Dedication

I dedicate this work to...

My parents...

My husband...

My children...

My brothers and sisters ...

Acknowledgement

Praise is to Allah, Almighty, who blessed me with this opportunity to learn and work.

First and foremost, I would like to acknowledge the valuable guidance of my supervisor Dr. Mohammed Elmubarak Osman who always has been very helpful to me. His constructive criticism of the work inspired me to bring improvements in it at different stages and his thoughtful suggestions have refined the manuscript in its present form.

I would also like to express my sincere appreciation to Dr. Elfatih Ahmed Hassan, the co-supervisor, for being a very kind, helpful, supportive and generous to have access to all his articles which helped me appraise the current research literature in an effective manner.

Special thanks and appreciation are due to Prof. Dr. Misni Bin Misran; Colloid Chemistry Lab, Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia, for hosting me in their laboratory to do my practical research providing me with invaluable help, advice, support, patience, kindness and for his encouragement extended to me throughout the course of this research, thanks are also extended to the staff of the Colloid Lab, chemistry Department, University of Malaya and to Dr. Aarif Elmubarak; King Saud University, Saudi Arabia, for their technical support.

I must acknowledge the help provided by the staff of the chemistry department, College of Science, Sudan University of Science and Technology for their continuous support. They were very co-operative and quick in their service.

Thanks to the Forest National Corporation (F.N.C.) staff for their co-operation during sample collection.

I would also like to thank my parents; they were always supporting me and encouraging me with their best wishes.

Finally, I would like to thank my husband, Engineer Alhibir Alsiddig Alnuss who has shared, with me, each and every bit of the work. I am fully appreciative and deeply grateful to him as he extended his help in every possible way he could. Besides being a wonderful companion who provided a loving and supportive climate which was very much needed, and helped me many times in dealing with the hardware of computer.

I am thankful to my kids Aiesha, Zeinab, Ahmed, Ibrahim and Abubakr who sacrificed the time in which they deserved my attention.

Whenever I felt the stress of the work, they were there as a source of love and joy which relieved me from stress and strengthened the meaning I have in life.

iii

Abstract

Four Authentic representative gum exudate samples from Acacia species namely Acacia senegal var. senegal (ASG), Acacia mellifera (AMF), Acacia seval var. seval (ASY), and Acacia tortilis var. raddiana (ATR), were characterized. The moisture, ash, nitrogen, protein content, pH, specific optical rotation, and number average molecular weight were found to be 9.76, 3.40, 0.327, 2.158, 4.94, -31.75, and 0.24x10⁶ for ASG, 9.56, 2.5, 0.630, 4.158, 4.53, -48.25, and 2.10x10⁶ for AMF, 8.35%, 3.13, 0.243%, 1.610%, 4.84, +56.00, and 2.95x10⁶ for ASY and 8.49%, 2.05, 1.549%, 10.378%, 4.45, +86.75, and 2.06x10⁶ for ATR respectively. The ¹³C and ¹H NMR spectra of gum samples showed similarity in individual sugars components, but characteristic patterns of each gum, were observed. The same functional groups were observed from the FTIR spectra of the gums. DSC and TGA thermograms were characteristic for each gum. ASG, AMF, ASY, and ATR gum emulsions were prepared, without the addition of weighting agents, using different concentrations of Isopropyl Myristate (IPM). ASG and AMF gums from the Vulgares series and ASY and ATR gums from the Gummiferae series were blended in different proportions. Blends emulsions were prepared with 20% IPM oil concentration. The morphology of gums and blends emulsions; over seven days of incubation at 45C, exhibited spherical and dense droplets. Particles size measurements, over a period of four weeks of incubation at 45C, showed that ATR

gum formed smaller and more stable droplets compared to the other gums. Phase separation was observed at low oil concentration for all gum emulsions. Emulsions of blends showed remarkable stability. The dye test confirmed that all gums and blends emulsions are oil in water (O/W) system. The rheological flow profiles of gums solutions at varying concentrations reflect a Newtonian flow for 50% and 40% concentrations and shear-thinning flow behavior for 30% and 20% concentrations. All gums and blends, O/W, emulsions showed oil's concentration dependence; their profiles exhibited a shear-thinning flow behavior and a Newtonian flow beyond 100 s⁻¹ shear rate suggesting the alignment, of gums molecules, with shear direction. The dynamic rheological study showed moduli frequency dependence pattern for gum dispersions, gum emulsions, and blend emulsions suggesting network formation of the gum molecules around the oil droplets of the emulsions.

Abstract (Arabic)

المستخلص

أظهرت أطياف NMR ¹³C NMR لعينات الصمغ التشابه في مكونات السكريات الفردية ولقد لوحظت أنماط مميزة. وكذلك لوحظت المجموعات الوظيفية نفسها من أنماط RTIR . كانت الأطياف الحرارية أنماط مميزة. وكذلك لوحظت المجموعات الوظيفية نفسها من أنماط STIR . كانت الأطياف الحرارية المماط مميزة. وكذلك لوحظت المجموعات الوظيفية نفسها من أنماط STIR . كانت الأطياف الحرارية محك مميزة لكل . أعدت المستحلبات ASY، AMF،ASG ، وATR بدون إضافة عوامل الترجيح باستخدام تركيز ات مختلفة من الآيز وبروبيل ميريستيت (IPM). وخليط ASG و AMA من سلسلة *Pulgares و Vulgares و STIR و AST* من سلسلة *Gummiferae* بنسب مختلفة. تم إعداد مستحلبات الخليط بتركيز وكي معرف ولوجية المستحلبات على مدى سبعة أيام من الحضانة عند 45C ، عرضت قطر ات كروية وكثيفة.أما قياسات حجم الجسيمات، و على مدى أربعة أسابيع من الحضانة في 54C، أظهرت أن ATR شكلت قطر ات أصغر حجما وأكثر استقرار ا مقارنة بالأخرى. وقد لوحظ حالة فصل المستحلبات في تراكيز أربعة أسابيع من الحضانة في 54C، أظهرت أن 20 MTR مكلت قطر ات أميز التويز التويز التربي التحابة في تراكيز أن 20% محل التربي أطيات معلى مدى أربعة أسابيع من الحضانة في 24C، أظهرت أن 20 MTR مكلت قطر ات أصغر حجما وأكثر استقرار ا مقارنة بالأخرى. وقد لوحظ حالة فصل المستحلبات في تراكيز أربعة أسابيع من الحضانة في 15C، أظهرت أن 20 شكلت قطر ات أصبغر حجما وأكثر استقرار ا مقارنة بالأخرى. وقد لوحظ حالة فصل المستحلبات في تراكيز أربعة أسابيع ما الحضانة في 16C، أظهرت أن 20 شكلت قطر ات أصبغر حجما وأكثر استقرار المارنة بالأخرى. وقد لوحظ حالة فصل المستحلبات في تراكيز أربعة ألايت المنخفضة لجميع المستحلبات وأظهرت مستحلبات المزيج المتقرار الحوظ ومقاومة لحالة الانفصال. أكد اختبار الصبغة أن مستحلبات الأصماغ ومستحلبات مزيج الأصماغ انها كونت مستحلبات زيت في ماء ألار الماز أربي ألامي مال أربي ألمونان مالحوظ ومقاومة لحالة الانفصال. أكد اختبار الصبغة أن مستحلبات الأصماغ بتركيز ات متفاونة تعكس تدفق نيوتن لتركيزات 20% ألم ماء أربع ألم ألم ألمي ألم ألم أ

و 40٪ وسلوك تدفق القص الرقيق لتركيزات 30٪ و 20٪. وأظهرت جميع مستحلبات الأصماغ والمزيج أن اللزوجةتتناسب طرديا مع زيادة تركيز الزيت؛ و وأظهرت البيانات تدفق القص الرقيق بشكل عام وتدفق النيوتونية لمعدلات تدفق قص تتجاوز¹-2005 مما يشير إلى المواءمة بين جزيئات الأصماغ مع اتجاه القص. وأظهرت الدراسة الريولوجية الديناميكية تناسبا طرديا للتردد مع أنماط الرجوعية لمحاليل الأصماغ و مستحلباتها، ومستحلبات المزيج مما يشير إلى تشكيل شبكة من جزيئات الأصماغ حول قطرات الزيت في المستحلبات.

Contents

Dedicatio	n	i
Acknowle	edgement	ii
Abstract.		iv
Abstract ((Arabic)	vi
Contents.		viii
List of Ta	bles	xiii
List of Fig	gures	xiv
Chapter C	Dne	1
Introducti	on	1
1.1.	Definition of gums	1
1.2.	Colloidal systems	2
1.3.	Hydrocolloids	5
1.4.	Bioemulsifiers	6
1.5.	Classification of gums	6
1.6.	Gum Arabic	8
1.7.	Acacia species	11
1.8.	Acacia senegal var. senegal	12
1.9.	Acacia mellifera	16
1.10.	Acacia seyal var. seyal	18
1.11.	Acacia tortilis var. raddiana	20
1.12.	Gum Arabic trade	22
1.13.	Gum Arabic exports	23
1.14.	African gum belt	24
1.15.	Grades and qualities of gum arabic sold on the world market	25
1.16.	Weighting agents	26

	1.17.	Rheology	27
C	hapter Tw	0	30
Pl	nysicochei	mical properties of Some Acacia gums	30
	2.1.1.1.	Moisture content	34
	2.1.1.2.	Ash content	34
	2.1.1.3.	pH value	34
	2.1.1.4.	Specific optical rotation	35
	2.1.1.5.	Nitrogen and protein content	35
	2.1.1.6.	Number average molecular weight	36
	2.1.4.1.	Differential Scanning Calorimetry (DSC)	42
	2.1.4.2.	Thermogravimetric Analysis (TGA)	45
	2.2.1.	Materials	47
	2.2.2.	Samples preparations	47
	2.2.3.	Moisture content	48
	2.2.4.	Ash content	48
	2.2.5.	Nitrogen and protein content	49
	2.2.6.	pH Measurement	49
	2.2.7.	Specific optical rotation $[\alpha]DT$	50
	2.2.8.	M _n determination from osmotic pressure measurements	50
	2.2.9.	NMR Spectroscopy	51
	2.2.10.	ATR-FTIR Spectroscopy	51
	2.2.11.	Thermal analysis	51
	2.2.11.1.	Differential Scanning Calorimetry (DSC)	51
	2.2.11.2.	Thermogravimetric Analysis (TGA)	52
	2.3.1.	Physicochemical Properties	53
	2.3.2.	Nuclear Magnetic Resonance (NMR)	53
	2.3.2.1.	¹³ C Nuclear Magnetic Resonance (NMR)	55

2.3.2.2.	¹ H Nuclear Magnetic Resonance (NMR)	59
2.3.3.	ATR-FTIR	62
2.3.4.	Thermal analysis	67
Chapter Th	ree	75
Emulsions	stability of some Acacia gums and blends	75
3.1.	Introduction	75
3.1.1.	Emulsion definition	75
3.1.2.	Classification of emulsions	76
3.1.3.	Food hydrocolloids	78
3.1.4.	Natural gums	79
3.1.5.	Emulsion formation	79
3.1.6.	Beverage emulsions	81
3.1.7.	Oil-in-Water Emulsion Definition	82
3.1.8.	Basic Preparation Method	83
3.1.9.	Emulsion Preparation Parameters and Conditions	84
3.1.10.	Emulsion Instability Mechanisms	84
3.1.11.	Factors Influencing Emulsion Properties	87
3.2.	Materials and Methods	91
3.2.1.	Materials	91
3.2.2.	Preparation of gums emulsions	91
3.2.3.	Preparation of emulsions of gum blends	92
3.2.4.	Morphology of Emulsion	93
3.2.5.	Particle Size Analysis	93
3.2.6.	Phase Separation Stability Test	94
3.2.7.	Dye Solubility Test	94
3.3.	Results and Discussion	94
3.3.1.	Emulsion Morphology	94

3.3.2.	Particle size analysis	100
3.3.3.	Phase Separation Stability Test	106
3.3.4.	Dye solubility test	110
3.4.	Conclusions	113
Chapter Fo	pur	114
Emulsions	rheology of some Acacia gums and blends	114
4.1.	General introduction to rheology	114
4.1.1.	Food emulsions rheology	115
4.1.2.	Rheology definition	117
4.1.2.1.	Shear Stress (τ)	118
4.1.2.2.	Shear Rate $(\boldsymbol{\gamma})$	118
4.1.2.3.	Viscosity (η)	118
4.1.3.	Rheological properties	119
4.1.4.	Rheological Classifications of emulsions	120
4.1.4.1.	Newtonian ideal liquid emulsions	120
4.1.4.2.	Non-Newtonian emulsions	121
4.1.4.2.1	. Time independent non-Newtonian Fluids	121
4.1.4.2.2	2. Time dependent fluid emulsions	122
4.1.4.3.	Viscoelastic emulsions	123
4.1.5.	Rheological behavior of emulsion	126
4.1.6.	Factors affecting emulsion rheology	127
4.2.	Materials and methods	129
4.2.1.	Materials	129
4.2.2.	Preparation of gum solution	129
4.2.3.	Preparation of gum's emulsion	129
4.2.4.	Preparation of gum blend's emulsions	130
4.2.5.	Flow and dynamic rheological measurements	130

4.3.	Results and discussion	
4.3.1.	Rheology	131
4.3.2.	Flow rheological measurements	131
4.3.3.	Dynamic rheological measurements	141
4.4.	Conclusions	149
References		150

List of Tables

Table 1. 1 Classification of colloids 4
Table 1. 2 Classification of gums 10
Table 1. 3 Grades of gum arabic
Table 2. 1 Physicochemical properties of gums. 54
Table 2. 2 Representative ¹ H and ¹³ C chemical shifts for nuclei of polysaccharides
Table 2. 3 Thermal decomposition data for the different gum samples. 73
Table 3. 1 The content of components used in emulsion of gum blend of ASY and
ATR (W/W %)
Table 3. 2 Average droplets size of ASG gum emulsion. 101

Table 3. 3 Average droplets size of AMF gum emulsion.	101
Table 3. 4 Average droplets size of ASY gum emulsion.	102
Table 3. 5 Average droplets size of ATR gum emulsion.	102

List of Figures

Figure 1. 1 Acacia senegal var. senegal Tree	15
Figure 1. 2 <i>Acacia mellifera</i> Tree.	17
Figure 1. 3 Acacia seyal var. seyal Tree	19
Figure 1. 4 Acacia tortilis var. raddiana Tree	21
Figure 1. 5 African gum belt	25

Figure 2. 1 A multiple reflection ATR system.	43
Figure 2. 2 The workings of a DSC machine.	43
Figure 2. 3 ASG, AMF, ASY, and ATR Gums nodules	43
Figure 2. 4 ASG Gum ¹³ C NMR Spectrum of non-anomeric carbons C ₂ -C ₅	56
Figure 2. 5 ASG Gum ¹³ C NMR Spectrum of anomeric carbons of the monosaccharide	56
Figure 2. 6 ASG Gum ¹³ C NMR Spectrum	57
Figure 2. 7 AMF Gum ¹³ C NMR Spectrum.	57
Figure 2. 8 ASY Gum ¹³ C NMR Spectrum	58
Figure 2. 9 ATR Gum ¹³ C NMR Spectrum	58
Figure 2. 10 ASG Gum ¹ H NMR Spectrum.	60
Figure 2. 11 AMF Gum ¹ H NMR Spectrum	60
Figure 2. 12 ASY Gum ¹ H NMR Spectrum	61
Figure 2. 13 ATR Gum ¹ H NMR Spectrum	61
Figure 2. 14 ASG Gum ATR-FTIR Spectrum	63
Figure 2. 15 AMF Gum ATR-FTIR Spectrum.	64
Figure 2. 16 ASY Gum ATR-FTIR Spectrum	65
Figure 2. 17 ATR Gum ATR-FTIR Spectrum	66
Figure 2. 18 ASG Gum DSC Thermogram.	68
Figure 2. 19 AMF Gum DSC Thermogram.	68
Figure 2. 20 ASY Gum DSC Thermogram.	69
Figure 2. 21 ATR Gum DSC Thermogram.	69
Figure 2. 22 ASG Gum TGA Thermogram	71
Figure 2. 23 AMF Gum TGA Thermogram.	71

Figure 2. 24 ASY Gum TGA Thermogram.	72
Figure 2. 25 ATR Gum TGA Thermogram	72

Figure 3. 17 ASY Gum Emulsion Fraction%	108
Figure 3. 18 ATR Gum Emulsion Fraction%	108
Figure 3. 19 Emulsion fraction% of ASG, AMF, and 1:1 gum blend with 20% IPM	oil
concentration incubated at 45C for 28 days.	109
Figure 3. 20 Emulsion fraction % of ATR and ASY gums and blends of 1:4, 3:7, 2:3, 1:1 a	and
4:1; proportions with 20% IPM oil concentration for 28 days of incubation	109
Figure 3. 21 ASG and AMF gum emulsions and Sudan IV; (a) dissolved, (b) solid, and (c) stir	red
solid.	111
Figure 3. 22 ASY and ATR gum emulsions and crystal violet; (a) dissolved, (b) solid, and	(c)
stirred solid	111
Figure 3. 23 ASY and ATR gum blend emulsions with crystal violet (CV) and Sudan IV (S	D);
(a) dissolved, (b) solid, and (c) stirred solid.	112

Figure 4. 1 Diagram for rheological definitions
Figure 4. 2 Basic shear diagram of shear rate versus shear stress for the classification of time
independent flow behavior of pseudoplastic and dilatants fluid124
Figure 4. 3 Time dependent non-Newtonian fluids
Figure 4. 4 Flow curve at increasing (U) and decreasing (D) shear rate obtained on 50%, 40%,
30%, and 20% ASG gum solutions
Figure 4. 5 Flow curve at increasing (U) and decreasing (D) shear rate obtained on 50%, 40%,
30%, and 20% ASY gum solutions
Figure 4. 6 Flow curve at increasing (U) and decreasing (D) shear rate obtained on 30% ATR
gum solution
Figure 4. 7 Architectural change of the aggregates during shear upon increasing shear rate and
decreasing shear rate
Figure 4. 8 Viscosity profile of ASG gum emulsion with different IPM oil concentrations (20% -
10%)
Figure 4. 9 Viscosity profile of AMF gum emulsion with different IPM oil concentrations (20% -
10%)
Figure 4. 10 Viscosity profile of ASY gum emulsion with different IPM oil concentrations (20%
-10%)

Figure 4. 11 Viscosity profile of ATR gum emulsion with different IPM oil concentrations (20%
-10%)
Figure 4. 12 Viscosity profile of emulsions formed by ASG, AMF, and 1:1 gums blend at 20%
IPM oil concentration
Figure 4. 13 Viscosity profile of emulsions formed by ASY and ATR gums blends at 20% IPM
oil concentration
Figure 4. 14 Oscillation frequency sweep test of 50%, 40%, 30%, and 20% ASG gum solution142
Figure 4. 15 Oscillation frequency sweep test of 50%, 40%, 30%, and 20% ASY gum solution142
Figure 4. 16 Oscillation frequency sweep test of 30% ATR gum solution143
Figure 4. 17 Oscillation amplitude-sweep for ASG gum emulsions at different IPM oil
concentrations
Figure 4. 18 Oscillation frequency sweep test of ASG gum emulsion with 20%-10% IPM oil
concentrations
Figure 4. 19 Oscillation frequency sweep test of AMF gum emulsion with 20%-10% IPM oil
concentrations
Figure 4. 20 Oscillation frequency sweep test of ASY gum emulsion with 20%-10% IPM oil
concentrations
Figure 4. 21 Oscillation frequency sweep test of ATR gum emulsion with 20%-10% IPM oil
concentrations
Figure 4. 22 Oscillation frequency sweep test of emulsions formed by ASG, AMF, and 1:1 gums
blend with 20% IPM oil concentration
Figure 4. 23 Oscillation frequency sweep test of emulsions formed by ASY and ATR gums blend
with 20% IPM oil concentration

Chapter One

Introduction

1.1.Definition of gums

Gums are polysaccharides either hydrophobic or hydrophilic ,high molecular weight molecules, usually with colloidal properties, which in an appropriate solvent or swelling agent produce gel, highly viscous suspension, or solutions at low dry substance content (Anderson, Dea, and Hirst, 1968; Anderson, Dea, Karamalla, and Smith, 1968), thus, the term gum is applied to a wide variety of substances of "gummy" characteristics and cannot be, precisely, defined. Hydrophobic substances, often, called gums are high molecular weight hydrocarbons and other petroleum products, rubbers, certain synthetic polymers, chicly for chewing gum, and the resinous saps which often exude from evergreens which are sometimes, commercially, tapped yielding, gum balsam and gum resin.

Most commonly, however, the term gum as technically employed in industry refers to plant polysaccharides or their derivatives which are dispersible in either cold or hot water to produce viscous mixture or solutions. Thus, modern usage includes the water – soluble or water-swellable derivatives of cellulose and the derivatives and modifications of other polysaccharides which in the natural form are insoluble. Usage would classify as gums all polysaccharides or their derivatives which when dispersed in water at low dry substance content, swell to produce gels, highly

viscous dispersions, or solutions (Coppen, 1995). This definition does not require that gums have the property of tackiness, and consequently, such a definition includes as gums those polysaccharides and derivatives which are slimy or mucilaginous. Some authors have tried to classify, separately, these slimy substances from plants into a category called mucilage. Yet, it is more logical to consider tackiness and sliminess as the exhibition of two different physical properties of gums. Hence, there are tacky gums and slimy or mucilaginous gums. Tackiness and sliminess are manifestations of two, somewhat, controllable physical properties. It is possible to modify a gum so that tacky properties are withdrawn and mucilaginous properties introduced. Yet the gum remains hydrophilic and capable of giving high viscosity to its dispersions even at low concentrations consequently, the mucilaginous property is distinctive but a category of mucilage's has no chemical significance (Glicksman, 1962).

1.2.Colloidal systems

The word colloid is of Greek origin; the Greek word kola, meaning "glue". Thomas Graham is usually regarded as the founder of colloids science (Sharma, 2009). A colloid is a solution in which a substance is dispersed evenly throughout a solvent. Because of this dispersal, some colloids have the appearance of solutions. Colloid is defined as a hydrocolloid system wherein the colloid particles are dispersed in water. Colloids are intermediate between true solutions on one hand

and suspensions on the other. It is, obviously impossible to draw a boundary between true solutions and colloidal solutions. Colloidal behavior can be connected with greatly increased area compared with the volume as the size is reduced. The essential properties of colloidal dispersions can be ascribed to the fact that the ratio of the surface area to the volume of particles is very large. In a true solution, the system consists of one phase only and there is no true surface of separation between the molecular particles of solute and solvent. The sizes of particles in colloidal state range from 1nm to 1 m (Levine, 2001). Ostwald regarded colloidal system as heterogeneous in character consisting of two phases: (1) Disperse phase and (2) Dispersion medium. Dispersed phase refers to the phase forming the particles. Dispersion medium is the medium in which dispersion of the particles takes place. Colloidal dispersions are, thermodynamically, unstable and tend to coagulate and precipitate on standing unless precautions are taken. Since both the disperse phase and dispersion medium may be solid, liquid or gaseous there can be several different types of colloidal system (Sharma, 2009). Colloidal solutions are known as sols. If the dispersion medium is water, they are called "hydrosols" or sometimes "aqua sols". And if it is liquid, the colloidal solution is known as emulsion. Table 1.1 shows the classification of colloids (Sharma, 2009; Shaw, 1992).

Table 1.1

Dispersed phase	Dispersion medium	Name	Example
liquid	Gas	Liquid aerosol	Fog, liquid spray
Solid	Gas	Solid aerosol	Smoke, dust
Gas	liquid	Foam	Foam from soap
liquid	liquid	Emulsion	Milk, crude oil
Solid	liquid	Sol	AgI sol, pastes
Gas	Solid	Solid foam	Expanded polystyrene
liquid	Solid	Gel	Opal, pearl
Solid	Solid	Solid suspension	Pigmented plastics

Table1.1Classification of colloids

Dispersion of solids in liquids can be roughly divided into two categories lyophilic and lyophobic sols. Lyophobic (solvent hating) sols have little attraction between the disperse phase and dispersion medium. These are relatively less stable as compared with lyophilic sols. On heating or cooling the lyophobic systems, solids are obtained which cannot be reconverted into sols either by adding solvent or by warming. Lyophilic (solvent loving) sols on the other hand are system in which the disperse phase shows some definite affinity for the medium. Lyophilic sols are generally reversible and behave like true solutions to some extent e.g. gums, starches and proteins. These substances are absorbed by the disperse phase and are stabilized by strong salvations. Hydrocolloids are more commonly called gums (Sharma, 2009).

1.3. Hydrocolloids

Hydrocolloids or gums are a diverse group of long chain polymers characterized by their property of forming viscous dispersions and/or gels when dispersed in water. These materials were first found in exudates from trees or shrubs, extracts from plants or seaweeds, flours from seeds or grains, gummy slimes from fermentation processes, and many other natural products. Occurrence of a large number of hydroxyl groups, noticeably, increases their affinity for binding water molecules rendering them into hydrophilic compounds. Further, they produce dispersions, which are intermediate between a true solution and a suspension, and exhibit the properties of a colloid. Considering these two properties, they are, appropriately, termed as 'hydrophilic colloids' or 'hydrocolloids' (Milani and Maleki, 2012). Food hydrocolloids are high molecular weight hydrophilic biopolymers used as functional ingredients in the food industry for the control of microstructure, texture, flavor and shelf-life. The term "hydrocolloid" embraces all polysaccharides that are exuded or extracted from plants, seaweeds and microbial sources, as well as gum derived from plant exudates, and modified biopolymers made by the chemical or enzymatic treatment of starch or cellulose. In addition, due to its polydispersity and highly hydrophilic character, the unique protein gelatin has become accepted as an exceptional member of this polysaccharide club. But other food proteins, like casein and gluten, are, traditionally, not classified as

hydrocolloids- even though they, certainly, do exhibit functional properties that overlap, considerably, with those of food polysaccharides (Dickinson, 2003; Mirhosseini, Tan, and Naghshineh, 2010).

1.4.Bioemulsifiers

Bioemulsifiers have been recently attracting the industrial community as natural and promising candidates for the replacement of synthetic commercial surfactants due to their intrinsic properties such as lower toxicity, higher biodegradability, higher foaming capacity and higher activity at extreme temperatures, pH levels and salinity. These compounds are biological molecules with surfactant properties similar to the well-known synthetic surfactants and include microbial compounds, natural polymers, such as Gum Arabic (GA) which has been extensively exploited and used in the food industry as a surfactant agent, and other amphiphilic polymer surfactants, usually, based on polysaccharides. Gum Arabic is among the most studied and widely used hydrocolloid due to its excellent emulsifying capacity, ample spectrum of applications and millenary use (Trindade et al., 2008).

1.5.Classification of gums

It has been customary, in the past, to classify most of the gums as polysaccharides and to group them according to plant origin. Thus, the seaweed group comprised the extracts known as agar, alginates, and carrageenan; tree exudates such as gum Arabic, gum karaya, gum tragacanth, and gum chatty; and the seed gums included

locust bean and guar gum. Other gum like materials such as pectin and starch were treated as separate groups, while gelatin, being a protein was not included at all. In addition, there was no room for the synthetic gums such as the cellulose derivatives which are carbohydrate gum, or for the synthetic vinyl polymers such as polyvinylpyroldinone (PVP) which require a completely new category. The use of botanical origin as a basis for the classification of important plant gums is valid and useful, since gums of similar origin and functionality frequently have similar properties and chemical structures, and can, occasionally, be employed for the same purpose. Thus, locust bean gum and guar gum, which are both derived from similar plant- seed sources, have the similar chemical structure of neutral Galactomannans, and differ only in the ratio of Galactose to mannose molecules. Their thickening properties are sufficiently similar and of the same magnitude to allow the interchange of the gums in certain specific applications, but not, indiscriminately, and not in all applications (Whistler and Miller, 1959). For a general classification to be useful, it should embrace all types of gums that are used in the food industry, and it should leave room for the new gums that are certain to be developed in the future. Following this line of thought it has been proposed that the following all-inclusive classification composed of three main categories. (1) natural gums – those found in nature; (2) modified natural, or semi synthetic, gums - those based on chemical modifications of natural gums or gum like

materials ; (3) synthetic gums – those prepared by total chemical synthesis. Specific gums comprising these categories are shown in Table 1.2. As a further aid to identification each category is broken down into subgroups based, where possible, on the common origins, functions, or properties of the particular gums.

1.6.Gum Arabic

Gum Arabic is defined as the dried exudation obtained from the stems and branches of natural strains of Acacia senegal (L), family Leguminosae (FAO, 1990). It consists mainly of high molecular mass polysaccharides and their calcium, magnesium and potassium salts, which on hydrolysis yields arabinose, galactose, rhamnose and glucuronic acid. Gum arabic, is the oldest and best known of all plants gum exudates and has been used as an article of commerce for over 5000 years (Glicksman and Sand, 1973). Gum arabic has a wide range of uses in foods and pharmaceutical industries, where it's stabilizing, thickening and gel forming properties are the main physical requirements. Gum arabic is also used in the mining industry and in the manufacture of textiles, ink and paper. It is also used in bakery, meat products, beverages, confectionery adhesives, cosmetics, printing, fertilizers and binder to explosives (Glicksman and Sand, 1973). Sudan is the world's largest producer of gum Arabic, with production reaching 40,000 tons in 2000. Chad is the second largest producer, followed by Nigeria, Mali and Senegal. In Sudan more than thirty distinct Acacia species are found (El Amin, 1990), but the great majority of commercial gum comes from Acacia senegal var. senegal. Sudan is the world's largest producer of gum arabic with various grades gum, including handpicked selected, cleaned and sifted, cleaned, siftings, dust and red. Following export to Europe and the US, some grades of gum are processed providing greater quality and convenience to the users (Islam, Phillips, Sliivo, Snowden, and Williams, 1997). This may be by mechanical grinding (kibbling) which breaks up the gum nodules into various sizes for faster dissolution. Further processing may involve dissolution and filtration of the gum to remove impurities, followed by spray drying or roller drying (Phillips and Williams, 2009). Gum arabic is a naturally occurring exudate collected from *Acacia senegal* trees and, to a lesser extent, from Acacia seval trees (Islam et al., 1997). It is one of the oldest and most important industrial gums. The Ancient Egyptians used gum arabic as an adhesive when wrapping mummies and in mineral paints when making hieroglyphs (Verbeken, Dierckx, and Dewettinck, 2003). In modern times, the most important applications of gum arabic have been not as an adhesive but as an emulsifier in the food and pharmaceutical industries. Gum arabic is considered to be the best gum in use in dilute oil-in-water emulsion systems (Garti, 1999), one important example of which is the use of citrus oils as flavoring agents in soft drinks where the oils are converted into a water-dispersible emulsion (Verbeken et al., 2003).

Table 1.2

Natural gums	Modified (semi-synthetic) gums	Synthetic gums	
Plant exudates	Cellulose derivatives	Vinyl polymers	
Arabic			
Tragacanth	Carboxymethyl cellulose	Poly vinyl pyrrolidone	
Karaya			
Gatti	Methylcellulose	(PVP)	
Plant extracts			
Pectins	Hydroxypropylmethyl- Cellulose	Polyvinyl alcohol (PVA)	
Arabinogalactan			
(larch gum)	Methylethylcelulose	Carboxyvinyl polyme	
<u>Plant seed flours</u>			
Locust Bean	Methylethylcelulose	(carbopol)	
Quar			
Psyllium seed	Hydroxypropylcellulose (klucel)	Ethyleneoxide polymers	
Quince seed			
Seaweed extracts	Low methoxy pectin	Polyox	
Agar			
Alginates	Microbial fermentation gums		
Carrageenan			
Furcellaran	Dextran		
<u>Cereal starches</u>			
Seed starches	Xanthan gum		
Corn			
Wheat	Pregelatinized starches		
Rice	-		
Waxy maize	Modified starches		
Sorghum			
Waxy sorghum	Carboxymethyl starch		
Tuber starches			
Potato	Hydroxethyl starch		
Arrowroot			
Tapioca	Hydroxypropyl starch		
Animal	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		
Gelatin			
Albumen			
Casein			
Vegetable			

Table 1.2 Classification of gums (Ahmed, 2012)

<u>Vegetable</u> Soy protein

1.7. Acacia species

Over 1350 species of Acacia exist around the world. About 185 are endemic to the Americas, 95 to Asia and the Pacific, nearly 1000 are native to Australia, and 150 African native (Kull and Rangan, 2008). The genus Acacia is the second are largest within the Leguminosae family and contains at least 900 species. With their extensive root system, Acacia trees can be found in semi-arid areas in Australia, India, and America, but mainly in the Sahelian region of Africa. They are multipurpose trees, not only producing gum, but also preventing desert encroachment, restoring soil fertility, and providing fuel and fodder. Almost all commercial gum comes from the so-called gum belt of Africa, a vast area which extends over Mauritania, Senegal, Mali, Burkina Faso, Benin, Niger, Nigeria, Chad, Sudan, Eritrea, Ethiopia, Somalia, Uganda, and Kenya (Coppen, 1995). Sudan is the world's largest producer of gum arabic, followed by Nigeria, Chad, Mali, and Senegal. Gum from the Sudanese Kordofan region is known as the best quality gum and is used as the standard to judge gums obtained from other areas. Commercial gum arabic is collected from a number of *Acacia* species, of which Acacia senegal, Acacia seval, and Acacia polyacantha are the most widespread in the gum belt. Acacia laeta, Acacia karoo, and Acacia gourmaensis are some other gum yielding species with a more limited distribution (Islam et al., 1997). In Sudan, the gums from Acacia senegal var. senegal and Acacia seyal var. seyal are

referred to as hashab and talka respectively, the former considered of higher quality (Baldwin, Quah, and Menzies, 1999). Most of these species grow scattered in the wild and gum from these untended trees is collected by semi-nomadic people. Cultivation is only practiced for *Acacia senegal* var. *senegal*. Particularly in Sudan, wild stands of Acacia trees are replaced by monocultures of Acacia senegal var. senegal in order to facilitate collection and obtain a more consistent quality(Verbeken et al., 2003). Gum arabic from other African countries may be variable in quality, because it may contain gums obtained from different species which occur jointly in the collection area. Acacia senegal var. senegal is a thorny tree that reaches a height of 4.5–6.0 m. It is very drought-resistant and grows on sites with annual rainfall of 100–950 mm and dry periods of 5–11 months. It also tolerates high daily temperatures of up to 45C or more, dry winds, and sandstorms. After 5 years, trees reach maturity and are tapped. Although gum can be tapped from the trees after 3 years, the quality and yield are consistent only after 5 years, suggesting that gum biosynthesis and tree growth are in competition with each other (Joseleau and Ullmann, 1990).

1.8. Acacia senegal var. senegal

Acacia senegal var. senegal is a shrub or small tree 2 - 12 m tall, with a yellowish or grayish white, rather rough bark. The species has a wide distribution in Sudan

gum belt (Awouda, 1974) in sandy soils under annual rainfall of 280 – 450 mm and on dark clays under rainfall > 500 mm (Badi, Ahmed, and Bayoumi, 1989). The trunk may vary in diameter up to about 30cm. The bark is grayish-white; although in old trees growing in the open it may be dark, scaly and thin, showing the bright green cambium layer just below the surface if scratched with a nail. The slash is mottled red. Powerful hooked thorns, 3-5 m long, with enlarged base appear at the nodes of the branches, usually in3s. They are sharp, with some pointing forwards and others backwards. Leaves bipinnate, 3-8 pinnae (glands between uppermost and lowermost pinnae); rachis up to 2.5 cm long; pinnacles are pairs of 8-15, green; 2 stipular spines strongly re-curved with a 3rd pseudo-stipular between them. Flowers yellowish-white and fragrant, in cylindrical, axillary pedunculate spikes, 5-10 cm long; calyx of each flower has 5 deep lobes. 5 petals and a mass of short stamens; pistil inconspicuous. The pods are straight, thin, flat, shortly stipulates and oblong (7.5 x2 cm), green and pubescent when young, maturing to shiny bronze, often with dark patches and bearing prominent veins; seeds 3-6, smooth, flat, rather small, shiny, dark brown. Varietal differences in Acacia senegal are based on variation in natural distribution as well as differences in morphological characteristics such as the presence of or absence of hair on the axis of the flower spike, color of the axis, shape of pod tips, number of pinnae pairs, occurrence of a distinct trunk and shape of the crown. Four different varieties

of *Acacia senegal* are recognized: var. *senegal*, var. *kerensis Schweinf.*, var. *rostrata Brenan and* var. *leiorhachis Brenan*. The generic name '*Acacia*' comes from the Greek word 'akis', meaning a point or a barb.

Drought-tolerant, *Acacia senegal* var. *senegal* is the characteristic species in the drier parts of Sudan and the northern Sahara and is to be found throughout the vast area from Senegal to the Red Sea and to eastern India. It extends southwards to northern Nigeria, Uganda, Kenya, Tanzania and southern Africa. In India it is found chiefly in Sind and Ajmer. In Sudan, the tree exists both in the wild and is cultivated -mainly on sandy hills, but is also grows well in cotton soil.

Figure (1.1): *Acacia senegal* var. *senegal* Tree. Figure 1. 1

1.8.1. Botanical classification

Kingdom: Plantae

Division: Magnoliophyta

Class: Magnoliopsida

Order: *Fabales*

Family: Fabaceae (Leguminosae)

Subfamily: Mimosoideae

Tribe: Acacieae

Genus: Acacia

Species: *senegal*

English name: Gum Arabic tree, three thorned Acacia.

Arabic name: Hashab (El Amin, 1977; Vogt, 1995).

1.9. Acacia mellifera

Acacia mellifera is a low, branched tree with a more or less spherical crown. Black bark on stem becomes ash-grey to light brown on the branches, bearing small, short, sharply hooked spines in pairs. It has shallow but extensive rot system radiating from the crown, allowing the plant to exploit soil moisture and nutrients from a large volume of soil. The roots rarely penetrate more than 1m. Leaves characterized by2 pairs of pinnulae, each with a single pair of leaflets. Leaflets are elliptic 0.6-2 cm long and 0.6-1.2 cm wide, glabrous and highly coloured beneath. Flowers are sweetly scented, especially at night, in elongated spikes, cream to white in spiciform racemes, up to3.5 cm long; pedicels 0.5-1.5 m long; calyx up to 1m long; corolla 2.5-3.5 m long. The papery pods with 2-3seds are reticulate, flat, elongated, 2.5-.5 cm long, 6cm wide, hemmed, sometimes more or less narrowed between the seeds. The specific name *mellifera* means 'honey-bearing'.

Acacia mellifera is a commonly occurring shrub on rangelands throughout the savannah in western, eastern and southern Africa. The train preference is rocky hillsides with rainfall along seasonal watercourse, mixed with other trees. If left unattended, especially if grazing is heavy and no fires check its spread, it may form dense, impenetrable thickets, 2-3 m high and sometimes hundreds of meters across, slowly taking over good grazing land. This species is drought-tolerant.

Figure (1.2): *Acacia mellifera* Tree. Figure 1. 2

1.9.1. Botanical classification

Family: Leguminosae

Subfamily: Mimosoideae

Genus: Acacia

Species: mellifera

English name: Black thorn

Arabic name: Kitir (El Amin, 1977; Vogt, 1995).