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Abstract

  During the recent years, the studies and researches concentrated on the topic
of Homotopy perturbation method, for being one the modern and effective
methods for solving miscellaneous types of differential equations, ordinary or
partial, linear or nonlinear. Homotopy perturbation was paid much attention by
many searchers, it has become a fruitful field for study and research, and for
this reason the main goal of this thesis is to study a class of partial differential
equations by using Homotopy perturbation method. This method was
introduced by Ji-Huan He (1999) and has gone through many modification and
development which allowed researchers to apply it on various problems.
     The necessary papers have been collected for the topic of the study and
summarizing the results of the study and present the chapters of the thesis that
included a general introduction and five chapters through which we sought
present the basic concepts necessary for understanding the content of the thesis.



IV

الخلاصة

فى السنوات الأخیرة تنامت الدراسات والأبحاث حول موضوع طریقة الأضطراب الھموتوبى، 
، الخطیة لكونھا من الطرق الحدیثة والفعالة لحل أنماط متنوعة من المعادلات التفاضلیة العادیة والجزئیة

ًجالا خصبا للدراسة والبحث وغیر الخطیة على حد سواء، ونالت إھتمام كثیر من الباحثین فأصبحت م
دراسة تطبیق طریقة الأضطراب الھموتوبى فى ولھذا السبب فأن ھذه الرسالة تھدف بشكل رئیسى الى 

.مجال المعادلات التفاضلیة الجزئیة
ًتطورا الأضطراب الھموتوبى والتى م ظھرت طریقة1999ایات بدومما ھو جدیر بالزكر، انھ منذ 

ًورئیسیا فى ًمھما، ولقد لعبت ھذه الطریقة دورا(Ji-Huan He)العالم ى مفاھیمھاارسًمذھلا بعدما
.كثیر من المسائل فى المجالات المختلفةحلول إیجاد 

تم جمع الأبحاث اللازمة لموضوع الدراسة، وتلخیص ماورد فیھا من نتائج وعرض نتائجھا من 
مسة أبواب حرصنا من خلالھا على تقدیم المفاھیم خلال أبواب الرسالة التى تضمن مقدمة عامة وخ

. الأساسیة اللازمة لفھم محتوى الرسالة
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Introduction

The differential equations have been a branch of modern mathematics since
the nineteenth and the twentieth centuries and ever since they have been of
interest to many of the leading mathematicians as they are regarded as a vitally
important tool in the mathematical library by which solutions to the problems
of interest can be found elegantly and then translated into the real world as a
written material that contributes to solving the problems in question in a way
that achieves the desired interest. Thus, they play a key role in the translation of
many natural and physical phenomena into mathematical models that can be
studied from a purely mathematical perspective so that suitable solutions can be
obtained mathematically and then translated back into practical, real-life
applications. Consequently, a clear picture about the possible solutions and
Available options is obtained

Recent years have seen a new approach with various ways to the natural and
physical phenomena that translated into initial and boundary value problems.

It is well-known that perturbation and asymptotic approximations of
nonlinear problems often break down as nonlinearity becomes strong.
Therefore, they are only valid for weakly nonlinear ordinary differential
equations (ODEs) and partial differential equations (PDEs) in general.

The homotopy perturbation method (HPM) is an analytic approximation
method for highly nonlinear problems, proposed by Ji-Huan He [1] in 1999. It
is coupling method of a homotopy technique and a perturbation technique.  In
contrast to the traditional perturbation methods, the (HPM) method does not
require a small parameter in the equation. In this method, according to the
homotopy technique, a homotopy with an embedding parameter ]1,0[p   is
constructed and the embedding parameter is considered as a “small parameter”.
Thus, the (HPM) can take full advantage of the traditional perturbation
methods.
Secondly, different from all of other analytic techniques, the HPM provides us
a convenient way to guarantee the convergence of solution series so that it is
valid even if the nonlinearity becomes rather strong. Besides being based on the
homotopy in the topology, it provides us with extremely large freedom to
choose the equation type of linear sub-problems, base function of solution,
initial guess and, As a result, complicated nonlinear ODEs and PDEs can often
be solved in a simple way. In short, the HPM provides us a useful tool for
solving highly nonlinear problems in science, finance and engineering.
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CHAPTER ONE
BASIC CONCEPTS OF HOMOTOPY

PERTURBATION METHOD

1.1: Concept and Definitions of Homotopy

The Homotopy perturbation method (HPM), He’s [1,2,3,4,5,6,7,8,9] proposed
by Ji-Huan He [1] is based on the concept of the homotopy, a fundamental
concept in topology and differential geometry (Armstrong, 1983). The concept
of the homotopy can be traced back to rules Henri Poincare (1854 – 1982), a
French mathematician, shortly speaking, a homotopy describes a kind of
continuous variation or deformation in mathematics. For example, a circle can
be continuously deformed into a Square or an Ellipse, the shape of a coffee cup
can deform continuously into the shape of a doughnut. However the shape of a
coffee cup cannot be distorted continuously into the shape of a football,
essentially a homotopy defines a connection between different things in
mathematics, which contain some characteristics in some aspects.

Definition (1.1.1)
Let X  and Y  be a topological space, if YXgf :,  are continuous maps, is
said that f  is homotopic to g  if there exists a continuous map YX  ]1,0[:

Yyx  ),( , Xx , 10  p , )()0,( xfx  , )()1,( xgx  , Such that the map is
called a homotopy between f  and g , gf ~ , denotes that f  and g  are
homotopic.

We think a homotopy as a continuous one-parameter family of maps from X  to
Y  imagine the parameter p as representing time, then the homotopy represents
a continuous deforming of the map f  to the map g  as p  goes from 0 to 1.

Definition (1.1.2)
Let  baC , denote the a set of all continuous real functions in the interval

bxa  , in general, if a continuous function  baCf , can be deformed
continuously into another continuous function  baCg , , one constant a
homotopy

)(~)(: xgxf
In the way
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)()()1();( xpgxfppx    (1)
However a continuous real function cannot be deformed continuously into a
discontinuous function, for example xsin  cannot be deformed continuously
into step function
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0,0

0,1
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x

x

x
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Definition (1.1.3)
The embedding parameter  1,0p in a homotopy of functions or equations is
called homotopy parameter.
The concept of homotopy defined above for functions can be easily expanded
to the equations.
Example (1.1.4)
The two different real functions )sin( x  and )1(8 xx  in interval ]1,0[x  can be
connected by constructing such a family of function

)]1(8[)sin()1();(  xxpxppx                                      (2)
where the embedding parameter ]1,0[p

We note that );( px  depends on not only the independent variable ]1,0[x  but
also the embedding parameter ]1,0[p . Especially, 0p  we have

]1,0[),sin()0;(  xxx 
And when 1p , it holds

]1,0[),1(8)1;(  xxxx

Respectively, so as the embedding parameter ]1,0[p increase from 0 to 1, the
real function );( px  varies continuously from a trigonometric function )sin( x
to a polynomial )1(8 xx , as shown in Fig. (1.1.5) then );( px homotopy,

)sin( x and )1(8 xx  are homotopic denoted by
)1(8~)sin(:  xxx

Fig (1.1.5) continuous deformation of the homotopy
)1(8~)sin(:  xxx

Dashed Line; 0p  Dash dotted Line
4

1
p , Solid line;

2

1
p  Dash-double

dotted. Line;
4

3
p long dashed; 1p
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Definition (1.1.6)
Given an equation denoted by 1  which has at least one solution u , Let 0

denote a proper, simpler equation, called the initial equation, whose solution 0u

is known, if one can construct a homotopy of equation 10 ~:)(~  p , such that,
as the homotopy-parameter  1,0p  increases from 0 to 1, )(~ p  deforms (or
varies) continuously from the initial equation 0  to the original equation 1 ,
while its solution varies continuously from the known solution 0u  of 0  to the

unknown solution u of 1 , then this kind of homotopy of equations is called the
zeroth-order deformation equation.

Example (1.1.7)
Let us consider such a family of algebraic equations

]1,0[,1
)31(

)31(:)(
2

2 


 p
p

y
xpp                                         (3)

Where  1,0p  is the embedding parameter, when 0p , we have a circle
equation

1: 22
0  yx         (4)

Whose solution is a circle 21 xy  , when 1p  we have the ellipse
equation

1
4

4:
2

2
1 

y
x         (5)

Whose solution is an ellipse 2412 xy  .
Thus, as the embedding parameter p  increases from 0 to 1, Eq. (3) varies
continuously from a circle equation 0  into the ellipse equation 1 , while its

solution y deforms continuously from a circle 21 xy  to the

ellipse 2412 xy  , as shown in Fig (1.1.8).
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So, more precisely speaking, the solution y  of (3) is dependent not only on x

but also on ]1,0[p , and thus (3) should be expressed more precisely in the
form

]1,0[,1
)31(

),(
)31(:)(

2
2 


 p

p

pxy
xpp             (6)

Which defines two homotopies: one is homotopy of the equation
10 ~:)(  p

Where 0  and 1  denote (4) and (5), respectively, the other is homotopy of
function,

22 412~1:),( xxpxy 
In other words, the solution ),( pxy  is also homotopy notice that such kind of
continuous deformation is completely defined by (6), we call (6) the zeroth-
order deformation equation, the same idea can be easily extended to other types
of equations, such as differential equations, integral equations and so on.

Fig (1.1.8) Consider deformation of equation of the solution ),( pxy  of the

homotopy (3) solid line: 0p  Dashed Line:
4

1
p   Dash-dotted Line

2

1
p

Dash-double-dotted Line: 1p .

Note that we can construct many different homotopies which connect the circle
equation (4) and the ellipse equation (5) for example the following zeroth order
deformation equation
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]1,0[,
)31(

);(
)31(:),(

2
2 


 p

p

pxy
xpx 

                         (7)

Where 0  and 1 denote (4) and (5) respectively. For different values of  , it
define a different homotopy since ),0(  , there exists an infinite number of
different homotopies of equations, which connect the circle of equation (4) and
the ellipse of equation (5), and correspondingly, an infinite number of
homotopies of functions which connect the circle

21 xy     And the ellipse 2412 xy 

This illustrates the great flexibility of constructing a homotopy for given two
homotopic functions or equation. All of these belong to the basic concepts in
topology a differential geometry (Armstrong [10]). Some new concepts can be
derived not that the homotopy

)]1(8[)sin()1();(  xxpxppx 
Can be rewritten in the form

)]sin()1(8[)sin();( xxxpxpx  
And we have

]1,0[,sin)1(8
),(





pxxx
p

px                (8)

Which describes the ratio (or the speed) of the continuous deformation from
)sin( x  to )1(8 xx , called the first order homotopy-derivative,

Definition (1.1.9)
The homotopy:

],[)()()1();( baxxpgxfppx 
Completely defines the corresponding first order homotopy-derivative

]1,0[),()(
);(





pxfxg
p

px                              (9)

Unfortunately the (HPM) is based on the simple fundamental concept of
homotopy, and other knowledge in topology is almost unnecessary.
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1.2: Perturbation Theory

Many of the functions that arise from everyday problems cannot easily be
evaluated exactly, particularly those defined in terms of integrals or differential
equation, in these situations we usually have two options. We can use computer
to seek complicated numerical solutions or we can look to construct an
analytical approximation to the solution using asymptotic expansions,
Asymptotic method has particular importance in many areas of applied
mathematics, with the physical problems studied in fluid dynamics providing
the main motivation for much of the important development in the subject
history.

Henri Poncare’ who introduced the term asymptotic expansion during 1886
[11] studying irregular integrals of linear equations. In this section, we will
focus on the methods applicable to problems presented as differential
equations, particularly the area of regular and singular perturbation theory.
In the classical asymptotic analysis the asymptotic variable is taken as the
independent variable of the differential equation, in the perturbation theory, the
asymptotic behavior is studied with respect to the small physical parameter.
Perturbation theory deals with problems that contain a small parameter
conventionally denoted by ,  solutions are sought as , approaches 0.
1.2.1: Regular Perturbation
The general method with perturbation problems is to seek an expansion with
respect to asymptotic sequence ,...},,1{ 2 as 0 , the regular or (Poincare’)
expansion is then

0...)()()(),( 2
2

10   asxUxUxUxU

For gauge function 10 ,UU , which we will determine
Example (1.2.10) Consider the initial value problem

1
2

2


dt

dy

dt

yd
                                                         (10)

,0)0( y 1)0( 
dt

dy

The equation here represents projectile motion where air fraction taken into

account
mg

kv0 . Assuming a solution expanded in terms of   by Taylor

....)()()()( 2
2

10  tytytyty                                                  (11)
This is now substituted in the differential equation and initial conditions (10) to
determine function 10 , yy  and 2y give a 3-term expansion of curse this can be
carried out to finite as many terms of the expansion as necessary but in



7

practiced situations only a small number of terms are usually needed
substituting gives, after rearranging

,0)(1 31
2

2
2

20
2

1
2

2
0

2


















  O

dt

dy

dt

yd

dt

dy

dt

yd

dt

yd

,0)()0()0()0( 3
2

2
10   Oyyy

,0)(
)0()0(

1
)0( 32210   O

dt

dy

dt

dy

dt

dy

The next step is then to equate to zero all the terms of each order of 

,1
)0(

,0)0(,01: 0
02

0
2

0 
dt

dy
y

dt

yd


,0
)0(

,0)0(,0: 1
1

0
2

1
2

1 
dt

dy
y

dt

dy

dt

yd


,0
)0(

,0)0(,0: 2
2

1
2

2
2

2 
dt

dy
y

dt

dy

dt

yd


Solving these equations gives,

,
2

)(
2

0

t
tty 

,
62

)(
32

1

tt
ty 

,
246

)(
43

2

tt
ty 

Now putting these into Eq. (10), gives third approximation





























!4!3!3!2!2
~)(

43
2

322 ttttt
tty                          (12)

The exact of Eq. (10), is


  t

ety t 


  )1(
)1(

)(
2

                         (13)

We can expand this as a Taylor series gives,

 3
43

2
322

!4!3!3!2!2
)(  O

ttttt
tty 


























                 (14)

Noticing this identical the solution obtain in (11) using Perturbation method
above.
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1.2.2: Singular Perturbation

A Perturbation problem is said to be singular when the regular methods
produce an expansion that fails at some point, to be valid over the complete
domain. To introduce a singular perturbation type problem we look to the
previous example.
Example (1.2.11)

Consider the problem
0122  xx   (15)

We note that   here is the coefficient of the leading order term 2x . Following
the regular expansion,

....~ 2
2

10  xxxx      (16)
And equating the coefficients gives as the solution,

....
82

1
~ 


x    (17)

Clearly the regular method has failed. The problem is quadratic which has two
solutions, but only one have produced. In many cases, this situation is easy to
spot by setting 0  to give the unperturbed equation when   is the leading
order term’s sole coefficient the equation is reduced in the unperturbed
equation, in this example to a linear equation with only one solution.
There are several types of singular perturbation problem that all require a
different method to lackey them, two of the most common and widely
applicable method, Matched asymptotic expansions and the method of multiple
scales.
When   is the multiplier of the highest derivatives or leading term of a
polynomial equation it is known as a boundary layer problem or occasionally a
matching problem.
1.2.3: Matched Asymptotic Expansions

In the method of matched asymptotic expansions can be useful for differential
equations with an   coefficient multiplying the highest order derivative usually
these contain a boundary layer preventing the complete set of boundary
conditions being satisfied by regular perturbation solution where the regular
solution fails we introduce new coordinates to describes the solution inside the
boundary layer and produce two separate approximation valid over different
sections of the domain, these solutions must be matched together and combined
to single expansion valid universally [11].
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1.2.4: Method of Multiple Scales

A second type of singular perturbation problem fails not due the loss of the
leading order term, but instead these problems fail to be valid when the
independent variable becomes large in the unbounded domain. Problems like
this are common in system dependent on time, thus an approximation found
may be valid initially but will deviate of multiple scales are to introduce two
time scales, a fast one 2t  and a slow on 1t , expand a regular perturbation
solution in term of this new coordinates, the secular terms found in each stage
can be suppressed by equation the arbitrary functions from one term in the
expansion with next. Thus we have single solution valid over the complete
domain that can easily be expanded with lower order terms where desired [11].

1.3: Homotopy Perturbation method

After the appearance of supercomputers, it is not difficult for us to find the
solution of linear problems. It is however still difficult to solve nonlinear
problems, especially by means of analytical methods. Although the nonlinear
analytical techniques are fast developing, they still do not completely satisfy
mathematicians and engineers.

Until recently, nonlinear analytical techniques for solving nonlinear
problems have been dominated by perturbation methods, which have found
wide applications in engineering. But like other nonlinear techniques,
perturbation methods have their own limitations. Firstly, almost all perturbation
methods are based on small parameters so that the approximate solution can be
expressed in a series of small parameters. This so-called small parameter
assumption greatly strictest application of perturbation techniques, as is well
known, an overwhelming majority of nonlinear problems have no small
parameters at all. Secondly, the determination of small parameters seems to be
a special art requiring special techniques. An appropriate choice of small
parameters leads to ideal results, however, an unsuitable choice of small
parameters result in bad effects, sometimes seriously. Thirdly, even if there
exist suitable parameters, the approximate solutions solved by the perturbation
methods are valid, in most cases, only for the small values of the parameters.

It is obvious that all these limitation come from the small parameter
assumption.

 So it is very necessary to develop a kind of new non-linear analytical method
which does not require small parameters at all.
To eliminate the small parameter assumption in1997, Liu [11] proposes a new
perturbation technique, where an artificial parameter is embedded in an
equation at its appropriate place, and the embedding parameter is used as a
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“small parameter”. Unfortunately, there is an uncertainly about an appropriate
artificial parameter and often enough the approximation obtained by such
method will not be uniform, so that its applicability range is severely limited,
Just recently in order to be freed from the limitation of “small parameter”
assumption, Liu [11,12] proposes a new technique which base on homotopy in
topology, does not require small parameter in equations, using the interesting
property of homotopy, he transforms a nonlinear problem into an initial number
of linear problem without using the perturbation techniques. To illustrate Lu’s
basic idea of artificial parameter consider the following example.

Example (1.3.12)
Consider the following differential equation [11]:

1)(
)( 2  tu

dt

tdu

With initial condition:
0)0( u           (18)

Embedding an artificial parameter B  in Eq. (18) resulting,

)1)(1(
)(

Buu
dt

tdu
          (19)

In Liu’s method the embedding parameters are considered as small parameter.
Assume the solution in the following

...)()(),( 10  tButuBtu                                    (20)

Substituting Eq. (20) in Eq. (19) equating the term of like power B , as resulting,
Liu obtained the following first-order approximation

)1()1()()(),( 10   teBeetButuBtu ttt                            (21)
The substituting 1B resulting a good approximate solution of the original Eq.
(18).
In Liu’s method, however, the artificial parameters are embedded much
artificially or technically in most cases, the method will fail to obtain a
uniformly valid approximation, for example, if we embed the artificial
parameter as follows:

)1)(1(
)(

uBu
dt

tdu
    (22)

Or

1)(2  tBu
dt

du                                        (23)
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The approximate solutions obtained from Eq. (22) or Eq. (23) will not be
uniformly valid. The problem lies on the fact that the artificial parameters can
in no way be considered as a small parameter!
It thus becomes desirable to adjust the perturbation approach in such a manner
that the embedding parameters are always small.
To this end, we will give a heuristical method based on the homotopy in
topology [12,13]. The homotopy technique or the continuous mapping
technique embeds a parameter p  that typically ranges from zero to one, when
the embedding parameter is zero, the equation is one of a linear system, when it
is one; the equation is the same as the original one. So the embedded parameter

]1,0[p can be considered as a small parameter. That homotopy constructs
universal perturbation equation with an appropriate artificial parameter. The
coupling method of the homotopy technique and the perturbation technique is
called the homotopy perturbation method, noted (HPM) was proposed by Ji-
Huan He in [1] and [2-9]. More details will be discussed below.

1.3.1: Basic Idea of Homotopy Perturbation Method

To illustrate the basic ideas of the (HPM), we consider the following nonlinear
differential equation

 rrfuA ,0)()(                    (24)
With the boundary conditions

  ,,0, 
 rn
uuB                   (25)

Where A  is a general differential operation, B  is a boundary operator, )(rf  is a
known analytic function,  is the boundary of the domain .
The operator A can generally speak, be divided in two parts L and , where
L is linear, while  is non linear, Eq. (24) therefore, can be rewritten as follows

0)()()(  rfuuL                                                             (26)
By homotopy technique [13,14], we construct a homotopy Rprv  ]1,0[:),(

which satisfies
     rprfvApuLvLppv ],1,0[,0)()()()()1(),( 0 (27a)

Or
  0)()()()(),( 0  rfvpuLvLpv (27b)

Where ]1,0[p  is an embedding parameter, 0u is an initial approximation of
Eq.(24) which satisfies the boundary conditions, Eq.(27a) or Eq.(27b) is called
perturbation equation with embedding parameter obviously from Eq.(27) we
have
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,0)()()0,( 0  uLvLv                                                    (28)
0)()()1,(  rfvAv .                                             (29)

The changing process of p  from zero to unity is just that of ),( prv  from trivial
solution )(0 ru to original solution )(ru , in topology this is called deformation,
and )()( 0uLvL  , )()( rfvA  , are called homotopic.
Here the imbedding parameter p  can be considered as “small parameter”
Assume that the solution of Eq. (26) can be written as a power series in p

 2
2

10 vppvvv (30)
Setting 1p  result in the approximate solution of Eq. (24)


 210

1
lim vvvvu
p

                                           (31)

The coupling of the perturbation method and the homotopy method is called
homotopy perturbation method, which has elimination limitations of the
traditional perturbation methods. On the other hand the (HPM) can take full
advantage of the traditional perturbation techniques.

Example (1.3.13)
Let us first consider a nonlinear algebraic equation [2]

.,0)( Rxxf                   (32)
To solve Eq. (32) by (HPM) we construct a homotopy RR  ]1,0[ which
satisfies

  ]1,0[,,0)()()()1(),( 0  pRxpfxffpp  (33a)
]1,0[,,0)()()(),( 00  pRxxpfxffp    (33b)

Where 0x  is initial approximation of Eq. (32) it is obvious that

0)()()0,( 0  xfxf
0)()1,(   f

The changing process of p from zero to unity is just that of ),( p , from
)()( 0xff   to )(f  and )(),()( 0  fxff   are homotopic.

Applying the perturbation technique, we can assume that the solution of Eq.
(33a) and (33b) can be expressed as a series in p

 2
2

10  pp                                                    (34)



13

To obtain it is the approximate solution of Eq. (33), we first expand )(f  into a
Taylor series

......))((''
!2

1
...))((')()( 2

2
2

102
2

100   ppfppfff (35)

Substituting Eq. (35) into Eq. (33) and equating the coefficients of like powers
of p , we obtain

,0)()(: 00
0  xffp                                                          (36)

,0)()(': 010
1  xffp                                               (37)

.0)(''
!2

1
)(': 2

1020
2   ffp                                 (38)

From Eq. (37) 1  can be solved

)('

)(

0

0
1 


f

xf
 .                                                                          (39)

If, for example, its first-order approximation is sufficient, then we have

)('

)(

0

0
0 




f

f
p (40)

Then substitution 1p  in Eq. (28) yields the first order approximate solution of
Eq. (26)

)('

)(

0

0
0 




f

f
x  (41)

Using Eq. (41) as an initial approximation in Eq. (32) repeatedly, we have the
following iteration formula:

)('

)(
1

n

n
nn f

f
x




                                                                      (42)

From Eq. (36) we can obtain one of its solutions 00 x , under this condition
Eq. (42) can be re-written down as follows:

)('

)(
1

n

n
nn xf

xf
xx                                                                           (43)

Which is the well known Newton iteration formula.
By the same manipulation, from Eq. (38), 2  can be solved, and the following
formula can be obtained

2

1 )('

)(

)('2

)(''

)('

)(










n

n

n

n

n

n
nn f

f

f

f

f

f
x










               (44)

The iteration formula (44) is called Newton-Like iteration formula with second-
order approximation.
The approximate solution obtained by the above iteration formula (44)
converges to its exact solution faster than the Newton iteration formula (43) for
example,
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02)( 2  xxxf            (45)
Supposing 00 x be one of its initial approximate solution, from Eq. (36) we

have 0)1(
0   and 1)2(

0  . By Newton-Like iteration formula (44) we can

immediately obtain its exact solutions 2)1(
1 x  and 1)2(

1 x by only one iteration
step.
Example (1.3.14) Consider the simple ordering differential equation

1)0(,,0,02  yxxyy                                      (46)
We construct the following homotopy

0)())(1( 2
0  YYpyYp                                                   (47)

Suppose the solution of equation Eq. (47) has the form
 2

2
10 YppYYy                  (48)

Substituting (48) into (47) and equating the form with identical powers of p

00
0 : yYp 

0)0(,0: 1
2

001
1  YYyYp   (49)

0)0(,02: 2102
2  YyyYp



For simplicity we start with initial approximation 100  yY and solving above
system, we get,

,1 xY  2
2 xY 

Then we have the second order approximation of Eq. (46)
 221 xppxY                                           (50)

And the exact solution given by;

x
xxYy

p 


 1

1
...1lim 2

1
                                   (51)

Example (1.3.15) Consider the partial differential equation

2

2

x

u

x

u
u

t

u












   (52)

with initial condition
xxu 2)0,(                                                                             (53)

and boundary condition

t
tutu x 21

2
),0(,0),0(


                                 (54)

To solve Eq. (52) with initial condition (53), i.e.; ( t solution) we construct the
following homotopy;

0)1(
2

2
0 



































x

v

x

v
v

t

v
p

t

u

t

v
p

Or



15

00
2

2
0 



























t

u

x

v

x

v
vp

t

u

t

v
                             (55)

Assume the solution of Eq. (55) has the form
 2

2
10 vppvvv                                             (56)

Substituting Eq. (56) and (53) into Eq. (55) and) equation the terms of Like
Power of p ,

t

u

t

v
p






 000 :

0)0,(,0: 12
0

2
0

0
011 
















xv
x

v

x

v
v

t

u

t

v
p                   (57)

0)0,(,0: 22
1

2
0

1
1

0
22 
















xv
x

v

x

v
v

x

v
v

t

v
p



Start with ,2)0,(),(),( 000 xxutxutxv  so we derive the following

,4
0

2
0

2
0

0
0

1 xtdt
x

v

x

v
v

t

u
v

t



















 

xtdt
x

v

x

v
v

x

v
vv

t

8
0

2
0

2
1

0
0

12 


















 


The approximation solution of Eq. (52)



xtxtxvu

p
842lim

1
                                                           (58)

And in closed form

t

x
txu

21

2
),(


       (59)

Which is an exact solution

Similarly, to solve Eq. (52) in the ( x -direction) with boundary conditions (54)
we construct the following homotopy

0)1(
2

2

2
0

2

2

2




































t

v

x

v
v

x

v
p

t

u

x

v
p

Or

00
2
0

2

2

2




























t

u

x

v
v

t

v
p

x

u

x

v
                                   (60)

Substituting Eq.(56) into Eq. (60) and Eq.(54) equation the terms of Like power
p ,



16

0:
2

0
2

2
0

2
0 








t

u

x

v
p

),0(),0(,0: 112
0

2
0

0
0

2
1

2
1 tvtv

t

u

x

v
v

t

v

x

v
p x
















    (61)

0),0(),0(,0: 22
1

0
0

1
1

2
2

2
2 
















tvtv
x

v
v

x

v
v

t

v

x

v
p x



Start with
t

x
txutxv

21

2
),(),( 00 


And we derive the following

  



















x x

dxdx
t

u

x

v
v

t

v
v

0 0
2

0
2

0
0

0
1 0

0,0  kvk

Then the exact solution

t

x
vtxu

21

2
),( 0 



is the same solution given by t -direction.

Example (1.3.16) Fredholm integral equation
Now we consider the Fredholm integral equation of the second kind in the
general case


b

a

dttutxKxfxu )(),()()(                                                     (62)

To solve Eq. (62), we construct the following homotopy

  0)(),()()()()()1( 







 

b

a

dttutxKxfxupxfxup 

Or


b

a

dttutxKpxfxu )(),()()(                                               (63)

Assume the solution of Eq. (63) has the form
...2

2
10  uppuuu                                           (64)

Substituting Eq. (64) into Eq. (63) and equation the terms of the Like power p ,
we have

)(: 0
0 xfup 


b

a

dtutxKup ))(,(: 01
1 
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b

a

dtutxKup ))(,(: 12
2        (65)



 
b

a

jJ
j dtutxKup ))(,(: 1

The approximation solution given by setting 1p in Eq. (64)
 210 uuuu                                                            (66)

Example (1.3.17) Consider the integral equation


1

0

)()( dttuxtxxu                                             (67)

In view of Eq. (63), we obtain


1

0

)()( dttuxtpxxu                                                         (68)

Substituting Eq. (64) into Eq. (68), we have the following result
xxup )(: 0

0

xdttxtxup
5

2
)(:

1

0

1
1 

  

xdt
t

xtxup
15

2

5

2
.)(:

21

0

2
2 

             (69)

xdtxtxup
45

2

15

2
.)(:

31

0

2

3
3 

  


Then the solution obtains by setting 1p in Eq. (64)





 



...
3.5

2

3.5

2

5

2 3
2

2

210

x

uuuu 


















 



n

i

i

x
1 36

5



                                              (70)
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1.3.2: The Advantages of the Homotopy Perturbation Method

The homotopy perturbation method has been receiving much attention in
recent years in applied mathematics, in general and particular in the area of
series solution. The method to be powerful effective and easy to use, It was
formally shown by many researchers that the advantage of the HPM.
The perturbation equation can be easily constructed by homotopy in topology
and the embedding parameter ]1,0[p  is considered as “perturbation
parameter” the novel method can take full advantage of the traditional
perturbation techniques. The initial approximation can be freely selected which
can be identified via various methods. The approximation obtained by this
method are valid not for small parameter but also for the very large parameter.
Also, the homotopy perturbation method can easily handle a wide class of
algebraic equation, ordinary differential equations, partial differential equation,
integral equations, integral differential equation and fractional equation
homogeneous or inhomogeneous and linear or nonlinear in a straightforward
manner without any need for restrictive assumptions, such as linearization or
discretion. There is no need in using this method to convert inhomogeneous
conditions to homogenous conditions are required by other techniques. The
HPM requires less computational work if compared with other methods, and
demonstrates a fast convergence of the solution.
A disadvantage of the HPM is to need an initial value

1.4: The Noise Terms Phenomenon
The noise terms phenomenon [15,16] gives useful tool in that, if it appears, it
gives a fast convergence of the solution by using two iterations only it is
significant to note that the noise terms may appear only for the inhomogeneous
problems.
The noise terms defined as an identical terms, with opposite signs that may
appear in various components 1, kuk , it is important to note that these terms
may appear for inhomogeneous problem whereas homogenous problems do not
generate noise terms. It was formally shown that by canceling the noise terms
that appears in 0u and 1u from 0u , even though 1u  contains further terms, the
remaining non-cancelled terms of 0u may give the exact solution of an
inhomogeneous problem. This can be justified through substitution. Therefore,
it is necessary to verify that the non-cancelled terms of 0u  satisfying PDE under
discussion. A necessary condition for the generation of the noise terms of
inhomogeneous problems is that the zeroth component 0u  must contain the
exact solution u among other terms.
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On the another hand, if the non-cancelled terms of 0u  did not satisfy the given
problem or the noise term did not appear between 0u and 1u , then it is necessary
to determine more components of u to determine the solution in a series form.

Example (1.4.18) Consider the following inhomogeneous PDE [18]
xxuyuexuu y

yx  )0,(,0),0(,)1(                                   (71)

Clearly, x -direction is invertible and therefore to solve Eq. (71) we construct
the following homotopy:
























x

u

y

v
exp

x

u

x

v y 00 )1(                                               (72)

Assume the solution of Eq. (72) has the following form
...2

2
10  vppvvv                       (73)

Substituting Eq. (73) into Eq. (72) and equating the terms with Like power p ,

0: 000 







x

u

x

v
p

0),0(,)1(: 1
0011 











yvex
x

u

y

v

x

v
p y

0),0(,0: 2
122 







yv
y

v

x

v
p      (74)

0),0(,0: 3
233 







yv
y

v

x

v
p



Start with 0),0(),(),( 000  yuyxuyxv  and integrating above system with


x

dx
0

)(  we get,

y
x

y e
x

xdxex
x

u

y

v
v 

























  !2

)1(
2

0

00
1 ,

y
x

e
xx

dx
y

v
v 



















  !3!2

32

0

1
2 ,

y
x

e
xx

dx
y

v
v 



















  !4!3

43

0

2
3 ,



It is easily observed that the noise terms ye
x

!2

2

and ye
x

!2

2

 appear in the first two

component respectively, by canceling the noise term ye
x

!2

2

 in 1v  and verifying
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that the remaining non-cancelled term of 0v  satisfy Eq.(71), we find that the
exact solution is given by;

yxetxu ),(                                                                          (75)
Notice that the exact solution is verified through substituting in Eq. (74) and
not upon the appearance of the noise term, in addition, the other noise terms
that appear between other components will vanish in the limit.

Example (1.4.19) Consider the following partial differential equation

00,cos
2

2









txx
t

u

t

u
                            (76)

With initial condition
),0( xu                                                                                 (77)

And boundary condition
0,),(,1)0,(   tetuetu tt                          (78)

To solve Eq. (76) with initial condition (77) we construct the following
homotopy:

0cos0
2

2
0 

























x
t

u

x

v
p

t

u

t

v
                                (79)

Assume the solution of Eq. (79) has the form
 2

2
10 vppvvv                                   (80)

Substituting Eq. (80) into Eq. (79) and (77) and equating the terms of the Like
power p ,

0: 000 







t

u

t

v
p

0),0(,cos: 1
0

2
0

2
11 












xvx
t

u

x

v

t

v
p

0),0(,0: 22
1

2
22 







xv
x

v

t

v
p                            (81)

0),0(,0: 32
2

2
33 







xv
x

v

t

v
p



Start with 0),0(),(),( 000  xuxtuxtv  and integrating above system with


t

dx
0

)(  we get,

xtx
t

u

x

v
v

t

coscos
0

0
2
0

2

1 
















  ,

x
t

x

v
v

t

cos
!2

2

0
2
1

2

2 










  ,
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x
t

x

v
v

t

cos
!3

3

0
2
2

2

3 










  ,



We can easily observed that the components does not contain noise terms this
confirm our benefit that the PDE is an inhomogeneous equation but the noise
terms between the first two components did not exist in this problem, then the
series solution obtain by

...cos
!3

cos
!2

coslim
32

1



x

t
x

t
xtvu

p
                                      (82)

In closed form
xetxu t cos)1(),(                                                                         (83)

Which is an exact solution

1.5: The Modified of the Homotopy Perturbation Method (MHPM)

In this section, we will present the modification of the homotopy perturbation
method (MHPM) [17].
The (MHPM) demonstrate a rapid convergence of the series solution compared
with standard HPM in addition the modified algorithm may give the exact
solution for the problem by using two iterations only.

Now the standard HPM in Eq. (27) given by
  0)()()()()(),( 00  rfvpupLuLvLpv

The modified form of the HPM can be established based on the assumption that
the function )(rf can be divided in two parts, namely )(0 rf and )(1 rf

)()()( 10 rfrfrf                                                                          (84)
Or on the assumption that the function )(rf can be replaced by a series of
infinite components under this assumption that )(rf  be expressed in Taylor
series







0

)()(
n

n rfrf (85)

According to the first assumption )()()( 10 rfrfrf  we can construct the
homotopy Rprv  ]1,0[:),(  which satisfies

  )()()()()()(),( 0100 rfrfvpupLuLvLpv                     (86)

Here, a slight variation was proposed only on the components 0u  and 1u .The
suggestion was that only the part 0f be assigned to the zeroth component 0u ,

whereas the remaining part 1f  be combined with the component 1u  if we set
)()(1 rfrf   and 0)(0 rf , then the homotopy (86) reduce to the homotopy (27)
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Note (1.5.20)
The important point that the success of the method depends on the proper
selection of the function 0f and 1f .

Now, according to the second assumption 





0

)()(
n

n rfrf  we can construct the

homotopy Rprv  ]1,0[:),(  which satisfies







0

00 )()()()()(),(
n

n
n rfpvpupLuLvLpv     (87)

If )(rf  consists of two terms only then the homotopy (87) reduce to the
homotopy (86).
In this case the term 0f  is combined with the component 0u , 1f  is combined

with component 1u , 2f  is combined with component 2u  and so on, this
suggestion will facilitate the calculations of the terms ,,, 210 uuu  and hence
accelerate the rapid convergence of the series solution.
Note (1.5.21)
It is easy to observe that the algorithm of the (MHPM) based on the homotopy
given in Eq. (86) and Eq. (87) reduces the number of terms involved in each
component and hence the size of the calculation is minimized compared to the
standard HPM.
Moreover, this reduction of terms in each component facilitates the
construction of the homotopy perturbation solution.
It is to be also noted that the (MHPM) will be applied, wherever it is
appropriate to all differential equations of any order. To demonstrate the
effectiveness of the (MHPM) we compare the (MHPM) with standard (HMP)
in the following examples.

Example (1.5.22) Consider the nonlinear differential equation [17]
63 6

2
tuu

t
u                                  (88)

Subject to the initial conditions
0)0(,0)0(  uu .                                                     (89)

The standard HPM: To solve Eq. (88) by HPM we construct the following
homotopy:

  06
2 63  tupu
t

u                                                    (90)

Suppose the solution of Eq. (90) has the form
 2

2
10 uppuuu                       (91)



23

Substituting (91) and the initial conditions (89).into the homotopy (90) and
equating the term with identical powers of p , we obtain the following set of
linear differential equations

0)0(,0)0(,0
2

: 0000
0  uuu

t
up

0)0(,0)0(,6
2

: 11
63

011
1  uutuu

t
up                   (92)

0)0(,0)0(,3
2

: 221
2
022

2  uuuuu
t

up

0)0(,0)0(,33
2

: 332
2
0

2
1033

3  uuuuuuu
t

up



Consequently, solving the above equation, we obtain
00 u ,

72

8
2

1

t
tu  ,

02 u ,
00 u ,

3

26

2

20148

4 )72.(27.26)72.(21.20

3

72.15.14

3

72

tttt
u  .

And so, in this manner the rest of HPM can be obtained. The solution for Eq.
(88) given by setting 1p in Eq. (91)

2
3210 ... tuuuuu                                                    (93)

The modified HPM: in view of the homotopy (86), we construct the following
homotopy:

  6
2 63  tupu
t

u                                                      (94)

Substituting (91) into (94) and equation term with identical powers of p , we
obtain the following set of linear differential equations

0)0(,0)0(,6
2

: 0000
0  uuu

t
up

0)0(,0)0(,
2

: 11
63

011
1  uutuu

t
up         (95)

0)0(,0)0(,3
2

: 221
2
022

2  uuuuu
t

up

0)0(,0)0(,33
2

: 332
2
0

2
1033

3  uuuuuuu
t

up

Consequently, solving the above equation the first few components of the
homotopy perturbation solution of Eq. (88) are derived as follows
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2
0 tu  ,

1,0  kuk

The exact solution
2)( ttu                                                                                     (96)

Follows immediately the success of obtaining the exact solution by using two
iterations is the result of the proper selection of )(0 rf and )(1 rf .

Example (1.5.23) Consider the partial differential equation [17]

txtxu
x

u

t

u 222
2

2

2

2

coscos 





                                             (97)

Subject to the initial conditions

0)0,(,)0,( 



 x
t

u
xxu .                                                       (98)

The modified HPM: in the view of the homotopy (86), we construct the
following homotopy:

txtxu
x

u
p

t

u
coscos 222

2

2

2

2
















                         (99)

Assume the solution of Eq. (99) in the form
 2

2
10 uppuuu                                          (100)

Substituting Eq. (100) and the initial conditions into the homotopy (99) and
equating the terms identical power of p , we obtain the following set of linear
differential equation

0)0,(,)0,(,cos: 002
0

2
0 



xuxxutx
t

u
p t

0)0,(,0)0,(,cos: 11
222

02
0

2

2
1

2
1 








xuxuxxu
x

u

t

u
p t   (101)

0)0,(,0)0,(,02: 22102
1

2

2
2

2
2 








xuxuuu
x

u

t

u
p t



Solving the above equation, we obtain
txu cos0 

0,0  kuk

The exact solution
txtxu cos),(                                          (102)

Follows immediately, it’s clear that we used two iteration only to obtain exact
solution
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Example (1.5.24) Consider the linear differential equation [17]
2

22 ttetuu                                          (103)
Subject to the initial condition:

0)0( u                              (104)
The standard HPM: to solve Eq. (103) with initial condition (104) by HPM we
construct the following homotopy:

0]22[
2

 tetupu                         (105)
Assume the solution of Eq. (105) has the form,

 2
2

10 uppuuu                                                (106)
Substituting Eq. (106) and initial condition (104) into the homotopy (105) and
equating the terms with identical power of p , we obtain

0)0(,0: 00
0  uup

0)0(,22: 101
1 2

  utetuup t                                            (107)

0)0(,02: 212
2  utuup

0)0(,02: 323
3  utuup

Consequently, solving the above equation, we get

00 u ,
2

11
teu  ,

22
2 1 tetu  ,

2

2
1

4
2

3
te

t
tu  ,

2

62
1

64
2

4
te

tt
tu  .

And so on. In this manner the rest of components of the homotopy perturbation
solution can be obtained, if we compute more terms we can show that the
solution converges to

22)( tettu                                                                       (108)

The modified HPM: in the view of the homotopy (87) and using the Taylor
expansion







 


0

12

!

)1(2

n

nn
t

n

t
te                          (109)

We construct the following homotopy









0

12

!

)1(
2]2[

n

nn
n

n

t
ptupu                        (110)
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Substituting (110) and the initial condition (104) into the homotopy (110) and
equating the terms with identical powers of p , we obtain

0)0(,2: 00
0  utup

0)0(,22: 1
3

01
1  uttuup                          (111)

0)0(,2: 2
5

12
2  uttuup

0)0(,
3

2: 3

7

23
3 


 u

t
tuup



Consequently, solving the above equation, the first few components of the
homotopy perturbation solution for Eq. (103) are derived as follows

2
0 tu  ,

4
1 tu  ,

!2

6

2

t
u  ,

!3

8

3

t
u


 .

The solution in a series form is given by setting 1p  in Eq. (106)

...
!3!2

86
42 

tt
ttu                                                                (112)

And in closed form
22)( tettu    (113)
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CHAPTER TWO

APPLICATION OF HOMOTOPY PERTURBATION
METHOD TO LINEAR PARTIAL DIFFERENTIAL

EQUATIONS

2.1: Introduction

It is well known that most of the phenomena that arise in mathematical physics
and engineering fields can be described by partial differential equations
(PDEs). In physics, for example, the heat flow and the wave propagation
phenomena are well described by partial differential equations.
A partial differential equation is an equation that contains an unknown function
of several variables, and one or more of its partial derivatives. There are two
types of partial differential equation: linear and nonlinear partial differential
equations. The linear partial differential equations are very important in
mathematics as well as in applied sciences; In particular, the wave equation,
heat equation and Laplace's equation are known as three fundamental linear
partial differential equations and occur in many branches of physics, in applied
mathematics and in engineering. It is to be noted that several methods are
usually used in solving linear partial differential equation. Including, spectral
method, characteristic method, variation iteration method and Adomian’s
decomposition method. In this chapter, we applied the homotopy perturbation
method and the related improvements of the modified technique and noise
terms phenomena will be effectively used .the homotopy perturbation method
has been used extensively to solve nonlinear boundary and initial value
problems. The method attacks the problem in a direct way and in a
straightforward fashion without using linearization, or any other restrictive
assumption that may change the physical behavior of the model under
discussion. Therefore, homotopy perturbation method is of great interest to
many researchers and scientists
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2.2: First-Order Linear Partial Differential Equation
Partial differential equations of the first order are used to model traffic flow on
a crowded road, blood flow through an elastic-walled tube, shock waves and as
special cases of the general theories of gas dynamics and hydraulics. In this
section, we will apply the homotopy perturbation and the related phenomenon
of the noise terms and the modified homotopy perturbation method to the first-
order linear partial differential equation homogeneous and inhomogeneous.

Example (2.2.1) Consider the following homogeneous partial differential
equation [18]

03 







u
y

u

x

u
x , 2)0,( xxu  .             (1)

To solve Eq. (1) by (HMP), we construct the following homotopy:

03 00 






















y

u
v

x

v
xp

y

u

y

v          (2)

Assume the solution of Eq. (2) has the following form
...2

2
10  vppvvv           (3)

Substituting Eq. (3) into Eq. (2) and equating the terms of like power p,
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Starting with 2
00 ),(),( xyxuyxv  , and Appling the inverse operator 
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above system, we obtain
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Then the approximate solution of Eq. (1) obtain by setting 1p  in Eq. (3)
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),(            (5)

Which is an exact solution.
Example (2.2.2) Consider the following inhomogeneous partial differential
equation [19]
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 , 0),0( yu .                (6)

Standard HPM: To solve Eq. (6) by (HMP), we construct the following
homotopy:
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Assume the solution of Eq. (6) has the following form
...2

2
10  vppvvv            (8)

Substituting Eq. (8) in to Eq. (7) and equating the terms of like power p,
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Starting with 0),(),( 00  yxuyxv , and Appling the inverse operator 
x

dx
0

)(  to

the above system, we obtain:
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It is easily observed the noise terms
!2

2x and
!2

2x
  appears in 1v and 2v

respectively. By canceling the noise term
!2

2x in 1v , and by verifying that the

remaining non-canceled terms of 1v satisfy Eq. (7) we find the exact solution

given by
1),(),( 1  xyeyxvyxu                (10)

Modified HPM: To solve Eq. (6) by (MHMP), we construct the Following
homotopy:

xyyexxv
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v
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             (11)

Assume the solution of Eq. (11) has the form Eq. (8) substituting Eq. (8), into
Eq. (11) and equating the terms of like power p,
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Appling the inverse operator 
x

dx
0

)(  to above system, we obtain

  1
0

0   xy
x

xy edxyev ,

1,0  kvk .

It then follows that the solution is
1),(),( 0  xyeyxvyxu                          (13)

This example clearly shows that the solution can be obtained by using two
iterations, and hence the volume of calculation is reduced.
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2.3: Second -Order Linear Partial Differential Equation

In this section, we consider the second-order quasi-liner partial differential
equation,

0
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22
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2
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u
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With initial conditions:
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 ,       (15)

Or
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 .           (16)

Where cba ,,  and d  may be functions of zyx ,,  but not of,
2

2

x

u
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yx

u


 2
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2

2

y

u




i.e., the second-order derivative occurs only to the first degree. An equation
(14) is said to be hyperbolic, parabolic or elliptic accordingly as acb 42   is
positive, zero, or negative. Numerical methods of solving Eq. (14), which are
common, used as a characteristics method [20], needed large size of
computation work and usually the round-off error causes the loss of accuracy.
Her homotopy perturbation method needs less computation and leads higher
accuracy. We have applied homotopy perturbation method for special cases in
which the coefficient in the Eq. (14) do not depend on partial derivatives andu .
To solve Eq. (14) with the initial conditions (15), according to the homotopy
perturbation, we construct the following homotopy:
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Assume the solution of Eq. (16) has the following form
...2

2
10  vppvvv                       (18)

Putting (18) in to (17) and comparing the coefficient of identical degrees of p,
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p ,
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For simplicity, we take yxgxfuv )()(00  . Accordingly, we have:
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The approximate solution of Eq. (14) can be obtained by setting 1p .
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Similarly, to solve Eq. (14) with initial condition (15) we construct the
following homotopy:
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With initial approximation xygyfuv )()(00  . Suppose the solution of Eq.

(21) has the form (18), according to the mentioned procedure we have:
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Setting 1p , result in the approximation solution of Eq. (14)

...210  vvvu
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Example (2.3.3) Consider the following equation with initial conditions [21]

012 2

22

2

2













y

u

yx

u

x

u ,          (24)

xxu )0,( , x
y

xu



 )0,( .

According to the homotopy (16), we have;




























2
0

22

2

2

2
0

2

2

2

2
1

2
1

2
1

y

u

yx

v

x

v
p

y

u

y

v   (25)

Beginning with xyxuv  00  and from (20) we have:
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So the first-order approximate obtain by setting 1p in Eq. (18)

u 2
10 2

1
),(),( yxyxyxvyxv                     (26)

Which is an exact solution.
 The results are compared with characteristics in table (2.3.4)

Table (2.3.4):

The solution of ),( yxu  for different values of x  and y

x y ),( yxu (HPM) ),( yxu (characteristics method)

0.139 0.074                 0.213                        0.212
0.448 0.077                 0.525                        0.526
0.758 0.075                 0.833                        0.834
0.819 0.152                 0.971                        0.971
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Example (2.3.5) Consider the following equation with initial conditions [21]
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Beginning with 2
00 xuv   and from (20) we have;

2

2

0 0
2
0

2

2
0

2

21 4
1

4
1

x

y
dyd

y

u

x

v

x
v

y y
















    ,

6

4

0 0
2
1

2

22 32
1

4
1

x

y
dyd

x

v

x
v

y y












    ,

10

6

0 0
2
2

2

23 640
7

4
1

x

y
dyd

x

v

x
v

y y












    ,

14

8

0 0
2
3

2

24 2048
11

4
1

x

y
dyd

x

v

x
v

y y












    .

So the fourth-order approximate obtain by setting 1p in Eq. (18)

14

8

10

6

6

4

2

2
2

2048
11

640
7

32
1

4
1

x

y

x

y

x

y

x

y
xu                                   (29)

The results are compared with characteristics in table (2.3.6)

Table (2.3.6)
The solution of ),( yxu  for different values of x and y

x y ),( yxu (HPM) ),( yxu (characteristics method)

0.133 0.067          0.1442                        0.1444
0.833 0.067                 0.8911                        0.8911
0.067 0.133                 0.0848                        0.0844
0.767 0.133                 0.8779                        0.8778



35

2.4: The Heat Equation
In this section, we will study the physical problem of Heat conduction in a rod
of length L. The temperature distribution of a rad is governed by an initial-
boundary value problem [18] that is often defined in the general form by:

)(
2

2

xfu
x

u
k

t

u







 , 0,0  tLx   (30)

With initial condition:
)()0,( xgxu  ,       (31)

And boundary conditions:
)(),0( 0 tftu  , )(),( 1 tftLu  .   (32)

where ),( txu represents the temperature of the rod at the position x  at time t  and

k  is the thermal diffusivity of the material that measures the rod ability to heat
conduction. It is interesting to note that Eq. (30) arise in two different types,
namely,

- homogeneous heat equation : this type of equation is often given by
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x
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k

t

u  (33)

Further, heat equation with a literal loss is formally derived as a homogeneous
PDE in the form,
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u
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u            (34)

- Inhomogeneous Heat Equation : this type of equations is often given by
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u
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u







     (35)

Where )(xf is called the heat source which is independent of time.

Many researchers have applied the HPM to the problem, homogeneous or
inhomogeneous, and it was formally proven by [22, 23, 24] that the method
attacks the problem, homogeneous or inhomogeneous, in a straightforward
manner without any need for transformation formulas. Further, there is no need
to change the inhomogeneous boundary conditions to homogeneous conditions
as required by the method of separation of variables [18], and finite difference
method [20], and Pdé approximate [18], and other methods.
In order to solve Eq. (30) with the initial condition (31), (i.e., t solution) by
the HPM, we choose the initial approximation )(0 xgv   and construct the

following homotopy:



36


























),(0
2

2
0 txf

t

u
v

x

v
kp

t

u

t

v        (36)

Assume the solution of Eq. (16) has the following form
 2

2
10 vppvvv       (37)

Putting (37) into (36) and comparing the coefficients of identical degrees of p,
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We can start with )(00 xguv  . And Appling the inverse operator dt
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)(  to

above system we obtain the following recreation formula
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The approximate solution of Eq. (30) can be obtained by setting 1p .

...210  vvvu

An important conclusion can be made here; the ( t solution) is obtained by
using the initial condition only without using the boundary conditions. The
obtained solution can be used to show that it satisfies the given boundary
conditions. However, we can also obtain the ( x solution) In fact; the solution
obtained in this way requires the use of boundary conditions and initial
condition as well. This leads to an important conclusion that solving the PDE in
the t direction reduces the size of computational work. This important
observation will be confirmed through examples that will be discussed later. To
give a clear overview of the content of the HPM method, we have chosen
several examples, homogeneous and inhomogeneous, to illustrate the
discussion given above.
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Example (2.4.7) Consider the homogeneous one dimension diffusion equation
[18]
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 , 0,0  tx  .              (40)

With initial condition
)()0,( xgxu  ,           (41)

And boundary conditions
0),0( tu , 0),( tu  .             (42)

According to the homotopy (36), we have;
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Beginning with )(00 xguv   and from the recreation formula (39) we have
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Other components can be determined in a like manner as far as we like. The
accuracy level can be effectively improved by increasing the number of
components determined. Then the series solution of Eq. (40) obtain by setting

1p  in Eq. (37)
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Example (2.4.8) Consider the homogeneous one dimension diffusion equation
[18]
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With initial condition
xxu sin)0,(  ,       (46)

And boundary conditions
0),0( tu , 0),( tu  .       (47)
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According to homotopy (36), we have;
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Beginning with xuv sin00   and from the recreation formula (39) we have;
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Then the approximate solution of Eq. (42) obtain by setting 1p  in Eq. (37)
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Which is an exact solution.
Example (2.4.9) Consider the one-dimensional initial boundary value problem
which describes the heat-like models [22]
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With initial condition
2)0,( xxu  ,         (50)

And boundary conditions
0),0( tu , tetu ),1( .     (51)

According to homotopy (36), we have:
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Beginning with xuv sin00   and from recreation formula (39) we have
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Then the approximate solution of Eq. (42) obtain by setting 1p  in Eq. (37)
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Which is an exact solution.

Example (2.4.10) Consider the inhomogeneous one dimension diffusion
equation [23]
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 , 0,0  tx     (54)

With initial condition:
0)0,( xu ,          (55)

And boundary conditions:
tetu  1),0( , 1),(  tetu  .        (56)

According to homotopy (36), we have;
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Beginning with 000  uv  and from the recreation formula (36) we have;
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Then the approximate solution of Eq. (54) obtain by setting 1p  in Eq. (37)

  xe
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txtxu t cos1...
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   (58)

Which is an exact solution.



40

2.5: The Wave Equations

Since the governing equations on many experiments in engineering as well as
science leads to the wave equation. The wave equation usually describes water
waves, the vibrations of a string or a membrane, the propagation of
electromagnetic and sound waves, or the transmission of electric signals in a
cable. Analytical methods commonly used for solving the wave equation are
Very restricted and can be used in very special cases so they can not be used to
solve equations of numerous realistic scenarios. Numerical techniques, which
are commonly used, encounter difficulties in terms of the size of computational
works needed and usually the round–off error causes the loss of accuracy. The
homotopy perturbation method has been widely used with promising results in
linear and nonlinear partial differential equations that describe wave
propagations [22,25,26].in this section; we will apply the HPM to handle the
wave equation. This method has proven to be very effective and results in
considerable saving in computation time.

Now consider the following homogeneous wave equation
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 , 0,0  tLx              (59)

With initial conditions:

)()0,( xfxu  , )()0,( xgx
t
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 .      (60)

And boundary conditions:
0),0( tu , 0),( tLu .       (61)

In order to solve Eq. (39) with the initial conditions (31), (i.e., t solution) by
the HPM, we construct the following homotopy:
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Assume the solution of Eq. (59) has the following form
...2

2
10  vppvvv     (63)

Putting (63) into (62) and comparing the coefficients of identical degrees of p,
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We always start with )()(0 xgtxfv  as initial approximate. Appling the

inverse operator dtdt
t t
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)(  to above system we obtain;

























   )(
!3

)(
!2

32
2

0 0
2

0
2

2
0

2
2

1 xg
t

xf
t

cdtdt
t

u

x

v
cv

t t

,





















   )(
!5

)(
!4

)4(
5

)4(
4

)4(

0 0
2
1

2
2

2 xg
t

xf
t

cdtdt
x

v
cv

t t

,





















   )(
!7

)(
!6

)6(
7

)4(
4

)6(

0 0
2
2

2
2

3 xg
t

xf
t

cdtdt
x

v
cv

t t



By continuing the calculation, we thus have the solution given by
...210  vvvu
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It is important to note that we can also obtained the ( x solution) by using the
boundary conditions in this way requires more work because the boundary
condition ),0( tvx is not always available. To give a clear overview of the HPM

method, we have selected homogeneous and inhomogeneous equations to
illustrate the procedure discussed above.



42

Example (2.5.11) Consider the wave equation in the infinite domain [26]
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With initial conditions:
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With xxf sin)(   and xxg cos)(  , we find

,sin)1()()2( xxf nn  ,...2,1,0n         (68)

And
,cos)1()()2( xxg nn  ,...2,1,0n            (69)

Substituting Eq. (68) and (69) into (65) produces
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And in a closed form by
)sin(),( txtxu      (70)

 This is the same as D'Alembert solution [18]

Example (2.5.12) Consider the following inhomogeneous wave equation [18]
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With initial conditions

0)0,( xu , xx
t

u
sin)0,( 


 .          (72)

And boundary conditions
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u
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 .            (73)

To solve Eq. (71) with the initial condition (72), by the HPM, we construct the
following homotopy:
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              (74)

Assume the solution of Eq. (74) has the form Eq. (63) substituting (63) in (74)
and comparing the coefficients of identical degrees of p,
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Start with xtv sin0  as initial approximate. Appling the inverse operator

dtdt
t t

 
0 0

)(  to above system we obtain;
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Then the approximate solution of Eq. (71) obtain by setting 1p  in Eq. (63)
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Which is an exact solution.

Example (2.5.13) Consider two-dimension initial boundary value problem
which describes the wave-like models [26]
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Subject to the initial conditions:
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And the Neumann boundary conditions:
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To solve Eq. (77) with the initial condition (78), by the HPM, we construct the
following homotopy:
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Assume the solution of Eq. (80) has the form Eq. (63) substituting (63) in (80)
and comparing the coefficient of identical degrees of p,
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Start with tyxv 42
0  as initial approximate. Appling the inverse operator

dtdt
t t

 
0 0

)(  to above system we obtain;
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Then the approximate solution of Eq. (77) obtained by setting 1p  in Eq. (63)
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Which is an exact solution.
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2.6: The Laplace Equation
The Laplace equation is often encountered in heat and mass transfer theory,
fluid mechanics, elasticity, electrostatics, and other areas of mechanics and
physics. The two-dimensional Laplace equation has the following form:

0
2

2

2

2









y

u

x

u         (83)

Or
02                                                                                             (84)

Where 2  is laplacian.
The Dirichlet boundary conditions for Laplace’s equation consist in finding a
solution of u  on domain D  such that on the boundary of D  is equal to some
given function [15,18].One physical interpretation of this problem which arises
in heat equations is as follows: fix the temperature on the boundary of the
domain and wait until the temperature in the interior does not change anymore;
the temperature distribution in the interior will then be given by the solution to
the corresponding Dirichlet problem. The Neumann boundary conditions for
Laplace’s equation specify not the function itself on the boundary of D, but its
Normal derivative [15,18]. Physically, this is similar to the construction of a
potential for a vector field whose effect is known at the boundary of D alone.
In this section, we will apply the (HPM) to Laplace’s equation with specified
boundary conditions [27,28].
Now consider the two dimension Laplace equation
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With boundary conditions
0),0( yu , )(),( yfyau  ,
0)0,( xu , 0),( bxu .                                             (86)

In order to solve Eq. (85), by the HPM, with boundary conditions (86) (i.e.,
y solution), we construct the following homotopy:
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Assume the solution of Eq. (86) has the following form
...2

2
10  vppvvv         (88)

Putting (88) into (86) and comparing the coefficient of identical degrees of p,
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We note that   )(0, xgxu y  , boundary condition that is not given but will be

determined   now start with )(0 xgyv  as initial approximate. Appling the

inverse operator dydy
y y
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)(  to above system we obtain;
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By continuing the calculation, we thus have the solution given by
...210  vvvu
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To complete the determination of the solution of ),( yxu , we should determine
)(xg This can be easily done by using the inhomogeneous boundary condition

)(),( yfyau  . Substituting ax  into (89), using the Taylor expansion for
)(yf and equating the coefficients of like terms in both sides’ leads to the

complete determination of )(xg .

Example (2.6.14) Consider the two dimension Laplace equation [27]
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With Dirichlet boundary conditions:
0),0( yu , yyu sinsinh),(   ,
0)0,( xu , 0),( xu .                                                        (93)

According to homotopy (86), we have;
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Beginning with )(0 xgyv  and according to Eq. (90) the solution of (92) reads;
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To determine the function )(xg , we use the inhomogeneous boundary condition
yyu sinsinh),(   , and by using the Taylor expansion of ysin  we obtain
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Equating the coefficient of like terms on both sides gives
 sinh)()()( )4(  ggg           (95)

This means that
xxg sinh)(                                                                                    (96)

The only function that when substituted in (90) will also satisfy the remaining
Boundary conditions, consequently, the solution is given by
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And in a closed form
yxyxu sinsinh),(  (98)

Example (2.6.15) Consider the two dimension Laplace equation [27]
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With Neumann boundary conditions:
0),0( yu x , 0),( yu x  ,

xxu y cos)0,(  , xxu y coscosh),(   .                                    (100)

In order to solve Eq. (99), by the HPM, with boundary conditions (100) (i.e.,
x solution), we construct the following homotopy:
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Assume the solution of Eq. (101) has the form (88) substituting (88) into (101)
And comparing the coefficient of identical degrees of p,
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We note that   )(,0 yhyu  , boundary condition that is not given but will be

determined   now start with )(0 yhv  as initial approximate. Appling the inverse

operator dxdx
x x

 
0 0

)(  to above system we obtain;
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By continuing the calculation, we thus have the solution given by
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To determine )(yh , we use the boundary condition xxu y coscosh),(    to obtain
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  Equating the coefficients of like terms on both sides we get;
 cosh...)()()( )5(  hhh                                      (106)

Then
yyh sinh)( 

Consequently, the solution is given by;









 ...

!4!2
1sinh),(

42 xx
yyxu           (107)

It is worth pointing out that the Neumann problem has a property that the
solution is determined up to an arbitrary additive constant which cannot be
defined by this method or even separation of variables [18]. So, the solution is
given in the closed form as

xyCyxu cossinh),( 

The important things which we want to mentioned here, the results of this
section were published as scientific paper in [80,81].
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CHAPTER THREE

APPLICATION OF HOMOTOPY PERTURBATION
METHOD TO LINEAR AND NONLINEAR

PHYSICAL MODELS

3.1: Introduction

This chapter is devoted to treatments of linear and nonlinear particular
applications that appear in applied sciences. A wide variety of physically
significant problems modeled by linear and nonlinear partial differential
equations has been the focus of extensive studies for the last decades. A huge
size of research and investigation has been invested in these scientific
applications. Nonlinear PDEs have undergone remarkable developments.
Nonlinear problems arise in different areas including gravitation, chemical
reaction, fluid dynamics, dispersion, nonlinear optics, plasma physics,
acoustics, inviscid fluids and others.

The importance of obtaining the exact or approximate solutions of nonlinear
partial differential equations in physics and mathematics is still a significant
problem that needs new methods to discover exact or approximate solutions.
Most new nonlinear equations do not have a precise analytic solution; so,
numerical methods have largely been used to handle these equations. There are
also analytic techniques for nonlinear equations. Some of the classic analytic
methods are Lyapunov’s artificial small parameter method, perturbation
techniques, δ-expansion method, and Hirota bilinear method. In recent years,
many authors have paid attention to studying the solutions of nonlinear partial
differential equations by using various methods. Among these are the Adomian
decomposition method (ADM), He’s semi-inverse method, the tanh method,
the sinh–cosh method, the differential transform method and the variational
iteration method (VIM).

In this chapter, the homotopy perturbation method, the modified homotopy
perturbation method, and the self-canceling noise-terms phenomenon will be
employed in the treatments of these physical models.
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3.2: He’s Polynomials

The homotopy perturbation method has been outlined before in previous
chapters and has been applied to a wide class of linear partial differential
equation; the method has been applied directly and straightforward manner to
homogeneous and inhomogeneous problems without any restrictive assumption
or linearization. The method considered the solution as a summation of an
infinite series usually converging to the solution. The homotopy perturbation
method will be applied in this chapter to handle nonlinear partial differential
equations. An important remark should be made here concerning the
representation of the nonlinear terms that appear in the equation, although the
linear term is expressed as an infinite series of components. The homotopy
perturbation method requires special representation for nonlinear terms such as
nonlinear polynomials, trigonometric nonlinearity, hyperbolic nonlinearity,
exponential nonlinearity and logarithmic nonlinearity that arise in nonlinear
equations. The method introduces a formula logarithm to establish a proper
representation for all nonlinear terms, the representation of nonlinear term is
necessary to handle the nonlinear equations in an effective and successful way,
in the [29] Asghar Ghorbani introduced the a logarithm for calculating the
polynomials that expressed the nonlinear terms as polynomials, and this
polynomial are called He’s polynomials.

3.2.1: Homotopy Perturbation Method
 Now consider the functional equation

fuu  )(                                                                                     (1)
Where   is nonlinear operator from Hilbert space H to H , u is unknown
function, and f  is known function in .
Consider Eq. (1), in the form,

0)()()(  vxfvvL                                                                 (2)
With solution )(xu . As a possible remedy, we can define homotopy ),( pv as

follows:
)()0,( vFv  , )()1,( vLv 

Where )( pF  is an integral operator with known solution 0v  which can be
obtained easily, typically we may choose a convex homotopy in the form

0)()()1(),(  vpLvFppv                                      (3)
And continuously trace implicitly defined curve from starting point

)()0,( 0 vFv  , to the solution function )()1,( vLu  , the embedding parameter
p  monotonically increase from zero to unit as the trivial problem 0)( vF  is
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continuously deformed form to original problem 0)( vL , the embedding
parameter  1.0p  can be considered as an expanding parameter

...210  pvpvvv (4)
When 1p , Eq. (3), corresponds to Eqs. (2) and (4) becomes the approximate
of Eq. (2) i.e.

...lim 210
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                                                              (5)

Theorem (3.2.1)
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Proof: Since











100 nk

k
k

n

k
k

k

k
k

k vpvpvpv                                                               (7)

We have such result as following
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Therefore we obtain
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Theorem (3.2.2)
The He’s polynomial can be calculated from the formula
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Proof:
Taking )()()( xfxvvF   and substituting (2) in to (3) we have

0)()()(),(  vpxfxvpv                                                      (10)
According to Maclaurine expansion of )(v  with respect to p  we have;
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Substituting (4) in to (11), we have;
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According to theorem (3.2.1)
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Substituting (4) and (13) in to (10) and equating the indicated powers p , we
have
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Then the He polynomials is defined as follows
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Therefore, the approximate solution obtained by the homotopy perturbation
method can be expressed in He polynomials
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The nonlinear term )(u  can be also expressed in He polynomials
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Where
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Alternatively, the approximate solution can be expressed as follows
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It is interesting to point out that we can obtain He polynomials and the solution
simultaneously making the solution procedure much more attractive an
fascinating. Now the general formula of He polynomial
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Can be simplified as follows
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Other polynomials can be generated in a similar manner.
Notes (3.2.3): Two important observations can be made here,
First: 0  depends only on 0v , 1  depends only on 0v  and 1v , 2  depends only
on 0v , 1v and 2v and so on.

Second: the series 
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n  is general Taylor series about a function 0v  and not

about a point as usually used
Proof:
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Then we have
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A definition which is called it as He’s polynomials has presented by Ghorbani
in [29]. The Adomian decomposition method [30,31,32] is a method to solve
functional equations [33,34,35,36]. The crucial part of this method is
calculating Adomian polynomials. The homotopy perturbation method is used
to calculate Adomian Polynomials [37], making the solution procedure in
Adomian method remarkable simple and straightforward. It is well-known that
the main disadvantage of the Adomian method is the complex and difficult
procedure for calculation the so- Adomian polynomials, in [38] Ozis¸ and
Yıldırım compared Adomian’s method and He’s homotopy perturbation
method for solving certain nonlinear problems. Li also has shown that the
ADM and HPM for solving nonlinear equations are equivalent [39]. Hossein
Jafari [40], proved that He’s polynomials are only Adomian’s polynomials with
different name. We will also show that the standard Adomian decomposition
method and the standard HPM are equivalent when applied for solving
nonlinear functional equations.
In the following an attempt is made to calculate homotopy polynomials for
different forms of nonlinearity that may arise in nonlinear ordinary or partial
differential equations.

3.2.2: Calculation of Homotopy Polynomials n
I. Nonlinear Polynomials

Case 1: 2)( uu 
The polynomials can be obtained as follows:

2
00 u ,

101 2 uu ,
2
1202 2 uuu 

21303 22 uuuu  .

Case 2: 3)( uu 
The polynomials are given by

3
00 u ,
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2
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2
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3
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2
03 63 uuuuuu  .
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Case 3: 4)( uu 
Proceeding as before we find

4
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3
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In a parallel manner, homotopy polynomials can be calculated for nonlinear
polynomials of higher degrees.

II. Nonlinear Derivatives
  Case 1:    2xuu 
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Case 2: 3)( xuu 

The homotopy polynomials are given by
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Case 3: xuuu  )(

The homotopy polynomials for this nonlinearity are given by

x
uu 000  ,

xx
uuuu 10101  ,

0211202 uuuuuu
xxx

 ,

031221303 uuuuuuuu
xxxx

 .

III. Trigonometric Nonlinearity
 Case 1: uu sin)( 
The homotopy polynomials of this form of nonlinearity are given by

00 sin u ,

011 cosuu ,

0
2
1022 sin

!2

1
cos uuuu  ,
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0
3
1021033 cos

!3

1
sincos uuuuuuu  .

Case 2: uu cos)( 
Proceeding as before gives

00 cosu ,

011 sin uu ,

0
2
1022 cos

!2

1
sin uuuu  ,

0
3
1021033 sin

!3

1
cossin uuuuuuu  .

IV. Hyperbolic Nonlinearity
 Case 1: uu sinh)( 
The n polynomials of this form of nonlinearity are given by

00 sinh u ,

011 cosh uu ,

0
2
1022 sinh

!2

1
cosh uuuu  ,

0
3
1021033 cosh

!3

1
sinhcosh uuuuuuu  .

Case 2: uu cosh)( 
The homotopy polynomials are given by

00 cosh u ,

011 sinh uu ,

0
2
1022 cosh

!2

1
sinh uuuu  ,

0
3
1021033 sinh

!3

1
coshsinh uuuuuuu  .

V. Exponential Nonlinearity
 Case 1: ueu  )(

The homotopy polynomials for this form of nonlinearity are given by
0

0
ue ,

0
11

ueu ,

02
122 !2

1 ueuu 







  ,

03
12133 !3

1 ueuuuu 







  .
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Case 2: ueu  )(

Proceeding as before gives
0

0
ue ,

0
11

ueu  ,

02
122 !2

1 ueuu 








 ,

03
12133 !3

1 ueuuuu 








 .

VI. Logarithmic Nonlinearity
Case 1: 0,ln)(  uuu

The n polynomials for logarithmic nonlinearity are given by

00 ln u ,

0

1
1 u

u
 ,

2
0

2
1

0

2
2 2 u

u

u

u
 ,

3
0

3
1

2
0

21

0

3
3 3 u

u

u

uu

u

u
 .

Case 2:   11,1ln)(  uuu

The n polynomials are given by
 00 1ln u ,

0

1
1 1 u

u


 ,

2
0

2
1

0

2
2 2u

u

u

u


   30

3
1

2
0

21

0

3
3

1311 u

u

u

uu

u

u
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3.3: The Nonlinear Advection problem

Nonlinear phenomena have important effects on applied mathematics, physics
and issues related to engineering; many such physical phenomena are modeled
in terms of nonlinear partial differential equations. For example, the advection
Problem which are of the form

),( txf
x

u
u

t

u









)()0,( xgxu                                                          (19)

Arise in various branches of physics, engineering and applied sciences. The
problem has been handled by using the characteristic method and numerical
methods such as Fourier series and Runge-Kutta method.In this section, we
approach the advection problem by utilizing the homotopy perturbation method
to obtain the exact solution [41]. The modified Homotopy perturbation method
and the phenomenon of self-canceling noise term will be used where
appropriate.

To solve Eq. (19) by (HMP), we construct the following homotopy:

0),(00 





 
















txf
t

u

x

v
vp

t

u

t

v  (20)

Assume the solution of Eq. (20) has the following form
 2

2
10 vppvvv  (21)

Substituting Eq. (21) into Eq. (20) and equating the terms of like power p,

0: 000 







t

u

t

v
p ,

),(: 00
0

11 txf
t

u

x

v
v

t

v
p 












 , 0)0,(1 xv                                  (22)

0: 0
1

1
0

22 











x

v
v

x

v
v

t

v
p , 0)0,(2 xv



0:
1

0

1 














j

k

kj
k

jj

x

v
v

t

v
p , 0)0,( xv j , 2j

Starting with )(),(),( 00 xgyxuyxv  , as initial approximate and applying the

inverse operator 
t

dt
0

)(  to above system, we obtain the following recreation

formula,

dttxf
t

u

x

v
vv

t

 





 









0

00
01 ),( ,
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2,
0

1

0

1 










  





 jdt
x

v
vv

t j

k

kj
kj                         (23)

The approximate solution of (20) can be obtained by setting 1p  in Eq. (21)

...lim 210
1




vvvvu
p

                (24)

Example (3.3.4) Consider the homogeneous Advection problem

,0







x

u
u

t

u 2)0,( xxu  . (25)

According to homotopy (36), we have;

000 






















t

u

x

v
vp

t

u

t

v  (26)

Beginning with 2
00 xuv   and from recreation formula (23) we have;

txdt
t

u

x

v
vv

t
3

0

00
01 2















 

24

0

1
0

0
12 5 txdt

x

v
v

x

v
vv

t
















 

33

0

2
0

1
1

0
23 3

42
txdt

x

v
v

x

v
v

x

v
vv

t




















 


Then the approximate solution of Eq. (25) obtain by setting 1p  in Eq. (21)

...lim 210
1




vvvvu
p

...
3

42
52 332432  txtxtxxu                              (27)

Example (3.3.5) Consider the inhomogeneous Advection problem

,2 23 xttxt
x

u
u

t

u









0)0,( xu .            (28)

Standard HPM: According to homotopy (20), we have

02 2300 





 
















xttxt
t

u

x

v
vp

t

u

t

v  (29)

Beginning with 000  uv  and from recreation formula (23), we have;

34
2

34
2

0

2300
01

xtt
xttdtxttxt

t

u

x

v
vv

t







 








  ,

0
0

1
0

0
12 















  dt
x

v
v

x

v
vv

t

,
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986372

7

15

2

34

876534

0

2
0

1
1

0
23

txttxtxtt
dt

x

v
v

x

v
v

x

v
vv

t




















  ,



It is important to recall here that the noise terms appear between the
components 1v and 3v , where the noise terms are those pairs of terms that are

identical but carrying opposite signs. More precisely, the noise terms
3

,
4

34 xtt


Between the components 1v and 3v can be cancelled and the remaining terms of

1v still satisfy the equation. The exact solution is therefore

xttu  2                               (30)
Modified HPM: To solve Eq. (28) by (MHMP), we construct the following
homotopy:

xtxtt
x

v
vp

t

v







 







223             (31)

Assume the solution of Eq. (28) has the form Eq. (21) substituting Eq. (21) in
to Eq. (28) and equating the terms of like power p,

xt
t

v
p 




2: 00 , 0)0,(0 xv

230
0

11 : xtt
x

v
v

t

v
p 








 , 0)0,(1 xv                    (32)

0: 0
1

1
0

22 











x

v
v

x

v
v

t

v
p , 0)0,(2 xv



Appling the inverse operator 
t

dt
0

)(  to above system, we obtain

  xttdxxtv
t

  2

0

0 2 ,

0
0

230
01 






 




  dtxtt
x

v
vv

t

,

1,0  kvk .

It then follows that the solution is
xttyxvyxu  2

0 ),(),(        (33)

This example clearly shows that the solution can be obtained by using two
iterations, and hence the volume of calculation is reduce
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Example (3.3.6) Consider the inhomogeneous Advection problem

),(2sin
2

1
)sin( txtx

x

u
u

t

u









xxu cos)0,(  . (34)

Standard HPM: According to homotopy (20), we have;

0)(2sin
2

1
)sin(00 






 
















txtx
t

u

x

v
vp

t

u

t

v (35)

Beginning with xuv cos00   and from recreation formula (23) we have;

dttxtx
t

u

x

v
vv

t

 





 









0

00
01 )(2sin

2

1
)sin(

xtxxtxxt 2cos
4

1
)(2cos

4

1
cos)cos(2sin

2

1
 ,

dt
x

v
v

x

v
vv

t

 















0

1
0

0
12

xtxxxxtxxt 222 sin)sin(sin2coscos
2

1
2sinsin

4

1


xxtxxxtxtxx 2sinsin
8

1
)(2sinsin

8

1
2sincos)cos(cos 2 

xxtxxtxxtxx 2sincos
2

1
2cossin

4

1
2coscos

4

1
)(2coscos

4

1
 ,

Then the approximate solution of Eq. (34) obtain by setting 1p  in Eq. (21)

...lim 210
1




vvvvu
p

 )2cos()cos(163cos63cos32cos12cos2cos
16

1 22 xttxxtxxxtxu 

 ...3sin62sin8sin2)23cos(3)22cos(4)42cos(16  xtxtxttxtxx (36)

The behavior of the solution(36) obtained by HPM and the exact solution (39)
is shown in Fig (3.3.7) we achieve a good agreement with the actual solution by
using two terms only in HPM derived about.
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Fig (3.3.7) the surfaces show the exact solution in (a) and the approximate
solution given by HPM in (b).

(a) (b)
Modified HPM: To solve Eq. (34) by (MHPM), we construct the Following
homotopy:

)sin()(2sin
2

1
txtx

x

v
vp

t

v







 





             (37)

Assume the solution of Eq. (37) has the form Eq. (21) substituting Eq. (21) in
to Eq. (37) and equating the terms of like power p,

)sin(: 00 tx
t

v
p 




, xxv cos)0,(0 

)(2sin
2

1
: 0

0
11 tx

x

v
v

t

v
p 








 , 0)0,(1 xv                                (38)

0: 0
1

1
0

22 











x

v
v

x

v
v

t

v
p , 0)0,(2 xv



Appling the inverse operator 
t

dt
0

)(  to above system, we obtain

  )cos(sin(cos
0

0 txdxtxxv
t

  ,

0)(2sin
2

1

0

0
01 






 




  dttx
x

v
vv

t

,

1,0  kvk .

It then follows that the solution is
)cos(),(),( 0 txyxvyxu                           (39)

Which is an exact solution.
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3.4: The Klein-Gordon Equation

The Klein–Gordon and sine-Gordon equations model many problems in
classical and quantum mechanics, solitons and condensed matter physics. The
Klein–Gordon equation arise in physics in linear and nonlinear form and it is
has been extensively studied by using traditional method such as finite
difference method, finite element method, Backlund transformations. The
parametric finite-difference method, discrete singular convolution algorithm,
predictor-corrector scheme, variable separated ODE method tanh method,
mapping method, Jacobi elliptic function expansion method and inverse
spectral transform, are presented handling the Sin-Gordon equation.
Approximate analytical solutions of Klein–Gordon equation such a domain
decomposition method, variation iteration method were present to solve the
Sine-Gordon equation. In this section, the HPM will be applied to obtain exact
solution if exist and approximate to the solution for concrete problems, the
modified homotopy perturbation method used where appropriate. [42,43,44,45]

3.4.1: Linear Klein-Gordon Equation

The linear Klein-Gordon equation in its standard form is given by

),(
2

2

2

2

txhau
x

u

t

u









,                                                                 (40)

Subject to the initial conditions

)()0,( xfxu  , )()0,( xgx
t

u



 .                                               (41)

In order to solve Eq. (40) with the initial condition (41), (i.e., t solution) by
the HPM, we construct the following homotopy:

0),(
2

2

2
0

2

2
0

2

2

2


























txhav
x

v

x

u
p

t

u

t

v  (42)

Assume the solution of Eq. (42) has the following form
...2

2
10  vppvvv     (43)

Putting (43) and (41) into (42) and comparing the coefficients of identical
degrees of p,

0:
2

0
2

2
0

2
0 








t

u

t

v
p ,

),(: 02
0

2

2
0

2

2
1

2
1 txhav

t

u

x

v

t

v
p 












 , 0)0,(1 xv , 0)0,(1 



x
t

v
(44)
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0: 12
1

2

2
2

2
2 








av
x

v

t

v
p , 0)0,(2 xv , 0)0,(2 




x
t

v



We always start with )()(0 xgtxfv  as initial approximate. Appling the

inverse operator dtdt
t t

 
0 0

)(  to above system we obtain the following recreation

formula;

  

















t t

dtdttxh
t

u
av

x

v
v

0 0
2

0
2

02
0

2

1 ),( ,

  














 


t t

j
j

j dtdtav
x

v
v

0 0

12

1
2

,  (45)

The approximate solution of (41) can be obtained by setting 1p  in Eq. (43)

...lim 210
1




vvvvu
p

                              (46)

Example (3.4.8) Consider the homogeneous linear Klein Gordon equation [42]

u
x

u

t

u









2

2

2

2

,                                                                              (47)

Subject to the initial conditions

xxu sin1)0,(  , 0)0,( 



x
t

u .                                                (48)

According to homotopy (42), we have;

0
2

2

2
0

2

2
0

2

2

2


























v
x

v

x

u
p

t

u

t

v (49)

Beginning with xv sin10   and from the recreation formula (39) we have;

  















t t t

dtdt
t

u
v

x

v
v

0

2

0
2

0
2

02
0

2

1 2
,

  













t t t

dtdtv
x

v
v

0

4

0

12
1

2

2 24
,

  













t t t

dtdtv
x

v
v

0

6

0

22
2

2

3 720
,
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Hence, the approximate series solution is,

...
720242

sin1),(
242


ttt

xtxu                                                 (50)

And this will, in the limit of infinitely many terms, yield the closed-form
solution

txtxu coshsin),(                                 (51)

Example (3.4.9) Consider the inhomogeneous linear Klein Gordon equation
[42]

txu
x

u

t

u
sinsin22

2

2

2

2









                                                      (52)

Subject to the initial conditions

0)0,( xu , xx
t

u
sin)0,( 


 .                                                     (53)

According to homotopy (42), we have;

0sinsin22
2

2

2
0

2

2
0

2

2

2


























txv
x

v

x

u
p

t

u

t

v (54)

Beginning with xtv sin0   and from the recreation formula (39) we have;

  


























t t

xtt
t

xdtdttx
t

u
v

x

v
v

0

3

0
2

0
2

02
0

2

1 sin2sin2
6

sinsinsin22 ,

  






















t t

xttt
t

xdtdtv
x

v
v

0

3
5

0

12
1

2

2 sin22sin12
20

sin
6

1
2 ,

  






















t t

xtttt
t

xdtdtv
x

v
v

0

35
7

0

22
2

2

3 sin2402sin240
42

sin
120

1
2 ,



Hence, the approximate series solution is









 

!9!7!5!3
sin),(

9753 tttt
txtxu                                     (55)

And this will, in the limit of infinitely many terms, yield the closed-form
solution

txtxu sinsin),(      (56)
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3.4.2: Nonlinear Klein-Gordon Equation

The nonlinear Klein-Gordon equation in its standard form is given by:

),(
2

2

2

2

txhuu
x

u

t

u k 







 ,                                                     (57)

Subject to the initial conditions

)()0,( xfxu  , )()0,( xgx
t

u



 .                                               (58)

Where ,   and   are known constants, when 2k we have quadratic
nonlinearity and when 3k  we have cubic nonlinearity
Now to solve Eq. (57) with the initial condition (58), (i.e., t solution) by the
HPM, we construct the following homotopy:

0),(
2

2

2
0

2

2
0

2

2

2


























txhvv
x

v

x

u
p

t

u

t

v k  (59)

Assume the solution of Eq. (59) has the following form
 2

2
10 vppvvv     (60)

Putting (58) and (60) into (59) and comparing the coefficient of identical
degrees of p,

0:
2

0
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2
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2
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p ,
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2
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2
1

2
1 txhvv

x

v

t

u

t

v
p k 
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x
t

v
(61)

0: 1
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0
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2

2
2 






 kvkvv

x

v

t

v
p  , 0)0,(2 xv , 0)0,(2 




x
t

v



We always start with )()(0 xgtxfv  as initial approximate. Appling the

inverse operator dtdt
t t

 
0 0

)(  to above system we obtain:

  

















t t

k dtdttxh
x

u
vv

x

v
v

0 0
2
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2

002
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1 ),( ,

  












 
t t
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x

v
v

0 0

1
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1
2

2  ,  (62)



The approximate solution of (57) can be obtained by setting 1p  in Eq. (43)

...lim 210
1




vvvvu
p

                                                               (63)
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Example (3.4.10) Consider the inhomogeneous nonlinear Klein Gordon
equation [42]

txtxu
x

u

t

u 222
2

2

2

2

coscos 







,                         (64)

Subject to the initial conditions

xxu )0,( , 0)0,( 



x
t

u .                                                         (65)

Standard HPM: According to the homotopy (59), we have;

0coscos 222
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2
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txtxv
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u
p

t

u

t

v (66)

Beginning with xv 0  and from (62) we have;
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v
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4

22

0 0

102
1

2

2 2
248

1

16

1
2 xtx

t
txdtdtvv

x

v
v

t t














  

xxxtx
xtxtx
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1
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The approximate solution of (57) can be obtained by setting 1p  in Eq. (43)


 210

1
lim vvvvu
p

                                 (66)

Modified HPM: To solve Eq. (64) by (MHMP), we construct the Following
homotopy;

txtxv
x

v
p

t

v
coscos 222

2

2

2

2
















  (67)

Assume the solution of Eq. (64) has the form Eq. (43) substituting Eq. (43) into
Eq. (64) and equating the terms of like power p,

tx
t

v
p cos:

2
0

2
0 



, xxv )0,(0  , 0)0,(0 



x
t

v
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x

v

t

v
p 222
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2
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2
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x
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02: 102
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v
p , 0)0,(2 xv , 0)0,(2 




x
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Appling the inverse operator dtdt
t t

 
0 0

)(  to above system, we obtain:

  txdtdttxxv
t t

coscos
0 0
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0cos
0 0
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0
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t t

dtdttxv
x

v
v ,

1,0  kvk .

It then follows that the solution is
txyxvyxu cos),(),( 0                           (69)

Which is an exact solution.
Example (3.4.11) Consider the nonlinear Klein Gordon equation with cubic
nonlinearity [42]

6323
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2 txxtxuu
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,     (70)

Subject to the initial conditions

0)0,( xu , 0)0,( 
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u .                                                         (71)

According to the homotopy (59), we have;

02 6323
2

2

2
0

2

2
0

2

2

2


























txxtxvv
x

v

t

u
p

t

u

t

v (72)

Beginning with 00 v  and from (62) we have;
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It is obvious that the self-canceling ‘noise’ terms appear between various
components, looking into the last terms 1v and the first term 2v  is the self-
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canceling ‘noise’ terms. Hence, the non-noise term in 1v yields the exact

solution of Equation (70), given by

2),( xttxu     (73)

3.4.2: Sine-Gordon Equation
The standard form of sin-Gordon equation is given by:

0sin
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2
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2

2









u
x

u
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u
                                                                (74)

)()0,( xfxu  , )()0,( xgx
t

u



 . (75)

Where c and are constants.

Now to solve Eq. (74) with the initial conditions (75), (i.e., t solution) by the

HPM, the homotopy taking
1206

sin
53 uu

uu  , and we construct the following

homotopy:

0
1206

53

2

2
2

2
0

2

2
0

2

2

2
































 vv

v
x

v
c

t

u
p

t

u

t

v
  (76)

Assume the solution of Eq. (76) has the following form
 2

2
10 vppvvv     (77)

Putting (77) into (76) and comparing the coefficients of identical degrees of p,
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x
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We always start with )()(0 xgtxfv  as initial approximate. And solving above

system with dtdt
t t

 
0 0

)( give an approximate solution

...lim 210
1




vvvvu
p

                                                               (79)
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Example (3.4.12) Consider the sine-Gordon equation [42,43]
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The exact solution is
 hxttxu sectan4),( 1                                                                   (82)

According to homotopy (76), we have;
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Assume the solution of Eq. (83) has the form (77) substituting (77) into (83)
And comparing the coefficients of identical degrees of p,

0:
2

0
2

2
0

2
0 








t

u

t

v
p ,

0
120

1

6

1
: 5

0
3
002

0
2

2
0

2

2
1

2
1 












vvv
x

v

t

u

t

v
p , 0)0,(1 xv , 0)0,(1 




x
t

v

0
24

1

2

1
: 1

4
010

2
12

1
2

2
2

2
2 








vvvvv
x

v

t

v
p , 0)0,(2 xv , 0)0,(2 




x
t

v
      (84)



Start with hxtv sec40   and integrating above system with dtdt
t t

 
0 0

)( , we get;
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Hence, the 3-term HPM solution is
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txu 2cosh143000cosh4290cosh336967040
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9



xtxtxtxt 44664846 cosh405405cosh143000cosh51480cosh308880 
xx 86 cosh2027025cosh675675               (85)
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Fig (3.4.13) shows a very good agreement between the 3-term HPM (85) and
the exact solution (82)

                       (a)                                                                   (b)

(a) The exact solution, (b) the approximate solution given by HPM

3.4.3: The Modified of HPM to Sine-Gordon Equation
The sine –Gordon equation it is inevitable that we have to solve equation that
involve usin , this makes it very complicate to solve sine-Gordon equation, to
avoid this disadvantage, we apply the modified HP M [43]
Now to solve Eq. (74) by the modified of HPM, we construct the following
homotopy;
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To obtain the approximate solution of Eq. (86) we consider the Taylor
expansion of vsin  in the following
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Assume the solution of Eq. (86) has the form (77) substituting (77) and (87)
into (86) and comparing the coefficients of identical degrees of p,
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Solving these equations by applying dtdt
t t

 
0 0

)( , give an approximate solution


 210

1
lim vvvvu
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Obviously it is easy calculate more components to improve that accuracy of
approximate solution.

Example (3.4.14) Consider the sine –Gordon (80) with initial conditions (81)
To solve Eq. (80) by MHPM according to homotopy (86), we have;
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Assume the solution of Eq. (89) has the form (77) substituting (77) and (87) in
to (89) and comparing the coefficient of identical degrees of p,

0:
2
0

2
0 



t

v
p , 0)0,(0 xv , hxx

t

v
sec4)0,(0 




0: 02
0

2

2
1

2
1 








v
x

v

t

v
p  , 0)0,(1 xv , 0)0,(1 




x
t

v

,0: 12
1

2

2
2

2
2 








v
x

v

t

v
p 0)0,(2 xv , 0)0,(2 




x
t

v
         (90)

,0
!3

:
3
0

22
2

2

2
3

2
3 






 v

v
x

v

t

v
p 0)0,(3 xv , 0)0,(3 




x
t

v



By applying the inverse operator dtdt
t t
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)( , to Eqs. (90) We obtain
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Then this approach leads to the third-order approximation
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Fig (3.4.15) we plot the results for the analytical solution (82) and the
approximate solutions (91) obtained with MHPM

(a) (b)

(a) The exact solution, (b) the approximate solution given by MHPM
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3.5: The Burgers’ Equation

Burgers’ equation is used to describe various kinds of phenomena such as
turbulence and the approximate theory of flow through a shock wave traveling
in a viscous fluid; one and two dimensional Burgers’ equations are quite
famous in wave theory, which has applications in gas dynamics and in plasma
physics. Great potential of research work has been invested on Burgers
equation. Several exact solutions have been derived by using distinct
approaches. In this section, we have employed HPM, to
Solve one and two dimensional Burgers’ equation [46, 47, 48, 49, 50, 51].

3.5.1: On-Dimensional Burger’s Equation
Consider the following one- dimensional Burgers’ Equation
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Subject to the conditions
)()0,( 0 xfxu  , lx 0                    (93)

And
)(),0( 1 tftu  , )(),0( 2 tftu x  , 0t                                                  (94)

To solve Eq. (94) by (HMP), we construct the following homotopy:
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Assume the solution of Eq. (95) has the following form
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2
10 vppvvv            (96)

Substituting Eq. (96) into Eq. (95) and equating the terms of like power p,
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Starting with )(),(),( 000 xfyxuyxv  , so we derive the following recurrent

relation



75

,...3,2,1,
0

1

0

1

2

1
2




















  





 jdt
x

v
v

x

v
v

t j

k

kj
k

j
j      (98)

An approximate to the solution of (92) can be obtained by setting 1p
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Similarly, to solve Eq. (92) with boundary conditions (94) we construct the
following homotopy:
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With initial approximate )()(),(),( 2100 txftfyxuyxv 

Suppose the solution of Eq. (100) has the form (96), then
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An approximate to the solution of (92) can be obtained by setting 1p
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Example (3.5.16) Consider the following one-dimensional Burgers’ equation
[46]
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Subject to the initial condition
xxu 2)0,(    (104)

According to homotopy (95), we have;
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Beginning with xuv 200   and from the recreation formula (98) we have;
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Then the approximate solution of Eq. (103) obtain by setting 1p  in Eq. (96)
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In closed form
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Example (3.5.17) Consider the following one-dimensional Burgers’ equation
[46]
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Subject to the boundary conditions
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According to homotopy (100), we have;
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have;
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Then the approximate solution of Eq. (108) obtain by setting 1p  in Eq. (96)
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In closed form
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Which is an exact solution.

3.5.2: Two-Dimensional Burgers’ Equations

Consider the following system of two-dimensional Burgers’ Equations [46]
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Subject to the conditions
Dyxyxfyxu  ),(),,()0,,( ,
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And
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Here,  bxabxayxD  ,),,( , D  denotes the boundary of D , ),,( tyxu and

),,( tyxv Are the velocity components to be determined, R is the Reynolds

number. In order to solve Eq. (113) with the initial conditions (114), (i.e.,
t solution) by the HPM, we construct the following homotopy:
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Suppose the solution of Eq. (116) has the form
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Substituting (17) into (16), and equating the terms with the identical powers of
p,
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An approximation to the solution of (113) can be obtained by setting p= 1,
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Example (3.5.18) Consider the following two-dimensional Burgers’ equation
(113) (R=1) [46] with following initial conditions

yxyxu )0,,(

yxyxv )0,,(   (120)

According to homotopy (116), we have;
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Start with
yxUu  00
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And from recreation the formula (119) we have;
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Then the approximate solution of Eq. (120) obtained by setting 1p  in Eq.

(117)
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Which are exact solution.
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3.5.3: (1+2) Burgers’ Equations
Example (3.5.19) Consider the following (1+2) Burgers’ Equation [47]
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Subject to the condition
yxyxu )0,,(    (125)

To solve Eq. (124) by (HMP), we construct the following homotopy:
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Assume the solution of Eq. (124) has the form (96) Substituting Eq. (96) into
Eq. (126) and equating the terms of like power p,
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An approximate to the solution of (124) can be obtained by setting 1p
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The exact solution is expressed as
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3.6: The Nonlinear Schrödinger Equation
The nonlinear Schrödinger equations occur in various areas of physics,
including nonlinear optics, plasma physics, superconductivity and quantum
mechanics. The Schrödinger equation generally exhibits solitary type solutions.
A soliton, or solitary wave, is a wave where the speed of propagation is
independent of the amplitude of the wave. Solitons usually occur in fluid
mechanics. The inverse scattering method is usually used to handle the
nonlinear Schrödinger equation where solitary type solutions were derived.
The nonlinear Schrödinger equation will be handled differently in this section,
by using the homotopy perturbation method [52,53,54,55]. Consider the
following Schrödinger equation with the following initial condition [52]
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Where )(Xd  is the trapping potential and d is a real constant

uuu 2 And u  is conjugate of u

To solve Eq. (130) by homotopy perturbation method, we construct the
following homotopy:
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Assume the solution of Eq. (130) has the following form
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Substituting Eq. (132) into Eq. (131), and equating the terms of like power p,
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Starting with )(),(),( 0
00 XutXutXv  , having this assumption we get the

following recurrent relation recreation

,...3,2,1,)(
2

1

0

1

0

1

0
111
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 jdtvvvvXviv

t j

i

ij

k
ikjkidjdjj  (134)

An approximate to the solution of (130) can be obtained by setting 1p ,

...lim 210
1




vvvvu
p

Example (3.6.20) Consider the following one-dimensional Schrödinger
equation with the following initial condition [52]

uu
x

u

t

txu
i

2

2

2

2

1),(








 , 0t

  ixexu 0, . (135)

According to homotopy (131), we have;

0
2

1 02
2

2
0 
































t

u
vv

x

v
ip

t

u

t

v                                         (136)

Starting with ixeuv  00 and by using (134) we obtain the recurrence relation
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k
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The solution reads
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2
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3 48

1
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  ,



An approximate to the solution of (135) can be obtained by setting 1p
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1
),( 32  ixixixix eiteititeetxu
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1      (138)

In closed form
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Example (3.6.21) Consider the following one-dimensional Schrödinger
equation with the following initial condition [52]

uuxu
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  xxu sin0,  . (140)

According to homotopy (131), we have;
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Starting with xuv sin00  and by using (134) we obtain the recurrence relation
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The solution reads
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An approximate to the solution of (135) can be obtained by setting 1p
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 xitxitxitx (143)

In closed form

xetxu
it

sin),( 2

3


                                         (144)

Which is an exact solution.
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Example (3.6.22) Consider the following two-dimensional Schrödinger
equation [52]

  uuuyx
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  yxyxu sinsin0,,  , (145)

Where   yxyx 22 sinsin1, 

According to homotopy (131), we have;
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Starting with yxuv sinsin00  and by using (134) we obtain the recurrence

relation
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The solution reads
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An approximate to the solution of (135) can be obtained by setting 1p

...sinsin
3

4
sin2sinsin2sinsin),( 32  yxitxtyxityxtxu

      ...sinsin2
!3

1
sinsin2

!2

1
sin2

!1

1
sinsin 32  yxityxitxityx (148)

In closed form
yxetxu it sinsin),( 2   (149)

Which is an exact solution.
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3.7: The Goursat problem

The Goursat problem arises in linear and nonlinear partial differential equations
with mixed derivatives. The standard form of the Goursat problem is given by:

 yx uuutxf
tx

u
,,,,

2



 , btabxa  ,

)()0,( xgxu  , )(),0( thtu  , )0,0()0()0( uhg  . (150)

This equation has been examined by several methods, such as Runge–Kutta
method, Adomian decomposition method, variational iteration method and
geometric mean averaging, for the functional values of  yx uuutxf ,,,, . It is

worth to note that the major advantage of He’s HPM is that the perturbation
equation can be freely constructed in many ways (therefore it is dependent to
the problems that are interested) by homotopy in topology and the initial
approximation can also be freely selected. In this section we employ the HPM
[56,57], to solve linear and nonlinear Goursat problem with different initial
conditions

3.7.1: The Homogeneous Linear Goursat Problem

We consider the homogenous linear Goursat problem [56]

)(
2

uf
tx

u



 ,

)()0,( xgxu  , )(),0( thtu  , )0,0()0()0( uhg  . (151)

In order to solve Equation (151) by HPM, we construct the following
homotopy:

00
2

0
22





















tx

u
vp

tx

u

tx

v                                                       (152)

Assume the solution of Eq. (152) has the following form
...2

2
10  vppvvv            (153)

Substituting Eq. (153) into Eq. (152) and equating the terms of like power p,
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0: 0
2

0
2

0 








tx

u

tx

v
p ,

0: 0
2

0
1

2
1 








tx

u
v

tx

v
p , 0)0,(1 xv , 0),0(1 tv , 0)0,0(1 v (154)

1
2

2
2 : v

tx

v
p 




 , 0)0,(2 xv , 0),0(2 tv , )0,0(2v



1

2

: 



j

jj v
tx

v
p  , 0)0,(1  xv j , 0),0(1  tv j , )0,0(1jv

Now start with two different initial approximate, in the first way, we start with
)0,0(),0()0,(00 utuxuuv  ,                                  (155)

And in a second way, we start with
)(00 xguv  (156)

Integrating (154) with dxdt
x t

 
0 0

)( , we have the following recurrent equations

,),(
0 0

0
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01   












x t

dtdx
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u
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  ,),(
0 0
 
x t

jj dtdxtxvv 2j (157)

An approximate to the solution of (151) can be obtained by setting 1p

...lim 210
1




vvvvu
p

Example (3.7.23) Consider the homogeneous Goursart problem [56]

u
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,

xexu )0,( , tetu ),0( , 1)0,0( u . (158)

According to homotopy (152), we have;
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v                                                       (159)

First adaptation of HPM: start with 100  tx eeuv , as initial approximate,

and from Eq. (157) we have;
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x
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t
dtdxtxvv tx

x t

  
Then the series solutions expression by HPM can be written in the form

...lim 210
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vvvvu
p

Then, the approximate solution in a series form is
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                        (160)

Second adaptation of HPM: start with xexguv  )(00 , as initial approximate,

and from Eq. (157), we have;

x
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x
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dtdxtxvv
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x
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e
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dtdxtxvv
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3

0 0

23    ,

An approximate to the solution of (158) can be obtained by setting 1p

txx e
tt

tetxu 







 ...

!3!2
1),(

32

(161)

We obtained the solution by choosing a suitable homotopy with different initial
conditions. We showed two adaptations of homotopy: firstly we obtained the
approximate analytical solution of the equation in the form of a convergent
power series with easily computable components and secondly we obtained the
exact solution with less computational work compared with first method.
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3.7.2: The Inhomogeneous Linear Goursat Problem

We consider the inhomogeneous linear Goursat problem [56]

),()(
2

txwuf
tx

u



 ,

)()0,( xgxu  , )(),0( thtu  , )0,0()0()0( uhg  . (162)

In order to solve Eq. (162) by HPM, we construct the following homotopy:

0),( 0
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v                                           (163)

Assume the solution of Eq. (163) has the form (153)
Substituting Eq. (153) into Eq. (162) and equating the terms of like power p,
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v
p  , 0)0,(1  xv j , 0),0(1  tv j , )0,0(1jv

The power of HPM is that we can select the proper zeroth approximation

Now start with two different initial approximate, in the first way we start with
)0.0(),0()0,(00 utuxuuv  ,                                                   (165)

And preferably by using the boundary conditions in the case

Integrating (154) with dxdt
x t

 
0 0

)( , we have the following recurrent equations
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Example (3.7.24) Consider the homogeneous Goursart problem [56]
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According to homotopy (163), we have;
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First adaptation of HPM: start with 100  teeuv tx , as initial

approximate, and from Eq. (166) we have;
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Then, the approximate solution in a series form is
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Second adaptation of HPM: start with xetuv  00 , as initial approximate, and

from Eq. (166) we have;
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An approximate to the solution of (167) can be obtained by setting 1p
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Which is an exact solution of Equation (167)
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Example (3.7.25) Consider the homogeneous Goursart problem [56]
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xexu )0,( , tetu ),0( , 1)0,0( u . (171)

According to homotopy (163), we have;
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First adaptation of HPM: start with 100  tx eeuv , as initial approximate,

and from Eq. (166) we have;
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Then, the approximate solution in a series form is
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Second adaptation of HPM: start with xetxuv  22
00 , as initial approximate,

and from Eq. (166) we have

x
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An approximate to the solution of (171) can be obtained by setting 1p

txx etx
tt

tetxtxu 







 22

32
22 ...

!3!2
1),( (173)

Which is an exact solution of Equation (171)

Also we observe that, the second adaptation in the inhomogeneous problems is
less computational work compared with firs method
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3.7.2: The Nonlinear Goursat Problem

We consider the non-linear Goursat problem

)(
2

u
tx

u



 ,

)()0,( xgxu  , )(),0( thtu  , )0,0()0()0( uhg  . (174)

Where )(u is nonlinear function

In order to solve Eq. (174) by HPM, we construct the following homotopy:
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v (175)

Assume the solution of Eq. (175) has the form (153)
Substituting Eq. (153) in to Eq. (175) and equating the terms of like power p,
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Start with )0,0(),0()0,(00 utuxuuv  and integrating (176) with dxdt
x t

 
0 0

)( ,

then an approximate to the solution of (174), can be obtained by setting 1p ,

...lim 210
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vvvvu
p

Example (3.7.26): Consider the non-linear Goursart problem [56]

utx ee
tx

u 

 2

,

 xexu  1ln22ln)0,( ,  tetu  1ln22ln),0( , 2ln)0,0( u . (177)

In order to solve Equation (177) by HPM, we construct the following
homotopy:
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Assume the solution of Eq. (163) has the form (153)
Substituting Eq. (153) into Eq. (162) and equating the terms of like power p,
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We can start with    tx eeuv  1ln21ln22ln300 and integrating (179)

with dxdt
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)( , we get;
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And so on to not that the integrals involved above can be obtained by
substituting dyedzez yy  ,1 in view

Then the approximate solution in a series form obtained by setting 1p
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Where
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Recall that the Taylor expansion for )1ln( t is given by
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This means that Eq. (181)
     ),(1ln21ln21ln22ln3),( yxKeetxu tx   (183)
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11
1ln21ln21ln22ln3),(

tx

tx
tx

ee

ee
eetxu              (184)

 yx eetxu  ln22ln),(                                                              (185)

The results for the exact solution (185) and the approximate solution (180)
obtained using the HPM are shown in Table (3.7.27) and Fig (3.7.28) it can be
seen from Table (3.7.4) that the solution obtained by the HPM is nearly
identical with the exact solution. It is to be noted that only the second-order
approximate solution was used. To increase the accuracy of the results or to
decrease the error, we increase the number of components.

Table (3.7.27) Numerical results of the exact solution (185) and the
approximate solution (180)

),( tx Exact solution     Approximate solution

(0.0, 0.0) −0.6931471806 −0.6931471806
(0.2, 0.2) −1.093147180 −1.093147839
(0.4, 0.4) −1.493147181 −1.493187785
(0.6, 0.6) −1.893147179 −1.893582447
(0.8, 0.8) −2.293147179 −2.295398534
(1.0, 1.0) −2.693147179 −2.700896101

Fig. (3.7.28): The surfaces show the approximate solutions obtained by HPM
and the exact solution respectively. (a) HPM plot (Eq. (180)); (b) Exact plot Eq.
(185)

(a)                                                     (b)
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3.8: The Korteweg-de Vries (KdV) Equation
The Korteweg-de Vries (KdV) in the general form given by [58]
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u
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u













                                                  (186)

Where 2,1m

The KdV equation arises in a number of different physical applications
Problems, in the study of shallow water waves, in particular, the KdV equation
is used to describe long waves traveling in canals, and the KdV equation has
solitary waves as solution hence it can have number of solitions, several
numerical and analytical techniques were employed to the KdV equation such
as inverse scattering method, Backlund transform method, Adomian
decomposition method, and variational iteration method. In this section, we
will use HPM to study the nonlinear KdV equation [58,59,60,61,62] the
phenomenon of self-canceling “noise terms” will be used where appropriate,
now we discuss two special cases for the Eq. (186)

I- for 1m , 6  or 1  we obtain one of the standard KdV equations
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                                                              (187)

II- for 2m , 6  or 1  equation (186) called modified KdV, (MKdV)

Equation given by
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                                                             (188)

3.8.1: The KdV Equation
Consider the initial value problem
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To solve Eq. (189) by (HMP), we construct the following homotopy;

0),(0
3

3
0 





























txf
t

u

x

v

x

v
vp

t

u

t

v
 (190)

Assume the solution of Eq. (189) has the following form
...2

2
10  vppvvv            (191)
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Substituting Eq. (191) into Eq. (189) and equating the terms of like power p,
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v
p  , 0)0,( xv j , 2j

Starting with )(),(),( 00 xgyxuyxv  , having this assumption we get the

following iterative equations;

,),(
0

0
3
0

3
0

01 dttxf
t

u

x

v

x

v
vv

t

 




















 

,
0

1

0

1

3

1
3

dt
x

v
v

x

v
v

t j

k

kj
k

j
j   

























  2j                               (193)

An approximate to the solution of (189) can be obtained by setting 1p

...lim 210
1




vvvvu
p

Example (3.8.29) Consider the special case of homogeneous nonlinear KdV
equation [58]

06
3

3













x

u

x

u
u

t

u ,

6
)0,(

x
xu  .          (194)

According to the homotopy (192) we have;

06
3

3
00 



























x

v

x

v
v

t

u
p

t

u

t

v                                              (195)

We start with
600

x
uv  , as initial approximate, and from Eq. (193) we have;
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6
6

0

0
3
0

3
0

01

xt
dt

t

u

x

v

x

v
vv

t




















  ,

6
6

2

0
3
1

3
1

0
0

12

xt
dt

x

v

x

v
v

x

v
vv

t


























  ,

6
6

3

0
3
2

3
2

0
1

1
0

23

xt
dt

x

v

x

v
v

x

v
v

x

v
vv

t






























  ,



The approximate solution can be obtained by setting 1p in Eq. (191)

...
6666

lim
32

1




xtxtxtx
vu

p
(196)

This series has closed form

)1(6
).(

t

x
txu


                         (197)

Which is the exact solution of the problem

Example (3.8.30) Consider the special case of homogeneous nonlinear KdV
equation [58]

06
3

3













x

u

x

u
u

t

u ,







 x
k

h
k

xu
2

sec
2

)0,( 2
2

.                 (198)

According to homotopy (192) we have;

06
3

3
00 



























x

v

x

v
v

t

u
p

t

u

t

v                                              (199)

We start with 





 x
k

h
k

uv
2

sec
2

2
2

00 , as initial approximate, and from Eq.

(193) we have;

tx
k

x
k

h
k

dt
t

u

x

v

x

v
vv

t
































  2
tanh

2
sec

2
6 2

5

0

0
3
0

3
0

01 ,

   24
8

0
3
1

3
1

0
0

12 cosh2
2

sec
8

6 tkxx
k

h
k

dt
x

v

x

v
v

x

v
vv

t































  ,

3
11

0
3
2

3
2

0
1

1
0

23 2

3
sinh

2
sinh11

2
sec

48
6 tx

k
x

k
x

k
h

k
dt

x

v

x

v
v

x

v
v

x

v
vv

t
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The approximate solution can be obtained by setting 1p in Eq. (191)

   24
8

2
5

2
2

cosh2
2

sec
82

tanh
2

sec
22

sec
2

tkxx
k

h
k

tx
k

x
k

h
k

x
k

h
k

u 





















...
2

3
sinh

2
sinh11

2
sec

48
3

11























 tx

k
x

k
x

k
h

k (200)

This solution is convergent to the exact solution

 



 


 tkx

k
h

k
txu 22

2

2
sec

2
).(   (201)

The behavior of the solution(200) obtained by HPM and the exact solution
(201) is shown in Fig (3.8.31) we achieve a good agreement with the actual
solution by using four terms only in HPM derived about.

Fig (3.8.31) The surfaces show the approximate solutions obtained by HPM
and the exact solution respectively. (a) HPM plot (Eq. (200)); (b) Exact plot Eq.
(201)

   (a)                                             (b)
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Example (3.8.32) Consider the special case of homogeneous nonlinear KdV
equation [58]

)1sin(cossin
3

3













xtxtx
x

u

x

u
u

t

u ,

0)0,( xu .                                                         (202)

According to the homotopy (192) we have;

0)1sin(cossin
3

3
00 





























xtxtx
x

v

x

v
v

t

u
p

t

u

t

v (203)

We start with 000  uv , as initial approximate, and from Eq. (193) we have;

dtxtxtx
t

u

x

v

x

v
vv

t

 





















0

0
3
0

3
0

01 )1sin(cossin

xxtxtxt cossin
3

1
cos

2

1
sin 32  ,

dt
x

v

x

v
v

x

v
vv

t

 



















0

3
1

3
1

0
0

12

xtxtxxtxt sin
6

1
2cos

3

1
cossin

3

1
cos

2

1 3432  ,



We can easily observe that the last two terms in 1v and the first two terms in

2v are the self-canceling ‘noise’ terms. Hence, the non-noise term in 1v  yields

the exact solution of Equations (202), given by

xttxu sin),(                                                                             (204)

This can be justified through substitution .It is worth mentioning that the
remaining ‘noise’ terms of 2v  will be canceled by other noise terms of the other
components 2, jv j .
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3.8.1: The Modified KdV Equation (MKdV)
Consider the initial value problem

),(
3

3
2 txf

x

u

x

u
u

t

u













 ,

)()0,( xgxu  .                                                                               (205)

To solve Eq. (189) by (HMP), we construct the following homotopy

0),(0
3

3
20 





























txf
t

u

x

v

x

v
vp

t

u

t

v
 (206)

Assume the solution of Eq. (206) has form Eq. (191) Substituting Eq. (191)
Into Eq. (206) and equating the terms of like power p,

0: 000 







t

u

t

v
p ,

),(: 0
3
0

3
02

0
11 txf

t

u

x

v

x

v
v

t

v
p 
















  , 0)0,(1 xv      (207)

02:
3
1

3
12

0
0

10
22 






















x

v

x

v
v

x

v
vv

t

v
p  , 0)0,(2 xv



0:
1

0

1

0

1

3

1
3

































j

i

ij

k

ikj
ki

jjj

x

v
vv

x

v

t

v
p  , 0)0,( xv j , 2j

Starting with )(),(),( 00 xgyxuyxv  , having this assumption we get the

following iterative equations:

,),(
0

0
3
0

3
02

01 dttxf
t

u

x

v

x

v
vv

t

 




















 

,
0

1

0

1

0

1

3

1
3

dt
x

v
vv

x

v
v

t j

i

ij

k

ikj
ji

j
j    





































  2j (208)

An approximate to the solution of (205) can be obtained by setting 1p

...lim 210
1




vvvvu
p
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Example (3.8.33) Consider the inhomogeneous MKdV equation [58]

)1( 3
3

3
2 xtx

x

u

x

u
u

t

u











 ,

0)()0,(  xgxu .  (209)

According to homotopy (206) we have;

0)1( 30
3

3
200 

































xtx
t

u

x

v

x

v
v

t

u
p

t

u

t

v                    (210)

We start with 000  uv , as initial approximate, and from Eqs. (206) we have;

4
)1(

42

0

30
3
0

3
02

01

tx
xtdtxtx

t

u

x

v

x

v
vv

t






















  ,

4163274
2

1351047342

0
3
1

3
12

0
0

102

txtxtxtx
dt

x

v

x

v
v

x

v
vvv

t




















  ,



We can easily observe that the last term in 1v and the first term in 2v are the self-

canceling ‘noise’ terms. Hence, the non-noise term in 1v  yields the exact

solution of Equations (209), given by

xttxu ),(                                                                            (211)
Which is an exact solution of the problem
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3.9: The K (n, n) Equation
The genuinely nonlinear dispersive equation K(n,n) which generalizes of KdV

given by:
    1,,0  anuuu xxx

n
x

n
t                                                    (212)

The K(n,n) equation is characterized by the genuinely nonlinear term  xnu , and

genuinely nonlinear dispersion term,  xxx
nu ,the balance between them gives

rise to the so-called compacton, solitary wave with compact support and
without tails or wings. In this section, we will use HPM [63,64,65] to derive the
numerical and exact compacton solution of the nonlinear dispersive K(n,n)
equation of the following initial conditions:

    0 xxx
n

x
n

t uuu ,

)()0,( xfxu  .                                                                             (213)

To solve Eq. (213) by (HMP), we construct the following homotopy

    00
3

3
0 



























t

u
v

x
v

x
p

t

u

t

v nn (214)

Assume the solution of Eq. (214) has the following form

...2
2

10  vppvvv            (215)

Substituting Eq. (191) into Eq. (189) and equating the terms of like power p,

0: 000 







t

u

t

v
p ,

    0: 0
03

3

0
11 
















t

u
v

x
v

xt

v
p nn  , 0)0,(1 xv             (216)

    0: 1
013

3
1

01
22 










  nn vnv

x
vnv

xt

v
p , 0)0,(2 xv



Starting with )(),(),( 00 xfyxuyxv   and Appling the inverse operator 
t

dt
0

)(  to

Above system, we obtain:
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    ,
0

0
03

3

01 dt
t

u
v

x
v

x
v

t
nn 





















    ,
0

1
013

3
1

012 dtvnv
x

vnv
x

v
t

nn 














                                         (217)



An approximate to the solution of (213) can be obtained by setting 1p

...lim 210
1




vvvvu
p

Example (3.9.34) Consider the K(2,2) equation [63]
    022  xxxxt uuu ,







 xcxu

4

1
cos

3

4
)0,( 2 .                               (218)

According to homotopy (214) we have;

    002
3

3
20 



























t

u
v

x
v

x
p

t

u

t

v (219)

We start with 





 xcuv

4

1
cos

3

4 2
00 , as initial approximate, and from Eqs. (217)

we have;

    

























  xtcdt
t

u
v

x
v

x
v

t

2

1
sin

2

1 2

0

02
03

3
2
01 ,

    





















  xtcdtvv
x

vv
x

v
t

2

1
cos

12

1
22 23

0

103

3

102 ,

    























  xtcdtvvv
x

vvv
x

v
t

2

1
sin

72

1
22 34

0

20
2
13

3

20
2
13 ,



The approximate solution will be as follows:

...
2

1
sin

72

1

2

1
cos

12

1

2

1
sin

2

1

4

1
cos

3

4
),( 342322 



























 xtcxtcxtcxctxu   (220)

This gives the solution in a close form














 


other wise,0

2,)(
4

1
cos

3

4
),(

2 ctxctxc
txu                           (221)

    Which is an exact solution
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The behavior of the solution (220) obtained by the HPM and the exact solution
(221) are shown in Figs. (3.9.35) and (3.9.36) we have plotted these equations
with some different values of ,c t  versus distance x .

Fig (3.9.35)
 The surfaces show the approximate solutions obtained by HPM and the exact
solution, respectively. (a) HPM plot (Eq. (220)); (b) Exact plot (Eq. (221)).

(a) (b)

Fig (3.9.36)
The comparison of the results by HPM and the exact solutions for different
values of c  and t , versus distance x  (a) c  = 2, )2/1(t ; (b) 2c )2/1(t ;
(c) )2/3(c , )2/3(t ; (d) )2/3(c )2/1(t .
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Example (3.9.37) Consider the K(3,3) equation [63]
    033  xxxxt uuu ,







 xc

c
xu

3

1
cos

2

3
)0,( .                                                               (222)

According to homotopy (214) we have;

    003
3

3
30 



























t

u
v

x
v

x
p

t

u

t

v (223)

We start with 





 xc

c
uv

3

1
cos

2

3
00 , as initial approximate, and from Eqs.

(217) we have;

    

























  xtccdt
t

u
v

x
v

x
v

t

3

1
sin6

6

1

0
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03

3
3
01 ,

    





















  xtccdtvv
x
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x

v
t

3

1
cos6

36

1
33 22
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1
2
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3

1
2
02 ,
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1
3333 33

0

2
102

2
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3
2
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2
02



The approximate solution will be as follows;





















 xtccxtccxc

c
txu

3

1
cos6

36

1

3

1
sin6

6

1

3

1
cos

2

3
),( 22

...
3

1
sin6

324

1 33 





 xtcc (224)

This gives the solution in a close form















 



other wise,0

2

3
,)(

3

1
cos

2

3
),(


ctxctx

c
txu  (225)

    Which is exact solution
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The behavior of the solution (224) obtained by HPM and the exact solution
(225) are shown in Figs (3.9.38) and (3.9.39); with different values of c and t ,
versus distance x . We achieve a good agreement with the actual solution by
using four terms only in homotopy perturbation method derived about.
Fig (3.9.38)
 The surfaces show the approximate solutions obtained by HPM and the exact
solution, respectively. (a) HPM plot (Eq. (224)); (b) Exact plot (Eq. (225)).

                   (a)                                       (b)

Fig (3.9.39)
The comparison of the results by HPM and the exact solutions for different
values of c  and t , versus distance x  (a) 3/2c 3/2t ;(b) 3/2c , )10/1(t

(c) )2/5(c , t  =0; (d) )2/5(c )2/7(t .
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CHAPTER FOURE
CONVERGENCE OF THE HOMOTOPY

PERTUTBATION METHOD

4.1: Introduction
In this chapter, we will study the convergence of (HPM); the convergence
concept of the (HPM) was thoroughly investigated by many researchers to
confirm the rapid convergence of the resulting series. Ji-He examined the
convergence of (HPM) in [1]. In addition, J. Biazar presented the sufficient
Condition of convergence [68,69]. However, this theorem requires knowledge
of the exact solution in prior, in [66,67,70 ] the Authors have shown that the
(HPM) converges to the exact desired solution, without a priori knowledge of
the exact solution.

4.2: Theorems of convergence of HPM
To investigate the theorem of the (HPM), we consider the functional equation;

,,0)()(  rrfuA                                                                   (1)
With boundary conditions

,,0, 










r
u

uB


Where A  is differential operator, B  is boundary operator, )(rf is a known
analytic function, and   is boundary of the domain . Generally speaking the
operator A  can be divided in two parts L  and , where L a linear is, and   is a
non linear operator Eq. (1), therefore, can be rewritten as follows:

0)()()(  rfuuL                                                                       (2)
We construct a homotopy which satisfies

     1,0,0)()()()()1(),( 0  prfvApuLvLppv

Or
  ,0)()()()()(),( 00  rfvpupLuLvLpv                           (3)

Where 0u  is an initial approximation of Eq. (1), assume the solution of Eq. (3)
Has the following form







0

210 ...
i

i
ivppvpvvv                                                          (4)

When 1p , Eq. (3) corresponds to Eqs. (2) and (4) becomes the approximate
of Eq. (2) i.e.

...lim 210
1




vvvvu
p

                                                  (5)
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Let’s rewrite the Eq. (3) as the following:
 ,)()()()()( 00 vuLrfpuLvL  (6)

Substituting (4) in (6) leads to:

,)()()(
0

00
0

























 






 i
i

i

i
i

i vpuLrfpuLvpL                 (7)

So

,)()()()(
0

00
0

















 







 i
i

i

i
i

i vpuLrfpuLvpL   (8)

Now we set




















00 i

i
i

i

i
i ppv                        (9)

Where

,...2,1,0,
!

1
),...,,(

00
10 
























 npv
pn

vvv
p

n

i

i
in

n

nn                 (10)

Is He’s polynomials, substituting (9) in (8), we drive;

,)()()()(
0

00
0









 







 i

i
i

i
i

i puLrfpuLvpL                  (11)

By equating the terms with identical powers in p :































,)(:

,)(:

,)()()(:

,0)()(:

1
1

12
2

001
1

00
0

nn
n vLp

vLp

uLrfvLp

uLvLp

(12)

So we derive

   
 

 


































,

,

,)(

,

1
1

1
1

2

0
1

0
1

1

00

nn Lv

Lv

LurfLv

uv

                                                         (13)
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Theorem (4.2.1) Homotopy perturbation method used the solution of Eq. (1)
is equivalent to determining the following sequence;[66]

,1 nn vvs  

,00 s                   (14)

By using the iterative scheme:
   ,)(1

00
1

1 rfLuvsLs nnn


                                              (15)

Where

,2,1,0,
00









 



nv
n

i
i

n

i
in                                                       (16)

Proof: For 0n , from Eq. (15), we have;

   ,)(1
0000

1
1 rfLuvsLs  

   )(1
00

1 rfLuL   (17)

Then
   )(1

00
1

1 rfLuLv                                                             (18)

For :1n

   ,)(1
0011

1
2 rfLuvsLs  

   ,)(1
010

1 rfLuL                                                     (19)

Substituting (18) in (19) we get;
  11

1 vL  

According to ,212 vvs  we get;

 11
2  Lv                                                                                  (20)

This theorem will be proved by strong induction let’s assume that
 kk Lv  


1

1  For 1,,2,1  nk  ,

So    ,)(1
00

1
1 rfLuvsLs nnn


 

 )(1
0

0

1 rfLuL
n

i
i





 







 

     nn

n

i
i LvvvrfLuL  



 1
21

1
0

0

1 )(               (21)

Then, from (14), it can drive;
 nn Lv  


1

1                                                                            (22)

Which is the same as the result of (13) from HPM, and the theorem is proved.
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Theorem (4.2.2) let B  be a Banach space [66]

    (a) The series solution 


0i
iv obtained by (13), convergence to ,Bs if

)10(   , s.t  1 nn vvNn                                                (23)

    (b) 





1i

ivs , satisfies in

   )(1
00

1 rfLuvsLs                                                      (24)

Proof: (a) we have

0
1

1
2

11 vvvvss n
nnnnn


                               (25)

For any mnNmn  ,, , we

     mmnnnnmn ssssssss   1211 

mmnnnn ssssss   1211 

  0
11

0
1

0
1

0

v

vvv
mnn

mnn

















  0
211 1 vmnmnm    

0
1

1

1
v

mn
m




















                                                         (26)

Since 10   , we have 11  mn  ; then,
0lim

,


 mn
mn

ss                                                                             (27)

Then ns , is Caushy sequence in Banach space and it is convergent, i.e.,

svstsBs
i

in
n

 





1

lim.,                                     (28)

(b) From Eq. (15), we have;
   ,)(limlim 1

00
1

1 rfLuvsLs nn
n

n
n










 ,)(lim 1
0

0

1 rfLuvL
n

i
in

n






 







                                                 (29)

 ,)(lim 1
0

0

1 rfLuLs
n

i
i

n
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 ,)(1
0

0

1 rfLuL
i

i






  
But by Eqs. (9) and (16) for 1p , we drive;









 







 00 i
i

i
i v                                                                            (30)

So

 ,)(1
0

0

1 rfLuvLs
i

i






 







 
   )(1

00
1 rfLuvsLs  

Lemma (4.2.3) Eq. (24) is equivalent to; [66]
0)()()(  rfuuL                                                                     (31)

Proof: we rewrite Eq. (24) as fallows;
   )(1

0
1

0 rfLvsLus                                                             (32)

By applying the operator L  to Eq. (32) we derive;
    )(00 rfvsusL                            (33)

But 00 vu  , then;

    )(00 rfvsvsL                                                             (34)

By considering 





0

0
i

ivvsu , Eq. (31), has been derived which is the original

Equation. Then solution of Eq. (24) is the same solution of 0)()(  rfuA .

It is worth mention in other wards we proved in theorem (4.1.2) that the series




0i
i

ivp defined in (4) converges absolutely at 1p  to the solution ,Bs  over

the domain of definition of t , also we proved that if the series solution defined
in (5) is convergent, then it converges to the exact solution of the nonlinear
Problem (1)
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Theorem (4.2.4) Error Estimate [67]

The maximum absolute truncation error of the series solution 


0i
iv of the

problem (1) is estimated to be

0

1

1
vE

M

M 






         (35)

Proof: Making use of inequality (26) of Theorem (4.1.2), we immediately
obtain

0
1

1

1
vsu

Mn
M

M 


















                                                            (36)

And taking into account 11  mn , Eq. (36) directly leads to the desired
formula (35). This completes the proof.

Theorem (4.2.5) (Sufficient Condition of Convergence).[68]
Suppose that X and Y be Banach space and YXN :  is a contraction mapping
that is

10,~)~()(;~,   vvvNvNXvv                                   (37)

Which according to Banach's fixed point theorem, having the fixed pointu , that
is uuN )( .
The sequence generated by the HPM will be regarded as,

)( 1 nn sNs , ,3,2,1,
1

0
1 




 nvs

n

i
in

And suppose that )(000 uBuvs r where  ruuXuuBr  )( , and then

we have the following statements:
(i) ,0 uuus n

n  

(ii) ),(uBs rn 

(iii) usn
n




lim .

Proof: (i) By induction method on, for 1n  we have
uvuNsNus  001 )()( 

Assume that uvus n
n  
 0

1
1   as an induction hypothesis, then

uvuvusuNsNus nn
nnn  
 00

1
11 )()( 

(ii) Using (i), we have
).(0 uBsrruvus rn

nn
n  

(iii) Because of uvus n
n  0 , and 0lim 



n

n
 , we drive 0lim 


usn

n

usn
n




lim
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Example (4.2.6) Consider the following Burgers’ equation [46]

2

2

x

u

x

u
u

t

u










  ,1,0),(  Ryx          (38)

Subject to the initial conditions
xxu 2)0,(  .  (39)

With the exact solution

t

x
txu

21

2
),(


                                                                                  (40)

To solve Eq. (38) with initial condition (39) by (HMP), we construct the
following homotopy:

00
2

2
0 



























t

u

x

v

x

v
vp

t

u

t

v  (41)

Assume the solution of Eq. (40) has the following form
...2

2
10  vppvvv            (42)

Substituting Eq. (42) in to Eq. (41) and equating the terms of like power p,

0: 000 







t

u

t

v
p ,

0: 0
2
0

2
0

0
11 
















t

u

x

v

x

v
v

t

v
p , 0)0,(1 xv                          (43)

0:
2
1

2
0

1
1

0
22 
















x

v

x

v
v

x

v
v

t

v
p , 0)0,(2 xv



0:
2

1
21

0

1 




















 





x

v

x

v
v

t

v
p j

j

k

kj
k

jj , 0)0,( xv j ,

Starting with xyxuyxv 2),(),( 00  , so we derive the following recurrent

relation

,...3,2,1,
0

1

0

1

2

1
2




















  





 jdt
x

v
v

x

v
v

t j

k

kj
k

j
j (44)

The solution reads
xttxv 4),(1 

2
2 8),( xttxv 

3
3 16),( xttxv 


nnn

n xttxv 12)1(),( 



113

Suppose that ),(,
2

1
,0: 1

2






 nn sNsRRN  then:

,000 uvs  ,...3,2,1,
0 0

1

0

1

2

1
2




















 







 ndt
x

v
v

x

v
v

n

j

t j

k

kj
k

j
n                            (45)

And 10,
2

 


t

According to the theorem for nonlinear mapping N , a sufficient condition for
convergence of the HPM is strictly contraction N . Therefore, we have:

,
21

4
21

2
20 t

xt

t

x
xuv







,
212

8
21

8 0

2

101 uv
t

xt

t

xt
uvvus 











 


                               (46)

,
212

16
21

16 0
2

23

2102 uv
t

xt

t

xt
uvvvus 











 





.
212

2
21

2 0
2

1
2

0

uv
t

xt

t

xt
uvus n

n
n

n
n

n

j
jn 











 





 



Therefore,
0limlim 0 


uvus n

n
n

n
 ,                                                       (47)

That is

t

x
stxu n

n 21

2
lim),(





                    (48)

Which is an exact solution

Example (4.2.7) Consider the following Schrödinger equation [52]

uu
x

u

t

txu
i

2

2

2

2

1),(








 ,  2,0),(  Rtx                                    (49)

Subject to initial condition
  ixexu 0, . (50)

With the exact solution







 


txi

etxu 2

1

),(                                            (51)
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To solve Eq. (49) with initial condition (50) by (HMP), we construct the
following homotopy:

0
2

1 02
2

2
0 
































t

u
vv

x

v
ip

t

u

t

v                                         (52)

Assume the solution of Eq. (52) has the following form
...2

2
10  vppvvv            (53)

Substituting Eq. (53) into Eq. (52) and equating the terms of like power p,

0: 000 







t

u

t

v
p ,

0
2

1
: 0

2
02

0
2

011 




















vv
x

v
i

t

u

t

v
p  , 0)0,(1 xv                             (54)

02
2

1
: 2

00102
1

2
22 

















vvvvv
x

v
i

t

v
p , 0)0,(2 xv

022
2

1
: 2

2
01100

2
10202

2
2

33 
















vvvvvvvvvv
x

v
i

t

v
p , 0)0,(3 xv



0
2

1
:

1

0

1

0
12

1
2
































j

i

ij

k
ikjki

jjj vvv
x

v
i

t

v
p  , 0)0,( xv j ,

Starting with initial condition ixeuv  00  Eq. (54) gives

,...3,2,1,
2

1

0

1

0

1

0
12

1
2
















   










 jdtvvv
x

v
iv

t j

i

ij

k
ikjki

j
j (55)

Which has solutions

ixix eititev 







2

1

!1

1

2

1
1

ixix eitetv
2

2
2 2

1

!2

1

8

1








,
2

1

!3

1

48

1
3

3
3

ixix eiteitv 









.
2

1

!

1 ix
n

n eit
n

v 
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Suppose that   0001 ),(,2,0: uvssNsCCRN nn    then:

,...3,2,1,
2

1

0 0

1

0

1

0
12

1
2
















  












 ndtvvv
x

v
iv

n

j

t j

i

ij

k
ikjki

j
n (56)

Thus,

,1 2

1
2

1

0

ittxi
ix eeeuv 







 

,

1

2

1
1

1
2

1
1

2

1

2

1

2

1

2

1

101
it

it

itit

e

eit
eeituvvus






Since, for all  2,0t  we have 1507.0

1

2

1
1

2

1

2

1







it

it

e

eit
, therefore,           (57)

uveus
it

 0
2

1

1 1 

,

2

1
1

82

1
1

2

1
1

82

1
1

2

1

2

12

2

1

2

12

2
it

it

itit

eit

e
t

it
eite

t
itus






But, for all  2,0t , ,336.0

1

82

1
1

2

1

2

12






it

it

eit

e
t

it
 thus

uvus  0
2

2 

,

82

1
1

848

1

2

1
1

82

1
1

848

1

2

1
1

2

12

2

12
3

2

12
2

12
3

3
it

it

itit

e
t

it

e
t

itit
e

t
ite

t
ititus






But, for all  2,0t , 



251.0

82

1
1

848

1

2

1
1

2

12

2

12
3

it

it

e
t

it

e
t

itit
,thus

uvus  0
3

3  ,
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Therefore,
0limlim 0 


uvus n

n
n

n


That is
)

2

1
(

lim),(
txi

n
n

estxu



                                                                     (58)

Which is an exact solution
Example (4.2.8) Consider the fourth-order parabolic equation [52]

01
cos2

1
cos2

1
cos2 4

4

4

4

4

4

2

2










 


























 






z

u

z

yx

y

u

y

xz

x

u

x

zy

t

u

10,
3

,,0  tzyx
                                                                   (59)

Subject to initial condition

    ),coscos(cos0,,,0,,, zyxzyxzyx
t

u
zyxu 



 ,          (60)

And the boundary conditions
  ),coscos1(,,,0 zyzyetzyu t  

,coscos
6

32
,,,

3






 








  zyzyetzyu t 

  ),coscos1(,,0, zxzxetzxu t  

,coscos
6

32
,,

3
, 






 








  zxzxetzxu t                                 (61)

  ),coscos1(,0,, yxyxetyxu t  

,coscos
6

32
,

3
,, 






 








  yxzxetyxu t 

      ,,0,,,,0,,,,0 tetyx
z

u
tzx

y

u
tzy

x

u 











.
2

23
,

3
,,,,

3
,,,,

3
tetyx

z

u
tzx

y

u
tzy

x

u 





























 

The exact solution is
  ),coscoscos(,,, zyxzyxetzyxu t                              (62)

For solving Eq. (60) with the initial condition (61), we construct a homotopy
  41,0:),( Rprv  which satisfies

01
cos2

1
cos2

1
cos2 2

0
2

4

4

4

4

4

4

2
0

2

2

2






















 


























 










t

u

z

v

z

yx

y

v

y

xz

x

v

x

zy
p

t

u

t

v (63)
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Assume the solution of Eq. (63) has the following form
...2

2
10  vppvvv            (64)

Substituting Eq. (64) in to Eq. (63) and equating the terms of like power p,

0:
2
0

2
0

2
0 








t

u

t

v
p ,

01
cos2

1
cos2

1
cos2

:
2

0
2

4
0

4

4
0

4

4
0

4

2
1

2
1 













 


























 






t

u

z

v

z

yx

y

v

y

xz

x

v

x

zy

t

v
p  ,

01
cos2

1
cos2

1
cos2

:
4
1

4

4
1

4

4
1

4

2
2

2
2 









 


























 






z

v

z

yx

y

v

y

xz

x

v

x

zy

t

v
p ,       (65)



01
cos2

1
cos2

1
cos2

:
4

1
4

4

1
4

4

1
4











 




























 





 

z

v

z

yx

y

v

y

xz

x

v

x

zy

t

v
p jjjjj ,

For simplicity we take ).1)(coscoscos(00 tzyxzyxuv 

So we have

  



















 




























 


 
t t

jjj
j dtdt

z

v

z

yx

y

v

y

xz

x

v

x

zy
v

0 0
4

1
4

4

1
4

4

1
4

,1
cos2

1
cos2

1
cos2

,2,1j      (66)

Which has solutions

,
!3!2

)coscoscos(
32

1 









tt
zyxzyxv

,
!5!4

)coscoscos(
54

2 









tt
zyxzyxv

,
!7!6

)coscoscos(
76

3 









tt
zyxzyxv



    ,
!12!2

)coscoscos(
122














n

t

n

t
zyxzyxv

nn

n

Suppose that   0001
43 ),(1,0: uvssNsRRN nn    then:

 
























 




























 



n

j

t t
jjj

j dtdt
z

v

z

yx

y

v

y

xz

x

v

x

zy
v

0 0 0
4

1
4

4

1
4

4

1
4

,1
cos2

1
cos2

1
cos2

,2,1j      (67)
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Thus

,10
tetuv 

,
1

!3!211
!3!2

1

32

32

1 


 



te

tt

ete
tt

tus
t

tt

Since, for all  1,0t  we have 194.0
1

!3!21

32





  

te

tt

t
, therefore,           (68)

,1 01 uvetus t   

te
tttt

tus 
!5!4!3!2

1
5432

2

1
!3!2

!5!41
!3!2

1
32

54

32










tt
te

tt

e
tt

t
t

t

But, for all  1,0t , ,35.0

1
!3!2

!5!41
32

54







 tt
te

tt

t

thus

uvus  0
2

2 

te
tttttt

tus 
!7!6!5!4!3!2

1
765432

3

1
!5!4!3!2

!7!61
!5!4!3!2

1
5432

76

5432










tttt
te

tt

e
tttt

t
t

t

But, for all  2,0t , ,018.0

1
!5!4!3!2

!7!61
5432

76







 tttt
te

tt

t

 thus

uvus  0
3

3  ,



uvus n
n  0
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Therefore,
0limlim 0 


uvus n

n
n

n
                                                             (69)

That is










00 !

)1(
)coscoscos(lim),,,(

n

nnn

j
n n

t
zyxzyxtzyxu

tezyxzyx  )coscoscos(                                               (70)

Which is an exact solution

4.3: Convergence rate of HPM

Definition (4.3.9) for every ,Ni we define;
















.00

,0,1

i

i
i

i

i

v

v
v

v

                                 (71)

  In theorem (4.2.2), 


0i
iv  converges to exact solution, when .10  i

  If iv  and ivare obtained by two different homotopy, and ii    for each

,Ni the rate of convergence of 


0i
iv  is higher than






0i

iv  .

Example (4.3.10) Consider the Lan-Emden equation in the following form

35 30
2

xxuu
x

u 

0)0( u , 0)0( u                                                                       (72)

With the exact solution
5)( xxu                                         (73)

To solve Eq. (72) by (HMP), we consider the linear part as follows
uLu                                                                                          (74)

And construct the following homotopy;







  0

35
0

2
30 uuu

x
xxpUu                                               (75)

Let’s consider the solution u as the summation series;







0i

iuu (76)

Substituting (76) into (75) leads to;
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0

00

35

0
0

2
30 uuu

x
xxpUu

i
i

i
i

i

                                (77)

Beginning with the ,00 u we get;

,
2

3

42

1 57
1 xxu 

,
4024

1

4

3

252

11 957
2 xxxu 

,
332640

1

8

3

216

7

36288

25 11579
3 xxxxu 

,
51891840

1

16

3

9072

179

435456

271

19958400

137 1357911
4 xxxxxu 

155791113
5 01089728640

1

32

3

54432

601

5225472

2245

119850400

8419

148262400

7
xxxxxxu 

By considered ,)(max)(
10

xfxf
x

 we have

5210503471.01 

,5139910140.02 

,5093374003.03 

,5062439696.04 

,5041785188.05 

.5027965117.06 

If the linear part of equation is consider as follows;

.
2 22 






 

dx

du
x

dx

d
xu

x
uLu                                                       (78)

Then we construct the following homotopy







 






 






  00

35
00

2
30

22
u

x
uvxxpu

x
uv

x
v                      (79)

Where

  dxdxxux
dx

d
xuL

xx

  
0

2

0

21 )()(                                                         (80)

Suppose the solution of Eq. (74) has the following form;







0i

i
ivpv (81)

Substituting (76) into (74) and equating the term of like powers, we get;
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0
22

: 0000
0 






 






  u

x
uv

x
vp ,

35
00011

1 30
22

: xxu
x

uvv
x

vp  , 0)0(1 u , 0)0(1 u

0
2

: 122
2  vv

x
vp , 0)0(2 u , 0)0(2 u



Starting with 000  uv , then the solution reads

,
56

1 57
1 xxv 

,
56

1

5040

1 79
2 xxv 

,
5040

1

665280

1 911
3 xxv 

,
665280

1

121080960

1 1113
4 xxv 

,
121080960

1

02905943040

1 1315
5 xxu 

Then;
0177387914.01 

,0110722610.02 

,60075601090.03 

,40054872495.04 

,50041629376.05 

.10032659009.06 

By comparison between the obtained results in the above Example, it can be
concluded that the rate of convergence of homotopy (79) is higher than
homotopy (77) (see Fig. 4.3.11).
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Fig (4.3.11): Plots of solution of HPM and exact solution for Ex. (4.3.10).

exact

ux
vx

The important things which we want to mentioned here, the results of this
section were published as scientific paper in [79].

4 2 2 4

400

200

200

400
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CHAPTER FIVE
HOMOTOPY PERTUTBATIONT TRANSFORM

METHOD

(5.1)Introduction
In this chapter, we use the homotopy perturbation method coupled with the

Laplace transformation, called homotopy perturbation transform method
(HPTM) for solving the linear and nonlinear PDEs. The Laplace transform is
totally incapable of handling nonlinear equations because of the difficulties that
are caused by the nonlinear terms. Various ways have been proposed recently
to deal with these nonlinearities such as the Laplace decomposition algorithm
[71-74] and the homotopy perturbation transform method (HPTM) [75–78] to
produce highly effective techniques for solving many nonlinear problems. The
basic motivation of this chapter  to apply an effective modification of HPM to
overcome the deficiency, it is worth mentioning that the (HPTM) is an elegant
combination of the Laplace transformation, the homotopy perturbation method,
and He’s polynomials, The (HPTM) algorithm provides the solution in a rapid
convergent series which may lead to the solution in a closed form. The
advantage of this method is its capability of combining two powerful methods
for obtaining exact solutions for linear and nonlinear partial differential
equations

 (5.2)Analysis of (HPTM)
The HPTM is a combined of the HPM and Laplace transform method. We

apply HPTM to the following general nonlinear partial differential equation
with the initial conditions of the form,

),(),(),(),( txgtxutxRutxDu  ,                                                 (1)
),()0,( xhxu  ).()0,( xfxut                                                         (2)

Where D  is the second order linear differential operator,
2

2

t
D



 , R  is linear

differential operator of less order than D ;   represents the general nonlinear
differential operator and ),( txg is the source term.
    Taking the Laplace transform (denoted by L ) on both sides of Eq. (1):

       ),(),(),(),( txgLtxuLtxRuLtxDuL                                    (3)
       ),(),(),()0,()0,(),(2 txgLtxuLtxRuLxuxsutxuLs t    (4)
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Using the initial conditions:

       ),(
1

),(
1

),(
1)()(

),(
2222

txuL
s

txRuL
s

txgL
ss

xf

s

xh
txuL   (5)

Operating with Laplace inverse on both sides of Eq. (5) gives

 



   ),(),(

1
),(),(

2
1 txutxRuL

s
LtxGtxu                                     (6)

Where ),( txG represents the term arising from the source term and the
prescribed initial conditions. Now we apply the HPM







0

),(),(
n

n
n txuptxu                                                                         (7)

And the nonlinear term can be decomposed as

)(),(
0

uptxu
n

n
n





         (8)

Where )(un are He’s polynomials given by;

,...2,1,0,
!

1
),...,,(

00
10 
























 nup
pn

uuu
p

n

i
i

i
n

n

nn               (9)

Substituting Eq. (7) and (8) in Eq. (6), we get,

.)(),(
1

),(),(
00

2
1

0


























 












 n
n

n

n
n

n

n
n uptxupRL

s
LptxGtxu      (10)

Which is the coupling of the Laplace transform and the HPM using He’s
polynomials.
 Comparing the coefficient of like powers of p , the following approximations
are obtained.

),(),(: 0
0 txGtxup  ,

  ,)(),(
1

),(: 002
1

1
1





   utxRuL

s
Ltxup

  ,)(),(
1

),(: 112
1

2
2





   utxRuL

s
Ltxup

  ,)(),(
1

),(: 222
1

3
3





   utxRuL

s
Ltxup



And so on
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Example (5.2.1) Consider the linear Klein-Gordon equation [78]

u
x

u

t

u









2

2

2

2

                                                                               (11)

Subject to the initial conditions

xxu sin1)0,(  , 0)0,( 



x
t

u .                                       (12)

By applying the aforesaid method subject to the initial condition, we have
















2

2

2

1sin1
),(

x

u
uL

ss

x
sxu                                                     (13)

The inverse of the Laplace transform implies that



















 

2

2

2
1 1

sin1),(
x

u
uL

s
Lxtxu                                               (14)

Now, we apply the homotopy perturbation method; we have







0

),(),(
n

n
n txuptxu (15)
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2

2

0
2

1

0

),(),(
1

sin1),(
n

n
n

n
n

n

n
n

n txup
x

txupL
s

Lpxtxup  (16)

Comparing the coefficient of like powers of p , we have

xtxup sin1),(: 0
0 

,
2

1
),(:

2

2
0

2

02
1

1
1 t

x

u
uL

s
Ltxup 






















 

,
24

1
),(:

4

2
1

2

12
1

2
2 t

x

u
uL

s
Ltxup 






















                                          (17)

,
720

1
),(:

6

2
2

2

22
1

3
3 t

x

u
uL

s
Ltxup 






















 



So that the solution is given by


720242

sin1),(
642 ttt

xtxu                    (18)

In series form, and
txtxu coshsin),(                                                                        (19)

In closed form
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Example (5.2.2) Consider the following diffusion-convection problem [76]

u
x

u

t

u









2

2

,                                                                                (20)

With the initial condition
xexxu )0,( .                (21)

Taking the Laplace transform on the both sides, subject to the initial condition,
we get




















u
x

u
L

ss

ex
sxu

x

2

21
),(                                                        (22)

Taking inverse Laplace transform, we get






















  u
x

u
L

s
Lextxu x

2

2
1 1

),(   (23)

Now, we apply the homotopy perturbation method; we have







0

),(),(
n

n
n txuptxu (24)
































  











 0 0
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2
1

0

),(),(
1

),(
n n

n
n

n
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n
n

n txuptxup
x

L
s

Lpextxup  (25)

Comparing the coefficient of like powers of p , we have
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And so on. Therefore the series solution is given by









  

!3!2
1),(

32 tt
txetxu x                                 (27)

Which converge very rapidly to the exact solution
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The numerical results of ),( txu  for the approximate solution (27) obtained by

using HPTM, the exact solution and the absolute error appex uuuE )(7 for

various values of t  and x  are shown by Fig. (5.2.3)(a)–(c). It is observed from
Fig. (5.2.3) (a) and (b) that ),( txu increases with the increase in x and decrease

in t . Fig. (5.2.3) (a)–(c) clearly show that the approximate solution (27)
obtained by HPTM is very near to the exact solution. It is to be noted that only
the seventh order term of the HPTM was used in evaluating the approximate
solutions for Fig. (5.2.3). It is evident that the efficiency of the HPTM can be
dramatically enhanced by computing further terms of ),( txu when the HPTM is

used.
Fig (5.2.3): The surface shows the solution ),( txu for Eq. (20): (a) exact

solution; (b) approximate solution (27); (c) appex uu 

(a)                (b)

  (c)
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Example (5.2.4) Consider the following diffusion-convection problem [76]
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With the initial condition
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)0,(  xexu .                                                                          (30)

Taking the Laplace transform on the both sides, subject to the initial condition,
we get
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Taking inverse Laplace transform, we get
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Now, we apply the homotopy perturbation method; we have
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Comparing the coefficient of like powers of p , we have
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And so on. Therefore the series solution is given by
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Which converge very rapidly to the exact solution

txetxu  11cos

10

1
),(                                                                          (37)

The numerical results of ),( txu for the approximate solution (36) obtained with

the help of HPTM, the exact solution and the absolute error appex uuuE )(7

for various values of t and x  are shown by Fig. (5.2.5)(a)–(c), we observed
that the approximate solution (36) obtained by the HPTM is very near to the
exact solution.

Fig (5.2.5): The surface shows the solution ),( txu for Eq. (20): (a) exact

solution; (b) approximate solution (27); (c) appex uu 

(a)  (b)

                                                  (c)
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Example (5.2.6) Consider the following Advection problem [75]
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With the initial condition
0)0,( xu .                                                                                     (39)

Taking the Laplace transform on the both sides, subject to the initial condition,
we get
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Taking inverse Laplace transform, we get

















 

x

u
uL

s
L

xtt
xtttxu

1

34
),( 1

34
2                                       (41)

Now, we apply the homotopy perturbation method; we have
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Where n  are He’s polynomials that represent the nonlinear terms

The first few components of He’s polynomials, for example, are given by
,)( 000 xuuu 
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Comparing the coefficient of like powers of p , we have
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It is important to recall here that the noise terms appear between the

components ),(0 txu and ),(1 txu , more precisely, the noise terms
34

34 xtt


Between the components ),(0 txu and ),(1 txu can be cancelled and the remaining
terms of ),(0 txu still satisfy the equation.
The exact solution is therefore

xtttxu  2),(                 (45)

Example (5.2.7) Consider the following homogeneous nonlinear PDE [77]
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With the initial condition
xxu )0,( .                                                                     (47)

Taking the Laplace transform on the both sides, subject to the initial condition,
we get
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Taking inverse Laplace transform, we get
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Now, we apply the homotopy perturbation method; we have
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Where n  are He’s polynomials that represent the nonlinear terms
The first few components of He’s polynomials, for example, are given by
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Comparing the coefficient of like powers of p , we have
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And so on. Therefore the series solution is given by
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Which converge very rapidly to the exact solution
textxu ),(                                                                                   (54)

(5.3)Comparison of Rate of Convergence of HPM and HPTM

Example (5.3.8) Consider the inhomogeneous Advection problem [18]
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Standard HPM: According to homotopy Eq. (35) in example (3.3.6) we have
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And the solution for first few steps reads:
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Therefore the approximate solution of Eq. (55) can be written as

 )2cos()cos(163cos63cos32cos12cos2cos
16

1 22 xttxxtxxxtxu 

  xtxtxttxtxx 3sin62sin8sin2)23cos(3)22cos(4)42cos(16  (57)

HPTM: to solve Eq. (55) by MPTM, taking the Laplace transform on the both
sides, subject to the initial condition, we get
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Taking inverse Laplace transform, we get
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Now, we apply the homotopy perturbation method; we have
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Where n  are He’s polynomials that represent the nonlinear terms

The first few components of He’s polynomials, for example, are given by
,)( 000 xuuu 

,)( 01101 xx uuuuu 



Comparing the coefficient of like powers of p , we have
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It is important to recall here that the noise terms appear between the
components ),(0 txu and ),(1 txu , more precisely, the noise terms

xtx 2cos
4

1
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4

1
 between the components ),(0 txu and ),(1 txu can be

cancelled and the remaining terms of ),(0 txu still satisfy the equation.
The exact solution is therefore

)cos(),( txtxu    (62)
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Example (5.3.9) Consider the inhomogeneous nonlinear Klein Gordon
equation [42]
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Subject to the initial conditions
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Standard HPM: According to homotopy Eq. (65) in example (3.4.10), we have
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And the solution for first few steps reads:
xv 0 ,

xxtxtxxxv 2cos
8

1
cos

4

3

8

1 2222
1  ,

tx
xtxtx

xtx
t

txv cos2
24816

2
248

1

16

1 2
34323

222
4

22
2 

xxx 2cos
16

1
2cos

16

1 3 ,



Therefore the approximate solution of Eq. (63) can be written as
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HPTM: To solve Eq. (55) by MPTM, taking the Laplace transform on the both
sides, subject to the initial condition, we get
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Taking inverse Laplace transform, we get
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Now, we apply the homotopy perturbation method; we have
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Where n  are He’s polynomials, the first few components of He’s
polynomials, for example, are given by
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Comparing the coefficient of like powers of p , we have
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The noise terms
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tx  between the components ),(0 txu and

),(1 txu can be cancelled and the remaining terms of ),(0 txu still satisfy the
equation.
The exact solution is therefore
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Example (5.2.10) Consider the following inhomogeneous nonlinear PDE [77]
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With the initial conditions
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Standard HPM: According to homotopy perturbation method we have:
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Let’s ignore the first few steps and start from determining iv
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Therefore, we obtain
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HPTM: To solve Eq. (74) by MPTM, taking the Laplace transform on the both
sides, subject to the initial condition, we get
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Taking inverse Laplace transform, we get
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Now, we apply the homotopy perturbation method; we have
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The first few components of He’s polynomials, for example, are given by
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Comparing the coefficient of like powers of p , we have
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Therefore the exact solution is given by
2),( xtattxu                                                                                (83)

Remark (5.3.11)
From comparison, it is clear that the rate of convergence of HPTM is faster
than homotopy perturbation method (HPM).
Furthermore, the exact solution can easily be obtained by using HPTM in
comparison to HPM in some equation.
The HPTM usually result in the exact solution for the inhomogeneous problem,
even for the problem which HPM leads to an approximate solution
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