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CHAPTER ONE 

Algebra of Differential Forms 

Section (1.1): Differential Forms in ℝ𝒏 

The goal of this section is to define in ℝ𝑛 “field of alternate forms” that will 

be used later to obtain geometric results. 

 In order to fix the ideas, we will work initially with the 3-dimensinonal 

space ℝ3. 

 Let 𝑝 be a point of ℝ3. The set of vectors 𝑞 − 𝑝, 𝑞 ∈ ℝ3 (that have origin 

at 𝑝) will be called the tangent space of ℝ3at 𝑝 and will be denoted by ℝ𝑝
3 . The 

vectors 𝑒1 = (1,0,0), 𝑒2 = (0,1,0), 𝑒3 = (0,0,1) of the canonical basis of ℝ0
3 will 

be indentified with their translates (𝑒1)𝑝, (𝑒2)𝑝, (𝑒3)𝑝 at the point 𝑝. 

 A vector field in ℝ3 is a map 𝑣 that associates to each point 𝑝 ∈ ℝ3 a 

vector 𝑣(𝑝) ∈ ℝ𝑝
3 . We can write 𝑣 as  

𝑣(𝑝) = 𝑎1(𝑝)𝑒1 + 𝑎2(𝑝)𝑒2 + 𝑎3(𝑝)𝑒3,                                 (1.1) 

thereby defining three functions 𝑎𝑖: ℝ
3⟶ℝ, 𝑖 = 1, 2, 3, that characterize the 

vector field 𝑣. We say that 𝑣 is differentiable if the functions 𝑎𝑖 are differentiable. 

To each tangent space ℝ𝑝
3  we can associate the dual space (ℝ𝑝

3)
∗
 which is the set 

of linear maps 𝜑:ℝ𝑝
3 ⟶ℝ. A basis for (ℝ𝑝

3)
∗
 is obtained by taking (𝑑𝑥𝑖)𝑝, 𝑖 =

1, 2, 3, where 𝑥𝑖: ℝ
3⟶ℝ is the map which assigns to each point its 𝑖𝑡ℎ-

coordinate. The set 

{(𝑑𝑥𝑖)𝑝; 𝑖 = 1, 2, 3},                                       

is in fact the dual basis of {(𝑒𝑖)𝑝} since 

(𝑑𝑥𝑖)𝑝(𝑒𝑗) =
𝜕𝑥𝑖
𝜕𝑥𝑗

= {
0,      if 𝑖 ≠ 𝑗
1,       if 𝑖 = 𝑗.

                                       (1.2) 
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Definition (1.1.1): 

A field of linear forms (or an exterior form of degree 1) in ℝ3 is a map 𝜔 that an 

associates to each 𝑝 ∈ ℝ3 an element 𝜔(𝑝) ∈ ℝ𝑝
3 ;  𝜔 can be written as 

𝜔(𝑝) = 𝑎1(𝑝)(𝑑𝑥1)𝑝 + 𝑎2(𝑝)(𝑑𝑥2)𝑝 + 𝑎3(𝑝)(𝑑𝑥3)𝑝,

      𝜔 =∑𝑎𝑖  𝑑𝑥𝑖

3

𝑖=1

,
     (1.3) 

where 𝑎𝑖 is real functions in ℝ3. If the functions 𝑎𝑖 are differentiable, 𝜔 is called a 

differential form of degree 1. 

Now let Λ2(ℝ𝑝
3)∗ be the set of maps 𝜑:ℝ𝑝

3 × ℝ𝑝
3 ⟶  ℝ that are bilinear (i.e., 𝜑 is 

linear in each variable) and alternate (i.e., 𝜑(𝑣1, 𝑣2) = −𝜑(𝑣2, 𝑣1)). With the usual 

operations of functions, the set Λ2(ℝ𝑝
3)∗ becomes a vector space. 

 When 𝜑1 and 𝜑2 belong to (ℝ𝑝
3)∗, we can obtain an element 𝜑1 ∧ 𝜑2 ∈

Λ2(ℝ𝑝
3)∗ by setting 

(𝜑1 ∧ 𝜑2)(𝑣1, 𝑣2) = det (𝜑𝑖(𝑣𝑗)),                                             (1.4) 

then, the element (𝑑𝑥𝑖)𝑝 ∧ (𝑑𝑥𝑗)𝑝 ∈ Λ
2(ℝ𝑝

3)∗ will be denoted by (𝑑𝑥𝑖 ∧ 𝑑𝑥𝑗)𝑝. It 

is easy to see that the set {(𝑑𝑥𝑖 ∧ 𝑑𝑥𝑗)𝑝, 𝑖 < 𝑗} is a basis for Λ2(ℝ𝑝
3)∗. Furthermore, 

(𝑑𝑥𝑖 ∧ 𝑑𝑥𝑗)𝑝 = −(𝑑𝑥𝑗 ∧ 𝑑𝑥𝑖)𝑝,     𝑖 ≠ 𝑗,                                (1.5) 

and 

(𝑑𝑥𝑖 ∧ 𝑑𝑥𝑖)𝑝 = 0.                                                                        (1.6) 

where the symbol " ∧ " is called wedge product. 

Definition (1.1.2): 

A field of bilinear alternating forms or an exterior form of degree 2 in ℝ3 is a 

correspondence 𝜔 that associates to each 𝑝 ∈ ℝ3 an element 𝜔(𝑝) ∈ Λ2(ℝ𝑝
3)∗; 𝜔 

can be written in the form 
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𝜔(𝑝) = 𝑎12(𝑝)(𝑑𝑥1 ∧ 𝑑𝑥2)𝑝 + 𝑎13(𝑝)(𝑑𝑥1 ∧ 𝑑𝑥3)𝑝 + 𝑎23(𝑝)(𝑑𝑥2 ∧ 𝑑𝑥3)𝑝 

or 

𝜔 =∑𝑎𝑖𝑗  𝑑𝑥𝑖 ∧ 𝑑𝑥𝑗
𝑖<𝑗

,             𝑖, 𝑗 = 1, 2, 3,                           (1.7) 

Where 𝑎𝑖𝑗 are real functions in ℝ3. When the functions 𝑎𝑖𝑗 are differentiable 𝜔 is a 

differential form of degree 2. 

We will now generalize the notion of differential form to ℝ𝑛, let 𝑝 ∈ ℝ𝑛, ℝ𝑝
𝑛 the 

tangent space of ℝ𝑛 at 𝑝 and (ℝ𝑝
𝑛)
∗
 its dual space. Let Λ𝑘(ℝ𝑝

𝑛)∗ be the set of all 𝑘-

linear alternating maps 

𝜑: ℝ𝑝
𝑛 ×…×ℝ𝑝

𝑛
⏟        

𝑘 times

⟶ℝ.                                  

(Alternating means that 𝜑 changes sign with the interchange of two consecutive 

arguments). With the usual operations, Λ𝑘(ℝ𝑝
𝑛)∗ is a vector space. 

Given 𝜑1, … , 𝜑𝑘 ∈ (ℝ𝑝
𝑛)∗, we can obtain an element 𝜑1 ∧ 𝜑2 ∧ …∧ 𝜑𝑘 of Λ𝑘(ℝ𝑝

𝑛)∗ 

by setting 

(𝜑1 ∧ 𝜑2 ∧ …∧ 𝜑𝑘)(𝑣1, 𝑣2, … , 𝑣𝑘) = det (𝜑𝑖(𝑣𝑗)), 𝑖, 𝑗 = 1,… , 𝑘.     (1.8) 

it follows from the properties of determinants that 𝜑1 ∧ 𝜑2 ∧ …∧ 𝜑𝑘 is in fact 𝑘-

linear and alternate. In particular, (𝑑𝑥𝑖1)𝑝
∧ (𝑑𝑥𝑖2)𝑝

∧ …∧ (𝑑𝑥𝑘)𝑝 ∈ Λ
𝑘(ℝ𝑝

𝑛)∗,

𝑖1, 𝑖2, … , 𝑖𝑘 = 1,… , 𝑛. We will denote this element by (𝑑𝑥𝑖1 ∧ 𝑑𝑥𝑖2 ∧ …∧ 𝑑𝑥𝑖𝑘)𝑝
. 

Note (1.1.3): The set 

{(𝑑𝑥𝑖1 ∧ 𝑑𝑥𝑖2 ∧ …∧ 𝑑𝑥𝑖𝑘)𝑝
, 𝑖1 < 𝑖2 < ⋯ < 𝑖𝑘 , 𝑖𝑗 ∈ {1,… , 𝑛}},     (1.9) 

is a basis for Λ𝑘(ℝ𝑝
𝑛)∗. 
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Definition (1.1.4): 

An exterior 𝑘-form in ℝ𝑛 is a map 𝜔 that associates to each 𝑝 ∈ ℝ𝑛 an 

element 𝜔(𝑝) ∈ Λ𝑘(ℝ𝑝
𝑛)∗; by Note (1.1.3), 𝜔 can be written as 

𝜔(𝑝) = ∑ 𝑎𝑖1…𝑖𝑘(𝑝)(𝑑𝑥𝑖1 ∧ …∧ 𝑑𝑥𝑖𝑘)𝑝
, 𝑖𝑗 ∈ {1,… , 𝑛}

𝑖1<⋯<𝑖𝑘

        (1.10) 

where  𝑎𝑖1…𝑖𝑘 are real functions in ℝ𝑛. When the 𝑎𝑖1…𝑖𝑘 are differentiable 

functions, 𝜔 is called a differential 𝑘-form. 

 For notational convenience, we will denote by I the 𝑘-tuple (𝑖1, … , 𝑖𝑘), 𝑖1 <

⋯ < 𝑖𝑘 , 𝑖𝑗 ∈ {1,… , 𝑛}, and will use the following notation for 𝜔: 

𝜔 =∑𝑎𝐼 𝑑𝑥𝐼
𝐼

.                                                                         (1.11) 

We also set the convention that a differential 0-form is a differentiable function 

𝑓:ℝ𝑛⟶ℝ. 

Example (1.1.5): In ℝ4 we have the following types of exterior forms 

(where 𝑎𝑖 , 𝑎𝑖𝑗, etc., are real functions in ℝ4): 

0-forms, functions in ℝ4, 

1-form: 

𝑎1𝑑𝑥1 + 𝑎2𝑑𝑥2 + 𝑎3𝑑𝑥3 + 𝑎4𝑑𝑥4 , 

2-forms: 

 𝑎12𝑑𝑥1 ∧ 𝑑𝑥2 + 𝑎13𝑑𝑥1 ∧ 𝑑𝑥3 + 𝑎14𝑑𝑥1 ∧ 𝑑𝑥4 + 𝑎23𝑑𝑥2 ∧ 𝑑𝑥3 + 𝑎24𝑑𝑥2 ∧ 𝑑𝑥4

+ 𝑎34𝑑𝑥3 ∧ 𝑑𝑥4 , 

3-forms: 

𝑎123𝑑𝑥1 ∧ 𝑑𝑥2 ∧ 𝑑𝑥3 + 𝑎124𝑑𝑥1 ∧ 𝑑𝑥2 ∧ 𝑑𝑥4 + 𝑎134𝑑𝑥1 ∧ 𝑑𝑥3 ∧ 𝑑𝑥4 + 𝑎234𝑑𝑥2

∧ 𝑑𝑥3 ∧ 𝑑𝑥4, 

4-forms, 

𝑎1234𝑑𝑥1 ∧ 𝑑𝑥2 ∧ 𝑑𝑥3 ∧ 𝑑𝑥4. 
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 From now on, we will restrict ourselves to differential 𝑘-forms and we will 

call them simply 𝑘-forms. 

 We are going to define some operations on 𝑘-forms in ℝ𝑛.  

First, if 𝜔 and 𝜑 are two 𝑘-forms: 

𝜔 =∑𝑎𝐼  𝑑𝑥𝐼
𝐼

, 𝜑 =∑𝑏𝐼  𝑑𝑥𝐼
𝐼

,                   

We can define their sum 

𝜔 + 𝜑 =∑(𝑎𝐼 + 𝑏𝐼)𝑑𝑥𝐼
𝐼

.                                   

Next, if 𝜔 is a 𝑘-form and 𝜑 is an 𝑠-form, we can define their exterior product 𝜔 ∧

𝜑, which is an (𝑠 + 𝑘)-form, as follows 

Definition (1.1.6): 

𝜔 =∑𝑎𝐼  𝑑𝑥𝐼 , 𝐼 = (𝑖1, … , 𝑖𝑘), 𝑖1 < ⋯ < 𝑖𝑘 ,

𝜑 =∑𝑏𝐽 𝑑𝑥𝐽 , 𝐽 = (𝑗1, … , 𝑗𝑠), 𝑗1 < ⋯ < 𝑗𝑠.
              (1.12) 

By definition, 

𝜔 ∧ 𝜑 =∑𝑎𝐼𝑏𝐽 𝑑𝑥𝐼
𝐼𝐽

∧ 𝑑𝑥𝐽.                                                    (1.13) 

Example (1.1.7): Let 

 𝜔 = 𝑥1𝑑𝑥1 + 𝑥2𝑑𝑥2 + 𝑥3𝑑𝑥3,                       

be a 1-form in ℝ3 and 

𝜑 = 𝑥1𝑑𝑥1 ∧ 𝑑𝑥2 + 𝑑𝑥1 ∧ 𝑑𝑥3,                   

be a 2-form in ℝ3. Then, since 

𝑑𝑥𝑖 ∧ 𝑑𝑥𝑖 = 0,                                                 
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and 

𝑑𝑥𝑖 ∧ 𝑑𝑥𝑗 = −𝑑𝑥𝑗 ∧ 𝑑𝑥𝑖 , 𝑖 ≠ 𝑗,                  

we obtain 

               𝜔 ∧ 𝜑 = 𝑥2𝑑𝑥2 ∧ 𝑑𝑥1 ∧ 𝑑𝑥3 + 𝑥3𝑥1𝑑𝑥3 ∧ 𝑑𝑥1 ∧ 𝑑𝑥2 

 = (𝑥1𝑥3 − 𝑥2)𝑑𝑥1 ∧ 𝑑𝑥2 ∧ 𝑑𝑥3. 

Remark (1.1.8): 

The definition of exterior product is made in such a way that if 𝜑1, … , 𝜑𝑘 are 1-

forms, then the exterior product 𝜑1 ∧ …∧ 𝜑𝑘 agrees with the 𝑘-form previously 

defined by 

𝜑1 ∧ …∧ 𝜑𝑘(𝑣1, … , 𝑣𝑘) = det (𝜑𝑖(𝑣𝑗)).                              (1.14) 

This follows immediately from the definition. 

 The exterior product of forms in ℝ𝑛 has the following properties. 

Proposition (1.1.9): 

Let 𝜔 be a 𝑘-form, 𝜑 be an 𝑠-form and 𝜃 be an 𝑟-form. 

Then: 

a) (𝜔 ∧ 𝜑) ∧ 𝜃 = 𝜔 ∧ (𝜑 ∧ 𝜃), 

b) (𝜔 ∧ 𝜑) = (−1)𝑘𝑠(𝜑 ∧ 𝜔), 

c) 𝜔 ∧ (𝜑 + 𝜃) = 𝜔 ∧ 𝜑 + 𝜔 ∧ 𝜃,  if 𝑟 = 𝑠. 

Proof: 

(a) and (c) are straightforward. To prove (b), we write 

                     𝜔 =∑𝑎𝐼  𝑑𝑥𝐼 , 𝐼 = (𝑖1, … , 𝑖𝑘), 𝑖1 < ⋯ < 𝑖𝑘 , 

𝜑 =∑𝑏𝐽 𝑑𝑥𝐽 , 𝐽 = (𝑗1, … , 𝑗𝑠), 𝑗1 < ⋯ < 𝑗𝑠 . 
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then 

                            𝜔 ∧ 𝜑 =∑𝑎𝐼𝑏𝐽𝑑𝑥𝑖1 ∧ …∧ 𝑑𝑥𝑖𝑘 ∧ 𝑑𝑥𝑗1 ∧ …∧ 𝑑𝑥𝑗𝑠
𝐼𝐽

  

=∑𝑏𝐽𝑎𝐼(−1)𝑑𝑥𝑖1 ∧ …∧ 𝑑𝑥𝑖𝑘−1 ∧ 𝑑𝑥𝑗1 ∧ 𝑑𝑥𝑖𝑘 ∧ …∧ 𝑑𝑥𝑗𝑠
𝐼𝐽

 

           =∑𝑏𝐽𝑎𝐼(−1)
𝑘𝑑𝑥𝑗1 ∧ 𝑑𝑥𝑖1 ∧ …∧ 𝑑𝑥𝑖𝑘 ∧ 𝑑𝑥𝑗2 ∧ …∧ 𝑑𝑥𝑗𝑠

𝐼𝐽

. 

since 𝐽 has 𝑠 elements, we obtain, by repeating the above argument for 

each 𝑑𝑥𝑗𝑖 , 𝑗𝑖 ∈ 𝐽, 

                            𝜔 ∧ 𝜑 =∑𝑏𝐽𝑎𝐼(−1)
𝑘𝑠𝑑𝑥𝑗1 ∧ …∧ 𝑑𝑥𝑗𝑠 ∧ 𝑑𝑥𝑖1 ∧ …∧ 𝑑𝑥𝑖𝑘

𝐼𝐽

. 

= (−1)𝑘𝑠𝜑 ∧ 𝜔.                                                    

Remark (1.1.10): 

Although 𝑑𝑥𝑖 ∧ 𝑑𝑥𝑖 = 0, it is not true that for any form 𝜔 ∧ 𝜔 = 0. 

For instance, if 

𝜔 = 𝑥1𝑑𝑥1 ∧ 𝑑𝑥2 + 𝑥2𝑑𝑥3 ∧ 𝑑𝑥4,                 

then 

𝜔 ∧ 𝜔 = 2𝑥1𝑥2𝑑𝑥1 ∧ 𝑑𝑥2 ∧ 𝑑𝑥3 ∧ 𝑑𝑥4.       

 One of the most important features of differential forms is the way they 

behave under differentiable maps. Let 𝑓:ℝ𝑛 ⟶ℝ𝑚 be differentiable map. Then 𝑓 

induces a map 𝑓∗ that takes 𝑘-forms in ℝ𝑚 into 𝑘-forms in ℝ𝑛 and is defined as 

follows. Let 𝜔 be a 𝑘-form in ℝ𝑚. By definition, 𝑓∗𝜔 is the 𝑘-form in ℝ𝑛 given by 

(𝑓∗𝜔)(𝑝)(𝑣1, … , 𝑣𝑘) = 𝜔(𝑓(𝑝)) (𝑑𝑓𝑝(𝑣1),… , 𝑑𝑓𝑝(𝑣𝑘)).               (1.15) 
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Here 𝑝 ∈ ℝ𝑛, 𝑣1, … , 𝑣𝑘 ∈ ℝ𝑝
𝑛, and 𝑑𝑓𝑝: ℝ𝑝

𝑛⟶ℝ𝑓(𝑝)
𝑚  is the differential of the map 

𝑓 at 𝑝. We set the convention that if 𝑔 is the 0-form, 

𝑓∗𝑔 = 𝑔 ∘ 𝑓.                                                                              (1.16) 

We are going to show that the operation 𝑓∗ on forms is equivalent to “substitution 

of variables”. Before that, we need some properties of 𝑓∗. 

Proposition (1.1.11): 

Let 𝑓: ℝ𝑛⟶ℝ𝑚 be a differentiable map, 𝜔 and 𝜑 be a 𝑘-forms on 

ℝ𝑚 and 𝑔:ℝ𝑛⟶ℝ be a 0-form on ℝ𝑚. Then: 

a) 𝑓∗(𝜔 + 𝜑) = 𝑓∗𝜔 + 𝑓∗𝜑, 

b) 𝑓∗(𝑔𝜔) = 𝑓∗(𝑔)𝑓∗(𝜔), 

c) If 𝜑1, … , 𝜑𝑘 are 1-forms in ℝ𝑚, 𝑓∗(𝜑1 ∧ …∧ 𝜑𝑘) = 𝑓
∗(𝜑1) ∧ …∧ 𝑓

∗(𝜑𝑘). 

Proof: 

The proofs are very simple. Let 𝑝 ∈ ℝ𝑛 and let 𝑣1, … , 𝑣𝑘 ∈ ℝ𝑝
𝑛. 

Then 

a) 

𝑓∗(𝜔 + 𝜑)(𝑝)(𝑣1, … , 𝑣𝑘) = (𝜔 + 𝜑)(𝑓(𝑝)) (𝑑𝑓𝑝(𝑣1),… , 𝑑𝑓𝑝(𝑣𝑘))

                                                = (𝑓∗𝜔)(𝑝)(𝑣1, … , 𝑣𝑘) + (𝑓
∗𝜑)(𝑝)(𝑣1, … , 𝑣𝑘)

                                                = (𝑓∗𝜔 + 𝑓∗𝜑)(𝑝)(𝑣1, … , 𝑣𝑘).

 

b) 
𝑓∗(𝑔𝜔)(𝑝)(𝑣1, … , 𝑣𝑘) = (𝑔𝜔)(𝑓(𝑝)) (𝑑𝑓𝑝(𝑣1),… , 𝑑𝑓𝑝(𝑣𝑘)) = (𝑔 ∘ 𝑓)(𝑝)

       𝑓∗𝜔(𝑝)(𝑣1, … , 𝑣𝑘) = 𝑓
∗𝑔(𝑝) ⋅ 𝑓∗𝜔(𝑝)(𝑣1, … , 𝑣𝑘).

. 

c) By omitting the indication of the point 𝑝, we obtain 

𝑓∗(𝜑1 ∧ …∧ 𝜑𝑘)(𝑣1, … , 𝑣𝑘) = (𝜑1 ∧ …∧ 𝜑𝑘) (𝑑𝑓𝑝(𝑣1),… , 𝑑𝑓𝑝(𝑣𝑘)) 

= det (𝜑𝑖 (𝑑𝑓(𝑣𝑗))) = det (𝑓∗𝜑𝑖(𝑣𝑗)) 

= (𝑓∗𝜑1 ∧ …∧ 𝑓
∗𝜑𝑘)(𝑣1, … , 𝑣𝑘). 
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Example (1.1.12): (Polar coordinates). Let 𝜔 be the 1-form in ℝ𝑛 − {0,0} by  

𝜔 = −
𝑦

𝑥2 + 𝑦2
𝑑𝑥 +

𝑥

𝑦2 + 𝑥2
𝑑𝑦.                 

Let 𝑈 be the set in the plane (𝑟, 𝜃) given by 

𝑈 = {𝑟 > 0; 0 < 𝜃 < 2𝜋}                              

and let 𝑓: 𝑈 ⟶ ℝ2 be the map 

𝑓(𝑟, 𝜃) = {
𝑥 = 𝑟 cos 𝜃
𝑦 = 𝑟 sin 𝜃

                                   

 Let us compute 𝑓∗𝜔. Since 

𝑑𝑥 = cos𝜃𝑑𝑟 − 𝑟sin𝜃𝑑𝜃, 𝑑𝑦 = sin 𝜃 𝑑𝑟 + 𝑟 cos 𝜃 𝑑𝜃, 

we obtain 

𝑓∗𝜔 = −
𝑦

𝑥2 + 𝑦2
(cos𝜃𝑑𝑟 − 𝑟sin𝜃𝑑𝜃) +

𝑥

𝑦2 + 𝑥2
(sin 𝜃 𝑑𝑟 + 𝑟 cos 𝜃 𝑑𝜃)

         = 𝑑𝜃.

 

 Notice that (a) of Proposition (1.1.11) states that the addition of differential 

forms commutes with the “substitution of variables”. We will now show that the 

same holds for the exterior product. 

Proposition (1.1.13): 

Let 𝑓:ℝ𝑛⟶ℝ𝑚 be a differentiable map. Then 

a) 𝑓∗(𝜔 ∧ 𝜑) = (𝑓∗𝜔) ∧ (𝑓∗𝜑), where 𝜔 and 𝜑 any two forms in ℝ𝑚. 

b) (𝑓 ∘ 𝑔)∗𝜔 = 𝑔∗(𝑓∗𝜔), where 𝑔: ℝ𝑝⟶ ℝ𝑛 is a differentiable map. 

 We are now going to define an operation on differential form that 

generalizes the differentiation of functions. Let 𝑔:ℝ𝑛 ⟶ℝ be a 0-form (i.e., a 

differentiable function). Then the differential 
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𝑑𝑔 =∑
𝜕𝑔

𝜕𝑥𝑖
𝑑𝑥𝑖

𝑛

𝑖=1

                                                                      (1.17) 

is a 1-form. We want to generalize this process by defining an operation that takes 

𝑘-forms into (𝑘 + 1)-forms. 

Definition (1.1.14): 

Let 𝜔 = ∑𝑎𝐼𝑑𝑥𝐼 be a 𝑘-form in ℝ𝑛. The exterior differential 𝑑𝜔 of 𝜔 is defined 

by 

𝑑𝜔 =∑𝑑𝑎𝐼 ∧ 𝑑𝑥𝐼
𝐼

.                                                                    (1.18) 

Example (1.1.15): Let 

𝜔 = 𝑥𝑦𝑧𝑑𝑥 + 𝑦𝑧𝑑𝑦 + (𝑥 + 𝑧)𝑑𝑧                   

and let us compute 𝑑𝜔: 

𝑑𝜔 = 𝑑(𝑥𝑦𝑧) ∧ 𝑑𝑥 + 𝑑(𝑦𝑧) ∧ 𝑑𝑦 + 𝑑(𝑥 + 𝑧) ∧ 𝑑𝑧 

= (𝑦𝑧𝑑𝑥 + 𝑥𝑧𝑑𝑦 + 𝑥𝑦𝑑𝑧) ∧ 𝑑𝑥 + (𝑧𝑑𝑦 + 𝑦𝑑𝑧) ∧ 𝑑𝑦 + (𝑑𝑥 + 𝑑𝑧) ∧ 𝑑𝑧 

= −𝑥𝑧𝑑𝑥 ∧ 𝑑𝑦 + (1 − 𝑥𝑦)𝑑𝑥 ∧ 𝑑𝑧 − 𝑦𝑑𝑦 ∧ 𝑑𝑧. 

Example (1.1.16): Let 𝜔 the 1-form on ℝ2 

𝜔 = 𝑓𝑑𝑥 + 𝑔𝑑𝑦,                                                                       (1.19) 

where 𝑓 and 𝑔 are functions on ℝ2. to simplify notation, write 

𝑓𝑥 = 𝜕𝑓 𝜕𝑥⁄ , 𝑓𝑦 = 𝜕𝑓 𝜕𝑦⁄  .                     

then 

      𝑑𝜔 = 𝑑𝑓 ∧ 𝑑𝑥 + 𝑓𝑑(𝑑𝑥) + 𝑑𝑔 ∧ 𝑑𝑦 + 𝑔𝑑(𝑑𝑦), 

by linearity and the product rule. Since 𝑑2 = 0, 

           𝑑𝜔 = 𝑑𝑓 ∧ 𝑑𝑥 + 𝑑𝑔 ∧ 𝑑𝑦 

= (𝑓𝑥𝑑𝑥 + 𝑓𝑦𝑑𝑦) ∧ 𝑑𝑥 + (𝑔𝑥𝑑𝑥 + 𝑔𝑦𝑑𝑦) ∧ 𝑑𝑦. 
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Since 

𝑑𝑥 ∧ 𝑑𝑥 = 0,
𝑑𝑦 ∧ 𝑑𝑦 = 0,

                                                                              (1.20) 

this becomes 

𝑑𝜔 = 𝑓𝑦𝑑𝑦 ∧ 𝑑𝑥 + 𝑔𝑥𝑑𝑥 ∧ 𝑑𝑦

= (𝑔𝑥 − 𝑓𝑦)𝑑𝑥 ∧ 𝑑𝑦.
                                               (1.21) 

Proposition (1.1.17): 

a) 𝑑(𝜔1 +𝜔2) = 𝑑𝜔1 + 𝑑𝜔2, where 𝜔1and 𝜔2 are 𝑘-forms 

b) 𝑑(𝜔 ∧ 𝜑) = 𝑑𝜔 ∧ 𝜑 + (−1)𝑘𝜔 ∧ 𝑑𝜑, where 𝜔 is a 𝑘-form and 𝜑 is an 𝑠-

form. 

c) 𝑑(𝑑𝜔) = 𝑑2𝜔 = 0. 

d) 𝑑(𝑓∗𝜔) = 𝑓∗(𝑑𝜔), where 𝜔 is a 𝑘-form in ℝ𝑚 and 𝑓: ℝ𝑛⟶ℝ𝑚 is a 

differentiable map. 

Proof: 

a) Is straightforward. 

b) Let 𝜔 = ∑ 𝑎𝐼𝑑𝑥𝐼𝐼 ,   𝜑 = ∑ 𝑏𝐽𝑑𝑥𝐽𝐽 . Then 

       = ∑𝑑(𝑎𝐼𝑏𝐽) ∧ 𝑑𝑥𝐼 ∧ 𝑑𝑥𝐽
𝐼𝐽

 

 = ∑𝑏𝐽𝑑𝑎𝐼 ∧ 𝑑𝑥𝐼 ∧ 𝑑𝑥𝐽 +∑𝑎𝐼𝑑𝑏𝐽 ∧ 𝑑𝑥𝐼 ∧ 𝑑𝑥𝐽
𝐼𝐽𝐼𝐽

 

 = 𝑑𝜔 ∧ 𝜑 + (−1)𝑘∑𝑎𝐼𝑑𝑥𝐼 ∧ 𝑑𝑏𝐽 ∧ 𝑑𝑥𝐽
𝐼𝐽

  

= 𝑑𝜔 ∧ 𝜑 + (−1)𝑘𝜔 ∧ 𝑑𝜑. 

c) Let us first assume that 𝜔 is a 0-form, i.e., 𝜔 is a function 𝑓:ℝ𝑛 ⟶ℝ that 

associates to each (𝑥1, … , 𝑥𝑛) ∈ ℝ
𝑛 that value 𝑓(𝑥1, … , 𝑥𝑛) ∈ ℝ. Then 

𝑑(𝑑𝑓) = 𝑑 (∑
𝜕𝑓

𝜕𝑥𝑗
𝑑𝑥𝑗

𝑛

𝑗=1

) =∑𝑑(
𝜕𝑓

𝜕𝑥𝑗
) ∧ 𝑑𝑥𝑗

𝑛

𝑗=1

 



12 
 

=∑( ∑
𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
𝑑𝑥𝑖 ∧ 𝑑𝑥𝑗

𝑛

𝑖=1

)

𝑛

𝑗=1

. 

Since 

𝜕2𝑓 𝜕𝑥𝑖𝜕𝑥𝑗⁄ = 𝜕2𝑓 𝜕𝑥𝑗𝜕𝑥𝑖⁄ ,                                

and 

 𝑑𝑥𝑖 ∧ 𝑑𝑥𝑗 = −𝑑𝑥𝑗 ∧ 𝑑𝑥𝑖 , 𝑖 ≠ 𝑗,                  

we obtain that 

       𝑑(𝑑𝑓) =∑(
𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
−
𝜕2𝑓

𝜕𝑥𝑗𝜕𝑥𝑖
)𝑑𝑥𝑖 ∧ 𝑑𝑥𝑗 = 0.

𝑖<𝑗

 

 Now let 𝜔 = ∑𝑎𝐼𝑑𝑥𝐼. By (a), we can restrict ourselves to the case 𝜔 =

𝑎𝐼𝑑𝑥𝐼 with 𝑎𝐼 ≠ 0. By (b), we have that 

𝑑𝜔 = 𝑑𝑎𝐼 ∧ 𝑑𝑥𝐼 + 𝑎𝐼𝑑(𝑑𝑥𝐼).                       

But    𝑑(𝑑𝑥𝐼) = 𝑑(1) ∧ 𝑑𝑥𝐼 = 0. Therefore, 

𝑑(𝑑𝜔) = 𝑑(𝑑𝑎𝐼 ∧ 𝑑𝑥𝐼) = 𝑑(𝑑𝑎𝐼) ∧ 𝑑𝑥𝐼 + 𝑑𝑎𝐼 ∧ 𝑑(𝑑𝑥𝐼) = 0, 

since 𝑑(𝑑𝑎𝐼) = 0 and 𝑑(𝑑𝑥𝐼) = 0, which proves (c). 

d) We will first prove the result for a 0-form. Let 𝑔:ℝ𝑚⟶ℝ be a 

differentiable function that associates to each (𝑦1, … , 𝑦𝑚) ∈ ℝ
𝑚 the 

value 𝑔(𝑦1, … , 𝑦𝑚). Then 

              𝑓∗(𝑑𝑔) = 𝑓∗ (∑
𝜕𝑔

𝜕𝑦𝑖
𝑑𝑦𝑖

𝑖

) =∑
𝜕𝑔

𝜕𝑦𝑖

𝜕𝑓𝑖
𝜕𝑥𝑗
𝑑𝑥𝑗

𝑖𝑗

  

=∑
𝜕(𝑔 ∘ 𝑓)

𝜕𝑥𝑗
𝑑𝑥𝑗 = 𝑑(𝑔 ∘ 𝑓) = 𝑑(𝑓

∗𝑔).

𝑗
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 Now, let 𝜑 = ∑ 𝑎𝐼𝑑𝑥𝐼𝐼  be a 𝑘-form. By using the above, and the fact that 𝑓∗ 

commutes with the exterior product, we obtain 

𝑑(𝑓∗𝜑) = 𝑑 (∑𝑓∗(𝑎𝐼)𝑓
∗(𝑑𝑥𝐼)

𝐼

) 

=∑𝑑(𝑓∗(𝑎𝐼)) ∧ 𝑓
∗(𝑑𝑥𝐼)) 

𝐼

 

=∑𝑓∗(𝑑𝑎𝐼) ∧ 𝑓
∗(𝑑𝑥𝐼)

𝐼

 

= 𝑓∗ (∑𝑑𝑎𝐼 ∧ 𝑑𝑥𝐼
𝐼

) = 𝑓∗(𝑑𝜑)     

Which prove (d). 

(1.2): Differential Forms on Manifolds 

 We now extend the notion of a differential form in ℝ𝑛 to differentiable 

manifolds (See Section 1.1). Given a vector space 𝑉, we will denote by Λ𝑘(𝑉) the 

set of all alternating, 𝑘-linear maps 𝜔: 𝑉 × …× 𝑉 ⟶ ℝ, where 𝑉 × …× 𝑉 contains 

𝑘 factors. 

Definition (1.2.1): 

Let 𝑀 be a differentiable manifold. An exterior 𝑘-form 𝜔 in 𝑀 is the choice, for 

every 𝑝 ∈ 𝑀, of an element 𝜔(𝑝) of the space Λ𝑘(𝑇𝑝𝑀)
∗
 of alternating 𝑘-linear 

forms of the tangent space 𝑇𝑝𝑀. 

 Given an exterior 𝑘-form 𝜔 and a parameterization 𝑓𝑖: 𝑈𝑖 ⟶𝑀, around 𝑝 ∈

𝑓𝑖(𝑈𝑖), we defined the representation of 𝜔 in this parameterization as the exterior 

𝑘-form 𝜔𝑖 in 𝑈𝑖 ⊂ ℝ
𝑛 given by 

𝜔𝑖(𝑣1, … , 𝑣𝑘) = 𝜔(𝑑𝑓𝑖(𝑣1),… , 𝑑𝑓𝑖(𝑣𝑘)), 𝑣1, … , 𝑣𝑘 ∈ ℝ
𝑛.          (1.22) 
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Definition (1.2.2): 

A differential form of order 𝑘 (or a differential 𝑘-form) in a differentiable manifold 

𝑀 is an exterior 𝑘-form such that, in some coordinates system (hence, in all), its 

differentiable. 

 The important fact is, that all the operations defined for differential forms in 

ℝ𝑛 can be extend to differential forms in 𝑀 through their local representations. For 

instance, if 𝜔 is differential form in 𝑀, 𝑑𝜔 is the differential form in 𝑀 whose 

local representation is 𝑑𝜔𝑖, then 𝑑𝜔 is a well defined differential form on 𝑀. 

(1.2.1): Exterior Derivative on a Coordinate Chart 

We showed in Section (1.1) the exterior differentiation on ℝ𝑛. 

 More precisely, suppose (𝑈, 𝜑) is coordinate chart on a manifold 𝑀. Then 

any 𝑘-form 𝜔 on 𝑈 is uniquely a linear combination 

𝜔 =∑𝑎𝐼𝑑𝑥𝐼 ,                                                                          (1.23) 

If 𝑑 is an exterior differentiation on 𝑈, then by using Proposition (1.1.17) 

𝑑𝜔 =∑(𝑑𝑎𝐼) ∧ 𝑑𝑥𝐼 +∑𝑎𝐼𝑑𝑑𝑥𝐼                                   (1.24𝑎) 

=∑𝑑𝑎𝐼 ∧ 𝑑𝑥𝐼                                                               (1.24𝑏) 

=∑
𝜕𝑎𝐼
𝜕𝑥𝐽

𝑑𝑥𝐽 ∧ 𝑑𝑥𝐼 .                                                       (1.24𝑐) 

Hence, if an exterior differentiation 𝑑 exists on 𝑈, then its uniquely defined by 

Equation (1.24c). 

 To show existence, we define 𝑑 by formula (1.24c). The proof that 𝑑 

satisfies Proposition (1.1.17), like the derivative of function on ℝ𝑛, an 

antiderivation 𝐷 on Λ∗(𝑀) has the property that for a 𝑘-form 𝜔, the value of 𝐷𝜔 at 

a point 𝑝 depends only on the values of 𝜔 in neighborhood of 𝑝. To explain this, 

we make a digression on local operators. 
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(1.2.2): Local Operators 

An endomorphism of a vector space 𝑊 is often called an operator on 𝑊. For 

example, if 𝑊 = 𝐶∞(ℝ) is a vector space of 𝐶∞ functions on ℝ, then the derivative 

𝑑 𝑑𝑥⁄  is an operator on 𝑊 

𝑑

𝑑𝑥
𝑓(𝑥) = 𝑓 ′(𝑥).                                                                       (1.25) 

The derivative has the property that the value of 𝑓′(𝑥) at a point 𝑝 depends only on 

the values of 𝑓 in a small neighborhood of  𝑝. More precisely, if 𝑓 = 𝑔 on open set 

𝑈 in ℝ, then 𝑓′=𝑔′on 𝑈. We say that the derivative is local operator on 𝐶∞(ℝ). 

Definition (1.2.3): 

An operator 𝐷:Λ∗(𝑀) ⟶ Λ∗(𝑀) is said to be local if for all 𝑘 ≥ 0, where a 𝑘-

form 𝜔 ∈ Λ𝑘(𝑀) restricts to 0 on an open set 𝑈, then 𝐷𝜔 ≡ 0 on 𝑈. 

Here the restricting to 0 on 𝑈, we mean that 𝜔𝑝 = 0 at every point 𝑝 in 𝑈, 

and the symbol " ≡ 0" means “identically zero”: (𝐷𝜔)𝑝 = 0 at every point 𝑝 in 𝑈. 

An equivalent definition of local operator is that for all 𝑘 ≥ 0, whenever two 𝑘-

forms 𝜔,𝜑 ∈ Λ∗(𝑀) agree on an open set 𝑈, then 𝐷𝜔 = 𝐷𝜑 on 𝑈. 

(1.2.3): Extension of a Local Form to a Global Form 

Sometimes we are given a differential form 𝜑 that is defined only on open 

subset 𝑈 of a manifold 𝑀. We can use a bump function to extend 𝜑 to a global 

form �̃� on 𝑀 that agrees with 𝜑 near some point. (By a global form, we mean a 

differential form defined at every point of 𝑀). 

Proposition (1.2.4): 

Suppose 𝜑 is a 𝐶∞ differential form on an open subset 𝑈 of 𝑀. For any 𝑝 ∈ 𝑈, 

there is a 𝐶∞ global form �̃� on 𝑀 that agrees with 𝜑 on a neighborhood of 𝑝 in 𝑈. 
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(1.3): The Exterior Derivatives, Interior Product, and Lie Derivative 

(1.3.1): Exterior Derivatives 

The exterior derivative [1,2,3] of a 𝑘-form 𝜔 is a (𝑘 + 1)-form which we denote 

by 𝑑𝜔. We will define 𝑑𝜔 in the case 𝑘 = 0, 𝑑𝑓(𝑋) = 𝑋𝑓 (for every vector field 

𝑋). There are several approaches to its definition, each of which gives important 

information about the operator 𝑑. 

a) In term of coordinates 𝑑 merely operates on the component function: 

𝑑𝜔 = (𝑑𝜔(𝑖1     𝑖𝑘)) ∧ 𝑑𝑥
𝑖1⋯𝑑𝑥𝑖𝑘.                                        (1.26) 

It is not immediately clear that this defines anything at all, since the right side 

might depend on the choice of coordinates 𝑥𝑖. However, it is easily verified that 

this formula satisfies the axioms for 𝑑 given below. Since the axioms are 

coordinate free and determine 𝑑, it is a consequence that Equation (1.26) is 

invariant under change of coordinates. 

 In the case of 𝑀 = ℝ3 and Cartesian coordinates 𝑥, 𝑦, 𝑧 the formula bears a 

strong, nonaccidental resemblance to grad, curl, and div: 

𝑑𝑓 = 𝑓𝑥 𝑑𝑥 + 𝑓𝑦 𝑑𝑦 + 𝑓𝑧 𝑑𝑧, 

𝑑(𝑓 𝑑𝑥 + 𝑔 𝑑𝑦 + ℎ 𝑑𝑧) = 𝑑𝑓 ∧ 𝑑𝑥 + 𝑑𝑔 ∧ 𝑑𝑦 + 𝑑ℎ ∧ 𝑑𝑧 

= (𝑓𝑥 𝑑𝑥 + 𝑓𝑦 𝑑𝑦 + 𝑓𝑧 𝑑𝑧) ∧ 𝑑𝑥         

+ (𝑔𝑥 𝑑𝑥 + 𝑔𝑦 𝑑𝑦 + 𝑔𝑧 𝑑𝑧) ∧ 𝑑𝑦 + (ℎ𝑥 𝑑𝑥 + ℎ𝑦 𝑑𝑦 + ℎ𝑧 𝑑𝑧) ∧ 𝑑𝑧 

     = (ℎ𝑦 − 𝑔𝑧)𝑑𝑦 𝑑𝑧 + (𝑓𝑧 − ℎ𝑥)𝑑𝑧 𝑑𝑥

       +(𝑔𝑥 − 𝑓𝑦)𝑑𝑥 𝑑𝑦           
 

𝑑(𝑓 𝑑𝑦 𝑑𝑧 + 𝑔 𝑑𝑧 𝑑𝑥 + ℎ 𝑑𝑥 𝑑𝑦) = 𝑑𝑓 ∧ 𝑑𝑦 𝑑𝑧 + 𝑑𝑔 ∧ 𝑑𝑧 𝑑𝑥 + 𝑑ℎ ∧ 𝑑𝑥 𝑑𝑦 

= (𝑓𝑥 + 𝑔𝑦 + ℎ𝑧)𝑑𝑥 𝑑𝑦 𝑑𝑧.                         (1.27) 

(We have indicated partial derivatives by subscripts.) The discrepancies from the 

usual formulas for grad, curl, and div can be erased by introducing the Euclidean 
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inner product on ℝ3, for which 𝑑𝑥, 𝑑𝑦, 𝑑𝑧 is an orthonormal basis at each point. 

This gives us an isomorphism between contravariant and covariant vectors, 

𝑎i+𝑏j+𝑐k = 𝑎𝜕𝑥 + 𝑏𝜕𝑦 + 𝑐𝜕𝑧 ⟷ 𝑎 𝑑𝑥 + 𝑏 𝑑𝑦 + 𝑐 𝑑𝑧; we shall ignore this 

isomorphism and deal with only the covariant vectors. 

b) There are a few important properties of 𝑑 which are also sufficient to 

determine 𝑑 completely, that is axioms for 𝑑: 

1) If 𝑓 is a 0-form, then 𝑑𝑓 coincides with the previous definition; that is, 

𝑑𝑓(𝑋) = 𝑋𝑓 for every vector field 𝑋. 

2) There is a wedge-product rule which 𝑑 satisfies; as a memory device, we think 

of 𝑑 as having degree 1, so a factor of (−1)𝑘 is product when 𝑑 commutes with 

a 𝑘-form: If 𝜔 is a 𝑘-form and 𝜏 a 𝑞-form, then 

𝑑(𝜔 ∧ 𝜏) = 𝑑𝜔 ∧ 𝜏 + (−1)𝑘𝜔 ∧ 𝑑𝜏,                                    (1.28) 

that is, 𝑑 derivation. 

3) When 𝑑 is applied twice the result is 0, written 𝑑2 = 0:𝑑(𝑑𝜔) = 0 for every 𝑘-

form 𝜔. [As an axiom for the determination of 𝑑 it would suffice to assume 

𝑑(𝑑𝑓) = 0 only for 0-forms 𝑓, but the more general result (3) is a theorem 

which we need.] 

4) The operator 𝑑 is linear. Only the additivity need be assumed, because 

commutation with constant scalar multiplication is consequence of (1) and (2): 

if 𝜔 and τ are 𝑘-forms, then 

𝑑(𝜔 + 𝜏) = 𝑑𝜔 + 𝑑𝜏.                                                             (1.29) 

 The coordinate definition by Equation (1.26) is an easy consequence of 

these axioms, because by (2) and (3), 

𝑑(𝑑𝑥𝑖1⋯𝑑𝑥𝑖𝑘)

= (𝑑2𝑥𝑖1) ∧ 𝑑𝑥𝑖2⋯𝑑𝑥𝑖𝑘 − 𝑑𝑥𝑖1 ∧ (𝑑2𝑥𝑖2) ∧ 𝑑𝑥𝑖3⋯𝑑𝑥𝑖𝑘 +⋯

+ (−1)𝑘−1𝑑𝑥𝑖1⋯𝑑𝑥𝑖𝑘−1 ∧ 𝑑2𝑥𝑖𝑘 = 0.                                            (1.30) 
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Thus we have 

𝑑(𝑓 𝑑𝑥𝑖1⋯𝑑𝑥𝑖𝑘) = 𝑑𝑓 ∧ 𝑑𝑥𝑖1⋯𝑑𝑥𝑖𝑘 + 𝑓𝑑(𝑑𝑥𝑖1⋯𝑑𝑥𝑖𝑘)

= 𝑑𝑓 ∧ 𝑑𝑥𝑖1⋯𝑑𝑥𝑖𝑘,
     (1.31) 

This, with additivity (4), gives Equation (1.26). 

The converse, that formula Equation (1.26) satisfies the axioms, is a little harder. 

Of course, (1) and (4) are trivial. To prove (2) we need to product rule for 

functions: 𝑑(𝑓𝑔) = (𝑑𝑓)𝑔 + 𝑓 𝑑𝑔. The components of 𝜔 ∧ 𝜏 are sums of products 

of the components of 𝜔 and 𝜏. Applying the product rule for functions gives two 

indexed sums, which we want to factor to get (2), and this is done by shifting the 

components of 𝜏 and their differentials over the coordinate differentials 

corresponding to 𝜔, which in the second case requires a sign (−1)𝑘: 

𝑑(𝜔 ∧ 𝜏) =
1

𝑘! 𝑞!
𝑑 (𝜔𝑖1⋯𝑖𝑘𝜏𝑗1⋯𝑗𝑞) ∧ 𝑑𝑥

𝑖1⋯𝑑𝑥𝑖𝑘𝑑𝑥𝑗1⋯𝑑𝑥𝑗𝑞 

=
1

𝑘! 𝑞!
[𝑑𝜔𝑖1⋯𝑖𝑘 ∧ 𝑑𝑥

𝑖1⋯𝑑𝑥𝑖𝑘  𝜏𝑗1⋯𝑗𝑞𝑑𝑥
𝑗1⋯𝑑𝑥𝑗𝑞

+𝜔𝑖1⋯𝑖𝑘(−1)
𝑘𝑑𝑥𝑖1⋯𝑑𝑥𝑖𝑘 ∧ 𝑑𝜏𝑗1⋯𝑗𝑞 ∧ 𝑑𝑥

𝑗1⋯𝑑𝑥𝑗𝑞].               (1.32) 

(The factor 1 𝑘! 𝑞!⁄  is inserted because we are unable to keep 𝑖1⋯𝑖𝑘𝑗1⋯𝑗𝑞 in 

increasing order when we are only given 𝑖1⋯𝑖𝑘 and 𝑗1⋯𝑗𝑞 in increasing order, so 

we have switched to the full sum and consequent duplication of terms, 

𝑘!  for 𝜔 and 𝑞!  for 𝜏.) 

 Axiom (3) is known as the Poincare’ lemma, although there is some 

confusion historically, so that in some places the converse, “if 𝑑𝜔 = 0, then there 

is some 𝜏 such that 𝜔 = 𝑑𝜏,” is referred to as the Poincare’ lemma. The proof that 

Equation (1.26) satisfies (3), 𝑑2 = 0, uses the equality of mixed derivative on 

functions in either order, a symmetric property, which combines with the skew-

symmetry of wedge product to give 0. 
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c) There is an intrinsic formula for 𝑑 in terms of values of forms on arbitrary 

vector fields. This formula involves bracket and shows that the ability to 

form an intrinsic derivative of 𝑘-forms is related to the ability to form an 

intrinsic bracket of two vector fields. We only give the formula in the low-

degree cases for which it has the greatest use. 

  𝑓 “a 0-form”: 

𝑑𝑓(𝑋) = 𝑋𝑓,                                                                               (1.33) 

  𝜔 “a 1-form”: 

𝑑𝜔(𝑋, 𝑌) =
1

2
{𝑋𝜔(𝑌) − 𝑌𝜔(𝑋) − 𝜔[𝑋, 𝑌]}                                 

                   =
1

2
(𝑋〈𝑌, 𝜔〉 − 𝑌〈𝑋, 𝜔〉 − 〈[𝑋, 𝑌],𝜔〉)              (1.34)

 

   𝜔 “a 2-form”: 

  𝑑𝜔(𝑋, 𝑌, 𝑍) =
1

3
{𝑋𝜔(𝑌, 𝑍) + 𝑌𝜔(𝑍, 𝑋) + 𝑍𝜔(𝑋, 𝑌) − 𝜔([𝑋, 𝑌], 𝑍)

− 𝜔([𝑌, 𝑍], 𝑋) − 𝜔([𝑍, 𝑋], 𝑌)}.                                                          (1.35) 

[The annoying factors  
1

2
,
1

3
,⋯ can be eliminated by using another definition of 

wedge products. This alternative definition, which does not alter the essential 

properties of wedge product, is obtained by magnifying our present wedge product 

of a 𝑘-form and a 𝑞-form by the factor (𝑘 + 𝑞)! 𝑘! 𝑞!⁄ . Both products are in 

common use and we shall continue with our original definition.] 
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(1.3.2): Lie Derivatives 

If 𝑋 is a 𝐶∞ vector field, then 𝑋 operates on 𝐶∞ scalar fields to give 𝐶∞ 

scalar fields. The Lie derivation with respect to 𝑋 is an extension of this operation 

to an operator 𝐿𝑋 on all 𝐶∞ tensor fields which preserve type of tensor fields. 

The tensor field derived from 𝑇 in the above way by differentiating with 

respect to the parameters of the integral curves of 𝑋 is called the Lie derivative of 𝑇 

with respect to 𝑋 and is denoted 𝐿𝑋𝑇. 

In the following proposition we list some of the elementary properties of the 

Lie derivatives. 

Proposition (1.3.1): 

Let 𝑀 be a smooth manifold. Suppose 𝑋, 𝑌 are smooth vector fields on 𝑀, 𝜎, 𝜏 are 

smooth covariant tensor fields, 𝜔, 𝜂 are differential forms, and 𝑓 is a smooth function 

(thought of as a 0-tensor field). 

a) 𝐿𝑋𝑓 = 𝑋𝑓. 

b) 𝐿𝑋(𝑓𝜎) = (𝐿𝑋𝑓)𝜎 + 𝑓𝐿𝑋𝜎. 

c) 𝐿𝑋(𝜎 ⊗ 𝜏) = (𝐿𝑋𝜎)⊗ 𝜏 + 𝜎⊗ 𝐿𝑋𝜏. 

d) 𝐿𝑋(𝜔 ∧ 𝜂) = 𝐿𝑋𝜔 ∧ 𝜂 + 𝜔 ∧ 𝐿𝑋𝜂. 

e) 𝐿𝑋(𝑌⌋𝜔) = (𝐿𝑋𝑌)⌋𝜔 + 𝑌⌋𝐿𝑋𝜔. 

f) For any smooth vector fields 𝑌1, … , 𝑌𝑘, 

𝐿𝑋(𝜎(𝑌1, … , 𝑌𝑘)) = (𝐿𝑋𝜎)(𝑌1, … , 𝑌𝑘) + 𝜎(𝐿𝑋𝑌1, … , 𝑌𝑘) + ⋯+ 𝜎(𝑌1, … , 𝐿𝑋𝑌𝑘)   (1.36)
 

 

Corollary (1.3.2): 

If 𝑋 is a smooth vector field and 𝜎 is a smooth covariant tensor field, then 

(𝐿𝑋𝜎)(𝑌1, … , 𝑌𝑘) = 𝑋(𝜎(𝑌1, … , 𝑌𝑘) − 𝜎([𝑋, 𝑌1], 𝑌2, … , 𝑌𝑘) − ⋯

…− 𝜎(𝑌1, … , 𝑌𝑘−1, [𝑋, 𝑌𝑘])).
       (1.37) 

It follows that 𝐿𝑋𝜎 is smooth. 

 

 



21 
 

Corollary (1.3.3): 

If 𝑓 ∈ 𝐶∞(𝑀), then 

𝐿𝑋(𝑑𝑓) = 𝑑(𝐿𝑋𝑓).                                                                  (1.38)  

Proof: 

Using Corollary (1.3.2), we compute 

(𝐿𝑋𝑑𝑓)(𝑌) = 𝑋(𝑑𝑓(𝑌)) − 𝑑𝑓[𝑋, 𝑌]            

= 𝑋𝑌𝑓 − [𝑋, 𝑌]𝑓 

= 𝑋𝑌𝑓 − (𝑋𝑌𝑓 − 𝑌𝑋𝑓) 

= 𝑌𝑋𝑓         

= 𝑑(𝑋𝑓)(𝑌) 

 = 𝑑(𝐿𝑋𝑓)(𝑌) ∎ 

Closely associated with differential forms is the notion of vector field. 

 Since the vector field 𝑋 on 𝑀 is an operation on the space 𝐷 of 

differentiable functions on 𝑀, we can take the iterates of this operation. For 

instance, if 𝑋 and 𝑌 are differentiable vector fields and 𝜑:𝑀 ⟶ ℝ is a 

differentiable function, we can consider the functions 𝑌(𝑋𝜑) and 𝑋(𝑌𝜑). In 

general, such iterated operations do not lead to vector fields, since they involve 

derivatives of order higher than the first. However, the following holds. 

Lemma (1.3.4): 

Let 𝑋 and 𝑌 be differentiable vector fields on a differentiable manifold 𝑀. Then 

there exist a unique vector field 𝑍 on 𝑀 such that, for each 

𝑍𝜑 = (𝑋𝑌 − 𝑌𝑋)𝜑, 𝜑 ∈ 𝐷                                             (1.39) 

Proof: 

We first prove that if such a 𝑍 exists, then it is unique. For that, let 𝑓:𝑈 ⟶ 𝑀 be a 

parameterization, and let 
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𝑋 =∑𝑎𝑖
𝜕

𝜕𝑥𝑖
𝑖

, 𝑌 =∑𝑏𝑗
𝜕

𝜕𝑥𝑗
𝑗

                                     (1.40) 

be the expressions of 𝑋 and 𝑌, respectively, in the parameterization 𝑓. Then 

𝑋𝑌𝜑 = 𝑋(∑𝑏𝑗
𝜕𝜑

𝜕𝑥𝑗
𝑖

) =∑𝑎𝑖
𝜕𝑏𝑗
𝜕𝑥𝑖

𝜕𝜑

𝜕𝑥𝑗
+∑𝑎𝑖𝑏𝑗

𝜕2𝜑

𝜕𝑥𝑖𝜕𝑥𝑗
𝑖𝑗𝑖𝑗

,

𝑌𝑋𝜑 = 𝑌(∑𝑎𝑖
𝜕𝜑

𝜕𝑥𝑖
𝑖

) =∑𝑏𝑗
𝜕𝑎𝑖
𝜕𝑥𝑗

𝜕𝜑

𝜕𝑥𝑖
+∑𝑎𝑖𝑏𝑗

𝜕2𝜑

𝜕𝑥𝑖𝜕𝑥𝑗
𝑖𝑗𝑖𝑗

,

        (1.41) 

Hence 

(𝑋𝑌 − 𝑌𝑋)𝜑 =∑(∑(𝑎𝑖
𝜕𝑏𝑗
𝜕𝑥𝑖

− 𝑏𝑖
𝜕𝑎𝑗
𝜕𝑥𝑖
)

𝑖

𝜕

𝜕𝑥𝑗
)𝜑.

𝑗

        (1.42) 

It follows that if 𝑍 exists with the required property, it must be expressed as above 

in many coordinate system, hence it is unique. 

To prove existence, just define 𝑍𝛼 in each coordinate neighborhood 𝑓𝛼(𝑈𝛼) ⊂ 𝑀 

by the above expression. By uniqueness, 𝑍𝛼 = 𝑍𝛽 in 𝑓𝛼(𝑈𝛼) ∩ 𝑓𝛽(𝑈𝛽), hence 𝑍 is 

well defined on 𝑀. 

Definition (1.3.5): 

The vector field determined by the above lemma is called the bracket 

[𝑋, 𝑌] = 𝑋𝑌 − 𝑌𝑋 of 𝑋 and 𝑌,                                                (1.43) 

and it is clearly differentiable. 

The bracket operation has the following properties: 
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Proposition (1.3.6): 

Let 𝑋, 𝑌 and 𝑍 be differentiable vector fields, 𝑎 and 𝑏 be real numbers, and 𝜑, 𝜃 be 

a differentiable functions. Then 

a) [𝑋, 𝑌] = −[𝑌, 𝑋], 

b) [𝑎𝑋 + 𝑏𝑌, 𝑍] = 𝑎[𝑋, 𝑍] + 𝑏[𝑌, 𝑍], 

c) [[𝑋, 𝑌], 𝑍] + [[𝑌, 𝑍], 𝑋] + [[𝑍, 𝑋], 𝑌] = 0,    (Jacobi's identity), 

d) [𝜃𝑋, 𝜑𝑌] = 𝜃𝜑[𝑋, 𝑌] + 𝜃 ⋅ 𝑋(𝜑)𝑌 − 𝜑 ⋅ 𝑌(𝜃)𝑋. 

Proof: 

(a) and (b) are immediate. To prove (c), we observe that 

[[𝑋, 𝑌], 𝑍] = [𝑋𝑌 − 𝑌𝑋, 𝑍] = 𝑋𝑌𝑍 − 𝑌𝑋𝑍 − 𝑍𝑋𝑌 + 𝑍𝑌𝑋

                    = [𝑋, [𝑌, 𝑍]] + [𝑌, [𝑍, 𝑋]]
     (1.44) 

and use (a) to obtain (c). The proof of (d) is direct with simple computation. 

 There exists an interesting relation between exterior differentiation of 

differential forms and the bracket operation. For the case of 1-forms, this relation is 

as follows: 

Proposition (1.3.7): 

Let 𝜔 be a differentiable 1-form on a differentiable manifold 𝑀 and let 𝑋 and 𝑌 be 

a differentiable vector fields on 𝑀. Then 

𝑑𝜔(𝑋, 𝑌) = 𝑋𝜔(𝑌) − 𝑌𝜔(𝑋) − 𝜔([𝑋, 𝑌]).                        (1.45) 

Proof: 

It is enough to prove that it is true locally, say in a coordinate neighborhood of 

each point. In any such neighborhood with coordinates 𝑥1, … , 𝑥𝑛 , 𝜔 = ∑ 𝑎𝑖𝑑𝑥
𝑖𝑛

𝑖=1  

and it is easy to see that the equation of the proposition holds for all 𝜔 if it holds 

for every 𝜔 of the form 𝑓 𝑑𝑔, where 𝑓, 𝑔 are 𝐶∞ functions on the neighborhood. 
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Suppose, then, that 𝜔 = 𝑓 𝑑𝑔 and let  𝑋, 𝑌 be 𝐶∞-vector fields. Then, evaluating 

both sides of the equation of the lemma separately, we obtain 

𝑑𝜔(𝑋, 𝑌) = 𝑑𝑓 ∧ 𝑑𝑔(𝑋, 𝑌) = 𝑑𝑓(𝑋)𝑑𝑔(𝑌) − 𝑑𝑔(𝑋)𝑑𝑓(𝑌)

                   = (𝑋𝑓)(𝑌𝑔) − (𝑋𝑔)(𝑌𝑓),
        (1.46) 

and 

𝑋𝜔(𝑌) − 𝑌𝜔(𝑋) − 𝜔([𝑋, 𝑌]) = 𝑋(𝑓𝑑𝑔(𝑌)) − 𝑌(𝑓𝑑𝑔(𝑋)) − 𝑓𝑑𝑔([𝑋, 𝑌])

                                                        = 𝑋(𝑓(𝑌𝑔)) − 𝑌(𝑓(𝑋𝑔)) − 𝑓(𝑋𝑌𝑔 − 𝑌𝑋𝑔)

                                                        = (𝑋𝑓)(𝑌𝑔) − (𝑋𝑔)(𝑌𝑓) 

  (1.47) 

(1.3.3). Interior Products 

The interior product by 𝑋 is an operator 𝑖𝑋 on 𝑘-forms for every vector field 𝑋, 

which maps a 𝑘-form into a (𝑘 − 1)-form; essentially this is done by fixing the 

first variable of the 𝑘-form 𝜔 at 𝑋, leaving the remaining 𝑘 − 1 variables free to be 

the variable of 𝑖𝑋𝜔 (except for normalizing factor 𝑘). In formulas, for vector 

fields 𝑋1, … , 𝑋𝑘−1, 

[𝑖𝑋𝜔](𝑋1, . . , 𝑋𝑘−1) = 𝑘𝜔(𝑋, 𝑋1, … , 𝑋𝑘−1).                         (1.48) 

For 0-forms we define 

𝑖𝑋𝑓 = 0.                                                                                       (1.49) 

 An important notion that comes up in studying differential forms is the 

notion of contracting an 𝑘-form. Given an 𝑘-form 𝜔 ∈ Λ𝑘(𝑀) and a vector field 𝑋, 

then 

𝑖𝑋𝜔 = 𝜔(𝑋,⋅,⋯ ,⋅),                                                                   (1.50) 

is called the contraction with 𝑋, and is differential (𝑘 − 1)-form on 𝑀. Another 

notation for this is 𝑖𝑋𝜔 = 𝑋⌋𝜔. Contraction is a linear mapping 

𝑖𝑋: Λ
𝑘(𝑀) ⟶ Λ𝑘−1(𝑀).                                     
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Contraction is also linear in 𝑋, i.e. for vector field 𝑋, 𝑌 it holds that 

𝑖𝑋+𝑌𝜔 = 𝑖𝑋𝜔 + 𝑖𝑌𝜔,
   𝑖𝜆𝑋𝜔 = 𝜆 ⋅ 𝑖𝑋𝜔.

                                                                (1.51) 

Proposition (1.3.8): 

The operator 𝑖𝑋 is a derivation of forms, that is, for a 𝑘-form 𝜔 and a 𝑞-form 𝜏 it 

satisfies the product rule: 

𝑖𝑋(𝜔 ∧ 𝜏) = 𝑖𝑋𝜔 ∧ 𝜏 + (−1)
𝑘𝜔 ∧ 𝑖𝑋𝜏.                                 (1.52) 

[As with 𝑑, if we think of 𝑖𝑋 as having degree −1, then in passing over the 𝑘-form 

𝜔 we get a factor of (−1)𝑘.] 

 Multiplication of these interior product operators is skew-symmetric, that is, 

𝑖𝑋𝑖𝑌 = −𝑖𝑌𝑖𝑋: 

𝑖𝑋𝑖𝑌𝜔(⋯ ) = 𝑘𝑖𝑌𝜔(𝑋,… )

                     = 𝑘(𝑘 − 1)𝜔(𝑌, 𝑋,… )

                     = −𝑘(𝑘 − 1)𝜔(𝑋, 𝑌, … )

                     = −𝑖𝑌𝑖𝑋𝜔(⋯ ).

                                    (1.53) 

It follows that the operation 𝑖𝑋𝑖𝑌 depends only on  𝑋 ∧ 𝑌, so we define 

𝑖(𝑋∧𝑌) = 𝑖𝑋𝑖𝑌.                                                                             (1.54) 

Then we extend linearly to obtain 𝑖𝐴 for every skew-symmetric contravariant 

tensor 𝐴 of degree 2. The operator 𝑖𝐴 maps (𝑘 − 1)-forms into (𝑘 − 2)-forms. 

Similarly, we can define 𝑖𝐵, for any skew-symmetric contravariant tensor 𝐵 of 

degree 𝑟, mapping 𝑘-forms into (𝑘 − 𝑟)-forms. 

 Since 𝑖𝑋 is derivation it is determined by it action on 0-forms and 1-forms. 

One needs only express an arbitrary 𝑘-form in terms of 0-forms and 1-forms and 

apply the product rule repeatedly. 
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(1.3.4): Lie Derivatives of Differential Forms 

In the case of differential forms, the exterior derivative yields a much more 

powerful formula for computing Lie derivatives. Although Corollary (1.3.2) gives 

a general formula for computing the Lie derivative of any tensor field, this formula 

has a serious drawback: In order to calculate what 𝐿𝑋𝜎 does to vectors 𝑌1, … , 𝑌𝑘 at 

a point 𝑝 ∈ 𝑀, it is necessary first to extend the vectors to vector fields in a 

neighborhood of 𝑝. The formula in the next proposition overcomes this 

disadvantage. 

 As promised, Proposition (1.3.9) gives a formula for the Lie derivative of a 

differential form that can be computed easily in local coordinates, without having 

to go to the trouble of letting the form act on vector fields. In fact, this leads to an 

easy algorithm for computing Lie derivatives of arbitrary tensor fields, since any 

tensor field can be written locally as a linear combination of tensor products of 1-

forms. 

 Since Lie derivatives are brackets in one case, and the exterior derivative 

operator 𝑑 given terms of brackets and evaluations of forms on vector fields by (c) 

in Section (1.3), it is not too surprising that there is a relation between the operators 

𝐿𝑋, 𝑖𝑋, and 𝑑, operating on forms. 

Proposition (1.3.9): 

For any vector field 𝑋 and any differential 𝑘-form 𝜔 on a smooth manifold 𝑀, 

𝐿𝑋𝜔 = 𝑋⌋(𝑑𝜔) + 𝑑(𝑋⌋ 𝜔).                                                    (1.55) 

Proposition (1.3.10): 

If 𝑥 ∈ 𝑉, then 𝑥⌋ is an anti-derivative. 

Notice that 𝑒(𝑥) is neither a derivative nor an anti-derivation. 
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Definition (1.3.11): 

A subring 𝐼 ⊂ Λ(𝑉∗) is called an ideal, if: 

i. 𝜙 ∈ 𝐼 implies 𝜙 ∧ 𝛽 ∈ 𝐼, ∀ 𝛽 ∈ Λ(𝑉∗), 

ii. 𝜙 ∈ 𝐼 implies that all its components in Λ(𝑉∗) are contained in 𝐼. 

A subring satisfying the second condition is called homogeneous. As a 

consequence of i. and ii. we conclude that 𝜙 ∈ 𝐼 implies 𝛽 ∧ 𝜙 ∈ 𝐼, ∀ 𝛽 ∈ Λ(𝑉∗). 

Thus all our ideal are homogeneous and two-sided. 

 Given an ideal 𝐼 ⊂ Λ(𝑉∗), we wish to determine the smallest subspace 

𝑊∗ ⊂ 𝑉∗ such that 𝐼 is generated, as an ideal, by a set 𝑆 of elements of Λ(𝑊∗). An 

element of 𝐼 is then a sum of elements of the form 𝜎 ∧ 𝛽, 𝜎 ∈ 𝑆,   𝛽 ∈ Λ(𝑉∗). If 𝑥 ∈

𝑊 = (𝑊∗)⊥, we have, since the interior product 𝑥∟ is an anti-derivation, 

           𝑥 ⌋ 𝜎 = 0

𝑥 ⌋ (𝜎 ∧ 𝛽) = ± 𝜎 (𝑥 ⌋ 𝛽) ∈ 𝐼.
                                               (1.56) 

Therefore, we define 

𝐴(𝐼) = {𝑥 ∈ 𝑉 ∶ 𝑥 ⌋ 𝐼 ⊂ 𝐼},                                                    (1.57) 

where the last condition means that 𝑥 ⌋ 𝜙 ∈ 𝐼, ∀ 𝜙 ∈ 𝐼. 𝐴(𝐼) is clearly a subspace 

of 𝑉. It will play later an important role in differential systems, for which reason 

we will call it the Cauchy characteristic space of  𝐼. Its annihilator 

𝐶(𝐼) = 𝐴(𝐼)⊥ ⊂ 𝑉∗                                                                  (1.58) 

will be called the retracting subspace of 𝐼. 
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Theorem (1.3.12): (Retracting theorem) 

Let 𝐼 be an ideal of Λ(𝑉∗). Its retracting subspace 𝐶(𝐼) is the smallest subspace of 

 𝑉∗ such that  Λ(𝐶(𝐼)) contains a set 𝑆 of elements generating 𝐼 as an ideal. The set 

𝑆 also generates an ideal 𝐽 in Λ(𝐶(𝐼)), to be called a retracting ideal of 𝐼. Then 

there exists a mapping 

Δ: Λ(𝑉∗) ⟶ Λ(𝐶(𝐼)),                                      

of graded algebras such that ∆(𝐼) = 𝐽. 

Proposition (1.3.13): 

The dynamic and algebraic definitions of the Lie derivative of a differential 𝑘-form 

are equivalent. 

 

(1.3.5): Cartan’s Magic Formula 

A very important formula for the Lie derivative is given by the following. 

 

Theorem (1.3.14): 

For 𝑋 a vector field and 𝜔 𝑘-form on a manifold 𝑀, on differential forms, Lie 

derivatives are given by the operator equation 

𝐿𝑋𝜔 = 𝑖𝑋𝑑𝜔 + 𝑑𝑖𝑋𝜔,                                                              (1.59) 

or, in the “hook” notation, 

𝐿𝑋𝜔 = (𝑋 ⌋ 𝑑𝜔) + 𝑑(𝑋 ⌋ 𝜔).                                               (1.60) 

(We also remember this as 𝐿 = 𝑖𝑑 + 𝑑𝑖.) 

“the formula (1.60) is known as Cartan’s magic formula” 
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Proof: 

We have seen that 𝐿𝑋 is derivation of degree 0 of skew-symmetric tensors; that is, 

it preserves degree and satisfies the product rule. We shall show that 𝑖𝑋𝑑 + 𝑑𝑖𝑋 

also is derivation: 

[𝑖𝑋𝑑 + 𝑑𝑖𝑋](𝜔 ∧ 𝜏)

= 𝑖𝑋(𝑑𝜔 ∧ 𝜏 + (−1)
𝑘𝜔 ∧ 𝑑𝜏)

+ 𝑑(𝑖𝑋𝜔 ∧ 𝜏 + (−1)
𝑘𝜔 ∧ 𝑖𝑋𝜏)                        

= 𝑖𝑋𝑑𝜔 ∧ 𝜏 + (−1)
𝑘+1𝑑𝜔 ∧ 𝑖𝑋𝜏 + (−1)

𝑘𝑖𝑋𝜔 ∧ 𝑑𝜏 + (−1)
2𝑘𝜔

∧ 𝑖𝑋𝑑𝜏 + 𝑑𝑖𝑋𝜔 ∧ 𝜏 + (−1)
𝑘−1𝑖𝑋𝜔 ∧ 𝑑𝜏 + (−1)

𝑘𝑑𝜔 ∧ 𝑖𝑋𝜏

+ (−1)2𝑘𝜔 ∧ 𝑑𝑖𝑋𝜏 

= (𝑖𝑋𝑑 + 𝑑𝑖𝑋)𝜔 ∧ 𝜏 + 𝜔 ∧ (𝑖𝑋𝑑 + 𝑑𝑖𝑋)𝜏.                          (1.61) 

Thus if 𝐿𝑋 and 𝑖𝑋𝑑 + 𝑑𝑖𝑋 agree on 0-forms and 1-forms, then they agree on all 𝑘-

forms. 

On 0-forms we have 𝐿𝑋𝑓 = 𝑋𝑓, where as 

𝑖𝑋𝑑𝑓 + 𝑑𝑖𝑋𝑓 = 𝑖𝑋𝑓 + 𝑑0 = 𝑑𝑓(𝑋) = 𝑋𝑓,                          (1.62) 

on a 1-form 𝑑𝑓 we have 𝐿𝑋𝑑𝑓 = 𝑑(𝑋𝑓), since 

𝐿𝑋〈𝑌, 𝑑𝑓〉 = 𝑋〈𝑌, 𝑑𝑓〉 = 𝑋(𝑌𝑓),                                           (1.63) 

on the other hand, 

𝐿𝑋〈𝑌, 𝑑𝑓〉 = 〈𝐿𝑋 𝑌, 𝑑𝑓〉 + 〈𝑌, 𝐿𝑋 𝑑𝑓〉

                   = 〈[𝑋, 𝑌], 𝑑𝑓〉 + 〈𝑌, 𝐿𝑋 𝑑𝑓〉

                   = 𝑋𝑌𝑓 − 𝑌𝑋𝑓 + 〈𝑌, 𝐿𝑋 𝑑𝑓〉,

                                (1.64) 

so 

〈𝑌, 𝐿𝑋 𝑑𝑓〉 = 𝑌𝑋𝑓 = 〈𝑌, 𝑑(𝑋𝑓)〉,                                           (1.65) 

but 
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[𝑖𝑋𝑑 + 𝑑𝑖𝑋]𝑑𝑓 = 𝑖𝑋𝑑
2𝑓 + 𝑑𝑖𝑋𝑑𝑓

                     = 0 + 𝑑(𝑋𝑓).
                                         (1.66) 

We do not need to check values on the more general 1-forms 𝑔 𝑑𝑓 because of the 

product rule being satisfied by each operator. 

Corollary (1.3.5): 

If 𝑋 is a vector field and 𝜔 is a differential form, then  

𝐿𝑋(𝑑𝜔) = 𝑑(𝐿𝑋𝜔).                                                                   (1.67) 

Proof: 

This follows from the preceding proposition and the fact that 𝑑2 = 0: 

        𝐿𝑋𝑑𝜔 = 𝑋⌋𝑑(𝑑𝜔) + 𝑑(𝑋⌋𝑑𝜔)

       = 𝑑(𝑋⌋𝑑𝜔)            

𝑑(𝐿𝑋𝜔) = 𝑑(𝑋⌋𝑑𝜔 + 𝑑(𝑋⌋𝜔))

= 𝑑(𝑋⌋𝑑𝜔)      

                                          (1.68) 

The operators 𝑑 and 𝐿𝑋 commute on forms; that is, for every 𝑘-form 𝜔, then 

𝑑𝐿𝑋𝜔 = 𝐿𝑋𝑑𝜔,                                                                          (1.69) 

when written in the form 

(𝑘 + 1)𝑑𝜔(𝑋,… ) = [𝐿𝑋𝜔 − 𝑑(𝑖𝑋𝜔)](… ),                        (1.70) 

the relation gives a means of determining 𝑑 on 𝑘-forms from Lie derivatives and 𝑑 

on (𝑘 − 1)-forms. This suggests that when we wish to develop some property of 𝑑 

and we have some corresponding property of Lie derivatives, we should try an 

induction on the degree of the forms involved. 
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CHAPTER TWO 

Exterior Differential System and Basic Theorems 

Section (2.1): The Concept of an Exterior Differential Systems 

An exterior differential system [4,5,6] is a system of equations on a 

manifold defined by equating to zero a number of exterior differential forms. It is 

called a Pfaffian system when all the forms are linear.  

 Consider a differentiable manifold 𝑀 of dimension 𝑛. Its cotangent bundle, 

whose fibers are the cotangent spaces, 𝑇𝑥
∗(𝑀), 𝑥 ∈ 𝑀we will denote by 𝑇∗𝑀. 

From 𝑇∗𝑀 we construct the bundle Λ𝑇∗𝑀, whose fibers are 

Λ𝑇𝑥
∗ = ∑ Λ𝑝𝑇𝑥

∗

0≤𝑝≤𝑛

,                                                                     (2.1) 

which have the structure of the graded algebra. The bundle Λ𝑇∗𝑀 has the sub-

bundles Λ𝑝𝑇∗𝑀. Similar definitions are valid for the tangent bundle 𝑇𝑀. 

 A section of the bundle 

Λ𝑝𝑇∗𝑀 =⋃Λ𝑝𝑇𝑥
∗⟶𝑀

𝑥∈𝑀

,                                                      (2.2) 

is called an exterior differential form of degree 𝑝, or a form of degree 𝑝 or simply a 

𝑝-form. As we mention in chapter one. By abuse of language we will call a 

differential form a section of the bundle Λ𝑇∗𝑀 its 𝑝-th component is a 𝑝-form. All 

sections are supposed to be sufficiently smooth, refer to equation (1.11). 

 Let  Ω𝑝(𝑀) = 𝐶∞-sections of Λ𝑝𝑇∗𝑀 and let Ω∗(𝑀) = ⨁Ω𝑝(𝑀). 
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Definition (2.1.1): 

An exterior differential system (EDS) is a pair (𝑀, 𝐼) where 𝑀 is a smooth 

manifold and 𝐼 ⊂ Ω∗(𝑀) is a graded ideal in the ring Ω∗(𝑀) of differential forms 

on 𝑀 that closed under exterior differentiation 𝑑: Ω𝑝(𝑀) ⟶ Ω𝑝+1(𝑀), i.e., for any 

𝜙 in 𝐼, its exterior derivative 𝑑𝜙 also lies in 𝐼. 

The exterior differential systems considered in this section will always be finitely 

generated. 

The main interest in an EDS (𝑀, 𝐼) centers on the problem of describing the 

submanifolds 𝑓:𝑀 ⟶ 𝑁 for which all the elements of 𝐼 vanish when pulled back 

to 𝑁, i.e., for which 𝑓∗𝜙 = 0, ∀ 𝜙 ∈ 𝐼. Such submanifolds are said to be integral 

manifold of 𝐼. 

The most common way of specifying an EDS (𝑀, 𝐼) is to give a list of 

generators of 𝐼. For 𝜙1, … , 𝜙𝑠 ∈ Ω
∗(𝑀), the 'algebraic' ideal consisting of elements 

of the form 

𝜙 = 𝛾1 ∧ 𝜙1 +⋯+ 𝛾
𝑠 ∧ 𝜙𝑠,                                                   (2.3) 

will be denoted 〈𝜙1, … , 𝜙𝑠〉alg while the differential ideal 𝐼 consisting of elements 

of the form 

𝜙 = 𝛾1 ∧ 𝜙1 +⋯+ 𝛾
𝑠 ∧ 𝜙𝑠 + 𝛽

1 ∧ 𝑑𝜙1 +⋯+ 𝛽
𝑠 ∧ 𝑑𝜙𝑠,   (2.4) 

will be denoted 〈𝜑1, … , 𝜑𝑠〉. 

By our conventions 𝐼 =⊕ 𝐼𝑞 is a direct sum of its homogeneous pieces 𝐼𝑞 = 𝐼 ∩

Ω𝑞(𝑀), and by differentiation; and by differential closure we have 𝑑𝜙 ∈ 𝐼 

whenever 𝜙 ∈ 𝐼. We sometime refer to an ideal 𝐼 ⊂ Ω∗(𝑀) satisfying  𝑑𝐼 ⊆ 𝐼 as 

differential ideal. 
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 In practice, 𝐼 will almost always generated as a differential ideal by a finite 

collection {𝜙𝐴}, 1 ≤ 𝐴 ≤ 𝑁 of a differential form; forms of degree zero, i.e., 

functions, are not excluded. An integral manifold of 𝐼 is given by an immersion 

𝑓:𝑁 → 𝑀,                                                         

satisfying  𝑓∗𝜑 = 0   for 1 ≤ 𝐴 ≤ 𝑁. Then  

𝑓∗(𝛽 ∧ 𝜑𝐴) = 0,

𝑓∗(𝑑𝜑𝐴) = 0,
                                                                          (2.5) 

and so 𝑓∗𝜑 = 0 for all 𝜑 in the differential ideal generated by the {𝜑𝐴}. 

 The fundamental problem in exterior differential systems is to study the 

integral manifolds. We may think of these as solutions to the system  

𝜑𝐴 = 0,                                                                                          (2.6) 

of exterior equations. When is written out in local coordinates, this is the system of 

P.D.E.'s. 

 The notion is of such generality that includes all the ordinary and partial 

differential equations, as the following: 

Notion (2.1.2): 

Ordinary Differential Equations Formulated as Exterior Differential Systems: 

Consider the system of ordinary differential equations: 

𝑑𝑦

𝑑𝑥
= 𝐹(𝑥, 𝑦, 𝑧),

𝑑𝑧

𝑑𝑥
= 𝐺(𝑥, 𝑦, 𝑧),

                                                                           (2.7) 

where 𝐹 and 𝐺 are smooth functions on some domain 𝑀 ⊂ ℝ3. This can be 

modeled by the EDS (𝑀, 𝐼) where 

𝐼 = 〈𝑑𝑦 − 𝐹(𝑥, 𝑦, 𝑧)𝑑𝑥, 𝑑𝑧 − 𝐺(𝑥, 𝑦, 𝑧)𝑑𝑥〉.                        (2.8) 



34 
 

It's clear that the 1-dimensional integral manifold of 𝐼 are just the integral curves of 

the vector field 

𝑋 =
𝜕

𝜕𝑥
+ 𝐹(𝑥, 𝑦, 𝑧)

𝜕

𝜕𝑦
+ 𝐺(𝑥, 𝑦, 𝑧)

𝜕

𝜕𝑧
.                                (2.9) 

as clarification example: 

let:  𝑦′ = 𝑒𝑥𝑦𝑧 and 𝑧′ = sinh(𝑥 + 𝑦 − 𝑧), 

we can model this system by an EDS with 𝑀 ⊂ ℝ3 

      𝐼 = 〈𝑑𝑦 − 𝑒𝑥𝑦𝑧𝑑𝑥, 𝑑𝑧 − sinh(𝑥 + 𝑦 − 𝑧)𝑑𝑥〉. 

Notion (2.1.3): 

Consider the second-order differential equation in 𝑀 ⊂ ℝ3, 

𝑦′′ = 𝐹(𝑥, 𝑦, 𝑦′),                                                                       (2.10) 

can be drive an exterior differential system: 

                              𝑑𝑦 = 𝑦′𝑑𝑥,

                       
𝑑

𝑑𝑥
(𝑦) =

𝑑

𝑑𝑥
(𝑦′),

                             𝑑𝑦′ =
𝑑

𝑑𝑥
(𝑦′) ⋅ 𝑑𝑥,

          𝑑𝑦′ − 𝑦′′ ⋅ 𝑑𝑥 = 0,

𝑑𝑦′ − 𝐹(𝑥, 𝑦, 𝑦′)𝑑𝑥 = 0.

                                         (2.11) 

Notion (2.1.4): 

Partial Differential Equations Formulated as Exterior Differential Systems: 

A useful application of exterior differential systems is the analysis of 

systems of partial differential equations PDEs. Before the theory to be described 

shortly can be applied, the partial differential equations must be re-expressed as an 

exterior differential system. It should be stressed that while the recipe given here is 

straightforward, it is by no means the only possible one, and often not the most 
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efficient one since it tends to lead to manifold 𝑀 of higher dimensions than 

necessary. 

Consider any system of partial differential equations can be described by an 

exterior differential system. 

𝐹 (𝑥𝑖 , 𝑧,
𝜕𝑧

𝜕𝑥𝑖
) = 0, 1 ≤ 𝑖 ≤ 𝑛.                                        (2.12) 

By introducing the partial derivatives as new variables, it can be written as an 

exterior differential system 

𝐹(𝑥𝑖 , 𝑧, 𝑝𝑖) = 0,

𝑑𝑧 −∑𝑝𝑖  𝑑𝑥
𝑖 = 0 ,

                                                                (2.13) 

in the 2𝑛 + 1-dimensional space (𝑥𝑖 , 𝑧, 𝑝𝑖). 

  Obviously, one can 'encode' higher order partial differential equation as 

well, by simply in regard to the intermediate partial derivatives as dependent 

variables in their own right, constrained by the obvious PDE needed to make them 

second order scalar PDE. 

𝐹(𝑥, 𝑦, 𝑢, 𝑢𝑥 , 𝑢𝑦 , 𝑢𝑥𝑥 , 𝑢𝑥𝑦 , 𝑢𝑦𝑦) = 0,                                    (2.14) 

written in the classical notation 

𝐹(𝑥, 𝑦, 𝑢, 𝑝, 𝑞, 𝑟, 𝑠, 𝑡) = 0

𝑑𝑢 − 𝑝𝑑𝑥 − 𝑞𝑑𝑦 = 0

𝑑𝑝 − 𝑟𝑑𝑥 − 𝑠𝑑𝑦 = 0

𝑑𝑞 − 𝑠𝑑𝑥 − 𝑡𝑑𝑦 = 0

                                                        (2.15) 

We would explain this to mean that the equation 𝐹 = 0 define a smooth 

hypersurface 𝑀7 ⊂ ℝ8 and the differential equation is then can be modeled by the 

differential ideal 𝐼 ⊂ Ω∗(𝑀) giving by 

𝐼 = 〈𝑑𝑢 − 𝑝𝑑𝑥 − 𝑞𝑑𝑦, 𝑑𝑝 − 𝑟𝑑𝑥 − 𝑠𝑑𝑦, 𝑑𝑞 − 𝑠𝑑𝑥 − 𝑡𝑑𝑦〉.           (2.16) 
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The assumption that the PDE be reasonable is then that not all of the partial 

(𝐹𝑟 , 𝐹𝑠, 𝐹𝑡) vanish along the locus 𝐹 = 0, so that 𝑥, 𝑦, 𝑢, 𝑝, 𝑞and two of 𝑟, 𝑠 and 𝑡 

can be taken as a local coordinate on 𝑀. 

 From the Notion (2.1.4) we can illustration that any system of differential 

equations can be written as an exterior differential system. However, not all 

exterior differential systems arise in this way. The following notion marks the birth 

of differential systems: 

Notion (2.1.5): 

The equation 

𝑎1(𝑥)𝑑𝑥
1 +⋯+ 𝑎𝑛(𝑥)𝑑𝑥

𝑛 = 0, 𝑥 = (𝑥1, … , 𝑥𝑛),           (2.17) 

is called a Pfaffian equation. Pfaff's to determine its integral manifolds of maximal 

dimension. 

 From the (2.17) we notice two important concepts. One is an exterior 

differential system with independence condition (𝐼, Ω) which is given by the closed 

differential ideal 𝐼 together with a decomposable 𝑝-form 

Ω = 𝜔1 ∧ …∧ 𝜔𝑝.                                                                     (2.18) 

An integral manifold of (𝐼, Ω) is an integral manifold of 𝐼 satisfying the additional 

condition 𝑓∗Ω ≠ 0. This is the case when we wish to keep some variables 

independent, as in the case when the system arises from a system of partial 

differential equations. For instance, in notion, we take 

Ω = 𝑑𝑥1 ∧ …∧ 𝑑𝑥𝑛.                                                                 (2.19) 

The partial differential equation (2.12) is equivalent to the system to independence 

condition, where 𝐼 is generated by the left-hand members of (2.13) and Ω is given 

by (2.19). Whether an independence condition should be imposed depends on the 

particular problem. 
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Definition (2.1.6): 

Let 𝑀 and 𝑁 be smooth manifolds. The jet bundle of 𝑘-jets of functions of 𝑀 two 

𝑁 will be denoted by. The 𝑘-jet of a smooth function 𝜙:𝑀 ⟶ 𝑁 at a point 𝑥 will 

be denoted by 𝑗𝑥
𝑘𝜙. If we have coordinates 𝑥1, … , 𝑥𝑚 for 𝑀 and 𝑦1, … , 𝑦𝑛for 𝑁, 

then we can introduce coordinates 𝑥𝑖 , 𝑦, 𝑝𝑖 for 𝐽1(𝑀,𝑁). The 1-jet of the function 

𝜙:𝑀 ⟶ 𝑁 at 𝑥 given by 

(𝑥𝑖 , 𝑦, 𝑝𝑖) = (𝑥
𝑖 , 𝜙(𝑥), (𝜕𝜙 𝜕𝑥𝑖⁄ )(𝑥)).                              (2.20) 

On the second order jet bundle 𝐽2(𝑀,𝑁) we have coordinates 𝑥𝑖 , 𝑦, 𝑝𝑖 , 𝑝𝑖𝑗, etc. 

Let 𝑀,𝑁 are differentiable manifolds and 𝑓, 𝑔:𝑀 ⟶ 𝑁 be two maps. Then 

𝑓and 𝑔 are said to be 𝑘-jet at 𝑝 ∈ 𝑀 if: 

i. 𝑓(𝑝) = 𝑔(𝑝) = 𝑞. 

ii. For all maps 𝑢:ℝ ⟶ 𝑁 and 𝑣:𝑁 ⟶ ℝ with 𝑢(0) = 𝑝, the 

differentiable maps 𝑣 ∘ 𝑓 ∘ 𝑢 and 𝑣 ∘ 𝑔 ∘ 𝑢 have the same 𝑘-jet at 0. 

 On every jet bundle there is a natural ideal of the contact form. In the local 

coordinates this ideal is generated by contact forms of the form 

𝜃𝐼 = 𝑑𝑝𝐼 − 𝑝𝐼𝑑𝑥,                                                                      (2.21) 

where 𝐼 a multi-index  𝐼 = (𝑖1, … , 𝑖𝑘). 

 Every transformation of the base manifold 𝑀 ×𝑁 can be prolonged to the 

unique transformation on the jet bundle 𝐽𝑘(𝑀,𝑁) that preserves contact ideal. 
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(2.2): Basic Theorems 

It is common to go between geometric formulations of a problem, which are 

coordinate free, and choosing coordinates to get at particular features of the 

problem. The theorems of Frobenius and Pfaff are useful for finding coordinate 

systems appropriate to a given problem. 

Conceivably the simplest exterior differential systems are those whose 

differential ideal 𝐼 is generated algebraically by the form of degree one. Let the 

generators be 

𝜙1, … , 𝜙𝑛−𝑟 ,                                                                               (2.22) 

which it supposed to be linearly independent. The condition that 𝐼 is closed gives 

𝑑𝜙𝑖 ≡ 0, 𝑚𝑜𝑑  𝜙1, … , 𝜙𝑛−𝑟 , 1 ≤ 𝑖 ≤ 𝑛 − 𝑟.       (2.23) 

The above condition (2.23) is called the Frobenius condition it's equivalent to 

requiring that any 1-form 𝜙 ∈ 𝐼 satisfies 𝑑𝜙 = 𝑎𝑖𝜔𝑖 for some 1-forms 𝜔𝑖 ∈ 𝐼. The 

exterior derivative of any 1-form is zero modulo the 1-forms of 𝐼. A differential 

system 

𝜙1 = ⋯ = 𝜙𝑛−𝑟 = 0,                                                             (2.24) 

satisfying (2.23) is called completely integrable. 

 Geometrically the 𝜙 span at every point 𝑥 ∈ 𝑀 a subspace 𝑊𝑥 of the 

dimension 𝑛 − 𝑟 in the cotangent space 𝑇𝑥
∗𝑀 or, what is the same, a subspace 𝑊𝑥

⊥ 

of dimension 𝑟 in the tangent space 𝑇𝑥. The usual presentation of the Frobenius 

theorem is in terms of distributions on vector fields on 𝐶∞. A smooth distribution 

𝐷 is called involutive “we will be discussing it in chapter 3.3” if and only if 

[𝑋, 𝑌] ∈ 𝐷 for any smooth vector fields 𝑋, 𝑌 ∈ 𝐷. Notice that the condition (2.23) 

is intrinsic, i.e., independent of local coordinates, and is also invariant under a 

linear change of the 𝜙 with 𝐶∞-coefficients. 
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Theorem (2.2.1): Frobenius Theorem 

Let 𝐼 be a differential ideal having as generators the linearly independent forms  

𝜙1, … , 𝜙𝑛−𝑟 of degree one, so the above condition (2.23) is satisfied. In a 

sufficiently small neighborhood there is a coordinate system 𝑦1, … , 𝑦𝑛 such that 𝐼 

generated by 𝑑𝑦𝑟+1, … , 𝑑𝑦𝑛. 

 The Frobenius theorem gives a normal form of completely integrable 

system, i.e., the system can be written locally as 

𝑑𝑦𝑟+1 = ⋯ = 𝑑𝑦𝑛 = 0,                                                          (2.25) 

in a suitable coordinate system. The maximal integral manifolds are 

𝑦𝑟+1 = const,… , 𝑦𝑛 = const,                                                (2.26) 

and are therefore of dimension 𝑟. We say the system defines a foliation, of 

dimension 𝑟 and codimension 𝑛 − 𝑟 of the manifold 𝑀. The individual integral 

manifolds are called the leaves. 

 The simplest non-trivial case of the Frobenius theorem is the system 

generated by single one form in three spaces. Thus 

𝐼 = {𝑅 𝑑𝑥 + 𝑆 𝑑𝑦 + 𝑇 𝑑𝑧},                                                      (2.27) 

and the condition (2.23) are the necessary and sufficient condition that there exists 

an integrating factor for the form for the one form 𝜔 = 𝑅 𝑑𝑥 + 𝑆 𝑑𝑦 + 𝑇 𝑑𝑧. That 

is there exists is a function 𝜇 such that 𝜇𝜔 is true. 

The condition (2.23) has a formulation in terms of vector fields, which is also 

useful. We add to 𝜙1, … , 𝜙𝑛−𝑟 the 𝑟 forms 𝜙𝑛−𝑟+1, … , 𝜙𝑛, so that 𝜙𝑖 , 1 ≤ 𝑖 ≤ 𝑛, 

are linearly independent. Then we have 

𝑑𝜙𝑖 =
1

2
∑𝑒𝑗𝑘

𝑖  𝜙𝑗 ∧ 𝜙𝑘

𝑗,𝑘

, 1 ≤ 𝑖, 𝑗, 𝑘 ≤ 𝑛

𝑒𝑗𝑘
𝑖 + 𝑒𝑘𝑗

𝑖 = 0.

                    (2.28) 
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The condition (2.23) can be expressed as 

𝑒𝑝𝑞
𝑎 = 0, 1 ≤ 𝑎 ≤ 𝑛 − 𝑟, 𝑛 − 𝑟 + 1 ≤ 𝑝, 𝑞 ≤ 𝑛. (2.29) 

Let 𝑓 be a smooth function. The equation 

𝑑𝑓 =∑(𝑋𝑖𝑓)𝜙
𝑖 ,                                                                    (2.30) 

define 𝑛 operators or vector fields 𝑋𝑖, which form a dual base to 𝜙𝑖. Exterior 

differential of (2.30) gives 

1

2
∑(𝑋𝑖 (𝑋𝑗(𝑓)) − 𝑋𝑗(𝑋𝑖(𝑓)))𝜙

𝑖 ∧ 𝜙𝑗

𝑖,𝑗

+∑𝑋𝑖(𝑓)𝑑𝜙
𝑖

𝑗

= 0.    (2.31) 

By substituting (2.28) into (2.31), we get 

[𝑋𝑖 , 𝑋𝑗]𝑓 = (𝑋𝑖𝑋𝑗 − 𝑋𝑗𝑋𝑖)𝑓 = −∑𝑒𝑖𝑗
𝑘  𝑋𝑘𝑓                     (2.32) 

Then it follows the condition (2.29) can be written in the form 

[𝑋𝑝, 𝑋𝑞]𝑓 = −∑𝑒𝑝𝑞
𝑠  𝑋𝑠𝑓 , 𝑛 − 𝑟 ≤ 𝑝, 𝑞, 𝑠 ≤ 𝑛       (2.33) 

Equation (2.32) is the dual version of (2.28). The vectors 𝑋𝑛−𝑟+1, … , 𝑋𝑛 span at 

each point 𝑥 ∈ 𝑀 the subspace 𝑊𝑥
⊥ of the distribution. Hence the condition (2.23) 

or (2.29) or (2.33) can be expressed as follows: 

Proposition (2.2.2): 

Let a distribution 𝑀 be defined by the subspace 𝑊𝑥
⊥ ⊂ 𝑇𝑥 , dim𝑊𝑥

⊥ = 𝑟. The 

condition (2.23) says that, for any two vector fields 𝑋, 𝑌 such that 𝑋𝑥 , 𝑌𝑥 ∈ 𝑊𝑥
⊥ 

their bracket [𝑋, 𝑌]𝑥 ∈ 𝑊𝑥
⊥. 
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Example (2.2.3): 

Consider the overdetermined first order system of partial differential equations for 

the function 𝑢 of the variables 𝑥 and 𝑦 given by 

𝑢𝑥 = −𝐹𝑢, 𝑢𝑦 = −𝐺𝑢.                                                   (2.34) 

Here 𝐹 and 𝐺 are arbitrary functions of 𝑥, 𝑦. The first order jet bundle 𝐽1(ℝ2, ℝ)  

has coordinates 𝑥, 𝑦, 𝑢, 𝑢𝑥 , 𝑢𝑦 and contact form 

𝜃 = 𝑑𝑢 − 𝑢𝑥𝑑𝑥 − 𝑢𝑦𝑑𝑦.                                                         (2.35) 

Let 𝑀 be the submanifold of the first order jet bundle defined by the two equations 

(2.34) and use 𝑥, 𝑢 and 𝑦 as coordinates on 𝑀. The solutions of the system (2.34) 

are locally in one-to-one correspondence the single 1-form 

𝜃 = 𝑑𝑢 + 𝐹𝑢 𝑑𝑥 + 𝐺𝑢 𝑑𝑦,                                                     (2.36) 

with independence condition Ω = 𝑑𝑥 ∧ 𝑑𝑦. 

𝑑𝜃 = (𝐹𝑦𝑢 𝑑𝑦 + 𝐹 𝑑𝑢) ∧ 𝑑𝑥 + (𝐺𝑥𝑢 𝑑𝑥 + 𝐺 𝑑𝑢) ∧ 𝑑𝑦,

      = (𝐹𝑦 − 𝐺𝑥)𝑢 𝑑𝑥 ∧ 𝑑𝑦    mod 𝜃.
 (2.37) 

The distribution is integrable at points where the compatibility condition 

(𝐹𝑦 − 𝐺𝑥)𝑢 is satisfied. Since the system is linear, 𝑢(𝑥, 𝑦) = 0 is always solution. 

Near points where (𝐹𝑦 − 𝐺𝑥)𝑢 ≠ 0 there are no other solutions to the system. At 

each point (𝑥0, 𝑦0) where 𝐹𝑦 − 𝐺𝑥 = 0 on small neighborhood, the distribution is 

integrable. It follows from the Frobenius theorem that there is a unique integral 

manifold of the system through the point (𝑥0, 𝑦0, 𝑢0). 

(2.2.1): Cauchy Characteristics 

 Let 𝐼 be differential ideal. A vector field 𝜉 such that 𝜉 ⌋ 𝐼 ⊂ 𝐼 is called a 

Cauchy characteristic vector field of  𝐼. At a point 𝑥 ∈ 𝑀 we define 

𝐴(𝐼)𝑥 = {𝜉𝑥 ∈ 𝑇𝑥𝑀 |𝜉𝑥 ⌋ 𝐼𝑥 ⊂ 𝐼𝑥},                                        (2.38) 
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and 𝐶(𝐼)𝑥 = 𝐴(𝐼)𝑥
⊥ ⊂ 𝑇𝑥

∗𝑀. These concepts reduce to the ones treated in the last 

section. In particular, we will call 𝐶(𝐼)𝑥 the retracting space at 𝑥 and call 

dim𝐶(𝐼)𝑥 the class of  𝐼 at 𝑥. We have now a family of ideals 𝐼𝑥 depending on the 

parameter 𝑥 ∈ 𝑀. When restricting to a point 𝑥 we have a purely algebraic 

situation. See Proposition (1.3.9). 

Theorem (2.2.4) 

Let 𝐼 be finitely generated differential ideal whose retracting space 𝐶(𝐼) has 

constant dimension 𝑠 = 𝑛 − 𝑟. Then there is a neighborhood in which in which 

there are coordinates (𝑥1, … , 𝑥𝑟; 𝑦1, … , 𝑦𝑠) such that 𝐼 has a set of generators are 

forms in 𝑦1, … , 𝑦𝑠 and their differentials. 

Proof. 

Using proposition (1.3.10) the differential system defined by 𝐶(𝐼) (or what is the 

same, the distribution defined by 𝐴(𝐼)) is completely integrable. We may choose 

coordinates (𝑥1, … , 𝑥𝑟; 𝑦1, … , 𝑦𝑠) so that the foliation so defined is given by 

𝑦𝜎 = const, 1 ≤ 𝜎 ≤ 𝑠.                                                   (2.39) 

 By the retraction theorem, 𝐼 has a set of generators which are forms in 𝑑𝑦𝜎 ,

1 ≤ 𝜎 ≤ 𝑠. But their coefficients may involve 𝑥𝜌, 1 ≤ 𝜌 ≤ 𝑟. The theorem follows 

when we show that we can choose a new set of generators for 𝐼 which are forms in 

the 𝑦𝜎 coordinates in which the 𝑥𝜌 don’t enter. To exclude the trivial case, we 

suppose the 𝐼 is a proper ideal, so that it contains no none-zero functions. 

 Let 𝐼𝑞 be the set of 𝑞 − forms in 𝐼, 𝑞 = 1,2,…. Let 𝜑1, … , 𝜑𝑝 be linearly 

independent 1-forms in 𝐼1 such that any form in 𝐼1 is their linear combination. 

Since 𝐼 is closed, 𝑑𝜑𝑖 ∈ 𝐼, 1 ≤ 𝑖 ≤ 𝑝. For a fixed 𝜌 we have 𝜕 𝜕𝑥𝜌⁄ ∈ 𝐴(𝐼), which 

implies 

𝜕

𝜕𝑥𝜌
 ⌋ 𝑑𝜑𝑖 = 𝐿𝜕 𝜕𝑥𝜌⁄ 𝜑𝑖 ∈ 𝐼1,                                                    (2.40) 
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since the left-hand side is of degree 1. It follows 

𝜕𝜑𝑖

𝜕𝑥𝜌
= 𝐿𝜕 𝜕𝑥𝜌⁄ 𝜑𝑖 =∑𝑎𝑗

𝑖𝜑𝑗 ,

𝑗

   1 ≤ 𝑖, 𝑗 ≤ 𝑝,                      (2.41) 

where the left-hand side stand for the form obtained from 𝜑𝑖 by taking the partial 

derivatives of the coefficients with respect to 𝑥𝜌. 

 For this fixed 𝜌 we regard 𝑥𝜌 as the variable and 

𝑥1, … , 𝑥𝜌−1, 𝑥𝜌+1, … , 𝑥𝑟 , 𝑦1, … , 𝑦𝑠 as parameters. 

Consider the system of ordinary differential equations 

𝑑𝑧𝑖

𝑑𝑥𝜌
=∑𝑎𝑗

𝑖

𝑗

𝑧𝑗, 1 ≤ 𝑖, 𝑗 ≤ 𝑝.                                        (2.42) 

Let 𝑧(𝑘)
𝑖 , 1 ≤ 𝑘 ≤ 𝑝, be a fundamental system of solutions, so that 

det(𝑧(𝑘)
𝑖 ) ≠ 0.                                                                           (2.43) 

Then we shall replace 𝜑𝑖 by �̃�𝑘 defined by 

𝜑𝑖 =∑𝑧(𝑘)
𝑖 �̃�𝑘 .                                                                       (2.44) 

By differentiating (2.44) with respect to 𝑥𝜌 and using (2.42), (2.41) we get 

𝜕�̃�𝑘

𝜕𝑥𝜌
= 0,                                                                                     (2.45) 

so that �̃�𝑘 doesn’t involve 𝑥𝜌. Applying the process to the other 𝑥 ,s, we arrive at a 

set of generators of  𝐼1 which are forms in 𝑦𝜎. 

 Suppose this process carried out for 𝐼1, … , 𝐼𝑞−1, so that they consist of forms 

in 𝑦𝜎. Now let 𝐽𝑞−1 be the ideal generated by 𝐼1, … , 𝐼𝑞−1. Let 𝜓𝛼 ∈ 𝐼𝑞 , 1 ≤ 𝛼 ≤ 𝑟, 

be linearly independent mod 𝐽𝑞−1, such that any 𝑞-form of 𝐼𝑞 is congruent 
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mod 𝐽𝑞−1 to a linear combination of them. By the above argument such forms 

include 

𝜕

𝜕𝑥𝜌
 ⌋ 𝑑𝜓𝛼 = 𝐿𝜕 𝜕𝑥𝜌⁄ 𝜓𝛼 .                                                        (2.46) 

Hence we have 

𝜕𝜓𝛼

𝜕𝑥𝜌
=∑𝑏𝛽

𝛼𝜓𝛽,    mod 𝐽𝑞−1,   1 ≤ 𝛼, 𝛽 ≤ 𝑟,                  (2.47) 

using the above argument, we can replace the 𝜓𝛼 by �̃�𝛽 such that 
𝜕�̃�𝛼

𝜕𝑥𝜌
∈ 𝐽𝑞−1, this 

means that we can write 

𝜕�̃�𝛼

𝜕𝑥𝜌
=∑𝜏ℎ

𝛼 ∧ 𝜔ℎ
𝛼

ℎ

,                                                                 (2.48) 

where 𝜏ℎ
𝛼 ∈ 𝐼1 ∪⋯∪ 𝐼𝑞−1 and are therefore forms in 𝑦𝜎. Let 𝜃ℎ

𝛼 be defined by 

𝜕𝜃ℎ
𝛼

𝜕𝑥𝜌
= 𝜔ℎ

𝛼 ,                                                                                 (2.49) 

then the forms 

�̃̃�𝛼 = �̃�𝛼 −∑𝜏ℎ
𝛼 ∧ 𝜃ℎ

𝛼

ℎ

,                                                        (2.50) 

don’t involve 𝑥𝜌 and can be used to replaced 𝜓𝛼. Applying this process to all 𝑥𝜌,

1 ≤ 𝜌 ≤ 𝑟, we find a set of generators for 𝐼𝑞, which are forms in 𝑦𝜎only. ∎ 

Definition (2.2.5): 

The leaves defined by the distribution 𝐴(𝐼) are called the Cauchy 

characteristics. 

Notice that generally 𝑟 is zero, so that a differential system generally doesn't 

have Cauchy characteristics (i.e., they are points). The Theorem (2.2.4) allows us 
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to locally reduce a differential ideal to a system in which there are no extraneous 

variables in the sense that all coordinates are needed to express 𝐼 in any coordinate 

system. Thus the class of 𝐼 equal the minimal number of variables needed to 

describe the system. 

Now we will introduce a useful corollary of Theorem (2.2.4) which 

illustrates its geometric content is the following: 

Corollary (2.2.6): 

Let 𝑓:𝑀 → 𝑀′ be a fibration with vertical distribution 𝑉 ⊂ 𝑇(𝑀) with connected 

fibers over 𝑥 ∈ 𝑀′ given by (ker 𝑓∗)𝑥. Then a form 𝛼 on 𝑀 is the pull-back 𝑓∗𝛼′ 

of a form 𝛼′ on 𝑀 if and only if 

𝑣 ⌋ 𝛼 = 0   and 𝑣 ⌋ 𝑑𝛼 = 0,   ∀ 𝑣 ∈ 𝑉.                                  (2.51) 

We will apply this theorem to the first order partial differential equation 

𝐹 (𝑥′, 𝑧,
𝜕𝑧

𝜕𝑥𝑖
) = 0, 1 ≤ 𝑖 ≤ 𝑛.                                        (2.52) 

Following the Notion (2.1.4) that we mentioned in the first section in this 

chapter, and we get equation (2.12); this equation can be formulated as the exterior 

differential systems in equation (2.13). To these equations we add their exterior 

derivatives to obtain 

𝐹(𝑥𝑖 , 𝑧, 𝑝𝑖) = 0,

𝑑𝑧 −∑𝑝𝑖  𝑑𝑥
𝑖 = 0

∑(𝐹𝑥𝑖 + 𝐹𝑧𝑝𝑖)𝑑𝑥
𝑖 +∑𝐹𝑝𝑖𝑑𝑝𝑖 = 0,

∑𝑑𝑥𝑖 ∧ 𝑑𝑝𝑖 = 0.

                                 (2.53) 

These equations are in the (2𝑛 + 1)-dimensional space (𝑥𝑖 , 𝑧, 𝑝𝑖). The 

corresponding differential ideal is generated by the left-hand members of (2.53). 
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To determine the space 𝐴(𝐼) consider the vector 

𝜉 =∑𝑢𝑖 𝜕 𝜕𝑥𝑖⁄ + 𝑢 𝜕 𝜕𝑧⁄ +∑𝑣𝑖 𝜕 𝜕𝑝𝑖⁄ ,                      (2.54) 

and express the condition that the interior product 𝜉 ⌋ keeps the ideal stable. This 

gives 

𝑢 −∑𝑝𝑖  𝑢
𝑖 = 0,

∑(𝐹𝑥𝑖 + 𝐹𝑧 𝑝𝑖) 𝑢
𝑖 + 𝐹𝑝𝑖𝑣𝑖 = 0,

∑(𝑢𝑖𝑑𝑝𝑖 − 𝑣𝑖𝑑𝑥
𝑖) = 0.

                                          (2.55)  

By comparing the third equation in (2.55) by third equation in (2.53) we have get 

𝑢𝑖 = 𝜆𝐹𝑝𝑖 , 𝑣𝑖 = −𝜆(𝐹𝑥𝑖 + 𝐹𝑧𝑝𝑖),                                   (2.56) 

then the first equation in (2.55) gives 

𝑢 = 𝜆∑𝑝𝑖𝐹𝑝𝑖 .                                                                         (2.57) 

The parameter 𝜆 being arbitrary, equations (2.56), (2.57) show that dim𝐴(𝐼) = 1, 

i.e., the characteristic vectors at each point from a one-dimensional space. This 

fundamental fact is the key of the theory of partial differential equations of the first 

order. The characteristic curves in the space (𝑥𝑖 , 𝑧, 𝑝𝑖), or characteristic strips in 

the classical terminology, are the integral curves of the differential system 

𝑑𝑥𝑖

𝐹𝑝𝑖
= −

𝑑𝑝𝑖
𝐹𝑥𝑖 + 𝐹𝑧𝑝𝑖

=
𝑑𝑧

∑𝑝𝑖𝐹𝑝𝑖
.                                              (2.58) 

These are the equations of Charpit and Lagrange. To construct an integral 

manifold of dimension 𝑛 it suffices to take an (𝑛 − 1)-dimensional integral 

manifold transverse to the Cauchy characteristic vector field and draw the 

characteristic strips through its points. Putting it in another way, an 𝑛-dimensional 

integral manifold is generated by characteristic strips. 
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 Now we'll explain the meaning of the terminology ''strips''. We remark that 

points in (𝑥𝑖 , 𝑝𝑖)-space may be thought of as hyper-planes ∑𝑝𝑖𝑑𝑥
𝑖 = 0 in the 

tangent spaces 𝑇𝑥(ℝ
𝑛). A curve in (𝑥𝑖 , 𝑧, 𝑝𝑖)-space projects to a curve in (𝑥𝑖 , 𝑝𝑖)-

space, which is geometrically a 1-parameter family of the tangent hyper-planes. 

Example (2.2.7): 

 Consider the initial value problem for the partial differential equation 

𝑧
𝜕𝑧

𝜕𝑥
+
𝜕𝑧

𝜕𝑦
= 1,                                                                          (2.59) 

with initial data given along 𝑦 = 0 by 𝑧(𝑥, 0) = √𝑥 

 Let us introduce coordinates 𝐽1(2, 1) by (𝑥, 𝑦, 𝑧, 𝑝, 𝑞). This initial data 

𝐷:ℝ → ℝ2 × ℝ where 𝐷(𝑥) = (𝑥, 0, √𝑥) is extended to a map 𝛿:ℝ → 𝐽1(2, 1) 

where the image satisfies the equation and the strip condition 

0 = 𝛿∗(𝑑𝑧 − 𝑝𝑑𝑥 − 𝑞𝑑𝑦) =
𝑑𝑥

2√𝑥
− 𝑝𝑑𝑥,                           (2.60) 

𝑝 =
1

2√𝑥
, 𝑞 =

1

2
 and 𝛿 is unique. In general, there are several choices of 𝛿 due to 

non-linearity of the equation. The extend data becomes 

𝛿(𝑥) = (𝑥, 0,
1

2√𝑥
,
1

2
).                                                            (2.61) 

If we parameterize the equation by 𝑖: Ω → 𝐽1(2,1) where 𝑖(𝑥, 𝑦, 𝑧, 𝑝) =

(𝑥, 𝑦, 𝑧, 𝑝, 1 − 𝑧𝑝), then the data can be pulled back to a map ∆:ℝ → Ω, where 

∆(𝑠) = (𝑠, 0, √𝑠,
1

2√𝑠
). 

 The Cauchy characteristic vector field is 

𝑋 = 𝑧
𝜕

𝜕𝑥
+
𝜕

𝜕𝑦
− 𝑝2

𝜕

𝜕𝑝
+
𝜕

𝜕𝑧
                                                (2.62) 
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and the corresponding flow is given by 

𝑑𝑥

𝑑𝑡
= 𝑧,

𝑑𝑦

𝑑𝑡
= 1,

𝑑𝑧

𝑑𝑡
= 1,

𝑑𝑝

𝑑𝑡
= −𝑝2.            (2.63) 

The solution for the given data representing the union of characteristic curves 

along the data is 

𝑥 =
𝑡2

2
+ 𝑡√𝑠 + 𝑠, 𝑦 = 𝑡, 𝑧 = 𝑡 + √𝑠.                  (2.64) 

And eliminating 𝑠 and 𝑡 gives an implicit equation 𝑧(𝑥, 𝑦) by 

𝑧2 + 𝑧𝑦 = 𝑥 − (𝑦2 2⁄ ).                                                            (2.65) 

Theorem (2.2.8): 

Consider the Eikonal differential equation 

∑(𝜕𝑧 𝜕𝑥𝑖⁄ )
2
= 1, 1 ≤ 𝑖 ≤ 𝑛.                                       (2.66) 

If 𝑧 = 𝑧(𝑥1, … , 𝑥𝑛) is a solution valid for all (𝑥1, … , 𝑥𝑛) ∈ 𝐸𝑛, where (𝐸𝑛 = 𝑛-

dimensional Euclidean space), then 𝑧 is a linear function in 𝑥𝑖, i.e., 

𝑧 =∑𝑎𝑖𝑥
𝑖 + 𝑏,                                                                      (2.67) 

where 𝑎𝑖 , 𝑏are constants satisfying ∑𝑎𝑖
2 =1. 

Proof: 

We'll denote by 𝐸𝑛+1 the space of (𝑥1, … , 𝑥𝑛, 𝑧), and identify 𝐸𝑛 with the hyper-

plane 𝑧 = 0. The solution can be interpreted as a graph Γ in 𝐸𝑛+1 having a one-one 

projection to 𝐸𝑛. For the equation (2.66) the denominators in the middle term of 

(2.58) are zero, so that the Cauchy characteristic satisfy 

𝑝𝑖 = const.                                                        
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The equation (2.58) can be integrated and the Cauchy characteristic curves, when 

projected to 𝐸𝑛+1, are the straight lines 

𝑥𝑖 = 𝑥0
𝑖 + 𝑝𝑖𝑡, 𝑧 = 𝑧0 + 𝑡                                               (2.68) 

where 𝑥0
𝑖 , 𝑝𝑖 , 𝑧0 are constant. Hence the graph Γ must have the property that it's 

generated by "Cauchy lines" (2.68), whose projections in 𝐸𝑛 form a foliation of 

𝐸𝑛. 

 By developing the notation in the first equation of (2.68), we write it as 

𝑥∗
𝑖
= 𝑥𝑖 +

𝜕𝑧

𝜕𝑥𝑖
𝑡,                                                                       (2.69) 

where 𝑧 = 𝑧(𝑥1, … , 𝑥𝑛) is a solution of equation (2.66). For a given 𝑡 ∈ 𝑅 this can 

be interpreted as a diffeomorphism 𝑓𝑡: 𝐸
𝑛 → 𝐸𝑛 defined by 

𝑓𝑡(𝑥) = 𝑥
∗ = (𝑥∗

1
, … , 𝑥∗

𝑛
), 𝑥, 𝑥∗ ∈ 𝐸𝑛.                      (2.70) 

Geometrically it maps 𝑥 ∈ 𝐸𝑛 to the point 𝑥∗ at a distance 𝑡 along the Cauchy line 

through 𝑥; this makes sense, because the Cauchy lines are oriented. Its Jacobean 

determinant is 

𝐽(𝑡) = det (𝛿𝑗
𝑖 +

𝜕2𝑧

𝜕𝑥𝑖𝜕𝑥𝑗
𝑡) ≠ 0,                                         (2.71) 

but this implies 

𝜕2𝑧

𝜕𝑥𝑖𝜕𝑥𝑗
= 0,                                                                               (2.72) 

and hence that 𝑧 is linear. For if (2.72) isn't true, then the symmetric matrix 

𝜕2𝑧 𝜕𝑥𝑖𝜕𝑥𝑗⁄   has a real non-zero eigenvalue, say 𝜆, and 𝐽(−1 𝜆⁄ ) = 0, which is 

contradiction. ∎ 
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Remark (2.2.9): 

The function 

𝑧 = (∑(𝑥𝑖)
2

𝑖

)

1 2⁄

                                                                  (2.73) 

satisfies (2.66), except at 𝑥𝑖 = 0. Hence Theorem (2.2.8) needs the hypothesis that 

(2.66) is valid for all 𝑥 ∈ 𝐸𝑛. 

(2.2.2): Theorems of Pfaff and Darboux 

 There is another case in which there is a simple exterior differential system 

is one which consists of a single equation 

𝜙 = 0                                                                                           (2.74) 

where 𝜙 is a form of degree one. The above equation was studied by Pfaff in the 

early 19th century. The differential ideal 𝐼(Λ) is generated by 𝜙 and 𝑑𝜙. The 

integer 𝑟 = 𝑟(𝑥) define by 

𝜙 ∧ (𝑑𝜙)𝑟 ≠ 0, 𝜙 ∧ (𝑑𝜙)𝑟+1 = 0,                                (2.75) 

is called the rank of the equation (2.74). It depends on the point 𝑥 ∈ 𝑀. Clearly, 

the rank remains unchanged under the transformation 𝜙 → 𝑎𝜙,    𝑎 ≠ 0. It is also 

easy to see that the rank is locally constant. 

Putting it in a different way, the 2-form 𝑑𝜙 mod 𝜙, has an even rank 2𝑟 in the 

sense of linear algebra. 

 The following proposition is an immediate consequence of the Frobenius 

Theorem: 

Proposition (2.2.10): 

The rank of the system Λ = 𝜙 = 0 is identically zero if and only if the system is 

completely integrable. 
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 When the rank of Λ is not zero the closure of the system, 

Λ ⊂ (Λ ∪ 𝑑Λ),                                                   

imposes extra conditions; the problem of finding integral manifolds of (2.74) is 

clarified by the normal form, given by the theorem: 

Theorem (2.2.11): (The Pfaff Problem) 

Suppose the equation Λ = {𝜙 = 0} has the constant rank 𝑟. Then there are local 

coordinates 𝜔1, … , 𝜔𝑛 such that 

𝜙 = 𝑎(𝑑𝜔1 +𝜔2𝑑𝜔3 +⋯+𝜔2𝑟𝑑𝜔2𝑟+1),                       (2.76) 

where 𝑎 = 𝑎(𝜔1, … , 𝜔𝑛) is never zero. In particular, the system may be replaced 

by the equation 

𝑑𝜔1 +𝜔2𝑑𝜔3 +⋯+𝜔2𝑟𝑑𝜔2𝑟+1 = 0                               (2.77) 

Proof: 

For 𝑟 = 0 the result follows from Proposition (2.2.10). We will do an induction on 

𝑟. It is routinely verified that the dual associated space 𝐴(𝐼(Λ))
⊥

 has dimension 

2𝑟 + 1. So there are local coordinates 𝑤1, … , 𝑤𝑛 such that 𝐼(Λ) can be generated 

by some forms in 𝑤1, … , 𝑤2𝑟+1. In particular, the form 𝜃 can be written as 

𝜃 = 𝑎𝜃′, 𝑎 = 𝑎(𝑤1, … , 𝑤𝑛) ≠ 0,                                 (2.78) 

where 𝜃′ is a form in 𝑤1, … , 𝑤2𝑟+1 only. We need to normalize 𝜃′. For this we 

work inside the 𝑤1, … , 𝑤2𝑟+1-space, which we denote by 𝑈2𝑟+1 ⊂ 𝑀. Consider 

the differential ideal generated by 𝑑𝜃′, 𝐼(𝑑𝜃′) ⊂ Λ∗(𝑈2𝑟+1). Since (𝑑𝜃′)𝑟 ≠ 0, the 

dual associated space has dimension 2𝑟, hence the associated space 𝐴(𝐼(𝑑𝜃′)) is 

one-dimensional. The ideal 𝐼(𝑑𝜃′) is then generated by a 2-form 𝛼 in 2𝑟 variables 

𝑦1, … , 𝑦2𝑟; 𝑑𝜃′ differs from 𝛼 by a factor. Write 

𝑑𝜃′ = 𝑏𝛼, 𝑏 = 𝑏(𝑤1, … , 𝑤2𝑟+1) ≠ 0.                         (2.79) 
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Now (𝑑𝜃′)𝑟 = 𝑏𝑟𝛼𝑟 ≠ 0, hence 

𝛼𝑟 = 𝑐  𝑑𝑦1 ∧ ⋯∧ 𝑑𝑦2𝑟 ,                                                         (2.80) 

for some 𝑐 = 𝑐(𝑦1, … , 𝑦2𝑟) ≠ 0.  Using the fact that (𝑑𝜃′)𝑟 is a closed form, 

𝑑𝑏  ∧ 𝑑𝑦1 ∧ ⋯∧ 𝑑𝑦2𝑟 = 0.                                                   (2.81) 

This means that b is a function of the 𝑦𝑖,s. So 𝑑𝜃′ is a form in the 𝑦𝑖,s. Since 𝑑𝜃′ is 

closed there is nonzero 1-form 𝛾 in the 𝑦𝑖,s with 𝑑𝛾 = 𝑑𝜃′. Being in a 2𝑟-

dimensional space the equation 𝛾 = 0 can't have rank 𝑟. So it must have rank 𝑟 −

1. By induction hypothesis we can then write 

𝛾 = 𝜆 (𝑑𝑧1 + 𝑧2𝑑𝑧3 +⋯+ 𝑧2𝑟−2𝑑𝑧2𝑟−1),                        (2.82) 

where 𝜆 = 𝜆 (𝑦1, … , 𝑦2𝑟) ≠ 0. Since 𝑑𝜃′ = 𝑑𝛾 we can find a function 𝑓 such that 

𝜃′ = 𝑑𝑓 + 𝛾. Put 

𝜔1 = 𝑓,𝜔2 = 𝜆,𝜔3 = 𝑧1, 𝜔4 = 𝜆𝑧2  , …,   𝜔2𝑟 = 𝜆𝑧2𝑟−2, 𝜔2𝑟+1 = 𝑧2𝑟−1 

it follows that 

𝜃′ = 𝑑𝜔1 +𝜔2𝑑𝜔3 +⋯+𝜔2𝑟𝑑𝜔2𝑟+1.                             (2.83) 

 Let 𝑀 be a (2𝑟 + 1)-dimensional manifold, and consider the equation (2.74) 

of maximal rank 𝑟. The above theorem tells us that the general maximal integral 

manifold of dimension 𝑟 and is given by 

𝜔1 = 𝑓 (𝜔3, 𝜔5, … , 𝜔2𝑠+1), 𝑠 < 𝑟

𝜔2 =
𝜕𝑓

𝜕𝜔3
  , … , 𝜔2𝑟 =

𝜕𝑓

𝜕𝜔2𝑟+1
,

                                (2.84) 

where 𝑓 is arbitrary function. 

Corollary (2.2.12): (Symmetric normal form) 

In a neighborhood suppose the equation (2.74) has a constant rank 𝑟. Then there 

exist independent functions 𝑧, 𝑦1, … , 𝑦𝑟 ,  𝑥1, … , 𝑥𝑟 such that the equation becomes 
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𝑑𝑧 +
1

2
∑(𝑦𝑖𝑑𝑥𝑖 − 𝑥𝑖𝑑𝑦𝑖)

𝑟

𝑖=1

= 0                                           (2.85) 

Proof 

It suffices to apply the change of coordinates 

𝜔1 = 𝑧 − 1 2⁄ ∑𝑥𝑖𝑦𝑖 ,

𝜔2𝑖 = 𝑦𝑖 , 𝜔2𝑖+1 = 𝑥𝑖 , 1 ≤ 𝑖 ≤ 𝑟.

                          (2.86) 

 Related to the Pfaffian problem are the normal forms for the forms 

themselves and not the ideals generated by them. For 1-forms and closed 2-forms 

we have the following theorems. 

Theorem (2.2.13): (Darboux Theorem) 

If Ψ is a closed 2-form satisfying 

Ψ𝑟 ≠ 0, Ψ𝑟+1 = 0, 𝑟 = const.                              (2.87) 

Locally there exist coordinates ω1, … , 𝜔𝑛 such that 

Ψ = 𝑑𝜔1 ∧ 𝑑𝜔2 +⋯+ 𝑑𝜔2𝑟−1 ∧ 𝑑𝜔2𝑟 .                           (2.88) 

 We consider the case of 1-form 𝜙. The rank 𝑟 is defined by the condition 

𝜙 ∧ (𝑑𝜙)𝑟 ≠ 0, 𝜙 ∧ (𝑑𝜙)𝑟+1 = 0.                               (2.89) 

There is a second integer 𝑠 defined by 

(𝑑𝜙)𝑠 ≠ 0, (𝑑𝜙)𝑠+1 = 0.                                               (2.90) 

Elementary arguments illustrate there are two cases: 

a) 𝑠 = 𝑟 

b) 𝑠 = 𝑟 + 1. 
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Example (2.2.14): 

Consider a single first order PDE of the form  

𝐹(𝑥1, … , 𝑥𝑛, 𝑢, 𝜕𝑢 𝜕𝑥1⁄ ,… , 𝜕𝑢 𝜕𝑥𝑛⁄ ) = 0.                        (2.91) 

Assuming 𝐹 its cut a hyper-surface 

𝑀 = {(𝑥1, … , 𝑥𝑛, 𝑢, 𝑝1, … , 𝑝𝑛) | 𝐹(𝑥
1, … , 𝑥𝑛, 𝑢, 𝑝1, … , 𝑝𝑛) = 0} ⊂ 𝐽

1(ℝ𝑛, ℝ). 

For  

𝜙 = 𝑑𝑢 − 𝑝1𝑑𝑥
1 −⋯− 𝑝𝑛𝑑𝑥

𝑛,                                           (2.92) 

the PDE is encoded by the EDS 

𝐼 = 〈𝜙〉.                                                               

We have 𝜙 ∧ (𝑑𝜙)𝑛 = 0, while 𝜙 ∧ (𝑑𝜙)𝑛−1 is nowhere vanishing, and therefore 

by the Pfaff theorem we can find local coordinates (𝑧, 𝑦1, … , 𝑦𝑛−1, 𝑣, 𝑞1, … , 𝑞𝑛−1) 

on 𝑀 on which 𝐼 is given by 

〈𝑑𝑣 − 𝑞1𝑑𝑦
1 −⋯− 𝑞𝑛−1𝑑𝑦

𝑛−1〉.                                         (2.93) 

Now we observe that an 𝑛-dimensional integral manifold of 𝐼 is locally of the form 

𝑣 = 𝑔(𝑦1, … , 𝑦𝑛−1), 𝑞𝑖 =
𝜕𝑔

𝜕𝑦𝑖
(𝑦1, … , 𝑦𝑛−1),            (2.94) 

for some function 𝑔:ℝ𝑛−1 → ℝ. In particular, its tangent to the vector field 𝑧 =

𝜕 𝜕𝑧⁄ . 

Theorem (2.2.15): 

Let 𝜙 be a 1-form. In a neighborhood suppose 𝑟 and 𝑠 be constant. Then 𝜙 has the 

normal form 

𝜙 = 𝑦0𝑑𝑦1 +⋯+ 𝑦2𝑟𝑑𝑦2𝑟+1,        𝑖𝑓 𝑟 + 1 = 𝑠

𝜙 = 𝑑𝑦1 + 𝑦2𝑑𝑦3 +⋯+ 𝑦2𝑟𝑑𝑦2𝑟+1, 𝑖𝑓 𝑟 = 𝑠
              (2.95) 
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Proof: 

let 𝐼 be a differential ideal generated by 𝜙 and 𝑑𝜙. By Theorem (2.2.11) there're 

coordinates 𝑦1, … , 𝑦𝑛 in a neighborhood such that 

𝜙 = 𝑢(𝑑𝑦1 + 𝑦2𝑑𝑦3 +⋯+ 𝑦2𝑟𝑑𝑦2𝑟+1).                          (2.96) 

By changing the notation that allows us to write 

𝜙 = 𝑧0𝑑𝑦1 + 𝑧2𝑑𝑦3 +⋯+ 𝑧2𝑟𝑑𝑦2𝑟+1,                            (2.97) 

then 

(𝑑𝜙)𝑟+1 = 𝑐𝑑𝑧0 ∧ 𝑑𝑦1 ∧ 𝑑𝑧2 ∧ 𝑑𝑦3 ∧⋯∧ 𝑑𝑧2𝑟 ∧ 𝑑𝑦2𝑟+1,

 𝑐 = const, c ≠ 0.
   (2.98) 

If 𝑠 = 𝑟 + 1, 𝑠 ≠ 0, and the functions 𝑧0, 𝑧2, … , 𝑧2𝑟 , 𝑦1, 𝑦3, … , 𝑦2𝑟+1 are 

independent. This proves the normal form of first equation (2.95). 

Consider next the case 𝑟 = 𝑠. Then 𝑑𝜙 is a 2-form of rank 2𝑟. By Darboux 

Theorem (2.2.13) we can write 

𝑑𝜙 = 𝑑𝜔1 ∧ 𝑑𝜔2 +⋯+ 𝑑𝜔2𝑟−1 ∧ 𝑑𝜔2𝑟

= 𝑑(𝜔1𝑑𝜔2 +⋯+𝜔2𝑟−1𝑑𝜔2𝑟).
                           (2.99) 

Hence the form 

𝜙 = (𝜔1𝑑𝜔2 +⋯+𝜔2𝑟−1𝑑𝜔2𝑟),                                     (2.100) 

is closed, and is equal to 𝑑𝑣. By changing the notation is gives us the second 

equation (2.95). 

Remark (2.2.16): 

 A manifold of dimension 2𝑟 + 1 provided with a 1-form 𝜙, defined up to a 

factor, such that 

𝜙 ∧ (𝑑𝜙)𝑟 ≠ 0,                                                                       (2.101) 
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is called a contact manifold. An example is the projectiveized cotangent bundle 

of a manifold, whose points are the non-zero 1-forms on the base manifold 

defined up to a factor. 

 A manifold of dimension 2𝑟 provided with a closed 2-form of maximum 

rank 2𝑟 is called a symplectic manifold. 

Both contact manifolds and symplectic manifolds are play a fundamental role in 

theoretical mechanics and partial differential equations. 

Theorem (2.2.17): (Caratheodory Theorem) 

Suppose the rank of the Pfaffian equation 𝜙 = 0 be constant. It has local 

accessibility property if and only if 

𝜙 ∧ 𝑑𝜙 ≠ 0.                                                                            (2.102) 

(2.3): Pfaffian Systems 

 A pfaffian system is an exterior differential system 

𝜙1 = 0 = ⋯ = 𝜙𝑠 = 0,                                                        (2.103) 

where 𝜙𝑖 are Pfaffian forms and linearly independent, and 𝑠 = const, that is 

exterior differential forms of degree one. We will denote the Pfaffian system by 𝐼 

and 𝑠 its dimension. Therefore, the two form is described by 

𝑑𝜙𝑖   mod (𝜙1, … , 𝜙𝑠)  1 ≤ 𝑖 ≤ 𝑠.                                      (2.104) 

The Frobenius condition is equivalent to saying that they are zero. Geometrically 

the 𝜙𝑖 span at every point 𝑥 ∈ 𝑀 a subspace 𝑊𝑥
∗ of dimension 𝑠 in the cotangent 

space 𝑇𝑥
∗. 

We can view 𝐼 ∈ Ω1(𝑀) as the sub-module over 𝐶∞(𝑀) of 1-forms 

𝜙 =∑𝑓𝑖𝜙
𝑖

𝑖

.                                                                           (2.105) 
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We denote by {𝐼} ⊂ Ω∗(𝑀) the algebraic ideal generated by 𝐼. Therefore, 𝛽 ∈ {𝐼} 

is of the form 

𝛽 =∑𝜗𝑖 ∧ 𝜙
𝑖

𝑖

,                                                                     (2.106) 

where 𝜗𝑖 are differential forms. The exterior derivative induces a mapping    

𝛿: 𝐼 ⟶ Ω2(𝑀)|{𝐼} that is linear over 𝐶∞(𝑀). We set 𝐼(1) = ker 𝛿, and call 𝐼(1) the 

first derived system. Thus, we have 

0 ⟶ 𝐼(1)⟶ 𝐼
𝛿
→ 𝑑𝐼|{𝐼} ⟶ 0,                                             (2.107) 

and we get from Frobenius case 𝐼(1) = 𝐼. Now 𝐼 is the space of 𝐶∞ sections of sub-

bundle 𝑊 ⊂ 𝑇∗𝑀 with fibers 𝑊𝑥 = span (𝜙
1(𝑥),… , 𝜙𝑠(𝑥)). The images of 

𝑊⨂Λ𝑞𝑇∗𝑀⟶ Λ𝑞+1𝑇∗𝑀 are sub-bundles 𝑊𝑞+1 ⊂ Λ𝑞+1𝑇∗𝑀, and the mapping 𝛿 

is induced form a bundle mapping 

𝑊
�̅�
→Λ2𝑇∗𝑀|𝑊2.                                                                   (2.108) 

Suppose that 𝛿̅ has constant rank, so 𝐼(1) is the sections of a sub-bundle 𝑊1 ⊂ 𝑊 ⊂

𝑇∗𝑀. 

Continuing with this construction we arrive at a filtration 

𝐼(𝑘) ⊂ ⋯ ⊂ 𝐼(1) ⊂ 𝐼(0) = 𝐼,                                                  (2.109) 

defined inductively by  

𝐼(𝑘+1) = (𝐼(𝑘))
(1)
,                                                                   (2.110) 

where the above filtration corresponds to a flag of bundles 𝑊𝑘 ⊂ ⋯ ⊂ 𝑊1 ⊂ 𝑊. 

So when 𝑘 = 𝑁, such 𝑁 is smallest integer, 𝑊𝑁+1 = 𝑊𝑁 , 𝐼
(𝑁+1) = 𝐼(𝑁). When 

(2.109) is represented the derived flag of 𝐼0 and 𝑁 the derived length. Note that 

𝐼(𝑁) is the largest integrable subsystem contained in 𝐼. Then, we can also define the 

integers 
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    𝑝0 = dim 𝐼
(𝑁) ,

𝑝𝑁−𝑖 = dim 𝐼
(𝑖)|𝐼(𝑖+1) , 0 ≤ 𝑖 ≤ 𝑁 − 1,

𝑝𝑁+1 = dim𝐶(𝐼)|𝐼 .

                     (2.111) 

An integral manifold of 𝐼 annihilates all the elements of its derived flag, and in 

particular those of 𝐼(𝑁). A function 𝑔 with differential 𝑑𝑔 ∈ 𝐼(𝑁) is called a first 

integral of 𝐼, since its constant on all integral manifolds of 𝐼. There are two other 

integers, which can be defined for a Pfaffian system 𝐼. The wedge length or the 

Engel half-rank of 𝐼 is the smallest integer 𝜌 such that 

(𝑑𝜙)𝜌+1 ≡   mod {𝐼}, ∀𝜙 ∈ 𝐼.                                     (2.112) 

The Cartan rank of 𝐼 is the smallest integer 𝑣 such that there exist 𝜋1, … , 𝜋𝑣 in 

Ω1(𝑀)|𝐼 with 𝜋1 ∧ …∧ 𝜋𝑣 ≠ 0, and 

𝑑𝜙 ∧ 𝜋1 ∧ …∧ 𝜋𝑣 ≡ 0  mod {𝐼}, ∀𝜙 ∈ 𝐼.                 (2.113) 

Then, we will introduce a simple properties concerning the wedge length and the 

Cartan rank. 

Definition (2.3.1): 

The Cartan system of 𝐼 is defined as the Pfaffian system generated as a differential 

ideal by the 1-forms that annihilate all Cauchy characteristic vector fields. The 

class of an exterior differential system is by definition the rank of its Cartan 

system. Then we have the following proposition: 

Proposition (2.3.2): 

The Cartan system 𝐶(𝐼) of any exterior differential system 𝐼 is a completely 

integrable Pfaffian system. The following retraction theorem shows that the first 

integrals of the Cartan system 𝐶(𝐼) provide a minimal set of local coordinates with 

which one can express the generators of 𝐼. 

 



59 
 

Proposition (2.3.3): 

Let 𝐼 be a Pfaffian system and 𝜌 its wedge length. Then all (𝜌 + 1)-fold products 

of the elements in 𝑑𝐼  mod {𝐼} are zero. 

Proof 

If 𝐼 is given by the equation (2.103), an element of the module 𝐼 is  

𝜙 = 𝜀1𝜙
1 +⋯+ 𝜀𝑠𝜙

𝑠                                                          (2.114) 

where 𝜀𝑖 are arbitrary smooth functions and can be considered as indeterminate. 

Then, the assumption implies 

(𝜀1𝑑𝜙
1 +⋯+ 𝜀𝑠𝑑𝜙

𝑠)𝜌+1 ≡ 0  mod {𝐼},                          (2.115) 

then, by expanding the left-hand side of the above equation and equating to zero 

the coefficients of the resulting polynomial in the 𝜀𝑖, that which proof the 

proposition ∎ 

Proposition (2.3.4): 

Between the wedge length 𝜌 and the Cartan rank 𝑣 the following inequalities hold 

𝜌 ≤ 𝑣 ≤ 2𝜌.                                                                             (2.116) 

Proof 

The condition that 𝑑𝜙 ∧ 𝜋1 ∧⋯∧ 𝜋𝑣 ≡ 0  mod {𝐼}, ∀𝜙 ∈ 𝐼, can be written in the 

form 

𝑑𝜙 ≡ 0  mod {𝐼, 𝜋1, … , 𝜋𝑣}.                                                (2.117) 

Hence 

(𝑑𝜙)𝑣+1 ≡ 0  mod {𝐼}, 𝜌 ≤ 𝑣.                                    (2.118) 

Bu using the definition of 𝜌 there exists 𝜂 ∈ 𝐼, such that 
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(𝑑𝜙)𝜌 ≢ 0, (𝑑𝜂)𝜌+1 ≡ 0  mod {𝐼}.                            (2.119) 

Then, by Darboux Theorem (2.2.13) and by Proposition (2.2.3), we get 

𝑑𝜙 ∧ (𝑑𝜂)𝜌 ≡ 0  mod {𝐼}, ∀𝜙 ∈ 𝐼.                            (2.120) 

It follows that 𝑣 ≤ 2𝜌. 

Remark (2.3.5): 

The bounds for 𝑣 in (2.116) are sharp. The lower bound is achieved by a system 

consisting of a single equation. To achieve the upper bound, consider in ℝ3𝜌+3 

with the coordinates (𝑥1𝑘 , 𝑥2𝑘 , 𝑥3𝑘 , 𝑦
1, 𝑦2, 𝑦3), 1 ≤ 𝑘 ≤ 𝜌, the Pfaffian system 

𝜙1 = 𝑑𝑦1 +∑𝑥2𝑘𝑑𝑥3𝑘
𝑘

,

𝜙2 = 𝑑𝑦2 +∑𝑥3𝑘𝑑𝑥1𝑘
𝑘

,

𝜙3 = 𝑑𝑦3 +∑𝑥1𝑘𝑑𝑥2𝑘
𝑘

.

                                                    (2.121) 

This system has 𝑣 = 2𝜌. 

Proposition (2.3.6): 

With our notations the following inequalities hold 

𝑠 + 2𝜌 ≤ dim𝐶(𝐼) ≤ 𝑠 + 𝜌 + 𝑝𝑁𝜌.                                  (2.122) 

Proof 

We remark that 𝐶(𝐼) is the retracting subspace of 𝐼. Then using the definition of 𝜌 

the left-hand side inequality is obvious. 

Then we will prove the inequality at the right-hand side we recall that by (2.111) 

𝑝𝑁 = dim 𝐼|𝐼1.                                                          

We choose a basis of 𝐼 such that 
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(𝑑𝜙1)𝜌 ≢ 0  mod {𝐼}.                                                            (2.123) 

Darboux theorem shows the left-hand side is a monomial, which can be written 

(𝑑𝜙1)𝜌 = 𝛽1 ∧⋯∧ 𝛽2𝜌 ≠ 0   mod {𝐼},                           (2.124) 

when 𝛽𝑖 are1-forms. By proposition (2.3.3) we have 

(𝑑𝜙1)𝜌 ∧ 𝑑𝜙𝑗 ≡ 0   mod {𝐼}, 2 ≤ 𝑗 ≤ 𝑝𝑁 ,               (2.125) 

then it is follows. 

Remark (2.3.7): 

The lower bound for dim𝐶(𝐼) is achieved by a system consisting of a single 

equation. To reach the upper bound consider the contact system 

𝐼 = {𝑑𝑧𝜆 −∑𝑝𝑖
𝜆𝑑𝑥𝑖} , 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛,     (2.126) 

in the space (𝑥𝑖 , 𝑧𝜆, 𝑝𝑖
𝜆). For this system we have 

𝐼1 = 0, 𝑠 = 𝑝𝑁 = 𝑛, 𝜌 = 𝑣 = 𝑚,         

and 

dim𝐶(𝐼) = 𝑚𝑛 +𝑚 + 𝑛.                                     

Theorem (2.3.8): (Bryant normal form) 

Let 𝐼 = {𝜙1, … , 𝜙𝑠} be a differential system with 𝐼1 = 0. If 

dim𝐶(𝐼) = 𝑠 + 𝑣𝑠 + 𝑣, 𝑠 ≥ 3,                                   (2.127) 

there is local coordinate system containing the coordinates 𝑥𝑖 , 𝑧𝜆, 𝑝𝑖
𝜆, 1 ≤ 𝑖 ≤ 𝑣, 

1 ≤ 𝜆 ≤ 𝑠, such that 

𝐼 = {𝑑𝑧𝜆 −∑𝑝𝑖
𝜆𝑑𝑥𝑖}.                                                       (2.128) 
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Proof 

Using the definition of 𝑣 there exist 𝜋1, … , 𝜋𝑣, such that 

𝜋1 ∧⋯∧ 𝜋𝑣 ≠ 0   mod 𝐼,

𝑑𝜙𝜆 ∧ 𝜋1 ∧⋯∧ 𝜋𝑣 ≡ 0   mod 𝐼.
                                        (2.129) 

The second relation can have written as 

𝑑𝜙𝜆 ≡∑𝜂𝑖
𝜆 ∧ 𝜋𝑖    mod  𝐼.                                                (2.130) 

The relation (2.127) implies that the forms 𝜙𝜆, 𝜋𝑖 , 𝜂𝑖
𝜆 are linearly independent. By 

exterior differentiation of the last relation, we get 

∑𝜂𝑖
𝜆 ∧ 𝜋𝑖 ≡ 0    mod  {𝐼, 𝜋1, … , 𝜋𝑣},                               (2.131) 

which implies 

𝑑𝜋𝑖 ≡ 0     mod  {𝐼, 𝜋1, … , 𝜋𝑣 , 𝜂𝑖
𝜆}.                                     (2.132) 

Since 𝑠 ≥ 3, this possible only when 

𝑑𝜋𝑖 ≡ 0   mod  𝐼, 𝜋1, … , 𝜋𝑣 .                                                 (2.133) 

It follows that the system 

𝐽 = {𝜙1, … , 𝜙𝑠, 𝜋1, … , 𝜋𝑣},                                                  (2.134) 

is completely integrable, so we can write 

𝐽 = {𝑑𝜉1, … , 𝑑𝜉𝑠+𝑣},                                                             (2.135) 

where 𝜉𝑖 are the first integrals. Then we have 

𝜙𝜆 =∑𝑏𝐴
𝜆𝑑𝜉𝐴 , 1 ≤ 𝐴 ≤ 𝑠 + 𝑣,                              (2.136) 

in which we can assume that the (𝑠 × 𝑠)-minor at the left-hand side of the matrix 

(𝑏𝐴
𝜆) ≠ 0. We write 
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𝜉𝜆 = 𝑧𝜆, 𝜉𝑠+𝑖 = 𝑥𝑖 , 1 ≤ 𝜆 ≤ 𝑠, 1 ≤ 𝑖 ≤ 𝑣,       (2.137) 

therefore, as we have 𝑥𝑖 , 𝑧𝜆, 𝑝𝑖
𝜆 are linearly independent, we can suppose 

𝐼 = {𝑑𝑧𝜆 −∑𝑝𝑖
𝜆𝑑𝑥𝑖}.                                                       (2.138) 

Remark (2.3.9): 

Theorem (2.3.8) is true for 𝑠 = 1, in which case it reduce to the Pfaffian problem. 

It is not true for 𝑠 = 2. An important counter-example is the following 

Consider in ℝ5 a Pfaffian system 

𝐼 = {𝜙1, 𝜙2},                                                                           (2.139) 

satisfying  

𝑑𝜙1 ≡ 𝜙3 ∧ 𝜙4, 𝑑𝜙2 ≡ 𝜙3 ∧ 𝜙5,   mod 𝐼,               (2.140) 

where 𝜙𝑖 , 𝑖 = 1, 2,… , 5 are linearly independent 1-forms. We have 𝐼1 = 0 and 

𝑠 = 2, 𝑣 = 1, dim𝐶(𝐼) = 5,                                        (2.141) 

then, the hypotheses of Theorem (2.3.8) are satisfied. 

Remark (2.3.10): 

The conclusion of theorem (2.3.8) remains valid, if the condition (2.127) is 

replaced by 

dim𝐶(𝐼) = 𝑠 + 𝜌𝑠 + 𝜌.                                                       (2.142) 

The proof is depending on an algebraic argument to show that 𝜌 = 𝑣. 

Example (2.3.11): 

Let ℝ4 be endowed with coordinates (𝑥, 𝑦, 𝑧, 𝑢), and let 𝑀 be the open subset ℝ4 

defined by 𝑢 > 0, 𝑦 > 0, 𝑥 + 𝑧 > 0. On 𝑀 consider the Pfaffian system 𝐼 defined 

by 
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𝐼 = {𝜃1, 𝜃2, 𝑑𝜃1, 𝑑𝜃2},                                                         (2.143) 

where 

𝜃1 = 𝑢2(𝑥 + 𝑧)(𝑑𝑥 + 2 𝑑𝑧),

𝜃2 = 𝑦4(𝑑𝑦 + 𝑢 𝑑𝑢).
                                              (2.144) 

The surfaces given the intersection of the parabolic cylinder 𝑐1 = 2𝑦 + 𝑢
2 with the 

hyperplanes 𝑐2 = 𝑥 + 2𝑧 in 𝑀, where 𝑐1, 𝑐2 are real constant, are the integral 

manifolds of maximal dimension of 𝐼. 

Example (2.3.12): 

We work on ℝ2𝑛+1 with coordinates (𝑥, 𝑢1, … , 𝑢𝑛, 𝑝1, … , 𝑝𝑛), and consider the 

Pfaffian system 

𝐼 = {𝑑𝑢𝑖 − 𝑝𝑖𝑑𝑥, 𝑑𝑝𝑖 ∧ 𝑑𝑥, 1 ≤ 𝑖 ≤ 𝑛}.                  (2.145) 

This Pfaffian system admits all the curves (𝑥(𝑡), 𝑢1(𝑡),… , 𝑢𝑛(𝑡), 𝑝1(𝑡),… , 𝑝𝑛(𝑡)) 

such that 

𝑢𝑡
𝑖 − 𝑝𝑖𝑥𝑡 = 0,                                                                        (2.146) 

as 1-dimensional integral manifolds. The integral manifolds of 𝐼 thus depend on 𝑛 

arbitrary 𝐶∞ function of one variable. 

Example (2.3.13): 

On consider the non-Pfaffian system 

𝐼 = {∑𝑑𝑝𝑖 ∧ 𝑑𝑥
𝑖

𝑛

𝑖=1

},                                                              (2.147) 

on ℝ2𝑛, with coordinates (𝑢1, … , 𝑢𝑛, 𝑝1, … , 𝑝𝑛). The sub-manifolds 

(𝑢1, … , 𝑢𝑛, 𝑝1 =
𝜕𝑓

𝜕𝑥1
, … , 𝑝𝑛 =

𝜕𝑓

𝜕𝑥𝑛
) are integral manifolds of 𝐼 of dimension 𝑛 for 

any choice of a 𝐶∞ function 𝑓 of 𝑛 variables. 
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Example (2.3.14): 

On ℝ8 with coordinates (𝑥, 𝑦, 𝑢, 𝑝, 𝑞, 𝑟, 𝑠, 𝑡), we consider the Pfaffian system 

𝐼 = {𝜃1, 𝜃2, 𝜃3, 𝑑𝜃1, 𝑑𝜃2, 𝑑𝜃3, 𝑑𝐹},                                   (2.148) 

where 

𝜃1 = 𝑑𝑢 − 𝑝𝑑𝑥 − 𝑞𝑑𝑦,

𝜃2 = 𝑑𝑝 − 𝑟𝑑𝑥 − 𝑠𝑑𝑦,

𝜃3 = 𝑑𝑞 − 𝑠𝑑𝑥 − 𝑡𝑑𝑦,

                                                         (2.149) 

and 𝐹:ℝ∞⟶ℝ is a smooth function such that (𝐹𝑟 , 𝐹𝑠, 𝐹𝑡) ≠ (0, 0, 0). The surfaces 

(𝑥(𝑤, 𝑧), 𝑦(𝑤, 𝑧), 𝑢(𝑤, 𝑧), 𝑝(𝑤, 𝑧), 𝑞(𝑤, 𝑧), 𝑟(𝑤, 𝑧), 𝑠(𝑤, 𝑧), 𝑡(𝑤, 𝑧)), 

such that 

𝐹(𝑥(𝑤, 𝑧), 𝑦(𝑤, 𝑧), 𝑢(𝑤, 𝑧), 𝑝(𝑤, 𝑧), 𝑞(𝑤, 𝑧), 𝑟(𝑤, 𝑧), 𝑠(𝑤, 𝑧), 𝑡(𝑤, 𝑧)) = 0, 

Note that if 

|
𝜕(𝑥, 𝑦)

𝜕(𝑤, 𝑧)
| ≠ 0,                                                                         (2.150) 

then the integral surface of 𝐼 can be locally parametrized as graphs of the form 

(𝑥, 𝑦, 𝑢(𝑥, 𝑦), 𝑝(𝑥, 𝑦), 𝑞(𝑥, 𝑦), 𝑟(𝑥, 𝑦), 𝑠(𝑥, 𝑦), 𝑡(𝑥, 𝑦)),        (2.151) 

with  

𝑝 = 𝑢𝑥 , 𝑞 = 𝑢𝑦 , 𝑟 = 𝑢𝑥𝑥 , 𝑠 = 𝑢𝑥𝑦 , 𝑡 = 𝑢𝑦𝑦 ,     (2.152) 

and 𝑢(𝑥, 𝑦) will be a solution of the second-order partial differential equation 

𝐹(𝑥, 𝑦, 𝑢, 𝑢𝑥 , 𝑢𝑦 , 𝑢𝑥𝑥 , 𝑢𝑥𝑦 , 𝑢𝑦𝑦) = 0.                                 (2.153) 
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We remark that one could have equivalently considered on the hypersurface 𝑀7 of 

ℝ8 the Pfaffian system 

𝐼𝐹 = {𝑖
∗𝜃1, 𝑖∗𝜃2, 𝑖∗𝜃3, 𝑖∗𝑑𝜃1, 𝑖∗𝑑𝜃2, 𝑖∗𝑑𝜃3},                    (2.154) 

obtained by pulling-back under the inclusion map 𝑖:𝑀7⟶ℝ8 the generators of 𝐼 

to 𝑀7. The integral manifolds of the form (2.151) will also correspond to solutions 

of the second-order partial differential equation (2.153). 

 Therefore, by adding the forms 𝜙𝑛−1, 𝜙𝑛 to the left-hand side of the form 

that we introduced in (2.103), so that 𝜙1, … , 𝜙𝑛 are linearly independent. Then we 

have 

𝑑𝜙𝑖 ≡ 𝑇𝑖𝜙𝑛−1 ∧ 𝜙𝑛  mod 𝐼, 1 ≤ 𝑖 ≤ 𝑠.                   (2.155) 

If 𝑇𝑖 = 0, 𝐼 is completely integrable, and 𝐼1 = 𝐼. We discard this case and suppose 

(𝑇1, … , 𝑇𝑠) ≠ 0. The 𝜙𝑖 are defined up to the non-singular linear transformation 

(
𝜙1

⋮
𝜙𝑛
) ⟶

(

 
 

𝑢1
1 𝑢𝑠

1 0 0
⋯    
𝑢1
𝑠 𝑢𝑠

𝑠 0 0

𝑢1
𝑛−1 𝑢𝑠

𝑛−1 𝑢𝑛−1
𝑛−1 𝑢𝑛

𝑛−1

𝑢1
𝑛 𝑢𝑠

𝑛 𝑢𝑛−1
𝑛 𝑢𝑛

𝑛 )

 
 
(
𝜙1

⋮
𝜙𝑛
).          (2.156) 

By choosing the above matrix 𝑢 properly, we can suppose 

𝑇1 = ⋯ = 𝑇𝑠−1 = 0, 𝑇𝑠 = 1,                                      (2.157) 

then 

𝑑𝜙1 ≡ ⋯ ≡ 𝑑𝜙𝑠−1 ≡ 0, 𝑑𝜙𝑠 ≡ 𝜙𝑠−1 ∧ 𝜙𝑛,   mod 𝐼.    (2.158) 

Under the choice 𝐼(1) is generated by 𝜙1, … , 𝜙𝑠−1, and we have dim 𝐼(1) =𝑠 − 1. 

 In the case 𝑠 = 2, 𝑛 = 4 we have the theorem: 
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Theorem (2.3.15): (Engel’s normal form) 

Let 𝐼 be a Pfaffian system of two equations in four variables with derived flag 

satisfying 

dim 𝐼(1) = 1, 𝐼(2) = 0.                                                   (2.159) 

Then locally there are coordinates 𝑥, 𝑦, 𝑦′, 𝑦′′ such that 

𝐼 = {𝑑𝑦 − 𝑦′𝑑𝑥, 𝑑𝑦′ − 𝑦′′𝑑𝑥}.                                           (2.160) 

 If the system is put into Engel normal form, then the “general solution” is 

visible given by 

𝑦 = 𝑓(𝑥), 𝑦′ = 𝑓′(𝑥), 𝑦′′ = 𝑓′′(𝑥),                  (2.161) 

where 𝑓(𝑥) is an arbitrary function, then the general solution represented the 

Pfaffian system with independence condition: (𝐼, 𝑑𝑥) so that 𝑑𝑥 ≠ 0. 

The following theorem, known as the Pfaff normal form, provides a 

description of the integral manifolds of maximal dimension of a smooth Pfaffian 

system which is generated as a differential ideal by a single one-form (𝑠 = 1), and 

which is not completely integrable. 

Theorem (2.3.16): (Pfaff normal form) 

Let 𝑀𝑛 be a 𝐶∞ manifold and let 

𝐼 = {𝜃, 𝑑𝜃},                                                                             (2.162) 

be a 𝐶∞ Pfaffian system on 𝑀𝑛. Suppose that there exists an integer 𝑟 ≥ 0 such 

that we have (𝑑𝜃)𝑟 ∧ 𝜃 ≠ 0, (𝑑𝜃)𝑟+1 ∧ 𝜃 = 0, on 𝑀𝑛. Then there exist local 

coordinates (𝑥1, … , 𝑥𝑟 , 𝑧, 𝑝1, … , 𝑝𝑟 , 𝑢2𝑟+2, … , 𝑢𝑛) such that 

𝐼 = {𝑑𝑧 −∑𝑝𝑖𝑑𝑥
𝑖

𝑟

𝑖=1

,∑𝑑𝑝𝑖 ∧ 𝑑𝑥
𝑖

𝑟

𝑖=1

}.                                (2.163) 
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The Goursat normal form theorem, which we now present, applies to a class 

of Pfaffian systems which are generated as a differential ideal by more than a 

single one-form, and which are not completely integrable. 

Theorem (2.3.19): (The Goursat normal form) 

Let 𝑀𝑛 be a 𝐶∞ manifold and let 

𝐼 = {𝜃1, … , 𝜃𝑟 , 𝑑𝜃1, … , 𝑑𝜃𝑟},                                              (2.164) 

be a Pfaffian system of class 𝐶∞ on 𝑀𝑛. Suppose that there exist 1-forms 𝛼 and 𝜋, 

where 𝛼 and 𝜋 are not congruent to zero modulo 𝐼, such that, 

𝑑𝜃1 ≡ 𝜃2 ∧ 𝜋  mod {𝜃1},

𝑑𝜃2 ≡ 𝜃3 ∧ 𝜋  mod {𝜃1, 𝜃2},
⋮
𝜃𝑟−1 ≡ 𝜃𝑟 ∧ 𝜋  mod {𝜃1, … , 𝜃𝑟−1},

𝜃𝑟 ≡ 𝛼 ∧ 𝜋  mod {𝜃1, … , 𝜃𝑟}.

                                   (2.165) 

Then there exist local coordinates (𝑥, 𝑦, 𝑦1, … , 𝑦𝑟) such that 

𝐼 = {𝑑𝑦 − 𝑦1𝑑𝑥,… , 𝑑𝑦𝑟−1 − 𝑦𝑟𝑑𝑥, 𝑑𝑦1 ∧ 𝑑𝑥,… , 𝑑𝑦𝑟 ∧ 𝑑𝑥}.    (2.166) 

It is easy to see that the integral manifolds of maximal dimension of a system 

satisfying the Goursat normal form are locally parametrized by one arbitrary 𝐶∞ 

function of one variable. 
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CHAPTER THREE 

Cartan-Kähler Theory 

Section (3.1): Introduction to Caratn-Kähler Theory 

In the previous chapter, we have discussed how problems in differential geometry 

and partial differential equations can often be reformed as problems about integral 

manifolds of appropriate exterior differential systems. Moreover, in differential 

geometry, particularly in the theory and applications of the moving frame and 

Cartan's methods of the equivalence [8,9,10], the problems to be studied often 

appear naturally in the form of exterior differential system anyway. 

 This motivates the problem of finding a general method of constructing 

integral manifold. When the exterior differential system 𝐼 has a particularly simple 

form, standard differential calculus and the techniques of ordinary differential 

equations allow a complete (local) description of the integral manifolds of 𝐼. We 

illustrate in the previous chapter some examples are supplied by the theorems of 

Foebenius, Pfaaff-Darboux. 

 However, the differential systems arising in practice are usually more 

complicated that the ones dealt with in the previous chapter. Certainly, one can't 

expect to construct the general integral manifold of a differential system 𝐼 using 

ordinary differential equation techniques alone. However, at least locally, this 

problem can be expressed as a problem in partial differential equations. It's 

instructive to see how this could be possible. 

 Suppose that we are interested in finding the 𝑛-dimensional manifolds of the 

set 𝑆, where 𝑆 ⊂ Ω∗(𝑀) be an arbitrary set of differential forms on 𝑀. To simplify 

our notation, we will agree on the index ranges 1 ≤ 𝑖, 𝑗, 𝑘 ≤ 𝑛 and                      

1 ≤ 𝑎, 𝑏, 𝑐 ≤ 𝑚 − 𝑛 and use of the summation convention. We choose local 

coordinates 𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑚−𝑛 centered at 𝑧 on a 𝑧-neighborhood 𝑈 ⊂ 𝑀. Let 

Ω = 𝑑𝑥1 ∧ …∧ 𝑑𝑥𝑛 and 𝐺𝑛(𝑇𝑈, Ω) denote the dense open subset of 𝐺𝑛(𝑇𝑈) 
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consisting of the 𝑛-planes 𝑃 ⊂ 𝑇𝑤𝑈 on which Ω restricts to be non-zero. Then 

there are well defined functions 𝑝𝑖
𝑎 on 𝐺𝑛(𝑇𝑈, Ω) so that, for each 𝑝 ∈ 𝐺𝑛(𝑇𝑈, Ω), 

the vectors 

𝑋𝑖(𝑃) = (
𝜕

𝜕𝑥𝑖
+ 𝑝𝑖

𝑎(𝑃)
𝜕

𝜕𝑦𝑎
)|
𝑤

,                                             (3.1) 

from a basis of 𝑃.  In the fact the functions 𝑥𝑖 , 𝑦𝑎, 𝑝𝑖
𝑎 form a coordinate system on 

𝐺𝑛(𝑇𝑈, Ω). 

 Now for each 𝑞-form 𝜑 on 𝑈 with 𝑞 ≤ 𝑛 and every multi-index 𝐽 =

(𝑗1, … , 𝑗𝑞) with 1 ≤ 𝑗1 ≤ 𝑗2 ≤ ⋯ ≤ 𝑗𝑞 ≤ 𝑛 we may define a function 𝐹𝜑,𝐽 on 

𝐺𝑛(𝑇𝑈, Ω) by sitting 

𝐹𝜑,𝐽(𝑃) = 𝜑 (𝑋𝑗1(𝑃),… , 𝑋𝑗𝑞(𝑃)).                                          (3.2) 

(Note that, when 𝐹𝜑,𝐽 is expressed in the coordinates 𝑥𝑖 , 𝑦𝑎, 𝑝𝑖
𝑎, it's linear in the 

(𝑘 × 𝑘)-minors of the matrix 𝑝 = (𝑝𝑖
𝛼), where 𝑘 ≤ 𝑞.) 

 Any submanifold 𝑉 ⊂ 𝑈 of dimension 𝑛 which passes through 𝑧 ∈ 𝑈 and 

satisfies Ω|𝑉 ≠ 0 can be described in a neighborhood of 𝑧 as a "graph" 𝑦𝑎 =

𝑢𝑎(𝑥) = 𝑢𝑎(𝑥1, … , 𝑥𝑛) of the set 𝑚− 𝑛 functions 𝑢𝑎 of the 𝑛 variables 𝑥𝑖. For 

each 𝑤 = (𝑥, 𝑢(𝑥)) in 𝑉, the 𝑝-coordinates of 𝑇𝑤𝑉 ∈ 𝐺𝑛(𝑇𝑈,Ω) are simply the 

partials 𝑝𝑖
𝑎 = 𝜕𝑢𝑎 𝜕𝑥𝑖⁄  evaluated at 𝑥. It follows that 𝑉 is an integral manifold of 𝑆 

if and only if the function 𝑢 satisfies the system of the first order partial differential 

equations 

𝐹𝜑,𝐽(𝑥, 𝑢, 𝜕𝑢 𝜕𝑥⁄ ) = 0,                                                               (3.3) 

for all 𝜑 ∈ 𝑆 and all 𝐽 with deg(𝜑) = |𝐽| ≤ 𝑛. 

 Thus, constructing integral manifolds of 𝑆 is locally equivalent to solving a 

system of first order partial differential equations of the form (3.3). Conversely, 

any first order system of partial differential equations for the functions 
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𝑢1, … , 𝑢𝑚−𝑛 as functions of 𝑥1, … , 𝑥𝑛 which is linear in the minors of the Jacobean 

matrix 𝜕𝑢 𝜕𝑥⁄  can be expressed as the condition that the graph (𝑥, 𝑢(𝑥)) in ℝ𝑚 be 

an integral manifold of an appropriate set 𝑆 of differential forms on ℝ𝑚. 

 It is natural to ask about methods of solving systems of P.D.E. of the form 

(3.3). It is rare that the system (3.3) can be placed in a form to which the classical 

existence theorems in P.D.E. can be applied directly. In general, even for simple 

systems 𝑆, the corresponding system of the equations (3.3) is over-determined, 

meaning that there are independent equations in (3.3) that unknowns 𝑢. For 

example, if 𝑚 = 2𝑛 and 𝑆 consists of the single differential form                       

𝜑 = 𝑑𝑦1 ∧ 𝑑𝑥1 +⋯+ 𝑑𝑦𝑛 ∧ 𝑑𝑥𝑛, then (3.3) becomes the system of the equations 

𝜕𝑢𝑖 𝜕𝑥𝑗⁄ = 𝜕𝑢𝑗 𝜕𝑥𝑖⁄ , which is over-determined when 𝑛 > 3. Even when (3.3) isn't 

over-determined, it can't generally be placed in one of the classical forms (e.g., 

Cauchy-Kowalevski). 

 Nevertheless, we can generalize the system (3.3) by initial value problem. 

Example (3.1.1): 

Consider the following system of the first order P.D.E.s for one function 𝑢(𝑥, 𝑦): 

𝑢𝑥 = 𝐹(𝑥, 𝑦, 𝑢), 𝑢𝑦 = 𝐺(𝑥, 𝑦, 𝑢),                                    (3.4) 

if we found a solution (3.4) which satisfies 𝑢(0,0) = 𝑐, then we may try to 

construct such as a solution by first solving the initial value problem 

𝑣𝑥 = 𝐹(𝑥, 0, 𝑣), where       𝑣(0) = 𝑐,                             (3.5) 

for 𝑣 as a function of 𝑥 

𝑢𝑦 = 𝐺(𝑥, 𝑦, 𝑢), where        𝑢(𝑥, 0) = 𝑣(𝑥).                (3.6) 

Assuming that 𝐹 and 𝐺 are smooth in a neighborhood of (𝑥, 𝑦, 𝑢) = (0,0, 𝑐), 

standard ordinary differential equation theory tells us that this process will yield a 

smooth function 𝑢(𝑥, 𝑦) defined on a neighborhood of (𝑥, 𝑦) = (0,0). However, 
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the function 𝑢 may not satisfy the equation 𝑢𝑥 = 𝐹(𝑥, 𝑦, 𝑢) except along the line 

𝑦 = 0. In fact, if we set 𝐻(𝑥, 𝑦) = 𝑢𝑥(𝑥, 𝑦) − 𝑢𝑥, then 𝐻(𝑥, 0) = 0, and we may 

compute that 

𝐻𝑦(𝑥, 𝑦) = (𝐺(𝑥, 𝑦, 𝑢))𝑥 − 𝐹𝑦
(𝑥, 𝑦, 𝑢) − 𝐹𝑢(𝑥, 𝑦, 𝑢) 𝐺(𝑥, 𝑦, 𝑢)        (3.7) 

= 𝐺𝑢(𝑥, 𝑦, 𝑢) 𝐻(𝑥, 𝑦) + 𝑅(𝑥, 𝑦, 𝑢),                                         (3.8) 

where 

𝑅(𝑥, 𝑦, 𝑢) = 𝐹𝐺𝑢 − 𝐺𝐹𝑢 + 𝐺𝑥 − 𝐹𝑦 .                                       (3.9) 

 Suppose that 𝐹 and 𝐺 satisfy that identity 𝑅 ≡ 0. Then 𝐻 satisfies the 

differential equation with initial condition 

𝐻𝑦 = 𝐺𝑢(𝑥, 𝑦, 𝑢)𝐻     and      𝐻(𝑥, 0) = 0.   

By the usual uniqueness theorem in O.D.E., it follows that 𝐻(𝑥, 𝑦) ≡ 0, so 𝑢 

satisfies the system of the equations (3.4). It follows that the condition 𝑅 ≡ 0 is 

sufficient condition for the existence of the local solutions of (3.4) where 𝑢(0,0) is 

allowed to be an arbitrary constant as long as (0,0, 𝑢(0,0)) is in the common 

domain of 𝐹 and 𝐺. 

 Note that if we consider the differential system 𝐼 which is generated by the 

1-form 𝜗 = 𝑑𝑢 − 𝐹𝑑𝑥 − 𝐺𝑑𝑦, then 𝑑𝜗 ≡ −𝑅𝑑𝑥 ∧ 𝑑𝑦 .mod 𝜗, so the condition 

𝑅 ≡ 0 is equivalent to the condition that 𝐼 be generated algebraically by 𝜗. 

 Let us pursue the case of the first order equations with two independent 

variables a little further. Given a system of P.D.E. 𝑅(𝑥, 𝑦, 𝑢, 𝑢𝑥 , 𝑢𝑦) = 0, where 𝑢 

is regarded as a vector-valued function of the independent variables 𝑥 and 𝑦, then, 

under certain mild constant rank assumptions, it will be possible to place the 

equations in the following (local) normal form 

𝑢𝑥
0 = 𝐹(𝑥, 𝑦, 𝑢)                                                                         (3.10) 
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𝑢𝑦
0 = 𝐺(𝑥, 𝑦, 𝑢, 𝑢𝑥)

𝑢𝑦
1 = 𝐻(𝑥, 𝑦, 𝑢, 𝑢𝑥)

                                                                   (3.11) 

by making suitable changes of coordinates in (𝑥, 𝑦) and decomposing 𝑢 into 𝑢 =

(𝑢0, 𝑢1, 𝑢2) where each of the 𝑢𝛼 is a (vector-valued) unknown function of 𝑥 and 

𝑦. Note that the original system may thus be (roughly) regarded as being composed 

of an "over-determined" part (for  𝑢0), a "determined" part (for  𝑢1), and 

"underdetermined" part (for  𝑢2). (This "normal form" generalizes in a 

straightforward way to the case of 𝑛 independent variables, in which case the 

unknown functions 𝑢 are split into (𝑛 + 1) vector-valued components.) 

 The "Cauchy-Kowalevski approach" to solving the system in the real 

analytic case can then be described as follows: suppose that the collection 𝑢𝛼 

consist of 𝑠𝛼 ≥ 0 unknown functions. For simplicity's sake, we assume that 𝐹, 𝐺, 𝐷 

are real analytic and well-defined on the entire ℝ𝑘 where 𝑘 has the appropriate 

dimension. Then we choose 𝑠0 constants, which we write as 𝑓0, 𝑠1analytic 

functions of 𝑥, which we write as 𝑓1(𝑥), and 𝑠2 is analytic functions of 𝑥 and 𝑦, 

which we write as 𝑓2(𝑥, 𝑦). We then first solve the following system of O.D.E. 

with initial conditions for 𝑠0 functions 𝑣0 of 𝑥: 

𝑣𝑥
0 = 𝐹(𝑥, 0, 𝑣0, 𝑓1(𝑥), 𝑓2(𝑥, 0))

𝑣0(0) = 𝑓0,                                     
                                        (3.10𝑎) 

and then second solve the following system of P.D.E. with initial conditions for 

𝑠0 + 𝑠1 functions (𝑢0, 𝑢1) of 𝑥 and 𝑦: 

𝑢𝑦
0 = 𝐺(𝑥, 𝑦, 𝑢0, 𝑢1, 𝑓2(𝑥, 𝑦), 𝑢𝑥

0, 𝑢𝑥
1 , 𝑓𝑥

2(𝑥, 𝑦)),

𝑢𝑦
1 = 𝐷(𝑥, 𝑦, 𝑢0, 𝑢1, 𝑓2(𝑥, 𝑦), 𝑢𝑥

0, 𝑢𝑥
1 , 𝑓𝑥

2(𝑥, 𝑦)),

𝑢0(𝑥, 0) = 𝑣0(𝑥),

𝑢1(𝑥, 0) = 𝑓1(𝑥).

              (3.11𝑎) 

This process yields a function 𝑢(𝑥, 𝑦) = (𝑢0(𝑥, 𝑦), 𝑢1(𝑥, 𝑦), 𝑢2(𝑥, 𝑦)), where 

𝑢2(𝑥, 𝑦) is defined to be 𝑓2(𝑥, 𝑦) which is uniquely determined by the collection 
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𝑓 = {𝑓0, 𝑓1(𝑥), 𝑓2(𝑥, 𝑦)}. While it is clear that the 𝑢(𝑥, 𝑦) thus constructed 

satisfies (3.11), it isn't at all clear that 𝑢 satisfies (3.10). In fact, if we set 

𝐻(𝑥, 𝑦) = 𝑢𝑥
0(𝑥, 𝑦) − 𝑓(𝑥, 𝑦, 𝑢(𝑥, 𝑦)),                                (3.12) 

then 𝐻(𝑥, 𝑦) ≡ 0 since 𝑢(𝑥, 0) satisfies (3.10.1), but in general 𝐻(𝑥, 𝑦) ≢ 0 for the 

generic choice of initial data 𝑓. 

Example (3.1.2): 

Consider the following system of three equations for three unknown functions 

𝑢1, 𝑢2, 𝑢3 of three independent variables 𝑥1, 𝑥2, 𝑥3. Here we write 𝜕𝑗for 𝜕 𝜕𝑥𝑗⁄  and 

𝑣1, 𝑣2, 𝑣3 are some given functions of 𝑥1, 𝑥2, 𝑥3 

𝜕2𝑢
3 − 𝜕3𝑢

2 = 𝑢1 + 𝑣1,

𝜕3𝑢
1 − 𝜕1𝑢

3 = 𝑢2 + 𝑣2,

𝜕1𝑢
2 − 𝜕2𝑢

1 = 𝑢3 + 𝑣3.

                                                          (3.13) 

The approach to treating (3.13) as a sequence of Cauchy problems (with 

(𝑠0, 𝑠1, 𝑠2, 𝑠3) = (0, 1, 1, 1) is as follows: 

1) Choose three functions 𝜔1(𝑥1), 𝜔2(𝑥1, 𝑥2), 𝜔3(𝑥1, 𝑥2, 𝑥3). 

2) Solve the equation in ℝ2, 𝜕2𝑤 = −𝜕1𝜔
2 − �̅�3 − �̅�3 with the initial 

condition 𝑤(𝑥1, 0) = 𝜔1(𝑥1) where 

�̅�3(𝑥1, 𝑥2) = 𝜔3(𝑥1, 𝑥2, 0)

�̅�3(𝑥1, 𝑥2) = 𝑣3(𝑥1, 𝑥2, 0)
                                                    (3.14) 

3) Solve the pair of the equations 𝜕3𝑢
1 = 𝜕1𝜔

3 + 𝑢2 + 𝑣2 and 𝜕3𝑢
2 =

𝜕2𝜔
3 − 𝑢1 − 𝑣1 with the initial conditions 𝑢1(𝑥1, 𝑥2, 0) = 𝑤(𝑥1, 𝑥2) and 

𝑢2(𝑥1, 𝑥2, 0) = 𝜔2(𝑥1, 𝑥2). 

4) Set 𝑢3 equal to 𝜔3. 

However, the resulting set of functions 𝑢𝑎 will not generally be a solution to 

third equation (3.13). If we set 𝐸 = 𝜕1𝑢
2 − 𝜕2𝑢

1 − 𝑢3 − 𝑣3, then, of course 

𝐸(𝑥1, 𝑥2, 0) = 0, but if we compute 𝜕3𝐸 = −{𝜕1(𝑢
1 + 𝑣1) + 𝜕2(𝑢

2 + 𝑣2) +
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𝜕3(𝑢
3 + 𝑣3)}, we see that 𝐸 vanishes identically if and only if the functions 𝑢𝑎 

satisfy the additional equation 

0 = 𝜕1(𝑢
1 + 𝑣1) + 𝜕2(𝑢

2 + 𝑣2) + 𝜕3(𝑢
3 + 𝑣3).              (3.15) 

This suggests modifying our Cauchy sequence by adjoining (3.15), thus getting a 

new system with (𝑠0, 𝑠1, 𝑠2, 𝑠3) = (0, 1, 2, 0) and then proceeding as follows: 

1)* Choose three functions 𝜔1(𝑥1), 𝜔2(𝑥1, 𝑥2), 𝜔3(𝑥1, 𝑥2). 

2)* Solve the equation in ℝ2, 𝜕2𝑤 = −𝜕1𝜔
2 −𝜔3 − �̅�3 with the initial 

condition 𝑤(𝑥1, 0) = 𝜔1(𝑥1) where 

�̅�3(𝑥1, 𝑥2) = 𝑣3(𝑥1, 𝑥2, 0).                                                     (3.16) 

3)* Solve the triple of equations with initial conditions 

𝜕3𝑢
1 = 𝜕1𝑢

3 + 𝑢2 + 𝑣2,                                              𝑢1(𝑥1, 𝑥2, 0) = 𝑤(𝑥1, 𝑥2)

𝜕3𝑢
2 = 𝜕2𝑢

3 − 𝑢1 − 𝑣1,                                            𝑢2(𝑥1, 𝑥2, 0) = 𝜔2(𝑥1, 𝑥2)

𝜕3𝑢
3 = −𝜕1(𝑢

1 + 𝑣1) − 𝜕2(𝑢
2 + 𝑣2) − 𝜕3𝑣

3,    𝑢3(𝑥1, 𝑥2, 0) = 𝜔3(𝑥1, 𝑥2)

.  

It then follows easily that the resulting 𝑢𝑎 also satisfy third equation (3.13). In the 

example just given, the "compatibility condition" took the form of extra equation 

which must be adjoined to the given equations so that the Cauchy sequence 

approach would work. 

(3.2): Integral Elements and Polar Space 

 All through this section, 𝑀 will be a smooth manifold of dimension 𝑚 and 𝐼 

will be a differential ideal on 𝑀. 

Definition (3.2.1): 

Let 𝑧 ∈ 𝑀 and 𝐸 ∈ 𝑇𝑧𝑀a linear subspace of 𝑇𝑧𝑀. 𝐸 Is an integral element 

of 𝐼 if 𝜑𝐸 = 0,∀𝜑 ∈ 𝐼. We denote by 𝒱𝑝(𝐼) the set of 𝑝-dimensional integral 

elements of 𝐼. 
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Example (3.2.2) 

Let 𝑀 = ℝ5 and let 𝐼 be generated by the two 1-forms 

𝜗1 = 𝑑𝑥1 + (𝑥3 − 𝑥4𝑥5)𝑑𝑥4,

𝜗2 = 𝑑𝑥2 + (𝑥3 + 𝑥4𝑥5)𝑑𝑥5,
                                               (3.17) 

so that, 

𝐼 = {𝜗1, 𝜗2, 𝑑𝜗1 = 𝜗3 ∧ 𝑑𝑥4, 𝑑𝜗2 = 𝜗3 ∧ 𝑑𝑥5},               (3.18) 

is generated algebraically, then, we have written 

𝜗3 = 𝑑𝑥3 + 𝑥5𝑑𝑥4 − 𝑥4𝑑𝑥5                                                 (3.19) 

for each 𝑝 ∈ 𝑀, let 

𝐻𝑝 = {𝑣 ∈ 𝑇𝑝ℝ
5 |  𝜗1(𝑣) = 𝜗2(𝑣) = 0} ⊂ 𝑇𝑝ℝ

5,            (3.20) 

then 𝐻 ⊂ 𝑇ℝ5 is a rank 3 distribution. A 1-dimensional subspace 𝐸 ⊂ 𝑇𝑝ℝ
5 is an 

integral element of 𝐼 if and only if 𝐸 ⊂ 𝐻𝑝. Thus, 𝑉1(𝐼) ≅ 𝕡𝐻 and it is a smooth 

manifold of dimension 7. Now let 

𝐾𝑝 = {𝑣 ∈ 𝑇𝑝ℝ
5 |  𝜗1(𝑣) = 𝜗2(𝑣) = 𝜗3(𝑣) = 0}.           (3.21) 

then 𝐾 ⊂ 𝐻 is a rank 2 distribution on ℝ5. It is easy to see that, for each 𝑝 ∈ ℝ5, 

𝐾𝑝 is the unique 2-dimensional integral element of 𝐼 based at 𝑝. Thus, 𝑉2(𝐼) ≅ ℝ
5. 

Moreover, 𝐼 have no integral elements of dimension greater than two. 

The example (3.2.2) it illustrate several concepts in this section, and also shows, 

the relationship between the integral elements of the differential system and its 

integral manifolds can be subtle. In general, even the problem of describing the 

spaces 𝑉𝑛(𝐼) can be complicated. Whatever remains of this section will be 

dedicated to devoted fundamental properties of integral elements of 𝐼 and of the 

subsets 𝑉𝑛(𝐼). 
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Definition (3.2.3): 

𝑁 is an integral manifold of 𝐼 if and only if each tangent space of 𝑁 is an integral 

element of 𝐼. 

Proposition (3.2.4): 

If 𝐸 is a 𝑝-dimensional integral elements of 𝐼, then every subspace of 𝐸 are also 

integral elements of 𝐼. 

We denote by 𝐼𝑝 = 𝐼 ∩𝒜
𝑝(𝑀) the set of differential 𝑝-forms of 𝐼. 

Proposition (3.2.5): 

𝒱𝑝(𝐼) = {𝐸 ∈ 𝐺𝑝(𝑇𝑀)|𝜑𝐸 = 0,∀𝜑 ∈ 𝐼𝑝}.                          (3.22) 

Definition (3.2.6): 

An integral element of dimension 𝑛 on which Ω ≠ 0 is called admissible. A 𝑛-

dimensional integral element on which Ω ≠ 0 is called admissible. 

Definition (3.2.7): 

Let 𝐸 an integral element of 𝐼. Let {𝑒1, … , 𝑒𝑝} a basis of 𝐸 ⊂ 𝑇𝑧𝑀. The polar space 

of 𝐸, denoted by 𝐻(𝐸), is the vector space defined as follow 

𝐻(𝐸) = {𝑣 ∈ 𝑇𝑧𝑀|𝜑(𝑣, 𝑒1, … , 𝑒𝑝) = 0, ∀𝜑 ∈ 𝐼𝑝+1}.        (3.23) 

 Note that 𝐸 ⊂ 𝐻(𝐸). This implies that a differential form is alternate. The 

polar space is most valuable role in exterior differential system theory as we shall 

illustrate by the following proposition. 

Proposition (3.2.8) 

Let 𝐸 ⊂ 𝒱𝑝(𝐼) be an 𝑝-dimensional integral elements of 𝐼. A (𝑝 + 1)-dimensional 

vector space 𝐸+ ⊂ 𝑇𝑧𝑀 which contaians 𝐸 is an integral element of 𝐼 if and only if 

𝐸+ ⊂ 𝐻(𝐸). 
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 In order to check if a given 𝑝-dimensional integral element of an exterior 

differential ideal 𝐼 is contained in a (𝑝 + 1)-dimensional integral element of 𝐼, we 

introduce the following function 𝑟: 𝒱𝑝(𝐼) ⟶ ℤ, 𝑟(𝐸) = dim𝐻(𝐸) − (𝑝 + 1) is a 

relative integer, ∀𝐸 ∈ 𝒱𝑝(𝐼). 

 Notice that 𝑟(𝐸) ≥ 1. If 𝑟(𝐸) = −1, then 𝐸 is contained in any (𝑝 + 1)-

dimensional integral element of 𝐼. 

While determining the structure of 𝒱𝑝(𝐼) can be difficult, one sees that the 

problem of understanding the (𝑝 + 1)-dimensional extensions that are integral 

elements of a given 𝑝-dimensional integral element is essentially a linear one. 

(3.2.1): Ordinary and Regular Integral Elements, and Integral Flags 

Let Ω a differential 𝑛-form on a 𝑚-dimensional manifold 𝑀. Let 

𝐺𝑛(𝑇𝑀,Ω) = {𝐸 ∈ 𝐺𝑛(𝑇𝑀)|ΩE ≠ 0}, where 𝐺𝑛(𝑇𝑀) is the Grassmanian of 𝑇𝑀, 

i.e., the set of 𝑛-dimensional subspace of 𝑇𝑀. We denote the set of integral 

elements of 𝐼 by 𝒱𝑛(𝐼, Ω) = 𝒱𝑛(𝐼) ∩ 𝐺𝑛(𝑇𝑀,Ω) which Ω𝐸 ≠ 0. 

Definition (3.2.9): 

An integral element 𝐸 ∈ 𝒱𝑛(𝐼) is called Kähler-ordinary if there exists a 

differential 𝑛-form Ω such that Ω𝐸 ≠ 0. Moreover, if the function 𝑟 is locally 

constant in some neighborhood of 𝐸, then is said Kähler-regular. 

Example (3.2.10): 

We will show that all of the 2-dimensional integral elements of 𝐼 are Kähler-

regular. Let Ω = 𝑑𝑥4 ∧ 𝑑𝑥5. Then every element 𝐸 ∈ 𝐺2(𝑇ℝ
5, Ω) has a basis 

{𝑋4, 𝑋5} of the form 

𝑋4(𝐸) = 𝜕 𝜕𝑥
4⁄ + 𝑝4

1(𝐸) 𝜕 𝜕𝑥1⁄ + 𝑝4
2(𝐸) 𝜕 𝜕𝑥2⁄ + 𝑝4

3(𝐸) 𝜕 𝜕𝑥3⁄

𝑋5(𝐸) = 𝜕 𝜕𝑥
5⁄ + 𝑝5

1(𝐸) 𝜕 𝜕𝑥1⁄ + 𝑝5
2(𝐸) 𝜕 𝜕𝑥2⁄ + 𝑝5

3(𝐸) 𝜕 𝜕𝑥3⁄
.   (3.24) 
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the functions 𝑥1, … , 𝑥5, 𝑝5
1, … , 𝑝5

3 for a coordinate system on 𝐺2(𝑇ℝ
5, Ω). 

Computation gives 

(𝜗1 ∧ 𝑑𝑥4)Ω = −𝑝5
1                             

(𝜗1 ∧ 𝑑𝑥5)Ω = 𝑝4
1 + (𝑥3 − 𝑥4𝑥5)    

(𝜗2 ∧ 𝑑𝑥4)Ω = −𝑝5
2 − (𝑥3 + 𝑥4𝑥5)

(𝜗2 ∧ 𝑑𝑥5)Ω = 𝑝4
2                                

(𝜗3 ∧ 𝑑𝑥4)Ω = −𝑝5
3 + 𝑥4

(𝜗3 ∧ 𝑑𝑥5)Ω = −𝑝4
3 − 𝑥5

                  

                                    (3.25) 

every point of 𝒱2(𝐼) is kähler-ordinary. Since none of these elements has any 

extension to a 3-dimensional integral element, it follows that 𝑟(𝐸) = −1,       

∀ 𝐸 ∈ 𝒱2(𝐼). Thus, every element of 𝒱2(𝐼) is also kähler-regular. 

Definition (3.2.11): 

An integral flag of 𝐼 on 𝑧 ∈ 𝑀 of length 𝑛 is a sequence of integral elements 𝐸𝑘 of 

𝐼: (0)𝑧 ⊂ 𝐸1 ⊂ ⋯ ⊂ 𝐸𝑛 ⊂ 𝑇𝑧𝑀. 

Proposition (3.2.12): (Cartan’s Bound) 

Given 𝐸 ∈ 𝒱𝑛(𝐼) and a flag 𝐹 = (𝐸𝑖) in 𝐸, then there is an open 𝐸-neighborhood 

𝑈 ⊂ Gr𝑛(𝑇𝑀) such that 𝒱𝑛(𝐼) ∩ 𝑈 is contained in smooth submanifold of 𝑈 of 

codimension 𝑐(𝐹) = 𝑐(𝐸0) + ⋯+ 𝑐(𝐸𝑛−1). 

Theorem (3.2.13): (Cartan's Test) 

Let 𝐼 ⊂ 𝐴∗(𝑀) be an exterior ideal which doesn't contain 0-forms (functions on 

𝑀). Let (0)𝑧 ⊂ 𝐸1 ⊂ ⋯ ⊂ 𝐸𝑛 ⊂ 𝑇𝑧𝑀 be an integral flag of 𝐼. For any 𝑘 < 𝑛, we 

denote by 𝑐𝑘 the codimension of the polar space 𝐻(𝐸𝑘) in 𝑇𝑧𝑀. Then          

𝒱𝑛(𝐼) ⊂ 𝐺𝑛(𝑇𝑀) is at least of 𝑐0, 𝑐1, … , 𝑐𝑛−1 codimension at 𝐸𝑛. Moreover, 𝐸𝑛 is 

an ordinary integral flag if and only if 𝐸𝑛 has a neighborhood 𝑈 in 𝐺𝑛(𝑇𝑀) such 

that 𝒱𝑛(𝐼) ∩ 𝑈 is a manifold of 𝑐0 + 𝑐1 +⋯+ 𝑐𝑛−1 codimension in 𝑈. 
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Example (3.2.14): 

By using Theorem (3.2.13), we can give a quick proof the none-elements in 𝒱2(𝐼) 

are ordinary. For any integral flag (0)𝑧 ⊂ 𝐸1 ⊂ 𝐸2 ⊂ 𝑇𝑧ℝ
5, we know that 𝑐0 ≤ 2 

since there are two independent 1-forms in 𝐼. Also, since 𝐸2 ⊂ 𝐻(𝐸1), it follows 

that 𝑐1 ≤ 3. Since there is unique 2-dimensional integral element at each point of 

ℝ5 it follows that 𝒱2(𝐼) has codimension six in 𝐺2(𝑇ℝ
5). Since 𝑐0 + 𝑐1 < 6, it 

follows, by theorem (3.2.13), that none of the integral flags of length two can be 

ordinary. Hence there are no ordinary integral elements of dimension two. 

Example (3.2.15): 

Let 𝑀 = ℝ6 with coordinates 𝑥1, 𝑥2, 𝑥3, 𝑢1, 𝑢2, 𝑢3. Let 𝐼 be the differential system 

generated by the 2-form 

𝜗 = 𝑑(𝑢1𝑑𝑥
1 + 𝑢2𝑑𝑥

2 + 𝑢3𝑑𝑥
3)                                                                                      

− (𝑢1𝑑𝑥
2 ∧ 𝑑𝑥3 + 𝑢2𝑑𝑥

3 ∧ 𝑑𝑥1 + 𝑢3𝑑𝑥
1 ∧ 𝑑𝑥2).                      (3.26) 

Of course, 𝐼 generated algebraically by the forms {𝜗, 𝑑𝜗}. Then, we have 

𝑑𝜗 = −(𝑑𝑢1 ∧ 𝑑𝑥
2 ∧ 𝑑𝑥3 + 𝑑𝑢2 ∧ 𝑑𝑥

3 ∧ 𝑑𝑥1 + 𝑑𝑢3 ∧ 𝑑𝑥
1 ∧ 𝑑𝑥2).     (3.27) 

We can use the theorem (3.2.13) to show that all of 3-dimensional integral 

elements of 𝐼 on which Ω = 𝑑𝑥1 ∧ 𝑑𝑥2 ∧ 𝑑𝑥3 does not vanish are ordinary. Let 

𝐸 ∈ 𝒱3(𝐼, Ω) be fixed with base point 𝑧 ∈ ℝ6. Let (𝑒1, 𝑒2, 𝑒3) be basis of 𝐸 which 

is dual of basis (𝑑𝑥1, 𝑑𝑥2, 𝑑𝑥3) of 𝐸∗. Let 𝐸1 be the line spanned by 𝑒1, let 𝐸2 be 

the 2-plane spanned by the pair {𝑒1, 𝑒2}, and 𝐸3 be 𝐸. Then (0)𝑧 ⊂ 𝐸1 ⊂ 𝐸2 ⊂ 𝐸3 

is an integral flag. Since 𝐼 is generated by {𝜗, 𝑑𝜗}, it follows that 𝑐0 = 0. 

Moreover, since 𝜗(𝑣, 𝑒1) = 𝜏1(𝑣) where 𝜏1 ≡ 𝑑𝑢1mod (𝑑𝑥
1, 𝑑𝑥2, 𝑑𝑥3), it follows 

that 𝑐1 = 1. Note that, since 𝐸3 ⊂ 𝐻(𝐸2), it follows that 𝑐2 ≤ 3. On the hand, we 

have the formula 

𝜗(𝑣, 𝑒1) = 𝜏1(𝑣),

𝜗(𝑣, 𝑒2) = 𝜏2(𝑣),

𝑑𝜗(𝑣, 𝑒1, 𝑒2) = −𝜏3(𝑣),
                                                           (3.28) 
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where in each case, 𝜏𝑘 ≡ 𝑑𝑢𝑘  mod (𝑑𝑥
1, 𝑑𝑥2, 𝑑𝑥3). Since the 1-form 𝜏𝑘 are 

clearly independent and annihilate 𝐻(𝐸2), it follows that 𝑐2 ≥ 3. Combined with 

the pervious argument, we have 𝑐2 = 3. It follows by theorem (3.2.13) that the 

codimension of 𝒱3(𝐼) in 𝐺3(𝑇ℝ
6) at 𝐸 is at least 𝑐0 + 𝑐1 + 𝑐3 = 4. Now, we shall 

illustrate that 𝒱3(𝐼, Ω) is smooth submanifold of 𝐺3(𝑇ℝ
6) of codimension four, 

and thence, by theorem (3.2.13), conclude that 𝐸 is ordinary. To do this, we 

introduce functions 𝑝𝑖𝑗 on 𝐺3(𝑇ℝ
6, Ω) with the property that, for each 𝐸 ∈

𝐺3(𝑇ℝ
6, Ω) based at 𝑧 ∈ ℝ6, the forms 𝜏𝑖 = 𝑑𝑢𝑖 − 𝑝𝑖𝑗(𝐸) 𝑑𝑥

𝑗 ∈ 𝑇𝑧
∗(ℝ6) are a 

basis for the 1-forms which annihilate 𝐸. Then the functions (𝑥, 𝑢, 𝑝) form a 

coordinate system on 𝐺3(𝑇ℝ
6, Ω). It is easy to compute that 

 𝜗𝐸 = (𝑝23 − 𝑝32 − 𝑢1)𝑑𝑥
2 ∧ 𝑑𝑥3 + (𝑝31 − 𝑝13 − 𝑢2)𝑑𝑥

3 ∧ 𝑑𝑥1                    

+ (𝑝12 − 𝑝21 − 𝑢3)𝑑𝑥
1 ∧ 𝑑𝑥2                                                           (3.28) 

𝑑𝜗𝐸 = −(𝑝11 + 𝑝22 + 𝑝33)𝑑𝑥
1 ∧ 𝑑𝑥2 ∧ 𝑑𝑥3.                    (3.29) 

It follows that the condition that 𝐸 ∈ 𝐺3(𝑇ℝ
6, Ω) be an integral element of 𝐼 is 

equivalent to the vanishing of four functions on 𝐺3(𝑇ℝ
6, Ω) whose differentials are 

independent. Thus, 𝒱3(𝐼, Ω) is smooth manifold of codimension 4 in 𝐺3(𝑇ℝ
6, Ω). 

Proposition (3.2.16): 

Let 𝐼 ∩ 𝐴∗(𝑀) an exterior ideal which don’t contains 0-forms. Let 𝐸 ⊂ 𝒱𝑛(𝐼) be an 

integral element of 𝐼 at the point 𝑧 ∈ 𝑀. Let 𝜔1, 𝜔2, … , 𝜔𝑛, 𝜏1, 𝜏2, … , 𝜏𝑠 (where  

𝑠 = dim𝑀 − 𝑛) be a coframe in an open neighborhood of 𝑧 ∈ 𝑀 such that               

𝐸 = {𝑣 ∈ 𝑇𝑧𝑀|𝜏𝑎(𝑣) = 0,    ∀𝑎 = 1,… , 𝑠}. For all 𝑝 ≤ 𝑛, we define                

𝐸𝑝 = {𝑣 ∈ 𝐸|𝜔𝑘(𝑣) = 0, ∀ 𝑘 > 𝑝}. Let {𝜑1, … , 𝜑𝑟} be the set differential forms 

which generate the exterior ideal 𝐼, where 𝜑𝜌 is of (𝑑𝜌 + 1) degree. For all 𝜌, there 

exists an expansion 

𝜑𝜌 = ∑ 𝜏𝜌
𝐽 ∧ 𝜔𝐽 + �̃�𝜌

|𝐽|=𝑑𝜌

                                                       (3.29) 
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where the 1-forms 𝜏𝜌
𝐽
 are linear combinations of the 𝜏's and the terms �̃�𝜌 are, either 

of degree 2 or more in the 𝜏's or else vanish at 𝑧. 

Moreover, we have the formula 

𝐻(𝐸𝑝) = {𝑣 ∈ 𝑇𝑧𝑀|𝜏𝑎(𝑣) = 0, ∀ 𝜌 and sup 𝐽 ≤ 𝑝}         (3.30) 

In particular, for the integral flag (0)𝑧 ⊂ 𝐸1 ⊂ ⋯ ⊂ 𝐸𝑛 ∩ 𝑇𝑧𝑀 of 𝐼, 𝑐𝑝 is the 

number of the linear independent forms {𝜏𝜌
𝐽
|
𝑧
such that sup 𝐽 ≤ 𝑝}. 

 (3.3): Cartan-Kähler Theory 

Cartan’s theory [8-12] was developed to deal in a coordinate-free, geometric 

way with questions of existence and uniqueness of local, real-analytic solutions of 

the systems of partial differential equations arising in differential geometry. It may 

be regarded as a synthesis and summary of the nineteenth century work on the 

geometric theory of partial differential equations, associated with such names 

Pfaff, Jacobi, Frobenius, Lie, and Darboux. Many of the intricate and fascinating 

details of this work are unknown to mathematicians today because of the 

intervening revision in mathematical thought and concept. 

 The Cartan-kähler theorem depends on the fundamental existence theorem 

of Cauchy and Kowalevski dealing with differential equations, and Cauchy-

Kowalevski theorem uses the power series method. Consequently, Cartan-kähler 

theory is a real-analytic and local theory. This theorem is a coordinate-free, 

geometric generalization of the classical Cauchy-Kowalevski theorem, which we 

state presently. 

We shall use the index ranges 1 ≤ 𝑖, 𝑗 ≤ 𝑛 and  1 ≤ 𝑎, 𝑏 ≤ 𝑠. 

Theorem (3.3.1): (Cauchy-kowalevski) 

Let 𝑦 be a coordinate on ℝ, let 𝑥 = (𝑥𝑖) be coordinates on ℝ𝑛, let 𝑧 = (𝑧𝑎) be 

coordinates on ℝ𝑠, and let 𝑝 = (𝑝𝑖
𝑎) be coordinates on ℝ𝑛𝑠. Let 𝐷 ⊂ ℝ𝑛 ×ℝ ×
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ℝ𝑠 ×ℝ𝑛𝑠 be an open domain, and let 𝐺:𝐷 ⟶ ℝ𝑠 be a real analytic mapping. 𝐷0 ⊂

ℝ𝑛 be an open domain, and let 𝑓:𝐷0⟶ℝ𝑠 be real analytic mapping so that the 

"1-graph" 

Ψ𝑓 = {(𝑥, 𝑦0, 𝑓(𝑥), 𝐷𝑓(𝑥))|𝑥 ∈ 𝐷0}                                     (3.31) 

lies in 𝐷 for some constant 𝑦0. (Here, 𝐷𝑓(𝑥) ∈ ℝ𝑛𝑠, the Jacobian of 𝑓, described 

by the condition that 𝑝𝑖
𝑎(𝐷𝑓(𝑥)) = 𝜕𝑓𝑎(𝑥) 𝜕𝑥𝑖⁄ .) 

 Then there exists an open neighborhood 𝐷1 ⊂ 𝐷0 × ℝ of 𝐷0 × {𝑦0} and a 

real analytic mapping 𝐹:𝐷1⟶ℝ𝑠 which satisfies the P.D.E. with initial condition 

𝜕𝐹 𝜕𝑦⁄ = 𝐺(𝑥, 𝑦, 𝐹, 𝜕𝐹 𝜕𝑥⁄ )

𝐹(𝑥, 𝑦0) = 𝑓(𝑥), ∀ 𝑥 ∈ 𝐷0.
                                                  (3.32) 

Moreover, 𝐹 is unique in the sense that any other real-analytic solution of (3.32) 

agrees with 𝐹 on some neighborhood of 𝐷0 × {𝑦0}. 

We now turn to the statement of the Cartan-kähler theorem. If 𝐼 ⊂ Λ∗(𝑀) is 

a differential ideal, we shall say that an integral manifold of 𝐼, 𝑉 ⊂ 𝑀, is a kähler- 

regular integral manifold if the tangent space 𝑇𝑣𝑉 is a kähler-regular integral 

element of 𝐼, ∀ 𝑣 ∈ 𝑉. If 𝑉 is connected, kähler-regular integral manifold of 𝐼, then 

we define 𝑟(𝑉) to be 𝑟(𝑇𝑣𝑉) where 𝑣 is any element of 𝑉. The following theorem 

is generalization of the well-known Frobenius's theorem. 

Theorem (3.3.2): (Cartan-Kähler) 

Let 𝐼 ⊂ Λ∗(𝑀) be a real analytic exterior differential ideal. Let 𝑃 ⊂ 𝑀 a 𝑝-

dimensional connected real analytic Kähler-Regular integral manifold of 𝐼. 

Suppose that 𝑟 = 𝑟(𝑃) ≥ 0. Let 𝑅 ⊂ 𝑀 be a real analytic submanifold of 𝑀 of 

codimension 𝑟 which contains 𝑃 and such that 𝑇𝑥𝑅 and 𝐻(𝑇𝑥𝑃) are transversals in 

𝑇𝑥𝑀,∀ 𝑥 ∈ 𝑃 ⊂ 𝑀. 
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Then, there exists a (𝑝 + 1)-dimensional connected real analytic integral 

manifold 𝑋 of 𝐼, such that 𝑃 ⊂ 𝑋 ⊂ 𝑅. 𝑋 is unique in the sense that another 

integral manifold of 𝐼 having the stated properties, coincides with 𝑋 on an open 

neighborhood of 𝑃. 

Proof. See [1] 

The anal-city condition of exterior differential ideal is crucial because of the 

requirements in the Cauchy-Kowalevski theorem used in the proof of the Cartan-

Kähler theorem. 

Cartan-Kähler's theorem has important corollary. Actually, this corollary is 

often more used than the theorem and it is sometimes called the Cartan-Kähler 

theorem. 

Corollary (3.3.3): (Cartan-Kähler) 

Let 𝐼 be an analytic exterior differential on a manifold 𝑀. If 𝐸 ⊂ 𝑇𝑧𝑀 is an 

ordinary integral element of 𝐼, there exists an integral manifold of 𝐼 passing 

through 𝑧 and having 𝐸 as a tangent space at the point 𝑧. 

Example (3.3.4): 

As a simple illustration of the Cartan-kähler theorem we consider the partial 

differential equation in the unknown function 𝑢(𝑥, 𝑦) given by 

𝜕2𝑢 𝜕𝑦2⁄ = 𝜕𝑢 𝜕𝑥⁄ ,                                                                 (3.33) 

on ℝ6 = {(𝑥, 𝑦, 𝑢, 𝑝, 𝑞, 𝑟)} we put 

𝜗1 = 𝑑𝑢 − 𝑝 𝑑𝑥 − 𝑞 𝑑𝑦,

𝜗2 = 𝑑𝑢 − 𝑝 𝑑𝑦 − 𝑟 𝑑𝑥,
                                                         (3.34) 

then the above partial differential equation translated to the closed exterior 

differential system on 𝑀 = ℝ6 given by 

Λ = {𝜗1, 𝜗2, 𝜔1 = 𝑑𝑝 ∧ 𝑑𝑥 + 𝑑𝑞 ∧ 𝑑𝑦,𝜔2 = 𝑑𝑝 ∧ 𝑑𝑦 + 𝑑𝑟 ∧ 𝑑𝑥}.  (3.35) 
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Since 𝜗1 ∧ 𝜗2 ≠ 0 then, every point is a regular integral point, and 𝑠0 = 2. Fix an 

origin, 0 = (0, 0, 𝑢0, 𝑝0, 𝑞0, 𝑟0) ∈ 𝑀. To find an integral submanifold 

𝑔(𝑥) = (𝑥, 0,Φ1(𝑥),… ,Φ4(𝑥))                                            (3.36) 

we must solve 

𝜕𝑢 𝜕𝑥⁄ = 𝑝,         𝑑Φ1 𝑑𝑥⁄ = Φ2,

𝜕𝑞 𝜕𝑥⁄ = 𝑟,          𝑑Φ3 𝑑𝑥⁄ = Φ4
                                         (3.37) 

with 𝑢 = 𝑢0, 𝑞 = 𝑞0 at 𝑥 = 0. Let Φ1 and Φ3 be arbitrary real-analytic functions 

in 𝑥 such that Φ1(0) = 𝑢0 and Φ
3(0) = 𝑞0. (We can specify 𝑢 and 𝜕𝑢 𝜕𝑢⁄  along 

𝑦 = 0). Now, we have 𝑔(𝑥). By taking a tangent vector 

𝑣 = (1, 0, 𝑣𝑢, 𝑣𝑝, 𝑣𝑞 , 𝑣𝑟) ∈ 𝑀0.                                               (3.38) 

Then the equations 𝜗1(𝑣) = 𝜗2(𝑣) = 0 implies 𝑣𝑢 = 𝑝0, 𝑣𝑞 = 𝑟0. The dual polar 

space of 𝐸0
1 = [𝑣] is spanned by 𝜗1, 𝜗2 and the two 1-forms 

𝑖𝑣𝜔1 = 𝑣𝑝 𝑑𝑥 − 𝑑𝑝 + 𝑟0 𝑑𝑦

𝑖𝑣𝜔2 = 𝑣𝑟  𝑑𝑥 − 𝑑𝑟 + 𝑟𝑝 𝑑𝑦
.                                                  (3.39) 

the polar matrix of these four 1-forms with respect to (𝑑𝑥, 𝑑𝑦, 𝑑𝑢, 𝑑𝑝, 𝑑𝑞, 𝑑𝑟) is 

[
 
 
 
𝑝0 𝑞0 1 0 0 0
𝑟0 𝑝0 0 0 −1 0
𝑣𝑝 𝑟0 0 −1 0 0

𝑣𝑟 𝑣𝑝 0 0 0 −1]
 
 
 
                                              (3.40) 

this matrix has rank four for any quadruple (𝑝0, 𝑟0, 𝑣𝑝, 𝑣𝑟). In particular, 

𝑠0 + 𝑠1 = 4, 𝑠1 = 2,                                   

and 𝜎2 = 0. Therefore, there exists a unique solution 

𝑓(𝑥, 𝑦) = (𝑥, 𝑦, 𝐹1(𝑥, 𝑦),… , 𝐹4(𝑥, 𝑦)), with 𝑓(𝑥, 0) = 𝑔(𝑥).    (3.41) 
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(3.4): Involutive Differential Systems 

The calculation of the reduced Cartan characters can lead to two outcomes. 

The first is that the system is involutive [4, 5, 6, 52, 62]. This means that a solution 

to our problem exists in the current setting, and the last non vanishing (pseudo-

)character tells us how many free functions we can specify in the solution of the 

problem. In particular, since any particular solution provides an equivalence of our 

original problem, the free functions can be interpreted as parameterizing the self-

equivalence, or symmetry, of our system. The symmetry in this case is an infinite 

dimensional Lie pseudo-group parameterized by the arbitrary functions obtained. 

The other outcome is that the system is not involutive. This simply means that the 

space we are working with is too small: we need to prolong the system we are 

considering. The prolonged space is the most natural setting for discussing any 

physical problems: here there is no “hidden constraints”. 

(3.4.1): Independence Conditions. Involution 

The solutions approved by the Cartan-Kähler theorem did not regard our 

requirement of independence variables. To move on, let us define differential 

system with independence condition as a differential system for which we require 

that solutions must keep certain 1-form 𝜔1, … , 𝜔𝑛 independent. This mean to 

𝜔𝑖 ∧ 𝜔𝑗 ∧ …∧ 𝜔𝑘 ≠ 0, 𝑖, 𝑗, … , 𝑘 all distinct 

on solution for any decision of any quantities of 𝜔𝑖 , 𝜔𝑗 , …. If we require the 

coordinates 𝑥1, … , 𝑥𝑛 to be independently, we simply take the independent forms to 

be 𝑑𝑥1, … , 𝑑𝑥𝑛, and the vectors spanning the integral elements must be in the form 

𝜕 𝜕𝑥𝑎⁄ +∑𝐵𝑎
𝑖 𝜕 𝜕𝑧𝑖⁄ .                                                            (3.42) 

Immediately, we see that we must not end up with equations of the form 

0 = Ω𝑘 = 𝐶𝑖𝑗…𝑘 𝜔𝑖 ∧ 𝜔𝑗 ∧ …∧ 𝜔𝑘 .                                       (3.43) 
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Unless 𝐶𝑖𝑗…𝑘 = 0, no solution will satisfy the independence conditions. Such terms 

are called essential torsion. So we can summarize that an exterior differential 

system with independence condition (𝐼, Ω) is an involution at 𝑧 ∈ 𝑀 if there exists 

an ordinary integral element 𝐸 ⊂ 𝑇𝑧𝑀 for (𝐼, Ω). To carry on in such cases, we 

need to add to our differential system the algebraic equations 

𝐶𝑖𝑗…𝑘 = 0,                                                                                    (3.44) 

where 𝐶𝑖𝑗…𝑘 are non-zero constants, we called that such a differential system is 

incompatible. A discussion of the interpretation of the remaining characters within 

the context of formal theory can be found in [3-5]. 

Example (3.4.1): 

Any P.D.E. system 

𝐹𝜆(𝑥𝑖 , 𝑧𝑎, 𝜕𝑧𝑎 𝜕𝑥𝑖⁄ ,… , 𝜕𝑘𝑧𝑎 𝜕𝑥𝐼⁄ ) = 0, 𝜕𝑥𝐼 = 𝜕𝑥𝑖1 …𝜕𝑥𝑖𝑘 ,          (3.45) 

may be written as a differential system with independence condition. For e.g., in 

the second order case (𝑘 = 2) we introduce variables 𝑝𝑖
𝑎 , 𝑝𝑖𝑗

𝑎 = 𝑝𝑗𝑖
𝑎  and the system 

is defined on the space with coordinates (𝑥𝑖 , 𝑧𝑎, 𝑝𝑖
𝑎, 𝑝𝑖𝑗

𝑎 ) and is generated by the 

equations 

𝐹𝜆(𝑥𝑖 , 𝑧𝑎, 𝑝𝑖
𝑎, 𝑝𝑖𝑗

𝑎 ) = 0

         𝑑𝑧𝑎 − 𝑝𝑖
𝑎𝑑𝑥𝑖 = 0

        𝑑𝑝𝑖
𝑎 − 𝑝𝑖𝑗

𝑎𝑑𝑥𝑗 = 0

,                                                              (3.46) 

with the independence condition ω = 𝑑𝑥1 ∧ …∧ 𝑑𝑥𝑛 ≠ 0. An admissible integral 

manifold of Ω may locally be written as 𝑓: 𝑥 → (𝑥, 𝑓𝑎(𝑥), 𝑓𝑖
𝑎(𝑥), 𝑓𝑖𝑗

𝑎(𝑥)), and it 

corresponds to a solution to the P.D.E. system in the usual sense. 
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Theorem (3.4.2): 

If (𝐼, Ω) is an involution and 𝐸 is an admissible integral element, then there exist 

an admissible integral manifold 𝑊 ⊂ 𝑀 through 𝑧, such that 𝑇𝑧𝑊 = 𝐸. 

The statement of this theorem is powerful in its simplicity, but it is difficult 

to apply in practice if one does not have a manageable criterion for determining if 

an exterior differential system with independence condition is in involution. There 

is such a criterion, known as E. Cartan's involutivity test. In what follows we shall 

present this test in the case of quasi-linear Pfaffian systems, and refer the reader to 

[6-10] for the detailed treatment of the general case. Quasi-linear systems are more 

manageable, and then it will define as follows. Consider a Pfaffian system with 

independence condition (𝐼, Ω), whrer 

𝐼 = {𝜗1, … , 𝜗𝑠, 𝑑𝜗1, … , 𝑑𝜗𝑠}, Ω = 𝜔1 ∧ ⋯∧ 𝜔𝑝,      (3.47) 

and let 𝜋1, … , 𝜋𝑙 , 𝑙 = 𝑛 − 𝑠 − 𝑝, be 1-form such that 

𝜗1 ∧⋯∧ 𝜗𝑠 ∧ 𝜔1 ∧⋯∧ 𝜔𝑝 ∧ ⋯∧ 𝜋1 ∧⋯∧ 𝜋𝑙 ≠ 0.       (3.48) 

we have, for 1 ≤ 𝑖 ≤ 𝑠, 

𝑑𝜗𝑖 ≡∑∑𝐴𝛼𝑏
𝑖 𝜋𝛼 ∧ 𝜔𝑏 +

𝑝

𝑏=1

1

2
∑ 𝐵𝑎𝑏

𝑖 𝜔𝑎 ∧ 𝜔𝑏                                             

𝑝

𝑎,𝑏=1

        

𝑙

𝛼=1

+
1

2
∑ 𝐶𝛼𝛽

𝑖 𝜋𝛼 ∧ 𝜋𝛽
𝑙

𝛼,𝛽=1

 mod 𝜗1, … , 𝜗𝑠 .                                           (3.49) 

Definition (3.4.3): 

A Pfaffian system with independence condition (𝐼, Ω) is said to be quasi-linear if 

𝐶𝛼𝛽
𝑖 = 0, 1 ≤ 𝑖 ≤ 𝑠, 1 ≤ 𝛼, 𝛽 ≤ 𝑙.                         (3.50) 

 It is important to notice that if (𝐼, Ω) is quasi-linear, then 𝒱𝑝(𝐼, Ω) is an 

affine bundle over 𝑀. The admissible integral elements 𝐸 can be taken in the form 
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(𝜋𝛼 −∑𝑡𝑏
𝛼𝜔𝑏

𝑝

𝑏=1

)|

𝐸

= 0, 1 ≤ 𝛼 ≤ 𝑙,                            (3.51) 

and the polar equations of 𝐸 are given by 

∑(𝐴𝛼𝑏
𝑖 𝑡𝑐

𝛼 − 𝐴𝛼𝑐
𝑖 𝑡𝑏

𝛼) + 𝐵𝑏𝑐
𝑖 = 0,

𝑙

𝛼=1

  1 ≤ 𝑏, 𝑐 ≤ 𝑝 and 1 ≤ 𝑖 ≤ 𝑠.          (3.52) 

These equations are indeed linear. We denote the dimension of their solution space 

by 𝑑. We now define the reduce characters 𝜎1
′, …𝜎𝑟

′, 𝑟 ≤ 𝑝 of (𝐼, Ω) by 

𝜎1
′ +⋯+ 𝜎𝑟

′ = max
𝑣1,…,𝑣𝑟∈ℝ

𝑙
rk 

(

 
 
∑ 𝑣1

𝛼 𝐴𝛼𝑏
𝑖

𝑙

𝛼=1

⋮

∑ 𝑣𝑟
𝛼 𝐴𝛼𝑏

𝑖
𝑙

𝛼=1 )

 
 
.                (3.53) 

Necessary and sufficient conditions for involutivity are given by the following 

theorem, known as Cartan's involutivity test: 

Theorem (3.4.5): 

We have 

𝑑 ≤∑𝑖𝜎𝑖
′

𝑝

𝑖=1

,                                                                               (3.54) 

with equality if and only if the system (𝐼, Ω) is involution. If 𝜎𝑞
′ = 𝑘 ≠ 0 with 𝑞 

maximal, then the admissible local integral manifolds are parameterized by 𝑘𝐶𝜔 

functions of 𝑞 variables. 

 The reminder of this section is detected to illustration of the Cartan's test on 

series of examples.  

 

 



90 
 

Example (3.4.6): 

Consider on ℝ3 with coordinates (𝑥, 𝑢, 𝑝) the Pfaffian system with independence 

condition (𝐼, Ω) where 

𝐼 = {𝜗, 𝑑𝜗}, Ω = 𝑑𝑥,                                                        (3.55) 

and  

𝜗 = 𝑑𝑢 − 𝑝𝑑𝑥.                                                                           (3.56) 

We have 

𝑑𝜗 = 𝑑𝑝 ∧ 𝑑𝑥 = 𝜋 ∧ Ω.                                                           (3.57) 

The admissible integral elements are of the form 

𝜋 − 𝑡Ω, 𝑑 = 1, 𝜎1
′ = 1.                                            (3.58) 

 The involutivity test is therefore satisfied and the admissible integral 

manifolds are one-dimensional, as expected. They are parameterized by one 

arbitrary function of one variable. 

Example (3.4.7): 

We consider the scalar partial differential equation 

𝐹(𝑥𝑖 , 𝑢, 𝜕𝑢 𝜕𝑥𝑖⁄ , 𝜕2𝑢 𝜕𝑥𝑖𝜕𝑥𝑗⁄ ) = 0, 1 ≤ 𝑖, 𝑗 ≤ 𝑝,    (3.59) 

where 𝐹 is assumed to be 𝐶𝜔 in all its arguments. We apply the Cartan-Kähler 

theorem that the solutions of the P.D.E. (3.59) are parameterized by two analytic 

functions of 𝑝 − 1 variables. 

 To the P.D.E. (3.59), we associate on ℝ(𝑝(𝑝+5) 2⁄ )+1, with local coordinates 

(𝑥𝑖 , 𝑢, 𝑢𝑖 , 𝑢𝑖𝑗), 1 ≤ 𝑖, 𝑗 ≤ 𝑝, an exterior differential system with independence 

condition (𝐼, Ω), by letting 𝐼 be the differential ideal generated by  
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𝐹(𝑥𝑖 , 𝑢, 𝑢𝑖 , 𝑢𝑖𝑗) = 0, 𝜗0 = 𝑑𝑢 −∑𝑑𝑥𝑖

𝑝

𝑖=1

,                    (3.60) 

𝜗𝑖 = 𝑑𝑢𝑖 −∑𝑢𝑖𝑗𝑑𝑥
𝑗

𝑛

𝑗=1

, 1 ≤ 𝑖 ≤ 𝑝,                               (3.61) 

where we assume that 

det(𝜕𝐹 𝜕𝑢𝑖𝑗⁄ )|
𝐹=0

≠ 0,                                                          (3.62) 

and the independence condition Ω be defined by 

Ω = 𝑑𝑥1 ∧⋯∧ 𝑑𝑥𝑝.                                                                 (3.63) 

The structure equations of (𝐼, Ω) are given by 

𝑑𝐹 = 0, 𝑑𝜗0 ≡ 0, 𝑑𝜗𝑖 ≡∑𝜋𝑖𝑗 ∧ 𝑑𝑥
𝑗

𝑛

𝑗=1

, mod 𝜗0, … , 𝜗𝑝,          (3.64) 

where 𝜋𝑖𝑗 = −𝑑𝑢𝑖𝑗. In order to compute the reduce characters of (𝐼, Ω), it is 

convenient to exploit the non-degeneracy condition (3.62) to put the above 

structure equations in normal form. Under a change of coframe of the form 

�̅�𝑖 =∑𝑎𝑖𝑗𝑑𝑥
𝑗

𝑝

𝑗=1

, �̅�𝑖 =∑(𝑎−1)𝑗𝑖 𝜗𝑗

𝑝

𝑗=1

,                         (3.65) 

we obtain the following transformation law for the 1-form 𝜋𝑖𝑗, 

�̅�𝑖𝑗 = − ∑ 𝑑𝑢𝑘𝑙 𝑎
𝑘
𝑖  𝑎

𝑙
𝑗  

𝑝

𝑘,𝑙=1

.                                                     (3.66) 

Using the rank condition (3.62), we can locally choose (𝑎𝑖𝑗) so as to have 

∑(𝜕𝐹 𝜕𝑢𝑖𝑗⁄ ) (𝑎−1)𝑖
𝑘
 (𝑎−1)𝑗

𝑙
= 𝛿𝑖𝑗𝜀𝑖

𝑝

𝑖,𝑗=1

,                             (3.67) 



92 
 

where 𝜀𝑖
2 = 1. The structure equation 𝑑𝐹 = 0 then takes the form 

∑𝜀𝑖�̅�𝑖𝑖

𝑝

𝑖=1

+∑𝑏𝑘�̅�
𝑘

𝑝

𝑘=1

≡ 0, mod �̅�0, … , �̅�𝑝,                   (3.68) 

for some functions 𝑏𝑘 , 1 ≤ 𝑘 ≤ 𝑝. Now we define 

�̿�𝑖𝑖 = �̅�𝑖𝑖 + 𝜀𝑖𝑏𝑖�̅�𝑖 , �̿�𝑖𝑗 = �̅�𝑖𝑗, 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑝.     (3.69) 

Dropping bars, the structure equations (3.64) become 

𝑑𝜗0 ≡ 0, 𝑑𝜗𝑖 ≡∑𝜋𝑖𝑗 ∧ 𝜔
𝑗

𝑝

𝑗=1

, mod 𝜗0, … , 𝜗𝑝,    (3.70) 

where 

∑𝜀𝑖𝜋𝑖𝑖 ≡ 0, 𝜋𝑖𝑗 ≡ 𝜋𝑗𝑖

𝑝

𝑖=1

, mod 𝜗0, … , 𝜗𝑝,              (3.71) 

where 1 ≤ 𝑖, 𝑗 ≤ 𝑝. We want now to compute the reduced characters of (𝐼, Ω) 

using (3.59). We have 

𝑠1
′ = 𝑝, 𝑠2

′ = 𝑝 − 1,… , 𝑠𝑝−1
′ = 2, 𝑠𝑝

′ = 0,                            (3.72) 

where the final drop from 2 to 0 is due to trace condition (3.71). Thus we have 

∑𝑖𝑠𝑖
′

𝑝

𝑖=1

=
𝑝(𝑝 + 1)(𝑝 + 2)

6
− 𝑝.                                             (3.73) 

In order to apply the involutivity test, we consider the admissible integral elements 

𝐸 of (𝐼, Ω), which are given by 

𝜗0|𝐸 = 0, 𝜗𝑖|
𝐸
= 0, (𝜋𝑖𝑗 −∑𝐿𝑖𝑗𝑘𝜔

𝑘

𝑝

𝑘=1

)|

𝐸

= 0,           (3.74) 

where 1 ≤ 𝑖, 𝑗, 𝑘 ≤ 𝑝, and where we have 
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𝐿𝑖𝑗𝑘 = 𝐿𝑗𝑖𝑘 = 𝐿𝑖𝑘𝑗 , ∑𝜀𝑖𝐿𝑖𝑗𝑘

𝑝

𝑖=1

= 0.                                 (3.75) 

The dimension of the solution space of the polar equations of 𝐸 is given by 

𝑑 = (
𝑝 + 2

𝑝 − 1
) − 𝑝 =

𝑝(𝑝 + 1)(𝑝 + 2)

6
− 𝑝,                         (3.76) 

and the system is in involution, with top character 𝜎𝑝−1
′ = 2. The local 𝐶𝜔 

solutions are thus parameterized by two arbitrary functions of 𝑝 − 1 variables, as 

claimed. 

(3.5): Exterior Differential Systems and Prolongations 

The prolongations of a differential system are the differential system 

obtained by adjoining to the original differential system its differential 

consequences. The concept of prolongation tower, which will be defined below, 

gives an abstract formulation of the operation of the prolongation. A general 

conjecture of Elie Cartan’s, proved by Kuranishi, [15], for a wide class of 

differential systems, state that an analytic differential system with independence 

condition it's takes a finite number of prolongations for it to be either involutive or 

incompatible, or has no solutions. This result is known as Cartan-Kuranishi 

Theorem. Our purpose is to review some of the basic aspects of the prolongation 

theorem [16]. We assume that all manifolds and the differential systems under 

consideration are of class 𝐶𝜔. 

 The prolongation tower of an exterior differential system with independence 

condition (𝐼, Ω) on an 𝑛-dimensional manifold 𝑀 is defined as a follows. Let 

𝑓:𝑊𝑝 → 𝑀 be an immersion and let 𝑓∗:𝑊𝑝 → 𝐺𝑝(𝑀) denote the map into the 

Grassmann bundle of 𝑝-planes in 𝑇𝑀 determined by 𝑓. The Grassmann bundle 

𝐺𝑝(𝑀) is endowed with a canonical exterior differential system 𝐶(1) defined the 

property that 𝑓∗
∗𝐶(1) = 0 for any immersion 𝑓:𝑊𝑝 → 𝑀. Using affine fiber 
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coordinates (𝑥𝑖 , 𝑢𝛼 , 𝑢𝑖
𝛼), 1 ≤ 𝑖 ≤ 𝑝, 1 ≤ 𝛼 ≤ 𝑛, on Grassmann bundle 𝐺𝑝(𝑀), 

the system 𝐶(1) is defined as the differential ideal generated by the 1-form 

𝜗𝛼 = 𝑑𝑢𝛼 −∑𝑢𝑖
𝛼𝑑𝑥𝑖

𝑝

𝑖=1

.                                                          (3.77) 

We choose component 𝑉𝑝(𝐼) of the sub-variety of 𝐺𝑝(𝑀) defined by the 𝑝-

dimensional admissible integral elements of 𝐼 and assume 𝑉𝑝(𝐼) to be 𝐶𝜔 manifold. 

Definition (3.5.1): 

The first prolongation of 𝐼 is the exterior differential system 𝐼(1) defined by 

𝐼(1) = 𝐶(1)|
𝑉𝑝(𝐼)

.                                                                         (3.78) 

 For notational simplicity, we use the notation 𝑀1 to denote the 𝑉𝑝(𝐼). We 

also assume that the map 𝜋1,0: (𝑀(1), 𝐼(1)) → (𝑀, 𝐼) is a 𝐶𝜔 submersion. The 

prolongation tower of 𝐼 is then defined by induction, 

⋯
𝜋𝑘+1,𝑘

→    (𝑀(𝑘), 𝐼(𝑘))
𝜋𝑘,𝑘−1

→    ⋯
𝜋2,1

→  (𝑀(1), 𝐼(1))
𝜋1,0

→  (𝑀, 𝐼).     (3.79) 

The infinite prolongation (𝑀(∞), 𝐼(∞)) of (𝑀, 𝐼) is then defined as the inverse limit 

of this tower 

𝑀(∞) ∶= lim
⟵
𝑀(𝑘) , 𝐼(∞) =⋃𝐼(𝑘)

𝑘≥0

.                              (3.80) 

(3.5.1): A Version of Wahquist-Estabrook Prolongation 

 In recent years, we have seen almost an explosion in the number of 

nonlinear partial differential equations (NLPDE) which can be solved by various 

exact techniques. What I shall try to do here is to outline briefly the history of these 

developments, put them into perspective, point out where foresight was important 

in the development, and finally end up with the bath made by Frank Estabrook- 

Hugo Wahlquist [17-19]. Wahlquist and Estabrook recently introduce an algebraic 
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structure which has the form of an incomplete Lie algebra and which could be 

associated with a nonlinear partial differential equation. They called this the 

prolongation structure and indicated how it could be used, not only as solution 

technique, but as a means of understanding the underlying algebraic structure 

equation concerned. This is particularly applicable to the class of equations which 

exhibits soliton properties. 

Firstly, we give a basic outline of how to write down the prolongation 

structure in order to understand the basic principles involved. The procedure is 

somewhat different from their original approach. It relies on finding an underlying 

Pfaffian system which constitutes a closed differential ideal and reduces to the 

equation on the transversal integral manifold. This can be regarded as a 

generalization of the Frobenius Theorem to establish complete integrability [49, 

57]. The method of prolongation introduces over the base manifold a type of fiber 

bundle which is endowed with a Cartan-Ehresmann connection. The vanishing of 

the connection form is the necessary and sufficient condition for the existence of 

this type of prolongation. The theorem developed here for this operation is very 

suitable for applications and some of these will be mentioned further on Chapter 

four and Five. Thus, in this second approach, a differential system which gives the 

equation on the transversal integral manifold is found, and this differential system 

is used to solve for the quantities which appear in the connection forms. These two 

approaches are quite complementary to each other and it might be of interest to put 

them together here. 

The aim of prolongation, of course, is to reduce the study of the integral 

manifolds of an arbitrary differential system to the case of an involutive 

differential system, the case to which the vast majority of the theory applies. 

Following Wahlquist-Estabrook (EW), consider the space 𝑀 = ℝ𝑛(𝑥, 𝑡, 𝑢, 𝑝, 𝑞, . . . ) 

in which there is defined a closed exterior differential system 

𝛼1 = 0,… , 𝛼𝑙 = 0,                                                                    (3.81) 
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and let 𝐼 be the ideal generated by the system (3.81), then we got 

𝐼 = {𝜔 =∑𝜎𝑖 ∧ 𝛼𝑖

𝑙

𝑖=1

: 𝜎𝑖 ∈ Λ(𝑀)}.                                      (3.82) 

If ideal (3.82) is closed, we have 𝑑𝐼 ⊂ 𝐼 and so (3.81) is integrable by Frobenius 

Theorem (2.2.1). It is important to stress that system (3.81) is chosen such that the 

solutions 𝑢 =  𝑢(𝑥, 𝑡) of an equation 

𝑢𝑡 = 𝐹(𝑥, 𝑡, 𝑢, 𝑢𝑥 , 𝑢𝑥𝑥 , … ),                                                      (3.83) 

correspond with the two-dimensional integral manifolds of (3.81). These are the 

integral manifolds given by sections 𝑆 of the projection 

𝜋:𝑀 ⟶ ℝ2, 𝜋(𝑥, 𝑡, 𝑢, 𝑝, 𝑞, … ) = (𝑥, 𝑡).                      (3.84) 

These sections 𝑆 are given by mapping 

𝑆:ℝ2⟶𝑀, 𝑆(𝑥, 𝑡) = (𝑥, 𝑡, 𝑢(𝑥, 𝑡), 𝑝(𝑥, 𝑡), 𝑞(𝑥, 𝑡), … ).     (3.85) 

that mean 𝑑𝑥 ∧ 𝑑𝑡|𝑆 = 𝜋
∗(𝑑𝑥 ∧ 𝑑𝑡) ≠ 0,where 𝜋∗: Λ(ℝ2) ⟶ Λ(𝑆). Now, we 

have the fiber bundle (�̃�, �̃�, 𝑀) over 𝑀 with 𝑀 ⊂ �̃� and �̃� a projection of �̃� onto 

𝑀, so points of �̃� and 𝑀 are denote respectively by �̃�,𝑚, then �̃�(�̃�) = 𝑚. A 

Cartan-Ehresmann connection in the fiber bundle (�̃�, �̃�, 𝑀) is a system of the 1-

form �̃�𝑖 = 1,… , 𝑘 in 𝑇∗(�̃�) with the property that the mapping �̃�∗ from the vector 

space 𝐻�̃� = {�̃� ∈ 𝑇�̃�| �̃�𝑖(�̃�) = 0, 𝑖 = 1,… 𝑘}, to the tangent space 𝑇𝑚 is a 

bijection. We consider in �̃� the exterior differential system 

�̃�𝑖 = �̃�
∗𝛼𝑖 = 0,      𝑖 = 1,… , 𝑙,

�̃�𝑗 = 0,                      𝑗 = 1,… , 𝑘
                                             (3.86) 

where �̃�𝑗 a Cartan-Ehresmann connection in (�̃�, �̃�, 𝑀). 

 The system (3.86) is called a Cartan prolongation of (3.81) if (3.86) is 

closed and whenever 𝑆 is a transversal solution of (3.81), there should also exist a 

transversal local solution �̃� of (3.86) with �̃�(�̃�) = 𝑆. There is then a theorem which 
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states that (3.86) is a Cartan prolongation of (3.81) if and only if (3.86) is closed. A 

necessary and sufficient condition for the existence of this is given by 

𝑑�̃�𝑖 = �̃�𝑖
𝑗
∧ �̃�𝑗 , mod  𝑝∗(𝐼)                                             (3.87) 

For the considerations here, the fiber bundle will be the trivial fiber bundle given 

by the form �̃� = 𝑀 ×ℝ𝑘 with 𝑦 = (𝑦1, … , 𝑦𝑘) ∈ ℝ
𝑘 and the connections will be 

�̃�𝑖 = 𝑑𝑦𝑖 − 𝜂𝑖 , 𝜂𝑖 = 𝐴𝑖𝑑𝑥 + 𝐵𝑖𝑑𝑡, 𝑖 = 1,… , 𝑘,          (3.88) 

where, 𝐴𝑖 , 𝐵𝑖 are defined as 𝐶∞ functions on �̃�. Substituting into the prolongation 

condition (3.87), we gets 

−𝑑𝜂𝑖 = �̃�𝑖
𝑗
∧ (𝑑𝑦𝑗 − 𝜂𝑗), mod  �̃�∗(𝐼).                         (3.89) 

From this, it follows that �̃�𝑖
𝑗
 may be chosen such that they do not depend on 𝑑𝑦𝑚 −

𝜂𝑚 𝑚 = 1, . . . , 𝑘, 𝑚 ≠ 𝑗 .So 

�̃�𝑖
𝑗
= 𝑎𝑖

𝑗
𝑑𝑥 + 𝛽𝑖

𝑗
𝑑𝑡 + 𝑐𝑖

𝑗
𝑑𝑢 + 𝑑𝑖

𝑗
𝑑𝑝 +⋯   mod 𝜏𝑖

𝑗
(𝑑𝑦𝑗 − 𝜂𝑗). 

Comparing forms on both sides of (3.89), we get 

𝑎𝑖
𝑗
= 𝜕𝐴𝑖 𝜕𝑦𝑗⁄ , 𝑏𝑖

𝑗
= 𝜕𝐵𝑖 𝜕𝑦𝑖⁄ ,               

with 𝑐𝑖
𝑗
= 𝑑𝑖

𝑗
= ⋯ = 0 because 𝑑𝑢 ∧ 𝑑𝑦𝑗 , 𝑑𝑝 ∧ 𝑑𝑦𝑗 , … don’t occur on the left of 

(3.89). the prolongation condition reduces to 

−𝑑𝜂𝑖 =
𝜕𝜂𝑖
𝜕𝑦𝑗

∧ (𝑑𝑦𝑗 − 𝜂𝑗), mod  �̃�∗(𝐼).                        (3.90) 

Finally, introduce the vertical valued one-form 𝜂 = 𝜂𝑖
𝜕

𝜕𝑦𝑖
 along with s definitions 

𝑑𝜂 = (𝑑𝑀𝜂𝑖)
𝜕

𝜕𝑦𝑖
,

[𝜂, 𝜔] = (𝜂𝑗 ∧
𝜕𝜔𝑖
𝜕𝑦𝑗

+𝜔𝑗 ∧
𝜕𝜂𝑖
𝜕𝑦𝑗
)
𝜕

𝜕𝑦𝑖
,

                                   (3.91) 
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𝑑𝑀 means differentiation with respect to just the variables of the base manifold. 

Moreover, we can show that the prolongation condition boils down to the 

following condition 

𝑑𝜂 +
1

2
[𝜂, 𝜂] = 0, mod �̃�∗(𝐼)                                         (3.92) 

Then, a necessary and sufficient condition for the connection forms (3.88) to be a 

Cartan-prolongation is the vanishing of its curvature form. 

We now present a statement of prolongation theorem as given in [7] 

Theorem (3.5.2): 

There exists an integer 𝑘 such that for all 𝑙 ≥ 𝑘, each of these systems (𝐼(𝑙), Ω(𝑘)) 

is involutive. Furthermore, if 𝑀(𝑘) is empty for some 𝑘 ≥ 1, then (𝐼, Ω) has no 𝑛-

dimensional integral manifolds. 

Theorem (3.5.3): (Maurer-Cartan) 

If 𝑁 is connected and 𝛾 is smooth 𝑔-valued 1-form on 𝑁 that satisfies 𝑑𝛾 =

1

2
[𝛾, 𝛾], then there exists a smooth map 𝑔:𝑁 → 𝐺, unique up to composition with a 

constant left translation, so 𝑔∗𝜂 = 𝛾. 

Example (3.5.4): 

Consider the system of partial differential equations of a single variable 𝑢 =

𝑢(𝑥, 𝑦, 𝑧) defined on ℝ3 

𝑢𝑥𝑥 = 𝑢𝑦𝑦 = 𝑢𝑧𝑧 .                                                                      (3.93) 

Following the general procedure for transformation P.D.E. into exterior differential 

equations, the space we are working with is hence formed by the following 

variables 
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o 𝑢 (1 variable); 

o 𝑥, 𝑦, 𝑧 (3 variables); 

o 𝑢𝑥 , 𝑢𝑦 , 𝑢𝑧 (3 variables); 

o 𝑢𝑥𝑥 = 𝑢𝑦𝑦 = 𝑢𝑧𝑧 , 𝑢𝑥𝑦 = 𝑢𝑦𝑥 , 𝑢𝑥𝑧 = 𝑢𝑧𝑥 , 𝑢𝑦𝑧 = 𝑢𝑧𝑦 (4 variables). 

So the differential equation is defined on an 11-dimensional space formed by the 

variables above. The solution we seek for is a 3-dimensional integral manifold for 

which 𝑑𝑥 ∧ 𝑑𝑦 ∧ 𝑑𝑧 ≠ 0, i.e., there are 8 variables that need to become dependent 

on 𝑥, 𝑦, 𝑧. The contact forms are 

{
 
 

 
 𝜔𝑢 = 𝑑𝑢 − 𝑢𝑥𝑑𝑥 − 𝑢𝑦𝑑𝑦 − 𝑢𝑧𝑑𝑧        

𝜔𝑥 = 𝑑𝑢𝑥 − 𝑢𝑥𝑥𝑑𝑥 − 𝑢𝑥𝑦𝑑𝑦 − 𝑢𝑥𝑧𝑑𝑧

𝜔𝑦 = 𝑑𝑢𝑦 − 𝑢𝑥𝑦𝑑𝑥 − 𝑢𝑦𝑦𝑑𝑦 − 𝑢𝑦𝑧𝑑𝑧

𝜔𝑧 = 𝑑𝑢𝑧 − 𝑢𝑥𝑧𝑑𝑥 − 𝑢𝑦𝑧𝑑𝑦 − 𝑢𝑧𝑧𝑑𝑧

                            (3.94) 

which are set to zero. Recall that the zeros Caratn character 𝑠0 is the number of the 

equations for which any linear integral elements of the system must be satisfied 

while ignoring the 𝑑𝑥, 𝑑𝑦, 𝑑𝑦, i.e., it is the rank of the matrix 

(

 
 

  𝑑𝑢 𝑑𝑢𝑥 𝑑𝑢𝑦 𝑑𝑢𝑧 𝑑𝑢𝑥𝑥 𝑑𝑢𝑥𝑦 𝑑𝑢𝑦𝑧 𝑑𝑢𝑧𝑥

1  0  0  0  0  0  0  0

0  1  0  0  0  0  0  0

0  0  1  0  0  0  0  0
0  0  0  1  0  0  0  0 )

 
 
        (3.95) 

derived from the contact 1-forms, where the first row not part of the matrix. 

Obviously, this number is always equal to the number of independent 1-form 

equations above (since we are not allowed to have linear independence among the 

independence variables), and here we have 𝑠0 = 4, even without forming the 

matrix explicitly. 
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Under exterior differentiation we have 

{
 
 

 
 𝑑𝜔𝑢 = −𝑑𝑢𝑥 ∧ 𝑑𝑥 − 𝑑𝑢𝑦 ∧ 𝑑𝑦 − 𝑑𝑢𝑧 ∧ 𝑑𝑧        

𝑑𝜔𝑥 = −𝑑𝑢𝑥𝑥 ∧ 𝑑𝑥 − 𝑑𝑢𝑥𝑦 ∧ 𝑑𝑦 − 𝑑𝑢𝑥𝑧 ∧ 𝑑𝑧  

𝑑𝜔𝑦 = −𝑑𝑢𝑥𝑦 ∧ 𝑑𝑥 − 𝑑𝑢𝑦𝑦 ∧ 𝑑𝑦 − 𝑑𝑢𝑦𝑧 ∧ 𝑑𝑧  

𝑑𝜔𝑧 = −𝑑𝑢𝑥𝑧 ∧ 𝑑𝑥 − 𝑑𝑢𝑦𝑧 ∧ 𝑑𝑦 − 𝑑𝑢𝑧𝑧 ∧ 𝑑𝑧  

           (3.96) 

Then, we will use the equations 𝜔𝑢 = 𝜔𝑥 = 𝜔𝑦 = 𝜔𝑧 = 0, which give expressions 

for 𝑑𝑢, 𝑑𝑢𝑥 , 𝑑𝑢𝑦, 𝑑𝑢𝑧 to simplify these equations. Then, we get 

{
 

 
𝑑𝜔𝑢 = 0                                                                       
𝑑𝜔𝑥 = −𝑑𝑢𝑥𝑥 ∧ 𝑑𝑥 − 𝑑𝑢𝑥𝑦 ∧ 𝑑𝑦 − 𝑑𝑢𝑥𝑧 ∧ 𝑑𝑧  

𝑑𝜔𝑦 = −𝑑𝑢𝑥𝑦 ∧ 𝑑𝑥 − 𝑑𝑢𝑦𝑦 ∧ 𝑑𝑦 − 𝑑𝑢𝑦𝑧 ∧ 𝑑𝑧  

𝑑𝜔𝑧 = −𝑑𝑢𝑥𝑧 ∧ 𝑑𝑥 − 𝑑𝑢𝑦𝑧 ∧ 𝑑𝑦 − 𝑑𝑢𝑧𝑧 ∧ 𝑑𝑧  

             (3.97) 

Therefore 𝑠1, we give 𝑑𝑥, 𝑑𝑦, 𝑑𝑧 the values 𝜀1𝑥, 𝜀1𝑦, and 𝜀1𝑧 respectively, and 

𝑠0 + 𝑠1 the rank of the matrix 

(

 
 
 
 
 
 
 

  𝑑𝑢 𝑑𝑢𝑥 𝑑𝑢𝑦 𝑑𝑢𝑧 𝑑𝑢𝑥𝑥 𝑑𝑢𝑥𝑦 𝑑𝑢𝑦𝑧 𝑑𝑢𝑧𝑥
                                                                                                
1         0          0          0           0            0           0         0 
0         1          0          0           0            0           0         0 
  0         0          1          0           0            0           0         0   
0         0          0          1           0            0           0         0 
  0          0          0          0         𝜀1𝑥          𝜀1𝑦       0       𝜀1𝑧  
0          0          0          0         𝜀1𝑦          𝜀1𝑥      𝜀1𝑧        0
0          0          0          0         𝜀1𝑧           0         𝜀1𝑦    𝜀1𝑥 
                                                                                                )

 
 
 
 
 
 
 

        (3.98) 

and we have 𝑠0 + 𝑠1 = 7, hence 𝑠1 = 3. Then, for 𝑠2, we form the matrix 
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(

 
 
 
 
 
 
 
 
 
 

  𝑑𝑢 𝑑𝑢𝑥 𝑑𝑢𝑦 𝑑𝑢𝑧 𝑑𝑢𝑥𝑥 𝑑𝑢𝑥𝑦 𝑑𝑢𝑦𝑧 𝑑𝑢𝑧𝑥
                                                                                                
1         0          0          0           0            0           0         0 
0         1          0          0           0            0           0         0 
  0         0          1          0           0            0           0         0   
0         0          0          1           0            0           0         0 
   0         0          0          0         𝜀1𝑥          𝜀1𝑦       0       𝜀1𝑧  
 0         0          0          0         𝜀1𝑦          𝜀1𝑥      𝜀1𝑧       0  
  0         0          0          0         𝜀1𝑧           0         𝜀1𝑦    𝜀1𝑥 
  0         0          0          0         𝜀2𝑥          𝜀2𝑦       0       𝜀2𝑧 
 0         0          0          0          𝜀2𝑦         𝜀2𝑥      𝜀2𝑧       0 

     0         0           0          0          𝜀2𝑧           0         𝜀2𝑦     𝜀2𝑥  )

 
 
 
 
 
 
 
 
 
 

   (3.99) 

The rank is 8, so 𝑠2 = 1. Note that the matrix has already attained its maximal 

rank, so 𝑠3 = 0. Obviously if we remove the first four columns, which can be non-

zero only for the first four rows since we must enforce the 1-form equations, then 

we can calculate more easily the numbers 𝑠1, 𝑠1 + 𝑠2, etc., which correspond to the 

ranks of the series of the matrices stacked together. 

Then, we can apply Cartan's test. This corresponds to sitting 𝜀1𝑦 = 𝜀1𝑧 = 𝜀2𝑥 =

𝜀2𝑧 = 0 above, and then the characters can be read of directly from the 2-form 

equations as 

𝑠1 = 3(𝑑𝑢𝑥𝑥, 𝑑𝑢𝑥𝑦 , 𝑑𝑢𝑥𝑧), 𝑠2 = 1(𝑑𝑢𝑦𝑧), 𝑠3 = 0.     (3.100) 

𝑠1 corresponding to the independent forms which multiply 𝑑𝑥, shown in 

parentheses, etc. Note that this shortcut works also when we have higher order 

forms in our equations as long as the differentials of dependent variables enter only 

linearly, i.e., we don’t have terms such as 

𝑑𝑢𝑥𝑥 ∧ 𝑑𝑢, 𝑑𝑥 ∧ 𝑑𝑦 ∧ 𝑑𝑢𝑥 ∧ 𝑑𝑢𝑦 .          

If such forms are present, we cannot use this shortcut and the calculation of even 

the reduced characters become very difficult, since first we need to find the general 

3-dimensional linear elements, which is already more difficult since now there 

would be quadratic or higher order relations among the parameters, and then 
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calculate using the elements, the steps of calculation required being roughly 

quadratic in the total number of variables. Actually in such a case, unless the 

number of variables is exceedingly small, a better way to proceed is to 

immediately effect a prolongation so as to get rid of all of the original higher order 

form equations, and the new systems is guaranteed to include only linear forms in 

the dependent variables. 

 We want to see the free parameters in an integral element 

{
 
 

 
 𝑑𝑢𝑥𝑥 = 𝑢𝑥𝑥𝑥𝑑𝑥 + 𝑢𝑥𝑥𝑦𝑑𝑦 + 𝑢𝑥𝑥𝑧𝑑𝑧

𝑑𝑢𝑥𝑦 = 𝑢𝑥𝑦𝑥𝑑𝑥 + 𝑢𝑥𝑦𝑦𝑑𝑦 + 𝑢𝑥𝑦𝑧𝑑𝑧

𝑑𝑢𝑥𝑧 = 𝑢𝑥𝑧𝑥𝑑𝑥 + 𝑢𝑥𝑧𝑦𝑑𝑦 + 𝑢𝑥𝑧𝑧𝑑𝑧

𝑑𝑢𝑦𝑧 = 𝑢𝑦𝑧𝑥𝑑𝑥 + 𝑢𝑦𝑧𝑦𝑑𝑦 + 𝑢𝑦𝑧𝑧𝑑𝑧

                               (3.101) 

The above expression holds 12 parameters. Substituting this back to the two form 

equations, we see that the free parameters are 

{

𝑢𝑥𝑥𝑥 = 𝑢𝑥𝑦𝑦 = 𝑢𝑥𝑧𝑧
𝑢𝑥𝑥𝑦 = 𝑢𝑥𝑦𝑥 = 𝑢𝑦𝑧𝑧
𝑢𝑥𝑥𝑧 = 𝑢𝑥𝑧𝑥 = 𝑢𝑦𝑧𝑦
𝑢𝑥𝑦𝑧 = 𝑢𝑥𝑧𝑦 = 𝑢𝑦𝑧𝑥

                                                              (3.102) 

so here the numbers of free parameters (𝑁 = 4), actually, even this substitution is 

unnecessary, since it is obvious that the free parameters are just the independent 

third order partial derivatives of u. We have 

𝑁 = 4 < 𝑠1 + 2𝑠2 + 3𝑠3 = 5,                                             (3.103) 

so Cartans test fails, the system is not involutive and prolongation is necessary. We 

can also see where things could go wrong as we laboriously wrote down the 

matrices: the real characters would correspond to matrices whose top-row labels 

include also 𝑑𝑥, 𝑑𝑦, 𝑑𝑧. Now already at 𝑠2, the rank of the reduced polar matrix is 

already constrained by the number of columns, and if we have more columns the 

rank could grow further, and consequently imply linear dependence among 

𝑑𝑥, 𝑑𝑦, 𝑑𝑧, which at the same time will imply the existence of further constraints 
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on the free parameters in the integral element than implied by the counting of 

reduced Cartan characters. If this happens, which is the present case, it shows that 

the reduced character and real characters are not equal, and we are not in the 

involutive case. Prolongation corresponds, on the other hand, adding to the labels 

𝑑𝑢𝑥𝑥 , 𝑑𝑢𝑥𝑦 , 𝑑𝑢𝑥𝑧 , 𝑑𝑢𝑦𝑧, so we will not be constrained by the number of columns 

so soon. 

 Now, for prolongation we take 𝑢𝑥𝑥𝑥 , 𝑢𝑥𝑥𝑦, 𝑢𝑥𝑥𝑧 , 𝑢𝑥𝑦𝑧 to be the new 

variables, adjoining (3.101) to the list of one-form equations (hence for the 

prolonged system, 𝑠0 = 4 + 4 = 8), and we need to differentiate (3.101) to get 

some new two form equations (the original one are now all identities). We now 

have 11 + 4 = 15 variables, and the number of variables that we want to get rid of 

is 12. We have 

{
 
 

 
 
𝑑2𝑢𝑥𝑥 = 𝑑𝑢𝑥𝑥𝑥 ∧ 𝑑𝑥 + 𝑑𝑢𝑥𝑥𝑦 ∧ 𝑑𝑦 + 𝑑𝑢𝑥𝑥𝑧 ∧ 𝑑𝑧

𝑑2𝑢𝑥𝑦 = 𝑑𝑢𝑥𝑥𝑦 ∧ 𝑑𝑥 + 𝑑𝑢𝑥𝑥𝑥 ∧ 𝑑𝑦 + 𝑑𝑢𝑥𝑦𝑧 ∧ 𝑑𝑧

𝑑2𝑢𝑥𝑧 = 𝑑𝑢𝑥𝑥𝑧 ∧ 𝑑𝑥 + 𝑑𝑢𝑥𝑦𝑧 ∧ 𝑑𝑦 + 𝑑𝑢𝑥𝑥𝑥 ∧ 𝑑𝑧

𝑑2𝑢𝑦𝑧 = 𝑑𝑢𝑥𝑦𝑧 ∧ 𝑑𝑥 + 𝑑𝑢𝑥𝑥𝑧 ∧ 𝑑𝑦 + 𝑑𝑢𝑥𝑥𝑦 ∧ 𝑑𝑧

        (3.104) 

For this new system, the reduced characters are 

𝑠1 = 4 (𝑑𝑢𝑥𝑥𝑥 , 𝑑𝑢𝑥𝑥𝑦 , 𝑑𝑢𝑥𝑥𝑧, 𝑑𝑢𝑥𝑦𝑧), 𝑠2 = 0, 𝑠3 = 0. (3.105) 

So 𝑠0 + 𝑠1 + 𝑠2 + 𝑠3 = 12, the number of dependent variables, as it should be. 

 For completeness, we give the polar matrix for calculating 𝑠2 of which we 

have removed the columns corresponding to  𝑑𝑢, 𝑑𝑢𝑥 , 𝑑𝑢𝑦 , 𝑑𝑢𝑧 , 𝑑𝑢𝑥𝑥 , 𝑑𝑢𝑥𝑦 ,  

𝑑𝑢𝑥𝑧, 𝑑𝑢𝑦𝑧 
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(

 
 
 
 
 
 
 

𝑑𝑢𝑥𝑥𝑥 𝑑𝑢𝑥𝑥𝑦 𝑑𝑢𝑥𝑥𝑧 𝑑𝑢𝑥𝑦𝑧

𝜀1𝑥            𝜀1𝑦         𝜀1𝑧           0   
𝜀1𝑦           𝜀1𝑥           0          𝜀1𝑧  
𝜀1𝑧              0           𝜀1𝑥        𝜀1𝑦 
0                𝜀1𝑧         𝜀1𝑦        𝜀1𝑥
𝜀2𝑥            𝜀2𝑦         𝜀2𝑧           0
𝜀2𝑦           𝜀2𝑥           0          𝜀3𝑧
𝜀2𝑧              0           𝜀2𝑥        𝜀3𝑦
 0                𝜀2𝑧         𝜀2𝑦        𝜀3𝑥 )

 
 
 
 
 
 
 

                                   (3.106) 

For the parameters, 

{
 
 

 
 𝑑𝑢𝑥𝑥𝑥 = 𝑢𝑥𝑥𝑥𝑥𝑑𝑥 + 𝑢𝑥𝑥𝑥𝑦𝑑𝑦 + 𝑢𝑥𝑥𝑥𝑧𝑑𝑧

𝑑𝑢𝑥𝑥𝑦 = 𝑢𝑥𝑥𝑦𝑥𝑑𝑥 + 𝑢𝑥𝑥𝑦𝑦𝑑𝑦 + 𝑢𝑥𝑥𝑦𝑧𝑑𝑧

𝑑𝑢𝑥𝑥𝑧 = 𝑢𝑥𝑥𝑧𝑥𝑑𝑥 + 𝑢𝑥𝑥𝑧𝑦𝑑𝑦 + 𝑢𝑥𝑥𝑧𝑧𝑑𝑧

𝑑𝑢𝑥𝑦𝑧 = 𝑢𝑥𝑦𝑧𝑥𝑑𝑥 + 𝑢𝑥𝑦𝑧𝑦𝑑𝑦 + 𝑢𝑥𝑦𝑧𝑧𝑑𝑧

                       (3.107) 

again there are 12 of them. The free ones can be algorithmically obtained by 

substituting these expressions into the two form equations, and we have 

{

𝑢𝑥𝑥𝑥𝑥 = 𝑢𝑥𝑥𝑦𝑦 = 𝑢𝑥𝑥𝑧𝑧
𝑢𝑥𝑥𝑥𝑦 = 𝑢𝑥𝑥𝑦𝑥 = 𝑢𝑥𝑦𝑧𝑧,
𝑢𝑥𝑥𝑥𝑧 = 𝑢𝑥𝑥𝑧𝑥 = 𝑢𝑥𝑦𝑧𝑦 ,
𝑢𝑥𝑥𝑦𝑧 = 𝑢𝑥𝑥𝑧𝑦 = 𝑢𝑥𝑦𝑧𝑥 ,

                                                     (3.108) 

so the number of free parameters is 𝑁 =  4. Again, this substitution can be 

avoided by noting that the free parameters are just the independent fourth order 

partial derivatives of u. Now 

𝑁 = 4 = 𝑠1 + 2𝑠2 + 3𝑠3,                                                     (3.109) 

so Cartans test is satisfied, the system is involutive, and the general solution of the 

differential equation depends on four functions of one variable, by the Cartan-

Kähler theorem. 
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CHAPTER FOUR 

The Extended Estabrook-Wahlquist Method 

Section (4.1): Introduction 

Wahlquist and Estabrook [17-20] made a significant advance when they 

found that prolongations can be constructed for nonlinear equations as we showed 

in Chapter Three Section Five. A kind of prolongation over a fiber bundle was 

found which corresponds to the Pfaffian system which gives the equation upon 

projecting to the transversal integral manifold. This approach yields results which 

can be exploited to develop Lax pairs and to study the Bäcklund properties [21,22, 

29] of the system, as will be seen here. The objective here is to find prolongation 

structures that can be obtained for a large class of equations given by a two-by-two 

problem based on an 𝑆𝑈(2) Lie algebra and expressed in terms of differential 

forms. This results in a geometric approach which does not assume the form of any 

specific equation at the outset. The integrability condition for the Pfaffian system 

can be expressed as the vanishing of a traceless two-by-two matrix of two forms. 

This gives by construction the nonlinear equation to be studied. A prolongation 

structure for a nonlinear equation consists of a system of Pfaffian equations for a 

set of pseudopotentials, that is functions, which serve as potentials for conservation 

laws in a generalized sense. It will be shown how these prolongations for the two-

by-two system can be derived recursively at first. In the first type of prolongation 

discussed here, forms are used which satisfy an integrability condition and define a 

type of connection in terms of pseudopotentials. 
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Sec (4.1.1): Prolongation Structure for Two-By-Two Problem 

Consider the Pfaffian system which given by 

𝜉𝑖 = 0, 𝜉𝑖 = 𝑑𝑦𝑖 − Ω𝑖𝑗𝑦𝑗, 𝑖, 𝑗 = 1, 2.                       (4.1) 

In (4.1), Ω is a trackless two-by-two matrix which consists of a set of one forms. 

They can be thought of as quite general, but may be taken to constitute a one-

parameter family of forms which, projected onto the solution manifold, depend on 

the independent variables, the dependent variables and their derivatives. The form 

of the matrix of one-forms Ω is given explicitly as 

Ω = Ω𝑖𝑗 = 𝜔𝑙𝜎𝑙 = [
𝜔3 𝜔1 − 𝑖𝜔2

𝜔1 + 𝑖𝜔2 𝜔3
],                         (4.2) 

where 𝜎𝑙 , 𝑙 = 1, 2, 3 are the Pauli matrices. Using (4.2) for Ω, the exterior 

differential system in (4.1) takes the form, 

𝜉1 = 𝑑𝑦1 − 𝑦1𝜔3 − 𝑦2(𝜔1 − 𝑖𝜔2),

𝜉2 = 𝑑𝑦2 − 𝑦1(𝜔1 + 𝑖𝜔2) − 𝑦2𝜔3.
                                         (4.3) 

The integrability conditions for (4.1) are expressed as the vanishing of a traceless 

two-by-two matrix of two-forms Ψ, 

Ψ = 0, Ψ = 𝑑Ω− Ω ∧ Ω                                                    (4.4) 

This gives by construction the nonlinear equation which is of interest. The 

components of Ψ can be expressed in the form 

Ψ = Ψ𝑖𝑗 = 𝜗𝑙𝜎𝑙 , 𝜗𝑙 = 𝑑𝜔𝑙 − 𝑖𝜀𝑙𝑚𝑛𝜔𝑚 ∧ 𝜔𝑛.                (4.5) 

where 𝜀𝑙𝑚𝑛 represents in (4.5) the totally antisymmetric constants of an 𝑆𝑈(2) Lie 

algebra, which is the case considered now. The nonlinear system to be considered 

is specified then by 

Ψ = 0, 𝜗𝑙 = 0, 𝑙 = 1, 2, 3.                                         (4.6) 
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By exterior differential of Ψ in (4.4), it is found that 

𝑑Ψ = Ω ∧ Ψ−Ψ ∧ Ω.                                                                (4.7) 

This establishes that the exterior derivatives of the two-forms {𝜗𝑙} are contained in 

the ring generated by the set {𝜗𝑙}. 

It is important to realize that (4.1) and integrability condition (4.4) are both 

invariant under the following type of gauge transformation 

𝑦 ⟶ 𝑦′ = 𝑄𝑦, Ω ⟶ Ω′ = 𝑄Ω𝑄−1 + 𝑑𝑄𝑄−1, Ψ ⟶ Ψ′ = 𝑄Ψ𝑄−1  (4.8) 

In (4.8), 𝑄 is an arbitrary space-time dependent two-by-two matrix with 

determinant one. In other words, the gauge transformation of Ω does not change 

the solution manifold of the nonlinear equation. The matrix of one-forms Ω has the 

interpretation of being a connection on a gauge field, the two-form is Ψ, a 

curvature or gauge field strength, and the closure property (4.7), a Bianchi identity. 

Theorem (4.1.1): 

The exterior derivatives of the forms 𝜉1 and 𝜉2 have the form, 

𝑑𝜉1 = −𝑦2(𝜗1 − 𝑖𝜗2) − 𝑦1𝜗3 +𝜔3 ∧ 𝜉1 + (𝜔1 − 𝑖𝜔2) ∧ 𝜉2,

𝑑𝜉2 = −𝑦1(𝜗1 + 𝑖𝜗2) + 𝑦2𝜗3 + (𝜔1 + 𝑖𝜔2) ∧ 𝜉1 −𝜔3 ∧ 𝜉2.
  (4.9) 

Consequently, the derivatives of 𝜉1 and 𝜉2 are contained in the ring of forms 

spanned by {𝜗𝑖} and forms {𝜉𝑖}. 

Proof: 

Expressions for the 𝑑𝑦𝑖 follow from (4.3), and from (4.5) 𝑑𝜔𝑖 can be obtained by 

writing 

𝑑𝜔1 = 𝜗1 + 2𝑖𝜔2 ∧ 𝜔3, 𝑑𝜔2 = 𝜗2 − 2𝑖𝜔1 ∧ 𝜔3, 𝑑𝜔3 = 𝜗3 + 2𝑖𝜔1 ∧ 𝜔2. 

The exterior derivative of 𝜉1 from (4.3) is given by 



108 
 

𝑑𝜉1 = −𝑦1𝜗3 − 2𝑖𝑦1𝜔1 ∧ 𝜔2 + 𝜔3 ∧ (𝜉1 + 𝑦1𝜔3 + 𝑦2(𝜔1 − 𝑖𝜔2))

− 𝑦2(𝜗1 + 2𝑖𝜔2 ∧ 𝜔3 − 𝑖𝜗2 − 2𝜔1 ∧ 𝜔3) + (𝜔1 − 𝑖𝜔2)

∧ (𝜉2 + 𝑦1(𝜔1 + 𝑖𝜔2) − 𝑦2𝜔3)

= −𝑦2𝜗1 + 𝑖𝑦2𝜗2 − 𝑦1𝜗3 + (𝜔1 − 𝑖𝜔2) ∧ 𝜉2 − 2𝑖𝑦1𝜔1 ∧ 𝜔2 + 𝑦2𝜔3

∧ (𝜔1 − 𝑖𝜔2) − 2𝑖𝑦2𝜔2 ∧ 𝜔3 + 2𝑦2𝜔1 ∧ 𝜔3 + 2𝑖𝑦1𝜔1 ∧ 𝜔2

− 𝑦2(𝜔1 − 𝑖𝜔2) ∧ 𝜔3 

The second line in the final result vanishes and we are left with the first equation in 

(4.9). The proof of second equation in (4.9) is proceeds in the same way. 

Corollary (4.1.2): 

The exterior derivatives (4.9) can be expressed in terms of the matrix elements of 

Ω and Ψ in (4.2) and (4.5) for 𝑖 = 1, 2 as follows, 

𝑑𝜉𝑖 = −Ψ𝑖𝑗𝑦𝑗 − Ω𝑖𝑗 ∧ 𝜉𝑗 .                                                        (4.10) 

The one-forms 𝜉1 and 𝜉2 can be used to generate an ideal which assumes a 

standard Riccati form by taking particular linear combinations of them. The new 

one-forms which result are called 𝜉3 and 𝜉4, and are defined by calculating in the 

following way; first 

𝑦1
2𝜉3 = 𝑦1𝜉2 − 𝑦2𝜉1 = 𝑦1𝑑𝑦2 − 𝑦2𝑑𝑦1 − 𝑦1

2(𝜔1 + 𝑖𝜔2) + 2𝑦1𝑦2𝜔3 + 𝑦2
2(𝜔1 − 𝑖𝜔2). 

Therefore, 𝜉3 is given by 

𝜉3 = 𝑑(𝑦2 𝑦1⁄ ) − (𝜔1 + 𝑖𝜔2) + 2(𝑦2 𝑦1⁄ )𝜔3 + (𝑦2 𝑦1⁄ )2(𝜔1 − 𝑖𝜔2).           (4.11) 

In a similar fashion, 

𝑦2
2𝜉4 = 𝑦2𝜉1 − 𝑦1𝜉2 = 𝑦2𝑑𝑦1 − 𝑦1𝑑𝑦2 − 𝑦2

2(𝜔1 − 𝑖𝜔2) − 2𝑦1𝑦2𝜔3 + 𝑦1
2(𝜔1 + 𝑖𝜔2), 

and so 𝜉4 is given by 

𝜉4 = 𝑑(𝑦1 𝑦2⁄ ) − (𝜔1 − 𝑖𝜔2) − 2(𝑦1 𝑦2⁄ )𝜔3 + (𝑦1 𝑦2⁄ )2(𝜔1 + 𝑖𝜔2).     (4.12) 
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Introducing the new projective variables 𝜉3 and 𝜉3 defined to be 

𝑦3 = 𝑦2 𝑦1⁄ , 𝑦4 = 𝑦1 𝑦2⁄                                                 (4.13) 

into the expression for 𝜉3 and 𝜉4, Pfaffian system (4.1) takes the Riccati form, 

Theorem (4.1.3): 

The exterior derivatives of the forms 𝜉3 and 𝜉4 in (4.12), (4.13) are given by 

𝑑𝜉3 = −(𝜗1 + 𝑖𝜗2) + 𝑦3
2(𝜗1 − 𝑖𝜗2) + 2𝑦3𝜗3 − 2(𝜔3 + 𝑦3(𝜔1 − 𝑖𝜔2)) ∧ 𝜉3,

𝑑𝜉4 = −(𝜗1 − 𝑖𝜗2) + 𝑦4
2(𝜗1 + 𝑖𝜗2) − 2𝑦4𝜗4 + 2(𝜔3 − 𝑦4(𝜔1 + 𝑖𝜔2)) ∧ 𝜉4.

(4.14) 

Consequently, the derivatives of 𝜉3 and 𝜉4 are contained in the ring of forms 

spanned by {𝜗𝑖} and forms {𝜉𝑖}. 

Thus, theorem (4.1.3) is proved along the same lines as the previous theorem 

where 𝑑𝑦3 and 𝑑𝑦4 are obtained from (4.12) and (4.13) respectively. 

The results of theorem (4.1.3) can be cast in the general form, 

𝑑𝜉3 = 𝛽1 ∧ 𝜉3 +∑𝑐3𝑗𝜗𝑗

3

𝑗=1

,

𝑑𝜉4 = 𝛽2 ∧ 𝜉4 +∑𝑐4𝑗𝜗𝑗

3

𝑗=1

,

                                                     (4.15) 

where the coefficients 𝑐𝑖𝑗 are function valued quantities and the 𝛽𝑖 are 1-forms 

defined to be  

𝛽1 = −2𝜔3 − 2𝑦3(𝜔1 − 𝑖𝜔2),

𝛽2 = 2𝜔3 − 2𝑦4(𝜔1 + 𝑖𝜔2).
                                             (4.16) 

It is interesting to note that the exterior derivatives of the forms 𝛽𝑖 in (4.16) have 

the same generic form as that expressed on the right side of (4.15). Based on these 

results, there are a series of prolongation results which can be stated and proved 

along lines similar to the ones given. These results will be collected together in 

Theorem (4.1.4): 
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Theorem (4.1.4): 

a) Define 1-forms 𝜉5 and 𝜉6 to have the form, 

𝜉5 = 𝑑𝑦5 + 2𝜔3 + 2𝑦3(𝜔1 − 𝑖𝜔2),

𝜉6 = 𝑑𝑦6 − 2𝜔3 + 2𝑦4(𝜔1 + 𝑖𝜔2).
                                      (4.17) 

The exterior derivatives of 𝜉5 and 𝜉6 can be expressed in the form, 

𝑑𝜉5 = 2𝑦3(𝜗1 − 𝑖𝜗2) + 2𝜗3 + 2𝜉3 ∧ (𝜔1 − 𝑖𝜔2),

𝑑𝜉6 = 2𝑦4(𝜗1 + 𝑖𝜗2) − 2𝜗3 + 2𝜉4 ∧ (𝜔1 + 𝑖𝜔2).
            (4.18) 

b) Define the pair of the 1-form 

𝜉7 = 𝑑𝑦7 − 𝑒
𝑦5(𝜔1 − 𝑖𝜔2),

𝜉8 = 𝑑𝑦8 − 𝑒
𝑦6(𝜔1 + 𝑖𝜔2).

                                                   (4.19) 

The exterior derivatives of 𝜉7 and 𝜉8 can be expressed in the form, 

𝑑𝜉7 = −𝑒
𝑦5(𝜗1 − 𝑖𝜗2 + 𝜉5 ∧ (𝜔1 − 𝑖𝜔2)),

𝑑𝜉8 = −𝑒
𝑦6(𝜗1 + 𝑖𝜗2 + 𝜉6 ∧ (𝜔1 + 𝑖𝜔2)).

                       (4.20) 

Theorem (4.1.4) is shown along lines identical to that used for Theorem (4.1.1) by 

evaluating exterior derivatives of the relevant forms, substituting known 

derivatives and then simplifying the resulting expression. 

Sec (4.2): Estabrook-Wahlquist EW Procedure to Lax-Integrable System 

Some NLEEs have appeared as the compatibility conditions for systems of 

linear partial differential equations of the first order, and such NLEEs have been 

referred to as Lax integrable. Using Lax pairs, people can construct the gauge 

transformations (GTs) [24,26], Darboux transformations (DTs) [27,28], of such 

NLEEs. For a given NLEE, it is difficult to determine whether it can be associated 

with a Lax pair. One of the methods to test the Lax integrability is the prolongation 

structure (PS) method proposed via exterior differentials. 



111 
 

We embark in this section on an attempt to systematize the derivation of 

Lax-integrable systems with variable coefficients. Of the many techniques which 

have been employed for constant coefficient integrable systems. The method 

directly proceeds to attempt construction of the Lax Pair or linear spectral problem; 

whose compatibility condition is the integrable system under discussion. While not 

at all guaranteed to work, any successful implementation of the technique means 

that Lax-integrability has already been verified during the study, and in addition 

the Lax Pair is algorithmically obtained. If the technique fails, that does not 

necessarily imply non-integrability of the equation contained in the compatibility 

condition of the assumed Lax Pair. 

(4.2.1): The Exterior Differential Expression of Lax Integrability 

In the standard Estabrook-Wahlquist method one begins with a constant coefficient 

NLPDE and assumes an implicit dependence on 𝑢(𝑥, 𝑡) and its partial derivatives 

of the spatial and time evolution matrices (𝑀,𝑁) involved in the linear scattering 

problem, or its Lax representation can be written in the following matrix form 

(4.21) 

𝜓𝑥 = 𝑀(𝜆)𝜓,

𝜓𝑡 = 𝑁(𝜆)𝜓,
                                                                            (4.21) 

where 𝑥 and 𝑡 are the independent variables, the subscripts denote the partial 

differentials, 𝜆 is the spectral parameter, 𝜓 is the eigen-function associated with 𝜆, 

while 𝑀 and 𝑁 are (evolution matrices connected via a zero-curvature condition) 

whose elements are dependent on 𝜆. The corresponding NLEE can be obtained 

from the compatibility condition of system (4.21), which can be written as 

𝑀𝑡 −𝑁𝑥 + [𝑀,𝑁] = 0,                                                           (4.22) 

Define the system of 1-forms 

𝜔 = 𝑀 𝑑𝑥 + 𝑁 𝑑𝑡.                                                                    (4.23) 
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The system (4.21) can be equivalent to the following Pfaff system 

𝜎 = 𝑑𝜓 − 𝜔𝜓 = 0.                                                                   (4.24) 

By using the exterior differentiation on (4.24), we get 

𝑑𝜎 = −𝑑𝜔 𝜓 + 𝜔 ∧ 𝑑𝜓,                                                         (4.25) 

Combining (4.24) and (4.25), we get 

𝑑𝜎 = −𝑑𝜔 𝜓 + 𝜔 ∧ (𝜎 + 𝜔𝜓)

       = 𝜔 ∧ 𝜎 − (𝑑𝜔 − 𝜔 ∧ 𝜔)𝜓.
                                            (4.26) 

Through the Frobenius theorem, Pfaff system (4.24) is completely integrable if and 

only if the following system is satisfied 

Ω = 𝑑𝜔 − 𝜔 ∧ 𝜔 = 0,                                                             (4.27) 

where Ω is a square matrix whose elements are 2-forms. It can be verified that 

system (4.27) is equivalent to compatibility condition (4.22). Thus, system (4.27) 

also corresponds to the NLEE whose Lax representation is given by (4.21). On the 

relation between complete integrability and Lax integrability, we have the 

following proposition: 

Proposition (4.2.1) 

The (1+1)-dimensional NLEE whose Lax representation is given by (4.21) must be 

completely integrable. 

Proof  

Differentiating system (4.27), we have 

Ω = −𝑑𝜔 ∧ 𝜔 + 𝜔 ∧ 𝑑𝜔
    = −(Ω + 𝜔 ∧ 𝜔) ∧ 𝜔 + 𝜔 ∧ (Ω + 𝜔 ∧ 𝜔)
    = −Ω ∧ 𝜔 + 𝜔 ∧ Ω.

                     (4.28) 
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Thus, system (4.27) is completely integrable according to the Frobenius theorem. 

Because system (4.27) corresponds to the (1+1)-dimensional NLEE whose Lax 

representation is given by (4.21). ∎ 

(4.2.1): An Equivalent Definition of Lax Integrability 

We replace the (1+1)-dimensional NLEE whose Lax representation is given by 

(4.21), by a system of 2-forms. Hereby, we take the nonlinear Schrödinger 

equation (NLSE) 

𝑖𝑢𝑡 + 𝑢𝑥𝑥 + 2|𝑢|
2𝑢 = 0,                                                         (4.29) 

as an example to illustrate this procedure, where 𝑢 is a complex function of 𝑥 and 

𝑡. Equation (4.29) can describe the propagation of light in the nonlinear optical 

fiber or Bose–Einstein condensate confined to highly anisotropic cigar-shaped trap. 

Equation (4.29) has also appeared in the studies of small-amplitude gravity wave 

on the surface of deep inviscid water. Let 𝑈 ⊂ ℝ2 be coordinated by 𝑥, 𝑡 and, 𝑉 =

𝑈 ×ℝ4 ⊂ ℝ6 be a fiber bundle with 𝑈 as the base manifold and 𝑉 is coordinated 

by 𝑥, 𝑡, 𝑢, �̅�, 𝑝, �̅�, where �̅� and �̅� are complex conjugates of 𝑢 and 𝑝 respectively. 

Then, equation (4.29) can be represented by the following system of 2-forms 

which are defined on the manifold 𝑉 

𝛼1 = 𝑝𝑑𝑥 ∧ 𝑑𝑡 − 𝑑𝑢 ∧ 𝑑𝑡,                                 
𝛼2 = �̅�𝑑𝑥 ∧ 𝑑𝑡 − 𝑑�̅� ∧ 𝑑𝑡,                                 

𝛼3 = −𝑖𝑑𝑢 ∧ 𝑑𝑥 + 𝑑𝑝 ∧ 𝑑𝑡 + 2𝑢
2�̅�𝑑𝑥 ∧ 𝑑𝑡,

𝛼4 = 𝑖𝑑�̅� ∧ 𝑑𝑥 + 𝑑�̅� ∧ 𝑑𝑡 + 2�̅�
2𝑢𝑑𝑥 ∧ 𝑑𝑡.   

                    (4.30) 

If map 𝑠: 𝑈 ⟶ 𝑉 is a cross section of 𝑉 with the property 

𝑠∗𝛼𝑖 = 0, 𝑖 = 1, 2, 3, 4                                                     (4.31) 

where 𝑠∗ denotes the pull back of the map 𝑠, it can be verified that 𝑢(𝑥, 𝑡) is a 

solution of equation (4.29). Conversely, for any given solution 𝑢(𝑥, 𝑡) of equation 

(4.29), the map 𝑠: 𝑈 ⟶ 𝑉 by (𝑥, 𝑡) ⟶ (𝑥, 𝑡, 𝑢(𝑥, 𝑡), �̅�(𝑥, 𝑡), 𝑢𝑥(𝑥, 𝑡), �̅�𝑥(𝑥, 𝑡)) is a 
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cross section of 𝑉 which satisfies property (4.31). Without causing any confusion, 

we write property (4.31) just as {𝛼𝑖 = 0} for simplicity. For any (1+1)-dimensional 

NLEE, the corresponding system of 2-forms {𝛼𝑖 = 0} can be constructed as above. 

 Two systems of 2-forms {𝛼𝑖 = 0} and {𝛽𝑖 = 0} are said to be equivalent if      

𝛽𝑖 = 𝑓𝑖
𝑗
𝛼𝑗, and the rank of matrix (𝑓𝑖

𝑗
) is full, where 𝛽𝑖’s are 2-forms. It should be 

noted that the Einstein summation convention is used here and below. With those 

preparations, we give the following equivalent definition of Lax integrability: 

Proposition (4.2.2): 

A (1+1)-dimensional NLEE is Lax integrable if and only if there exist a square 

matrix 𝜔 of 1-forms about 𝑑𝑥 and 𝑑𝑡, such that the system Ω = 𝑑𝜔 − 𝜔 ∧ 𝜔 = 0 

is equivalent to {𝛼𝑖 = 0}. 

Proof 

a) Assume that the Lax representation for the (1+1)-dimensional NLEE is 

given by (4.21). if 𝜔 is set to be 𝑀 𝑑𝑥 + 𝑁 𝑑𝑡, then 𝜔 is exactly what we 

wanted according to the chain of the equivalent relations: 

Ω = 𝑑𝜔 − 𝜔 ∧ 𝜔 = 0                                                     
⟺ 𝑀𝑡 −𝑁𝑥 + [𝑀,𝑁] = 0                                      

       ⟺ (1 + 1) − dimensional NLEE whose                  
Lax representation is given by (4.21)

  ⟺ {𝛼𝑖 = 0}.                                                                 

  (4.32) 

b) Assume that the square matrix of 1-forms about 𝑑𝑥 and 𝑑𝑡 is 𝜔. Then, 𝜔 

can be decomposed into the 𝑑𝑥 part and 𝑑𝑡 part, i.e., 𝜔 can be written in the 

form 𝜔 = 𝑀𝑑𝑥 + 𝑁𝑑𝑡. It can be verified that 𝑀 and 𝑁 are just the Lax pair 

we are searching for.        ∎ 

Proposition (4.32) defines the (1+1)-dimensional NLEE whose Lax representation 

is given by (4.21) in terms of the differential form and exterior differentials. 
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(4.2.2): Some Remarks on Prolongation Structure Method 

 The prolongation structure method has been used to test the Lax 

integrability. Just like what we have done above, we hereby replace the (1+1)-

dimensional NLEE whose Lax representation is given by (4.21) by the system of 

2-forms {𝛼𝑖 = 0} which are defined on the manifold 𝑉. We introduce the Pfaff 

system on the vector bundle 𝐸 = 𝑉 × ℝ𝑛, 

𝜎𝑖 = 𝑑𝑦𝑖 − 𝐹𝑖𝑑𝑥 − 𝐺𝑖𝑑𝑡, 𝑖 = 1, 2,… , 𝑛                       (4.33) 

where 𝑦𝑖 are called the pseudo-potentials and they are the coordinates of 

ℝ𝑛,      𝑛 ∈ ℕ, 𝜎𝑖 is 1-forms, 𝐹𝑖 and 𝐺𝑖 are the functions on the vector bundle 𝐸. 

The prolongation structure method requires that the ideal generated by the system 

{𝛼𝑖 = 0, 𝜎𝑖 = 0} is a closed ideal. According to Frobenius theorem and 

proposition (4.21), we know that {𝛼𝑖 = 0} must generate a closed ideal. Thus, the 

prolongation condition can be written as 

𝑑𝜎𝑖 = 𝑚𝑖
𝑗
𝛼𝑗 + 𝑛𝑖

𝑗
∧ 𝜎𝑗 , 𝑖 = 1, 2,… , 𝑛                           (4.34) 

where 𝑚𝑖
𝑗
 are functions to be determined and 𝑛𝑖

𝑗
 are 1-forms. 

 Via the comparison between equations (4.24) and (4.33), it can be seen that 

the pseudo-potentials 𝑦𝑖 correspond to the eigenfunction 𝜓, while 𝐹𝑖 and 𝐺𝑖 

correspond to 𝜔. What’s more, there is a correspondence between prolongation 

condition (4.34) and equation (4.26). In fact, from that correspondence, we can see 

that prolongation condition (4.34) is to guarantee that Pfaff system (4.33) is 

completely integrable on the solution manifold {𝛼𝑖 = 0} of the (1+1)-dimensional 

NLEE whose Lax representation is given by (4.21). Then, Lax equation (4.21) for 

the (1+1)-dimensional NLEE can be obtained with the complete integrability 

condition although the fact that the Lax integrability is a stronger integrability 

property than complete integrability. 
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(4.2.3): Geometric Interpretation of Lax Equation 

Assume that there is a connection 𝐷 defined on the vector bundle 𝐸 = 𝑉 × ℝ𝑛, and 

the sections 𝑠1, … , 𝑠𝑛 form a frame of sections of 𝐸. Using the frame of sections 𝑆, 

where 𝑆 is the transpose of the row vector (𝑠1, … , 𝑠𝑛), and the connection 𝐷, we 

can obtain an 𝑛 × 𝑛 connection matrix 𝜔 which is defined by the formula        

𝐷𝑆 = 𝜔𝑆. We will give the geometric interpretation of 𝜔 in this part. Elements of 

the connection matrix 𝜔 are functions on the manifold 𝑉. If the section 𝑠 = 𝜂𝑖𝑠𝑖 is 

a parallel section of 𝐸 with 𝜂𝑖 as functions on the manifold 𝑉, i.e., 𝐷𝑠 = 0, then 𝜂𝑖 

should satisfy the following equations 

𝑑𝜂𝑖 + 𝜂𝑗𝜔𝑗
𝑖 = 0, 𝑖 = 1,… , 𝑛.                                          (4.35) 

The equation (4.35) can be written in the matrix form 

𝑑𝜂 + 𝜂𝜔 = 0.                                                                             (4.36) 

The connection 𝐷 on the vector bundle 𝐸 can induce a connection 𝐷′ on the dual 

vector bundle 𝐸∗ = 𝑉 × (ℝ𝑛)∗, where (ℝ𝑛)∗ denotes the dual space of ℝ𝑛. If we 

choose the dual frame of the sections 𝑆∗ = (𝑠1∗, … , 𝑠𝑛∗)𝑇 of 𝐸∗, i.e., 〈𝑠𝑖 , 𝑠
𝑗∗〉 = 𝛿𝑖

𝑗
, 

where 〈  , 〉 represent the inner product in the vector bundles 𝐸 and 𝐸∗, then we 

have the equation 𝐷′𝑆∗ = −𝜔𝑆∗. That is to say, the induced connection matrix on 

the dual vector bundle 𝐸∗ is −𝜔. If the section 𝑠∗ = 𝜃𝑖𝑠
𝑖∗ is a parallel section of 𝐸∗ 

with 𝜃𝑖 as functions on the manifold 𝑉, i.e., 𝐷′𝑠∗ = 0, 𝜃𝑖 should satisfy the 

following equation 

𝑑𝜃𝑖 − 𝜃𝑗𝜔𝑖
𝑗
= 0.                                                                        (4.37) 

Also the equation (4.37) can be written in the matrix form 

𝑑𝜃 − 𝜔𝜃 = 0.                                                                            (4.38) 
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 It can be seen that equation (4.38) is exactly Lax equation (4.24). then, Lax 

equation (4.24) can be interpreted as the parallel section equation on the dual 

vector bundle 𝐸∗ with the connection matrix equal to −𝜔 = −(𝑀𝑑𝑥 + 𝑁𝑑𝑡), 

while the eigenfunction 𝜓 corresponds to the vector formed by the coordinates of 

parallel section of 𝐸∗ under the dual frame of sections 𝑆∗. 

 In the differential geometry, formula Ω = 𝑑𝜔 − 𝜔 ∧ 𝜔 represents the 

curvature matrix with 𝜔 as the connection matrix. Then, Pfaff system (4.24) is 

completely integrable if and only if the curvature matrix Ω vanishes. If zero-

curvature condition (4.27) is satisfied, then there exists 𝑛 linearly-independent 

parallel sections, i.e., the Lax equation 𝑑𝜓 = 𝜔𝜓 has 𝑛 linearly independent 

solutions. With those solutions, we can construct the multi-soliton solutions using 

the Darboux transformation. 

Sec (4.3): Exterior Differential Expression of the Gauge Transformation 

and Darboux Transformation 

Assume that we have the following two Lax equations 

𝜓𝑥 = 𝑀𝜓, 𝜓𝑡 = 𝑁𝜓,                                                        (4.39) 

𝜓𝑥
′ = 𝑀′𝜓′, 𝜓𝑡

′ = 𝑁′𝜓′,                                                  (4.40) 

where 𝜓′ is the eigenfunction associated with spectral parameter 𝜆, while 𝑀′ and 

𝑁′ are matrices. If there exists a gauge transformation (GT) 𝜓′ = 𝑇𝜓 with 𝑇 as a 

matrix, which converts Lax equation (4.39) into (4.40), the gauge transformation 𝑇 

should satisfy the following system 

𝑇𝑥 = 𝑀
′𝑇 − 𝑇𝑀,

𝑇𝑡 = 𝑁
′𝑇 − 𝑇𝑁.

                                                                      (4.41) 

It can be verified that system (4.41) can be written in the form 

𝜔′ = 𝑇𝜔𝑇−1 + 𝑑𝑇 ⋅ 𝑇−1,                                                        (4.42) 
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where 𝜔 is defined by equation (4.23), while 𝜔′ is 𝑀′𝑑𝑥 + 𝑁′𝑑𝑡. Equation (4.42) 

is the transformation formula of the connection matrix under the transformation of 

the basis of sections 𝑆′ = 𝑇𝑆. The transformation formula for the curvature matrix 

Ω is 

Ω′ = 𝑇Ω𝑇−1                                                                               (4.43) 

where Ω = 𝑑𝜔 − 𝜔 ∧ 𝜔, while Ω′ = 𝑑𝜔′ −𝜔′ ∧ 𝜔′. System (4.41) is also 

equivalent to the following Pfaff system 

𝑑𝑇 − 𝜔′𝑇 + 𝑇𝜔 = 0.                                                               (4.44) 

 Because the curvature matrices Ω and Ω′ both vanish from zero-curvature 

condition (4.47), it can be proved that Pfaff system (4.44) is completely integrable 

according to the Frobenius theorem. That is to say, every (1+1)-dimensional NLEE 

with Lax integrability is gauge equivalent to one another. We can choose the 

Korteweg–de Vries equation (KdV) as an example 

𝑢𝑡 + 𝑢𝑥𝑥𝑥 + 6𝑢𝑢𝑥 = 0,                                                           (4.45) 

where 𝑢 = 𝑢(𝑥, 𝑡), the equation (4.45) is encountered in many physical areas such 

as the shallow water waves in the ocean, internal gravity waves in the lake of 

changing cross section and ion-acoustic waves in the plasma. 

 Assume that the 𝑛-dimensional Lax representation for equation (4.45) is 

𝑑𝜓 = 𝜔𝜓 is equivalent to the system Ω = 𝑑𝜔 − 𝜔 ∧ 𝜔 = 0. Thus, we have the 

following proposition: 

Proposition (4.3.1): 

The (1+1)-dimensional NLEE with Lax integrability is equivalent to the system 

𝑇Ω𝑇−1 = 0 for some 𝑛 × 𝑛 invertible matrix 𝑇 whose elements are functions on 

the manifold 𝑉. 
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Proof: 

If a (1+1)-dimensional NLEE with Lax integrability is equivalent to the system 

𝑇Ω𝑇−1 = 0, then the Lax equation corresponding to that NLEE is 𝑑𝜓′ = 𝜔′𝜓′, 

where 𝜔′ = 𝑇𝜔𝑇−1 + 𝑑𝑇 ⋅ 𝑇−1. Then, that NLEE is Lax integrable. Conversely, 

we have known that every (1+1)-dimensional NLEE with Lax integrability is 

gauge equivalent to equation (4.45) via the above discussion. Then, there exists an 

invertible matrix 𝑇, such that the given (1+1)-dimensional NLEE with Lax 

integrability is equivalent to the system 𝑇Ω𝑇−1 = 0.  ∎ 

Gauge transformations (GTs) of the same (1+1)-dimensional NLEE with 

Lax integrability are useful in the analysis of this kind of the NLEEs. We say that 

𝑇 is a GT if the two systems 𝑇Ω𝑇−1 = 0 and Ω = 0 are equivalent, i.e., they 

correspond to the same (1+1)-dimensional NLEE with Lax integrability. The set of 

all GTs in fact forms a group, which we call the gauge group. Because GTs 

preserve solution manifold, gauge group can also be called the symmetry group. 

The Darboux transformation is a particular gauge transformation. The set of all 

DTs also forms a group which is a subgroup of the gauge group. 

Proposition (4.3.2): 

For the (1+1)-dimensional NLEE whose Lax representation is given by (4.21), if 

there exists a Darboux transformation of the form 𝑇 = 𝜆𝐼 − 𝑆, then the 𝑛 × 𝑛 

matrix 𝑆, which is independent on the spectral parameter 𝜆, must satisfy the 

following equation 

𝑑𝑆 + [𝑆, 𝜔(𝑆)] = 0.                                                                 (4.46) 

Note (4.3.3): 

if we expand 𝜔(𝜆) = 𝑀(𝜆)𝑑𝑥 + 𝑁(𝜆)𝑑𝑡 into the power series of the spectral 

parameter 𝜆 as 𝜔(𝜆) = ∑ 𝜔𝑖𝜆
𝑖𝑚

𝑖=0 , then 𝜔(𝑆) which appears in equation (4.46) 

represents ∑ 𝜔𝑖𝑆
𝑖𝑚

𝑖=0 , where 𝑚 is positive integer. 
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Proof: 

Substituting 𝜔(𝜆) = ∑ 𝜔𝑖𝜆
𝑖𝑚

𝑖=0 , 𝜔′(𝜆) = ∑ 𝜔𝑖
′𝜆𝑖𝑚

𝑖=0 , 𝑇 = 𝜆𝐼 − 𝑆 into equation 

(4.44), and collecting the coefficients of the same power of the spectral parameter 

𝜆, we get 

𝜆𝑚+1: 𝜔𝑚
′ = 𝜔𝑚 ,                                                                      (4.47) 

𝜆𝑗: 𝜔𝑗−1
′ = 𝜔𝑗−1 − 𝑆𝜔𝑗 +𝜔𝑗

′𝑆, 𝑗 = 1,… ,𝑚               (4.48) 

𝜆0: 𝑑𝑆 + 𝑆𝜔0 −𝜔0
′ 𝑆 = 0 .                                                     (4.49) 

The relation between 𝜔0
′  and 𝜔0 can be derived from equations (4.47) and (4.48) 

as 

 𝜔0
′ = 𝜔0 +∑[𝜔𝑘, 𝑆]

𝑚

𝑘=1

𝑆𝑘−1 .                                                 (4.50) 

Substituting equation (4.50) into (4.49), we obtain equation (4.46). 

 Equation (4.46) can be decomposed into the following system 

𝑆𝑥 + [𝑆,𝑀(𝑆)] = 0 ,

𝑆𝑡 + [𝑆, 𝑁(𝑆)] = 0 ,
                                                                (4.51) 

where 𝑀(𝑆)𝑑𝑥 + 𝑁(𝑆)𝑑𝑡 = 𝜔(𝑆). 

Proposition (4.3.4): 

Equation (4.46) is completely integrable if and only if the following condition is 

satisfied 

𝑑𝜔(𝑆) − 𝜔(𝑆) ∧ 𝜔(𝑆) = 0 .                                                   (4.52) 

Equivalently, system (4.51) is completely integrable if and only if 

𝑀𝑡(𝑆) − 𝑁𝑥(𝑆) + [𝑀(𝑆),𝑁(𝑆)] = 0 .                                  (4.53) 
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Proof: 

Consider the Pfaff system 

𝜏 = 𝑑𝑆 + [𝑆, 𝜔(𝑆)] = 𝑑𝑆 + [𝑆,𝑀(𝑆)]𝑑𝑥 + [𝑆, 𝑁(𝑆)]𝑑𝑡 = 0,       (4.54) 

then, by differentiating the (4.54), we get 

𝑑𝜏 = [𝑑𝑆,𝑀(𝑆)] ∧ 𝑑𝑥 + [𝑆, 𝑑𝑀(𝑆)] ∧ 𝑑𝑥 + [𝑑𝑆, 𝑁(𝑆)] ∧ 𝑑𝑡 + [𝑆, 𝑑𝑁(𝑆)] ∧ 𝑑𝑡

     = [𝑑𝑆,𝑀(𝑆)] ∧ 𝑑𝑥 + [𝑆,𝑀𝑡(𝑆) − 𝑁𝑥(𝑆)]𝑑𝑡 ∧ 𝑑𝑥 + [𝑑𝑆, 𝑁(𝑆)] ∧ 𝑑𝑡 .            
 

Substituting 𝑑𝑆 by 𝜏 − [𝑆,𝑀(𝑆)]𝑑𝑥 − [𝑆, 𝑁(𝑆)]𝑑𝑡 into above system, we have 

𝑑𝜏 = [𝜏,𝑀(𝑆)] ∧ 𝑑𝑥 + [𝜏, 𝑁(𝑆)] ∧ 𝑑𝑡 + [𝑆,𝑀𝑡(𝑆) − 𝑁𝑥(𝑆)]𝑑𝑡 ∧ 𝑑𝑥        

− [[𝑆, 𝑁(𝑆)],𝑀(𝑆)]𝑑𝑡 ∧ 𝑑𝑥 − [[𝑆,𝑀(𝑆)], 𝑁(𝑆)]𝑑𝑥 ∧ 𝑑𝑡.           (4.55) 

By impact of the Jacobi identity 

[𝑀(𝑆), [𝑁(𝑆), 𝑆]] + [𝑆, [𝑀(𝑆),𝑁(𝑆)]] + [𝑁(𝑆), [𝑆,𝑀(𝑆)]] = 0, 

the equation (4.55) is written as 

𝑑𝜏 = [𝜏,𝑀(𝑆)] ∧ 𝑑𝑥 + [𝜏, 𝑁(𝑆)] ∧ 𝑑𝑡 + [𝑆,𝑀𝑡 −𝑁𝑥 + [𝑀,𝑁]]𝑑𝑡 ∧ 𝑑𝑥.   (4.56) 

Thus, the Pfaff system 𝜏 = 0 is completely integrable if and only if the condition 

𝑀𝑡(𝑆) − 𝑁𝑥(𝑆) + [𝑀(𝑆),𝑁(𝑆)] = 0 is satisfied according to the Frobenius 

theorem. ∎ 

 The matrix 𝑆 can be constructed as follows: Let Λ be a 𝑛 × 𝑛 diagonal 

matrix whose diagonal elements are 𝜆1, … , 𝜆𝑛, where 𝜆1, … , 𝜆𝑛 are complex 

spectral parameter. 𝐻 represents the 𝑛 × 𝑛 invertible matrix (𝜓1, … , 𝜓𝑛), where 𝜓𝑖, 

𝑖 = 1,… , 𝑛 satisfy the equations 𝑑𝜓𝑖 = 𝜔(𝜆𝑖)𝜓𝑖. Define 𝑆 as 𝐻Λ𝐻−1, and we will 

prove that 𝑆 = 𝐻Λ𝐻−1 satisfies condition (4.50). for that, two lemmas will be 

given. 
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Lemma (4.3.5): 

𝑆 = 𝐻Λ𝐻−1 satisfies the equation 

𝑑𝑆𝑖 = 𝜔(𝑆)𝑆𝑖 − 𝑆𝑖𝜔(𝑆).                                                        (4.57) 

Proof: 

Differentiating 𝐻 = (𝜓1, … , 𝜓𝑛), we have 

𝑑𝐻 = (𝑑𝜓1, … , 𝑑𝜓𝑛) = (𝜔(𝜆1)𝜓1, … , 𝜔(𝜆𝑛)𝜓𝑛)

       = (∑𝜔𝑖𝜆1
𝑖𝜓1

𝑚

𝑖=0

, … ,∑𝜔𝑖𝜆𝑛
𝑖 𝜓𝑛

𝑚

𝑖=0

) =∑𝜔𝑖𝐻Λ
𝑖

𝑚

𝑖=0

.
        (4.58) 

Using the equation (4.58) then, we can calculate the differential of 𝑆 

𝑑𝑆 = 𝑑(𝐻𝛬𝐻−1) = 𝑑𝐻𝛬𝐻−1 +𝐻𝛬𝑑𝐻−1

      = 𝑑𝐻𝛬𝐻−1 −𝐻𝛬𝐻−1𝑑𝐻𝐻−1

     = (∑𝜔𝑖𝐻Λ
𝑖

𝑚

𝑖=0

)Λ𝐻−1 −𝐻Λ𝐻−1 (∑𝜔𝑖𝐻Λ
𝑖

𝑚

𝑖=0

)𝐻−1

     = (∑𝜔𝑖𝐻Λ
𝑖𝐻−1

𝑚

𝑖=0

)HΛ𝐻−1 −𝐻Λ𝐻−1 (∑𝜔𝑖𝐻Λ
𝑖

𝑚

𝑖=0

𝐻−1)

     = (∑𝜔𝑖𝑆
𝑖

𝑚

𝑖=0

)𝑆 − 𝑆(∑𝜔𝑖𝑆
𝑖

𝑚

𝑖=0

) = 𝜔(𝑆)𝑆 − 𝑆𝜔(𝑆).

     (4.59) 

Then we get 

𝑑𝑆𝑖 = 𝑑𝑆𝑆𝑖−1 + 𝑆𝑑𝑆𝑆𝑖−2 +⋯+ 𝑆𝑖−1𝑑𝑆,                           (4.60) 

where 

  𝑑𝑆𝑆𝑖−1 = (𝜔(𝑆)𝑆 − 𝑆𝜔(𝑆))𝑆𝑖−1 = 𝜔(𝑆)𝑆𝑖 − 𝑆𝜔(𝑆)𝑆𝑖−1 ,                 (4.61𝑎)

  𝑆𝑑𝑆𝑆𝑖−2 = 𝑆(𝜔(𝑆)𝑆 − 𝑆𝜔(𝑆))𝑆𝑖−2 = 𝑆𝜔(𝑆)𝑆𝑖−1 − 𝑆2𝜔(𝑆)𝑆𝑖−2 ,    (4.61𝑏)

                  ⋮
   𝑆𝑖−1𝑑𝑆 = 𝑆𝑖−1(𝜔(𝑆)𝑆 − 𝑆𝜔(𝑆)) = 𝑆𝑖−1𝜔(𝑆)𝑆 − 𝑆𝑖𝜔(𝑆) .                 (4.61𝑐)

 

From equations (4.60), (4.61a), (4.61b), and (4.61c), we obtain equation (4.57)  ∎ 
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Lemma (4.3.6): 

𝑆 = 𝐻Λ𝐻−1 satisfies the equation 

∑𝑑𝜔𝑖𝑆
𝑖 −∑𝜔𝑖 ∧ 𝜔(𝑆)𝑆

𝑖

𝑚

𝑖=0

𝑚

𝑖=0

= 0.                                       (4.62) 

Proof: 

The compatibility condition of equation 𝑑𝜓 = 𝜔(𝜆)𝜓 is 

Ω(𝜆) = 𝑑𝜔(𝜆) − 𝜔(𝜆) ∧ 𝜔(𝜆) = 0.             

Ω(𝜆) can be expanded into the power series of the spectral parameter 𝜆 as 

Ω(𝜆) =∑𝑑𝜔𝑖𝜆
𝑖 −∑𝜔𝑖𝜆

𝑖 ∧ 𝜔(𝜆)

𝑚

𝑖=0

𝑚

𝑖=0

= 0.                          (4.63) 

Moreover, (4.63) can be written in the following identities 

∑𝑑𝜔𝑖λ1
𝑖 =∑𝜔𝑖 ∧ 𝜔(𝜆1)𝜆1

𝑖

𝑚

𝑖=0

= ∑ 𝜔𝑖 ∧ 𝜔𝑗𝜆1
𝑖+𝑗

𝑚

𝑖,𝑗=0

,     (5.44𝑎)

𝑚

𝑖=0

                    ⋮

∑𝑑𝜔𝑖λ𝑛
𝑖 =∑𝜔𝑖 ∧ 𝜔(𝜆𝑛)𝜆𝑛

𝑖

𝑚

𝑖=0

= ∑ 𝜔𝑖 ∧ 𝜔𝑗𝜆𝑛
𝑖+𝑗

𝑚

𝑖,𝑗=0

.

𝑚

𝑖=0

    (5.44𝑏)

 

From equations (4.64a) and (4.64b), we can derive 

∑𝑑𝜔𝑖λ1
𝑖𝜓1 = ∑ 𝜔𝑖 ∧ 𝜔𝑗𝜆1

𝑖+𝑗
𝜓1

𝑚

𝑖,𝑗=0

,                                  (4.65a)

𝑚

𝑖=0

                          ⋮

∑𝑑𝜔𝑖λ𝑛
𝑖 𝜓𝑛 = ∑ 𝜔𝑖 ∧ 𝜔𝑗𝜆𝑛

𝑖+𝑗
𝜓𝑛

𝑚

𝑖,𝑗=0

.

𝑚

𝑖=0

                                (4.65b)
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Therefore, equations (4.65a) and (4.65b) can be written in the matrix form 

∑𝑑𝜔𝑖𝐻Λ
𝑖 = ∑ 𝜔𝑖 ∧ 𝜔𝑗𝐻Λ

𝑖+𝑗

𝑚

𝑖,𝑗=0

.

𝑚

𝑖=0

                                      (4.66) 

Then, multiplying both sides of equation (4.66) by 𝐻−1, we get equation (4.62).  ∎ 

Proposition (4.3.7): 

𝑆 = 𝐻Λ𝐻−1 satisfies the equation (4.52) 

Proof: 

Using Lemma (4.3.5) and Lemma (4.3.6) 

Via the direct calculation 

𝑑𝜔(𝑆) = 𝑑 (∑𝜔𝑖𝑆
𝑖

𝑚

𝑖=0

) =∑𝑑𝜔𝑖𝑆
𝑖 −∑𝜔𝑖 ∧ 𝑑𝑆

𝑖

𝑚

𝑖=0

𝑚

𝑖=0

             =∑𝑑𝜔𝑖𝑆
𝑖 −∑𝜔𝑖 ∧ (𝜔(𝑆)𝑆

𝑖 − 𝑆𝑖𝜔(𝑆))

𝑚

𝑖=0

𝑚

𝑖=0

             =∑𝑑𝜔𝑖𝑆
𝑖 −∑𝜔𝑖 ∧ 𝜔(𝑆)𝑆

𝑖 +∑𝜔𝑖 ∧ 𝑆
𝑖𝜔(𝑆)

𝑚

𝑖=0

𝑚

𝑖=0

𝑚

𝑖=0

             =∑𝜔𝑖 ∧ 𝑆
𝑖𝜔(𝑆)

𝑚

𝑖=0

= 𝜔(𝑆) ∧ 𝜔(𝑆) ,

  (4.67) 

the proof is complete, where the second step is due to Lemma (4.3.5), while the 

last step is due to Lemma (4.3.6). ∎ 
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CHAPTER FIVE 

Applications on Exterior Differential Systems 

Section (5.1): Prolongation Structures of Nonlinear Evolution Equations 

This study about "Prolongation structures of nonlinear evolution equations,” 

Wahlquist and Estabrook introduced for "prolonging" a partial differential equation 

and applied it to the generalization Korteweg-de Vries (KdV) equation. They 

found that the prolongation determined a structure which "comes close to defining 

a Lie algebra" and that, by considering a special case, they could associate to the 

KdV equation a 5-dimensional. The algebra [or rather a subalgebra isomorphic to 

𝑆𝑙(2,ℝ)] was then used to obtain the inverse scattering problem and Bäcklund 

transformation appropriate to the KdV equation. The purpose of the present 

chapter is to investigate the algebraic structure of the WE prolongation of 

generalization KdV. Once nonlinear terms are included in linear dispersive 

equations, solitary waves can result which can be stable enough to persist 

indefinitely. It is well known that many important nonlinear evolution equations 

which have numerous applications in mathematical physics appear as sufficient 

conditions for the integrability of systems of linear partial differential equations of 

first order, and such systems are referred to as integrable. This is not just an oddity, 

since algebraic structures such as those which appear in AKNS systems; which the 

AKNS refer to “method of Ablowitz, Kaup, Newell and Segur (1974) A.K.N.S”, 

can arise very naturally from nonlinear evolution equations. This is very well 

exemplified by applying the prolongation technique that we introduced in previous 

chapters. These prolongations have a very useful application since Bäcklund 

transformations can be calculated based on them as well [29]. A Bäcklund 

transformation has important practical consequences, since such transformations 

can be used to calculate solutions to an associated equation, usually referred to as 

the potential equation, based on solutions of the initial equation. Sometimes these 
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transformations can be used to obtain new solutions to the same initial equation, in 

which case they are referred to as auto Bäcklund transformations.  

Recently an exterior differential system which defines a generalized KdV equation 

on the transverse manifold was obtained [30]. A particular case of this equation has 

appeared in [31] recently. The symmetries of this equation were determined and 

some solutions were found as well [32]. This permitted the determination of a 

certain form of integrability. Also, a particular type of prolongation over a fiber 

bundle was found corresponding to this differential system, as well as a specific 

form for a Bäcklund transformation with its associated potential equation. Here, 

the same differential system is studied, but a fully general calculation of the 

prolongation over the same bundle is carried out in detail for this generalized KdV 

equation. This allows the prolongation structure for any case of the given 

parameters in the equation. For completeness, the general theory for obtaining such 

prolongations based on the given exterior system of differential forms that defines 

the equation upon sectioning to a transversal integral manifold will be outlined 

first. Transversal integral manifolds give solutions of the equation. Finally, this 

work is extended to a study of a differential system of one-forms which define an 

equation that includes the Camassa-Holm equation and Degasperis-Procesi 

equations as specific cases [33-35]. The Camassa-Holm equation has been of 

interest because it has been shown to have peaked soliton solutions. The Camassa-

Holm equation has a lot in common with the KdV equation, but there are 

significant differences as well. The KdV equation is globally well-posed when 

considered on a suitable Sobolev space, while Camassa-Holm is in general not. 

The first derivative of a solution of the latter can become infinite in finite time. The 

associated prolongation equations are developed and found to be much more 

restrictive than the previous case. However, it is shown that at least one solution to 

the prolongation system can be found. Finally, for each system a brief discussion 

concerning how conservation laws arise and can be expressed in this context will 

be discussed based on the defining exterior differential system. 
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(5.1.1): Differential System and Associated Differential Equation 

As the best known equation exhibiting all these phenomena, the KdV equation 

provides an excellent prototype upon which to exercise and illustrate any new 

development. Accordingly, this section concerned with obtaining the prolongation 

structure of the KdV equation and illustrating its relation to the many known 

techniques for treating this equation. Since the analysis is performed in the perhaps 

unfamiliar language of Cartan's exterior differential forms.  First we will give a 

brief introduction, defining the notation and setting up the KdV equation in terms 

of differential forms. While we do not emphasize the geometrical interpretation of 

our analysis (which is so well expressed by the differential form language), even 

analytically this notation is unquestionably superior for any treatment of 

conservation laws and integrability conditions. 

These ideas are applied to a class of equation that includes the nonlinear 

Kortewege-de Vries (KdV) equation. We may have written in the form 

𝑢𝑡 + (𝑢
𝑛)𝑥𝑥𝑥 + 𝛾

𝑛

𝑛 + 𝑠
(𝑢𝑛+𝑠)𝑥 = 0.                                    (5.1) 

where, 𝛾 is a real constant, nonzero. A more compact form is obtained if we set 

𝑚 = 𝑛 + 𝑠 ≠ 0 and define a new constant 𝛽 = 𝑛𝛾 (𝑛 + 𝑠)⁄ , then the (5.1) takes 

the form 

𝑢𝑡 + (𝑢
𝑛)𝑥𝑥𝑥 + 𝛽(𝑢

𝑚)𝑥 = 0.                                                   (5.2) 

To begin the investigation, an exterior differential system which is relevant 

to the partial differential equation must be introduced. An exterior differential 

system is given which is defined over base manifold 𝑀 = ℝ5, which supports the 

differential forms. Consider the system of the 2-forms given by 

𝛼1 = 𝑛𝑢
𝑛−1𝑑𝑢 ∧ 𝑑𝑡 − 𝑝 𝑑𝑥 ∧ 𝑑𝑡 = 0,

𝛼2 = 𝑑𝑝 ∧ 𝑑𝑡 − 𝑞 𝑑𝑥 ∧ 𝑑𝑡 = 0,
𝛼3 = 𝑑𝑢 ∧ 𝑑𝑡 − 𝑑𝑞 ∧ 𝑑𝑡 − 𝛾𝑝𝑢

𝑠𝑑𝑥 ∧ 𝑑𝑡 = 0,
                     (5.3) 
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then, take the differentiating forms in (5.3), we get 

𝑑𝛼1 = −𝑑𝑝 ∧ 𝑑𝑥 ∧ 𝑑𝑡 = 𝑑𝑥 ∧ 𝛼2,
𝑑𝛼2 = −𝑑𝑞 ∧ 𝑑𝑥 ∧ 𝑑𝑡 = 𝑑𝑥 ∧ 𝛼3,

𝑑𝛼3 = −𝛾𝑠𝑝𝑢
𝑠−1𝑑𝑢 ∧ 𝑑𝑥 ∧ 𝑑𝑡 − 𝛾𝑢𝑠𝑑𝑝 ∧ 𝑑𝑥 ∧ 𝑑𝑡

= 𝑑𝑥 ∧ (𝛾
𝑠

𝑛
𝑝𝑢𝑠−𝑛𝛼1 + 𝛾𝑝𝑢

𝑠𝛼2) .

           (5.4) 

Therefore, it can be seen that of all these exterior derivatives vanish modulo 

{𝛼𝑗}𝑗=1
3

. Any regular 2-dimensional solution manifold in the 5-dimensional space 

𝑆2 = {𝑢(𝑥, 𝑡), 𝑢𝑥 = 𝑝(𝑥, 𝑡), 𝑝𝑥(𝑥, 𝑡) = 𝑞(𝑥, 𝑡)} satisfying a specific partial 

differential equation of the form (4.3) will annul this set of forms. The system that 

mentioned in (5.3) is integrable. The exact form of this equation which 

corresponds to (5.3) can be found explicitly by sectioning the forms into the 

solution manifold. It follows that 

0 = 𝛼1| 𝑆 = ((𝑢
𝑛)𝑥 − 𝑝)𝑑𝑥 ∧ 𝑑𝑡,

0 = 𝛼2| 𝑆 = (𝑝𝑥 − 𝑞)𝑑𝑥 ∧ 𝑑𝑡,

0 = 𝛼3| 𝑆 = (𝑢𝑡 + 𝑞𝑥 + 𝛾𝑝𝑢
𝑠)𝑑𝑡 ∧ 𝑑𝑥.

                                 (5.5) 

thus, the result that give us the equation (5.2). 

(5.1.2): Determining Prolongation Algebra 

To generate a prolongation algebra, system (5.3) is substituted into the  

Based on the forms in system (5.3), the prolongation method outlined in previous 

chapter can be carried out, and the resulting system of equations can be solved 

quite generally. A very general prolongation corresponding to (5.1) can be 

calculated in terms of an algebra of vector fields. Then, to generate a prolongation 

algebra, the system (5.3) is substituted into prolongation condition (3.92) which 

lead us to 

𝐴𝑡𝑑𝑡 ∧ 𝑑𝑥 + 𝐴𝑢𝑑𝑢 ∧ 𝑑𝑥 + 𝐴𝑝𝑑𝑝 ∧ 𝑑𝑥 + 𝐴𝑞𝑑𝑞 ∧ 𝑑𝑥 + 𝐵𝑥𝑑𝑥 ∧ 𝑑𝑡

𝐵𝑢𝑑𝑢 ∧ 𝑑𝑡 + 𝐵𝑝𝑑𝑝 ∧ 𝑑𝑡 + 𝐵𝑞𝑑𝑞 ∧ 𝑑𝑡 + [𝐴, 𝐵]𝑑𝑥 ∧ 𝑑𝑡

= 𝜆1(𝑛𝑢
𝑛−1𝑑𝑢 ∧ 𝑑𝑡 − 𝑝𝑑𝑥 ∧ 𝑑𝑡) + 𝜆2(𝑑𝑝 ∧ 𝑑𝑡 − 𝑞𝑑𝑥 ∧ 𝑑𝑡)    

+𝜆3(𝑑𝑢 ∧ 𝑑𝑥 − 𝑑𝑞 ∧ 𝑑𝑡 − 𝛾𝑝𝑢
𝑠)𝑑𝑥 ∧ 𝑑𝑡 

(5.6) 
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Comparing the coefficients on the both side of two forms of (5.6) then, we get 

𝐴𝑢 = 𝜆3,             𝐴𝑝 = 0, 𝐴𝑞 = 0,

𝐵𝑢 = 𝑛𝜆1𝑢
𝑛−1, 𝐵𝑝 = 𝜆2, 𝐵𝑞 = −𝜆3,

−𝐴𝑡 + 𝐵𝑥 + [𝐴,𝐵] = −𝑝𝜆1 − 𝑞𝜆2 − 𝛾𝑝𝑢
𝑠𝜆3.

                      (5.7) 

Subscripts indicate partial differentiation with respect to the variable indicated. 

Translations in 𝑥 and 𝑡 constitute symmetries of equation (5.1), and so a 

simplifying assumption would be to suppose that 𝐴,𝐵 are independent on (𝑥, 𝑡). So 

that, 𝐴𝑥 = 𝐴𝑡 = 0,𝐵𝑥 = 𝐵𝑡 = 0, means it must be that 𝐴, 𝐵 are also invariant 

under translations in these variables. This introduces a considerable simplification 

into (5.7) reducing it to 

𝐴𝑝 = 0, 𝐴𝑞 = 0, 𝐴𝑢 = −𝐵𝑞,     

−[𝐴, 𝐵] =
1

𝑛
𝑢1−𝑛𝑝𝐵𝑢 + 𝑞𝐵𝑝 − 𝛾𝑝𝑢

𝑠𝐵𝑞.
                               (5.8) 

Theorem (5.1.1): 

The system (5.8) can be reduced to a single expression which specifies the algebra 

of brackets of a set of basis vector field 𝑋𝑖. The structure of these algebra is 

dependent on the relative values of 𝑚 and 𝑛. 

Proof 

The differential equations in (5.8i) imply the following results 

𝐴 = 𝐴(𝑢, 𝑦), 𝐵 = 𝐵(𝑢, 𝑝, 𝑞, 𝑦), 𝐵 = −𝑞𝐴𝑢(𝑢, 𝑦) + �̂�(𝑢, 𝑝, 𝑦).   (5.9) 

Substituting 𝐵 from (5.8) into (5.9) and collecting terms in 𝑞 gives 

𝑞 (−
1

𝑛
𝑢1−𝑛𝑝𝐴𝑢𝑢 + �̂�𝑝 − [𝐴, 𝐴𝑢]) +

1

𝑛
𝑝𝑢1−𝑛�̂�𝑢 + 𝛾𝑝𝑢

𝑠𝐴𝑢 + [𝐴, �̂�] = 0.  (5.10) 

Since 𝐴, �̂� do not depend on 𝑞, then, it follows from (5.10) 

�̂�𝑝 =
1

𝑛
𝑢1−𝑛𝑝𝐴𝑢𝑢 + [𝐴, 𝐴𝑢].                                                  (5.11) 
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As 𝐴 does not depend on 𝑝, this can be integrated to give �̂� 

�̂�(𝑢, 𝑝, 𝑦) =
1

2𝑛
𝑢1−𝑛𝑝2𝐴𝑢𝑢 + [𝐴, 𝐴𝑢]𝑝 + 𝐵

′′(𝑢, 𝑦).        (5.12) 

Substituting (5.12) into (5.10) as well as �̂�𝑢, there results 

1

2𝑛
𝑢1−2𝑛((1 − 𝑛)𝐴𝑢𝑢 + 𝑢𝐴𝑢𝑢𝑢)𝑝

3 + 𝑢1−𝑛[𝐴, 𝐴𝑢𝑢]𝑝
2 + 𝑢1−𝑛𝐵𝑢

′′𝑝 + 𝑛𝛾𝑝𝑢𝑠𝐴𝑢

+ 𝑛 [𝐴,
1

2𝑛
𝑢1−𝑛𝑝2𝐴𝑢𝑢 + [𝐴, 𝐴𝑢]𝑝 + 𝐵

′′] = 0                                (5.13) 

Since 𝐴, 𝐵′′do not depend on 𝑝, the coefficient of 𝑝3 must vanish giving the 

equation 

(1 − 𝑛)𝐴𝑢𝑢 + 𝑢𝐴𝑢𝑢𝑢 = 0.                                                      (4.14) 

Then, (5.14) can be solved for 𝐴 to give 

𝐴(𝑢, 𝑦) = 𝑋1(𝑦) + 𝑋2(𝑦)𝑢 + 𝑋3(𝑦)𝑢
𝑛+1,                          (5.15) 

where the 𝑋𝑖(𝑦) are vertical vector fields. Consequently, (5.13) simplifies to 

𝑢1−𝑛 ([𝐴, 𝐴𝑢𝑢] +
1

2
[𝐴, 𝐴𝑢𝑢]) 𝑝

2 + (𝑛𝛾𝑢𝑠𝐴𝑢 + 𝑢
1−𝑛𝐵𝑢

′′ + 𝑛[𝐴, [𝐴, 𝐴𝑢]])𝑝

+ 𝑛[𝐴, 𝐵′′] = 0.                                                                                     (5.16) 

The coefficient of 𝑝2 implies [𝐴, 𝐴𝑢𝑢] = 0, which using (5.15) immediately 

establishes two basic commutators of the vector fields 𝑋1, 𝑋2, and 𝑋3 

[𝑋1, 𝑋3] = 0, [𝑋2, 𝑋3] = 0.                                              (5.17) 

The coefficient of 𝑝 implies the condition 

𝑛𝛾𝑢𝑠𝐴𝑢 + 𝑢
1−𝑛𝐵𝑢

′′ + 𝑛[𝐴, [𝐴, 𝐴𝑢]] = 0.                             (5.18) 

Solving for 𝐵𝑢
′′ and let 𝑠 = 𝑚 − 𝑛, we get 

𝐵𝑢
′′ = 𝑛𝛾𝑢𝑚−1𝐴𝑢 − 𝑛𝑢

𝑛−1[𝐴, [𝐴,  𝐴𝑢]]                               (5.19) 
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By differentiation (5.15) we get 𝐴𝑢 = 𝑋2 + (𝑛 + 1)𝑢
𝑛𝑋3 and substituting to (5.19) 

𝐵𝑢
′′ = 𝑛𝛾𝑢𝑚−1(𝑋2 + (𝑛 + 1)𝑢

𝑛𝑋3) − 𝑛𝑢
𝑛−1[𝑋1 + 𝑋2𝑢 + 𝑋3𝑢

𝑛+1, [𝑋1, 𝑋2]] (5.20) 

Suppose at this point that 𝑋1, 𝑋2 do not commute with each other, then a new 

vector field can be defined as 

𝑋7 = [𝑋1, 𝑋2].                                                                            (5.21) 

Sitting 𝑋 = 𝑋3, 𝑌 = 𝑋1 and 𝑍 = 𝑋2 in the Jacobi identity [𝑋, [𝑌, 𝑍]] +

[𝑌, [𝑍, 𝑋]] + [𝑍, [𝑋, 𝑌]] = 0 gives 

[𝑋3, [𝑋1, 𝑋2]] + [𝑋1, [𝑋2, 𝑋3]] + [𝑋2, [𝑋3, 𝑋1]] = 0           (5.22) 

furthermore, by restitution (5.17) on (5.22) we get 

[𝑋3, 𝑋7] = 0,                                                                              (5.23) 

thus, 𝐵𝑢
′′ reduces to the form 

𝐵𝑢
′′ = 𝑛𝛾𝑢𝑚−1(𝑋2 + (𝑛 + 1)𝑢

𝑛𝑋3) − 𝑛𝑢
𝑛−1(𝑋5 + 𝑢𝑋6).  (5.24) 

Two new commutators have been introduced to write (5.24) defined as 

[𝑋1, 𝑋7] = 𝑋5, [𝑋2, 𝑋7] = 𝑋6.                                          (5.25) 

Using (5.25) in the Jacobi identity, the following brackets result 

[𝑋2, 𝑋5] = [𝑋1, 𝑋6], [𝑋3, 𝑋5] = 0.                                  (5.26) 

Finally, integrating 𝐵𝑢
′′ with respect to 𝑢 yields an expression for 𝐵′′ 

𝐵′′ =
𝑛

𝑚
𝛾𝑢𝑚𝑋2 +

𝑛(𝑛 + 1)

𝑛 +𝑚
𝛾𝑢𝑚+𝑛𝑋3 − 𝑢

𝑛𝑋5 −
𝑛

𝑛 + 1
𝑋6 + 𝑋4.       (5.27) 

Only one term in (5.16) remains to be satisfied, namely [𝐴, 𝐵′′] = 0. Thus 

substituting 𝐴, 𝐵′′ into this bracket and using linearity to expand out, we have 
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[𝑋1 + 𝑢𝑋2 + 𝑢
𝑛+1𝑋3,

𝑛

𝑚
𝛾𝑢𝑚𝑋2 +

𝑛(𝑛 + 1)

𝑚 + 𝑛
𝛾𝑢𝑚+𝑛𝑋3 − 𝑢

𝑛𝑋5 −
𝑛

𝑛 + 1
𝑢𝑛+1𝑋6 + 𝑋4]

=
𝑛

𝑚
𝛾𝑢𝑚[𝑋1, 𝑋2] − 𝑢

𝑛[𝑋1, 𝑋5] −
𝑛

𝑛 + 1
𝑢𝑛+1[𝑋2, 𝑋5] + [𝑋1, 𝑋4] − 𝑢

𝑛+1[𝑋2, 𝑋5]

−
𝑛

𝑛 + 1
𝑢𝑛+2[𝑋2, 𝑋6] + 𝑢[𝑋2, 𝑋4] −

𝑛

𝑛 + 1
𝑢2𝑛+2[𝑋3, 𝑋6] + 𝑢

𝑛+1[𝑋3, 𝑋4]     

 

Therefore, the vector fields must be interrelated in such a way that the following 

holds among the coefficients of each power of 𝑢 

[𝑋1, 𝑋4] +
𝑛

𝑚
𝛾𝑢𝑚[𝑋1, 𝑋2] + 𝑢

𝑛+1 (−
2𝑛 + 1

𝑛 + 1
[𝑋2, 𝑋5] + [𝑋3, 𝑋4])

+𝑢[𝑋2, 𝑋4] − 𝑢
𝑛[𝑋1, 𝑋5] −

𝑛

𝑛 + 1
𝑢𝑛+2[𝑋2, 𝑋6] −

𝑛

𝑛 + 1
𝑢2𝑛+2[𝑋3, 𝑋6] = 0

   (5.28) 

Theorem (5.1.2):  

There exist nontrivial algebras for the 𝑋𝑖 specified by (5.17), (5.21), (5.23), (5.26) 

and the coefficients of powers of u in (5.28), which depend on the relative values 

of 𝑚 and 𝑛. 

Proof 

It is required to equate the independent powers of 𝑢 equal to zero. This has to be 

done on a case by case basis by putting individual restrictions on 𝑚 and 𝑛, and not 

all cases are given. 

a) Suppose none of the powers of 𝑢 in (5.28) are equal, hence 𝑛 ≠ 𝑚 ≠ 1,0. 

Equating each power of 𝑢 to zero gives the following algebra 

[𝑋3, 𝑋6] = 0, [𝑋2, 𝑋4] = 0, [𝑋1, 𝑋4] = 0. 

At this point, 𝑋1 and 𝑋2 have be required to commute, since 𝑋7 = 0 must hold. 

However, from (5.25), it follows that 𝑋5 = 𝑋6 = 0. Moreover, [𝑋1, 𝑋3] = 0 

implies that 𝑋1 and 𝑋3 differ by a constant, hence 𝑋2 and 𝑋3 also differ by a 

constant. Finally, [𝑋1, 𝑋4] = 0 implies that 𝑋1 and 𝑋4 differ by a constant. 

Therefore, we can put 
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𝑋1 = 𝜀𝑋, 𝑋2 = 𝜎𝑋, 𝑋3 = 𝑋, 𝑋4 = 𝛼𝑋.         (5.29) 

Substituting these results into 𝐴 and 𝐵, they take the form 

𝐴 = (𝜀 + 𝜎𝑢 + 𝑢𝑛+1)𝑋,                                                                                                 (5.30)

𝐵 = −(𝜎 + (𝑛 + 1)𝑢𝑛)𝑞𝑋 +
1

2
(𝑛 + 1)𝑝2𝑋 +

𝑛

𝑚
𝛾𝜎𝑢𝑚𝑋 +

𝑛(𝑛 + 1)

𝑚 + 𝑛
𝛾𝑢𝑚+𝑛𝑋 + 𝛼𝑋

 

b) Suppose 𝑛 ≠ 1 and 𝑚 ≠ 1, 2, 3, 4. Then the same algebra as (5.29) results 

and 𝐴, 𝐵 are given by (5.30) with 𝑛 set equal to one. 

c) Suppose now that 𝑛 ≠ 𝑚 ≠ 0,1, then prolongation equation (5.28) reduce to 

[𝑋1, 𝑋4] + 𝑢[𝑋2, 𝑋4] + 𝑢
𝑛+1 (−[𝑋2, 𝑋5] −

𝑛

𝑛 + 1
[𝑋1, 𝑋6] + [𝑋3, 𝑋4])     

+𝑢𝑛(𝛾𝑋7 − [𝑋1, 𝑋5]) −
𝑛

𝑛 + 1
𝑢𝑛+2[𝑋2, 𝑋6] −

𝑛

𝑛 + 1
𝑢2𝑛+2[𝑋3, 𝑋6] = 0

   (5.31) 

This equation is satisfied provided that the following brackets hold 

[𝑋3, 𝑋6] = 0, [𝑋2, 𝑋6] = 0,
2𝑛 + 1

𝑛 + 1
[𝑋2, 𝑋5] = [𝑋3, 𝑋4]

𝛾𝑋7 = [𝑋1, 𝑋5], [𝑋2, 𝑋4] = 0, [𝑋1, 𝑋4] = 0                     
         (5.32) 

in addition to the brackets given in (5.23), (5.25), and (5.26). This algebra has a 

simpler three elements realization which satisfies all the commutation relations 

provided that 

𝑋3 = 0, 𝑋4 = 0, 𝑋5 = 𝛾𝑋2, 𝑋6 = 𝑋2.             (5.33) 

The nonzero commutation relations are given by 

[𝑋1, 𝑋2] = 𝑋7, [𝑋2, 𝑋7] = 𝑋2, [𝑋1, 𝑋7] = −𝛾𝑋2   (5.34) 

The algebra closes and a finite three-elements algebra results. 

d) Suppose that 𝑚 = 𝑛 + 1 ≠ 0,1, then prolongation equation (5.28) implies 

the algebra 
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[𝑋1, 𝑋4] = 0, 𝛾
𝑛

𝑛 + 1
[𝑋1, 𝑋2] −

2𝑛 + 1

𝑛 + 1
[𝑋2, 𝑋5] + [𝑋3, 𝑋4] = 0,

[𝑋1, 𝑋5] = 0, [𝑋2, 𝑋4] = 0, [𝑋2, 𝑋6] = 0, [𝑋3, 𝑋6] = 0
    (5.35) 

Recalling that (5.26) must be satisfied, a three element algebra results if we take 

𝑋2 = 𝑋3, 𝑋4 = 0, 𝑋5 = −
𝛾𝑛

2𝑛 + 1
𝑋1, 𝑋6 =

𝛾𝑛

2𝑛 + 1
𝑋2     (5.36) 

There is a closed algebra in this case with three nontrivial brackets 

[𝑋1, 𝑋2] = 𝑋7, [𝑋1, 𝑋7] = −
𝛾𝑛

2𝑛 + 1
𝑋1, [𝑋2, 𝑋7] =

𝛾𝑛

2𝑛 + 1
𝑋2   (5.37) 

e) The linear case 𝑚 = 𝑛 = 1 generates the following bracket relation 

[𝑋1, 𝑋4] = [𝑋2, 𝑋6] = [𝑋3, 𝑋6] = 0,   

𝛾𝑋7 + [𝑋2, 𝑋4] − [𝑋1, 𝑋5] = 0,          

2[𝑋3, 𝑋4] − 2[𝑋2, 𝑋5] − [𝑋1, 𝑋6] = 0,

                                               (5.38) 

f) The case 𝑚 = 2, 𝑛 = 1 corresponds to the classical KdV equation and the 

brackets must satisfy 

[𝑋2, 𝑋6] = 0,
1

2
𝛾𝑋7[𝑋2, 𝑋7] =

𝑛3

2
[𝑋3, 𝑋4]            

[𝑋2, 𝑋4] − [𝑋1, 𝑋5] = 0, [𝑋3, 𝑋6] = 0, [𝑋1, 𝑋4] = 0.
       (5.39) 

Since (5.26) must be satisfied, this system is satisfied if we put 

𝑋3 = 𝑋4 = 0, 𝑋5 = −
𝛾

3
𝑋1, 𝑋6 =

𝛾

3
𝑋2                              (5.40) 

There are three nontrivial commutators which take the form 

[𝑋1, 𝑋2] = 𝑋7, [𝑋1, 𝑋7] = −
𝛾

3
𝑋1, [𝑋2, 𝑋7] =

𝛾

3
𝑋2          (5.41) 

Now, we want to achieve a class of prolongation for the system (5.8), these 

condition imply 𝐴 = 𝐴(𝑢, 𝑦), 𝐵 = 𝐵(𝑢, 𝑝, 𝑞, 𝑦). Let us take the following form for 

the vector fields 𝐴 
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𝐴 = 𝐴(𝑢, 𝑦) = 𝑋1 + 𝑢𝑋2, 𝑋𝑖 = 𝑋𝑖(𝑦), 𝑖 = 1, 2.            (5.42) 

Using 𝐴𝑢 = 𝑋2 and (4.8), 𝐴 in (4.42) is sufficient to determine 𝐵 in the form 

𝐵 = −𝑞𝑋2 + 𝐶(𝑢, 𝑝, 𝑦).                                                                      (5.43) 

Thence, the second equation in (5.8) takes the form 

[𝑋1 + 𝑢𝑋2, −𝑞𝑋2 + 𝐶] = −
𝑝

𝑛
𝑢1−𝑛𝐶𝑢 − 𝑞𝐶𝑝 − 𝛾𝑝𝑢

𝑠𝑋2. 

Simplifying the above formula, it follows 

𝑝

𝑛
𝐶𝑢 + 𝑞𝑢

𝑛−1𝐶𝑝 = −𝛾𝑝𝑢
𝑠+𝑛−1𝑋2 + 𝑞𝑢

𝑛−1[𝑋1, 𝑋2] − 𝑢
𝑛−1[𝑋1, 𝐶] − 𝑢

𝑛[𝑋2, 𝐶] (5.44) 

Now, by defining the vector field 𝑋3 = [𝑋1, 𝑋2], then whenever 𝐶 is independent 

of 𝑞, we obtain form (5.44) that 

𝐶(𝑢, 𝑝, 𝑦) = 𝑝𝑋3 + 𝐷(𝑢, 𝑦).                                                            (5.45) 

Substituting 𝐶 in (5.45) into (5.44), we get 

               
𝑝

𝑛
𝐷𝑢 = 𝑝{−𝛾𝑢

𝑠+𝑛−1𝑋2 − 𝑢
𝑛−1[𝑋1, 𝑋3] − 𝑢

𝑛[𝑋2, 𝑋3]}    

− 𝑢𝑛−1{[𝑋1, 𝐷] − 𝑢[𝑋2, 𝐷]}.                                                               (5.46) 

Furthermore, the last term on (5.46) must vanish because 𝐷 does not depend on 𝑝, 

then we have two condition on 𝐷 

[𝑋1, 𝐷] − 𝑢[𝑋2, 𝐷] = 0,
1

𝑛
𝐷𝑢 = −𝛾𝑢

𝑚−1𝑋2 − 𝑢
𝑛−1[𝑋1, 𝑋3] − 𝑢

𝑛[𝑋2, 𝑋3]
                          (5.47) 

where 𝑚 = 𝑠 + 𝑛. By integrating in (5.47) with respect to 𝑢 the second equation 

for 𝐷 

𝐷(𝑢, 𝑦) = −𝛾
𝑛

𝑚
𝑢𝑚𝑋2 − 𝑢

𝑛[𝑋1, 𝑋3] −
𝑛

𝑛 + 1
𝑢𝑛+1[𝑋2, 𝑋3] + 𝑋4       (5.48) 
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Substituting 𝐷 from (5.48) into the first equation with commutator in (5.47), it can 

simplify to the following 

−𝛾
𝑛

𝑚
𝑢𝑚[𝑋1, 𝑋2] + 𝑢

𝑛[𝑋1, [𝑋1, 𝑋3]] + [𝑋1, 𝑋4]                                           

− 𝑢𝑛+1 {
𝑛

𝑛 + 1
[𝑋1, [𝑋2, 𝑋3]] + [𝑋2, [𝑋1, 𝑋3]]}

+
𝑛

𝑛 + 1
𝑢𝑛+2[𝑋2, [𝑋2, 𝑋3]] − 𝑢[𝑋2, 𝑋4] = 0.                                  (5.49) 

Some of the brackets in the form (5.49) will vanish, if that 𝑚 and  𝑛 not be equal to 

one, 

[𝑋2, 𝑋4] = 0, [𝑋1, 𝑋4] = 0                        

To satisfy these brackets, one way in which this can be done is to take 𝑋4 = 𝜇𝑋2 

and 𝑋4 = 𝜀𝑋1, from which it follows that 𝑋1 = 𝜆𝑋2, where 𝜇, 𝜀 and 𝜆 are real 

constants. Moreover, substituting these results into the definition of 𝑋3, it follows 

that 𝑋3 = 0. Using all of these results in (5.49), it follows that the remaining terms 

in (5.49) vanish, hence (5.49) is satisfied identically and we have one solution. To 

summarize these results for the vector field, we have 

𝑋1 = 𝜆𝑋2, 𝑋2 = 𝑋, 𝑋3 = 0, 𝑋4 = 𝜇𝑋2.         (5.50) 

Since there is only one independent vector field left, we have set 𝑋 = 𝑋2 in (5.50) 

in this case, the prolongation structure reduces to the following set of the vector 

fields 

𝐴 = (𝜆 + 𝑢)𝑋,
𝐵 = −𝑞𝑋 + 𝐶,

𝐶 = 𝐷 = −𝛾
𝑛

𝑚
𝑢𝑚𝑋 + 𝜇𝑋 = (−𝛾

𝑛

𝑚
𝑢𝑚 + 𝜇)𝑋,

𝑋 = 𝑋(𝑦), 𝜆, 𝜇 ∈ ℝ.

             (5.51) 
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(5.1.3): Conservation Laws 

Conservation laws [36] describe quantities that remain invariant during the 

evolution of the PDE. This provides simple and efficient methods for the study of 

many qualitative properties of solutions, including stability, evolution of solutions, 

and decomposition into solutions, as well as the theoretical description of the 

solution manifolds. A solution equation is a PDE with a wave like solution known 

as a solitary wave. A solitary wave is localized, traveling wave and several 

nonlinear partial differential equations have a solution of this type. A soliton is 

specific of stable solitary wave which is described in terms of its interaction with 

solitary waves [37,38]. 

We will take under consideration the conservation laws which associated 

with the KdV equation correspond to the existence of the exact 2-forms contained 

in the ring of the 𝛼𝑗 Let us suppose that we can find a set of functions 

𝑓𝑖(𝑥, 𝑡, 𝑢, 𝑝, 𝑞) such that the two-form 

𝜎 = 𝑓1𝛼1 + 𝑓2𝛼2 + 𝑓3𝛼3                                                          (5.52) 

satisfies 𝑑𝜎 = 0, the condition for exactness. This the integrability condition for 

the existence of a 1-form 𝜔 such that 

𝜎 = 𝑑𝜔                                                                                       (5.53) 

which conversely implies, 𝑑𝜎 = 0. 

Differentiation of (5.52) and substituting (5.4) we get 

𝑑𝜎 = (𝑑𝑓1 + 𝑓3𝛾
𝑠

𝑛
𝑝𝑢𝑠−𝑛𝑑𝑥) ∧ 𝛼1 + (𝑑𝑓2 + (𝑓1 + 𝑓3𝛾𝑝𝑢

𝑠)𝑑𝑥) ∧ 𝛼2

+ (𝑑𝑓3 − 𝑓2𝑑𝑥) ∧ 𝛼3 

Therefore 𝑑𝜎 ∈ 𝐼, and this clearly vanishes 𝑚𝑜𝑑  �̂�∗(𝐼). 
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Remark (5.1.3): 

A form 𝜎 with the structure (5.52) corresponding to equation (5.1), take into 

consideration the 1-form 𝜎 which is given in the terms of the 𝛼𝑖 in (5.3) with    

𝑓1 = −𝛾𝑢
𝑠, 𝑓2 = 0, and 𝑓3 = 1 as  

𝜎 = 𝛼3 − 𝛾𝑢
𝑠𝛼1                                                                        (5.54) 

calculate the exterior derivative of (5.54), we get that 𝑑𝜎 = 0 then, verifies that 

this (5.54) vanishes identically. Substituting 𝛼1, 𝛼2 into (5.54), we get 

𝜎 = −𝛾
𝑛

𝑚
𝑑(𝑢𝑚) ∧ 𝑑𝑡 + 𝑑𝑢 ∧ 𝑑𝑥 − 𝑑𝑞 ∧ 𝑑𝑡.                   (5.55) 

Then, we find in accordance with (5.53) that 𝜎 can be derived from the 1-form 

𝜔 = −(𝛾
𝑛

𝑚
𝑢𝑚 + 𝑞)𝑑𝑡 + 𝑢𝑑𝑥                                            (5.56) 

This is exactly the 2-form 𝜎 that was given in (5.54). The associated conservation 

law results from an application of Stokes theorem. 

∮ 𝜔
 

𝑀1

= ∫ 𝑑𝜔
 

𝑀2

                                                                         (5.57) 

This has been written for any simply-connected, 2-dimensional manifold 𝑀2 with 

closed 1-dimensional boundary 𝑀1. The equations imply that 𝜔 and 𝑑𝜔 are to be 

evaluated on their respective manifolds. 

Returning to 𝜔 again, we can add to 𝜔 any exact 1-form 𝑑𝑦, where 𝑦 is an 

arbitrary scalar function. Then, 𝜔 can also hold 

𝑑𝜔 = 𝑑𝑦 − (𝛾
𝑛

𝑚
𝑢𝑚 + 𝑞)𝑑𝑡 + 𝑢𝑑𝑥                                   (5.58) 

such that 𝜎 = 𝑑𝜔. Now 𝑦 may be regarded simply as a coordinate in an extended 

6-dimensional space of variables {𝑥, 𝑡, 𝑢, 𝑝, 𝑞, 𝑦} and the 1-form 𝜔 may be included 

with the original set of forms. Since 𝑑𝜔 is known to be in the ring of the original 

set, the new set of forms remains a closed ideal. 
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(5.2): Prolongation of a Differential System Related to the Camassa-Holm 

Equation and the Degasperis-Procesi equations. 

It is the intention here to review some of the mathematical background 

which will let us study some interrelated equations which have been of interest 

recently. First we will give a brief introduction, defining the notation and setting up 

the Camassa-Holm equation in terms of differential forms. While we do not 

emphasize the geometrical interpretation of our analysis (which is so well 

expressed by the differential form language), even analytically this notation is 

unquestionably superior for any treatment of conservation laws and integrability 

conditions. 

These ideas are applied to a class of equations that includes the Camassa-

Holm and Degasperis-Procesi equations. These equations are of the form: 

(𝑢 − 𝑢𝑥𝑥)𝑡 + 𝑢(𝑢 − 𝑢𝑥𝑥)𝑥 + 𝛽(𝑢 − 𝑢𝑥𝑥)𝑢𝑥 = 0,            (5.59) 

where, 𝛽 = constant , nonzero. 

An exterior differential system which reproduces the given equation on the 

transverse manifold is developed for each case. The derivatives of the forms in this 

set are shown to be expressible in terms of the same forms, so the integrability of 

each equation is established. Finally, conservation laws for the two equations will 

be written down developed from the original set of one-forms. 

Let us begin by introducing the system of exterior differential which is 

related to several equations which are of interest in mathematical physics at the 

moment. In particular, the Camassa-Holm and Degasperis-Procesi equations are to 

be included in this group. Define the following system of two forms 

𝛼1 = 𝑑𝑢 ∧ 𝑑𝑡 − 𝑝 𝑑𝑥 ∧ 𝑑𝑡,
𝛼2 = 𝑑𝑝 ∧ 𝑑𝑡 − 𝑞 𝑑𝑥 ∧ 𝑑 ,

𝛼3 = 𝑑𝑢 ∧ 𝑑𝑥 − 𝑑𝑞 ∧ 𝑑𝑥 + 𝑑𝑞 ∧ 𝑑𝑡 + (𝑢 − 𝑞)𝑑𝑥 ∧ 𝑑𝑡,
 (5.60) 
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then, by differentiating the forms in (5.60), we get 

𝑑𝛼1 = −𝑑𝑝 ∧ 𝑑𝑥 ∧ 𝑑𝑡 = (1 𝑞⁄ )𝛼2 ∧ 𝑑𝑝,
𝑑𝛼2 = −𝑑𝑞 ∧ 𝑑𝑥 ∧ 𝑑𝑡 = 𝛼3 ∧ 𝑑𝑥,
𝑑𝛼3 = 𝑑𝑢 ∧ 𝑑𝑥 ∧ 𝑑𝑡 − 𝑑𝑞 ∧ 𝑑𝑥 ∧ 𝑑𝑡 = 𝛼3 ∧ 𝑑𝑡.

              (5.61) 

Therefore, it can be seen that of all these exterior derivatives vanish modulo 

{𝛼𝑗}𝑗=1
3

. Any regular 2-dimensional solution manifold in the 5-dimensional space 

𝑆2 = {𝑢(𝑥, 𝑡), 𝑢𝑥 = 𝑝(𝑥, 𝑡), 𝑝𝑥(𝑥, 𝑡) = 𝑞(𝑥, 𝑡)} satisfying a specific partial 

differential equation will annul this set of forms. The exact form can be found 

explicitly by sectioning the forms into the solution manifold. It follows that 

0 = 𝛼1| 𝑆 = (𝑢𝑥 − 𝑝)𝑑𝑥 ∧ 𝑑𝑡

0 = 𝛼2| 𝑆 = (𝑝𝑥 − 𝑞)𝑑𝑥 ∧ 𝑑𝑡

0 = 𝛼3| 𝑆 = ((𝑢 − 𝑞)𝑡 − (𝑢 − 𝑞) − 𝑞𝑥)𝑑𝑡 ∧ 𝑑𝑥,

             (5.62) 

thus, the result that give us the equation  

(𝑢 − 𝑢𝑥𝑥)𝑡 − (𝑢 − 𝑢𝑥𝑥) − 𝑢𝑥𝑥𝑥 = 0,                                   (5.63) 

this is the specific equation whose integrability is implied by system (5.60). 

Consider the differential system: 

𝛼1 = 𝑑𝑢 ∧ 𝑑𝑡 − 𝑝 𝑑𝑥 ∧ 𝑑𝑡
𝛼2 = 𝑑𝑝 ∧ 𝑑𝑡 − 𝑞 𝑑𝑥 ∧ 𝑑𝑡

𝛼3 = 𝑑𝑢 ∧ 𝑑𝑥 − 𝑑𝑞 ∧ 𝑑𝑥 + 𝑑𝑢 ∧ 𝑑𝑡 − 𝑑𝑞 ∧ 𝑑𝑡 + (𝑢 − 𝑞)𝑑𝑥 ∧ 𝑑𝑡.
 (5.64) 

Then, by differentiating the forms in (5.64), we get 

𝑑𝛼1 = −𝑑𝑝 ∧ 𝑑𝑥 ∧ 𝑑𝑡 = 𝑑𝑥 ∧ 𝛼2
𝑑𝛼2 = −𝑑𝑞 ∧ 𝑑𝑥 ∧ 𝑑𝑡 = 𝑑𝑥 ∧ (−𝛼3 + 𝛼1)

𝑑𝛼3 = −𝑑𝑥 ∧ 𝛼3

                       (5.65) 

Upon sectioning these forms, and the equation which belong to (5.64) arises from 

the section 𝛼3|𝑆 = 0 is given by 

(𝑢 − 𝑢𝑥𝑥)𝑡 − (𝑢 − 𝑢𝑥𝑥)𝑥 − (𝑢 − 𝑢𝑥𝑥) = 0.                       (5.66) 
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The final two cases which will be introduced include equations which are being 

actively studied at the moment 

Define the following system of two forms, let 𝛽 be a real, nonzero constant 

𝛼1 = 𝑑𝑢 ∧ 𝑑𝑡 − 𝑝 𝑑𝑥 ∧ 𝑑𝑡
𝛼2 = 𝑑𝑝 ∧ 𝑑𝑡 − 𝑞 𝑑𝑥 ∧ 𝑑𝑡

𝛼3 = −𝑑𝑢 ∧ 𝑑𝑥 + 𝑑𝑞 ∧ 𝑑𝑥 − 𝛽𝑢 𝑑𝑞 ∧ 𝑑𝑡 + 𝛽(2𝑢 − 𝑞)𝑑𝑢 ∧ 𝑑𝑡
  (5.67) 

then, by differentiating the forms in (5.67), we get 

𝑑𝛼1 = 𝑑𝑥 ∧ 𝑑𝑝 ∧ 𝑑𝑡 = 𝑑𝑥 ∧ 𝛼2
𝑑𝛼2 = 𝑑𝑥 ∧ 𝑑𝑞 ∧ 𝑑𝑡 = (1 𝛽𝑢⁄ )𝑑𝑥 ∧ (−𝛼3 + 𝛽𝑢𝛼1 + 𝛽(𝑢 − 𝑞)𝛼1)  
𝑑𝛼3 = 0

(5.68) 

Obviously all of the (5.68) vanish modulo the set of the 𝛼𝑗 in (5.67). Upon 

sectioning these forms, and the equation obtained from the restriction 𝛼3 

𝛼3|𝑆 = ((𝑢 − 𝑞)𝑡 + 𝛽𝑢𝑢𝑥 − 𝛽𝑢𝑞𝑥 + 𝛽(𝑢 − 𝑞)𝑢𝑥)𝑑𝑥 ∧ 𝑑𝑡,     (5.69) 

from sectioning 𝛼1 and 𝛼2, we have get 

(𝑢 − 𝑢𝑥𝑥)𝑡 − 𝛽(𝑢(𝑢 − 𝑢𝑥𝑥))𝑥 = 0.                                     (5.70) 

The following system leads to an important class of partial differential equations 

which are of much current interest. The Camassa-Holm and Degasperis-Procesi 

equations are to be included in this group. Define the system of forms: 

𝛼1 = 𝑑𝑢 ∧ 𝑑𝑡 − 𝑝 𝑑𝑥 ∧ 𝑑𝑡
𝛼2 = 𝑑𝑝 ∧ 𝑑𝑡 − 𝑞 𝑑𝑥 ∧ 𝑑𝑡

𝛼3 = −𝑑𝑢 ∧ 𝑑𝑥 + 𝑑𝑞 ∧ 𝑑𝑥 − 𝑢 𝑑𝑞 ∧ 𝑑𝑡 + 𝑢𝑑𝑢 ∧ 𝑑𝑡 + 𝛽(𝑢 − 𝑞)𝑑𝑢 ∧ 𝑑𝑡
 (5.71) 

Differentiating (5.71), we have: 
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𝑑𝛼1 = −𝑑𝑝 ∧ 𝑑𝑥 ∧ 𝑑𝑡 = 𝑑𝑥 ∧ 𝛼2
𝑑𝛼2 = 𝑑𝑥 ∧ (−𝛼3 + 𝑢((1 + 𝛽)𝑢 − 𝑞)𝛼1)

𝑑𝛼3 = (1 − 𝛽)𝑑𝑞 ∧ 𝑑𝑢 ∧ 𝑑𝑡

= (1 − 𝛽)𝑑𝑞 ∧ 𝛼1 + (1 − 𝛽)𝑝 𝑑𝑞 ∧ 𝑑𝑥 ∧ 𝑑𝑡

= (1 − 𝛽)𝑑𝑞 ∧ 𝛼1 + (1 − 𝛽)𝑝 (𝛼3 + 𝑑𝑢 ∧ 𝑑𝑥) ∧ 𝑑𝑡

= (1 − 𝛽)𝑑𝑞 ∧ 𝛼1 + (1 − 𝛽)𝑝 𝑑𝑡 ∧ 𝛼3 − (1 − 𝛽)𝑝 𝑑𝑥 ∧ 𝑑𝑢 ∧ 𝑑𝑡

= (1 − 𝛽)[𝑑𝑞 ∧ 𝛼1 + 𝑝 𝑑𝑡 ∧ 𝛼3 − 𝑝 𝑑𝑥 ∧ 𝛼1]

     (5.72) 

All of the details for calculating 𝑑𝛼3 have been shown here. Obviously all of the 

𝑑𝛼𝑗vanish modulo the set of 𝛼𝑗. from sectioning 𝛼1 and 𝛼2, we have get other 

cases and the equation results from evaluating the section as follows: 

0 = 𝛼1|𝑆 = (𝑢𝑥 − 𝑝)𝑑𝑥 ∧ 𝑑𝑡

0 = 𝛼2|𝑆 = (𝑝𝑥 − 𝑞)𝑑𝑥 ∧ 𝑑𝑡

0 = 𝛼3|𝑆 = ((𝑢 − 𝑞)𝑡 + 𝑢(𝑢 − 𝑞)𝑥 + 𝛽(𝑢 − 𝑞)𝑢𝑥)𝑑𝑥 ∧ 𝑑𝑡

     (5.73) 

These results imply the partial differential equation: 

(𝑢 − 𝑞)𝑡 + 𝑢(𝑢 − 𝑞)𝑥 + 𝛽(𝑢 − 𝑞)𝑢𝑥 = 0,                                   (5.74) 

then, by putting 𝛽 = 3 𝑎𝑛𝑑  𝜌 = 𝑢 − 𝑞 the equation (5.74) becomes the 

Degasperis-Procesi equation 

𝜌𝑡 + 𝑢 𝜌𝑥 + 3𝜌 𝑢𝑥 = 0                                                            (5.75) 

again by putting 𝛽 = 2 𝑎𝑛𝑑  𝜌 = 𝑢 − 𝑞 the equation (5.74) becomes the Camassa-

Holm equation 

𝜌𝑡 + 𝑢 𝜌𝑥 + 2𝜌 𝑢𝑥 = 0.                                                          (5.76) 

(5.3.1): Prolongation Equations 

A very general prolongation corresponding to (5.59) can be calculated in terms of 

an algebra of vector fields which are defined on fibers above the base manifold that 

supports the forms (5.71). Then, to generate a prolongation algebra, the system 

(5.71) is substituted into prolongation condition (3.92) which lead us to 



143 
 

𝐴𝑡𝑑𝑡 ∧ 𝑑𝑥 + 𝐴𝑢𝑑𝑢 ∧ 𝑑𝑥 + 𝐴𝑝𝑑𝑝 ∧ 𝑑𝑥 + 𝐴𝑞𝑑𝑞 ∧ 𝑑𝑥 + 𝐵𝑥𝑑𝑥 ∧ 𝑑𝑡

𝐵𝑢𝑑𝑢 ∧ 𝑑𝑡 + 𝐵𝑝𝑑𝑝 ∧ 𝑑𝑡 + 𝐵𝑞𝑑𝑞 ∧ 𝑑𝑡 + [𝐴, 𝐵]𝑑𝑥 ∧ 𝑑𝑡

= 𝜆1(𝑑𝑢 ∧ 𝑑𝑡 − 𝑝𝑑𝑥 ∧ 𝑑𝑡) + 𝜆2(𝑑𝑝 ∧ 𝑑𝑡 − 𝑞𝑑𝑥 ∧ 𝑑𝑡)                                

+𝜆3(−𝑑𝑢 ∧ 𝑑𝑥 + 𝑑𝑞 ∧ 𝑑𝑥 + 𝑢𝑑𝑢 ∧ 𝑑𝑡 − 𝑢𝑑𝑞 ∧ 𝑑𝑡 + 𝛽(𝑢 − 𝑞)𝑑𝑢 ∧ 𝑑𝑡)

(5.77) 

Comparing the coefficients on the both side of two forms of (5.77) then, we get 

𝐴𝑢 = −𝜆3,             𝐴𝑝 = 0, 𝐴𝑞 = 𝜆3,

𝐵𝑢 = 𝜆1 + 𝑢𝜆3 + 𝛽(𝑢 − 𝑞)𝜆3, 𝐵𝑝 = 𝜆2, 𝐵𝑞 = −𝑢𝜆3 ,

−𝐴𝑡 + 𝐵𝑥 + [𝐴, 𝐵] = −𝑝𝜆1 − 𝑞𝜆2.

   (5.78) 

Subscripts indicate partial differentiation with respect to the variable indicated. 

Translations in 𝑥 and 𝑡 constitute symmetries of equation (5.59), and so a 

simplifying assumption would be to suppose that 𝐴,𝐵 are independent on (𝑥, 𝑡). So 

that, 𝐴𝑥 = 𝐴𝑡 = 0,𝐵𝑥 = 𝐵𝑡 = 0, means it must be that 𝐴, 𝐵 are also invariant 

under translations in these variables. This introduces a considerable simplification 

into (5.64) reducing it to 

𝐴𝑝 = 0, 𝐴𝑞 = −
1

𝑢
𝐵𝑞, 𝐴𝑢 = −

1

𝑢
𝐵𝑞 ,

[𝐴, 𝐵] = 𝑝𝐵𝑢 + 𝑝 (1 + (1 −
1

𝑢
 )𝛽)𝐵𝑞 + 𝑞𝐵𝑝.

                         (5.79) 

(5.3.2): Conservation laws 

Let us suppose that we can find a set of functions 𝑓𝑖(𝑥, 𝑡, 𝑢, 𝑝, 𝑞) such that the 2-

form, which look like the form (5.52) satisfies 𝑑𝜎 = 0, the condition for exactness. 

This the integrability condition 𝜎 = 𝑑𝜔 for the existence of a 1-form 𝜔, which 

conversely implies that 𝑑𝜎 = 0. 

Take into consideration the 1-form 𝜎 given by 

𝜎 = 𝛼3                                                                                         (5.80) 

Actually, 𝜎 can be derived from a single 1-form. Let 𝜔 be defined to be: 

𝜔 = (𝑞 − 𝑢)𝑑𝑥 + 𝛽 𝑢(𝑢 − 𝑞)𝑑𝑡                                          (5.81) 
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by taking the exterior derivative of 𝜔, we have get 

𝑑𝜔 = −𝑑𝑢 ∧ 𝑑𝑥 + 𝑑𝑞 ∧ 𝑑𝑥 + 𝛽𝑢 𝑑𝑢 ∧ 𝑑𝑡 − 𝛽𝑢 𝑑𝑞 ∧ 𝑑𝑡 + 𝛽(𝑢 − 𝑞)𝑑𝑢 ∧ 𝑑𝑡 

This is precisely the form in (5.80). 

Consideration the form (5.71), we can similarly determine a form 𝜎.  

Take into consideration the 1-form 𝜎 which is given by 

𝜎 = 𝛼3 − (1 − 𝛽) 𝑞𝛼1 + (1 − 𝛽) 𝑝𝛼2                                (5.82) 

by taking the exterior derivative of 𝜎, we have get 𝑑𝜎 = 0. Now it can be shown 

that 𝜎 can be derived from a 1-form, namely 𝜔 defined by 

𝜔 = (𝑞 − 𝑢)𝑑𝑥 +
1

2
(𝑢2 − 2𝑢𝑞 + 𝛽𝑢2 + 𝑝2)𝑑𝑡,              (5.83) 

by taking the exterior derivative of 𝜔, we have get 

𝑑𝜔 = −𝑑𝑢 ∧ 𝑑𝑥 + 𝑑𝑞 ∧ 𝑑𝑥 + 𝑢 𝑑𝑢 ∧ 𝑑𝑡 − 𝑢 𝑑𝑞 ∧ 𝑑𝑡 +

       𝛽𝑢 𝑑𝑢 ∧ 𝑑𝑡 − 𝑞 𝑑𝑢 ∧ 𝑑𝑡 + (1 − 𝛽)𝑝 𝑑𝑝 ∧ 𝑑𝑡
 (5.84) 

This is exactly the 2-form 𝜎 that was given in (5.82). The associated conservation 

law results from an application of Stokes theorem (5.57). 

This has been written for any simply-connected, 2-dimensional manifold 𝑀2 with 

closed 1-dimensional boundary 𝑀1. The equations imply that 𝜔 and 𝑑𝜔 are to be 

evaluated on their respective manifolds. 

𝜔 = 𝑑𝑦 + (𝑞 − 𝑢)𝑑𝑥 +
1

2
(𝑢2 − 2𝑢𝑞 + 𝛽𝑢2 + 𝑝2)𝑑𝑡.    (5.85) 

such that 𝜎 = 𝑑𝜔. Now 𝑣 may be regarded simply as a coordinate in an extended 

6-dimensional space of variables {𝑥, 𝑡, 𝑢, 𝑝, 𝑞, 𝑦} and the 1-form 𝜔 may be included 

with the original set of forms. Since 𝑑𝜔 is known to be in the ring of the original 

set, the new set of forms remains a closed ideal. 
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Sec (5.3): Conclusion 

It has been seen that exterior differential systems have been constructed for some 

very important classes of partial differential equation. As well as giving some 

information about the associated integrability of these equations, it has been shown 

that the prolongation structure of these systems can be studied. This is more than 

just of theoretical interest, since Bäcklund transformations can be constructed 

based on these results. The relationship of differential systems to Bäcklund 

transformations has been discussed by Estabrook and Wahlquist. 

Let us show how to use the results of remark (5.1.3) to obtain such a result: 

Consider 𝑋 to be one of the generators of 𝑠𝑙(2,ℝ), so the solution of (5.86) 

is based on a sub-algebra. 

 It can be represented in matrix form as 

𝑋1 = [
0 −1
−1    0

] , 𝑋2 = [
0 1
−1 0

] , 𝑋3 = [
1   0
0 −1

]           (5.86) 

To find the Maurer-Cartan algebra of 𝐺𝐿(𝑛,ℝ), we consider the left invariant 

forms 𝜔𝑖
𝑗
 as elements of a matrix 

𝜔 − (𝜔𝑖
𝑗
) − 𝑦−1𝑑𝑦                                                                   (5.87) 

where, 𝑦 is the natural embedding of the group into ℝ2𝑛. Then 𝑦−1𝑑𝑦 is the 

Maurer-Cartan form. The Maurer-Cartan algebra can be written as 

𝑑𝜔 + 𝜔 ∧ 𝜔 = 0.                                                                       (5.88) 

In this case we take 𝑆𝐿(2,ℝ) = {𝑋 ∈ 𝐺𝐿(2,ℝ) det(𝑋) = 1}. Exponential map can 

be used to obtain the Maurer-Caratn algebra. To obtain a form (5.88) that is more 

convenient, we introduce the 𝜔𝑖 by 

𝜔 = [
𝜔1
1 𝜔1

2

𝜔2
1 𝜔2

2] = [
𝜔1 𝜔3 −𝜔2

−𝜔3 −𝜔2 −𝜔1
]                         (5.89) 
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Substituting (5.89) into (5.88), it follows that the 𝜔𝑖 satisfying the Maurer-Cartan 

relations 

𝑑𝜔1 = 𝜔3 ∧ 𝜔2, 𝑑𝜔2 = 𝜔1 ∧ 𝜔3, 𝑑𝜔3 = 𝜔1 ∧ 𝜔2           (5.90) 

Calculating (5.86) and substituting into (5.51), we calculate 𝐴 and 𝐵 to be 

𝐴 = [
0 𝜆 + 𝑢

−𝜆 − 𝑢 0
]

𝐵 = [
0 −𝑞 − 𝛾

𝑛

𝑚
𝑢𝑚 + 𝜇

𝑞 + 𝛾
𝑛

𝑚
𝑢𝑚 − 𝜇 0

]
,                     (5.91) 

and the cocycle is given by 

𝜎 = [
0 𝜆 + 𝑢

−𝜆 − 𝑢 0
]𝑑𝑥 + [

0 −𝑞 − 𝛾
𝑛

𝑚
𝑢𝑚 + 𝜇

𝑞 + 𝛾
𝑛

𝑚
𝑢𝑚 − 𝜇 0

]𝑑𝑡    (5.92) 

If we let Maurer-Cartan form have the structure (5.89), then the 𝜎𝑖 and found to be 

𝜎1 = 0,

𝜎2 = 0,

𝜎3 = (𝜆 + 𝑢)𝑑𝑥 − (𝑞 + 𝛾
𝑛

𝑚
𝑢𝑚 − 𝜇)𝑑𝑡.

                          (5.93) 

Using (3.88), we can choose the connection �̃� from ℝ with coordinates 𝑦 

and 𝑋 = 𝜕 𝜕𝑦⁄ . By using the results that we get from (5.51) and (5.91) 

�̃� = 𝑑𝑦 − (𝜆 + 𝑢)𝑑𝑥 − (𝑞 + 𝛾
𝑛

𝑚
𝑢𝑚 − 𝜇)𝑑𝑡,                 (5.94) 

solutions of the system (5.2) determine transversal sections of the fiber bundle such 

that, upon substituting 𝑝 = (𝑢𝑛)𝑥 and 𝑞 = (𝑢𝑛)𝑥𝑥, we have get 

𝑦𝑥 = (𝜆 + 𝑢), 𝑦𝑡 = −((𝑢
𝑛)𝑥𝑥 + 𝛾

𝑛

𝑚
𝑢𝑚 − 𝜇).        (5.95) 
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Since (5.95) implies that 𝑢 = 𝑦𝑥 − 𝜆, it can be eliminated in the second equation of 

(5.9) to yield an equation for  𝑦 = 𝑦(𝑥, 𝑡) 

𝑦𝑡 + ((𝑦𝑥 − 𝜆)
𝑛)𝑥𝑥 + 𝛾

𝑛

𝑚
(𝑦𝑥 − 𝜆)

𝑚 − 𝜇 = 0.                 (5.96) 

to make the monograph more concise we put 𝜆 = 0 as well giving 

𝑦𝑥 − 𝜆 = 𝑢
𝑛, 𝑢 = (𝑦𝑥)

1
𝑛,                                                  (5.97) 

where 𝑛 is exponent in (5.97) representing positive root 𝑛 = 2𝑟, 𝑟 ∈ ℕ. 

Eliminating 𝑢 from the second equation in (5.96), we have an equation for 𝑦 

𝑦𝑡 + ((𝑦𝑥)
𝑛)𝑥𝑥 + 𝛾

𝑛

𝑚
(𝑦𝑥)

𝑚 − 𝜇 = 0.                                 (5.97) 

It follows that 𝜆 = 𝜇 = 0, a potential equation in terms of 𝑦 results 

𝑦𝑡 + ((𝑦𝑥)
𝑛)𝑥𝑥 + 𝛾

𝑛

𝑚
(𝑦𝑥)

𝑚 = 0.                                        (5.98) 

Although the prolongation or the solution of the vector fields (5.51) is not 

extremely complicated, in effect a Bäcklund transformation has been determined in 

the form of the equations presented in (5.95). This set of equations transforms the 

original equation into the form of its potential equation. Given a solution 𝑢 of (5.2) 

then integrating (5.95) gives a corresponding solution 𝑦 to (5.98). 
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