CHAPTER FIVE

CASE STUDY

5.1 Site of Khartoum New International Airport (KNIA)

There were three proposed sites for a new airport in Khartoum, Omdurman, North Khartoum and Khartoum. Designers select Site of Omdurman (SALEHA South Omdurman). Moreover, if we notice that the new airport away from the center of Khartoum 40 km, that space is not too long compared with spaces of Other available, as that area of 77 km. making it capable of expansion in the runways, where it starts now at least a length of 4000 meters and a width of 60 meters and runway spacing 2 km. depending on the designs, which were developed by the German company (Dorsch), we noticed that it was designed with the latest requirements of airports around the world. Which accommodate large aircraft such as airbus380, also with a capacity of 7.4 million passengers per year and ranging up to 10 million a year.

Figure (5-1) primary proposed sites of KNIA

5.2 GEOMETRIC DESIGN

5.2.1 Runway Length

The following procedures show the design information and the steps followed for the design.

Design Data:

- Runway length required for landing at sea level in standard atmospheric conditions 2700 m
- Runway length required for take-off at a level site at sea level in standard atmospheric conditions 3000 m
- Aerodrome elevation 400 m
- Aerodrome reference temperature 43°C
- Temperature in the standard atmosphere for 400 m 12.60°C
- Runway slope 1.0%
- **Design steps:**

A: Corrections to runway take-off length:

1) Runway take-off length corrected for elevation =

 $\overline{\mathbf{r}}$ 3

2) Runway take-off length corrected for elevation and temperature =

 \Box 3280 * (43 – 12.60) x 0.01 \Box \Box 3280 \Box **4277.12 m**

3) Runway take-off length corrected for elevation, temperature and slope

 \Box \Box 4277.12* 1.0 * 0.10 \Box \Box \Box 4277.12 \Box \Box 4704.83 m

B: Correction to runway landing length:

Runway landing length corrected for elevation =

$$
(2700 * 0.07 * \frac{400}{300}) + 2700 = 2952 \text{ m}
$$

C: Actual runway length:

= 4704.83 m ≈ **4700 m**

5.2.2 Runway Width

The following procedures show the design information and the steps followed for the design.

Design Data:

- Code Letter F
- Code Number 4

*From table (3-1) the width is **60m**

5.2.3 Orientation:

The appropriate orientation of the runway or runways at an airport can be determined through graphical vector analysis using a wind rose. A standard wind rose consists of a series of concentric circles cut by radial lines using polar coordinate graph paper. The radial lines are drawn to the scale of the wind magnitude such that the area between each pair of successive lines is centered on the wind direction

The following procedures show the design information and the steps followed for the design.

Design Data:

Table (5-1) Wind Data of (KNIA)

Output data:

Figure (5-2) Orientation Runway for KNIA

5.3 STRUCTURAL DESIGN

5.3.1 KNIA Soil Investigation

The area has rocky land characterized by high consistently and twice the capacity. Indicated all tests conducted by the unity of the new Khartoum Airport and Engineering airports that good natural resistance to the ground where they found that the CBR is equal to 10%.where that mean the natural soil can be used for the different pavement layers.

5.3.2 MAAT for KNIA

Temperature has great influence on the stress-strain distributive characteristics of full-depth asphalt pavement and surface layer; thicknesses are increased as the mean annual air temperature gets warmer and Table (5-2) shows the average annual air temperature in Khartoum for any month in the year

Table (5.2) Average temperature in the year

Then $MAAT = 41^{\circ}C$

5.3.3 KNIA Design traffic mix

The following table shows the aircraft type , annual departure and expected annual rates of increase for any aircraft expected on KNIA

Table (5-3): Traffic mix information

5.3.4 Flexible Airports Pavement Design Process

1. KNIA Flexible Pavement Design by Asphalt Institute Method (Analytical):

The following procedures show the design information and the steps followed for the design:

Design information

- Sub-grade $CBR = 10\%$
- Mean Annual Air Temperature (MAAT) = 41 C

- Traffic mix groups with the types of aircraft in the charts and tables of this method

Table (5-4): Traffic Mix Groups

Compute equivalent departure for each group by multiplying aircraft departure by equivalent factors. And then determine total passes for design life as shown:

Design steps

Step (1): determine allowable thickness (T_A) for repetitions and distress for fatigue and deformation criterion from figures (B-1), (B-2), for MAAT = 41 C and form equation (3-1) $E_s = 1500*10 = 15000$ psi. Tables (5-5), (5-6) showing values of (T_A)

Table (5-5) T^A values by fatigue criteria

Table (5-6) T^A values by deformation criteria

Step (2): Summarize the asphalt concrete tensile strain (*fix*) values from Table (B-3) and fatigue values *f*ihfrom table (B-5) summarize them for all design aircraft in the traffic mix. Tables (5-7) and (5-8) show that.

	Interval form taxiway centerline								
Aircraft	$0-1$ ft	$4-5$ ft	$8-9$ ft	$12-13$ ft	$16-17$ ft	$20-21$ ft	$24-25$ ft		
B-747	0.45	0.68	0.62	0.45	0.68	0.59	0.18		
$DC-8-63F$		0.15	0.48	0.48	0.15				
B-737-200C	$\mid 0.05 \mid$	0.30	0.56	0.30	0.04				
$DC-9-41$	0.07	0.29	0.46	0.21	0.02				

Table $(5-7) f_{ix}$ values (asphalt concrete tensile strain)

Table (5-8) fatigue Fih values

Step (3): Summarize the sub-grade vertical strain (*fix*) values from Table (B-4) and deformation *f*ih regression constants from Table (B-6) summarize them for all design aircraft in the traffic mix. Tables (5-9) and (5-10) show that.

Interval form taxiway centerline									
Aircraft	$0-1$ ft	$4-5$ ft	$8-9$ ft	$12-13$ ft	$16-17$ ft	$20-21$ ft	$24-25$ ft		
B-747	0.58	1.02	0.90	0.58	1.02	0.88	0.22		
B-737-200C	0.03	0.21	0.45	0.28	0.05				
$DC-8-63F$	0.01	0.28	0.83	0.71	0.17				
$DC-9-41$	0.05	0.25	0.40	0.18	0.02				

Table (5-9) fix values (sub-grade vertical strain)

Table (5-10) deformation Fih regression constants

Step (4): Determine the Equivalent DC-8 repetitions (n_{ex}) for fatigue analysis from equation (5-1).

$$
Nex = \sum_{j=1}^{j} p_j \cdot f_{jx} F_{jh}
$$
 (5-1)

Where:

Nex= Equivalent dc-8 repetitions

 f_{ix} = asphalt concrete tensile strain

 F_{ih} = fatigue values

 P_i = no. of passes

Using **P1**=**77940**, **P2**=**2699000**, **P3**=**4236520** and **P**4=**91070.** For *f*ix and Fjh see tables (5-6) and (5-7) respectively. Table (5-10) shows the Equivalent DC-8 repetitions for fatigue analysis.

Step (5): Determine the Equivalent DC-8 repetitions (n_{ex}) for deformation analysis from equation (5-)

$$
n_{ex} = \sum_{j=1}^{j} 10^{c} (p_j, f_{ix})^{A1+1}
$$
 (5-2)

Where:

 n_{ex} = Equivalent DC-8 repetitions. P_i = no. of passes.

 f_{ix} = sub-grade vertical strain. A = regression constants.

 $c = regression$ constants

Using, **P1=77940, P2=2699000***,* **P3=4236520**and**. P4=91070** For *f*ix and (A,c)see tables (5-8) and (5-9) respectively. Table (5-11) shows the Equivalent DC-8 repetitions for deformation analysis

Table (5-11) the Equivalent DC-8 repetitions for fatigue analysis

Table (5-12) the Equivalent DC-8 repetitions for deformation analysis

Step (6): At each interval, the sum of the equivalent repetitions represents the mix traffic effect expressed in terms of equivalent DC-8-63F repetitions.

Illustrates the highest passes for each thickness for permanent deformation and fatigue analysis with allowable thickness in Figure (5-6) respectively. The cross of curves presented the design thickness of criteria. Figures (5-4) and Figures (5-5) show that

Figure (5-4) The cross of curves presented the design thickness of criteria.

Step (7): the design thickness is the maximum one of two criterions

The design thickness= 28 in full depth HMA. Figure (5-6) shows all details about pavement facilities

Figure (5-5) Typical Plan and Cross Section for KNIA Runway Pavement designed by AI method

2. KNIA Flexible Pavement Design by Asphalt Institute Method (Nomograph)

The following procedures show the design information and the steps followed for the design.

*Design Data

- The sub-grade modulus of elasticity $(E=1500 \text{ psi})$
- The mean annual air temperature $\text{MAAT}=37 \text{ C}$
- Traffic mix is (B747, DC8-63F, B737-200, DC9-15) with total (**77940, 2699000, 4236520, 91070**) respectively.
- **Design Steps**

Step (1): Determine the allowable traffic value Na, for each strain criterion (ες and ϵ) from the design subgrade modulus of elasticity Es, and mean annual air temperature T, for the design location see table

	100	1000	10000	100000	1000000
ϵ c	5.5	\circ	12	18	26
ϵt	12	15	17.5	18	19.5

Table (5-13): Allowable Traffic Value for Each Strain Criterion

Step(2):Determine the predicted traffic value Np ,from the projected aircraft mix forecast for the pavement selected design period , and the aircraft equivalency diagrams for specific strain criterion (horizontal tensile, et or vertical compressive, ϵc) by using number of aircraft movement (passes) and lateral distance and table 5-13 and 5-14 illustrate that.

Step(3):Determine the full-depth asphalt concrete pavement thickness, needed to satisfy the strain criteria by using figure B-5 AND B-6 of the following figures(5-14 and 5-15) illustrate thickness design process . Then the design thickness $=29$ in

Table (5-15) :Appropriate Traffic for the Permanent Deformation

Figure (5-6): Allowable Traffic Value and Predicated Traffic Value Curves for Compressive Strain

FIGURE (5-7): Allowable Traffic Value and Predicated Traffic Value Curves for Tensile Strain

Figure (5-8) Typical Plan and Cross Section for KNIA Runway Pavement designed by AI (nomographs)

3. Design by FAARFIELD program

The following points show the design information and the steps followed for the design.

- **Design data (input data)**
	- \bullet Design life = 20 years.
	- Sub-grade CBR= 10% .
	- Traffic mix (see table 5-2).
	- P-401/P-403 HMA Surface course.
	- P-401/P-403 St (flex) base course.
	- P-209 Cr Ag sub-base course.

FARFIELD procedure:

The design thickness for airfield flexible pavements using FAARFIELD can be determining by following steps:

Step (1): open program, create new job and select section type (flexible).

Step (2): press "structure" in main window and set design data.

Step (3) : click "design structure" in structure window, when program stopped running Inspect design thickness of each layer.

Figure (5-7) show structure information by layer Top First, Then total thickness to the top of $HMA = 29.50$ in.

Pavement Structure Information by Layer, Top First

Total thickness to the top of the sub-grade = 29.50 in

Figure (5-9) Typical Plan and Cross Section for KNIA Runway Pavement designed by FAARFIELD program

5.3.5 Design of rigid pavement of KINA

1. Portland Cement Association Method

The following points show the design information and the steps followed for the design.

Design data

- K value= 141.3 pci
- Flexural strength $= 650$ psi
- Traffic mix (Table 5-2).

Design Procedure

The *k* value in this research determined by the equation below:

$$
K = {\frac{1500 \times CBR}{26}}^{0.7788} pci \cdots (5-3)
$$

Factors of safety as recommended by Packard as follows:

- Aprons, taxiways, hard standing, runway ends, hangar floors-(1.7 to 2)
- Runways (central portion) high speed exit taxiways $-(1.4 \text{ to } 1.7)$

Determine the working-stress for each aircraft by dividing the modulus of rupture of concrete by the safety factor chosen and from the design chart for the specific aircraft then determine the pavement thickness for the working stress determined for base (P-306 Econcorete) and sub-base (P-209 Cr Ag) thickness equal 6 in. From table (5-12) the design PCC thickness is 20.2 in.

Table (5-16) PCA Slab Thickness Calculation.

Figure (5-10) Typical Plan and Cross Section for KNIA Runway Pavement designed by PCA method

2. Design by FAARFIELD program

The following points show the design information and the steps followed for the design.

Design Information (input data)

- Design life $= 20$ years.
- Sub-grade CBR= 10% .
- Traffic mix (see table 5-2).
- PCC surface course.
- P-306 Econocrete base course.
- P-209 Cr Ag sub-base course.
- $K = 141.3$

FAARFAILED procedures

The design thickness for airfield flexible pavements using FAARFIELD can be determining by following steps:

Step (1): open program, create new job and select section type (flexible).

Step (2): press "structure" in main window and set design data.

Step (3): click "design structure" in structure window, when program stopped running Inspect design thickness of each layer.

Figure (5-9) show structure information by layer Top First, Then total thickness to the top of $HMA = 28.15$ in.

Pavement Structure Information by Layer, Top First

Total thickness to the top of the sub-grade = 28.15 in

Figure (5-11) Typical Plan and Cross Section for KNIA Runway Pavement designed by FAARFIELD program

5.4 Site of MEROWI Airport.

•

• Merowe Airport is one of the largest projects that accompanied the establishment of Merowe Dam. This airport is located in the northern state east of the city of Meroe two kilometers from the old airport and overlooks the North Road artery that connects the city of Merowe dam body. And it is an important bridge quenched infrastructure of a modern airports in Sudan. The airport linking Africa, the Gulf and European countries and provides aircraft fuel and contributes to the recovery of tourism in Sudan has been designed on the landing and take-off large aircraft specifications, and the length of the runway about 4 kilometers aircraft and width of 60 meters and total area of the airport of 18 square kilometers along the 6 km, and currently 3 km.

• **Figure 1-2 Location of Merowe Airport**

4.2 Demand Analysis and Traffic Forecast

The demand for air transport is normally estimated from historical data. In the demand estimates for Khartoum new international airport, in this study we need to arrive at the estimated traffic based on Khartoum airport data analysis and the internationally accepted criteria for our estimation

5.5 Geometric Design

5.5.1 Runway Length

Design Data:

- Runway length required for landing at sea level in standard atmospheric conditions 2700 m

- Runway length required for take-off at a level site at sea level in standard atmospheric conditions 3000 m

- Aerodrome elevation 845 m
- Aerodrome reference temperature 45°C
- Temperature in the standard atmosphere for 400 m 9.51°C
- Runway slope 1.0%

Design steps:

A: Corrections to runway take-off length:

1) Runway take-off length corrected for elevation =

8 3

2) Runway take-off length corrected for elevation and temperature =

– **4866.12 m**

3) Runway take-off length corrected for elevation, temperature and slope =

□□4866.12* 1.0 * 0.10 □□□□4866.12□□5352.73 m

B: Correction to runway landing length:

Runway landing length corrected for elevation =

 $(2700 * 0.07 * \frac{040}{300}) + 2700 = 3232.35 \text{ m}$

C: Actual runway length:

5352.73 m ≈ 5400 m

5.5.2 Runway Width

Design Data:

-Code Letter F

- Code Number 4

*From table (3-1) the widthis**60m**

5.5.3 Orientation:

Design Data:

Table (5-17) Wind Data for MEROWI AIRPORT

Output data:

Figure (5-12) Orientation Runway for MEROWI AIRPORT

5.6 STRUCTURAL DESIGN

5.6.1 MEROWI Airport Design traffic mix

The following table shows the aircraft type, annual departure and expected annual rates of increase for any aircraft expected on MEROWI Airport.

Table (5-18): Traffic mix for MEROWI AIRPORT

5.6.2Flexible Airport pavement Design process

1. MEROWI Airport Flexible Pavement Design by Asphalt Institute Method (Analytical):

The following procedures show the design information and the steps followed for the design.

Design information

- Sub-grade $CBR = 10%$
- Mean Annual Air Temperature (MAAT) = 45 C
- Traffic mix groups with the types of aircraft in the charts and tables of this method

Table (5-19): Traffic Mix Groups

Compute equivalent departure for each group by multiplying aircraft departure by equivalent factors. And then determine total passes for design life as shown:

Design steps

Step (1): determine allowable thickness (T_A) for repetitions and distress for fatigue and deformation criterion from figures (B-1), (B-2), for MAAT = 45 C and form equation (3-1) $E_s = 1500*10 = 15000$ psi. Tables (5-15), (5-16) showing values of (T_A)

Table (5-21) T^A values by deformation criteria

Step (2): Summarize the asphalt concrete tensile strain (*fix*) values from Table (B-3) and fatigue values *f*ihfrom table (B-5) summarize them for all design aircraft in the traffic mix. Tables (5-22) and (5-23) show that.

Table (5-22) f_{ix} **values (asphalt concrete tensile strain)**

Table (5-23) fatigue Fih values

Step (3): Summarize the sub-grade vertical strain (*fix*) values from Table (B-4) and deformation *f*ihregression constants from Table (B-6) summarize them for all design aircraft in the traffic mix. Tables (5-24) and (5-25) show that.

Interval form taxiway centerline								
Aircraft	$0-1$ ft	$4-5$ ft	$8-9$ ft			$12-13$ ft 16-17ft 20-21ft 24-25ft		
B-737- 200C	0.03	0.21	0.45	0.28	0.05			
$DC-8-63F$	0.01	0.28	0.83	0.71	0.17			

Table (5-24) fix values (sub-grade vertical strain)

Table (5-25) deformation Fih regression constants

Step (4): Determine the Equivalent DC-8 repetitions (n_{ex}) for fatigue analysis from equation (5-1).

$$
\text{Nex} = \sum_{j=1}^{j} p_j \cdot f_{jx} F_{jh} \tag{5-1}
$$

Where:

 N_{ex} = Equivalent dc-8 repetitions

 f_{ix} = asphalt concrete tensile strain

 F_{jh} = fatigue values

 P_j = no. of passes

Using **P1**=2599, **P2**=3891, for f_{ix} and F_{jh} see tables (5-24) and (5-25) respectively. Table (5-26) shows the Equivalent DC-8 repetitions for fatigue analysis

Table (5-26) the Equivalent DC-8 repetitions for fatigue analysis

Step (5): Determine the Equivalent DC-8 repetitions (n_{ex}) for deformation analysis from equation (5-)

$$
N_{ex} = \sum_{j=1}^{j} 10^{c} (p_j, f_{ix})^{A1+1} \qquad (5-2)
$$

Where:

- N_{ex} = Equivalent DC-8 repetitions. P_i = no. of passes.
- f_{ix} = sub-grade vertical strain. A = regression constants.

 $c = regression$ constants

Using, **P1=2599, P2=3891**, For f_{ix} and (A, c) see tables (5-24) and (5-25) respectively. Table (5-27) shows the Equivalent DC-8 repetitions for deformation analysis

	Aircraft	$x=0-1$ ft	$x=4-5ft$	$x=8-9ft$	$x=12-$ 13 ^{ft}	$x=16-17$ ft	$x=20-21$ ft	$x=24-$ 25 _{ft}
	$B-737-$ 200C	28.217	52.59	67.12	57.66	33.23	$\overline{0}$	$\overline{0}$
$TA = 10$	DC-8-63F	25.99	727.72	2157.17	1845.29	441.83	$\overline{0}$	$\overline{0}$
	SUM	54.207	780.31	2224.29	1902.95	475.06	$\overline{0}$	$\overline{0}$
	$B-737-$ 200C	13.24	16.69	18.28	17.28	14.07	θ	θ
$TA=20$	DC-8-63F	25.99	727.72	2157.17	1845.29	441.83	$\overline{0}$	$\overline{0}$
	SUM	39.23	744.41	2175.45	1862.57	455.9	$\overline{0}$	$\overline{0}$
$TA=30$	$B-737-$ 200C	17.03	16.31	17.88	16.89	13.71	$\overline{0}$	$\boldsymbol{0}$
in	DC-8-63F	25.99	727.72	2157.17	1845.29	441.83	$\overline{0}$	$\overline{0}$
	SUM	43.02	744.03	2175.05	1862.18	455.54	$\overline{0}$	$\overline{0}$
$TA=40$	B-737- 200C	10.63	12.16	12.82	12.4	11.02	$\overline{0}$	$\boldsymbol{0}$
in	$DC-8-63F$	25.99	727.72	2157.17	1845.29	441.83	$\overline{0}$	$\overline{0}$
	SUM	36.62	739.88	2169.99	1857.69	452.85	$\overline{0}$	$\overline{0}$

Table (5-27) the Equivalent DC-8 repetitions for deformation analysis

Step (6): At each interval, the sum of the equivalent repetitions represents the mix traffic effect expressed in terms of equivalent DC-8-63F repetitions.

Illustrates the highest passes for each thickness for permanent deformation and fatigue analysis with allowable thickness in Figure (5-15) respectively. The cross of curves presented the design thickness of criteria. Figures (5-13) and Figures (5-14) show that

Figure (5-13) the cross of curves presented the design thickness of criteria.

Figure (5-14) The cross of curves presented the design thickness of criteria.

Step (7): the design thickness is the maximum one of two criterions

The design thickness= 16 in full depth HMA. Figure (5-15) shows all details about pavement facilities

Figure (5-15) Typical Plan and Cross Section for MEROWI AIRPORT Runway Pavement designed by AI method

2. MEROWI Flexible Pavement Design by Asphalt Institute Method (nomographs)

The following procedures show the design information and the steps followed for the design.

Design Data

- The sub-grade modulus of elasticity $(E=1500 \text{ psi})$
- The mean annual air temperature (MAAT= 37° C)
- Traffic mix is $(DC8-63F,B737-200)$, with total $(.2599,3891)$

Design Step

Step (1): Determine the allowable traffic value Na, for each strain criterion (ϵ c and ϵ t) from the design subgrade modulus of elasticity Es, and mean annual air temperature T,for the design location see table

Table (5-28): Allowable Traffic Value for Each Strain Criterion

	100	1000	10000	100000	1000000
Ec	5.5			18	26
ЕĮ	12	15	17.5	18	19.5

Step(2):Determine the predicted traffic value Np , from the projected aircraft mix forecast for the pavement selected design period , and the aircraft equivalency diagrams for specific strain criterion (horizontal tensile, et or vertical compressive, ec) by using number of aircraft movement (passes) and lateral distance and table 5-26 and 5-27 illustrate that.

Step(3):Determine the full-depth asphalt concrete pavement thickness, needed to satisfy the strain criteria by using figure B-5 AND B-6 of the following figures(5-18) illustrate thickness design process . Then the $design$ thickness=15in

	AIRCRAFT	5.5	9.5	13.5	17.5
$TA=10i$	B737	40	150	25	1.2
\blacksquare	DC	700	60	1200	220
	SUM	740	210	1225	221.2
$TA=30i$ \blacksquare	B737	200	300	120	5
	DC	700	150	1200	220
	SUM	900	450	1320	225
$TA=50$ \blacksquare	B737	20	30	9	0.5
	DC	700	1500	1200	220
	SUM	720	1530	1209	220.5

Table (5-28): Appropriate Traffic for the Fatigue Analysis

Table (5-29): Appropriate Traffic for the Permanent Deformation

	AIRCRAFT	5.5	9.5	13.5	17.5
$TA=10$	B737	160	70	60	27
- 도	DC	300	3000	700	300
	SUM	460	3070	760	327
$TA=20$	B737	29	20	27	18
- 드	DC	0300	300	700	300
	SUM	2903	320	727	318
$TA=30$	B737	17	18	27	13
\blacksquare	DC	300	3000	700	300
	SUM	317	3018	727	313
$TA=40$	B737	13	14	12	10
\blacksquare	DC	300	3000	700	300
	SUM	313	3014	712	310

FIGURE (5-16): Allowable Traffic Value and Predicated Traffic Value Curves for Compressive Strain

FIGURE (5-17): Allowable Traffic Value and Predicated Traffic Value Curves for Tensile Strain

Figure (5-18) MEROWI flexible Pavement Design by Asphalt Institute Method (nomographs)

3. Design by FAARFIELD program

The following procedures show the design information and the steps followed for the design.

#Design data (input data)

- \bullet Design life = 20 years.
- Sub-grade CBR= 10% .
- Traffic mix (see table 5-13).
- P-401/P-403 HMA Surface course.
- P-401/P-403 St (flex) base course.
- P-209 Cr Ag sub-base course.

#Design procedure

The design thickness for airfield flexible pavements using FAARFIELD can be determining by following steps:

Step (1): open program, create new job and select section type (flexible).

Step (2) : press "structure" in main window and set design data.

Step (3) : click "design structure" in structure window, when program stopped running Inspect design thickness of each layer.

Total thickness to the top of $HMA = 23$ in.

FAARFAILED (Output data)

Pavement Structure Information by Layer, Top First

Total thickness to the top of the sub-grade = 23 in

Figure (5-19) Typical Plan and Cross Section for MEROWI AIRPORT Runway Pavement designed by FAARFIELD program

5.6.3 Design of rigid pavement of MEROWI AIRPORT

The following procedures show the design information and the steps followed for the design.

1. Portland Cement Association Method

Design data

- K value= 141.3 pci
- Flexural strength $= 650$ psi
- Traffic mix (Table 5-13).

Design Procedure

The *k* value in this research determined by the equation below:

$$
K = {\frac{1500 \times CBR}{26}}^{0.7788} \text{pci}
$$
 (5-3)

Factors of safety as recommended by Packard as follows:

- Aprons, taxiways, hard standing, runway ends, hangar floors-(1.7 to 2)
- Runways (central portion) high speed exit taxiways $-(1.4 \text{ to } 1.7)$

Determine the working-stress for each aircraft by dividing the modulus of rupture of concrete by the safety factor chosen and from the design chart for the specific aircraft then determine the pavement thickness for the working stress determined for base (P-306 Econcorete) and sub-base (P-209 Cr Ag) thickness equal 6 in. From table (5-23) the design PCC thickness is 12.6 in.

Table (5-23) PCA Slab Thickness Calculation.

Figure (5-20) Typical Plan and Cross Section for MEROWI AIRPORT Runway Pavement designed by PCA method

2.Design by FAARFIELD program

The following procedures show the design information and the steps followed for the design.

Design Information (input data)

- Design life $= 20$ years.
- Sub-grade CBR= 10% .
- Traffic mix (see table 5-2).
- PCC surface course.
- P-306 Econocrete base course.
- P-209 Cr Ag sub-base course.
- $K = 141.3$

FAARFAILED (Output data)

Pavement Structure Information by Layer, Top First

Total thickness to the top of the sub-grade = 21.00 in

Figure (5-21) Typical Plan and Cross Section for MEROWI AIRPORT Runway Pavement designed by FAARFIELD program