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Chapter One 

Introduction  

1.1 Quantum History  

Classical physics divide physical laws into two main parts . Newton’s 

laws which describe matter particles , and Maxwell’s equations which take 

care of electromagnetic energy waves . This classification survives till the 

trial of scientists to does not be black body radiation phenomena . Maxplank 

found that the explanation of black body radiation is impossible unless light 

wakes behaves as describe energy quanta known as photons [1,2] . This 

means that light has dual wave and particle nature. The particle behavior of 

light waves motivates DeBrogglie to suggest that particles like electrons can 

be have some times like waves . This suggestion was confirmed 

experimentally , by Davison and Krimer which observe electron diffraction 

by a solid crystal [ 3,4,5 ] . 

The dual nature of atomic world entitles  encourages Schrodinger and 

independently Heisenberg to construct the so called quantum mechanics to 

describe the behavior of the atomic world [ 6,7,8 ] . 

The quantum theory succeeded in describing a wide variety of atomic 

world phenomena, like atomic spectra Zeeman effect and hyper fine 

interaction [ 9,10,11 ] . 

1.2 Quantum Mechanics Problems 

 Dispite the fat that quantum mechanics succeeded in explaining a wide 

variety of physical phenomena, it suffers from noticeable setbacks . For 
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example it cannot explain high temperature superconductivity phenomena [ 

12,13 ] . 

More one there is no well established quantum gravitational theory    [ 

14,15,16 ] . 

 

 

1.3 Attempts to Modify Quantum Mechanical Laws 

To cure the afore noted set backs different were made to modify 

quantum mechanics [ 17,18,19,20 ] . In Haroun model Maxwell’s equations 

were used to account for the effect of frictional force by deriving Schrodinger 

equation from the electromagnetic wave equation in a conductive medium [ 

21,22 ] . 

In Lutfimodel , the equation for the harmonic oscillator is used to 

account for the effect of friction [ 23,24 ] . 

1.4 Aim of the Work 

 The aim of this work is to construct a new quantum relativistic 

equation, based on generalized special relativity ( GSR ) . This model should 

at least share the ordinary quantum mechanics its successes , beside solving 

some of the problems facing the physicals now . 

1.5 Presentation of the Thesis  

Chapter one is the introduction . Chapter two is devoted for 

Schrodinger equation , which chapter three is concerned with the theory of 
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generalized special relativity . Chapters four and five are devoted for 

literature review and contribution . 

 

 

 

 

Chapter Two 

Quantum Equation 

2.1 Introduction 

 To describe the behavior of particles in the atomic world , one have to 

take into account the dual nature of particles . 

This description was made by Schrodinger equation which describes how the 

quantum state of a physical system change with respect to time and space . 

Schrodinger equation can defer mine the energy level of atomic 

electrons moving around the nucleus . The chapter is concerned with deriving 

Schrodinger equation beside relativistic quantum equation . 

2.2 Derivation of Schrodinger Equation 

To derive Schrodinger equation are uses the classical expression of 

energy and the wave nature of atomic particles according to DeBrogglie 

Hypotheses . The atomic particles can be treated as waves having wave 

function . 
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    Ψ = A  ݁௜ ( ௞௫ିఠ௧ )( 2.2.1 ) 

This equation describes the behavior of a wave having wave number k , 

angular frequency w and amplitude A  

Where : 

  K  = ଶగ
ఒ

 ω  =  2 ߨ f  ( 2.2.2 ) 

With ߣ and f standing for the wave length and frequency , respectively . 

The particles cannot be described by ߣ and f , due to the dual particle-

wave nature of the atomic world . 

Thus it is more preferable to use common language for them , using 

Plank theory , one can relate the energy E to f and ω  , in the form :  

 E = h f = ௛
ଶగ

 ℏ ω   ( 2.2.3 ) = (݂ߨ2 ) 

Utilizing also DeBrogglie Hypothesis , one can relate the momentum p 

to λ and k to be : 

  P =௛
ఒ
= ௛
ଶగ

 (ଶగ
ఒ

 ) = ℏ k   ( 2.2.4 ) 

Thus one can rewrite Ψ to be expressed interm of E and p , which is a 

common physical quantity for both waves and particle.  

Thus is review of equation ( 2.2.3), (2.2.4 ) one can rewrite equation 

(2.2.1 ) in the form : 

  Ψ = A  ݁௜/ℏ ( ௣௫ିா௧ )( 2.2.5 ) 

The energy E of the classical system is given by  
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     E = ௣మ

ଶ௠
 + V       ( 2.2.6 ) 

P is the momentum 

V is the potential 

Multiply both sides by Ψ yields 

  EΨ = ௣
మ

ଶ௠
Ψ + VΨ            ( 2.2.7 ) 

To write equation ( 2.2.4 ) in differential form , one can use equation ( 2.2.5 ) 

by differentiation ( 2.2.5 ) with respect to t to get :  

డట
డ௧

 =  - ா
௜ℏ

 ψ 

                                                     iℏ డట
డ௧

 =  E ψ                                       ( 2.2.8 ) 

Differentiation again with respect to x twice one gets :  

డట
డ௫

  =  ௜
ℏ
 P ψ 


2

2

2

2
2

2

2

x 








 i  


 2

2

2
2

x





     

In three dimension 

  222       ( 2.2.9 )  

Substituting ( 2.2.8 ) and ( 2.2.9 ) in ( 2.2.7 ) one gets : 
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 V
t



 2

2

m2


        ( 2.2.10 ) 

Which is the Schrodinger equation . 

2.3 Klein - Gordon Relativistic Equations 

 Schrodinger equation is based on the Newton’s energy formula which 

cannot describe the behavior of relativistic fast particles . 

This means that there is a need for a quantum equation which is based 

on relativistic energy equation 

ଶ = c2p2+moܧ
2c4            ( 2.3.1 ) 

To do this multiply both side of ( 2.3.1 ) by Ψ to get : 

                                  E2Ψ= c2 p2 Ψ+moc4Ψ   ( 2.3.2 ) 

Using equation ( 2.2.8 ) yields 


2

22

2

2









 







itit
 

 2
2

2
2 




t

             ( 2.3.3 ) 

Inserting equation ( 2.2.9 ) and equation ( 2.3.3 ) in equation ( 2.3.2 ) , one 

gets : 





 2

2
2

t


 c2 22 p +݉଴
ଶc4            ( 2.3.4 ) 

This equation is known as Klein – Gordon . 
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2.4 Dirac Relativistic Equation 

 Klein - Gordon equation fails in describing the instructive which results 

from the electron – spin . 

This motivates Dirac to derive a new quantum mechanical expression 

based on a linear expression of the relativistic energy , which given by 

                                  E = c α . p + β m◦c2 ( 2.4.1 ) 

Where the parameters   and   were determined by the boundary 

conditions imposed by the quantum relativistic . It was found that these 

parameters related to the electron - spin and are known as Pauli matrice to 

derive Dirac equations multiply both sides of equation ( 2.4.1 ) by  to gets:  

E Ψ = c α . p Ψ + β m◦ c2 Ψ            ( 2.4.2 ) 

To write equation ( 2.2.4 ) in a differential form , one can use equation 

( 2.2.5 ) . 

With the aid of equations ( 2.2.8 ) , ( 2.2.9 ) one gets : 




 




it


 ,     ( 2.4.3 ) 

Inserting ( 2.4.3 ) in ( 2.4.2 ) , yields 




2cmc
it

i 

 

     ( 2.4.4 ) 

Which is the relativistic Dirac equation . 
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2.5 Harmonic Oscillator 

 The time independent Schrodinger equation take the form : 

2
2

2



m
 U+Vu=Eu    ( 2.5.1 ) 

The potential of a harmonic oscillator in one dimension is given by 

                              V =
2
1 Kx2    ( 2.5.2 ) 

Inserting equation ( 2.5.2 ) in equation ( 2.5.1 ) for one dimension yields 

m2

2 \\U + 
2
1 Kx2  = Eu    ( 2.5.3 ) 

To simplify this equation lets              

4
1

2

m






 




  

























2m
h

2m2 2
1

22    ( 2.5.4 ) 

To get : 

\\U + )( 2 u=o    ( 2.5.5 ) 

To simplify further let 

                   U=H


e 2

2

  u1 =   2
2-1 e   
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 \\U  =   221\\

2

e2H


            ( 2.5.6 ) 

Thus 

 

\\ -    12 \\    ( 2.5.7 ) 

Consider the solution 

                              H=
n 
  ܽ௡Y௡  \ = 1-n

nn 
an            ( 2.5.8 ) 

\\  =   2-n
n

n
a1-nn   

To get : 

    0an21a1-n n
nn

2-n
n

n
             ( 2.5.9 ) 

To make all terms a function ( 2.5.9 ) of  yn replace n by (n+2) in the 

first term to get : 

  1n2n
n

 ܽ௡ାଶ yn +
n

 [ λ - 1 - 2n ]ܽ௡yn = 0          ( 2.5.10 ) 

One of the possible solution is to equate coefficients of  yn  to zero to get : 

                           (n+1)(n+2) an+2 = n]21[  an 

                                     an+2 =
 
   na

2n1n
n21


           ( 2.5.11 ) 
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                               For n

 

n
2

n
2

n
31

a
n
2

n
1

1

2

 n2


































  ( 2.5.12 )   

Which means :       H → ∞   as     y    ( 2.5.13 ) 

This is in conflict with the fact that the wave function should be finite . 

Thus the finite  probability requires that equation ( 2.5.8 ) to be have 

finite terms  

Thus 

                                      H =
1n

s


 an yn     ( 2.5.14 ) 

This means that :           as≠ 0    as+1= 0      as+2 = 0             ( 2.5.15 ) 

Hence from ( 2.5.11 ) for       n= s 

                          0 = as+2=    
  2s1s

21


 s as 

The only possible solution s :            1-   + 2S =0 

 =1+2s ( 2.5.16 )  

From ( 2.5.4 ) 

                          E=(   )/2= (s+½)     ( 2.5.17 ) 

Replacing s by n , the energy of a harmonic oscillator is quantized and is 

given by  
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                                          E  =  ( n + ଵ
ଶ
 ) ℏω                                 ( 2.5.18 ) 

 

Chapter Three 

Generalized Special Relativity 

3.1 Introduction 

 Einstein Generalized special relativity (EGSR) is one of the most 

promising physical theories that cure the defects of SR . 

In this section the expressions of time , length and mass beside energy 

is derived . 

3.2 Space and Time Relations in Generalized Special Relatively 

The generalization of SR stems from the expression of proper  time T 

where : 

c2d 2t gμυ dx  dxv            ( 3.2.1 ) 

With C representing the speed of light , gμυ is the coordinate metric of 

coordinates ݔμ. The subscripts and superscripts . The terms μ and υ denotes 

indicies of contravariant and covariant tensors . The proper time is the 

common language for both Special Relativity ( SR ) Equation ( 3.2.1 ) 

reduces to   

 c2dτ2 = c2dt2 – dxi dxj  ( 3.2.2 ) 

Where   :     κo= ct , where i denotes the particles position covariant tensor  
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Rearranging equation (3.2.2 ) one gets : 

12ji

2 c
1

d
d

d
d

c
11

d
d 

 


t
x

t
x

t
           ( 3.2.3 ) 

It is easy to generalize   to include the effect of field potential by 

using equation ( 3.2.1 ) and the fact that  

                        g11 = g22 = g33 = -1   , 

                          g00 = 1+ଶ∅
௖మ

   ( 3.2.4 ) 

Where Ørepresents the potential per unit mass . As a result equation 

(3.2.1 ) together with the definition of  in equation ( 3.2.3 ) yields   

2

2

00

j

200

1

c
g

d
d.

d
d.

c
1g

d
d 






t
x

t
x

t
 

2221
c/Ø/c21  

             ( 3.2.5 ) 

When the effect of motion only is considered , i.e. by ignoring the field 

effect through the potential , the expression for time is given according to SR 

and ( 3.2.5 ) to be  

2

2

c
1

dd d


 





ttt             ( 3.2.6 ) 

Where the subscript o stands for the quantity measured in the rest frame . 

This expression is the ordinary SR time dilation . However , when the 

clock is at rest in a certain field the expression of time becomes  according to 

equation ( 3.2.6 ) and ( 3.2.5 )in the form 
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00g
dd d 

 
ttt              ( 3.2.7 ) 

This expression conforms with the time dilation in gravity field .  

In view of equations ( 3.2.6 ) and ( 3.2.7 ) , the expression  


tt dd      ( 3.2.8 ) 

can be generalized to recognize the effect of motion as well as the field 

on time to get : 

2

2

22

2

00 cc
Ø21

d

c
g

dd










ttt     ( 3.2.9 ) 

The same result can be obtained for length contraction by substituting 

the expression for   in equation ( 3.2.5 ) instead of that of SR to get : 

                        L  =  γ -1 L◦ =  ට 00g − ௩మ

௖మ
  L◦   (3.2.10 ) 

Where this expression reduces to that of SR when no field exists , i.e. 

when :     Ø =0  

To get : 

L = ටଵି௩మ

௖మ
L◦    ( 3.2.11 ) 

3.3  The Mass and Energy in EGSR 

 The first attempt to find a useful expression for the energy and mass in  

EGSR  as made by M. Dirac where the Hamiltonian is given by  
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     H = p c2 = 00g T◦◦ = 00g  ◦ [ 
ௗ௫°

ௗ௧
 ] 2  = 00g

௣௖మ

ఊ
= 00g

 


2cm              ( 3.3.1 ) 

  stands for  matter density in the presence of any field , mo and vo  are 

the mass and volume in free space . 

Where His Hamiltonian and Too is energy tensor [ 11.16.17 ] using the 

definition of mass density and that of volume in EGSR , i.e. equation              

( 3.2.10 ) one get : 

pc2 =


2mc =goo 


2cm   ( 3.3.2 ) 

Therefore the mass moving with speed   in a field of potential Ø is 

given by  

                                  m =

2

2

c
g

mg








   ( 3.3.3 ) 

Inserting the expression of goo in equation ( 3.3.2 ) yields  

                        m =

2

2

2

2

cc
2Ø 1

c
Ø21m











 

    ( 3.3.4 ) 

It is interesting to note that , when no field exists ; i.e. when Ø = 0 : 

                             m = 

2

2

c
-1

m

    ( 3.3.5 ) 

Which is  the ordinary expression of mass in SR . 
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The energy in EGSR can be found with the aid of ( 3.3.1 ) , to be in the 

form  

                                     E =mc2 =
2

2

2

cg

cmg







 

                                        = 
 

2

2

2

2
2

cc
2Ø1

cmc
Ø21








            ( 3.3.6 ) 

3.4  The Mass and Energy in EGSR Using Momentum 

conservation  

Another expression for mass was obtained by Ahmed Zakarea and M. 

Dirar by using energy conservation law. The momentum conservation law for 

two identical particles mass mo , one is at rest is given by. 

                                        m1 1  = m2 2    ( 3.4.1 ) 

The speed of them is given by 

 


 t
L

1  ,
t
L

2              ( 3.4.2 ) 

Where :    t=  to    ( 3.4.3 ) 

Inserting ( 3.4.2 , 3 )in ( 3.4.1 ) yields 

m1 = 2
1m              ( 3.4.4 ) 

But , since 

 m1 =݉଴  m2 = m ( 3.4.5 ) 
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It follows that 

                             m =  ݉଴ = 

2

2

c
g

 m








  ( 3.4.6 ) 

                                  = 

2

2

2 cc
2 1

m






  

The energy is thus given by 

                              E = mc2  = 

2

2

2

2

cc
2 1

cm






           ( 3.4.7 ) 

When no field exist 

             Ø = 0 

                               E=

2

2

2

c
1

cm






     ( 3.4.8 ) 

Which is the ordinary expression of energy in SR . 

3.5 Advantage of EGSR 

Special relativity suffers from noticeable set backs . For example the 

expression of  energy does not satisfy Newtonian limit since  

                       E= mc2 = mo [1− (௩
మ

௖మ
)]

షభ
మ  ( 3.5.1 ) 

For small velocity , i.e. when : 



 17

     v/c <<1              ( 3.5.2 ) 

                              E=mo(1+ 2

2

c2
1 )= moc2 +

2
1 moݒଶ 

                                            E=moc2 + T            ( 3.5.3 ) 

The energy does not reduce to Newtonian formula 

  V     ( 3.5.4 ) 

Which include potential energy, beside kinetic energy . 

This expression for E does not also explain red shift phenomena in 

which the frequency fo of light changes to f when it enter the gravitational 

field of potential V , according to the relation 

                                          hf= hfo + V     ( 3.5.5 ) 

This is since according to ( 3.5.3 ) 

                                  mc2 =E = moc2 + T 

                                        hf =hfo + T     ( 3.5.6 )  

Where : 

                          mc2  = hf  moc2 =hfo
  ( 3.5.7 ) 

However the situation is different for E in EGSR , where 

according to equation ( 3.3.6 ) 

                             E =moc2 2
1

2

2

22 cc
Ø21

c
Ø21 















 

  

For weak field and small speed :  
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2

2

2 cc
Ø ، <<1             ( 3.5.8 ) 

Thus 

Neglecting higher order terms 

                              E = moc2















  2

2

22 c2
1

c
Ø1

c
Ø21   

                                  = moc2 







 22

2

2 c
2Ø

c2
1

c
Ø1 

 

                                  = moc2

2
11

c
Ø

c2
1

22

2











 mo
2 + moØ + moc2 

                                  =T + V + moc2    ( 3.5.9 ) 

This expression is typical to that of Newton , when one neglects rest 

mass term . 

Similarly equation ( 3.4.7 ) gives  

                                E=moc2 2
1

2

2

2 cc
2Ø1












  

                                   = moc2








 2

2

2 c2c
Ø1   

                                 E=moc2 - moØ +
2
1 mo 2  

 E=moc2 + V+ T           ( 3.5.10 ) 
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However there is a difference in the two expression ( 3.5.8) and           ( 

3.5.9 ) due to the presence of a minus sign in the latter equation . 

Equation ( 5.5.8 ) and ( 5.5.9 ) predicts the gravitational red shift phenomena,   

where : 

                          E= mc2 = hf  moc2 = hf         ( 3.5.11 ) 

Since for a photon 

                                        mo 0     T=
2
1 mo 2 0    ( 3.5.12 ) 

Thus  

According to the two equations 

                                      hf = hfo + V    ( 3.5.13 ) 

Thus 

 EGSR can explain the gravitational red shift phenomenon . 

 

 

 

 

Chapter 4 

Literature Review 

4.1 Introduction  
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The setbacks of quantum laws motivates scientist to search for new  

quantum laws . Different attempts were made to derive new quantum 

equations . some of them take care of medium fiction , while others accounts 

for thermal effects . In this chapter some of them are presented . 

4.2  Derivation of Schrodinger and Einstein Energy Equations 

from Maxwell’s wave Equation  

In the work done by Mohammed Ismail Adam and Mubarak Dirar 

AbdAlla Maxwell’s equations are one of the biggest achievements that 

describes generation, reflection, transmittance and interaction of 

electromagnetic waves the matter [1,2 ,3]. The light was accepted as having a 

wave nature for long time. But, unfortunately, this nature was unable to 

describe black body radiation phenomenon. This forces Max Plank to propose 

that light and electromagnetic waves behave as discrete particles known later 

as photons. This particle nature succeeded in describing a number of physical 

phenomena, like atomic radiation photoelectric, Compton and pair production 

effect. The pair production effect needs particle nature of light as well as 

special relativity (SR) to be explained [4-5-6]. This dual nature of light 

encourages De Broglie to propose that particles like electrons can behave 

sometimes as waves. The experimental confirmation of this hypothesis leads 

to formation of new physical laws known as quantum mechanics.  

Quantum Mechanics (QM) is formulated by Heisenberg first and 

independently by Schrodinger, to describe the dual nature of the atomic world 

[7.8]. 

Despite the fact that the DeBrogglie hypothesis is based on Max Plank 

energy expression beside spatial relativity. There is no link made with 
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Maxwell equation, some attempts were made by K. Algeilani [a] to derive 

Klein- Gordon and special relativity energy relation. This chapter devoted to 

make further links, by deriving Schrodinger equation as well as (SR) energy 

momention relation from Maxwell’s equation. This done in section two and 

three respectively. Section four and five are devoted for discussion and 

conclusion. 

 Derivation of Schrodinger Equation from Maxwell’s Equations. 

Maxwell’s electric wave Equation for massive photon can be written as :  

−ℎଶ ܿଶ ∇ଶܧ +  ℎଶܿଶߪߤ డா
డ௧

+ ℎଶ డమ

డ௧మ
+  ℎଶ ܿߤଶ డ

మఘ
డ௧మ

+ ݉ଶ ܿସܧ = 0 ( 4.2.1 ) 

Where : 

°ߝ°ߤ =  
1
ܿଶ

 

Neglecting the dipole moment contribution and taking into account that fact 

that  

∁≫ 1 

Thus the terms that do not consist of c can be neglected to get : 

−ℎଶ ܿଶ∇ଶ E+ ℎଶ ܿଶߪߤ డா
డ௧

+ + ݋ݎ݁ݖ  ݋ݎ݁ݖ +  ݉ଶܿସܧ = 0    ( 4.2.2 ) 

Dividing both sides of equation ( 4.2.2) by ݉ଶc2 yields 

−
ℎଶ ܿଶ∇ଶ ܧ

2 ݉ܿଶ
+
ℎଶܿଶߪߤ
2 ݉ܿଶ 

ܧ߲
ݐ߲

+
݉ଶܿସ

2 ݉ܿଶ ܧ = 0    

− ௛మ

ଶ௠
∇ଶܧ + ௛మ

ଶ௠
ߪߤ డா

డ௧
+ ଵ

ଶ
݉ܿଶܧ = 0( 4.2.3 ) 
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To find conductivity consider the electron equation for oscillatory system. 

Where the electron velocity is given by 

ݒ =  ௜௪௧ (4.2.4 )݁°ݒ

And its equation of motion takes the form 

݉ ௗ௩
ௗ௧

=                                                            ( 4.2.5 ) ܧ݁

Differentiation equation (4.2.4) one gets : 

ௗ௩
ௗ௧

=  ௜௪௧(4.2.6 )݁°ݒݓ݅

ݒ݀
ݐ݀

=  ݒݓ݅

Inserting equation (4.2.6) in (4.2.5) 

ݒ݉ݓ݅ =  ܧ݁

ݒ = ௘
௜௪௠

 ( 4.2.7 ) ܧ

But for electron, the current J is given by 

ܬ =  ݒ݁݊

ܬ = ௡௘మா
௜௠௪

= − ௜௡௘మா
௪௠

  ( 4.2.8 ) 

Also we known that  

ܬ =  ( 4.2.9 ) ܧߪ

Comparing equation (4.2.8) and (4.2.9) one gets : 

ߪ = − ௜௡௘మ

௠௪
( 4.2.10 ) 
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The coefficient of the first order differentiation of E with respect to time is 

given with the aid of equation (4.2.3) and (4.2.10) 

௛మఓఙ
ଶ௠

= ି௜௛మఓ௡௘మ

ଶ௠మ௪
 ( 4.2.11 ) 

Using Gauss Law 

ܣܧߝ = ܳ =  ( 4.2.12 )ݔܣ݁݊

Where x is the average distance of oscillator and is related to the maximum 

displacement according to the relation 

ݔ = ଵ
√ଶ
 ( 4.2.13 ) °ݔ

௛మఓఙ
ଶ௠

= − ௜௛మఓ௡௘మ

ଶ௠మ௪
= − ௜௛(௛௪)ఓ൫௡௘మ஺௫°

మ൯

ସቀభమ௠௪
మ௫°

మቁ௠஺
  ( 4.2.14 ) 

By using equation ( 4.2.13) 

°ݔ
ଶ =  ଶݔ4

Thus equation ( 4.2.14) becomes 

ℎଶߪߤ
2݉

= −
݅ℎ(ℎݓ)ߤ(݊݁ଶݔ4 ܣଶ)

4 ቀଵ
ଶ
°ݔଶݓ݉

ଶቁ݉ܣ
 

= − ௜௛(௛௪)(௡௘஺௫)௘(௫)ఓ
భ
మ൫௠௪మ௫°

మ൯௠஺
 ( 4.2.15 ) 

By using equation ( 4.2.12), one gets : 

= −
݅ℎ(ℎݓ)(ܣܧߝ)݁(ݔ)ߤ

ቀଵ
ଶ
݉߱ଶݔ°

ଶቁ݉ܣ
 = −

݅ℎ(ℎݓ)ܿଶ(ߝߤ)݁ݔܣܧ
(݉ܿଶ)ܣ(ଵ

ଶ
°ݔଶݓ݉

ଶ)
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= −
௜௛(௛௪)௖మቀ భ೎మቁ(ி௫)

(௠௖మ)ቀభ
మ௠௪௫°

మቁ
 ( 4.2.16 ) 

But according to quantum mechanical and classical energy formula 

ℎݓ = ݉ܿଶ =  (݉ݑݐ݊ܽݑݍ)ܧ

ݔܨ =
1
2
°ݔଶݓ݉

ଶ =  (݈ܽܿ݅ݏݏ݈ܽܿ)ܧ

There for equation ( 4.2.16) reduce to 

௛మఓఙ
ଶ௠

= −݅ℎ ( 4.2.17 ) 

As a result equation ( 4.2.3) becomes 

− ௛మ

ଶ௠
∇ଶܧ − ݅ℎ డா

డ௧
+ ଵ

ଶ
݉ܿଶܧ = 0  ( 4.2.18 ) 

 

We have 

݉ = ݉° ቆ1 +
2∅
ܿଶ

−
ଶݒ

ܿଶ
ቇ

భ
మ

 

Since Schrodinger deals with low speed therefore  

ݒ
2
≪ 1 

Thus one can neglect the speed term to get : 

݉ = ݉° ቀ1 + ଶ∅
௖మ
ቁ
భ
మ ( 4.2.19 ) 
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Taking c as a maximum value of light speed. Such that the average light 

speedܿ௘ is given by 

ܿ௘ୀ భ
√మ
௖ 

ܿ௘ଶୀ೎మమ
 ( 4.2.20 )  

For small ∅ compared to c  ( 4.2.20 )  

݉ = ݉° ቀ1 + ଶ∅
ଶ ௖೐మ

ቁ ( 4.2.21 )        

Thus 

ଵ
ଶ
݉ܿଶ = ݉ܿ௘ଶ = ݉°ܿ௘ଶ(1 + ∅

௖೐మ
) 

                                              =݉°ܿଶ +݉°∅ ( 4.2.22 ) 

                                               = ݉°ܿଶ + ܸ 

Since atomic particle which are describes by quantum laws are very small , 

thus one can neglects ݉° compared to the potential V to get : 

݉°ܿଶ + ܸ = ܸ ( 4.2.23 ) 

Hence from equations ( 4.2.22) and ( 4.2.23) 

ଵ
ଶ
݉ܿଶ = ݉°ܿଶ + ܸ = ܸ  ( 4.2.24 ) 

 

Thus 

Equation ( 4.2.18) reduce to 
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−
ℎଶ

2݉
∇ଶܧ − ݅ℎ

ܧ߲
ݐ߲

+ ܧܸ = 0 

Taking in to account that electromagnetic energy density is proportional to E2 

and sinceΨ is also reflects photon density. Thus one can easily replace E byΨ, 

in the above equation, to get : 

− ௛మ

ଶ௠
∇ଶΨ− ݅ℎ డΨ

డ௧
 + ܸΨ = 0 ( 4.2.25 )  

This is Schrodinger equation. 

 The electric polarization and special Relativity: 

We have 

ܲ =  ( 4.2.26 )  ݔ݁݊−

ߤ డమ௉
డ௧మ

=  ( 4.2.27 ) ݔ݁ߤ݊−

Where : 

ݔ =  ௜ఠ௧݁°ݔ

 ୧ఠ୲݁◦ݔiω଴=ݔ̇

2ω଴݅= ݔ̈
௢ଶ݁௜ఠ୲= −ω଴ݔ2

ଶ( 4.2.28 )ݔ 

ߤ డమ௉
డ௧మ

=  ( 4.2.29 )  ݔω଴݊݁ߤ

From equation ( 4.2.12 ) one have 

ܣܧߝ = ܳ =  ݔܣ݁݊

ܧߝ =  ( 4.2.30 )  ݔ݁݊

Inserting equation ( 4.2.30) in equation ( 4.2.29), one gets : 
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ߤ డమ௉
డ௧మ

= °߱ߤ
ଶܧߝ = °߱ߝߤ

ଶܧ = ఠ°
మ

௖మ
    ( 4.2.31 ) ܧ

Equation ( 4.2.1) can be written as 

−∇ଶܧ + ߝߤ డ
మா
డ௧మ

+ ߤ డమ௉
డ௧మ

 = 0 ( 4.2.32 ) 

From equation ( 4.2.31) and ( 4.2.32), one gets : 

−∇ଶܧ + 1
ܿଶൗ డమா

డ௧మ
+ ఠ°

௖మ
ܧ = 0 ( 4.2.33 ) 

Consider                   

                                            E = E°݁௜( ௞௫ିఠ௧ )( 4.2.34 ) 

∇ଶܧ = −݇ଶ( 4.2.35 )ܧ 

ܧ߲
ݐ߲

=  ௜(௄௫ିఠ௧)݁°ܧ߱݅−

߲ଶܧ
ଶݐ߲

= ݅ଶ߱ଶܧ°݁௜(௄௫ିఠ௧) 

డమா
డ௧మ

= −߱ଶ( 4.2.36 ) ܧ 

Substituting equation ( 4.2.35) and ( 4.2.36) in ( 4.2.33) 

+݇ଶܧ −
1
ܿଶ
߱ଶܧ +

߱ଶ

ܿଶ
ܧ = 0 

Multiplying both sides of above equation by  ௖
మ

ா
 

ଶܿܧଶܭ

ܧ
−

1
ܿଶ
߱ଶ ܿܧ

ଶ

ܧ
+
߱°
ଶ

ܿଶ
ଶܿܧ

ܧ
= 0 
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ଶܿଶܭ − ߱ଶ + ߱°
ଶ = 0  ( 4.2.37 ) 

Multiplying both sides of equation ( 4.2.37) by ℏଶ 

ℏଶܭଶܿଶ + ℏଶ߱°
ଶ = ℏଶ߱ଶ (4.2.38 ) 

For a photon the energy and a momentum are given by Plank and DeBrogglie 

hypothesis to be : 

ܲ =
ℎ
ߣ
ܧ = ℎ݂ 

ܧ = ℎ ௖
ఒ

= ܲܿ ( 4.2.39 ) 

But the photon momentum is given by 

ܲ = ݉ܿ 

Thus 

ܧ = ܲܿ = ݉ܿଶ( 4.2.40 ) 

Therefore : 

ℏݓ = ℎ݂ = ܧ = ݉ܿଶ 

ℏݓ° = ℎ °݂ = °ܧ = ݉°ܿଶ   ( 4.2.41 ) 

Substituting equations ( 4.2.39 ) , ( 4.2.40 ) and ( 4.2.41 ) in equation              

( 4.2.38) , one gets : 

ܲଶܿଶ + ݉°
ଶܿସ = ݉ଶܿସ( 4.2.42 ) 

Since Schrodinger equation is first order in time, thus the second order time 

term should disappear in equation ( 4.2.1) . 
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 This achievement by taking into account that all terms that consist of C 

are larger compared to terms free of C. this since the speed of light is very 

larger (ܿ ≈ 10଼  ). The dipole term in ( 4.2.1) is neglected, which is also 

natural as well as Schrodinger equation deals only with particles moving in a 

field potential through the term V which is embedded in the mass term 

according to (GSR) [see equation ( 4.2.1)]. In deriving the conductivity term 

the effect on the particles is only the electric field, while the effect of friction 

is neglected. This also compatible with Schrodinger hypothesis which 

consider the effect of themedium is only through the potential according to 

the energy wave equation. 

Ψܧ = ௉మ

ଶ௠
Ψ + ܸΨ( 4.2.43 ) 

Ψ = ݁ܣ
೔
ℏ( ௣௫ିா௧) 

݅ℎ
߲Ψ
ݐ߲

=  Ψܧ

−ℎଶ∇ଶΨ = ܲଶΨ( 4.2.44) 

The fact that the velocity in equation (4.2.4 ) represents oscillating particle 

reflects the wave nature of particles, on which one of the main quantum 

hypothesis is based. 

By using this hypothesis together with Blank expression of energy. Beside 

classical energy of an oscillating system, the coefficient of the first time 

derivative ofels found to be equal to (-I h), in view of equation ( 4.2.18) and 

the GSR expression of mass (19) the potential term in Schrodinger equation is 

clearly stems from the mass term again the wave nature of particles relates the 

maximum light speed to its average speed according to equation ( 4.2.20). 
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Neglecting the rest mass, in the third term in equation ( 4.2.18) the coefficient 

of E is equal to the potential. 

The final Schrodinger equation was found by the replacing E by ψ. 

This is not surprising since number of photon d [4]2d E2. The relation of 

energy and momentum is SR by assuming oscillating atoms in the media with 

frequency W0 as representing the background rest energy as shown by 

equation ( 4.2.28 , 4.2.31) the energy gained by the system is the 

electromagnetic energy of frequency W {see equation  ( 4.2.34, 4.2.36 ). 

Using Plank hypothesis for a photon, beside momentum mass relation in 

equation ( 4.2.39, 4.2.40, 4.2.41) the special relativity momentum energy 

relation was found. 

The derivation of Schrodinger quantum equation and special relativity 

energy-momentum relation from Maxwell electric equation shows the 

possibility of unifying the wave and particles nature of electromagnetic 

waves. It shows also of unifying Maxwell’s equations, SR and quantum 

equations. 

The behavior of nano system are now far from being described fully by 

quantum mechanics. 

The situation for elementary particles, field is even worse. There is no 

theoretical model that can put gravity under the umbrella of quantum 

mechanics. 

The dream of unification of forces is too difficult to be achieved within the 

present physical theories including quantum mechanics. 
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These failures maybe related to mathematical and physical laws are based on 

the dual nature of wave pickets beside the energy expression in classical 

mechanics and relativity [10] . Unfortunately the energy expression take care 

of the effect of the field potential only, without accounting other effects that 

can change the behavior of the particles under study. 

These effects include friction, collision and Scaling effects that are closely 

related to the density of particles and relaxation time. 

Thus there is a need for a quantum model that can accounts for the effect of 

the surrounding medium one of the approach is based on deriving quantum 

equations from Maxwell’s equations as done by K.Algeilani and others [11]. 

This approach is reasonable. Since Maxwell’s equations have terms like 

conductivity and electric dipole moment (polarization) that account for 

medium density, relaxation time and internal electric charge [12]. 

Unfortunately Algeilani model don’t accounts for the field effect through the 

potential term [13]. Maxwell’s equations for diffusion current and polarized 

current is derived in section two. A new approach based on Maxwell 

equations is used to derive. Klein-Gordon equation in section three section 

four is devoted for deriving new generalized quantum equation based also on 

Maxwell’s equation section five and six are concerned with discussion and 

conclusion. 

 

 

 

4.3  Derivation of Quantum Equation from Maxwell’s equations 
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According to Maxwell’s equations , one has  

ܪܺ∇ = ܬ +  ( 4.3.1 )  ܩ

Where H , J and G stands for magnetic intensity , current density and 

displacement current respectively  

∇. ܬ + డఘ
డ௧

+ డఘ್
డ௧

+ ܿௗ∇ଶߩ = 0  ( 4.3.2 ) 

The current density J is assumed to result from external ohm (݆ₒ) ܾeside 

bounded charge݆௕and diffusion process ܬఈ 

ܬ = ݆ₒ + ௕ܬ +  ௗ( 4.3.3 )ܬ 

Where : 

݆o  = −
ߩ߲
ݐ߲

 

⇛ ∇. ݆o = − డ
డ௧

(ܦ.∇) = − డఘ
డ௧

( 4.3.4 ) 

௕ܬ = −
ߩ߲
ݐ߲

 

⇛ ∇. ௕ܬ = − డ
డ௧

(∇.ܲ) =  డఘ್
డ௧

( 4.3.5 ) 

Where p , ߩ௕ stands for polarization and bound charge respectively  

ௗܬ = −ܿௗ∇ߩ 

⇛ ∇. ௗܬ = −ܿௗ∇ଶ( 4.3.6 ) ߩ 

Thus the divergence of both sides of equation ( 4.3.3) gives  
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∇. ܬ = ∇. °ܬ + ∇. ௕ܬ + ∇.  ௗ ( 4.3.7 )ܬ

∇. ሬ⃖ሬሬሬ⃗ܬ = − డఘ
డ௧

+ డఘ್
డ௧

− ܿௗ∇ଶ( 4.3.8 ) ߩ 

By rearranging the above equation 

∇. ܬ + డఘ
డ௧
− డఘ್

డ௧
− ܿௗ∇ଶߩ = 0   ( 4.3.9 ) 

To find the unknown G, one uses 

ߩ = ܦ.∇ =  ( 4.3.10 )  ܧ.∇.ߝ

௕ߩ = −∇.ܲ( 4.3.11 ) 

Taking the divergence of equation ( 4.3.1 ) ,one have 

∇.∇ × ܪ = 0 

∇.∇ × ܪ = ∇. ܬ + ܩ.∇ = 0  ( 4.3.12 ) 

Inserting equation ( 4.3.12) in ( 4.3.8) yields 

− డఘ
డ௧

+ డఘ್
డ௧

− ܿௗ∇ଶߩ =  ( 4.3.13 )  ܩ.∇−

Using equation ( 4.3.10) and ( 4.3.11) yields 

− డ
డ௧

(ܦ.∇) + డ
డ௧

(−∇.ܲ) − ܿௗ∇. (ߩ∇) =  ( 4.3.14 ) ܩ.∇−

But   ∇.ܦ =  ߩ

Thus  

ߩ∇ = ∇.  ( 4.3.15 )(ܦ.∇)

Using relating ( 4.3.10) and ( 4.3.15) yields 
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−
߲
ݐ߲

(∇. (ܧߝ +
߲
ݐ߲

(−∇.ܲ) − ܿௗ∇. ((ܦ.∇)∇) =  ܩ.∇−

−
߲
ܧ߲

(∇. (ܧߝ +
߲
ݐ߲

(−∇.ܲ) − ܿௗ∇. (∇(∇. ((ܧߝ =  ܩ.∇−

.∇ߝ−
ܧ߲
ݐ߲

− ∇.
߲ܲ
ݐ߲

− .∇ௗܿߝ ((ܧ.∇)∇) =  ܩ.∇−

Comparing both sides of above equation yields 

ߝ
ܧ߲
ݐ߲

+
߲ܲ
ݐ߲

+ (ܧ.∇)∇ௗܿߝ =  ܩ

ܩ = ߝ డா
డ௧

+ డఘ
డ௧

+  ( 4.3.16 ) (ܧ.∇)∇ௗܿߝ

Thus from equation ( 4.3.1) and the fact that   ܬ =  ܧ°ߪ

∇ × ܪ = ܬ +  ܩ

∇ ܪ× = ܧ°ߪ + ߝ డா
డ௧

+ డ௉
డ௧

+  ( 4.3.17 ) (ܧ.∇)∇ௗܿߝ

Also from Maxwell’s equations we have 

∇ × ܧ = ߤ−
ܪ߲
ݐ߲  

∇ × ∇ × ܧ = ߤ− డ(∇×ு)
డ௧

 ( 4.3.18 ) 

From equation ( 4.3.16) and ( 4.3.1) one found that 

∇ ܪ× = ܬ + ߝ డா
డ௧

+ డ௉
డ௧

+  ( 4.3.19 )(ܧ.∇)∇ௗܿߝ

Multiplying both sides of equation ( 4.3.19) by ߤand differentiation over time 

t yields 
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ߤ డ
డ௧

(∇ × ߤ(ܪ డ௝
డ௧

+ ߝߤ డ
మா
డ௧మ

+ ߤ డమ௉
డ௧మ

+ ∇ௗܿߤߝ ቀ∇. డா
డ௧
ቁ( 4.3.20 ) 

But 

J =  ( 4.3.21 ) ܧߪ

ߤ డ
డ௧

(∇ × (ܪ = ߪߤ డா
డ௧

+ ߝߤ డ
మா
డ௧మ

+ ߤ డమ௉
డ௧మ

+ ∇ௗܿߤߝ ቀ∇. డா
డ௧
ቁ(4.3.22 ) 

Also we have 

∇ × ∇ × ܧ = −∇ଶܧ +  ( 4.3.23 ) (ܧ.∇)∇

From equations ( 4.3.23), ( 4.3.22) and ( 4.3.18 ) yields 

−∇ଶܧ + (ܧ.∇)∇ = ߝߤ డ
మா
డ௧మ

+ ߪߤ డమா
డ௧మ

+ ߤ డమ௉
డ௧మ

+ .∇ௗ∇ቀܿߤߝ డா
డ௧
ቁ( 4.3.24 ) 

This is the Maxwell equation when diffusion is considered . 

Derivation of Klein-Gordon equation from Maxwell’s Equation for Massive 

photon is possible by using Maxwell’s equation for massive photon to be  

−∇ଶܧ + ߪߤ డா
డ௧

+ ߝߤ డ
మா
డ௧మ

ߤ డమ௉
డ௧మ

+ ௠మ௖మ

ℏమ
ܧ = 0  ( 4.3.25 ) 

Neglecting polarization effect and considering the propagation in free space 

where: 

൥
ߪ = 0
ߤ = ଴ߤ
ߝ = ଴ߝ

൩ ( 4.3.26 ) 

଴ߝ଴ߤ = ଵ
௖మ

( 4.3.27 ) 

Where c is speed of light . 
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Equation ( 4.3.25) reduce to  

−∇ଶܧ + ݋ݎ݁ݖ + ଴ߝ଴ߤ
డమா
డ௧మ

+ ݋ݎ݁ݖ + ௠మ௖మ

ℏమ
ܧ = 0  ( 4.3.28 ) 

−∇ଶܧ + ଴ߝ଴ߤ
߲ଶܧ
ଶݐ߲

+
݉ଶܿଶ

ℏଶ
ܧ = 0 

ℏଶ ቀ−∇ଶܧ + ଴ߝ଴ߤ
డమா
డ௧మ

ቁ + ݉ଶܿଶ = 0 ( 4.3.29 ) 

Inserting equation ( 4.3.27) in ( 4.3.29), one gets : 

−ℏଶ∇ଶܧ + ℏଶ
1
ܿଶ
߲ଶܧ
ଶݐ߲

+݉ଶܿଶ = 0 

Multiplying both sides of above equation by c2 

−ℏଶܥଶ∇ଶܧ + ℏଶ డ
మா
డ௧మ

+݉ଶܿସܧ = 0   ( 4.3.30 ) 

If the rest mass equals the relativistic mass . When no potential exist then 

݉ = ݉଴ ቆ1 −
߭ଶ

ܿଶ
+

2߶
ܿଶ
ቇ 

= ݉଴ ቆ1 −
߭ଶ

ܿଶ
ቇ 

When : 

߭ << ܿ 

Thus equation ( 4.3.30) reduces to 

݉ = ݉଴( 4.3.31 ) 
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−ℏଶ డ
మா
డ௧మ

= −ܿଶℏଶ∇ଶܧ + ݉°
ଶܿସ( 4.3.32 )  ܧ 

Replacing E by Ψ in equation ( 4.3.32), one gets : 

−ℏଶ డ
మஏ
డ௧మ

= −ܿଶℏଶ∇ଶΨ+ ݉°
ଶܿସΨ( 4.3.33 ) 

This the ordinary Klein-Gordon Equation. Schrodinger equation deals only 

with non-relativistic particles, thus it does not take into account the rest mass 

energy. On contrary Gordon equation can account for rest mass energy but 

does not have potential energy term for fields other than electromagnetic 

fields.  

Thus there is a need to find a new quantum equation that accounts for rest 

mass energy, beside potential energy. This can be done with the aid of 

equation ( 4.3.25). Where one uses the mass expression of the generalized 

special relativity which is given by 

݉ = ݉௢  (1 +  + ଶ∅
௖మ
− ௩మ

௖మ
)
భ
మ ( 4.3.34 ) 

݉ଶ = ݉଴
ଶ ቀ1 − ଶ∅

௖మ
+ ௩మ

௖మ
ቁ( 4.3.35 ) 

But we have 

݉௢∅ = ܸ  ( 4.3.36 ) 

݉௢ݒ = ܲ  ( 4.3.37 ) 

Substituting equation ( 4.3.37) and ( 4.3.36) in ( 4.3.35) one gets : 

݉ଶ = ݉°
ଶ + 2݉௢

௏
௖మ
− ௉మ

௖మ
( 4.3.38 ) 

Multiplying both sides of equation ( 4.3.38) by E C4 
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݉ଶܿସܧ = ݉଴
ଶܿସܧ + 2݉°ܿଶܸܧ −  ( 4.3.39 )   ܧଶܿଶ݌

But for oscillating electric field 

ܧ =  ௜(௞௫ି௪௧)݁°ܧ

ܧ߲
ݔ߲

=  ௜(௞௫ି௪௧)݁°ܧ݇݅

∇ଶܧ =
߲ଶܧ
ଶݔ߲

= ݅ଶ݇ଶܧ°݁௜(௞௫ି௪௧) 

∇ଶܧ = −݇ଶܧ 

ℏଶ∇ଶܧ = −ℏଶ݇ଶE    ( 4.3.40 ) 

ℏଶ∇ଶܧ = −ܲଶܧ 

Thus 

equation ( 4.3.39) becomes 

݉ଶܿସܧ = ݉°
ଶܿସܧ + 2݉°ܿଶܸܧ − ܿଶℏଶ∇ଶ( 4.3.41 )   ܧ 

By using identifyߝߤ = ଵ
௖మ

and inserting equation (4.3.41 ) in equation ( 4.3.25) 

−ܿଶℏଶ∇ଶܧ + ܿଶℏଶߪߤ
ܧ߲
ݐ߲

+
ℏଶ߲ଶܧ
ଶݐ߲

+݉°
ଶܿଶܧ + 2݉°ܿଶܸܧ − ܿଶℏଶ∇ଶܧ = 0 

Replacing E by ψ and collecting similar terms leads to the new quantum 

equation of the form 

−2ܿଶℏଶ∇ଶΨ + ܿଶℏଶߪߤ డஏ
డ௧

+ ℏమడమஏ
డ௧మ

+ ݉°
ଶܿସΨ+ 2݉°ܿଶܸΨ = 0  ( 4.3.42 ) 
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The fact that Maxwell’s equation is used to derive Klein-Gordon equation is 

related to the fact that quantum mechanical laws are based on Plank quantum 

light equation. 

The replacement of the electric field Intensity Vector E by the wave 

function ψ is reasonable as far as the electromagnetic energy density which is 

related to the number of photons is proportional to E2, i.e.nα E2 

While it is also related to |ψ|2 

i.e 

n α |ψ|2 

Thus  

E→ ψ 

The new quantum mechanical law shown in equation ( 4.3.42) is more 

general than Schrodinger and Klein-Gordon equation it consist of 

conductivity of the medium which is related to the friction of the system . The 

conductivity term can also feel the existence of the bulk matter through the 

particle density term n where 

ߪ =
݊݁ଶ߬
݉  

Unlike Schrodinger equation the new quantum equation consist of a term 

representing rest mass energy. This equation is also more general than Klein-

Gordon equation by having terms accounting for the effect of friction, 

collision through conductivity, besides having potential term accounting for 

all fields other than electromagnetic field. 
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4.4Schrodinger Quantum Thermal Equation  

Dr. R. AbdElhai, M.H.M.Hilo, R.AbdElgani, and M.D.  Abd Allah derive 

also a new quantum equation accounting for temperature effect. 

They use plasma equation according to plasma equation, fluid of particles of 

mass m, number density. Velocity V force F and pressure P is given by 

݉݊ ቂడజ
డ௧

+ ߭.∇߭ቃ = ܨ −  (4.4.1 )   ݌∇

If F is a field force then 

F = - n∇ܸ 

Where V is the potential of one particle in one dimension  

݉݊ ൤
߲߭
ݐ߲

+ ߭
߲߭
ݔ߲
൨ = −݊∇ܸ − ݌∇ = −݊

ܸ݀
ݔ݀

−
݌݀
ݔ݀

 

ݒ݀
ݐ݀

=
ݒ߲
ݐ߲
ݐ݀ +

ݒ߲
ݔ߲

 ݔ݀

ௗ௩
ௗ௧

= ௗ௩
డ௧

+ డ௩
డ௫

ௗ௫
ௗ௧

= డ௩
డ௧

+ ݒ డ௩
డ௫

( 4.4.2 ) 

Thus 

According to equation ( 4.4.2 ), in one dimension 

݉݊ ௗ௩
ௗ௧

= −݊ ௗ௏
ௗ௫
− ௗ௣

ௗ௫
  ( 4.4.3 ) 

Schrodinger Temperature dependent Equation. Schrodinger equation 

can be devived by using new expression of energy obtained from the plasma 

equation to do this one can use ( 4.4.3 ) to get : 



 41

݉݊
ݒ݀
ݔ݀

ݔ݀
ݐ݀

= −݊
ܸ݀
ݔ݀

−
݌݀
ݔ݀

 

Multiplying both sides by dx and integrating yields 

݉݊නݒ݀ݒ = −݊නܸ݀ −න݀݌ 

Considering the pressure to be ݌ =  in generalܶ݇݊ߛ

Thus 

݉݊
ଶݒ

2
= −ܸ݊ − ݌ = −ܸ݊ −  ܶ݇݊ߛ

Hence 

݉
ଶݒ

2
+ ܸ + ܶ݇݊ߛ =  ݐݏ݊݋ܿ

This constant conserved quantity looks like the ordinary energy beside the 

ordinary thermal energy term ߛKT 

ܧ = ௣మ

ଶ௠
+ ܸ +  ( 4.4.4 )   ܶ݇ߛ

To find Schrodinger equation for it, considering the ordinary wave function 

Ψ = ݁ܣ
೔
ℏ(௣௫ିா௧) 

Differentiating both sides by t and x yields 

߲Ψ
ݐ߲

= −
݅
ℏ
 Ψܧ

݅ℏ
߲Ψ
ݐ߲

=  Ψܧ
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߲ଶΨ
ଶݔ߲

= −
ଶ݌

ℏଶ
Ψ ⟹ −ℏଶ∇ଶΨ =            ଶΨ݌

Multiplying both sides of equation ( 4.4.4) by ψ yields 

Ψܧ =
ܲଶ

2݉
Ψ + VΨ +  Ψܶ݇ߛ 

Substituting Equation ( 4.4.3), one gets : 

డஏ
డ௧

= − ℏమ

ଶ௠
∇ଶΨ + VΨ +  Ψ  ( 4.4.5 )ܶ݇ߛ 

This equation represents Schrodinger equation when thermal motion is 

considered. The solution for time free potential can be obtained by suggesting 

Ψ = ݁ି
೔
ℏ(ா೟)ݑ ⟹

߲Ψ
ݐ߲

= −
݅
ℏ
 Ψܧ

Thus 

From equation ( 4.4.5 ) one gets : 

EΨ = −
ℏଶ

2݉
∇ଶΨ + VΨ +  Ψܶ݇ߛ 

The time independent Schrodinger equation thus takes the form 

ݑܧ = − ℏమ

ଶ௠
∇ଶݑ + ݑܸ +  ( 4.4.6 )  ݑܶ݇ߛ

For constant potential, the solution can be 

ݑ = ݁௜௞௫     ,     ܸ = °ܸ 

Inserting this solution in equation ( 4.4.6) yields 
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ݑܧ =
ℏଶ݇ଶ

2݉
ݑ + ݑܸ° +  ݑܶ݇ߛ 

ܧ =
ℏଶ݇ଶ

2݉
+ °ܸ +  ܶ݇ߛ

If one set the Kinetic term to be ܧ° = ℏమ௞మ

ଶ௠
 , one can thus write the energy in 

the form 

ܧ = °ܧ + °ܸ +  ( 4.4.7 )  ܶ݇ߛ 

This quantum energy expression involves a thermal term beside Kinetic and 

potential term. 

The resistance per unit length (L=1) per unit area (A=1) can be found from 

the ordinary definition of Z, the resistance Z is defined to be the ratio of the 

potential, to the current per unit area, j,i.e. 

ܼ = ௨
І

= ௨
୎஺

= ௨
୎

= ௨
௡௘௩

= ௠௨
௡௘௉

 ( 4.4.8 ) 

With n and e standing for the free hole or electron density and charge 

respectively, while prepresents the momentum of electron of mass m where 

p= mn. 

This resistance ( it actually stands for resistivity) can be found by using the 

laws of quantum mechanic for a free charge which responsible for generating 

the electric current, where the wave function take the form 

Ψ =  ௜௞௫  ( 4.4.9 )݁ܣ
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This selection of ψ comes from the fact that the resistance property comes 

from the motion of the free charge. The potential U is related to the 

Hamiltonians H through the relation H= eu. 

Thus for freely moving charge one gets : 

෡ܪ = ݑ݁ =
1
2
ଶݒ݉ =

෠ܲଶ

2݉
=
ℏଶ

2݉
∇ଶ 

In view of equation ( 4.4.9) and according to the correspondence principle V 

takes the form 

ݑ = ழு෡வ
௘

= ∫ అഥு෡అௗ௫
௘

= ∫ అഥ௉෠మఅௗ௫
ଶ௠௘

= ℏమ௄మ

ଶ௠௘ ∫Ψ
ഥΨdx = ℏమ௄మ

ଶ௠௘
          ( 4.4.10 ) 

While P becomes 

ܲ =< ෠ܲ >= ഥߖ∫ ෠ܲଶݔ݀ߖ = ℏܭ ݎ݀ߖഥߖ∫ =ℏ( 4.4.11 )  ܭ 

Thus inserting Equations ( 4.4.10), ( 4.4.11 ) in ( 4.4.8) one obtains 

ܼ =
݉ℏଶܭଶ

2݉ℏ݇݊݁ଶ
=

ℏܭ
2݁ଶ݊

= ൤
ℎ

ߨ2
൨ ൤

ߨ2
ߣ
൨

1
2݁ଶ݊

 

ܼ = ௛
ଶఒ௘మ௡

= ௛௙
ଶ௙ఒ௘మ௡

= ௛௙
ଶ௩௘మ௡

= ௛௙√ఓఌ
ଶ௘మ௡

= ℏఠ√ఓఌ
ଶ௘మ௡

( 4.4.12 ) 

Where the expression f for velocity is found by assuming charges to be 

waves, then following the electromagnetic theory ( EMT), the speed of the 

waves is affected by electric permittivity E and magnetic permability through 

the relation. 

ݒ = ݂ߣ = ଵ

√ఓఌ
( 4.4.13 ) 
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Where the effect of medium chargers the wave length,λ, while the frequency 

f, is unchanged thus assuming the charge density n, to be constant, the only 

charge of Z can be caused by M,E.  

It is also important to note that, in superconductor, the current can flow 

without the aid of deriving potential U, the role of U is confined only in 

enabling electrons to gain Kinetic energy throughout the relations 

ݑ݁ = ଵ
ଶ
ଶݒ݉ =  ( 4.4.14 ) ܭ

Where this potential can be applied between any two arbitrary points in the 

superconductors then remove it. The role of resistive force is neglected here 

as done in deriving London equations. 

The expression for Z can also be found by Inserting Equation ( 4.4.14) in to 

get : 

ܼ =
ݑ
ܬ

=
ݑ
ݒ݁݊

=
ଶݒ݉

2݊݁ଶݒ
=

ݒ݉
2݊݁ଶ

=
ܲ

2݊݁ଶ
=

ℎ
ଶ݁݊ߣ2

 

ܼ = ௛௙
ଶ௙ఒ௡௘మ

= ௛௙
ଶ௘మ ௡௩

= ௛௙√ఓఌ
ଶ௘మ௡

= ℏఠඥఓఌ(ଵା௫)
ଶ௘మ௡

( 4.4.15 ) 

It is important to note that this quantum resistance expression resembles the 

ones found by Tsui three where one uses De Broglie hypothesis four i.e.ܲ = ௛
ఒ
 

4.5  Calculation HTSC by Electric Susceptibility 

Consider holes in a conductor having resistive force Fr magnetic force Fm 

and pressure force Fp beside the electric force Fe, the equation motion then 

becomes [3] 
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ܨ = ௥ܨ + ௠ܨ + ௘ܨ −  ௣ܨ

Where : 

௣ܨ = ,  ݌∇− ௥ܨ =
ݒ݉
ݐ

௠ܨ    ,   = ௘ܨ   ,  ݒ݁ܤ = ܧ݁ =  ௜௞௫݁°ܧ݁

P, x, m, v, I, b, e and E stands for the pressure, displacement, mass, velocity, 

relaxation time, magnetic fluid density, electron charge and electric fluid 

density.  

Thus  

The equation of motion takes the form 

m̈ݔ = −௠௩
ఛ

+ ݒ݁ܤ + ܧ݁ −  ( 4.5.1 ) ݌∇

The solution of this equation can be suggested to be 

ݔ =  ௜௞௫݁°ݔ

ݒ =  ௜௞௫  ( 4.5.2 )݁°ݒ

ܧ =  ௜௞௫݁°ܧ

Inserting ( 4.5.2) in ( 4.5.1) yields 

ݔଶݓ݉− = ቂି ௠௩°

ாₒఛ
+ ஻௘௩

ாₒ
− ௄்∇௡

ாₒ
+ ݁ቃ  ( 4.5.3 )ܧ

ݔ = ቎
௠௩°

ாₒఛ
− ஻௘௩

ாₒ
+ ௄்∇௡

ாₒ
− ݁

ଶݓ݉ ቏  ܧ
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This expression of X can be utilized in the formula which relates the electric 

polarization vector P to susceptibilityݔ on one hand and to the number of 

atoms N V12 the following relation 

ܲ = ܧݔ°ߝ =  ( 4.5.4 ) ݔܰ݁

Motivated by the important role of holes in HTSC, displacement can be 

assumed to result from the motion of holes or positive nuclear charges, thus 

inserting equation ( 4.5.3) in ( 4.5.4 ) yield 

ܧݔ°ߝ = ቈ
೘ೡ°
ಶₒഓି

ಳ೐ೡ°
ಶ ାೖ೅∇೙ಶₒ ି௘

௠௪మ ቉ E                           

ݔ = ௘ே
௠௪మఌₒாₒ

ቂ௠௩°

ఛ
− ݒ݁ܤ + ݇ܶ∇݊ −  ቃ( 4.5.5 )°ܧ݁

The electric flux density assumes the following relation 

ܦ = ܧߝ = 1)°ߝ + ܧ(ݔ = ܲ +  ܧ°ߝ

The electric permittivity is given by 

ߝ = 1)°ߝ +  ( 4.5.6 )(ݔ

The electric permittivity is thus given according to equation ( 4.5.6) to be 

ߝ = 1)°ߝ +  (ݔ

= °ߝ ቈ
௘ே

௠௪మாഎ
ቂ௠௩°

ఛ
− ఖݒ݁ܤ + ݇ܶ∇݊ −  ቃ቉( 4.5.7 )°ܧ݁

The resistance Z can be found by inserting ( 4.5.7) in ( 4.5.1) to get : 
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ܼ = ℏఠ
ଶ௡௘మ

ඨ݉ߝఖට1 + ௘ே
௠௪మఌ°ா°

݊∇ܶܭ) + ௠௩എ
ఛ
− ఖݒ݁ܤ −  ( 4.5.8 )(°ܧ݁

ܼ =
ℏ߱

2݊݁ଶ
ඩߝߤఖඨ

°ܧ°ߝଶݓ݉ + ݊∇ܶܭ)ܧ݁ + ௠௩എ
ఛ
− ఖݒ݁ܤ − ఖܧ݁

°ܧ°ߝଶݓ݉
 

The resistance Z is zero when it is imaginary . This happens when  

ఖߝଶݓ݉ + ݁ܰ ቂ݇ܶ∇݊ +
°ݒ݉

ݐ
− ఖݒ݁ܤ − ቃ°ܧ݁ < 0 

݇ܶ∇݊ < ఖݒ݁ܤ+ + ఖܧ݁ −
ܧ°ߝଶݓ݉
݁ܰ

−
°ݒ݉

ݐ
 

ܶ < +
°ݒ݉

݇∇݊
+

(݁ − °ܧ(°ߝଶݓ݉

݁ܰ݇∇n
−
°ݒ݉

ݐ
 

Thus 

The critical temperature is given by 

௘ܶ = (஻௘ఛି௠)௩എ
ఛ௞∇௡

+ (௘ି௠௪మఌ°)ா°

௘ே௞∇୬
 ( 4.5.9 ) 

If the internal field B results from no atoms each having average flux density 

 B: [5]ߤ

ܤ = ఖߤ ఖܰ ( 4.5.10 ) 

Therefore,Tc can take the form 

௖ܶ = (ఓഎேഎ௘ఛି௠)௩എ
ఛ௞∇௡

+ (௘ି௠௪మఌ°)ா°

௘ே௞∇୬
( 4.5.11 ) 

In tight binding model [5] the energy of electrons in the crystal is given by 
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ߝ = ఖߝ + ଵߙ +  ( 4.5.12 )  ܽܭݏ݋ܿߛ2

Whereߝఖis the energy in the absence of crystal field while the other term 

describe the effect of the crystal field. The energyߝఖcan split into term the 

Kinetic part which, can describe the thermal motion in the form௙എ
ଶ
݇ܶbeside 

the potential term − ఖܸ For attractive force or bounded particle. 

Thus one can write  

ఖߝ = ℏమ௞എమ

ଶ௠
+ ௙എ

ଶ
݇ܶ − ఖܸ ( 4.5.13 ) 

ఖߙ =
ℏଶ݇ఖଶ

2݉
 

ఖ݂represent the degrees of freedom. 

The terms describing the effect of the crystal force are  

ଵߙ = ൻ∅௠หܪ෡௖௥௬ห∅௠ൿ ( 4.5.14 ) 

ߛ = ൻ∅௝หܪ෡௖௥௬ห∅௠ൿ 

In view of equations ( 4.5.12) and ( 4.5.13) 

ߝ = ௙എ
ଶ
݇ܶ − ఖܸ + ߙ +  ( 4.5.15 )ܽܭݏ݋ܿߛ2

Where : 

α  =  ߙఖ + ߙଵ 

Here ܪ෡௖௥௬ stands for the crystal force Hamiltonian part while ∅௠and∅௝  are 

the states of particles located at the site m and j respectively. 

 



 50

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 51

 

Chapter Five 

Quantum Generalized Special Relativistic Equation 

5.1 Introduction 

Einstein special relativity suffers from the lack of a term representing 

the potential energy in the expression of relativistic energy . 

Klein - Gordon quantum equation (KGQE) thus suffers from 

disappearance of potential term . Although , in an electromagnetic fields the 

electric and magnetic potentials have a room in (KGQE) .  But the potential of 

other fields cannot be represented . Thus (KGQE) cannot differentiate 

between particles in a potential field and particle in free space , since for both 

, the wave function is the same which is physically wrong . 

Thus one needs a relativistic quantum equation having a potential term 

in it . This is done in this chapter with some application . 

5.2 Generalized Special Relativistic Quantum Equation 

According to GSRE the energy given by 

                         gooE2 = c2p2 + g଴଴ଶ mo
2c4   ( 5.2.1 ) 

The feeling of this equation by the wave function   can be made by 

multiplying both sides ( 5.2.1 ) by   to get : 

                        gooE2 = c2P2 + g଴଴ଶ moc4     ( 5.2.2 ) 
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The GSRE for quantum system can be obtained by taking into account 

the dual nature of atomic particles which are assumed to be in the form of a 

wave bracket [*] 

 = A  ݁
೔


(୔୶ – ୉୲)

   ( 5.2.3 ) 

Differentiating both sides with respect to time and space twice yields . 







h
i

t
 





2

2

t
 i2  2

2

2

2



E  

                                 -  2
2

2
2 



t
     ( 5.2.4 ) 

 p
x h

i



  

 
2

2
2

2

2

2

2



ppi
x



  

                                 -  2
2

2 p
x





  

In 3 dimensions 

                                  -  222      ( 5.2.5 ) 

Substituting ( 5.2.4 ) and ( 5.2.5 ) in ( 5.2.2 ) yield  

                       - 2 goo 



t2

2 C2  22 goo
2 mo

2 C4    ( 5.2.6 ) 

Where  
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                         goo = 1+ 222 Cm
21

Cm
m2

1
C
2



 V
   ( 5.2.7 ) 

Where the relativistic mass assumed to be equal to the rest mass . This 

approximation is true for slow particles in a week field , i.e., where  

1
C2 
  1

C2

2


  m mo  ( 5.2.8 ) 

Thus the quantum generalized special relativistic equation becomes 

                       - 




4
2

2
222

2

2

2
2 c m

cm
21c

cm
21 






















V
t

V
   ( 5.2.9 ) 

Clearly this equation reduced to Klein -  Gordon equation when  

  V =0 

Where : 

 


4  2222
2

2

cmc 



 
t

   ( 5.2.10 )5.3 Time 

Independent Quantum Equation for Time Independent 

Potential 

Most of electron  atoms are affected by nuclear time independent 

potential resulting from the electrostatic potential in the form : 

                         V = v (r, q,  ) = v( x, y, z)    ( 5.3.1 ) 

According to equation ( 5.2.7 ) 

                            goo1+ 2Cm
2



 goo (x, y, z)   ( 5.3.2 ) 

 ݉ 0
2 

 ݉
0
2 
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Dividing both sides of ( 5.2.6 ) yields 

                          - 






gC m
g

C 422
22

2

2
2 

 

    ( 5.3.3 ) 

If one write    in the form  

 eiwt u= eiwtu(x, y, z)   ( 5.3.4 ) 

Where : 

                                          E =       ( 5.3.5 ) 







  



 222

2

2



   

Thus  

Equation ( 5.3.5 ) yields  

22 ueiwt= eu   c mgu 
 g

 c 422
22









 



 iwt 

Using equation ( 5.3.5 ) and eleminating exponential term yields   

                    E2 u2 = - u gc mu E g c 2422222
    ( 5.3.6 ) 

Equation is the time independent quantum GER equation . It is very 

interesting to note this equation reduced to the time independent Klein - 

Gordon equation when : 

            V = 0   goo = 1  ( 5.3.7 ) 

 g
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Where : 

               -c2 2 2 u = E2u  - mo
2 c4 u    ( 5.3.8 ) 

Consider particles with energy  E 

                           E = mc2 

                       goo = 1+ 



V21

mc
m21

c
2

22

   (5.3.9) 

Divide both sides of ( 5.3.6 ) by  2mc2 to get : 

2

2 42
2

22
2

2

mc2
u gc m

mc2
2

2mc
1u 

m2












 V  

Neglecting m  , yields   

2
2

2
2

u2
2
1u 

m2














 V  




2
1   u u

m2
2

2

    ( 5.3.10 ) 

The Newtonian energy is given by 

                                      EN =
2
1 mc2 = 

2
1      ( 5.3.11 ) 

Replacing V by  -V  , i.e.  

                                  V→ -V      ( 5.3.12 ) 

And substituting ( 5.3.11 ) and ( 5.3.12 ) in ( 5.3.10 ) yields  

N
2

2

m2
 vuu u        ( 5.3.13 ) 

g
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Which is the ordinary time independent Schrodinger equation . 

 

5.4 Time Independent Quantum Equation for Time Dependent 

Potential  

Consider now time dependent and spatial in dependent potential of the 

form 

  v = v(t)    ( 5.4.1 ) 

In this ease , equation ( 5.2.7 ) becomes 

                            goo = 1 +    ttV




g
c m

2
2      ( 5.4.2 ) 

Thus equation ( 5.2.6 ) becomes 

                      c2 

 

422
2

2
222 cmg g 



      ( 5.4.3 ) 

Consider the solution of the form 

 eikr . f(t)    ( 5.4.4 ) 

Thus 

222   ei k.r f      ( 5.4.5 ) 

Inserting ( 5.4.5 ) and ( 5.4.4 ) in ( 5.4.3 ) yields 

       -c2 2 k2 f ݁௜௞.௥ =goo 
2݁௜௞.௥  f2 +g௢௢ଶ m௢

ଶ c4݁௜௞.௩f 

                     -c2 2 k2f ݁௜௞.௥  = goo 2 2

2f
t


+ g௢௢ଶ m௢

ଶ c4 f   ( 5.4.6 ) 

g
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But  

  k  = p        ( 5.4.7 ) 

Thus  

                    goo t2

2
2 f



 + g௢௢ଶ  mo
2 c4 f = - c2 p2 f     ( 5.4.8 ) 

With the aid of equation ( 5.4.2 ) , ( 5.4.8 ) becomes 

                     (1 + 2cm
)(2



tV  ) 










  fcm f 4  2

2

2
2

t
 c2 p2 f    ( 5.4.9 ) 

5.5 General Form of Time Independent Quantum Equation for 

Time Independent Potential 

Let the potential be in the form 

                               V = (v, r)= v(x, y, z)    ( 5.5.1 ) 

Which represents the potential for stable atoms. In this ease equation( 

5.2.6 ) becomes 

                     - 2 goo (r) 2

2

t
  = -c2 22 + goo

2m௢
ଶ c4  

                                 goo (r )m௢
ଶ c4    ( 5.5.2 ) 

Try the solution 

 =f (t) u ( v)       ( 5.5.3 ) 





 2

2
2 fu

t


௖మ 2

௚ₒₒ
 f u2  + goom௢

ଶ c4 fu 

m0
2 
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Divide both sides by u f to get  





 2

22 f
f t
 ௖మ 2

௚°°
 + u2

௨
 + goom௢

ଶc4 = co = E2  ( 5.5.4 ) 

Thus  

One have two separate equations 

2

2
2 f

t


  = E2f     ( 5.5.5 ) 

And  

                   -c2 22 u2 = gooE2u – g௢௢ଶ m௢
ଶ c4 u    ( 5.5.6 ) 

Which is a time independent equation . 

5.6 General Time Independent Quantum Equation for Time 

Dependent Potential  

For Time Dependent Potential 

                           v= v(t)    goo = goo (t)   ( 5.6.1 ) 

 g  g 2
2

2
2









t

 m௢
ଶ c4  = c2 22

  ( 5.6.2 ) 

Consider the solution 

  (r, t) =f(t) u(r) = fu    ( 5.6.3 ) 

Inserting equation ( 5.6.2 ) in equation ( 5.5.4 ) yields 

2

22 f
f

 g
t


  g଴଴ଶ m଴

ଶc4  = u
u

c 2
22


 = co = p2 c2 = E2   ( 5.6.4 ) 

g00
2  
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Thus separating time dependent and the spatial dependent part result in the 

equations : 

                                     c2 22  u = co   ( 5.6.5 ) 

2
2

2
2 gg  




t
f

  mo
2 c4 f = cof   ( 5.5.6 ) 

5.7General Quantum Equation for Time Independent Potential 

v= v(r)  goo= goo(r)     ( 5.7.1 ) 

Consider again the solution 

  (r, t) = f(t) u(v)    ( 5.7.2 ) 

Inserting equations ( 5.7.1 ) and ( 5.7.2 ) in equation ( 5.6.2 ) yields 

                   - 




g
gf

f

2

2

22





t
  mo

2 c4 - 2
22

g
c


U

 u = co= E2 

Thus the time dependent part is given by  

                                     - 2
2

2
2 f





t
 f    ( 5.7.3 ) 

The spatial part takes the form 

                    -c2 22 u = goo E2u –goo
2 mo

2 c4 u   ( 5.7.4 ) 

 

5.8 Harmonic Oscillator Wave Function and Energy 

For particle like pendulum the displacement should be small as to 

execute simple harmonic motion i.e. 

g00
2  

 

g00
2  
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 ϰ<< 1    ( 5.8.1 ) 

Thus one expects the potential v to be a small , i.e. 

                                V= ½   k ϰ 2<<1    ( 5.8.2 ) 

Since the displacement is in the form 

 ϰ = ϰ o sin ωt  ( 5.8.3 ) 

From equation ( 5.6.6 ) by dividing both sides by gₒₒ 

 



2

2
2 f

t
  goomo

2 c4 f = - co 
1

g  f   ( 5.8.4 ) 

Since v is small .  

Thus 

g =  VV
1222 c1

cm
21

cm
m21

c
21 
























 



  

                         goo
-1 =  1c1 -1

 = 1 – c1V   ( 5.8.5 ) 

where : 

21 cm
2c


  

A direct substitution of  

 V c1f 1
112  mo

2 c4  f = - c(1-c1 v) f ( 5.8.6 ) 

Let the solution be 

                         f= A sin t   ff 211   ( 5.8.7 ) 
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                - f cc  fc- f c mc f c mf 1
42

1
4222 VV    

Equating the coefficients of f and v f on both sides gives 

22  + mo
2 c4 = - co  ( 5.8.8 ) 

                               c1mo
2 c4 = coc1

 

                                 co =mo
2 c4 

22 =mo
2 c4  co = 2mo

2 c4 

2

42
2 cm2



 
  ( 5.8.9 )

 

                              f =A sin  

The periodicity condition requires 

                                        f(t) = f(t+T)( 5.8.10 ) 

  A sin t  =A sin( t + T ) = A[ sin αt cos αT + cos αt sin αT ] 

This requires 

                    cos T  = 1     sing T =0 

Hence 

 n 2  ( 5.8.11 ) 

  =  f2nn2 



= nω                             ( 5.8.12 ) 

                          moc2 = 
2

1
2

1
 n   

t
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In view of equations ( 5.6.4 ) , ( 5.6.5 ) 

                       co=E2= mo
2 c4( 5.8.13 ) 

                                 E=  n
2

1cm 2   

                                 E= m◦ c2 = n
√ଶ

( 5.8.14 ) 

But the approximation used in equation ( 5.2.7 ) 

                                V= m mo  

Requires  

 E= mc2    moc2 = n  ( 5.8.15 ) 

5.9 Harmonic Oscillator for Time independent Potential 

From equation ( 5.7.4 ) 

                          E2u –goomo
2 c4u = - c2 ћ2 1

g 2 u ( 5.9.1 ) 

Consider the solution 

                             u = A sin x  u\\ = - 2 u( 5.9.2 ) 

Using equation ( 5.7.5 ) 

                              E2u – (1+c1v)mo
2 c4 u = c2 2  (1-c1v) 2 u 

  [E2 –mo
2 c4 - 2 c2 2 ]u=[c1mo

2 c4 – c1 c2 22 ] vu ( 5.9.3 ) 

Equating the coefficients of u and vu requires  

2
1
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                                 c2 22 - mo
2 c4 = 0 

 


2

22

42
2 cm

c
c m   

( 5.9.4 )
 

 22242422222 22E    CCmCmC    ( 5.9.5 ) 

The periodicity condition requires  

                                        u ( x+ λ ) = u (x )                 ( 5.9.6 ) 

A sin α ( x + λ ) = A sin α x 

                      sin αx cos αλ + cos αx sin αλ = sin αx                     ( 5.9.7 ) 

This  requires  

                        cos αλ = 1                         sin αλ = 0    ( 5.9.8 ) 

α λ = 2nπ                 n = 1,2,3,4,…… 

α = n ( 2π/ λ ) = n  ( 2πf / λf ) = c
n ( 5.9.9 ) 

Substitute ( 5.9.9 ) in ( 5.9.5 ) yields  

E = 2c2ћ2α2   =  2n2ћ2ω2                                       ( 5.9.10 ) 

Again the energy ( 5.9.10 )is quantized . 
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5.10 Travelling Wave Solution 

   - 2 goo 



2

2

t
 goo

2 moc4 = - c2 22  

  - 2

2

t
 

 -goo
2
m oc4 = - c2 2 1

g 2   ( 5.10.1 ) 

Consider the solution  

  sin  tx      ( 5.10.2 ) 

Where : 

   goo= (1 + c1v) 1
g = (1-c1v) (5.10.3) Inserting  ( 5.10.2 , 3 )in ( 

5.10.1 ) yields  

     1

22242

1

22 c1cc mc1    

Rearranging both sides one gets : 

    1
22222242

1
4222 ccccc m-   Vcm  ( 5.10.4 ) 

Equating the coefficients of    and   yields 

2224222 cc m      
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4222222 c mc       ( 5.10.5 ) 

The coefficients of    yields  

                                      mo
2 c4 =c2 22  

                                         c2 4222 c m 
 ( 5.10.6 ) 

Applying periodicity condition i.e. 

   txtx ,T,    

The resulting equation takes the form  

                        Sin      Ttx   sin  tx    

               Sin     T  tx = sin [(ߚ x − (ݐߙ  + ଵ݊ߨ2 −  [ଶ݊ߨ2

 1n2     2n2  

 



 1
1 nn2
   f2 nn2

2  


  ( 5.10.7 ) 

  n2     (5.10.8)In view of equations ( 5.10.5 ) , ( 

5.10.6 ) , ( 5.10.7 ) , and ( 5.10.8 ) 

424222222 cm2c m   c      ( 5.10.9 ) 
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                               moc2 = 
2

1
2

1
 n2    ( 5.10.10 ) 

 22222 cc   n1
2 k2    ( 5.10.11 ) 

But from ( 5.10.6 ) 

                                   mo
2 c4 =c2 22     ( 5.10.12 ) 

Thus from ( 5.10.11 ) 

 

                                          mₒ c = ћβ = n1ћk 

But since one makes an approximation 

 mm   ( 5.10.13 ) 

Thus 

   E=mc2   moc2  ( 5.10.14 ) 

2n
2

1
      ,      n2 = 0,1, 2,…..       ( 5.10.15 ) 

But 

                                  E2 = c2p2 + mo
2 c4 

For small mo , this relation becomes  
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                                     c2 p2 = E2 

                                       cp = E 

                            P = cm mc
c

mc
c

2


  

But from equation ( 5.10.12 ) 

                                    moc = n1   

Thus 

                                      p = n1   

                                   n1= 0, 1, 2, …    ( 5.10.16 ) 

The momentum is quantized .   

5.11 New Version of GSR Energy Formula and GSR Quantum 

Theory 

Recently a paper of A-Zakarea and M. Dirac shows that the mass 

expression is given according to the energy momentum conservation is given 

by 

                                    m =  mo= 

2

2

c
g

m








    ( 5.11.1 ) 
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This appears to be in direct conflict with the expression. 

                                        m =goo  mo      ( 5.11.2 ) 

But  this conflict can be removed by rederiving the expression of 

energy. 

Where : 

                                           Too =  mo c2  ( 5.11.3 ) 

                              E= To
o = gooToo= goo  moc2   ( 5.11.4 ) 

This conflict can be removed by lowering the indicies in inflate space 

by taking 

                     E=  
 LooToo = 1 moc2  =

2

2

c
g

m








  ( 5.11.5 ) 

There for expression ( 5.11.1 ) and ( 5.11.5 ) are the same . 

Recalling equation ( 5.11.4 ) one get : 

                       E=c2mo 
2
1

2

2

2

2
1

2

2

cc
21

c
 -g



















 


moc2 

E  =൥
2m 4c ൬݉(ߔ݉)2+ 2c ൰− 2m 2v

2m 4c
൩ mₒc2  
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mₒc4E-2 =   
 222 c2  

2
 

                       E2+ 2VE = P2c2 + mo
2 c4    ( 5.11.6 ) 

It is very interesting to note that  

When :  v= o 

Equation ( 5.11.6 ) reduces to 

                                E2 = p2c2 + moc4    ( 5.11.7 ) 

Which is the ordinary SR energy momentum relation . The quantum new 

GSR equation can be obtained by using equations ( 5.2.4 ) and  ( 5.2.5 ) , 

where 







 2

2
2

t
     




t
  

 222     ( 5.11.8 ) 

There by multiplying equation ( 5.11.6 ) by  and substituting ( 5.11.8 ) , one 

gets : 

 
4 2222 cmc2  V   ( 5.11.9 ) 









42222

2

2
2 cm  c2 








  Vi   ( 5.11.10 ) 
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5.12 Josephson Effect Current Expression According to New 

GSR 

Consider solution of ( 5.11.10 ) in the form  

    rtt .e f،r 
  ( 5.12.1 ) 

A direct substitution of ( 5.12.1 ) in ( 5.11.10 ) yields 

e ik.r  = rikefkC .222
  + mo

2 c4fo
rike .  

  = [ 4   m2222 ckc


   ] fo ( 5.12.2 ) 

Consider very small mass and momentum such that 

C2ћ2k2 = P2 c2 = 0  mo
2 c4 = 0 

In this case equation ( 5.12.2 ) reads 

ei
t

V2f
2

2
2  



  0
f





t
      ( 5.12.3 ) 

Where Ve is the potential affecting one electron consider the solution 

  fo = ݁± ( ିఈ௧ା ః )௜ 

















tt
 f

ri2
f
2

2
2 

















tt
 f

ri2
f
2

2
2  mo

2 c4 
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 fo = 0    ti
t



f   ff 2

2

2





t
   ( 5.12.4 ) 

Substituting 

 e
22 2 V  fo=0  e

22 2 V   


e2V

     ( 5.12.5 ) 

The general solution is a super position of solution in equation  ( 5.12.4 

) , i.e.  

                                    f=D1
 ti -e + D2  ti --e   ( 5.12.6 ) 

The current is given by  

                            I = 
_

2

d
e

d
d

edne
d
dQ 

t
d

ttt



  

                                          I= e 
td

df ݂̅    ( 5.12.7 ) 

When no potential is applied and when no separation is made by an in 

sulator between the super conductor sides  

               f = 0  eV = p  0 ( 5.12.8 ) 

Since no current flows .  

Thus  
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According to( 5.12. 7 ) one of the possible solutions is to set 

 F= 0   ( 5.12.9 ) 

In view of  ( 5.12.8 ,1 ,11 ) one gets : 

                                        0=(D1+D2) e  

Thus  

D =  D1= - D2  (5.12.10)     Hence  the solution 

will be according to equation ( 5.12.6 ) in the  form  

  f=D [  ݁௜ ( ఃିఈ௧ )
  -  ݁

ି௜ ( ఃିఈ௧ )
 ] = D [݁

௜ ఏ - ݁ି௜ ఏ ]  

                f =2 i D sin ( Φ-αt )  ( 5.12.11 ) 

where                            = t        ( 5.12.12 ) 

                           V = 2e(½Vo) = eVo      ( 5.12.13 ) 

The total potential of the cooper electron pair is also double that of a 

single electron .  

Thus  

                                     V =2Ve  ( 5.12.14 ) 

Thus  in equation ( 5.12.5 ) 
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
eVV 2

     ( 5.12.15 ) 

The electric current can be obtained by inserting ( 5.12.11 ) in ( 5.12.7 ) 

to get : 

                             I= e
td

d [4(i)(-i)D2 sin2  t  ] 

                              =8eD2 sin  t   [  cos  t  ] 

                             I= 8 e2 D2 sin  t  cos  t   

                              = 4e2 D2 sin 2  t   

                             I =Do sin  t 2   (5.12.16 ) 

  2     (5.12.17 ) 

where one uses the relation 

                         Sin 2θ  = 2 sin cos  

To simplify the expression of  I . 

To find the relation between k and the frequency , one use the 

periodicity condition , i.e. 

             f(t+T) =f(t)      ( 5.12.18 ) 

Thus from ( 5.12.11 ) 
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                      sin    t = sin  t   

sin     t = sin  t  cos  + cos  t   sin   =sin  t   

This can be satisfied if  

                            cos   =1     sin  =0   (5.12.19 ) 

Which is satisfied by setting  

 =2n  

α = 

n2  = 2n f = n ω   ( 5.12.20 ) 

According to equations ( 5.12.14 ) and ( 5.12.15 ) 

The super current is given by 

                                  I = Do sin 





 



t





e   ( 15.12.21 ) 

How ever periodicity 

            I (t+T) = I (t)    ( 5.12.22 ) 

According to equation  ( 5.12.16 ) 

                    Sin    t 2  = sin  t 2  

        Sin  t 2 cos  - cos  t 2  sin 2  = 0 

Thus requires 

                      cos 2  =1 sin 2  = 0     ( 5.12.23 ) 
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                                  2   = 2n  

 nn



 f F    ( 5.12.24 ) 

If one choose n to by unity then 

                                    n=1    f   ( 5.12.25 ) 

Thus equation ( 5.12.16 ) becomes 

                                  I=Do sin  ft2      ( 5.12.26 ) 

Comparing equations ( 5.12.21 ) and ( 5.12.26 ) 

2 f =


e2  

Hence 

                                  f=


e2  

It is interesting to note that expression ( 5.12.21 , 26 , 27 ) for super 

current frequency are completely consistent with Josephson super current 

formula or expression . 

 

 

 

 



 76

 

5.13  discussion 

Anew quantum GSR equation was obtained as shown by equation    

( 5.2.9 ) unlike Schrodinger it is second order in t and consists of terms 

representing rest mass energy . This is equation is also unlike relativistic 

equations it consists of terms standing for potential of any field . This 

equation ( 5.2.9 ) also reduces to Klein – Gordon equation ( 5.2.10 ) when the 

potential vanishes .  

It is also very striking to note that time independent new quantum 

equation ( 5.3.6 ) reduces to ordinary time independent  Schrodinger equation 

( 5.3.13 ) when one neglects rest mass energy and when relativistic energy is 

replaced by Newtonian energy in equation ( 5.3.11 ) .  

Different  expression for this new quantum GSR equations were 

obtained as shown by equations ( 5.4.9 ) , ( 5.5.6 ) , ( 5.6.6 ) and ( 5.7.4 ) . 

These equations are different due to the spatial and time dependence of 

the potential . Using ( 5.6.6 ) for time potential , the equation was solved for 

harmonic  Oscillator assuming very small displacements , one obtained 

quantized energy expression ( 5.6.7 )  . This expression shows that the rest 

mass mₒ is quantized .It is very  interesting to note that according to equation 

( 5.6.7 ) , by adjusting the quantum number n and frequency ω , one can 

predict the mass of any elementary particle which can be considered as a 

vibrating string . 

Another  approach based on the full quantum equation ( 5.6.2 ) and 

time independent potential predicts a travelling wave solution for harmonic 
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Oscillator in equation ( 5.9.2 ) . Thus this equation can describe a photon . 

According to equations ( 5.9.14 ) and ( 5.9.15 )  

݉°ₒ c
2 = n2 ћ ω √2 

Again the mass is quantized and can predict any elementary particle 

mass . 

A second new quantum GSR equation based on an alternative GSR energy 

expression ( 5.10.5 ) was obtained . This new equation is shown in equation  ( 

5.10.10 ) . 

When solving it for super conductors its predicts Josephson effect by 

using simple mathematics as in equation ( 5.11.26 ) . 
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5.14  Conclusion  

The new quantum GSR equation is more general than Schrodinger and 

relativistic equations . 

Since it reduces to time independent Schrodinger equation and to Klein – 

Gordon equation . 

It can also describe photon behavior  as for as it predict travelling wave 

solution . it also predict Josephson equation by using simple mathematics . 
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5.15  Recommendation  

1 . It is essential to extend this equation to be reducable to time dependent 

Schrodinger equation and Dirac equation .  

2 . This equation should be applied to describe super conducting materials at 

high temperature .  

3 . The photon equation need to be used to describe interaction of 

electromagnetic radiation with matter .  

4 . This equation can be applied to describe elementary particles interactions .  
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