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CHAPTER ONE 

INTRODUTORY BACKGROUND 

1.1 INTRODUCTION: 
           An important part of the total responsibility of the structural 

engineer is to select, from many alternatives, the best structural system for 

the given conditions. The wise choice of structural system is far more 

important, in its effect on overall economy and serviceability, than 

refinements in proportioning the individual members. Close cooperation 

with the architect in the early stages of a project is essential in developing a 

structure that not only meets functional and esthetic requirements but 

exploits to the fullest the special advantages of reinforced concrete, which 

include; versatility of form, durability, fire resistance, speed of construction, 

cost and availability of labor and material.  

          Slab is a structural system consisting of a deck supported on columns 

which is used to transfer dead and live loads to the supporting vertical 

members through bending, shearing and torsion. They are used in various 

places like buildings, bridges, and parking areas. As these places require 

large column free area with conventional flat slabs it is a major challenge.    

           Since concreting larger area means increased dead weight of the slab 

thereby resulting to simultaneous heavy structures which in-turn leads to a 

costly construction practice. Development in this field can be observed 

with the usage of waffle slabs which meets the requirement of reduction in 

dead weight. As the weight of slab decreases, slab moments get reduced 

and simultaneously material gets reduced, they also exhibit relatively less 

deformation and possess higher stiffness under heavy loads.  
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          Waffle slabs as a structural system comprise of a flat plate or topping 

slab and a system of equally spaced parallel ribs running in both directions. 

The ribs are designed in such a way that the slab does not require any shear 

reinforcement. Waffle slab are economic in medium size floors ranging 

from span length of five to ten meters as further increasing their size 

increases the slab thickness and slab weight is increased. Services can also 

be easily incorporated without any complications due to uniform soffit, as 

thin topping within the ribs can be easily cut without the risk of cutting 

main reinforcement. The various factors which influence the functionality 

of waffle slabs are rib width, rib depth, rib spacing, distance of ribs from 

supports, column size and shape, drop panels and column capital, type of 

beam and rib stiffness 

1.2 OBJECTIVES OF STUDY: 
1. Identification of the types of reinforced concrete slab. 

2. Analysis of waffle and flat slab using computer program (SAFE) and 
manual method (Direct method). 

3. Design a waffle slab and a flat slab according to BS-8110. 

4. Carry out a comparison between the analysis results. 

5. Carry out a comparison between quantities of  the waffle and flat slab. 

6. Demonstrate that waffle slab with can be used to reduce the dead load on 
slab concrete structure. 
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1.3 METHODOLOGY OF STUDY: 
1. Viewing the published literatures about reinforced concrete slabs, types 

of slabs and methods of analysis and design of slabs. 

2. Apply analysis and design operation using the British standards (BS-

8110) 

3. Using SAFE program for analysis. 

4. Comparison of results and then get recommendations. 
 

1.4 CONTENTS: 
       The study is consisting of five chapters as following: 

Chapter one: includes a general introduction about study, the importance of 

the choice of the structural system, the basic concept of waffle slab, aims 

and methodology of study. 

Chapter two: includes a general definition, classification, common types 

and structural behavior of reinforced concrete slabs. 

Chapter three: includes an explanation of the direct analysis and design 

method according to BS-8110. And also includes a brief identification of 

the basic concepts of finite element method of slab analysis.    

Chapter four: includes analysis of slabs using program and manual method, 

manual design, quantities computation, and results comparison. 

Chapter five: includes conclusion and recommendations. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 General:  
         Reinforced concrete has long been one of the most widely used 

materials in construction applications. It has numerous material advantages, 

but one of its most significant benefits is the ability to be cast into a wide 

variety of shapes. In fact, reinforced concrete is only geometrically limited 

by the complexities or cost of the construction of formwork. As such, the 

behavior of concrete structures easily constructed in the field often falls 

beyond the scope of common frame analysis programs and conventional 

design methods. This is certainly true for the analysis of reinforced 

concrete systems where slabs, shear walls, shells, tanks, deep beams, and 

coupling beams must be modeled. If the structural element contains holes 

or is subjected to concentrated or otherwise irregular loadings, the analysis 

is further complicated. 

        Structure is a system formed from the interconnection structural 

members or the shape or form that prevents buildings from being collapsed. 

A structure supports the building by using a framed arrangement known as 

Structure 

2.2 Slab definition: 
        A slab is a flat two dimensional planar structural element having 

thickness small compared to its other two dimensions. It provides a 

working flat surface or a covering shelter in buildings. It primarily transfers 

the load by bending in one or two directions.     
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        Reinforced concrete slabs behave primarily as flexural members and 

the design is similar to that of beams. 

        Reinforced concrete slabs are used in floors, roofs and walls of 

buildings and as the decks of bridges. The floor system of a structure can 

take many forms such as in situ solid slab, ribbed slab or pre-cast units. 

Slabs may be supported on monolithic concrete beam, steel beams, walls or 

directly over the columns. 

 

2.3 Classification of slabs: 
Slabs are classified based on many aspects 

1) Based of shape: Square, rectangular, circular and polygonal in shape. 

2) Based on type of support: Slab supported on walls, Slab supported on 

beams, Slab supported on columns (Flat slabs). 

3) Based on support or boundary condition: Simply supported, Cantilever 

slab, Overhanging slab, Fixed or Continues slab. 

4) Based on use: Roof slab, Floor slab, Foundation slab, Water tank slab. 

5) Basis of cross section or sectional configuration: Ribbed slab /Grid slab, 

Solid slab, filler slab, folded plate 

6) Basis of spanning directions: 

 One way slab – spanning in one direction. 

 Two way slab _ spanning in two directions. 
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2.4 Common types of slabs:  

2.4.1 Solid slab: A slab supported on beams on two opposite sides or on 

all sides of each panel, and a typical floor is shown in Fig.2.1. This system 

is a development from beam-and-girder systems by removal of the beams, 

except those on the column lines. As shown in Fig.2.2. Beam-and-girder 

system is still used with heavy timber and steel frame construction, 

especially when the column spacing becomes large.  

 

Figure 2.1 Solid slab 

 

Figure 2.2 plane view of Beam-and-Girder system 
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2.4.2. Beamless slabs: are described by the generic terms flat plates and 

flat slabs.  

Flat plate: is an extremely simple structure in concept and construction, 

consisting of a slab of uniform thickness supported directly on columns, 

as shown in Fig. 2.3. Flat plate floors have been found to be economical 

and otherwise advantageous for such uses as apartment buildings where 

the spans are moderate (up to about 9 m) and loads relatively light. 

o Advantages of Flat Plate Floors : 

 The construction depth for each floor is held to the absolute 

minimum, with resultant savings in the overall height of the 

building.  
 The smooth underside of the slab can be painted directly and left 

exposed for ceiling, or plaster can be applied to the concrete.  
 Minimum construction time and low labor costs result from the very 

simple formwork.  

o Disadvantages of Flat Plate Floors : 

 Shear stresses near the columns may be very high, requiring the use 

of special types of slab reinforcement there.  
 The transfer of moments from slab to columns may further increase 

shear stresses and requires concentration of negative flexural steel in 

the region close to the columns.  
 At the exterior columns, where such shear and moment transfer may 

cause particular difficulty, the design is much improved by extending 

the slab past the column in a short cantilever.  
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Flat slab: A beamless systems with drop panels or column capitals or 

both are termed flat slab systems. The basic form of the flat slab is 

shown in Fig. 2.4 and the most common subtypes are flat slab with 

column capitals which shown in Fig. 2.5.  

Both of drop panels or column capitals serve a double purpose:  

a) They increase the shear strength of the floor system in the critical 

region around the column,  

b) And they provide increased effective depth for the flexural steel in 

the region of high negative bending moment over the support.  

 

Figure 2.3 Flat Plate 

 
Figure 2.4 Flat Slab with drop panel and column capitals 
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Figure 2.5 Flat Slab with column capitals 

2.4.3 Ribbed slabs (with solid or hollow blocks or voids) 

          The term “ribbed slab” in this sub-clause refers to in-situ slabs 

constructed in one of the following ways: 

a) Where topping is considered to contribute to structural strength:  

1. as a series of concrete ribs cast in-situ between blocks which remain 

part of the completed structure; the tops of the ribs are connected by 

a topping of concrete of the same strength as that used in the ribs; as 

shown in Fig. 2.6. 

 

Figure 2.6 Ribbed slab with permanent blocks 
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2. as a series of concrete ribs with topping cast on forms which may be 

removed after the concrete has set; as shown in Fig 2.7. 

 

Figure 2.7 Ribbed slab without permanent blocks 

3.  with a continuous top and bottom face but containing voids of 

rectangular, oval or other shape, which termed Hollow core slab 

(shown in Fig. 2.8) 

 

Figure 2.8 Ribbed hollow core slabs 

b) Where topping is not considered to contribute to structural strength: 

as a series of concrete ribs cast in-situ between blocks which remain 

part of the completed structure; the tops of the ribs may be connected 

by a topping of concrete (not necessarily of the same strength as that 

used in the ribs).  
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          Since the strength of concrete in tension is small and is commonly 

neglected in design, elimination of much of the tension concrete in a slab 

by the use of permanent or temporary pan forms or blocks results in a little 

change in the structural characteristics of the slab, and the removal of 

tension concrete leads to: 

a) Decrease the weight of the slab. 

b) Allow the use of a large effective depth without the accompanying 

dead load. 

c) Stiffening the structure because of large depth. 

       Ribbed floors are economical for buildings, such as apartment 

houses, hotels, and hospitals, where the live loads are fairly small and 

the spans comparatively long. They are not suitable for heavy 

construction such as in warehouses, printing plants, and heavy 

manufacturing buildings.  

 

 Dimensions requirement according to “BS-8110”: 

o Spacing of ribs should not exceed 1.5 m. 

o Ribs depth, excluding any topping, should not exceed four times 

their width. 

o The minimum width of rib will be determined by considerations of 

cover, bar spacing and fire. 

o The thickness of the concrete slab or topping should not be less than: 

  30mm for slab with permanent blocks contributing to structural 

strength and where there is a clear distance between ribs not more 

than 500mm. 

  25mm when blocks jointed with a cement-sand mortar. 
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  40mm or 1/10th of the clear distance between ribs, whichever is 

greater, for all other slabs with permanent blocks. 

 50mm or 1/10th of the clear distance between ribs, whichever is 

greater, for slabs without permanent blocks. 
 

2.4.3.1 One-Way Ribbed Slab: consists of a series of small, closely 

spaced reinforced concrete T beams, framing into monolithically cast 

concrete girders, which are in turn carried by the building columns. The T 

beams, called ribs, are formed by creating void spaces in what otherwise 

would be a solid slab. Usually these voids are formed using special steel 

pans, or hollow blocks as shown in Fig 2.9. When permanent hollow 

blocks are used ribbed slab is termed Hollow Block Slab. Concrete is cast 

between the forms to create ribs, and placed to a depth over the top of the 

forms so as to create a thin monolithic slab that becomes the T beam 

flange. Fig 2.10 shows the arrangement of blocks in One-Way hollow 

block slab. 

 

Figure 2.9 One-Way ribbed slab formed using blocks 
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Figure 2.10 Arrangement of block in One-Way hollow blocks 

         The joists and the supporting girders are placed monolithically. Like 

the joists, the girders are designed as T beams. The shape of the girder 

cross section depends on the shape of the end pans that form the joists, as 

shown in Fig. 2.11. 

 

Figure 2.11 One-Way hollow block slab cross section 

2.4.3.2 Two-Way Ribbed Slab “Waffle”: is a variant of the solid slab, 

may be visualized as a set of crossing ribs, set at small spacings relative to 

the span, which support a thin top slab. Waffle slab may be designed as a 
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flat slab or a solid slab depending on the arrangement of voids. Fig. 2.12 

shows the possible arrangements of Waffle slab. 

 

Figure 2.12 Arrangements of waffle slab (a) as a flat slab (b) as a solid slab 

 The bottom voids are usually formed using dome-shaped steel pans or 

hollow blocks that are placed on a plywood platform as shown in Fig. 2.13 

and Fig. 2.14.  
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Figure 2.13 waffle slab formed using steel pans 

 

Figure 2.14 waffle slab formed using hollow blocks 

    Domes are omitted near the columns to obtain a solid slab in the region 

of negative bending moment and high shear. The lower flange of each 

dome contacts that of the adjacent dome, so that the concrete is cast 

entirely against a metal surface, resulting in an excellent finished 

appearance of the slab “A waffle-like appearance” as shown in Fig. 2.15. 
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Figure 2.15 waffle slab appearance 

2.5 Structural behavior of slabs: 

2.5.1 Behavior of one –way slab: 

      The structural action of a one-way slab may be visualized in terms of 

the deformed shape of the loaded surface. Fig. 2.16 shows a rectangular 

slab, simply supported along its two opposite long edges and free of any 

support along the two opposite short edges. If a uniformly distributed load 

is applied to the surface, the deflected shape will be as shown by the solid 

lines. Curvatures, and consequently bending moments, are the same in all 

strips ݏ spanning in the short direction between supported edges, whereas 

there is no curvature, hence no bending moment, in the long strips l  
parallel to the supported edges. The surface is approximately cylindrical. 

        For purposes of analysis and design, a unit strip of such a slab cut out 

at right angles to the supporting beams, as shown in Fig. 2.17, may be 
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considered as a rectangular beam of unit width, with a depth h equal to the 

thickness of the slab and a span ݈  equal to the distance between supported 

edges. This strip can then be analyzed by the methods that were used for 

rectangular beams, the bending moment being computed for the strip of 

unit width. The load per unit area on the slab becomes the load per unit 

length on the slab strip. Since all of the load on the slab must be transmitted 

to the two supporting beams, it follows that all of the reinforcement should 

be placed at right angles to these beams, with the exception of any bars that 

may be placed in the other direction to control shrinkage and temperature 

cracking. A one-way slab, thus, consists of a set of rectangular beams side 

by side. This simplified analysis, which assumes Poisson’s ratio to be zero, 

is slightly conservative. Actually, flexural compression in the concrete in 

the direction of ݈  will result in lateral expansion in the direction of ݈ 

unless the compressed concrete is restrained. In a one-way slab, this lateral 

expansion is resisted by adjacent slab strips, which tend to expand also. 

The result is a slight strengthening and stiffening in the span direction, but 

this effect is small and can be disregarded.  

 

Figure 2.16 Deflected shape of uniformly loaded one-way slab 
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Figure 2.17 Unit strip basis for flexural design 

2.5.2 Behavior of two-way slabs: 

2.5.2.1 Two-way edge supported slabs: 

       In many cases, however, rectangular slabs are of such proportions and 

are supported in such a way that two-way action results. When loaded, such 

slabs bend into a dished surface rather than a cylindrical one. This means 

that at any point the slab is curved in both principal directions, and since 

bending moments are proportional to curvatures, moments also exist in 

both directions. To resist these moments, the slab must be reinforced in 

both directions, by at least two layers of bars perpendicular, respectively, to 

two pairs of edges. The slab must be designed to take a proportionate share 

of the load in each direction. 

         Types of reinforced concrete construction that are characterized by 

two-way action include slabs supported by walls or beams on all sides (Fig. 

2.1), flat plates (Fig. 2.3), flat slabs (Fig. 2.5), and waffle slabs (Fig. 2.15).  
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        The simplest type of two-way slab action is that represented by Fig. 

2.1, where the slab, or slab panel, is supported along its four edges by 

relatively deep, stiff, monolithic concrete beams or by walls or steel 

girders. If the concrete edge beams are shallow or are omitted altogether as 

they are for flat plates and flat slabs, deformation of the floor system along 

the column lines significantly alters the distribution of moments in the slab 

panel itself such a slab is shown in Fig. 2.18a. 

 

 

Figure 2.18 Two-way slab on simple edge supports: (a) bending of center                 

                     strips of Slab (b) grid model of slab 

       To visualize the flexural performance, it is convenient to think of it as 

consisting of two sets of parallel strips, in each of the two directions, 

intersecting each other. Evidently, part of the load is carried by one set and 

transmitted to one pair of edge supports, and the remainder by the other. 

        Fig. 2.18a shows the two center strips of a rectangular plate with short 

span ݈ and long span ݈ if the uniform load is q per square foot of slab, 
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each of the two strips acts approximately as a simple beam, uniformly 

loaded by its share of q. Because these imaginary strips actually are part of 

the same monolithic slab, their deflections at the intersection point must be 

the same. Equating the center deflections of the short and long strips gives  

݈ସݍ5

ܫܧ384
=

݈ସݍ5

ܫܧ384
                                           (2.1) 

    Where ݍ  is the share of the load q carried in the short direction and ݍ 

is the share of the load q carried in the long direction. Consequently, 

ݍ
ݍ

=
݈ସ

݈ସ
                                              (2.2) 

        One sees that the larger share of the load is carried in the short 

direction, the ratio of the two portions of the total load being inversely 

proportional to the fourth power of the ratio of the spans.  

        This result is approximate because the actual behavior of a slab is 

more complex than that of the two intersecting strips. An understanding of 

the behavior of the slab itself can be gained from Fig. 2.18b, which shows a 

slab model consisting of two sets of three strips each. It is seen that the two 

central strips ݏଵ  and ݈ଵ  bend in a manner similar to that shown in Fig. 

2.18a. The outer strips ݏଶ  and ݈ଶ  however, are not only bent but also 

twisted. Consider, for instance, one of the intersections of ݏଶ with ݈ଶ. It is 

seen that at the intersection the exterior edge of strip ݈ଶ is at a higher 

elevation than the interior edge, while at the nearby end of strip ݈ଶ both 

edges are at the same elevation; the strip is twisted. These twisting results 
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in torsional stresses and torsional moments that are seen to be most 

pronounced near the corners. Consequently, the total load on the slab is 

carried not only by the bending moments in two directions but also by the 

twisting moments. For this reason, bending moments in elastic slabs are 

smaller than would be computed for sets of unconnected strips loaded by 

 :. For instance, for a simply supported square slabݍ  andݍ

ݍ = ݍ = ݍ
2ൗ . 

If only bending were present, the maximum moment in each strip would 

be: 

ଶ݈(2/ݍ)

8
=  ଶ                                                      (2.3)݈ݍ0.0652

The exact theory of bending of elastic plates shows that actually the 

maximum moment in such a square slab is only 0.0482݈ݍ, so that in this 

case the twisting moments relieve the bending moments by about 25 

percent.  

       The largest moment occurs where the curvature is sharpest. Fig. 2.18b 

shows this to be the case at midspan of the short strip ݏଵ. Suppose the load 

is increased until this location is overstressed, so that the steel at the middle 

of strip s is yielding. If the strip were an isolated beam, it would now fail. 

Considering the slab as a whole, however, one sees that no immediate 

failure will occur. The neighboring strips (those parallel as well as those 

perpendicular to ݏଵ, being actually monolithic with it, will take over any 
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additional load that strip ݏଵ can no longer carry until they, in turn, start 

yielding. This inelastic redistribution will continue until in a rather large 

area in the central portion of the slab all the steel in both directions is 

yielding. Only then will the entire slab fail. From this reasoning, which is 

confirmed by tests, it follows that slabs need not be designed for the 

absolute maximum moment in each of the two directions (such as 

 2in the example given in the previous paragraph), but only for a݈ݍ0.048

smaller average moment in each of the two directions in the central portion 

of the slab. For instance, one of the several analytical methods in general 

use permits a square slab to be designed for a moment of 0.0362݈ݍ. By 

comparison with the actual elastic maximum moment 0.0482݈ݍ, it is seen 

that, owing to inelastic redistribution, a moment reduction of 25 percent is 

provided.  

        The largest moment in the slab occurs at midspan of the short strip ݏଵ 

of Fig. 2.18b. It is evident that the curvature, and hence the moment, in the 

short strip ݏଶ  is less than at the corresponding location of strip ݏଵ . 

Consequently, a variation of short-span moment occurs in the long 

direction of the span. This variation is shown qualitatively in Fig. 2.19. The 

short-span moment diagram in Fig. 2.19a is valid only along the center 

strip at 1-1. Elsewhere, the maximum-moment value is less, as shown. 

Other moment ordinates are reduced proportionately. Similarly, the long-

span moment diagram in Fig. 2.19 applies only at the longitudinal 

centerline of the slab; elsewhere, ordinates are reduced according to the 

variation shown. These variations in maximum moment across the width 

and length of a rectangular slab are accounted for in an approximate way in 
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most practical design methods by designing for a reduced moment in the 

outer quarters of the slab span in each direction. 

     It should be noted that only slabs with side ratios less than about 2 need 

be treated as two-way slabs. From Eq. (b) above, it is seen that for a slab of 

this proportion, the share of the load carried in the long direction is only on 

the order of one-sixteenth of that in the short direction. Such a slab acts 

almost as if it were spanning in the short direction only. Consequently, 

rectangular slab panels with an aspect ratio of 2 or more may be reinforced 

for one-way action, with the main steel perpendicular to the long edges.  

 

Figure 2.19 moments and moment variation in a uniformly loaded slab 

        with simple  supports on four sides 

     Consistent with the assumptions of the analysis of two-way edge-

supported slabs, the main flexural reinforcement is placed in an orthogonal 

pattern, with reinforcing bars parallel and perpendicular to the supported 

edges. As the positive steel is placed in two layers, the effective depth d for 

the upper layer is smaller than that for the lower layer by one bar diameter. 
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Because the moments in the long direction are the smaller ones, it is 

economical to place the steel in that direction on top of the bars in the short 

direction. The stacking problem does not exist for negative reinforcement 

perpendicular to the supporting edge beams except at the corners, where 

moments are small.  

          Either straight bars, cut off where they are no longer required, or bent 

bars may be used for two-way slabs, but economy of bar fabrication and 

placement will generally favor all straight bars. The precise locations of 

inflection points (or lines of inflection) are not easily determined, because 

they depend upon the side ratio, the ratio of live to dead load, and 

continuity conditions at the edges.  

2.5.2.2 Two-way column-supported slabs: 

         When two-way slabs are supported by relatively shallow, flexible 

beams, or if column-line beams are omitted altogether, as for flat plates, 

flat slabs, or waffle system, then a number of new considerations are 

introduced. Fig. 2.20a shows a portion of a floor system in which a 

rectangular slab panel is supported by relatively shallow beams on four 

sides. The beams, in turn, are carried by columns at the intersection of their 

centerlines. If a surface load q is applied, that load is shared between 

imaginary slab strips  ݈ܽ  in the short direction and  ݈ in the long direction. 

The portion of the load that is carried by the long strips ݈ is delivered to 

the beams ܤଵ  spanning in the short direction of the panel. The portion 

carried by the beams ܤଵ plus that carried directly in the short direction by 

the slab strips  ݈ܽ sums up to 100 percent of the load applied to the panel. 
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Similarly, the short-direction slab strips  ݈ܽ deliver a part of the load to 

long-direction beams 2ܤ. That load, plus the load carried directly in the 

long direction by the slab, includes 100 percent of the applied load. It is 

clearly a requirement of statics that, for column-supported construction, 

100 percent of the applied load must be carried in each direction, jointly by 

the slab and its supporting beams.  

        A similar situation is obtained in the flat plate floor shown in Fig. 2.3. 

In this case beams are omitted. However, broad strips of the slab centered 

on the column lines in each direction serve the same function as the beams 

of Fig. 2.19a; for this case, also, the full load must be carried in each 

direction. The presence of drop panels or column capitals (Fig. 2.4) in the 

double-hatched zone near the columns does not modify this requirement of 

statics.  

       Fig. 2.20a shows a flat plate floor supported by columns at A, B, C, 

and D. Fig. 2.20b shows the moment diagram for the direction of span  ݈1.  

In this direction, the slab may be considered as a broad, flat beam of width 

 ݈2 . Accordingly, the load per meter of span is  2݈ݍ . In any span of a 

continuous beam, the sum of the midspan positive moment and the average 

of the negative moments at adjacent supports is equal to the midspan 

positive moment of a corresponding simply supported beam. In terms of 

the slab, this requirement of statics may be written: 

1
2

ܯ) + (ௗܯ + ܯ =
1
8
 ଶ݈ଵଶ                                               (2.4)݈ݍ

A similar requirement exists in the perpendicular direction, leading to the 

relation: 
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1
2

ܯ) + (ௗܯ + ܯ =
1
8
 ଵ݈ଶଶ                                                (2.5)݈ݍ

 

Figure 2.20 column supported two-way slabs (a) two-way slab with beam 

 (b) two-way slab without beams 

       These results disclose nothing about the relative magnitudes of the 

support moments and span moments. The proportion of the total static 

moment that exists at each critical section can be found from an elastic 

analysis that considers the relative span lengths in adjacent panels, the 

loading pattern, and the relative stiffness of the supporting beams, if any, 

and that of the columns.     

Alternatively, empirical methods that have been found to be reliable under 

restricted conditions may be adopted. 
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    Figure 2.21 Moment variation in column supported two-way slab;  

   (a) Critical moment section (b) moment variation along a span   

 (c) moment variation across the width of critical section 

       The moments across the width of critical sections such as AB or EF are 

not constant but vary as shown qualitatively in Fig. 2.21c. The exact 

variation depends on the presence or absence of beams on the column lines, 

the existence of drop panels and column capitals, as well as on the intensity 

of the load. For design purposes, it is convenient to divide each panel as 

shown in Fig. 2.21c into column strips, having a width of one-fourth the 

panel width, on each side of the column centerlines, and middle strips in 

the one-half panel width between two column strips. Moments may be 
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considered constant within the bounds of a middle strip or column strip, as 

shown, unless beams are present on the column lines. In the latter case, 

while the beam must have the same curvature as the adjacent slab strip, the 

beam moment will be larger in proportion to its greater stiffness, producing 

a discontinuity in the moment-variation curve at the lateral face of the 

beam. Since the total moment must be the same as before, according to 

statics, the slab moments must be correspondingly less.  

                While permitting design “by any procedure satisfying the 

conditions of equilibrium and geometrical compatibility,” specific 

reference is made to two alternative approaches: a semi empirical direct 

design method and an approximate elastic analysis known as the equivalent 

frame method.  

        In either case, a typical panel is divided, for purposes of design, into 

column strips and middle strips. A column strip is defined as a strip of slab 

having a width on each side of the column centerline equal to one-fourth 

the smaller of the panel dimensions l1 and l2. Such a strip includes 

column-line beams, if present. A middle strip is a design strip bounded by 

two column strips. In all cases, l1 is defined as the span in the direction of 

the moment analysis and l2 as the span in the lateral direction measured 

center to center of the support. In the case of monolithic construction, 

beams are defined to include that part of the slab on each side of the beam 

extending a distance equal to the projection of the beam above or below the 

slab h (whichever is greater) but not greater than 4 times the slab thickness 

(see Fig. 2.18). 
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Figure 2.22 Portion of slab to be included with beam (a) symmetric slab 

 (b) single side slab 
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CHAPTER THREE 

METHODS OF ANALYSIS 

3.1 Introduction: 
          The structural engineering community responded to this challenge 

with numerous approximate techniques that attempt to simplify the design 

of these reinforced concrete components. 

          For flat plates, these methods include the direct design, equivalent 

frame, yield line, and strip design techniques, all of which approximate the 

results of classical plate theory. These methods have gained wide 

acceptance among engineers because of their simplicity. 

However, these approximate techniques have significant limitations. Direct 

design and equivalent frame methods are both limited to structures with 

very regular geometry.  
 

3.2 The direct Method: 
       BS 8110 gives two principal methods for designing flat slabs which are 

supported on columns positioned at the intersection of rectangular grid 

lines for slabs where the aspect ratio is not greater than 2. 

       The first method is based on simple moment coefficients at critical 

sections. This can be used where the lateral stability is not dependent on the 

slab-column connections and is subject to the following provisions: 

(a) the single load case is considered on all spans; and 

(b) there are at least three rows of panels of approximately equal 

spans in the direction being considered. 
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      The second approach is the equivalent frame method. which as the 

name suggests, involves subdividing the structure into sub frames and the 

use of moment distribution or similar analysis techniques to obtain the 

forces and moments at critical sections. 

         Other methods for designing flat slabs are again also acceptable, such 

as on yield-line analysis, Hillerborg's 'advanced' strip method and finite 

element analysis. 
 

The simplified method of design is given by the following steps: 

3.2.1 Division of flat slab structures into frames: 

     The structures may be divided longitudinally and transversely into 

frames consisting of columns and strips of slab. The width of slab used to 

define the effective stiffness of the slab will depend upon the aspect ratio of 

the panels and type of loading. In the case of vertical loading, the stiffness 

of rectangular panels may be calculated taking into account the full width 

of the panel. For horizontal loading, it will be more appropriate to take half 

this value. 

      The moments, loads and shear forces to be used in the design of 

individual columns and beams of a frame supporting vertical loads only 

may be derived from an elastic analysis of a series of sub-frames. Each 

sub-frame may be taken to consist of the beams at one level together with 

the columns above and below. The ends of the columns remote from the 

beams may generally be assumed to be fixed unless the assumption of a 

pinned end is clearly more reasonable (for example, where a foundation 

detail is considered unable to develop moment restraint). 
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        The second moment of area of any section of slab or column used in 

calculating the relative stiffness of members may be assumed to be that of 

the cross-section of the concrete alone. 
 

3.2.2 Load arrangement 

      While, in principle, a flat slab should be analyzed to obtain at each 

section the moments and shears resulting from the most unfavorable 

arrangement of the design loads, it will normally be satisfactory to obtain 

the moments and forces within a system of flat slab panels from analysis of 

the structure under the single load case of maximum design load on all 

spans or panels simultaneously, provided the following conditions are met: 

a) In a one-way spanning slab the area of each bay exceeds 30 m2. 

    In this context, a bay means a strip across the full width of a structure     

    bounded on the other two sides by lines of support (see Figure 3.1). 

b) The ratio of the characteristic imposed load to the characteristic dead    

    load does not exceed 1.25. 

c) The characteristic imposed load does not exceed 5 kN/m2 excluding   

    partitions. 

      Where analysis is carried out for the single load case of all spans 

loaded, the resulting support moments except those at the supports of 

cantilevers should be reduced by 20 %, with a consequential increase in the 

span moments. 
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Figure 3.1 Definition of panels and bays 

 

       If the conditions of the single load case are not met, it is not 

appropriate to analyze for the single load case of maximum design load on 

all spans, and it will normally be sufficient to consider the following 

arrangements of vertical load: 

a) All spans loaded with the maximum design ultimate load  

(1.4Gk + 1.6Qk); 

b) Alternate spans loaded with the maximum design ultimate load 

(1.4Gk + 1.6Qk) and all other spans loaded with the minimum 

design ultimate load (1.0Gk). 
 

3.2.3 Moments determination: 

For flat-slab structures whose lateral stability is not dependent on slab-

column connections, Table 3.1 may be used subject to the following 

provisions: 

a) design is based on the single load case of all spans loaded with the 

maximum design ultimate load 
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b) there are at least three rows of panels of approximately equal span in 

the direction being considered; 

c) moments at supports taken from Table 3.1 may be reduced by 

0.15Fhc; and 

 Allowance has been made to the coefficients of Table 3.1 for 20 % 

redistribution of moments. 
 

Table 3.1 Ultimate bending moment and shear forces  

 

End support/slab connection 

At first 
interior 
support 

Middle 
interior 
spans 

Interior 
supports 

Simple Continuous 

At outer 
support 

Near 
middle 
of end 
span 

At 
outer 

support 

Near 
middle 
of end 
span 

Moment 
Shear 

0 
0.4F 

0.086Fl 
---- 

-0.04Fl 
0.4F 

0.075Fl 
---- 

-0.086Fl 
0.6F 

0.063F
l 

---- 

-0.063Fl 
0.5F 

NOTE  F   is the total design ultimate load (1.4Gk + 1.6Qk); 
l    is the effective span. 

 

3.2.4 Division of panels: 

     Flat slab panels should be assumed to be divided into column strips and 
middle strips (see Fig. 3.2). 

    In the assessment of the widths of the column and middle strips, drops 
should be ignored if their smaller dimension is less than one-third of the 
smaller dimension of the panel. 
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Figure 3.2 Division of panels in flat slabs 
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3.2.5 Division of moments between column and middle strips: 

         The design moments obtained from analysis of the continuous frames 

or from Table 3.1 should be divided between the column and middle strips 

in the proportions given in Table 3.2. 
 

Table 3.2 Distribution of design moments in panels of flat slabs 

Design 

moment 

Apportionment between column and middle strip  

Column strip 

% 

Middle strip 

% 

Negative 

Positive 

75 

55 

25 

45 

 

            For the case where the width of the column strip is taken as equal to 

that of the drop, and the middle strip is thereby increased in width, the 

design moments to be resisted by the middle strip should be increased in 

proportion to its increased width. The design moments to be resisted by the 

column strip may be decreased by an amount such that the total positive 

and the total negative design moments resisted by the column strip and 

middle strip together are unchanged. 
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3.3 Finite Element Method: 

       Slabs are most widely used structural elements of modern structural 

complexes and the reinforced concrete slab is the most useful discovery for 

supporting lateral loads in buildings. Slabs may be viewed as moderately 

thick plates that transmit load to the supporting walls and beams and 

sometimes directly to the columns by flexure, shear and torsion. It is 

because of this complex behavior that is difficult to decide whether the slab 

is a structural element or structural system in itself. Slabs are viewed in this 

paper as a structural element.  

         The greatest volume of concrete that goes into a structure is in the 

form of slabs, floors and footings. Since slabs have a relatively large 

surface area compared with their volume, they are affected by temperature 

and shrinkage slabs may be visualized as intersecting, closely spaced, grid-

beams and hence they are seen to be highly indeterminate. This high degree 

of indeterminacy is directly helpful to designer, since multiple load-flow 

paths are available and approximations in analysis and design are 

compensated by heavy cracking and large deflections, without significantly 

affecting the load carrying capacity. Slabs, being highly indeterminate, are 

difficult to analyze by elastic theories. Since slabs are sensitivity support 

restraints fixate, rigorous elastic solutions are not available for many 

practically important boundary conditions.  

          More recently, finite difference and finite element methods have 

been introduced and this is extremely useful. Methods have also been 

innovated to find the collapse loads of various types of slabs through the 

yield line theory and strip methods. In addition to supporting lateral loads 
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(perpendicular to the horizontal plane), slabs act as deep horizontal girders 

to resist wind and earthquake forces that act on a multi-storied frame. Their 

action as girder diaphragms of great stiffness is important in restricting the 

lateral deformations of a multi-storied frame. However, it must be 

remembered that the very large volume and hence the mass of these slabs 

are sources of enormous lateral forces due to earthquake induced 

accelerations. 
 
 

3.3.1 Principle conception:  

       The concept of finite element is that a body or continuum is divided 

into smaller elements of finite dimensions called finite elements 

interconnected at a number of joints called ‘Nodes’ or ‘Nodal Points’. The 

original body or structure is then idealized as an assemblage of these 

elements connected at nodal points.  

         The displacements of these nodal points will be the basic unknown 

parameters of the problem. In most popular approach, a simple 

displacement function is assumed in terms of the displacements at the 

prescribed nodal points of elements. Then the principle of virtual 

displacements is used to derive a set of linear simultaneous equations 

called stiffness equations.  
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3.3.2 Formulation of the problem: 
 

 Finite Element Procedure: 

        The finite element method can be considered as a generalized 

displacement method for two and three dimensional continuum problems. 

It is necessary to discrete the continuum into a system with a finite number 

of unknowns so that the problems can be solved numerically. The finite 

element procedure can be divided into the following steps: 

1. Idealization of the continuous surface as an assembling of discrete 

elements. 

2. Selection of displacement models. 

3. Derivation of the element stiffness matrix. 

4. Assembly of element stiffness matrix into an overall structure stiffness 

matrix. 

5. Solution of the system of linear equations relating nodal points loads and 

unknown nodal displacements. 

6. Computation of internal stress resultants by use of the nodal point 

displacements already found. 

 Displacement Function: 

         In order to assure convergence to a valid result by mesh 

reinforcement, the following three sacred rules have emerged for the 

assumed displacement functions: 

1. The displacement must be continuous within the element and the 

displacements must be compatible between adjacent elements. For plane 

stress and plane strain elements, continuity of the displacement functions 
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along is sufficient, whereas for bending elements, continuity of both the 

displacement and slope is needed. 

2. The displacement function must include the states of constant strain of 

the element. This seems to be the most sacred of all the rules, since 

eventually, by mesh reduction, one is evitable going to reach small 

region where the strains are constant. 

3. The displacement function must allow the element to undergo rigid body 

motion without any internal strain. For plane stress and plate bending 

elements, it is easy to establish displacement functions satisfying all 

these three requirements. 

          

       The displacement functions used in deriving the 20 × 20  stiffness 

matrix are: 

(ݕ,ݔ) ݑ  = ݕݔ1ܽ  + ݔ2ܽ + ݕ3ܽ + ܽ4                                           (3.1) 

(ݕ,ݔ) ݒ  = ݕݔ5ܽ  + ݔ6ܽ + ݕ7ܽ + ܽ8                                           (3.2) 

,ݔ) ݓ (ݕ = ݕ3ݔ9ܽ  + 3ݔ10ܽ + ݕ2ݔ11ܽ + 2ݔ12ܽ + 3ݕݔ13ܽ +  2ݕݔ14ܽ

+ ݕݔ15ܽ + ݔ16ܽ + 3ݕ17ܽ + 2ݕ18ܽ + ݕ19ܽ + ܽ20      (3.3) 

Alternatively, in matrix form we can write this symbolically as follows: 

{ū} =  [ܲ]{ܽ݅}                                                            (3.4) 

Where {ū} is vector of slab displacement and [P] is matrix of displacement 

functions. Here the rectangular co-ordinate system is considered. The 

degree of freedom considered at each node (corner) of the element is 

,ݑ  .ݕݓ and ݔݓ,ݓ,ݒ
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 Element Stiffness Matrix: 

To simplify the derivation of the element stiffness matrix, a more 

convenient form of nodal displacement parameters with five degrees of 

freedom per node is listed as follows: 

்[݅ݑ]  = ,1ݑ  ,ݕ1ݓ,ݔ1ݓ,1ݓ,1ݒ  ,ݔ3ݓ,3ݓ,3ݒ,3ݑ ݕ2ݓ,ݔ2ݓ,2ݓ,2ݒ,2ݑ

,ݕ3ݓ  ,4ݑ  (3.5)                                                    ݔ4ݓ,ݔ4ݓ,4ݓ,4ݒ

Where, ݔ݅ݓ  = = , ݅(ݔߜ/ݓߜ) ݅(ݕߜ/ݓߜ)  ; ݅ = 4 ݐ 1  stands for the node 

number of the node of an element. 

         Substituting the values of co-ordinates of four nodes in the three 

displacement function and two derivatives of w stated above, we get the 20 

nodal displacements of an element as follows:  

{݅ݑ} =  (3.6)                                                     {݅ܽ} [ܪ] 

Where, {ui} is vector of nodal displacement co-ordinates and [H] is called 

transformation matrix. 

       The strain displacement relationships used in the analysis of this of 

slab element may be expressed as:  

{݁} =  (3.7)                                                   {ū} [ߜ] 

Therefore substituting Eq.(3.6) into Eq.(3.7) we get the strain expressed in 

terms of displacement parameters as follows: 

{݁} = {ū} [ߜ]  = {݅ܽ} [ܲ] [ߜ]  =  (3.8)                              {݅ܽ} [ܤ] 

Where [B] is called strain matrix is a function of x and y co-ordinates.  

The stress matrix can be expressed as follows: 
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{ܰܣ} =  (3.9)                                              {݁} [ܦ] 

The strain energy developed in the element is expressed by 

ݐܷ  =  ½ × ∫ ∫ ்[ܰܣ]  (3.10)                        ݕ݀ ݔ݀{݁} 

Substituting the expression for [ܰܣ] and {݁} in the ݍܧ. 6 we get the strain 

energy 

= ݐܷ  ½ × {ܽ݅}்∫ ∫ ݅ܽ} [ݕ݀ݔ݀[ܤ][ܦ]்[ܤ] =  ½ {ܽ݅}்[ܷ]{ܽ݅}    (3.11) 

Where [ܷ]  =  ∫ ∫  ݕ݀ ݔ݀ [ܤ] [ܦ] ்[ܤ] 

Now substituting {ܽ݅}  from ݍܧ. 3.8  into ݍܧ. 3.11  and finally making 

derivatives of strain energy ܷݐ with respect to the nodal displacement 

parameters, we get the required element stiffness matrix [S] and are given 

by 

[ܵ]  = ்[ ଵିܪ]  ்[ܪ][ܷ]                                                (3.12) 

 Overall Stiffness Matrix: 

         The element stiffness matrix relates quantities defined on the surface. 

Therefore, co-ordinate transformations are completely avoided and the 

overall stiffness matrix SFF of the slab structure is assembled by direct 

summation of the stiffness contributions from the individual elements. The 

degree of freedom for the overall stiffness matrix is obtained by 

substituting joint restraint form, the total number of displacement co-

ordinates.  

          The overall stiffness matrix is first partitioned so that the terms 

pertaining to the degrees of freedom are separated from those for the joint 
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restraints. Then the matrix is rearranged by interchanging rows and 

columns in such a manner that stiffness corresponding to the degrees of 

freedom is listed first and those corresponding to joint restraints are listed 

second. Such a matrix is always symmetric. To computer time and storage, 

only the upper band of the stiffness matrix ܵிி  (for free joint 

displacements) is constructed. 

 Load Matrix: 

       The vertical gravity load (mainly self-weight) is the major load for roof 

slab. The load intensity ′ܳܮ′ is uniform over the area of a slab of uniform 

thickness. This load intensity ′ܳܮ′ can be resolved into three components at 

a point in the three directions ݖ ݀݊ܽ ݕ,ݔ as follows in a matrix. 

       The above-distributed load is replaced by an equivalent nodal load 

matrix {AQ} for each element. This load matrix {ܳܣ}  is obtained by 

equating virtual work done by the uniform load {ܳ} and the nodal loads 

 :According to the standard formulae from texts .{ܳܣ}

{ܳܣ} =  ∫ ∫ /ଶݕ݀ ݔ݀ [ܳ] ்[ܲ] ்[ଵିܪ]
ି/ଶ

/ଶ
ି/ଶ                     (3.13) 

Such a consistent load matrix will truly represent the distributed gravity 

load ‘ܳܮ’. But the laborious process of ݍܧ. 9  can be avoided by using 

approximate overall nodal matrix {ܳܣ}. 

This can be worked out as follows: 

       The total vertical load on an element is assumed to be equally shared 

by its four nodes. The z components of this vertical load are the element 

nodal loads corresponding to displacements ݓ . Contributions from all 
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elements connected at a node together form the final values of nodal loads 

for that node. Hence in the overall load matrix, out of five load values for 

each node, only the third will be non-zero. 
 

 Expression for Stresses / Moments: 

From Equation 2 the expression for {ܽ݅} is found as follows: 

{ܽ݅}  =  (3.14)                                             {݅ݑ} ଵି[ܪ] 

Using these values of {ܽ݅} and combining Eq.3.8 with Eq.3.14, we get the 

matrix of resultant stresses / moments at any point (ݕ,ݔ) in terms of nodal 

displacements as follows: 

{ܰܣ} = {݁}[ܦ]  = {݅ܽ}[ܤ][ܦ]  =  (3.15)         {݅ݑ} ଵି[ܪ][ܤ][ܦ] 
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CHAPTER FOUR 

ANALYSIS, DESIGN, QUANTITIES  

AND RESULTS COMPARISON 

4.1. ANALYSIS: 

4.1.1. Manual analysis: 

 Flat slab manual analysis: 

   Table 4.1: Flat slab information 

Standards BS 8110 : 1997 

Structure type Flat slab 

Structure using Residential building floor 

Material 
Concrete 

fcu = 30 N/mm² 

γc = 24 N/m³ 

Steel fy = 460 N/mm² 

Loading D.L 

self weight=5.5 kN/m² 

partitions=3.6 kN/m² 

finishing=1.5 kN/m² 

Total=10.6 kN/m² 

 
L.L live load=3 kN/m² 

Concrete cover 20 mm 

Bracing system Shear walls 

Column 
Dim. 

C1 (0.4×0.4) & 3m height 

C2 (0.4×0.6) & 3m height 

Capital (1.5×1.5) & 0.6m depth 
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Figure 4.1: Flat slab-design strip under consideration  

 

 Slab thickness determination (considering the deflection): 

 ቀ ݈݀ቁ݈ܽܿܽݑݐ
≤ ቀ ݈݀ቁ݈݅݉݅ݐ

×  (݈݁݊ܽ ݎ݀ ݁ݒ݅ݐ݂݂ܿ݁݁ ݐݑℎݐ݅ݓ ܾ݈ܽݏ ݐ݈݂ܽ ݎ݂)     0.9

 ቀ ݈݀ቁ݈ܽܿܽݑݐ
≤ ቀ ݈݀ቁܾܽܿ݅ݏ

×ݐܨܯ× 0.9 

 

ௗ

≤ 26 × 1.3 × 0.9 

 ݀ = 
ଶ×ଵ.ଷ×.ଽ

= 197 ݉݉ 

 ℎ = ݀ + ܿ + Ø
ଶ

= 197 + 20 + ଵଶ
ଶ

= 223 ݉݉  

⇨ ℎ] ݁݇ܽݐ   = 230 ݉݉] 
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 Load arrangement:  

 The conditions of Clause 3.5.2.3: 

 

 The ratio ௧௦௧ ௦ௗ ௗ
௧௦௧ ௗௗ ௗ

= ଷ
ଵ.

= 0.28 < 1.25 

 

 ܿℎ݈ܽ݀ܽ ݀݁ݏ݉݅ ܿ݅ݐݏ݅ݎܽݐܿܽݎ = 3 ݇ܰ/݉2 < 5 ݇ܰ/݉2 

are satisfied. So that; 

1. It will be satisfactory to analyze for the single load case of maximum 

design load on all panels simultaneously. 

2. The moments and shears will be calculated using the code coefficients 

given in table 3.12  

→  [ ݊ = 1.4(10.6) + 1.6(3) = 19.64 ݇ܰ/݉2 ]  

     Since the slab span are symmetric in both directions, so we will 

consider an internal line of columns in one direction (E-W). 

     The lateral load is resisted by shear walls and thereby the 

equivalent frame method will be used. 

 

 Total design ultimate load & span length considered (F&l ):  
 

 → ܨ = ݊ × (ܽ݁ݎܽ ݈݁݊ܽ) = 19.64 × (6 × 6) = 707 ݇ܰ 

 → ݈ = 6 ݉ 
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Figure 4.2: Ultimate load and span length 

 

 Design moment & shear: 
 

 Table 4.2: Flat slab-design strip moments and shear forces 

Position 
At support 

(A&D) 

At mid span 

 (Panel 1) 

At support 

(B&C) 

At mid span 

Panel 2 

Moment 
"-0.04Fl" "0.075Fl" "-0.086Fl" "0.063Fl" 

169.68 318.15 364.81 267.25 

Shear 
"0.46F" ---- "0.6F" ---- 

325.22 
 

424.2 
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  Figure 4.3: Ultimate moments in the design strip 

 Division of panels (into column & middle strips): 

 

Figure 4.4: Division of panels into column & middle strips 
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 Distribution of moment on column strip: 

 

 

Figure 4.5: Column strip of flat slab 

 

  Table 4.3: Flat slab-column strip moments 

Position 
At 

support 
(A&D) 

At mid 
span 

(Panel 1) 

At 
support 
(B&C) 

At mid 
span 

(Panel 2) 
Moments 

(kN.m) 
127.3 175 273.6 147 

Strip width 3 3 3 3 

Moments 
(kN.m)/m 

42.4 58.3 91.2 49.0 
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 Distribution of moment on middle strip: 

 

 

          Figure 4.6: Middle strip of the flat slab 

 

   Table 4.4: Flat slab-middle strip moments 

Position 
At 

support 
(A&D) 

At mid 

span 
(Panel 1) 

At 

support 
(B&C) 

At mid 

span 

(Panel 2) 

Moment 
(kN.m) 

42.4 143.2 91.2 120.3 

Strip width 3 3 3 3 

Moment 
(kN.m)/m 

14.1 47.7 30.4 40.1 
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 Waffle slab: 

      Table 4.5: Waffle slab information 

Standards BS 8110 : 1997 

Structure type Waffle slab 

Structure using Residential building floor 

Material 
Concrete 

fcu=30 N/mm² 

γc=24 N/m³ 

Steel fy=460 N/mm² 

Loading 
D.L 

self weight=4.5 kN/m² 

partitions=3.6 kN/m² 

blocks=0.6 kN/m² 

finishing=1.5 kN/m² 

Total=10.2 kN/m² 

L.L live load=3 kN/m² 

Concrete cover 20 mm 

Bracing system Shear walls 

Solid part (2×2) m (over columns) 

Columns 
Dim (0.4×0.4) & 3m height 

Capital (1.2×1.2) & 0.6m depth 
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Figure 4.7: Waffle slab-design strip under consideration 

 

 Slab thickness determination (considering the deflection): 

 ቀ ݈݀ቁ݈ܽܿܽݑݐ
≤ ቀ ݈݀ቁ݈݅݉݅ݐ

          

 ቀ ݈݀ቁ݈ܽܿܽݑݐ
≤ ቀ ݈݀ቁܾܽܿ݅ݏ

 ݐܨܯ×

 

ௗ

≤ 20.8 × 1.3 

 ݀ = 
ଶ.଼ ×ଵ.ଷ

= 222 ݉݉  

 ℎ = ݀ + ܿ + ∅ + Ø
ଶ

= 222 + 20 + 6 + ଵଶ
ଶ

= 254 ݉݉  

 ⇨ ℎ] ݁݇ܽݐ   = 260 ݉݉] 

 



 54 

 Total design ultimate load & span length considered (F&l):   

→ ݊ = 1.4(10.2) + 1.6(3) = 19.1 ݇ܰ/݉2   

→ ܨ = ݊ × (ܽ݁ݎܽ ݈݁݊ܽ) = 19.1 × (6 × 6) = 686 ݇ܰ 

→ ݈ = 6 ݉ 

 

Figure 4.8: Ultimate load and span length 
 

 Design moment & shear: 

   Table 4.6: Waffle slab-design strip moments and shear forces 

Position 
At support 

(A&D) 

At mid span 

(Panel 1) 

At support 

(B&C) 

At mid span 

Panel 2 

Moment 
"-0.04Fl" "0.075Fl" "-0.086Fl" "0.063Fl" 

164.6 308.7 354.0 259.3 

Shear 
"0.46F" ---- "0.6F" ---- 

315.56 
 

411.6 
 

 



 55 

 

Figure 4.9: Ultimate moments in the design strip 

 Division of panels (into column & middle strips): 

 

   Figure 4.10: Division of panels into column & middle strips 

    The solid parts over the columns (which have dimensions more than 

one-third of span) will act as drop panels and there by: 

 The column strip width will be equals to the drop panel width. 
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 The coefficients of moments distribution between column & middle 

strip will be modified by multiplying in: 

o ቀଶ
ଷ
ቁ = 0.67   →  ݏݐ݊݁݉݉ ݅ݎݐݏ ݊݉ݑ݈ܿ ݎ݂

o ቀସ
ଷ
ቁ = 1.33   →  ݏݐ݊݁݉݉ ݅ݎݐݏ ݈݁݀݀݅݉ ݎ݂

 Distribution of moment on column strip: 

 

Figure 4.11: Column strip of waffle slab 

Table 4.7: Waffle slab-column strip moments 

Position 
At 

support 
(A&D) 

At mid 

span 
 (Panel 1) 

At 

support 
(B&C) 

At mid 

span 
(Panel 2) 

Moments 
(kN.m) 

82.7 113.8 177.9 95.6 

Strip width 2 2 2 2 

Number of 

ribs/strip 
4 4 4 4 

Moments 
(kN.m)/rib 

20.7 28.4 44.5 23.9 
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 Distribution of moment on middle strip: 

 

 

Figure 4.12: Middle strip of waffle slab 

 

   Table 4.8: Waffle slab-middle strip moments 

Position 
At 

support 
(A&D) 

At mid 

span 
(Panel 1) 

At 

support 
(B&C) 

At mid 

span 
(Panel 2) 

Moments (kN.m) 54.7 184.8 117.7 155.2 

Strip width 4 4 4 4 

Number of 

ribs/strip 
8 8 8 8 

Moments 
(kN.m)/rib 

6.8 23.1 14.7 19.4 
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4.1.2. SAFE PROGRAME ANALYSIS: 

 FLAT SLAB SAFE PROGRAME ANALYSIS: 

 Model geometry: 

 

Figure 4.13: Model of flat slab 

 Displacements: 

Table 4.9: Maximum displacements in flat slab 

Panel Output Case Case type Uz (m) 

    1 Service Combination -0.00333 

2 Service Combination -0.00209 

3 Service Combination -0.00333 

4 Service Combination -0.00209 

5 Service Combination -0.00099 

6 Service Combination -0.00209 

7 Service Combination -0.00333 

8 Service Combination -0.00209 

9 Service Combination -0.00333 
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 Reactions: 

      Table 4.10:  Reactions of flat slab 

Point Output Case Case type Fz (KN) 

5 Ultimate Combination 217.71 

22 Ultimate Combination 217.71 

75 Ultimate Combination 217.71 

92 Ultimate Combination 217.71 

301 Ultimate Combination 769.798 

307 Ultimate Combination 769.798 

313 Ultimate Combination 769.798 

319 Ultimate Combination 769.798 

665 Ultimate Combination 439.76 

671 Ultimate Combination 439.76 

677 Ultimate Combination 439.76 

683 Ultimate Combination 439.76 

689 Ultimate Combination 439.76 

695 Ultimate Combination 439.76 

701 Ultimate Combination 439.76 

707 Ultimate Combination 439.76 
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 Moments: 

       Table 4.11: Forces of the flat slab-design strip 

Strip Span Location Max V2 Max M3 Min M3 

SA2 Span 1 Start 28.647 80.047 3.24 

SA2 Span 1 Middle 45.988 34.3744 -22.421 

SA2 Span 1 End -28.647 80.047 3.24 

SA3 Span 1 Start 45.988 78.4603 1.151 

SA3 Span 1 Middle 45.988 44.9291 -30.942 

SA3 Span 1 End -45.988 78.4603 1.1651 

SA4 Span 1 Start -213.383 -2.949 -75.533 

SA4 Span 1 Middle 168.535 85.777 -10.662 

SA4 Span 1 End 269.415 -11.449 -176.01 

SA4 Span 2 Start -250.377 -13.1062 -172.06 

SA4 Span 2 Middle -150.335 41.7933 -23.891 

SA4 Span 2 End 250.377 -13.1062 -172.66 

SA4 Span 3 Start -269.415 -11.449 -176.01 

SA4 Span 3 Middle -168.535 85.777 -10.662 

SA4 Span 3 End 213.383 -2.949 -75.533 
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 WAFFLE SLAB SAFE PROGRAME ANALYSIS: 

 Model geometry: 

 

Figure 4.14: Model of the waffle slab 

 Displacements: 

        Table 4.12: Maximum displacements in waffle slab 

Point Output Case Case type Uz (m) 

1 Service Combination -0.005207 

2 Service Combination -0.003558 

3 Service Combination -0.005207 

4 Service Combination -0.003558 

5 Service Combination -0.001234 

6 Service Combination -0.003558 

7 Service Combination -0.005207 

8 Service Combination -0.003558 

9 Service Combination -0.005207 

 



 62 

 Reactions: 

       Table 4.13: Reactions of waffle slab 

Point Output Case Case type Fz (KN) 

69 Ultimate Combination 261.618 

74 Ultimate Combination 437.835 

80 Ultimate Combination 437.835 

86 Ultimate Combination 261.618 

91 Ultimate Combination 437.835 

97 Ultimate Combination 770.712 

103 Ultimate Combination 770.712 

109 Ultimate Combination 437.835 

115 Ultimate Combination 437.835 

121 Ultimate Combination 770.712 

127 Ultimate Combination 770.712 

133 Ultimate Combination 437.835 

139 Ultimate Combination 261.618 

144 Ultimate Combination 437.835 

150 Ultimate Combination 437.835 

156 Ultimate Combination 261.618 
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 Moments: 

Table 4.14: Forces of waffle slab-design strip 

Strip Span Location Max P Max V2 Max M3 Min M3 

CSA2 Span 1 Start -52.646 -151.04 1.6469 -43.2405 

CSA2 Span 1 Middle -42.793 95.234 72.989 14.931 

CSA2 Span 1 End -32.447 213.342 -6.8997 -147.0571 

CSA2 Span 2 Start -17.876 -192.94 -6.8559 -133.9212 

CSA2 Span 2 Middle -19.222 -79.739 46.4045 5.4304 

CSA2 Span 2 End -17.876 192.942 -6.8559 -133.9212 

CSA2 Span 3 Start -32.447 -213.34 -6.8997 -147.0571 

CSA2 Span 3 Middle -42.793 -95.234 72.989 14.931 

CSA2 Span 3 End -52.646 151.045 1.6469 -43.2405 
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4.2. DESIGN: 

4.2.1. Flat slab design: 

REF. CALCULATIONS OUTPUT 

 

 

 

 

 

 

 

 

 

 

 

 
 

 BS-8110 

Part1 

Clause 

3.4.4 

 

 

 

 

 

 

 Column strip: 

   Table 4.15: Flat slab-column strip design moments 

Position At mid span 
(Panel 1) 

At support 
(B&C) 

Moments (kN.m) 

Strip width 

Moments 
(kN.m)/m 

88.8 

3 

29.6 

172.0 

3 

57.3 

 

At mid span : 

 ܯௗ  =  29.6 ݇ܰ.݉/݉ 
 

 ܭ = ெ
ௗమೠ

= ଶଽ.∗ଵల

ଵ∗ଶସమ∗ଷ
=  0.024 

 

 ௭
ௗ

= 0.5 + ට0.25 − 
.ଽ

 
 

               = 0.5 + ඨ0.25 −
0.024

0.9
= 0.97 

 

 ݖ = ቀ௭
ௗ
ቁ ∗ ݀ = 0.95 ∗ 204 = 194 ݉݉ 

 

 ݏܣ = ெ
.ଽହ∗∗௭

= ଶଽ.∗ଵల

.ଽହ∗ସ∗ଵଽସ
= 350݉݉ଶ 
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 ݏܣ = .ଵଷ∗

ଵ
= .ଵଷ∗ଵ∗ଶଷ

ଵ
= 299 ݉݉ଶ 

 
 As > As୫୧୬ 

 
 

 ܵ =  ್ೌೝ∗ଵ
௦

=  ଵଵଷ∗ଵ
ଶଽଽ

= 323 ݉݉ 
 
 ܷ݉ݐݐܾ    ܿ/ܿ ݉݉ 300 @ 12 ∅   ݁ݏ 

 
 ݏܣ௩ = 452 ݉݉ଶ/݉ 

 
At support : 
 

 ܯௗ = −57.3 ݇ܰ.݉/݉ 
 

 ܭ = ହ.ଷ∗ଵల

ଵ∗ଶସమ∗ଷ
=  0.046 

 

 ቀ௭
ௗ
ቁ = 0.5 + ට0.25 − .ସ

.ଽ
= 0.95 

 
 ݖ = 0.95 ∗ 204 = 194 ݉݉ 

 

 ݏܣ = ହ.ଷ∗ଵల

.ଽହ∗ସ∗ଵଽସ
= 680 ݉݉ଶ  

 
 As > ݏܣ) = 299 ݉݉ଶ) 

 
 ܵ =  ଶଵ∗ଵ

଼
= 296 ݉݉ 

 
 ܷ250 @ 16 ∅   ݁ݏ ݉݉  ܿ/ܿ 

 

௩ݏܣ = 802 ݉݉ଶ/݉ 
 
 
 

 

 

 

 

 

 

452mm2 

 

 

 

 

 

 

 

 

 

 

 

 

 

802 ݉݉ଶ 
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 Middle strip moments: 
 

    Table 4.16: Flat slab-middle strip design moments 

Position At mid span 
(Panel 1) 

At support 
(B&C) 

Moments (kN.m) 71.3 42.3 

Strip width 3 3 

Moments (kN.m)/m 23.8 14.1 
 

At mid span : 

 

 ܯௗ   =  23.8 kN. m/m 

 

 ܭ = ଶଷ.଼∗ଵల

ଵ∗ଶସమ∗ଷ
=  0.019 

 

 ௭
ௗ

= 0.5 + ට0.25 − .ଵଽ
.ଽ

= 0.99 

 

 ݖ = 0.95 ∗ 204 = 194 ݉݉ 

 

 ݏܣ = ଶଷ.଼∗ଵల

.ଽହ∗ସ∗ଵଽସ
= 281 ݉݉ଶ 

 

 As > ݏܣ) = 299 ݉݉ଶ) 

 

 ܵ =  ଵଵଷ∗ଵ
ଶଽଽ

= 378 ݉݉ 
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 ܷ350 @ 12 ∅   ݁ݏ ݉݉  ܿ/ܿ 

 

 ݏܣ௩ = 339 ݉݉ଶ/݉ 

 

At support : 
 

 ܯௗ = −14.1 ݇ܰ.݉/݉ 
 

 ݇ = ଵସ.ଵ∗ଵల

ଵ∗ଶସమ∗ଷ
=  0.011 

 

 ቀ௭
ௗ
ቁ = 0.5 + ට0.25 − .ଵଵ

.ଽ
= 0.99 

 

 ቀ௭
ௗ
ቁ
௫

= 0.95 

 

 ݖ = 0.95 ∗ 204 = 194 ݉݉ 
 

 ݏܣ = ଵସ.ଵ ∗ଵల

.ଽହ∗ସ∗ଵଽସ
= 166 ݉݉ଶ < ݏܣ =

299 ݉݉ଶ 
 

 ܵ =  ଶଵ∗ଵ
ଶଽଽ

= 672 ݉݉ 
 

 ܷܶ    ܿ/ܿ ݉݉ 650 @ 16 ∅   ݁ݏ 

 

 ݏܣ = 402 ݉݉ଶ/݉ 

 
 

 

 

 

 

 

339mm2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

402mm2 
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Clause 

3.7.6 

 

 

 

 

 

 

Clause 

3.5.5 

 

 

 

Clause 

3.7.6.4 

 

 

 

 

 

 

 

 

 

 

Check for shear :  

(considering the critical internal column   B2 ) 

 

The force at the center of column :  

(force value is same in both direction) 

 

Reaction = 770 ݇ܰ 

 

The effective depth for shear :  

 

The average effective depth of the two directions : 

 

݀ =
192 + 204

2
= 198 ݉݉ 

 

At the face of column head :  

 

o Applied shear stress: 

 

Vୣ = 1.15V୲    

 

 V୲ = R = 770 kN 

 

 

 Vୣ = 1.15 × 770 = 885.5 KN 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 69 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Clause 

3.7.7.1 

 

 

 

 

 

 

 

 

 

ݒ =
ܸ
݀ݑ

 

 

 V = Vୣ = 885.5 KN 

 

 ݑ = 4(ℎ) = 4 × 1.5 = 6 ݉ 

 

 ݒ = ଼଼ହ.ହ×ଵయ

×ଵଽ଼
= 0.75 ܰ/݉݉ଶ 

 

o Resistance : 

 

 ݒ = ൫0.8ඥ ݂௨൯ = 0.8√30 = 4.38 < 5 ܰ/݉݉ଶ  

 

ݒ] = 0.75 ܰ/݉݉^2 <  4.38 ܰ/݉݉^2  ]   __ OK 
 

Punching shear:  

(at 1.5d from the face of column head) 

 

o Applied shear stress: 

 

 V = Vୣ = 885.5 KN 
 

 ݑ = 4(ℎ + 3݀) = 4൫1500 + 3(198)൯ =

8376 ݉݉ 

 

 

 

 

 

 

 

0.75 

N/mm2 

 

 

4.38 

N/mm2 
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 ݒ = ଼଼ହ.ହ×ଵయ

଼ଷ×ଵଽ଼
= 0.53 ܰ/݉݉ଶ 

 

o Resistance : 

ݒ =
0.79
ߛ

൬
ݏܣ100
ܾ݀

൰
ଵ
ଷ
൬

400
݀
൰
ଵ
ସ
൬ ݂௨

25
൰
ଵ
ଷ
 

 

 ଵ௦
ௗ

= (ଵ)(଼ସ)
(ଵ)(ଵଽ଼) = 0.41 <  ܭܱ______ 3

 

 ቀସ
ௗ
ቁ
భ
ర = ቀସ

ଵଽ଼
ቁ
భ
ర = 1.19 >  ܭܱ______ 0.67

 

 ቀೠ
ଶହ
ቁ
భ
య = ቀଷ

ଶହ
ቁ
భ
య = 1.06 

 

 ݒ = (0.79/1.25)(0.41)
భ
య(1.19)(1.06) =

0.59 ܰ/݉݉² 
 

>   ݒ   ]    ݒ       ]     _______     OK 

 

Check for deflection :  
 

o Actual span/effective depth ratio : 
 

 ቀ 
ௗ
ቁ
௧௧௨

= 
ଶସ

= 29.4 

 

o Limited span/effective depth ratio : 
 

൬
݈
݀
൰
௧

= ൬
݈
݀
൰
௦

× ൨ݐܨܯ × 0.9 

 

 
0.53 

N/mm2 

 

 

 

 

 

 

 

 

0.59 
N/mm2 

 

 

 

 

 

29.4 
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Table 3.9 

 

Table 

3.10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 ቀ 
ௗ
ቁ
௦

= 26    

ݐܨܯ = 0.55 +
(477 − ௦݂)

120 ቀ0.9 + ܯ
ܾ݀²ቁ

≤ 2.0        

 ௦݂ =
ଶ  ೞ ೝ  

ଷ ೞ ೝೡ
= ଶ(ସ)(ଶଽଽ)

ଷ(ଷଷଽ) = 270.5 ܰ/݉݉² 

 

 ெ
ௗ²

= ଶଷ .଼ ×ଵల

ଵ×ଶସ²
= 0.57 

 

 ݐܨܯ = 0.55 + (ସିଶ.ହ)
ଵଶ(.ଽା.ହ) = 1.72 < 2.0 

 

 ቀ 
ௗ
ቁ
௧

= 26 × 1.72 = 44.7 

 

      ቂ   ቀ 
ௗ
ቁ
௧௧௨

<   ቀ 
ௗ
ቁ
௧

   ቃ      _______    OK 

 

 

 

 

 

 

 

 

 

 

 

 

44.7 
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4.2.2. Waffle slab design: 

REF. CALCULATIONS OUTPUT 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Column strip moments: 

     Table 4.17: Waffle slab-column strip design moments 

Position Near middle 
(Panel 1) 

At support 
(B&C) 

Moments (kN.m) 72.3 76.4 

Strip width 2 2 

Number of ribs 4 4 
Moments (kN.m)/rib 18.1 19.1 

 

At support : 

Mୟ୮୮୪୧ୣୢ   =  19.1 kN. m/rib 

 

 ܭ = ଵଽ.ଵ∗ଵల

ହଶହ∗ଶଶ଼మ∗ଷ
=  0.023 

 

 ௭
ௗ

= 0.5 + ට0.25 − .ଶଷ
.ଽ

= 0.97 > 0.95 

 

 ݖ = 0.95 ∗ 228 = 217 ݉݉ 
 

 ݏܣ = ଵଽ.ଵ∗ଵల

.ଽହ∗ସ∗ଶଵ
= 202 ݉݉ଶ  

 

 ܯ ݈݁݃݊ܽܨ௦௦௧ = 0.45 ݂௨ ܾℎ ቀ݀ −

ଶ
ቁ 
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= 0.45 ∗ 30 ∗ 525 ∗ 60 ∗ ൬228 −
60
2
൰ ∗ 10ି 

 

= 84.2 ݇ܰ.݉ > ൫ܯௗ = 19.1 ݇ܰ.݉൯ 

 

ܶℎ݅ݐ ݏ݈݁݅݉݅ ݏℎ݁ ݊݁ݐ݅ݓ ݏ݈݁݅ ݏ݅ݔܽ ݈ܽݎݐݑℎ݅݊ ݐℎ݁  

݂݈ܽ݊݃݁ (ܶℎ݁ ݎ݈ܽݑ݃݊ܽݐܿ݁ݎ ݏܽ ݀݁݊݃݅ݏ݁݀ ܾ݁ ݐ ݏ݅ ݊݅ݐܿ݁ݏ

 

 ݏܣ = .ଵ଼∗ೢ∗
ଵ

= .ଵ଼∗ଵଶହ∗ଶ
ଵ

= 58.5 ݉݉ଶ 

 

[   As > As୫୧୬  ] 
 

 ܰݏݎܾܽ ݂ ݎܾ݁݉ݑ =  ௦
್ೌೝ

= ଶଶ
ଵଵଷ

=  ݏݎܾܽ 1.8

 

 ܲ݉ݐݐܾ 12 ܶ 2 ݁݀݅ݒݎ 

 

 ݏܣ௩ = 226 ݉݉ଶ/ܾ݅ݎ 

At Support : (rectangular section) 

ࢊࢋࢇܯ  =  ܾ݅ݎ/݉.ܰ݇ 18.1−

 

 ݇ = ଵ଼.ଵ∗ଵల

ହଶହ∗ଶଶ଼మ∗ଷ
=  0.022 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

226mm2 
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 ቀ௭
ௗ
ቁ = 0.5 +ට0.25 − .ଶଶ

.ଽ
= 0.97 

 

 ݖ = 0.95 ∗ 228 = 217 ݉݉ 
 

 ݏܣ = ଵ଼.ଵ∗ଵల

.ଽହ∗ସ∗ଶଵ
= 191 ݉݉ଶ  

 

 ݏܣ = .ଵଷ∗ହଶହ∗ଶ
ଵ

= 178 ݉݉ଶ 

 

[   As > As୫୧୬  ] 
 

 ܰݏݎܾܽ ݂ ݎܾ݁݉ݑ =  ଵଽଵ
ଵଵଷ

=  ݏݎܾܽ  1.7

 

 ܲܶ 12 ܶ 2 ݁݀݅ݒݎ 
 

 ݏܣ௩ = 226 ݉݉ଶ 

 

Solid part : 
 

ࢊࢋࢇܯ = −
146

2
= 73 ݇ܰ.݉/݉ 

 

 ݇ = ଷ∗ଵల

ଵ∗ଶଶ଼మ∗ଷ
=  0.047 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

226mm2 
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 ቀ௭
ௗ
ቁ = 0.5 +ට0.25 − .ସ

.ଽ
= 0.94 

 

 ݖ = 0.94 ∗ 228 = 214 ݉݉ 
 

 ݏܣ = ଷ∗ଵల

.ଽହ∗ସ∗ଶଵସ
= 775 ݉݉ଶ  

 

 ݏܣ = .ଵଷ∗ଵ∗ଶ
ଵ

= 338 ݉݉ଶ 

[   As > As୫୧୬  ] 

 ܵ =  ଶଵ∗ଵ
ହ

= 259 ݉݉ 

 

 ܲ݁݀݅ݒݎ  Ø 16 @ 250 


 ܶ   

 

 ݏܣ௩ = 804 ݉݉ଶ/݉ 

 
 

 Middle strip moments: 

Table 4.18: Waffle slab-middle strip design 

moments 

Position Near middle 
 (Panel 1) 

At support 
 (B&C) 

Moments (kN.m) 110.6 77.4 
Strip width 4 4 

Number of ribs  8 8 
Moments  
(kN.m) / rib 

13.8 9.7 

 

 

 

 

 

 

 

 

 

 

 

 

 

804mm2 
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Middle Strip ribs : 

At Mid Span : 

Mୟ୮୮୪୧ୣୢ   =  13.8 kN. m/rib 

 ܭ = ଵଷ.଼∗ଵల

ହଶହ∗ଶଶ଼మ∗ଷ
=  0.017 

 

 ௭
ௗ

= 0.5 + ට0.25 − .ଵସ
.ଽ

= 0.98 > 0.95 
 

 
 ݖ = 0.95 ∗ 228 = 217 ݉݉ 

 

 ݏܣ = ଵଷ.଼∗ଵల

.ଽହ∗ସ∗ଶଵ
= 146 ݉݉ଶ  

 

 ܯ ݈݁݃݊ܽܨ௦௦௧  
 

      = 0.45 ∗ 30 ∗ 525 ∗ 60 ∗ ൬228−
60
2 ൰ ∗ 10ି 

 

= 84.2 ݇ܰ.݉ > ൫ܯௗ = 13.8 ݇ܰ.݉൯ 

 

ܶℎ݅ݐ ݏ݈݁݅݉݅ ݏℎ݁ ݊݁ݐ݅ݓ ݏ݈݁݅ ݏ݅ݔܽ ݈ܽݎݐݑℎ݅݊ ݐℎ݁  

݂݈ܽ݊݃݁ (ܶℎ݁ ݎ݈ܽݑ݃݊ܽݐܿ݁ݎ ݏܽ ݀݁݊݃݅ݏ݁݀ ܾ݁ ݐ ݏ݅ ݊݅ݐܿ݁ݏ
  

 ݏܣ = .ଵ଼∗ଵଶହ∗ଶ
ଵ

= 58.5 ݉݉ଶ 
 

[   As > As୫୧୬  ] 
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 ܰݏݎܾܽ ݂ ݎܾ݁݉ݑ =  ௦
್ೌೝ

= ଵସ
ଵଵଷ

=  ݏݎ1.2ܾܽ

 

 ܲ݉ݐݐܾ 12 ܶ 2 ݁݀݅ݒݎ 
 

 ݏܣ௩ = 226 ݉݉ଶ 
 

At Support :  
 

ࢊࢋࢇܯ  =  ܾ݅ݎ/݉.ܰ݇ 9.7−
 

 ݇ = ଽ.∗ଵల

ଵଶହ∗ଶଶ଼మ∗ଷ
=  0.023 

 

 ቀ௭
ௗ
ቁ = 0.5 +ට0.25 − .ଶଷ

.ଽ
= 0.97 

 

 ݖ = 0.95 ∗ 228 = 217 ݉݉ 
 
 
 

 

 ݏܣ = ଵଵ.ଵ∗ଵల

.ଽହ∗ସ∗ଶଵ
= 102 ݉݉ଶ  

 

 

 ݏܣ = .ଶ∗ଵଶହ∗ଶ
ଵ

= 84.5 ݉݉ଶ 
 

[   As > As୫୧୬  ] 
 

 ܰݏݎܾܽ ݂ ݎܾ݁݉ݑ =  ଵଶ
ଽ

=  ݏݎܾܽ 1.3
 

 ܲܶ 10 ܶ 2 ݁݀݅ݒݎ 
 

 ݏܣ௩ = 158 ݉݉ଶ 

 

 

 

 

226mm2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

158mm2 
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Clause 
3.6.6.2 

 

 

 

 

 

 

 

Clause 
3.7.7.1 

 

 

 

 

 

 

 

 

 

 

 

 

Topping reinforcement :  

 

As = 0.12%(sectional area of topping) 
 

 As = ቀ.ଵଶ
ଵ

ቁ (100 × 1000) = 120 mm²/m 

 

Provide  A142  mesh   (ܣ௦ ௩ = 142 ݉݉ଶ/݉) 

 

Punching shear:  

at 1.5d from the face of column head : 

o Applied shear stress: 
 

ݒ =
ܸ
݀ݑ

  
 

 Vୣ = 1.15V୲   Clause 3.7.6.2 
 

 V୲ = R = 771  kN 
 

 Vୣ = 1.15 × 771 = 887 KN 
 

 V = Vୣ =  887  KN 
 

 ݑ = 4(ℎ + 3݀) = 4൫1500 + 3(228)൯ =
8736 ݉݉ 

 

 ݒ = ଼଼×ଵయ

଼ଷ×ଶଶ଼
= 0.45 ܰ/݉݉ଶ 

 

 

 

 

 

 

142mm2 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.45 
N/mm2 
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Table 
3.9 

 

Table 
3.10 

 

o Resistance : 

ݒ =
0.79
ߛ

൬
ݏܣ100
ܾ݀

൰
ଵ
ଷ
൬

400
݀
൰
ଵ
ସ
൬ ݂௨

25
൰
ଵ
ଷ
 

 

 ଵ௦
ௗ

= (ଵ)(଼ସ)
(ଵ)(ଶଶ଼)

= 0.35 <  ܭܱ______ 3
 

 ቀସ
ௗ
ቁ
భ
ర = ቀସ

ଶଶ଼
ቁ
భ
ర = 1.15 >  ܭܱ______ 0.67

 

 ቀೠ
ଶହ
ቁ
భ
య = ቀଷ

ଶହ
ቁ
భ
య = 1.06 

 

 ݒ = ቀ.ଽ
ଵ.ଶହ

ቁ (0.35)
భ
య(1.15)(1.06) = 0.54ܰ/݉݉2  

 
ݒ  ] <     ]  _______     OKݒ

 

Check for deflection : Clause3.6.5 

o Actual span/effective depth ratio : 

൬
݈
݀
൰
௧௧௨

=
6000
228

= 26.3 

o Limited span/effective depth ratio : 

൬
݈
݀
൰
௧

= ൬
݈
݀
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ଷ(ଶଶ)
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ଵଶହ×ଶଶ଼²
= 2.12 

 

 ݐܨܯ = 0.55 + (ସିଵଽ଼)
ଵଶ(.ଽାଶ.ଵଶ) = 1.32 < 2.0 
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4.3. QUANTITIES: 

4.3.1 Concrete quantities: 
 

 Waffle slab quantities: 
 

For the solid part     =           2 × 2 × 0.26                = 1.04 m3 per panel 

For the waffle part = (2/3)(6×6×0.26-2×2×0.26)    = 5.55 m3 per panel 

Total concrete quantity in one panel                         = 6.6 m3 

Total waffle slab concrete quantity    =  6.6 × 9       = 59.3 m3 

 

 Flat slab quantities: 
 

For one panel         =              6 × 6 × 0.23                 = 8.28 m3 

Total flat slab concrete quantity      =      8.28 × 9      = 74.5 m3 
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4.3.2. Reinforcing steel quantities: 
 

݁ݑ݈ܽݒ ݈݁݁ݐܵ = × ݒݎ ݏܣ  .ܰ  × ݏܾ݅ݎ ݂ × ℎݐ݈݃݊݁ ܾ݅ݎ   (ݏ݁݀݅ݏ ℎݐܾ) 2 

 

 Waffle slab steel quantities: 

Column strip: 

Top:                         226 × 10-6 × 4 × 4 × 2              = 7232 × 10-6 m3 

Bottom:                    226 × 10-6 × 4 × 4 × 2              = 7232 × 10-6 m3 

Middle strip: 

Top:                          158 × 10-6 × 8 × 6 × 2              = 15168 × 10-6 m3 

Bottom:                     226 × 10-6 × 8 × 6 × 2              = 21696 × 10-6 m3 

Solid part:                802 × 10-6 × 2 × 2 × 2              = 6328 × 10-6 m3 

Topping:                  142 × 10-6 × 6 × 6 × 2               = 5112 × 10-6 m3 

 :ܛܓܖܑۺ

ቀ×మ

ସ
ቁ × 570 × 5 × (8 × 6 + 4 × 4) × 2 × 10ିଽ = 0.01 m3 

Total value of steel:                                                    = 0.073 m3 

Weight  =  value × density  =  0.073 × 7.85               =  0.57 Ton per panel 

Total steel weight in the waffle slab    =    0.57 × 9    = 5.1 Ton 
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 Flat slab steel quantities: 
 

݁ݑ݈ܽݒ ݈݁݁ݐܵ = × ݒݎ ݏܣ  × ܽ݁ݎܣ   (ݏ݁݀݅ݏ ℎݐܾ) 2 
 

Bottom:              4 × 113× 10-6 × 6 × 6 × 2                   = 0.032 m3 

Top:              

 

Figure 4.15: Flat slab top reinforcement 

A       = 4 × 201× 10-6 × 3 × 3 × 2                   = 0.0145 m3 

B        = 3 × 201× 10-6 × 3 × 3 × 2 × 2             = 0.022 m3 

C        = 2 × 201× 10-6 × 3 × 3 × 2                   = 0.0145 m3 

Total value of steel:                                                    = 0.076 m3 

Weight    =   value × density   =    0.076 × 7.85          = 0.60 Ton 

Considering over lapping:    1.15 × 0.60                       = 0.69 Ton per panel 

Total steel weight in the flat slab    =      0.69 × 9         = 6.2 Ton 



 84 

4.4. Comparison of results: 

4.4.1 Analysis results: 

 Flat slab: 
 

o Bending moments in column strip: 

  Table 4.19: Flat slab-column strip moment comparison 

Position 
At support 

(B&C) 
At mid span 

(Panel 2) 

Manual 273.6 147 

Program 172.0 41.8 

Error 37% 71% 

 

o Bending moments in middle strip: 

  Table 4.20: Flat slab-middle strip moment comparison 

Position 
At support 

(B&C) 
At mid span 

(Panel 2) 

Manual 91.2 120.3 

Program 42.3 42.1 

Error 53% 65% 
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 Waffle  slab: 
 

o Bending moments in column strip: 
 

 Table 4.21: Waffle slab-column strip moments comparison 

Position At support 
(B&C) 

At mid span 
(Panel 2) 

Manual 177.9 95.6 

Program 76.4 45.8 

Error 57% 52% 

 

o Bending moments in middle strip: 
 

 Table 4.22: Waffle slab-middle strip moments comparison 

Position At support 
(B&C) 

At mid span 
(Panel 2) 

Manual 117.7 155.2 

Program 77.4 52.5 

Error 34% 66% 
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4.4.2. Quantities results: 

 Concrete quantities: 
 

   Table 4.23: Concrete quantities comparison 

Slab Flat Waffle Difference 

Concrete 

quantity 74.5 m3 59.3 m3 20% 

 

 Reinforcing steel quantities: 
 

   Table 4.24: Reinforcing steel quantities comparison 

Slab Flat Waffle Difference 

Reinforcing 

Steel quantity 6.2 Ton 5.1 Ton 18% 
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CHAPTER FIVE 

CONCLUSION, RECOMMENDATIONS  

5.1 Conclusion: 

1. From the study results it is found that there is a large difference between 

the values of the manual and program analysis. 

2. From the study results it is found that in waffle slabs concrete quantity is 

reduced up to 20% and the reduction of steel is 18%. 

3. Economic aspect is an important parameter governing the superiority of 

waffle slab over flat slab which can be inferred from the study results. 
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5.2 Recommendations: 

        From the study results we recommend to: 

1. Repetition of analysis operation in order to treat the large differences 

between the computer and manual analysis values. 

2. Using the waffle slab as an economic alternative for flat slab. 

        For future studies we recommend to:  

1. A comprehensive study of cost saving in buildings by considering all 

factors, such as cost of two way slabs, frames (beams and columns), 

foundations and the effect of time saving on the construction of such type 

of slab shall be done. 

2. Studying the behavior of an edge and a corner panel of waffle slabs. 

3. Studying another system of waffle slabs (beams zones between 

columns). 
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APPENDIX A: Flat slab analysis using SAFE program 

 

 Coordinate system: 
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 Columns Properties: 

 Column 1: 
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 Column 2: 
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 Flat slab properties: 

 

 

 Load pattern: 
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 Load Combinations: 
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 Dead & Live Load 
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 Deformed Shape: 

 

 Joint Reactions: 
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 Strip Moment: 

 

 Punching Shear Capacity Ratios: 
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APPENDIX B: Waffle slab analysis using SAFE program 

 

 Coordinate System: 
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 Waffle Slab Properties: 

 

 Load Pattern: 
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 Load Combinations: 
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 Dead & Live Load: 
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 Deformed Shape: 

 

 

 Reactions: 
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 Strip Moment: 

 

 Punching Shear Ratios: 

 

 


