
2/2

xbxb
xaxaa




  .                                      (161) 

To determine the five coefficients of the two polynomials, the [2/2] approximant must 
fit the Taylor series of  xf  in (160) through the orders of 4,...,,1 xx , hence we set; 

...
8

37
2
5

2
31

1
432

2
21

2
210 




xxxx
xbxb
xaxaa   .          (162) 
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Cross multiplying yields; 

 

4
21

3
21

2
211

2
210

.
8

37
2
3

2
5

2
3

2
5

2
311

xbbxbb

xbbxbxaxaa







 






 







 

.   (163) 

Equating powers of x  leads to; 

                                                           .
8

37
2
3

2
50

,
2
3

2
50

,
2
3

,1
,1

21

21

212

11

0










bb

bb

bba

ba
a

 

The solution of this system of equations is; 

                                             4
11,

2
7,

4
19,

2
9,1 21210  bbaaa  .  

Consequently, the [2/2] Pade/ approximant is; 

                      
 

2

2

4
11

2
71

4
19

2
91

2/2
xx

xx




  .                                       (164) 

However, the limit of Pade/ approximant (164) as x is  
2

2

b
a  . In other words, as 

x  we obtain; 

                      73205.13lim 
x
xf  ;                                         (165) 

And 
 

                       72727.1
11
192/2lim 

x
 .                                        (166) 

 
 
Example (3.9.25): Consider the coupled Burgers system of equation [48]: 

            
 
  .02

,02




xxxxt

xxxxt

UVVVVV
UVUUUU

                                    (167) 

With the initial data; 

                                       .sin0,,sin0, xxVxxU                                        (168) 



 

99 
 

Applying 1
tL  of the system (167) and using the initial data (168) yields;                                                                 

 
       
        .2sin,

,2sin,
111

111

xxtxtxxt

xxtxtxxt

VUUVLVVLVLxtxV

VUUVLUULULxtxU








    (169) 

The Adomian decomposition method suggests that the linear terms  txU , and  txV ,  

is decomposed by an infinite series of components: 

                         





0

,,
n

n txUtxU  ,     





0

,,
n

n txVtxV  .                         (170) 

However, the nonlinear terms xUU , xUV ,  xVU  and xVV should be represented by the 
Adomian polynomials nA  and nB , nC  and nD  respectively as follows; 

                  

















0000

,,,
n

nx
n

nx
n

nx
n

nx DVVCVUBUVAUU       (171) 

Substituting (170) and (171) into (169), gives the recursive relations by; 

                
 
         .0,2,

,sin,
111

1

0






 kCBLALULtxU

xtxU

kktktxxktk

      (172) 

And 

                
 
         .0,2,

,sin,
111

1

0






 kCBLDLVLtxV

xtxV

kktktxxktk

   (173) 

Using the derived Adomian polynomials in Burgers equation Example (3.5.8), we 

obtain the following pairs of components; 

                 

   
   

 

  .sin
!3

,sin
!3

,

,sin
!2

,sin
!2

,

,sin,sin,
,sin,sin,

33

33

22

22

11

00

























xtxtVU

xtxtVU

xtxtVU
xxVU

                                    (174)                          

And so on. Accordingly, the solution in a series form is given by; 
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 

  ....
!3!2

1sin,

,...
!3!2

1sin,

32

32





















tttxtxV

tttxtxU
                                      (175) 

Applying the Sumudu transform to  txU n , and  txVn ,  yields; 

                       
     ....1sin,

,...1sin,
32

32





uuuxtxVS
uuuxtxUS                                         (176) 

The [m / n] Pade/ approximant of each one of Eq. (155) with 1m and 1n  yields; 

                         x
un

m sin
1

1






                                                            (177) 

Using the inverse Sumudu transform to [m / n], the exact solution is obtained;  

                      
  .sin,

,sin,
xetxV
xetxU

t

t







                                                           (178)  
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CHAPTER (4) 
 Volterra Integro-Differential Equations                         

 
       It is well known that linear and nonlinear Volterra integro – differential equation 
arise in many scientific fields such as the population dynamic, neutron diffusion and 
semiconductor devices. 
         The Volterra integro – differential equation appears in the form:  

                               ,,
0

x

n dttUtxKxfxU                                            (1)  

Where   n

n
n

xd
UdxU  , and the initial conditions      0........,,0,0 1 nUUU are prescribed. 

The kernel  txK ,  and the function  xf  are given real- valued functions.                                                                             
It is our goal in this chapter to study the nonlinear Volterra integro – differential 
equations of the second and first kind given by: 

                             ,,
0

x

n dttUFtxKxfxU                                         (2) 

However, the standard form of the nonlinear Volterra integro – differential equation 
(1) of the first kind is the form: 

      
           

x
n

x

xfdttUtxKdttUFtxK
0

2
0

1 ,,
                           

(3) 

       
Several techniques such that , homotopy perturbation method [51-54], modified 
Laplace Adomian decomposition method [55], variation iteration method, the series 
solution method, the differential transform method [56] and combined Laplace 
transform – Adomian decomposition method [14] has been used for solving these 
problems.  
 
        It is the aim of this chapter to develop a combined form of the Sumudu transform 
method with the Adomian decomposition method to establish the exact solution or 
approximations of high degree of accuracy for the nonlinear Volterra of a second and 
first kind (2) and (3) respectively.  
 
         The advantage of these methods is its capability of combining the two powerful 
methods for obtaining exact solutions for nonlinear equations. 
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4.1: Nonlinear Volterra Integro – Differential Equations of The Second 
Kind 

 
    To illustrate the basic idea of this section, we consider the kernel  txK , of the 
equation (2) as difference kernel that depends on the difference   tx  . 
The nonlinear Volterra integro- differential equation (2) can be expressed as; 

                      ,
0
 
x

n dttUFtxKxfxU                                         (4)                                                                   

Consider two functions    xfandxf 21 that possess the conditions. 
        Let Sumudu transform of the functions    xfandxf 21 given by: 

                  uFxfSuFxfS 2211 ,                                        (5)                                                                 
The Sumudu convolution product of these two functions is defined by; 

                     uFuFudtxftxfSxffS
x

21
0

2121 







                          (6)                                         

To solve the nonlinear Volterra integro- differential equation by using Sumudu 
transform, it is essential to use the Sumudu transform of the derivatives of   xU  are 
defined by; 

                                 
u

U
u
U

u
U

u
xUSxUS

n

nnn
n 0...00 1

1



 


                 (7)                                                                                         

This simply gives; 

                 

           

        
          .000

,00

,00

1233

122

11

UuUuUuuUuxUS
UuUuuUuxUS

UuuUu
u

U
u

xUSxUS













               (8)                                   

And so on for derivatives of higher order, where     .xUSuU    
Applying Sumudu transform of both sides of Eq. (2), to get; 

              
         xUFStxKSuxfS

uuUuUuxUSu nnnn


  0...00 111

         (9)                   

Or equivalently; 

                        
         xUFStxKSuxfSu

UuUuUxuS
nn

nn








1

11 0...00    (10)             

Taking the inverse Sumudu transform of both sides of Eq. (10), to get; 

         

           xUFStxKSuSxfSuS

U
n
xUxUxu

nn

n
n













111

1
1

0
!1

...00  (11) 

Now, we apply the Adomian decomposition method; 
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                





0n

n xUxU   ;                                                     (12)                                                                                                                         

And the nonlinear terms can be decomposed as; 

              





0n

n UAxUF    .                                             (13)                                                                           

For some the Adomian polynomials   UAn  that are given by; 

                  ...,2,1,0,
!

1

00




























 nUF

d
d

n
A

n
n

n
n

n

n






               (14)                                                    

Substituting Eq. (12) and Eq. (13) into Eq. (11) leads to; 

         
             

    








































0

11

11
1

0

0
!1

.....00

n
n

n

nn
n

n
n

UAStxKSuS

xfSuSU
n
xUxUxU

       (15)  

So that the recursive relation is given by; 

     
             
        .0,

,0
!1

.......00

11
1

11
1

0














kAStxKSuSxU

xfSuSU
n
xUxUxU

k
n

k

nn
n

      (16)  

                                       
The combined Sumudu transform – Adomian decomposition method for solving 
nonlinear Volterra integro- differential equations of the second kind will be illustrated 
by studding the following examples. 
 
Example (4.1.1): Consider the initial value problem [57]:  

         
x

xx UdttUtxeexxxU
0

222 20,
4
13

2
1

2
5

4
9 .   (17)                   

Notice that the kernel     txtxK   . Taking Sumudu transform of both sides of Eq. 
(17) gives;  

       .
4
13

2
1

2
5

4
9 222 xUtxSeexxSxUS xx 



           (18)                        

So that: 

        ,
214

1
1

3
2
5

4
90 22211 xUSu

uu
uuUuuUu 





      (19) 

Or equivalently; 
                    ,

2141
3

2
5

4
92 2332 xUSu

u
u

u
uuuuuU 





     (20)                      

Applying the inverse Sumudu transform of both sides of Eq. (21) gives; 
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                   ,
8
1

8
133

!34
5

4
92 2312

3
2 xUSuSeexxxxU xx     (21) 

Or equivalently; 

                xUSuSxxxxxxU 2315432 .....
!5

7
!4

5
!3

5
2
12      (22) 

Substituting the series assumption for  xU  and the Adomian polynomials for  xU 2

as given above in Eq. (12) and Eq. (13) respectively, and using the recursive relation 
(16) to obtain;  

         
 

     .0,

,.....
!5

7
!4

5
!3

5
2
12

31
1

5432
0






 kASuSxU

xxxxxxU

Kk

                         (23) 

Recall that the Adomian polynomials for     xUxUF 2  are given by; 

                                               

.22
,2

,2
,

21303

2
1202

101

2
00

UUUUA
UUUA

UUA
UA







 

Substituting these polynomials into the recursive relation (23) to find; 

        
 

  ...,
20
1

6
1

3
2

,...
!5

7
!4

5
!3

5
2
12

543
1

5432
0





xxxxU

xxxxxxU
                      (24)                                                     

Using (12), to find the series solution of eq. (17), in the form; 

         ...
!5

1
!4

1
!3

1
2
12 5432  xxxxxxU     ;                    (25) 

This is converging to the exact solution; 
     .1 xexU                                                                   (26) 

 
 
Example (4.1.2): Consider the following integro-differential equation [57]: 

            
x

UUdttUtxxxxxU
0

2 10,10,sincos22sinsin
3
11     (27)  

Taking Sumudu transform of (27), to find; 

                     ,sincos22sinsin
3
11 2 xUtxSxxxSxUS 



      (28)                    

So that; 
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           

    ,
1

1
2

413
2

13
100

2
2

2

222
122

xUS
u

u
uu

u
u

uUuUuuUu













 

   (29) 

Or equivalently;   

                    ,
11

2
413

2
13

1 2
2

4

2

2

2

3

2

3
2 xUS

u
u

u
u

u
u

u
uuuuU











   (30) 

Applying inverse Sumudu of both sides of Eq. (30) gives; 

                    
 

  













 xUS
u

uSxx

xxxxxxU

2
2

4
176

543
2

1
...

5040
11

360
1

40
1

12
1

!3
1

!2
1

 (31)                       

Proceeding as before, we find; 

            
 

  ...,
504

1
720

1
60
1

!4
1

...,
5040

11
360

1
40
1

12
1

!3
1

!2
1

7654
1

76543
2

0





xxxxxU

xxxxxxxxU
     (32)                         

Using (12), to find the series solution of eq. (27), in the form; 

           
















 ...

!6!4!2
1...

!7!5!3

642753 xxxxxxxxU  ;                  (33) 

Which is converges to the exact solution;  
      xxxU cossin        .                                                              (34) 

 
 
 
4.2:  Nonlinear Volterra Integro – Differential Equations of the First Kind 
 
       To illustrate the basic idea of this section, we consider the kernels  txK ,1 and 

 txK ,2  of equation (3) as difference kernel that depends on the difference   tx  . 
         The nonlinear Volterra integro- differential equation (3) can be expressed as; 

                              xftdtUtxKdttUFtxK
x x

n  
0 0

21 )(  ;                      (35)                              

Recall that; 

                            
u

U
u
U

u
U

u
xUSxUS

n

nnn
n 0...00 1

1



 


   .                  (36)                                                                                                                  

Applying Sumudu transform of both sides of Eq. (35) to get; 
                             xfSxUtxKSxUFtxKS n  ** 21                 (37)                   

Or equivalently; 
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                                 uFxUSuKuxUFSuKu n  21                     (38) 
Using (36) and solving for  xU , we find; 

                                   
  







 
 

uK
xUFSuKuuuKuF

uxUS n

2

121   ;         (39)                         

   where                    0...00 1
11







 n
nn U

u
U

u
Uu    .                              (40) 

Now we use the Adomian decomposition method to handle (39), substituting (12) and 
(13) into (39), we get; 

            

   
         

 

 uK

ASuKu

UuUuU
uK

uFuxUS

n
n

n

nnn

n
n

2

0
1

11

2

1

0
0...00

































      (41) 

The Adomian decomposition method admits the use of the following recursive 
relation; 

                    
   

         

    
    .0,

,0...00

2

1
1

11

2

1
0









kAS
uK

uKu
xUS

UuUuU
uK
uFuuU

k

n

k

nnn

       (42) 

Applying the inverse Sumudu transform to the first part of (42) gives  xU 0 , that will 
define  UA0 . This in turn will lead to the complete determination of the components 
of   0, kxU k .  
The proposed scheme will be illustrated by using the following examples. 
 
Example (4.2.3): Consider the following first kind of nonlinear Volterra integro – 
differential equation [58]: 

                      10,
4
1

2
1

4
1 2

0 0

2    UeexxtdtUedttUtx xx
x x

tx  .           (43) 

Proceeding as before, we find the recursive relation; 

                    
       

        .0,1

,
214

1
1

1
2
1

4
11

22
1

0














 kxUSuuxUS
u

u
u

uuuuuU

k

                   (44) 

Taking the inverse Sumudu transform of Eq. (44) gives; 
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 

 

  ,...
20
1

12
1

,...
12
1

6
1

6
1

2
1

,...
24
1

8
1

3
11

54
2

5432
1

5432
0







xxxU

xxxxxU

xxxxxxU

                      (45) 

The series solution is given by; 

                     ,...
!5

1
!4

1
!3

1
2
11 5432  xxxxxxU                    (46) 

In a closed form given of; 
                   xexU  .                                                                        (47) 

 
 
Example (4.2.4): Consider the following first kind of nonlinear Volterra integro – 
differential equation [59]:  

        ,4cos
32
12cos

2
1

4
3

32
15 2

0 0

2 xxxtdtUtxdttUtx
x x

           (48)  

    00,20  UU  
 Proceeding as before, the recursive relation is;  

               
   

      .0,

,
1618
1

41
1

2
3

32
49

22
1

22
2

0









 kxUSuxUS
uu

uuU

k

                        (49) 

Taking the inverse Sumudu transform of Eq. (49) gives; 

               

 

 

 

  ,...
9
2

,...
3
2

,...2

,...
15
22

6
3

4
2

2
1

6
0









xxU

xxU

xxU

xxU

                                                  (50) 

The series solution is therefore given by; 

                      





  ...2

!6
12

!4
12

!2
111 642 xxxxU   ,       (51)                                         

That converges to the exact solution; 
              xxU 2cos1  .                                                            (52) 
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4.3:  Systems of Nonlinear Volterra Integro – Differential Equations of The  
Second Kind  

 
          In this section, we will study systems of nonlinear Volterra integro – differential 
equations of the second kind by combining Sumudu transform – Adomian 
decomposition method. 
Consider systems of nonlinear Volterra integro – differential equations of the second 
kind as follows: 

               

                

               







x
n

x
n

dttVGtxRtuFtxKxfxV

dttVGtxRtuFtxKxfxU

0
22222

0
11111

.

,
               (53) 

Where 2,1,, iGF ii nonlinear functions of     xVxU ,  , 2,1,, iRK ii  are the 
kernels and   2,1, ixf i  are real – valued functions. 
Applying Sumudu transform of both sides of (54), we have; 

   

        
             

        
             .**

0...00

,**
0...00

22222

111
11111

111

xVGxRxUFxKSxfS
VuVuVuxVSu

xVGxRxUFxKSxfS
UuUuUuxUSu

nnnn

nnnn











   (54) 

Or equivalent; 
           

           
           

           .**
0...00

**
0...00

2222

2
11

1111

1
11

xVGxRSuxUFxKSu
xfSuVuVuVxVS

xVGxRSuxUFxKSu
xfSuUuUuUxUS

nn

nnn

nn

nnn













 (55) 

Now, we apply the Adomian decomposition method; 

                









00

,
n

n
n

n xVxVxUxU                               (56)                                                                                                                         

And the nonlinear terms can be decomposed as; 

         





0n

n xAxuF                                           (57)                                                                                               

Substituting (56) and (57) into (55) gives; 
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          

   

          

    .**

0...00

,**

0...00

0
2

0
2

2
11

0

0
1

0
1

1
11

0



























































































n
n

n

n
n

n

nnn

n
n

n
n

n

n
n

n

nnn

n
n

DxRSuCxKSu

xfSuVuVuVxVS

BxRSuAxKSu

xfSuUuUuUxUS

  (58) 

The Adomian decomposition method admits the use of the following recursive 
relations; 

                  
         .0,**

0...00

111

1
11

0









kBxRSuAxKSuuUS

xfSuUuUuUuUS

k
n

k
n

k

nnn

                  (59) 

And  

                  
         .0,**

0...00

221

2
11

0









kDxRSuCxKSuuVS

xfSuVuVuVuVS

k
n

k
n

k

nnn

                 (60) 

 
Applying the inverse Sumudu transform to the first part of (59) and (60) gives

   xVxU 00 , , that will define 0000 ,,, DCBA . This in turn will lead to the complete 
determination of the components    0, kVxU kk  . 
  
The combined Laplace transform Adomian-decomposition method for solving 
systems of nonlinear Volterra integro-differential equations of the second kind will be 
illustrated by studying the following examples. 
 
 
 
Example (4.3.5): Consider the system of nonlinear Volterra integro – differential 
equation [58];  

      

       .
3
13

3
2

,
3
1

3
7

0

2242

0

2242













x
txxxx

x
txxxx

dttVtUeeeexV

dttVtUeeeexU
                (61) 

With the initial conditions: 
        .20,10,10,10  VVUU                                (62) 

Taking Sumudu transforms of both sides of (61) and using initial conditions, we 
obtain; 
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            

            .
141321

3
13
221

,
14132113

71

22
3222

22
3222

xVxUS
u

u
u

u
u

u
u

uuuV

xVxUS
u

u
u

u
u

u
u

uuuU










































    (63) 

By using (59) and (60), we have; 

       
       

    .0,
1

,
4132113

71

3

1

222

0






















 kBAS
u

uuU

u
u

u
u

u
uuuU

kkk

                           (64) 

And 

 
       

    .0,
1

,
41321

3
13
221

3

1

222

0






















 kBAS
u

uuV

u
u

u
u

u
uuuV

kkk

                         (65) 

Taking the inverse Sumudu transform of both sides of (64) and (65), we obtain the 
solution as follows: 

 

        ....
!4

2
!3

2
!2

221

,...
!4!3!2

1

432

432





xxxxxV

xxxxxU
                        (66) 

Then the solution for the above system is given by; 
      xx eexVxU 2,,  .                                                  (67) 
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                                        CHAPTER (5) 
Comparison of Adomian Decomposition Method and 

Sumudu Transform Method with Other Methods 
 
Our aim of this chapter is to introduce a comparative study between Adomian 
Decomposition Sumudu Transform Method (ADSTM) and different powerful 
methods to solve several linear and nonlinear partial differential equations, and 
nonlinear integral equations, namely, The Sumudu transform method (STM), The 
Adomian Decomposition Sumudu Transform Method (ADSTM), The Adomian 
Decomposition Sumudu Transform Method with a Pade/ approximant (ADSTM-PA 
method), The Homotopy Perturbation Method (HPM), and The Variational Iteration 
Method (VIM). 
 
The Adomian decomposition Sumudu transform method is a combination of Sumudu 
transform and Adomian decomposition method. This method is a simple and directly 
without any restrictive assumption as usual is going in other methods for obtaining 
exact or approximant solutions for nonlinear problems. 
 
5.1: Comparison of Adomian Decomposition Method and 

Sumudu Transform Method with Sumudu Transform for Solving 
Linear Partial Differential Equations 

 
        Partial differential equations are a necessary part in applied science and 
engineering fields. The wide use of these equations is the most important reason why 
they have drawn mathematician's attention. Despite this, they are not easy to find an 
answer, either numerically or theoretically. 
 
In this section, the main objective is to introduce a comparative study to solve linear 
partial differential equations using Adomian decomposition method and Sumudu 
transform method with Sumudu transform method. 
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5.1.1: Basic Idea of (ADSTM) 
 
To illustrate the basic idea of this method, we consider a general nonlinear non-
homogenous partial differential equation with the initial conditions of form;           

                                                                                                            
       

        ,0,,0,
,,,,

xfxUxhxU
txgtxUNtxURtxUD

t 
                     (1)                                                                                                                          

Where  D   is the second order linear differential   operator 2

2

t
D




 , R   is linear 

differential operator of less order than D   , N  represent the general nonlinear operator 
and  txg ,  is the source term. 
Taking the Sumudu transform of both sides of Eq. (1), we get; 

           .,,,, txgStxNStxURStxUDS                   (2)                                                                                               
Using the differentiation property of the Sumudu transform and given initial 
conditions, we have;  

              .,,,, 22 txUNtxURSuxfuxhtxgSutxUS     (3) 
Now, applying the inverse Sumudu transform of both sides of (3), we get, 

         txUNtxURSuStxGtxU ,,,, 21  
                          

Where  txG , represents the term arising from the source term and the prescribed 
initial conditions.  Now, apply the Adomian decomposition method;   

   





0

.,,
n

n txUtxU                                      (5)                                                                        

 The nonlinear term can be decomposed as; 

   





0

,
n

n UAtxUN                                          (6)                               

For some Adomian polynomials   UAn  that are given by; 

  ....,2,1,0,
!

1......,,,,
00

210 


























 nUN

d
d

n
UUUUA

n
n

n
n

n

nn






                         (7) 

Substituting Eq. (5), and Eq. (6), in Eq. (4), we get;  

        



































0 00

21 ,,,
n n

n
n

nn UAtxURSuStxGtxU                              (8) 

So that the recursive relation is given by; 
 

                         

   
     .0,,

,,,
21

1

0






 kARUSuStxU
txGtxU

kkk                               
(9) 
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5.1.2: Basic Idea of (STM) 
 
The Sumudu transform is an integral transform similar to the Laplace transform, 
introduced in the early 1990s by Watugala [1] to solve linear differential equations 
and control engineering problems. 
 
Note that these definitions will use in this section. 
 
Definition (5.1.1): The Sumudu transform of a function  tf , defined for all real 
numbers t 0, is the function )(uF , defined by: 

                                  
      







 

0

exp1 dttf
u
t

u
tfSuF

                               
(10) 

Or 
  

                     
        




0

exp dttufttfSuF                                   (11) 

 
Definition (5.1.2): The double Sumudu transform of a function  txf , , defined for all 

real numbers t 0, x 0 , is defined by:   

                          
    







 

0

,exp1, dttxf
u
t

u
txfS

                                         
(12) 

In the same line of ideas, the Sumudu transform of the second partial derivative with 
respect to t is of the form [3], 

     

       
t
xF

u
xF

u
uxF

ut
txfS

xF
u

uxF
ut

txfS

























0,10,1,1,

0,1,1,

222

2
                  (13) 

Similarly, the Sumudu transform of the second partial derivative with respect to x is of 
the form [3], 

   

   uxF
dx
d

x
txfS

uxF
dx
d

x
txfS

,,

,,

2

2

2

2






















                                          (14) 

 
 



 

114 
 

5.1.3: Application 
 
          In this section, we demonstrate the analysis of two methods by applying two 
methods to the following of two partial differential equations. 
 
Example (5.1.3): Consider the following one – dimensional heat equation:  

txx uu 
4
1

 ;                                                              (15) 

With the initial condition: 

                                                    
  xxu

2
sin20, 

  ;                                                 (16) 

 
I: Using (ADSTM) 
Following discussion presented above, we obtain the recursive relation: 

                         

   

    .
2

sin
2564

1

,
2

sin
84

1

,
2

sin2

24

1
21

2

2

0
1

1

0

xtUSuSU

xtUSuSU

xU

xx

xx















                         (17) 

And so on. The solution in a series form given by: 

  







 ...

2568
2

2
sin,

242 ttxtxU                   (18) 

And in a closed form of, 

  t
extxU 16

2

2
sin2,

 
   .                                           (19) 

 
 
II: Using (STM) 
Taking the Sumudu transform of (15) and using initial condition (16) we get: 

    x
u

uxU
u

uxU
dx
d

2
sin8,4,2

2 
                                      (20) 

This is the second order differential equation. First, we find the homogeneous 
solution; 
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 
x

u
x

u
c eBeAuxU

22

,


                                              (21) 
Using boundary conditions: 

                                          

   
    0,20,2

0,00,0



uUtU
uUtU

 

This gives: 

                                                 )(0

)(0
44

iieBeA

iBA

uu 



  

From )(i  and )(ii , we have only a trivial solution 0 BA  . 
Second, we find particular solution; 

  x
u

u
D

x

u
uxU p 2

sin
16

1.32
4

2
sin

.8, 2
2



















                   (22) 

The general solution is: 

  x
u

UUuxU pc 2
sin

16
1.32, 2


 










                          (23) 

Taking the inverse Sumudu transform we get: 

  t
extxU 16

2

2
sin2,

 
   .                                    (24) 

 
 
Example (5.1.4): Consider the following wave equation:  

04  xxtt uu  ;                                                   (25) 
With the initial conditions: 

    00,,sin0,  xuxxu t  .                          (26) 
 
 
I: Using (ADSTM) 
Proceeding as before, we obtain: 
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  

   .sin
3

24

,sin24
,sin

44

1
1

2

22
0

1
1

0

xtuLSu

xtuLSu
xu

xx

xx

















                               (27) 

And so on. The solution in a series given by: 

     








 ...

!4
2

!2
21sin,

42 ttxtxu  ;                       (28)                                       

In a closed form: 

  txtxu  2cossin,     .                                        (29) 

 

II: Using (STM) 
Taking the Sumudu transform of (25) and using initial condition (26) we get: 

    xuuxUuxU
dx
du cos,,2

2
2  ;                                      (30) 

This is the second order differential equation which has the particular solution in the 
form:  

 
1

cos
1

cos, 222 





u
xu

Du
xuuxU .                                       (31) 

If we take the inverse Sumudu for Eq. (31), we obtain the solution of Eq. (25) in the 
form: 

  txtxU sinhcos,   .                                       (32) 
 
 
Notes on (STM) and (ADSTM): 
 
     From the previous analysis, we can observe that:  
The two methods are powerful and efficient. Adomian decomposition Sumudu 
transform method provides the components of the exact solution, where these 
components must follow the summation given in (5). However, application of the 
Sumudu transform to the solution of linear partial differential equations has been 
demonstrated. 
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5.2: Comparison of Adomian Decomposition Method and 
Sumudu Transform Method with Homotopy Perturbation 
Method for Solving Nonlinear Partial Differential Equations 

 
In this section, the main objective is to introduce a comparative study to solve 
nonlinear partial differential equations using Adomian decomposition Sumudu 
transform method and homotopy perturbation method. 
 
5.2.1: Basic Idea of HPM 
 
 Consider the following general nonlinear differential equation, 

  fuNu  ,                                            (33) 
Where N is nonlinear operator from Hilbert space H to H , u is an unknown 
function, and f is a known function in H . 

 
The homotopy perturbation method u  as a series with components nu , and 

 uN  as a series with components nH , homotopy polynomials, which can be 
calculated using the formula: 

                                 00!
1














 




 i

i
in

n

n uN
d
d

n
H                                       (34) 

To illustrate the homotopy perturbation method (HPM), we consider (33) as; 

                               0 vNxfxvvL                                                     (35) 
with solution  xu . As a possible remedy, we can define homotopy  pvH ,  as 
follows: 

       vLvHvFvH  1,,0,  
Where  vF is an integral operator with known solutions, which can be obtained 

easily. Typically, we may choose a convex homotopy in the form; 

                                     01,  vLpvFppvH                                          (36) 
And continuously trace an implicitly defined curve from a starting point  0,0vH to a 
solution function  0,uH . The embedding parameter p  monotonically increase from 
zero in the unit as the trivial problem   0vF is continuously deformed to the original 
problem.  
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                                                     3
3

2
2

10 vpvpvpvv                              (37) 
When 1p , Eq. (36) corresponds to Eq. (35) and (37) becomes the approximate 
solution of Eq. (35), i.e. 
    

                                          


 32101
lim vvvvv
p

                                (38) 

 
 
5.2.2: Application 
 
          In this section, we demonstrate the analysis of two methods by applying two 
methods to the following two Kortewege – deVries (KdV) partial differential 
equations. 
 
Example (5.2.5): Consider the following inhomogeneous nonlinear KdV equation 
[45]:  

                         1sincossin  xtxtxuuuu xxxxt  ;                       (39) 
With the initial condition: 

  00, xu  .                                                       (40) 
 
I: Using (HPM) 
 
To solve equation (39)-(40) by homotopy perturbation method, we construct the 
following homotopy: 

  


























t
u

xtxtx
x
u

x
uup

t
u

t
v 0

3

3
0 1sincossin (41) 

Assume the solution of Eq. (41) to be in the form: 

                                3
3

2
2

10 vpvpvpvv                                                    (42) 
Substituting (42) into (41) and comparing coefficients of terms with identical powers 
of p, leads to: 

.

.

,cossincossin:

0:

02
3
0

3
0

0
11

000

t
uxtxxtx

x
u

x
uu

t
vp

y
u

y
vp
























       (43) 
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The given initial value admits the use of: 

                          00,0 xu                                                                                         (44) 
The solution reads: 

 

 

  ....sin
3

sin
3

cos
2

cossin
3

,

,cos
2

cossin
3

sin,

0,

3
4

2
423

2

23

1

0







xtxtxtxxtyxu

xtxxtxttxu

txu

           (45) 

Examining the components 1u  and 2u  in Eq. (45), we can easily observe that the last 
two terms in 1u  and the first two terms in 2u  are the self-canceling (noise terms). 
Hence, the non-noise terms in 1u  yields the exact solution of equations (39)-(40), 
given by: 

  xttxu sin,         .                                                          (46) 
 
 
Notes on (HPM): 
     From the previous analysis, we can observe that:  
 

 HPM can be applied it to various nonlinear problems. The 
main disadvantage is that we should suitably choose an initial 
guess. 

 HPM needs some modification to the rapid convergence of the 
series solution. 
 

To overcome these disadvantages of HPM, the following ADSTM method is 
suggested. 
 
 
II: Using (ADSTM) 
 
By taking Sumudu transform for (39) and using (40) we obtain: 

    xxxx UUUSuxuxxuxutxUS  cossincos2sin, 23 . (47) 
Applying 1S  to both sides of (47) we obtain; 
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    xxxx UUUSuSxtxxtxttxU  1
23

cos
2

sincos
3

sin, .  (48) 

Substituting;  

   txUtxU
n

n ,,
0





  ;                                                       (49) 

And the nonlinear terms of; 

,
0






n

nx AUU  .                                                      (50)                                                                  

Into (48) gives; 

   































 












 xxxn
n

n
n

n
n txUASuSxtxxtxttxU

00

1
23

0
,cos

2
sincos

3
sin,     (51) 

This gives the modified recursive relation;  
 

     
    .1,,

cos
2

sincos
3

,

,sin,

1
1

00
1

23

1

0












kUAStxU

UASuSxtxxttxU

xttxU

kkk

xxx            (52) 

The first few of the components are given by; 
 

     
  .1,0,

,0cos
2

sincos
3

,

,sin,

1

00
1

23

1

0











ktxU

UASuSxtxxttxU

xttxU

k

xxx        (53) 

The solution in a closed form is given by; 
  xttxU sin,  .                                                                           (54) 

 
 
Example (5.2.6): Consider the following inhomogeneous nonlinear KdV equation 
[45]:  

   xxxtxtxuuuu xxxxt coscossin   ;                      (55)                                                                                                  
With the initial condition: 

  xxu sin0,   .                                                               (56) 
 

I: Using (HPM) 
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Using a homotopy perturbation method like in Example (5.2.5), we obtain the 
following components: 

 

 

  ....sin
2
1cossincos,

,sin
2
1cossincoscos

2
1

3
1,

sin,

2
2

223
1

0







xtxxtxttxu

xtxxtxtxtxtxtxtxu

xtxu

     (57) 

It is obvious that the last three terms in 1u  and the first three terms in 2u  are the self-
canceling (noise terms). Keeping the remaining non-noise terms in 1u  leads to the 
exact solution of equations (55)-(56), given by: 

  xtxtxu sin,         .                                                           (58) 
 

 
II: Using (ADSTM) 
 
Proceeding as in Example (5.2.5), Eq. (55) becomes: 

 

 




















































xxxn
n

n
n

n
n

txUASuS

xtxxtxtxtxtxxtxtxU

00

1

223

0

,

sin
2
1cossincoscos

2
1

3
1sin,

           (59) 

The modified decomposition method admits the of a modified recursive relation given 
by: 
 

 

 

    
       .1,,

,,

sin
2
1cossincoscos

2
1

3
1,

,sin,

1
1

00
1

22
1

0














ktxUASuStxU

txUASuS

xtxxtxtxtxtxtxU

xtxtxU

xxxkkk

xxx

         (60) 

 
Consequently, we obtain: 

 
 
  .1,0,

,0,
,sin,

1

1

0






 ktxU
txU

xtxtxU

k

                                                  (61) 
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In a few of Eq. (61), the exact solution is given by: 
  xtxtxU sin,        .                                                  (62) 

 
Remarks: 
In this section, we accurately employed the modified decomposition method that 
accelerates to the rapid convergence of the series solution. The comparison with the 
homotopy perturbation method (HPM), the decomposition Sumudu transforms 
method (ADSTM) gives better performance in many cases, and this implies the 
decomposition Sumudu transforms method an advantage over the homotopy 
perturbation method. 
 
5.3: A Comparative Study Numerical Methods for Solving Integro 

– Differential Equations 
 
Our aim of this section, is to introduce a comparative study to solve integro-
differential equations by using different numerical methods, namely; the Adomian 
decomposition Sumudu transform  method (ADSTM), the homotopy perturbation 
method (HPM), the Adomian decomposition Sumudu transform  Sumudu method 
with the Pade approximant (ADST -PA method), and the variational iteration method 
(VIM).  
 
In the present study, we consider the nonlinear integro-differential equation of the 
following type [51]: 

         
x

dttututKxfxu
0

,, ,                                          (63) 

With the initial condition; 
  10,0  xu  .                                          (64) 

Where  xf  is known as the source term and     tututK ,,  is a linear or nonlinear 
function depending on the problem discussed. 
 
 
5.3.1: Basic Idea of (ADSTM) 
 
In this section, Adomian decomposition Sumudu transform   method is applied to the 
following classes of nonlinear integro-differential equation (63). 
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The method consists of first applying the Sumudu transformation of both sides of Eq. 
(63); 

           







 

x

dttututKSxfSxUS
0

,, .                             (65) 

Using the formulas of the Sumudu transform, we get; 

             







 

x

dttututKSxfSUuxUSu
0

11 ,,0 .               (66) 

Using the initial condition (64), we have; 

           







 

x

dttututKSuxfSuxUS
0

,, .               (67) 

In the Sumudu decomposition method we assume the solution as an infinite series, 
given as follows; 

                              






0n

nUU ,                                                                    (68) 

where the terms nu  are to be recursively computed. Also the nonlinear term 
    tututK ,,  is decomposed as an infinite series of Adomian polynomials: 

     





0

,,
n

nAtututK   ,                                               (69) 

Where  nnn uuuuAA ,...,,, 321  are determined by the following recursive relation: 

 
00!

1





 


















 




 i

i
i

n

n

n y
d
d

n
A .                                             (70) 

Using (68) and (69), we rewrite (67) as; 

  




























 









x

n
n

n
n dtASuxfSuUS

0 00
  .                          (71) 

Applying the linearity of the Sumudu transform, we have; 

     


























x

n
n

n
n dtASuxfSuUS

0 00
  .                          (72) 

Now, we define the following iterative algorithm: 

                         

    

  .0,

,

0
1

0













 kdtASuUS

xfSuUS
x

kk



                                            

(73) 
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As the result, the components nUUUUU ,...,,,, 3210  are identified and the series 
solution is thus entirely determined. However, in many cases the exact solution in the 
closed form may also be obtained. 
From a numerical point of view, the approximation; 

   



n

nxU lim  ,                                                (74) 

Where 

 





1

0

n

k
kn xU   ,                                                 (75)  

Used in the Sumudu decomposition scheme for computing the approximate solution. 
It is also clear that a better approximation can be evaluated more components of the 
series solution (68) of  xU . 
 
 
5.3.2: Basic Idea of The Pade/ Approximant  
 
Here we will investigate the construction of the Pade/ approximates for the functions 
studied. The main advantage of the Pade/ approximation gives a better approximation 
of the function than truncating its Taylor series. 
The Pade/ approximation of a function, symbolized by [m / n], is a rational function 
defined by; 

  n
n

m
m

xbxbxb
xaxaxaa

nm




...1
...

/ 2
21

2
210                              (76) 

Where we considered 10 b , and numerator, denominator have no common factors. 
In The (ADSTM-PA method) we use the method of the Pade/ approximation as an 
after – treatment method to the solution obtained by the Adomian decomposition 
Sumudu transform method. This after – treatment method improves the accuracy of 
the proposed method. 
 
 
5.3.3: Basic Idea of The Homotopy Perturbation Method (HPM) 
 
         To explain (HPM), we consider (63) as; 

           0,,
0

 
x

dttututKxfxuuL ,                            (77) 
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With solution  xf .Now, we can define homotopy  puH ,  by; 
       uLuHuFuH  1,,0,  ,                                 (78) 

Where  uF  is a functional operator with a solution 0v , obtained easily. Now, we 
choose a convex homotopy by; 

                                       01,  uLpuFppuH   .                             (79) 
And continuously trace an implicitly defined curve from a starting point  0,0vH  to a 
solution function  1,fH .  Here the parameter p  is monotonically increasing from 
zero to unit along – with the trivial problem   0uF  is continuously deformed to the 
original problem   0uL . 
The (HPM) uses the homotopy parameter p  as an expending parameter to obtain; 

...3
3

2
2

10  vpvpvpvu   ,                                (80) 
When 1p , Eq. (80) becomes the approximate solution of (13), i.e. 

1
210 ...lim




p
vvvf  .                                           (81) 

Series (79) is convergent for most cases, and the rate of convergence depends on  uL . 
 
 
5.3.4: The Variational Iteration Method (VIM) 
 
         To clarify the basic ideas of (VIM), we consider Eq. (63) as correction 
functional as follows; 

               


ddrrururKfuxuxu n

x

nn 



















 

00
1 ,, .                (82) 

Where   is general Lagrange multiplier which can be identified optimally via 
integrated by parts. The successive approximations   0,1  nxun  for the solution  xu  
will be readily obtained upon using the Lagrange multiplier and by using the selected 
function.  Consequently, the exact solution may be obtained by using: 

                                                  
 




n
nuxu lim  .  
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5.3.5: Application 
 
In this section, we demonstrate the analysis of all the numerical methods by applying 
the methods to the following two integro- differential equations. A comparison is also 
given in the forms of graphs and tables, presented here. 
 
Example (5.3.7): Consider the following integro- differential equation [51]: 

   
x

dttUxU
0

21 ,                                         (83) 

With the initial condition; 
  10,00  xU .                                         (84) 

 
I: Use (ADSTM) 
 
Taking the Sumudu transform of both sides of (83) gives; 

       







 

x

dttUSUuxUSu
0

211 10 .                            (85) 

Using the initial condition (84), we have; 

     







 

x

dttUSuuxUS
0

2 .                                 (86) 

By the assumption (68) and (69), we rewrite (86) as; 




















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






 









x

n
n

n
n dtASuuUS

0 00
 .                          (87) 

where the nonlinear term       2,, UtututK   is decomposed in terms of the Adomian 
polynomials as suggested in (69). Few terms of the Adomian polynomials for 2U  are 
given as follows: 

                                                          .22
,2

,2
,

21303

2
1202

101

2
00

UUUUA
UUUA

UUA
UA







 

And so on. Following the Adomian decomposition Sumudu transform method, we 
define an iterative scheme; 
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 

  .0,
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
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






 kdtASuUS

uUS
x

kk

                            (88) 

Applying the inverse Sumudu transform, finally we get the value of ...,,, 210 UUU . 
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                     (89) 

Similarly, we can also find other components. Finally, the solution takes the following 
form; 

  ...
157248604825212

131074


xxxxxxU   .                     (90) 

 
Notes on (ADSTM): 
 
     From the previous analysis, we can observe that:  
 

1. ADSTM can obtain a series solution, not converge, which 
must be truncated. The truncated series solution is an 
inaccurate solution in that region, which will greatly restrict 
the application area of the method. 
 

2. ADSTM needs some modification to overcome the Taylor 
series does not converge. 

 
To overcome these disadvantages of ADSTM, the following ADSTM -PA method is 
suggested. 
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II: The Proposed (ADST -PA Method) 
 
Here, we purpose to establish Pade approximant to give a better approximation of 
function truncating its Taylor series see (section 3.9) in chapter three. 
 
The [m / n] Pade/ approximant of the infinite series (28), with 4m and 4n , which 
gives the following fraction approximation to the solution: 

 

21
1

28
3

2

x

xx
xU




  .                                               (91) 

 
 
III: Use Homotopy Perturbation Method (HPM) 
 
The homotopy of (83) can be readily written in the form; 

      01,
0

2  
x

dttupxvpvH   ,                             (92) 

This homotopy can continuously trace an implicitly defined curve from a starting 
point  0,vH  to a solution function  1,vH . Collecting the coefficients of like power of 
p and setting to be equal zero, we have; 

   

   
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2
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2
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2
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00
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xxvdtvvvvxvp

xxvdtvvvxvp
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x

x

x

x



















   (93) 

Therefore, we obtain; 
 

1
210 ...lim




p
vvvxu   ,                                            (94) 

Or  
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  ...
157248604825212

131074


xxxxxxu   .                (95) 

 
 
 
 
 

 
VIM HPM ADST-Pade ADSTM  Step Size 

0 0 0 0 0 
- 0.1250 -0.1250 -0.1244 -   0.1250 0.1250 
- 0.2497 -0.2497 -0.2476 -   0.2497 0.2500 
- 0.3734 -0.3734 -0.3691 -   0.3734 0.3750 
-  0.4948 -0.4948 -0.4882 -   0.4948 0.5000 
 - 0.6124 -0.6124 -0.6040 -   0.6124 0.6250 
- 0.7242 -0.7242 -0.7155 -   0.7242 0.7500 
- 0.8277 -0.8277 -0.8215 -   0.8277 0.8750 
- 0.9205 -0.9205 -0.9205 -   0.9205 1.000 
- 1.0001 -1.0000 -1.0112 -   1.0000 1.1250 
- 1.0640 -1.0638 -1.0926 -   1.0638 1.2500 
- 1.1104 -1.1097 -1.1635 -   1.1097 1.3750 
- 1.1376 -1.1353 -1.2231 -   1.1353 1.5000 

 
Table 1: Comparison of (ADSTM), (HPM), (VIM) and (ADST -PA) for Example 1 

 
 
The numerical results shown in Table 1:  imply the effectiveness of numerical methods 
discussed here. These methods give highly accurate in the very little iteration. 
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Fig 1: Combine between (ADSTM), (HPM), (VIM) and (ADST-PA), for Example 1. 

 
 
 
 
IV: Use Variational Iteration Method (VIM) 
 
The correction, functional for the equation (83) is given by: 

        dtdrrutuxuxu
x t

nnnn   









0 0

2
1 1 ,                                 (96) 

We used here 1  for first order integro- differential equation. We can use the 
initial condition to select     000  uxu . Using this selection into the correction 
functional gives the following successive approximations: 
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...
914457600

109.
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,
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,
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,
,0

16131074

4
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4
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1
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

xxxxxxu

xxxxu

xxu

xu
u

        (97) 

And so on for other approximations. The (VIM) admits the use of: 
 




n
nuxu lim ,                                                    (98) 

This gives the following approximation solution: 

  ...
914457600

109.
7076160

37
604825212

16131074


xxxxxxxu   .     (99) 

 
 
Notes on (VIM): 
     From the previous analysis, we can observe that:  
 

.VIM can obtain a series solution, not exactly like Adomian 
decomposition method. The VIM may not lead to faster 
convergence (repeated calculations) in each step. 

 
 
Example (5.3.8): Consider the following integro- differential equation [51]: 

      
x

dttUtUxU
0

1 ,                                        (100) 

Given the initial condition; 
  10,00  xU .                                         (101) 

With the exact solution: 

  









2
tan2 xxU  .                                          (102) 

 
I: Use (ADSTM) 

 
Taking the Sumudu transform of both sides of (100) gives; 
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         







 

x

dttUtUSUuxUSu
0

11 10 .                    (103) 

Using the initial condition (101), we have; 

       







 

x

dttUtUSuuxUS
0

.                             (104) 

By the assumption (68) and (69), we rewrite (104) as; 
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0 00
 .                           (105) 

where the nonlinear term          tUtUtututK ,,  is decomposed in terms of the 
Adomian polynomials as suggested in (69). We have a few terms of the Adomian 
polynomials of    tutu  which are given by: 
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And so on. Following the Sumudu transform decomposition method, we define an 
iterative scheme;  
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                               (106) 

Applying the inverse Sumudu transform, we can evaluate ...,,, 210 uuu  as: 
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                         (107) 

Similarly, we can also find other components. Finally, the solution takes the following 
form; 
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  ...
2520
17

306

753


xxxxxU   .                          (108) 

 
 
II: The Proposed (ADST -PA Method) 
 
The [m / n] Pade/ approximant of the infinite series (108), with 4m and 4n , which 
gives the following fraction approximation to the solution: 
 

 

42014
31

21
42

3

xx

xx
xU




  .                                            (109) 

 
 
III: Use Homotopy Perturbation Method (HPM) 
 
The homotopy of (100) can be readily written in the form; 

        01,
0

 
x

dttutupxvpvH   ,                           (110) 

Proceeding as before in Example (5.4.7), we obtain; 
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Therefore, we obtain; 

 
1

210 ...lim



p

vvvxu   ,                                    (112) 

Or  
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  ...
2520
17

306

753


xxxxxu   .                           (113) 

 
 
 

Error (HPM) Error (ADST-PA) Error (ADSTM) Exact Sol. Step Size 
0.0000             0.0000 0.0000 0.0000 0.0000 
0.0000              0.0000 0.0000 0.1253 0.1250 
0.0000 0.0000 0.0000 0.2526 0.2500 
0.0000 0.0000 0.0000 0.3840 0.3750 
0.0001 0.0000 0.0001 0.5219 0.5000 
0.0003 0.0000 0.0003 0.6691 0.6250 
0.0010 0.0000 0.0010 0.8292 0.7500 
0.0030 0.0000 0.0030 1.0069 0.8750 
0.0081 0.0000 0.0081 1.2085 1.0000 
0.0198 0.0000 0.0198 1.4431 1.1250 
0.0452 0.0000 0.0452 1.7243 1.2500 
0.0979 0.0000 0.0979 2.0737 1.3750 
0.2051 0.0001 0.2051 2.5275 1.5000 

 
 

Table 2: Comparison of (ADSTM), (HPM) and (ADST -PA method), for Example 2. 
 



 

135 
 

 
Fig 2: Combine between (ADSTM), (HPM) and (ADST-PA), for Example 2. 

 
 
 
IV: Use Variational Iteration Method (VIM) 
 
          The correction, functional for the equation (100) is given by: 

          dtdrrurutuxuxu
x t
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
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0 0
1 1 ,                     (114) 

Proceeding as before in Example (5.3.7), we obtain; 
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                      (115)                                                       

And so on for other approximations. The (VIM) admits the use of: 
 




n
nuxu lim ,                                                                (116) 

This gives the following approximation solution: 

  ...
22680
19

2520
17

306

9753


xxxxxxu   .                       (117) 

 
 
 
 

Error (VIM) Error (ADST-PA) Exact Sol. Step Size 
0.0000             0.0000 0.0000 0.0000 
0.0000              0.0000 0.1253 0.1250 
0.0000 0.0000 0.2526 0.2500 
0.0000 0.0000 0.3840 0.3750 
0.0000 0.0000 0.5219 0.5000 
0.0000 0.0000 0.6691 0.6250 
0.0001 0.0000 0.8292 0.7500 
0.0002 0.0000 1.0069 0.8750 
0.0009 0.0000 1.2085 1.0000 
0.0029 0.0000 1.4431 1.1250 
0.0087 0.0000 1.7243 1.2500 
0.0242 0.0000 2.0737 1.3750 
0.0644 0.0001 2.5275 1.5000 

 
 

Table 3: Comparison of (ADST -PA method) and (VIM), for Example 2. 
 
 
Numerical results shown in Table 2, 3:  illustrate the importance of (ADST -PA 
method) over other numerical methods. In (ADST -PA method), we have used only 4 
iterations and [4 /4] Pade/ approximation of the solution obtained by (ADSTM), 
(HPM) and (VIM). 
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Fig 3: Combine between (ADST-PA) and (VIM), for Example 2. 

 
 
Concluding Remarks: 
In this section, we have studied a few recent familiar numerical methods for solving 
integro-differential equations. The numerical studies in this section showed that all the 
method gives highly accurate results for given equations. The (ADSTM), the (HPM) 
and the (VIM) are simple and easy. Despite this, they are not converging to a closed 
form. Since the method of the (ADSTM) is based on an approximation of the solution 
function in this study by the truncating of approximation the solution, this kind of 
approximation is an inaccurate solution, which will greatly restrict the application area 
of the method. To overcome these demerits, we use the Pade approximations. This 
fact is also verified by the second example given in the study. 
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Table: Laplace and Sumudu transform of some function 
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