الباب الثالث النماذج الحسابية

3-3 النماذج الحسابية:

: 1-3-3 تمهيد

تتناول هذه الجزئية حل مثالين لخزانات تحت ارضية ، يشمل الحل كل من التحليل و التصميم و اختبارات التشقق ، تم التحليل بالطريقة التقربية ، بينما تم التصميم وفقا لمتطلبات الكود الهندي (IS3370) .

النموذج الاول هو عبارة عن خزان ارضي التربة المحيطة به تصنف كاتربة جافة (case 1 لذلك توجد حالتين من التحميل للحصول علي العزوم القصوى ، الحالة الاولي Soil (عندما يكون الخزان ممتلئ و غير محاط بتربة ، والحالة الثانية (case 2) عندما يكون الخزان فارغ و تحت تأثير التربة المحيطة .

اما النموذج الثاني فيه التربة المحيطة بالخزان تصنف كاتربة رطبة (Wet soil) و لذلك هنالك اربعة من حالات التحميل ، الحاله الاولي (case 1) هي الخزان ممتلئ والتربة المحيطة به جافة ، و الحالة الثانية (case 2) هي الخزان فارغ والتربة المحيطة مشبعة ، والحالة الثالثة (case 3)هي الخزان ممتلئ والتربة مشبعة ، بينما الحالة الرابعة (case 4) عندما يكون الخزان فارغ و التربة المحيطة به جافة ، لكن في الحقيقة اقصى عزم يتم الحصول عليه من الحالتين الاولتين فقط.

	Sudan university of since and technology	Page. No: (1)
Ref	Calculation	Output
	Example 1:	
	Design an underground tank of internal dimensions	
	6m*3m*3m.The soil surrounding the tank always	
	remains dry . the tank shall be provide with a roof slab .	
	the soil weights 1600N per meter ³ having an angle of	
	response of 30° . use 20 concrete and Fe 250 steel .	
	Solution:	
	1- Walls :	
	1-1 Analysis of walls :	
	Unless otherwise mention it will be taken that the soil	
	surrounding the tank is not liable to be removed at any stage.	
	The tank will therefore be designed for the following critical cases:	
	Case 1: when the tank is full.	
	Case 2: when the tank is empty.	
	All walls will be designed as propped cantilevers .	

	Sudan university of since and technology	Page. No : (2)
Ref	Calculation	Output
	Maximum soil pressure	
	$16000 \times 3 \times \frac{1 + \sin 30^{\circ}}{1 - \sin 30^{\circ}} N / meter^{2} = 16000 N / meter^{2}$	
	→Maximum water pressure	
	$= 9810 \times 3 = 29430 N/meter^2$	
	→Net max pressure	
	$P = 29430 - 16000 = 13430 \text{N/meter}^2$	
	\rightarrow Max B.M producing tension away from the water face	
	$=\frac{pn^2}{33.5} = \frac{13430 \times 3^2}{33.5} Nm = 3608.06Nm$	
	\rightarrow Max B.M producing tension near from the water face	
	$=\frac{pn^2}{15} = \frac{13430 \times 3^2}{15} Nm = 8058Nm$	<u>8058Nm</u>
	→ Maximum bending moment producing tension near the water face	
	$=\frac{ph^2}{33.5} = \frac{16000 \times 3^2}{33.5} Nm = 4298.5Nm$	<u>4298.5<i>Nm</i></u>

	Sudan university of since and technology			Page. No:
				3
Ref	Calculation			Output
	→Maximum bend	ing moment producii	ng tension away	
	from the water sid	le		
	$=\frac{ph^2}{15}=$	$\frac{16000\times3^2}{15}Nm =$	9600 <i>Nm</i>	<u>9600Nm</u>
	The result obtaine	d for the above two d	cases are tabulated	
	below			
		B.M producing	B.M producing	
		Tension on water	Tension away	
	Case	face (Nm)	from water	
			face(Nm)	
	Case1	8058	3606.9	
	Case2	4298.5	9600	
	2-1 Design of	walls:		
	The outer walls of	an underground tan	k must also be	
	designed from cra	cking stress consider	ration cracking	
	stress means the a	ctual tensile stress ir	n concrete due to	
	bending moment to			
	satisfy this conditi			
	the overall thickne			
	the moment of resistance of $0.2667bD^2$ Nmm.			

	Sudan university of since and technology	Page. No: 4
Ref	Calculation	Output
	IN our case equating the moment of resistance to the	
	maximum bending moment.	
	We have	
	$0.2667 \times 1000D^2 = 9600 \times 1000 \therefore D = 189.7 mm$	
	Let us provide a thickness of 200mm providing an	
	effective cover of 40mm effective depth =200 – 40 =	
	160mm steel for bending moment of 9600 Nm	
	$= \frac{9600 \times 1000}{125 \times 0.86 \times 160} mm^2 = 558mm^2$	
T-4 @	Provide 12mm dia. Bars @200 mm centers (565mm²)	
IS3370	$\frac{8004000}{115 \times 0.86 \times 160} mm^2 = 509mm^2$	
T-4 @	Provide 12mm. dia. Bars @180 mm centers (628mm²)	<u>565mm²</u>
IS3370	Provide also distribution steel of 10mm diameter bars at	
	240 mm centers near each face.	$628mm^2$
	Provide 10 mm. dia. Bars @240 mm centers	
	$(372mm^2)$	
	3-1 Cracking stress of walls:	

lo : 5
put
<u>22 N</u>
2

	Sudan university of since and technology	Page. No:
		6
Ref	Calculation	Output
	Let the tensile stress in concrete to C _r	
	→Total tension	
T-21 @ SI3370	$= 1000 \times 88.4 \times \frac{C_t}{2} \div (13 - 1) \times 628 \times \frac{48.4}{88.4} C_t N.$	
513370	$=48330C_{t}$	
	→Equating the M.R to the B.M	
	$48330C_t \times 0.82 \times 160 = 8058 \times 1000$	
	$C_{\rm t} = 1.24 \text{N/mm}^2 (\text{less than } 1.6 \text{N/mm}^2)$	
	2- roof slab:	$\frac{C_t = 1.24}{\text{N/mm}^2}$
	1-2 analysis of roof slab:	
	Loads. Dead load (150mm) = 3750 N/m^2	
	Live load $= 1500 \text{ N/m}^2$	
	Total $= 5250 \text{ N/m}^2$	
	Consider a one meter wide strip of the slab	
	Maximum bending moment = $\frac{5250 \times 3.2^2}{8} Nm = 6720 Nm$	<u>6720 Nm</u>

	Sudan university of since and technology	Page. No:
		7
Ref	Calculation	Output
	2-2 Design of roof slab:	Roof thickness
	n the usual concrete mix (M 15) be used for the roof slab and using Fe 250 steel,	<u>150 mm</u>
	$0.87 \times 1000 d^2 = 6720 \times 1000$ \therefore d = 88mm	
	Provide cover of 40 mm effective depth available	
	$150 - 40 = 110 \ mm$	
	and will. Therefore, not be included in the B.M	
	$A_s = \frac{6720 \times 1000}{140 \times 0.86 \times 110} = 507 mm^2$	507 mm ²
T-4 @	Provide 12 mm Φ bars @ 200 mm c/c	
SI3370	Distribution steel	
	$= \frac{0.3}{100} 150 \times 1000 mm^2 = 450 mm^2$	
	Spacing of 10 mm diameter bars	
	$=\frac{79\times1000}{450}mm=150\ mm\ centers$	
	Provide 10 mm Φ bars @ 150 mm c/c	

	Sudan university of since and technology	Page. No:
		8
Ref	Calculation	Output
	3- Base slab:	
	3-1 Analysis of base slab:	
	Design of the base slab. When the tank is full.	
	Consider one meter run of the tank weight of the roof slab	
	$3.4 \times 0.15 \times 25000 = 12750 N/m$	
	Walls: $2 \times 0.2 \times 3 \times 25000 = 30000 \text{ N/m}$	
	Total $= 42750 \text{ N/m}$	
	(Note. Water pressure on the base slab and the weight of	
	base slab will be directly counteracted by ground pressure calculation).	
	Net upward reaction	
	$=\frac{42750}{5} = 8550 N/meter^2$	
	B.M at the center due to the above loading	
	$= 21375(1.6 \times 1.25)Nm = 7481.25 Nm$	
	Producing tension on the water side.	
	Water pressure and soil pressure action on the wall will producing a moment of 8004 Nm of the same type	<u>7481.25 <i>Nm</i></u>

	Sudan university of since and technology	Page. No: 9
Ref	Calculation	Output
	∴ total bending moment at the center	
	= 7481.25 + 8058 Nm = 15539.25 Nm	<u>15539.25 Nm</u>
	Produce tension on water side.	
	B.M. at the end.	
	Hogging bending moment	
	= 8058 Nm	
	Sagging bending moment	
	$=8550 \times \frac{0.9^2}{2} = 3462.75 Nm$	
	∴ Net B.M.	
	8058 - 3462.75 = 4541.25 Nm	
	Produce tension in the water side.	
	Case 2. When the tank is empty.	4541.25 Nm
	For this condition B.M. at center due to vertical loads	4341.23 1111
	= 7481.25 Nm	
	Produce tension on the water side.	
	B.M. due to soil pressure on the vertical walls = 9600 Nm	
	Produce tension away from water side.	

	Suc	lan university of	since and tech	nology	Page. No: 10
Ref	Calculation			Output	
	∴ Net	B.M. at the ce	nter = 9600 -	- 7482.25	
		= 2118.75 Nm			
	Producing to	ension away froi	m water side.		2118.75 <i>Nm</i>
	B.M. at the	end = 3462	.75 ÷ 9600 <i>N1</i>	n =	
	13062.75 N	Im			
	Produce ten	sion away from	the water side		13062.75 <i>Nm</i>
	The results of below:	obtained for the	above tow case	s are tabulated	
	Case	B.M.at end	B.M. at mid	B.M.	
		section (Nm)	span (Nm)	produce	
				tension	
	Case 1	4595.25	15539.25	On the	
				water	
	Case 2	13062.75	2118.75	Away form	
				water side	
	2-3 Desig	gn of base sla	ıb:		
	Let the thickness of the base slab D mm.				
	From cracking stress consideration equating the moment				
		e to max B.M. we	-	8 me memem	
	25 : 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		· · · · · · · · · · · · · · · · · · ·		

	Sudan university of since and technology	Page. No:
		11
Ref	Calculation	Output
	$= 0.2667 \ bd^2 = 0.2667 \times 1000 \ D^2$	
	$= 15485.25 \times 1000$	
	$D = 240 \ mm$	Base slab
	Let us provide an overall depth of 250 mm	thickness
	Let the effective cover be 60 mm	<u>250 mm</u>
	$\therefore Effective depth = 250 - 60 = 190 mm$	
	Steel for bending moment of 15485.25 Nm	
	$= \frac{15539.25 \times 1000}{115 \times 0.86 \times 190} = 827 \ mm^2$	
	Spacing of 12 mm bending bars	
	$=\frac{113\times1000}{834}=135\ mm$	
	Provide 12 mm diameter bars at 110 mm centers (1027 mm ²)	
	Steel for bending moment of 13062.75 Nm	
	$=\frac{13062750}{125\times0.86\times100}mm^2=639mm^2$	
	Spacing of 12 mm diameter bars =	
	$\frac{113 \times 1000}{834} = 176.8mm$	

	Sudan university of since and technology	Page. No:
		12
Ref	Calculation	Output
	Provide 12 mm diameter bars at 170 mm centers (665	
	mm^2)	
	Provide also distribution steel of 10mm diameter bars at	
	200mm centers near each face.	
	3_3Check for cracking stress	
	→Position of actual neutral axis taking moments above	
	the neutral axis , we have	
	$1000\frac{n^2}{5} + (13 - 1) \times 1027(n - 60)$	
T-21 @	$=1000\frac{(250-n)^2}{2}$	
IS3370	+(13-1)665(250-n-60)	
	n = 123 mm	
	cracking stress due to a bending moment of 1553925Nm	l
	this bending moment produces tension on the water face	
	let the tensile stress in concrete be C _t	
	total tension =	l
	$1000 \times 123 \times \frac{C_t}{2} + (13 - 1)1027 \times \frac{83}{123} C_t N$	
	$=70880C_t N$	

الباب الثالث النماذج الحسابية

	Sudan university of since and technology	Page. No:13
Ref	Calculation	Output
	Equating the moment of resistance to the bending moment $70880 \text{ C}_{t} \times 0.82 \times 190$ $= 15539.25 \times 1000$ $\underline{C_{t}} = 1.562 \text{ N/mm}^{2} \text{ (less than } 1.60 \text{ N/mm}^{2}\text{)}$ Cracking stress due to a bending moment of 13062.75 Nm This bending moment produce tension away from the water side let the tensile stress in concrete be C_{t} $\rightarrow \text{Total tension}$	$\frac{C_t = 1.562}{\text{N/mm}^2}$
T-21 @ SI3370	= 1000 × 127 × $\frac{c_t}{2}$ + (13 − 1) × 665 × $\frac{83}{127}$ $C_t N$ → Equating the M.R to the B.M 68700 C_t × 0.82 × 190 = 13062.75 × 1000 C_t = 1.22 N/mm ² (less than 1.6 N/mm ²)	<u>C_t</u> = 1.22 N /mm ²

الباب الثالث النماذج الحسابية

التفصيلات الانشائية

مسقط افقي

. No :
1
tput

	Sudan university of since and technology	Page. No:
		2
Ref	Calculation	Output
	1- Walls :	
	1-1 Analysis of walls :	
	The tank will therefore be designed for the following	
	critical cases :	
	Case 1. Tank is full and the surrounding soil is dry.	
	Case 2: Tank is empty and the surrounding soil is water-	
	logged.	
	case1: Tank is full and the surrounding soil is water-	
	dry.	
	All walls will be designed as propped cantilevers.	
	Maximum soil pressure	
	$18000 \times 3.5 \times \frac{1 \div sin30^{\circ}}{1 \div sin30^{\circ}} N/meter^{2} = 21000 \ N/m^{2}$	
	→Maximum water pressure	
	$=9810 \times 3.5 = 34335N/meter^2$	
	→Net max pressure	
	$P = 34335 - 21000 = 13335 \text{N/meter}^2$	

	Sudan university of since and technology	Page. No:
		3
Ref	Calculation	Output
	→Consider one meter run of the wall	
	\rightarrow Max B.M producing tension away from the water face	
	$\frac{pn^2}{33.5} = \frac{13335 \times 3.5^2}{33.5} Nm = 4876.2Nm$	<u>4876.2<i>Nm</i></u>
	Maximum bending moment producing tension near the water face	
	$=\frac{\mathrm{ph^2}}{15} = \frac{13335 * 3.5^2}{15} = 10890.2\mathrm{Nm}$	<u>10890.2Nm</u>
	Case 2. : Tank is empty and the surrounding soil is	
	water-logged.	
	Pressure intensity exerted by wet earth at the bottom of the wall.	
	$= wh \frac{1 - \sin 6^{\circ}}{1 + \sin 6^{\circ}} = 18000 * 3.5 * \frac{1 - \sin 6^{\circ}}{1 + \sin 6^{\circ}}$ $= 51075.83 \ N/m^{2}$	
	Consider one metre run of the wall	
	Maximum bending moment producing tension away from the water face .	
	$= \frac{ph^2}{33.5} = \frac{51075.828 * 3.5^2}{33.5} = 18676.98 N.m$	<u>18676.98 <i>N.m</i></u>

		Sudan unive	ersity of since and to	echnology	Page. No:
					4
Ref			Calculation		Output
		eximum bendin	g moment producir	ng tension away	
	= ph	$\frac{51075.8}{1}$	$\frac{28*3.5^2}{5} = 41711.9$	93 Nm	<u>41711.93 Nm</u>
	The b	ending mom	ent computed ab	ove are	
	tabul	ated below:			
			B.M producing	B.M producing	
		Case	Tension on	Tension away	
			water face (Nm)	from water	
				face(Nm)	
		Case1	10890.2	4876.2	
		Case2	18676.98	41711.93	
	From satisfy	y M=0.2667bd ²	consideration an o	-	

	Sudan university of since and technology	Page. No:
		5
Ref	Calculation	Output
	0.2667*1000*D ² =41730000 , D= 395.3mm	
	Let us provide thickness of 400mm.	
	Let us effective cover to the reinforcement be 40mm	
	Effective depth $= 400-40 = 360 \text{ mm}$	
	Steel for a bending moment of 41711.93 Nm	
	$=\frac{41711.93*1000}{125*.86*360} = 1077.82mm^2$	<u>1077.82mm²</u>
T-4 @ SI3370	Spacing of 18 mm diameter bars =	
	$= \frac{254 * 1000}{1077.82} = 235.66 \text{mm}$	<u>235.66 mm</u>
	Provide 18mm dia. Bars @210 mm centers (1211mm²)	
	Steel for abending moment of 18680 Nm	
	$=\frac{18676980}{115*.86*360}=524.57mm^2$	
	Spacing of 12mm diameter bars	<u>524.57mm²</u>
T-4 @ SI3370	$\frac{113*1000}{524.57} = 215mm$	
	Provide 12mm dia. Bars @180 mm centers (578mm²) →Provide also distribution steel of 10mm diameter bars at	<u>215mm</u>

	Sudan university of since and technology	Page. No:
		6
Ref	Calculation	Output
	110 mm centers near each face.	
	3-1 Cracking stress of walls:	
	Position of actual neutral axis:	
	Taking moments about the neutral axis, we have	
T-21 @	$=\frac{1000n^2}{2} + (13-1)1411(n-40)$	
SI3370	$=\frac{1000(400-n)^2}{2}$	
	+(13-1)628(400-n-40)	
	(n = 196.4 mm)	
	Cracking stress due to bending moment of 41711.93 Nm	
	Let the maximum tensile stress in concrete be c_1	
	→Total tension	
	$= \frac{1000*196.4\Box_{\Box}}{2} + (13-1)1411* \frac{156.4}{196.4} \text{ct} = 111700C_t$	
	Equating M.R to the B.M 111700 $c_1 * 0.82*360 =$	
	41711930	$C_1 = 1.20$
	$C_1 = 1.20 \text{ N/mm}^2 \text{ (less than 1.6 N/mm}^2\text{)}$	<u>N/mm²</u>

	Sudan university of since and technology	Page. No: 7
Ref	Calculation	Output
T-21 @ SI3370	Cracking stress due to a bending moment of 18676.98 Nm $\rightarrow \text{Let the maximum tensile stress in concrete be } c_t.$ $\rightarrow \text{Total tension}$ $= \frac{1000*203.6*c_t}{2} + (13 - 1)628*\frac{163.6}{203.6}c_t = 107900 c_t$ $\rightarrow \text{Equating the M.R to the B.M}$ $107900 C_T * .82 * 360 = 186676980$ $c_t = 0.64 \frac{N}{mm^2} \text{(less than 1.6 N/mm}^2\text{)}$	$c_t = 0.64 \frac{N}{mm^2}$
	2- roof slab : 1-2 analysis of roof slab :	
	Loads: Dead load (150mm) 25*150=3750 N/m² Live load =1500 N/m² Total = 5250 N/m² Consider a one meter wide strip of the slab. →Maximum bending moment	

	Sudan university of since and technology	Page. No:
		8
Ref	Calculation	Output
	$=\frac{5250*3.9^2}{8} = 9981 \text{ N.m}$	M= <u>9981 <i>N</i>. m</u>
	2-2 Design of roof slab:	
	If the concrete mix (M15) be used for the roof slab:	
T-4 @ SI3370	$0.87*1000d^2=9981*1000$, d= 108 mm ,effective cover of 40mm the effective depth available = 150-40 = 110 mm A (st) = $\frac{9981000}{140*0.86*110}$ = 753.62mm ² Spacing of 12mm diameter bars = $\frac{113*1000}{753.62}$ = 149.94mm	Roof thickness 150 mm 753.62mm ²
	Provide 12mm dia. Bars @120 mm centers	
	Distribution steel	
	$= \frac{0.3}{100} * 150 * 1000 = 450 \text{mm}^2$	450mm ²
	Spacing of 10mm diameter bars	
	$=\frac{79*1000}{450}=150 \ mm \ centres$	

	Sudan university of since and technology	Page. No:
		9
Ref	Calculation	Output
	Provide 10mm dia. Bars @150 mm centers	
	3- Base slab:	
	3-1 Analysis of base slab:	
	→Assume 0.5m thick base . up left pressure	
	= 9810*4=39240 N/m ²	
	Consider one meter run of tank	
	→Weight of roof	
	= 4.3*.15*25000 N = 16125 N	
	→Weight of tow walls	
	= 2*0.4*3.5*25000=70000 N	
	→Base slab.	
	=0.5*x*25000=12500x N	
	→Weight of soil on the projecting portions of the base slab.	
	= $(x-4.3)3.5*18000 N = 63000(x-4.3) N$	
	→Total up thrust = 39240x N	

	Sudan university of since and technology	Page. No
		10
Ref	Calculation	Output
	Equating the download and upward forces	
	16125+70000+12500x+63000(x-4.3)= 39240x	
	X = 5.09 m	
	Let us provide a base width of 5.5 meters	
	The base slab well be designed for case 1 and 2	
	Mentioned earlier.	
	case1: Tank is full and the surrounding soil is water-	
	dry.	
	→Weight of the roof slab =16125 N/m	
	→Weight of the two walls= 70000 N/m	
	→Total =86125 N/m	
	Note . water pressure on the base slab and the weight of	
	the base slab well be directly counteracted by ground	
	pressure and well not therefor be included in the B.M	
	computations.	
	→Upward reaction due the net load	

	Sudan university of since and technology	Page. No:
		11
Ref	Calculation	Output
	$= \frac{86125}{5.5} = 15659.09$ N/m	
	→B.M at the center due to the above loading	
	$= \frac{8625}{2} (1.95 - 1.375) = 24761 \text{Nm}$	
	(Producing tension on the water side .)	
	Water pressure lateral soil pressure on the vertical walls	
	will produce a moment of 10890.2 Nm of the same type.	
	Total bending moment at the center.	
	= 24761+10890.2= 35651.2 Nm	<u>35651.2 Nm</u>
	(Producing tension near water face .)	
	→B.M at the end	
	<u>Hogging bending moment</u> = 10890.2 Nm	
	Sagging moment	
	$=\frac{15659.09*0.8^2}{2} = 5010.9 \mathrm{Nm}$	<u>5879.3 Nm</u>
	→Net bending moment = 5879.3 Nm	

	Sudan university of since and technology	Page. No:
		12
Ref	Calculation	Output
	(Producing tension on the water face)	
	Case 2. : Tank is empty and the surrounding soil is	
	water-logged.	
	→Intensity of upthrust exerted by water in the soil	
	= 9810*4= 39240 Nm ²	
	→Net upward pressure	
	$= 15659.09 + 39240 = 54899.09 \text{ N/m}^2$	
	Consider one meter run of the tank	
	→B.M at the center	
	$= \frac{54899.09*5.5}{2} (1.95 - 1.375) = 86809 \text{ Nm}$	
	(Producing tension on the water side)	
	→But B.M at the center due to saturated earth pressure on	
	the vertical walls = 41711.93 Nm	
	(Producing tension away from the water side).	
	→Net B.M at the center = $86809-41711.93$	
	=45097.07Nm	45097.07 Nm

	Suc	lan university o	f since and tech	nnology	Page. No:
					13
Ref	Calculation			Output	
	(P	roducing tensio	n on the water	side).	
	→B.M at the end				
	Sagging mor	$\frac{\text{ment}}{\text{ment}} = 41711$	1.93 Nm		
	<u>Cantilever moment</u> (sagging) =				
	$=\frac{54899.09*0.8^2}{2}=17567.7\mathrm{N}mm$				
	→Total B.N				
	59279.63 Ni	<u>59279.63 Nm</u>			
	(Producing tension away from the water sie .)				
	Summary of moment for the base slab				
	2-3 Design of base slab:				
	Case	B.M at end	B.M at mid	B.M produce	
		section (Nm)	span (Nm)	tension	
	Case 1	5879.80	35651.20	On water side	
	Case 2	59279.63	45097.07	away from	
				water side	
	From cracking	ng stress consid	leration, equati	ing the moment	

	Sudan university of since and technology	Page. No:
		14
Ref	Calculation	Output
	of resistance to the maximum bending moment, we have	
	$= 0.2667 bD^2 =$	
	$0.2667*1000D^2=59297.7*1000$	Base slab
	(D=471 mm)	thickness
	Thickness provided = 500 mm	<u>500 mm</u>
	Let us provide an effective cover of 60mm	
	\rightarrow Effective depth = 500-60 = 440m	
	Steel a bending moment of = 58297.7 Nm	
	$As = \frac{59279.63*1000}{125*.84*440} = 1253.27 \text{ mm}^2$	
		<u>1253.27</u>
	Specing of 19mm diameter have	mm^2
	Spacing of 18mm diameter bars	
	$=\frac{254*1000}{1253.27}=202mm$	
	Provide 18mm. dia. Bars @180 mm centers	
	$(1413mm^2)$	
	Steel for a bending moment of 45097.07 Nm	
	$As = \frac{45097.07*1000}{115*.86*440} = 1036.33mm^2$	

	Sudan university of since and technology	Page. No:
		15
Ref	Calculation	Output
	Spacing of 16 mm diameter bars	
	$=\frac{201*1000}{1036.33}=202mm$	
	Provide 16 mm. dia. Bars @160 mm centers	
	$(1256mm^2)$	<u>1256mm²</u>
	→Provide also distribution steel of 10mm diameter bars at	
	80 mm centers near each face.	
	(3-3) Check for cracking stress:	
	Position of actual neutral axis	
T-21 @ SI3370	$1000\frac{n^2}{2} + (18 - 1) * 1256(n - 60)$	
	$=1000\frac{(50-n)^2}{2}$	
	+(18-1)1698(500-n-60)	
	n <u>=253 mm</u>	
	Cracking stress due to a bending moment of 59297.63 Nm	
	This bending moment produces tension away from the	
	water side.	
	→Let the maximum tensile stress in concrete be c _r	
	→Total tension	

	Sudan university of since and technology	Page. No:
		16
Ref	Calculation	Output
T-21 @	$=1000*247*ct/2+(18-1)*1693*\frac{187}{257}ct=188900ct$	
SI3370	→Equating the M.R to B.M	
	188900C _t *.82*440=59279.63*1000	
	$\underline{C_t}=1.12 \text{ N/mm}^2 \text{ (less than 1.6 N/mm}^2\text{)}$	$\frac{C_t=1.12}{N/mm^2}$
	Cracking stress due to bending moment of 45097.07Nm	17711111
	This bending moment produces tension near the water side	
	\rightarrow Let the maximum tensile stress in concrete be c_t	
	→Total tension	
	$= (1000*253*ct)/2 + (18 - 1)1.253 * \frac{198}{263}ct = 138000ct$	
T-21 @ SI3370	→Equating the M.R to the B.M	
	138900C _t *.82*440=45097.07*1000	
	$\underline{C_t} = 0.9 \text{N/mm}^2 (\text{less than } 1.6 \text{ N/mm}^2)$	$C_{\underline{t}} = 0.9 \text{N/mm}^2$

الباب الثالث النماذج الحسابية

التفصيلات الانشائية

مسقط أفقى

قطاع عرضي