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Abstract

During the recent years, the studies and researches concentrated on the topic
of Homotopy perturbation method, for being one the modern and effective
methods for solving miscellaneous types of differential equations, ordinary or
partial, linear or nonlinear. Homotopy perturbation was paid much attention by
many searchers, it has become a fruitful field for study and research, and for
this reason the main goal of this thesisis to study a class of partial differential
equations by using Homotopy perturbation method. This method was
introduced by Ji-Huan He (1999) and has gone through many modification and
development which allowed researchers to apply it on various problems.

The necessary papers have been collected for the topic of the study and
summarizing the results of the study and present the chapters of the thesis that
included a general introduction and five chapters through which we sought
present the basic concepts necessary for understanding the content of the thesis.
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I ntroduction

The differential equations have been a branch of modern mathematics since
the nineteenth and the twentieth centuries and ever since they have been of
interest to many of the leading mathematicians as they are regarded as a vitally
important tool in the mathematical library by which solutions to the problems
of interest can be found elegantly and then translated into the real world as a
written material that contributes to solving the problems in question in a way
that achieves the desired interest. Thus, they play akey role in the translation of
many natural and physical phenomena into mathematical models that can be
studied from a purely mathematical perspective so that suitable solutions can be
obtained mathematically and then translated back into practical, real-life
applications. Consequently, a clear picture about the possible solutions and
Available options is obtained

Recent years have seen a new approach with various ways to the natural and
physical phenomenathat translated into initial and boundary value problems.

It is well-known that perturbation and asymptotic approximations of
nonlinear problems often break down as nonlinearity becomes strong.
Therefore, they are only valid for weakly nonlinear ordinary differentia
eguations (ODEs) and partial differential equations (PDES) in general.

The homotopy perturbation method (HPM) is an analytic approximation
method for highly nonlinear problems, proposed by Ji-Huan He [1] in 1999. It
is coupling method of a homotopy technique and a perturbation technique. In
contrast to the traditional perturbation methods, the (HPM) method does not
require a small parameter in the equation. In this method, according to the
homotopy technique, a homotopy with an embedding parameter pe[01] IS

constructed and the embedding parameter is considered as a “small parameter”.
Thus, the (HPM) can take full advantage of the traditional perturbation
methods.

Secondly, different from al of other analytic techniques, the HPM provides us
a convenient way to guarantee the convergence of solution series so that it is
valid even if the nonlinearity becomes rather strong. Besides being based on the
homotopy in the topology, it provides us with extremely large freedom to
choose the equation type of linear sub-problems, base function of solution,
initial guess and, As a result, complicated nonlinear ODEs and PDESs can often
be solved in a simple way. In short, the HPM provides us a useful tool for
solving highly nonlinear problemsin science, finance and engineering.
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CHAPTER ONE
BASIC CONCEPTSOF HOMOTOPY
PERTURBATION METHOD

1.1: Concept and Definitions of Homotopy

The Homotopy perturbation method (HPM), He’s [1,2,3,4,5,6,7,8,9] proposed
by Ji-Huan He [1] is based on the concept of the homotopy, a fundamental
concept in topology and differential geometry (Armstrong, 1983). The concept
of the homotopy can be traced back to rules Henri Poincare (1854 — 1982), a
French mathematician, shortly speaking, a homotopy describes a kind of
continuous variation or deformation in mathematics. For example, a circle can
be continuously deformed into a Square or an Ellipse, the shape of a coffee cup
can deform continuously into the shape of a doughnut. However the shape of a
coffee cup cannot be distorted continuously into the shape of a football,
essentially a homotopy defines a connection between different things in
mathematics, which contain some characteristics in some aspects.

Definition (1.1.1)

Let X and Y be a topological space, if f,g: X —Y are continuous maps, is
said that f is homotopic to g if there exists a continuous mapH : X x[01] —» Y
H(x,y)eY,xe X, 0< p<1, H(x0) = f(x), H(xD) = g(x), Such that the map is
called a homotopy between f and g, f ~g, denotes that f and g are
homotopic.

We think a homotopy as a continuous one-parameter family of maps from X to
Y imagine the parameter p as representing time, then the homotopy represents

a continuous deforming of the map f tothemap g as p goesfromOto 1.

Definition (1.1.2)

Let Clab]denote the a set of al continuous real functions in the interval
a<x<b, in genera, if a continuous function f eC[abJcan be deformed
continuously into another continuous functiong e Cla,b], one constant a
homotopy

H: f(x)~g(x)
In the way



H(x; p) = (- p) f (X) + pg(X) (1)

However a continuous real function cannot be deformed continuously into a
discontinuous function, for example sinx cannot be deformed continuously
into step function
1, x<0
S(x)=<0, x=0
-1, x>0

Definition (1.1.3)
The embedding parameter p e [0,1]in a homotopy of functions or equations is

called homotopy parameter.
The concept of homotopy defined above for functions can be easily expanded
to the equations.

Example (1.1.4)
The two different real functions sin(px) and 8x(x—1) ininterval x[0,] can be

connected by constructing such afamily of function

H(x; p) = (1- p)sin(px) + p[8x(x—1)] (2
where the embedding parameter p <[0/]
We note that H(x; p) depends on not only the independent variable x [0,1] but
also the embedding parameter p €[0,1] . Especially, p=0 we have

H(x;0) = sin(px), xe[0]]
Andwhenp =1, it holds

H(x2) = 8x(x-1), xe[0]]
Respectively, so as the embedding parameter p <[0,1]increase from O to 1, the
real function H(x; p) varies continuously from a trigonometric function sin(px)
to a polynomia 8x(x-1), as shown in Fig. (1.1.5) then H(x; p) homotopy,
sin(px) and 8x(x—1) are homotopic denoted by

H :sin(px) ~ 8x(x-1)

Fig (1.1.5) continuous deformation of the homotopy
H :sin(px) ~ 8x(x-1)

Dashed Line; p=0 Dash dotted Linepzi, solid line p:% Dash-double

dotted. Line; p:%long dashed; p=1



Definition (1.1.6)

Given an equation denoted by e, which has at least one solution u, Let ¢,
denote a proper, simpler equation, called the initial equation, whose solution u,
is known, if one can construct a homotopy of equation e(p):e, ~e,, such that,
as the homotopy-parameter p <[01] increases from 0 to 1, &(p) deforms (or
varies) continuously from the initial equation e, to the original equation e,
while its solution varies continuously from the known solution u, of e, to the

unknown solution uof e, then this kind of homotopy of equationsis called the
zeroth-order deformation equation.

Example (1.1.7)
Let us consider such afamily of algebraic equations

2

. 2 y
e(p): (1+3p)x* + @ 3p) =1 pe[0] (3)

Where pe[0]] is the embedding parameter, whenp=0, we have a circle
equation

e X +y?=1 4)
Whose solution is a circley=+y1-x*, when p=1 we have the dlipse
eguation

2

e1:4x2+y7:1 (5
Whose solution isan elipsey = +2y1-4x* .
Thus, as the embedding parameter p increases from O to 1, Eq. (3) varies
continuously from a circle equation e, into the ellipse equatione,, while its

solutiony deforms  continuously from a circle y=+J1-x*to the
ellipsey = +24/1-4x> , asshown in Fig (1.1.8).



So, more precisely speaking, the solution y of (3) is dependent not only on x
but also onpe[0]], and thus (3) should be expressed more precisely in the
form
) > YA(x.p)

e(p):(1+3p)x +m—l pe[0]] (6)
Which defines two homotopies. one is homotopy of the equation

e(p):e, ~e,
Where e, and e, denote (4) and (5), respectively, the other is homotopy of

function,
y(X, p) i £V1— Xx* ~ £24/1- 4>
In other words, the solution y(x, p) is also homotopy notice that such kind of

continuous deformation is completely defined by (6), we call (6) the zeroth-
order deformation equation, the same idea can be easily extended to other types
of equations, such as differential equations, integral equations and so on.

Fig (1.1.8) Consider deformation of equation of the solution y(x, p) of the
homotopy (3) solid line: p=0 Dashed Line: pzi Dash-dotted Line p:1

2
Dash-double-dotted Line: p=1.
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Note that we can construct many different homotopies which connect the circle
eguation (4) and the ellipse equation (5) for example the following zeroth order
deformation equation



. my2 . Y 06 P)
e(x,m): (1+3p™x rreros pe[0]] (7

Where e, and e, denote (4) and (5) respectively. For different values of m, it
define a different homotopy sinceme (0,+x), there exists an infinite number of
different homotopies of equations, which connect the circle of equation (4) and

the elipse of equation (5), and correspondingly, an infinite number of
homotopies of functions which connect the circle

y=+y1-x> Andtheédlipse y=+2y1-4x?

This illustrates the great flexibility of constructing a homotopy for given two
homotopic functions or equation. All of these belong to the basic concepts in
topology a differential geometry (Armstrong [10]). Some new concepts can be
derived not that the homotopy

H(x; p) = (1- p)sin(px) + p[8x(x—1)]
Can be rewritten in the form

H(x; p) = sin(px) + p[8x(x —1) —sin(px)]
And we have

oH(X, p)

op

Which describes the ratio (or the speed) of the continuous deformation from
sin(px) to8x(x—1), called thefirst order homotopy-derivative,

=8x(x—-1) —sinx, p €[0/]] (8)

Definition (1.1.9)
The homotopy:

H(p)=@1-p)f(X)+pg(x)  xelab]
Completely defines the corresponding first order homotopy-derivative

BB _g- 1. pelog 9)
p

Unfortunately the (HPM) is based on the simple fundamental concept of
homotopy, and other knowledge in topology is almost unnecessary.



1.2: Perturbation Theory

Many of the functions that arise from everyday problems cannot easily be
evaluated exactly, particularly those defined in terms of integrals or differential
eguation, in these situations we usually have two options. We can use computer
to seek complicated numerical solutions or we can look to construct an
anaytical approximation to the solution using asymptotic expansions,
Asymptotic method has particular importance in many areas of applied
mathematics, with the physical problems studied in fluid dynamics providing
the main motivation for much of the important development in the subject
history.

Henri Poncare’” who introduced the term asymptotic expansion during 1886
[11] studying irregular integrals of linear equations. In this section, we will
focus on the methods applicable to problems presented as differential
eguations, particularly the area of regular and singular perturbation theory.

In the classical asymptotic analysis the asymptotic variable is taken as the
independent variable of the differential equation, in the perturbation theory, the
asymptotic behavior is studied with respect to the small physical parameter.
Perturbation theory deals with problems that contain a small parameter
conventionally denoted by e, solutions are sought as e, approaches 0.
1.2.1: Regular Perturbation
The general method with perturbation problems is to seek an expansion with
respect to asymptotic sequence {Le,e’,..}ase — 0, the regular or (Poincare”)
expansion isthen

Ue,x)=U,(x)+eU,(X)+e’U,(X)+.. as e—0
For gauge functionu,,U, , which we will determine
Example (1.2.10) Consider the initial value problem

dy _ _dy

a 10

o0 Y-
y(0) =0, a0 =1

The eguation here represents projectile motion where air fraction taken into

accounte = % Assuming a solution expanded in terms of e by Taylor

y(t) = yo(t)+ey1(t)+e2y2(t)+---- (11)
Thisis now substituted in the differential equation and initial conditions (10) to
determine function y,,y, and y,give a 3-term expansion of curse this can be

carried out to finite as many terms of the expansion as necessary but in



practiced situations only a small number of terms are usually needed
substituting gives, after rearranging
2 2 2
d )2/0 +1+e d 32/1 +% +e’ d ZZ +% +0(e®) =0,
dt dt dt dt dt
Yo (0) +ey, (0) + e2y2 (0)+0(e®) =0,
do(Q) 1, o MO 2,0
dt dt dt
The next step is then to equate to zero all the terms of each order of e

+0(e?®) =0,

d?y dy, (0)

e’:— 2010, 0)=0, 207 _
az %(0) dt .
d?y, dy, dy, (0)

el:— 21, o _ 0)=0, 222 _,
a? = dt %:(0) dt
dy, dy dy, (0)

e?: 2 21, 0)=0 2220,
dt>  dt ¥2(0) dt

Solving these equations gives,

2

t
=t——,
Yo(t) 5

t2 3
t)=——+—,
y, (t) > "%
3t
t)=———,
Y, (t) 5 2

Now putting these into Eq. (10), gives third approximation

t2 t?2 3 (2 t?
y(t) -~ (t_5]+e(_E+EJ+e (E—Z] (12)
The exact of Eg. (10), is
v -2 e -2 (13)

We can expand this as a Taylor series gives,
y(t) = t—i +e —£+i +e’ .t +O(e3) (14)
2 2 3 3 4

Noticing thisidentical the solution obtain in (11) using Perturbation method
above.



1.2.2: Singular Perturbation

A Perturbation problem is said to be singular when the regular methods
produce an expansion that fails at some point, to be valid over the complete
domain. To introduce a singular perturbation type problem we look to the
previous example.
Example (1.2.11)

Consider the problem

ex’ +2x-1=0 (15)
We note that e here is the coefficient of the leading order term x*. Following
the regular expansion,

X~ X, +€X, +€%X, +.... (16)
And equating the coefficients gives as the solution,
1l e
~Z -t 17
X~>-g* (17)

Clearly the regular method has failed. The problem is quadratic which has two
solutions, but only one have produced. In many cases, this situation is easy to
spot by setting e =0 to give the unperturbed equation when e is the leading
order term’s sole coefficient the equation is reduced in the unperturbed
eguation, in this example to alinear equation with only one solution.

There are several types of singular perturbation problem that all require a
different method to lackey them, two of the most common and widely
applicable method, Matched asymptotic expansions and the method of multiple
scales.

When e is the multiplier of the highest derivatives or leading term of a
polynomial equation it is known as a boundary layer problem or occasionally a
matching problem.

1.2.3: Matched Asymptotic Expansions

In the method of matched asymptotic expansions can be useful for differential
equations with an e coefficient multiplying the highest order derivative usually
these contain a boundary layer preventing the complete set of boundary
conditions being satisfied by regular perturbation solution where the regular
solution fails we introduce new coordinates to describes the solution inside the
boundary layer and produce two separate approximation valid over different
sections of the domain, these solutions must be matched together and combined
to single expansion valid universally [11].



1.2.4: Method of Multiple Scales

A second type of singular perturbation problem fails not due the loss of the
leading order term, but instead these problems fail to be valid when the
independent variable becomes large in the unbounded domain. Problems like
this are common in system dependent on time, thus an approximation found
may be valid initially but will deviate of multiple scales are to introduce two
time scales, a fast one t, and a slow ont;, expand a regular perturbation

solution in term of this new coordinates, the secular terms found in each stage
can be suppressed by equation the arbitrary functions from one term in the
expansion with next. Thus we have single solution valid over the complete
domain that can easily be expanded with lower order terms where desired [11].

1.3: Homotopy Perturbation method

After the appearance of supercomputers, it is not difficult for usto find the
solution of linear problems. It is however still difficult to solve nonlinear
problems, especially by means of analytical methods. Although the nonlinear
analytical techniques are fast developing, they still do not completely satisfy
mathematicians and engineers.

Until recently, nonlinear analytical techniques for solving nonlinear
problems have been dominated by perturbation methods, which have found
wide applications in engineering. But like other nonlinear techniques,
perturbation methods have their own limitations. Firstly, almost all perturbation
methods are based on small parameters so that the approximate solution can be
expressed in a series of small parameters. This so-called small parameter
assumption greatly strictest application of perturbation techniques, as is well
known, an overwhelming majority of nonlinear problems have no small
parameters at all. Secondly, the determination of small parameters seems to be
a special art requiring special techniques. An appropriate choice of small
parameters leads to ideal results, however, an unsuitable choice of small
parameters result in bad effects, sometimes seriously. Thirdly, even if there
exist suitable parameters, the approximate solutions solved by the perturbation
methods are valid, in most cases, only for the small values of the parameters.

It is obvious that all these limitation come from the small parameter
assumption.

So it is very necessary to develop akind of new non-linear analytical method
which does not require small parameters at all.
To eliminate the small parameter assumption in1997, Liu [11] proposes a hew
perturbation technique, where an artificial parameter is embedded in an
eguation at its appropriate place, and the embedding parameter is used as a



“small parameter”. Unfortunately, there is an uncertainly about an appropriate
artificial parameter and often enough the approximation obtained by such
method will not be uniform, so that its applicability range is severely limited,
Just recently in order to be freed from the limitation of “small parameter”
assumption, Liu [11,12] proposes a hew technique which base on homotopy in
topology, does not require small parameter in equations, using the interesting
property of homotopy, he transforms a nonlinear problem into an initial number
of linear problem without using the perturbation techniques. To illustrate Lu’s
basic idea of artificial parameter consider the following example.

Example (1.3.12)

Consider the following differential equation [11]:
d”?) FUZ() =1

With initial condition:
u(0)=0 (18)

Embedding an artificial parameter B in EQ. (18) resulting,

% = (1-u)(1+ Bu) (19)
In Liu’s method the embedding parameters are considered as small parameter.
Assume the solution in the following

u(t, B) = u, (t) + Buy(t) +... (20)

Substituting Eqg. (20) in Eq. (19) equating the term of like power B, as resulting,
Liu obtained the following first-order approximation

u(t,B) = u,(t) + Bu,(t) = (1-e ") +Be ' (e +t-1) (21)
The substituting B =1resulting a good approximate solution of the original Eq.
(18).
In Liu’s method, however, the artificial parameters are embedded much
artificially or technically in most cases, the method will fail to obtain a
uniformly valid approximation, for example, if we embed the artificial
parameter as follows:

du(t)

—g = A-BuL+Y) (22)
Or

du 200\

E‘f’ Bu (t) =1 (23)

10



The approximate solutions obtained from Eq. (22) or Eqg. (23) will not be
uniformly valid. The problem lies on the fact that the artificial parameters can
in no way be considered as a small parameter!

It thus becomes desirable to adjust the perturbation approach in such a manner
that the embedding parameters are always small.

To this end, we will give a heuristical method based on the homotopy in
topology [12,13]. The homotopy technique or the continuous mapping
technique embeds a parameter p that typically ranges from zero to one, when
the embedding parameter is zero, the equation is one of alinear system, when it
IS one; the equation is the same as the original one. So the embedded parameter
pe[0]can be considered as a small parameter. That homotopy constructs
universal perturbation equation with an appropriate artificial parameter. The
coupling method of the homotopy technique and the perturbation technique is
called the homotopy perturbation method, noted (HPM) was proposed by Ji-
Huan Hein [1] and [2-9]. More details will be discussed below.

1.3.1: Basic | dea of Homotopy Perturbation M ethod

To illustrate the basic ideas of the (HPM), we consider the following nonlinear
differential equation

AW -f(r)=0 reQ (24)
With the boundary conditions
Blu.0y/ J=0, rer, (25)

Where A isageneral differential operation, B isaboundary operator, f(r) isa

known analytic function, T is the boundary of the domainQ.
The operator Acan generaly speak, be divided in two parts LandN, where
L islinear, whileN isnon linear, Eq. (24) therefore, can be rewritten as follows

L(u)+N@u) - f(r)=0 (26)

By homotopy technique [13,14], we construct a homotopy v(r, p) : @ x[0]] — R
which satisfies

H(v, p) = 1~ P)[LV) ~ L(u)]+ P[AV) - f(N]=0, pe[0d, reQ (278
Or

H(V, p) = L(v) - L(u,) + p[N(V) - £ (r)]=0 (27b)
Where pe[0]] is an embedding parameter, u,is an initial approximation of
Eqg.(24) which satisfies the boundary conditions, Eq.(27a) or Eq.(27b) is called
perturbation equation with embedding parameter obviously from Eq.(27) we
have

11



H(v,0) = L(v) — L(u,) =0, (28)
H(v,) = A(v)- f(r)=0. (29)

The changing process of p from zero to unity isjust that of v(r, p) from trivial
solution u,(r)to original solutionu(r), in topology this is called deformation,
andL(v)—L(u,), A(v)— f(r), are called homotopic.

Here the imbedding parameter p can be considered as “small parameter”
Assume that the solution of EQ. (26) can be written as a power seriesin p

V=V, + PV, + PV, + - (30)
Setting p=1 result in the approximate solution of Eq. (24)
U=limv =y, +v, +V, +... (31)
pP—.

The coupling of the perturbation method and the homotopy method is called
homotopy perturbation method, which has elimination limitations of the
traditional perturbation methods. On the other hand the (HPM) can take full
advantage of the traditional perturbation techniques.

Example (1.3.13)
Let usfirst consider anonlinear algebraic equation [2]
f(x)=0, xeR (32)

To solve Eq. (32) by (HPM) we construct a homotopy Rx[0,1] — Rwhich
satisfies

H(x, p) = @~ p)[f ()~ f(x%)]+ pf(x)=0, xeR, pe0] (339

H(x, p) = f(x) = f(X) + pf(%) =0, xeR pe[0]] (33b)
Where x, isinitial approximation of Eq. (32) it is obvious that

H(x,0)=f(x)— f(x,)=0
H(Xx,)=f(x)=0

The changing process of pfrom zero to unity is just that of H(x, p), from
f(x)—f(x,) to f(x) and f(x)- f(x,), f(x) are homotopic.

Applying the perturbation technique, we can assume that the solution of Eq.
(33a) and (33b) can be expressed asa seriesin p

X =Xy + PX, + PX, +... (34)

12



To obtain it is the approximate solution of Eq. (33), we first expand f(x) intoa
Taylor series

f(x)=f(x,)+ f'(Xo)(PX, + P°X, +...)+%f"(x0)(px1+ pX, +..)% +...(35)

Substituting Eq. (35) into Eg. (33) and equating the coefficients of like powers
of p, weobtain

po  f (Xo) — f (Xo) =0, (36)
pl  f I(Xo)xl + f (Xo) =0, (37)
p%: f'(Xy)X, +% f"'(x,)Xx. =0. (38)
From Eq. (37)x, can be solved
_ (%)
BT ) )
If, for example, its first-order approximation is sufficient, then we have
VIR 1 ).
X=X~ Pl (40)

Then substitution p=1 in Eg. (28) yields the first order approximate solution of
Eqg. (26)
f (Xo)

i) (41)
Using EQ. (41) as an initia approximation in Eq. (32) repeatedly, we have the
following iteration formula:

s = (42)
From EQ. (36) we can obtain one of its solutionsx, = x,, under this condition
Eq. (42) can be re-written down as follows:

s =% 0 (43)
Which is the well known Newton iteration formula.
By the same manipulation, from Eg. (38),x, can be solved, and the following
formula can be obtained

y o ) £06) { f(xn)}z (4

fr(x,)  2f'(x,) [ f'(x,)

The iteration formula (44) is called Newton-Like iteration formula with second-
order approximation.
The approximate solution obtained by the above iteration formula (44)
converges to its exact solution faster than the Newton iteration formula (43) for
example,
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f(X)=x*+x-2=0 (45)
Supposing x, =0be one of its initial approximate solution, from Eq. (36) we
have x{ =0 andx{? =-1. By Newton-Like iteration formula (44) we can
immediately obtain its exact solutions x =-2 and x® =1by only one iteration

step.
Example (1.3.14) Consider the simple ordering differential equation

V+y*=0, x>0 xeQ, y0)=1 (46)
We construct the following homotopy

(L~ pP)(Y' = yo) + p(Y'+Y*) =0 (47)
Suppose the solution of equation Eq. (47) has the form

y=Y,+ pY, + pY, +--- (48)
Substituting (48) into (47) and equating the form with identical powers of p

P’ Y5 = Yo

p Y/ +y,+Y. =0, Y, (0)=0 (49)

p2 :Y2’+ZYOy1 =0, Yz(o) =0

For simplicity we start with initial approximation Y, =y, =1and solving above
system, we get,

Y, ==X Y,=x
Then we have the second order approximation of Eq. (46)

Y =1- px+ p°x* +--- (50)
And the exact solution given by;

y:IimYzl—x+x2+...:i (51)
p—>1 1+ X

Example (1.3.15) Consider the partial differential equation
du ou o4
— 4t U—=—
ot ox ox?
with initial condition
u(x,0) = 2x (53)
and boundary condition

(52)

2
u(0,t) =0, u,(0,t)= Tt (54)
To solve Eqg. (52) with initial condition (53), i.e.; (t—solution) we construct the
following homotopy;

ov U N v o
1-p| -2 |+ p =+v=-2_|=0
( p)(at at}rp(af ox axzj

Or

14



@_%_}_ [V@_a_zv_}_%jzo (55)

ot ot ox ox* ot
Assume the solution of Eq. (55) has the form
V=V, + PV, + POV, +... (56)

Substituting Eq. (56) and (53) into Eq. (55) and) equation the terms of Like
Power of p,

ot ot
L. 0V, ou, ov, 0%V,
14 +V, - =0, v,(x0=0 57
Pt T T a2 ,(x,0) (57)
2
p2'%+voavl+ 1%—8\/1:0, Vv,(x,0)=0

: —Liv
ot OX OX  Ox2

Start with v, (x,t) = u,(x,t) = u, (x,0) = 2%, so we derive the following

t 2
v, J-(_ ou, v Ny, 0 VO]dt:—4xt,

ot % ox  ox?

0
t 2

vzzj —vl%—vo%—avz0 dt = 8xt
0 OX OoX  OX

The approximaﬁ on solution of Eg. (52)
u=Ilimv=2x—4xt+8xt+--- (58)

p—1

And in closed form

u(x,t) = 1ix2t (59)

Which is an exact solution

Similarly, to solve Eq. (52) in the (x-direction) with boundary conditions (54)
we construct the following homotopy

2 2 2
i p)(a v 0 u0j+ p(a V+v@+@J=o

ox?  ot? ox? ox ot
Or
2 2
8—\2/—8 uZ°+ @—v@+% =0 (60)
oX OX ot ox ot

Substituting Eq.(56) into Eq. (60) and Eq.(54) equation the terms of Like power
P,
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00 0%vy  0%Uy _ 0
Coxt o ot?
L 0%, oy, ov, 0°u,
= -V, t— =
ox*> ot ox ot
, 0%, ov, oV, ov.

0, v(0,t)=v, (0,) (61)

: ——t_y—L_v-1=0 v (0Ot)=Vv,(0t)=0
p > o v oo ,(0,1) =v,, (0,t)
Start with v, (x,t) = ug (x,t) = —2
1+ 2t

And we derive the following
X X 2
v, :”(av" +V, Ny _ 0 uOdedx:o
5ol ot

ox  ot?
v,=0, k=0
Then the exact solution
2X
’t = =
uxt) =V 1+ 2t

IS the same solution given by t-direction.

Example (1.3.16) Fredholm integral equation
Now we consider the Fredholm integral equation of the second kind in the
genera case

u(x) = f(x)+I TK(x,t)u(t)dt (62)
To solve Eq. (62), we consatruct the following homotopy

@- P - F(0]+ p{u(x) ~f(9)-! fK(x,t)u(t)dt =0
Or a

u(x) = f(x)+ pl TK(x,t)u(t)dt (63)

Assume the solution of Eq. (63) has the form

U=U,+ pu, + pU, +... (64)
Substituting Eqg. (64) into Eqg. (63) and equation the terms of the Like power p,
we have

p®:u, = f(X)

p':u, = _TK(x,t)(uo)dt

16



p’:u, =| .TK(x,t)(ul)dt

pliu, =1 JQK(x,t)(uj_l)dt

The approximation solution given by setting p =1in Eq. (64)

U=U,+U +U,+-

Example (1.3.17) Consider the integral equation
lK@=V§+IIﬂUGMt

Inview of Eq. (63), we obtain
mm=J§+mjnumm

Substituting Eqg. (64) into Eg. (68), we have the following result

P° 1U,(x) =X
h 2l
p'iu(X) =1 Ixtﬁdt:—x
) 5
too2t 22
z. =] [xt.—dt=
¥ 1 (9 =1 [t Trdt =T ox
o2 23

ru(X) =1 | xt.=—dt="—x
p*1us () =[xt =

0
Then the sol uti.on obtains by setting p=1in Eqg. (64)

U=Uy+U +U,+...

=X+ EI +£I2+izl3+...
5 53 53

el

i=1
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1.3.2: The Advantages of the Homotopy Perturbation M ethod

The homotopy perturbation method has been receiving much attention in
recent years in applied mathematics, in general and particular in the area of
series solution. The method to be powerful effective and easy to use, It was
formally shown by many researchers that the advantage of the HPM.

The perturbation equation can be easily constructed by homotopy in topology
and the embedding parameter pe[0]1] is considered as “perturbation
parameter” the novel method can take full advantage of the traditional
perturbation techniques. The initial approximation can be freely selected which
can be identified via various methods. The approximation obtained by this
method are valid not for small parameter but also for the very large parameter.
Also, the homotopy perturbation method can easily handle a wide class of
algebraic equation, ordinary differential equations, partial differential equation,
integral equations, integral differential equation and fractional equation
homogeneous or inhomogeneous and linear or nonlinear in a straightforward
manner without any need for restrictive assumptions, such as linearization or
discretion. There is no need in using this method to convert inhomogeneous
conditions to homogenous conditions are required by other techniques. The
HPM requires less computational work if compared with other methods, and
demonstrates a fast convergence of the solution.

A disadvantage of the HPM isto need an initial value

1.4: The Noise Terms Phenomenon

The noise terms phenomenon [15,16] gives useful tool in that, if it appears, it
gives a fast convergence of the solution by using two iterations only it is
significant to note that the noise terms may appear only for the inhomogeneous
problems.

The noise terms defined as an identical terms, with opposite signs that may
appear in various componentsu, .k >1, it is important to note that these terms
may appear for inhomogeneous problem whereas homogenous problems do not
generate noise terms. It was formally shown that by canceling the noise terms
that appears in u,andu,from u,, even though u, contains further terms, the

remaining non-cancelled terms of u,may give the exact solution of an

inhomogeneous problem. This can be justified through substitution. Therefore,
It is necessary to verify that the non-cancelled terms of u, satisfying PDE under

discussion. A necessary condition for the generation of the noise terms of
Inhomogeneous problems is that the zeroth component u, must contain the

exact solution uamong other terms.
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On the another hand, if the non-cancelled terms of u, did not satisfy the given
problem or the noise term did not appear between u,andu,, then it is necessary
to determine more components of uto determine the solution in a series form.

Example (1.4.18) Consider the following inhomogeneous PDE [18]

u, +u, = 1+ x)e’, u(0,y) =0, u(x,0) = x (71)
Clearly, x-direction is invertible and therefore to solve Eg. (71) we construct
the following homotopy:

ov ou, ov U,
— L =p l+x)e ——-—2 72
OX  OX p{( x)e oy ax} (72)
Assume the solution of Eq. (72) has the following form
V=V, + pv, + PV, +... (73)
Substituting Eqg. (73) into Eqg. (72) and equating the terms with Like power p,
0.0V, OU,
P =
oX  OX
p' :%+%+a—t=(l+ x)e’, v (0,y) =0
pz:av M =0, v,(0,y)=0 (74)
OX
oV, OV
p® :a—3+52:0, v;(0,y)=0

Start with vo(x,.y) =U, (%, Y) =U,(0,y) = 0 and integrating above system with

{(—— o x)eyjdx —[H %zjey
sl (a5
w

Slacirid

It is easily observed that the noise terms ?ey and —%ey appear in the first two

[ )dx we get,
0

2

component respectively, by canceling the noise term %ey in v; and verifying
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that the remaining non-cancelled term of v, satisfy Eq.(71), we find that the
exact solution is given by;

u(x,t) = xe’ (75)
Notice that the exact solution is verified through substituting in Eq. (74) and

not upon the appearance of the noise term, in addition, the other noise terms
that appear between other components will vanish in the limit.

Example (1.4.19) Consider the following partial differential equation
ou 0%

—=—+cosx, O<x<p t>0 (76)
ot ot?
With initial condition
u(0, x) (77)
And boundary condition
ut0)=1-e*, ut,p)=e', t>0 (78)

To solve Eqg. (76) with initial condition (77) we construct the following
homotopy:

2
NNy (6 \Zl—au°+cost=O (79)
ot ot OX ot
Assume the solution of Eq. (79) has the form
V=V, + PV, + POV, +... (80)

Substituting Eq. (80) into Eq. (79) and (77) and equating the terms of the Like
power p,

po:%_%zo
ot ot
2
pl:av1 av0+6u = cosX, V,(0,X) =0
ot ox* ot
pz:(’i;/t2 aav =0, v,(0,x)=0 (81)
ov, 0%
8.3 =0, v,(0,X)=0
P ot ax +(0%) =

Start with v, (t, ;<) = U, (t,X) = u,(0,x) = 0 and integrating above system with
[)dx we get,

2
Vv, ou
( 0 ——° cosx] =tCcosX,

AR

“]
]
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t 62\/2 t3
v, =I = |~ 3%
0

We can easily observed that the components does not contain noise terms this
confirm our benefit that the PDE is an inhomogeneous equation but the noise
terms between the first two components did not exist in this problem, then the
series solution obtain by

2 3
U= limV =t COSX - coSX + cosx + . (82
p—1 2 3
In closed form
u(x,t) = (1—€e") cosx (83)

Which is an exact solution
1.5: The Modified of the Homotopy Perturbation Method (MHPM)

In this section, we will present the modification of the homotopy perturbation
method (MHPM) [17].

The (MHPM) demonstrate a rapid convergence of the series solution compared
with standard HPM in addition the modified algorithm may give the exact
solution for the problem by using two iterations only.

Now the standard HPM in Eq. (27) given by

H(V, p) = L() — L(Uy) + PL(U,) + PIN(V) - f(r)]=0
The modified form of the HPM can be established based on the assumption that
the function f (r) can be divided in two parts, namely f,(r)and f,(r)

f(r)=fo(r)+ f,(r) (84)
Or on the assumption that the function f(r)can be replaced by a series of
infinite components under this assumption that f(r) be expressed in Taylor
series

f(r)=2f.(r) (85)

According to the first assumption f(r)= f,(r)+ f,(r)we can construct the
homotopy v(r, p) : @x[0,]] — R which satisfies

H(V, p) = L(V) - L(Up) + pL(Up) + pIN(V) - £, ()] = f,(r) (86)
Here, a dlight variation was proposed only on the components u, and u,.The
suggestion was that only the part f,be assigned to the zeroth componentu,,
whereas the remaining part f, be combined with the componentu, if we set
f,(r)=f(r) and f,(r) =0, then the homotopy (86) reduce to the homotopy (27)
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Note (1.5.20)
The important point that the success of the method depends on the proper
selection of the function f,and f,.

Now, according to the second assumption f(r) = i f_(r) we can construct the

n=0

homotopy v(r, p) : @x[0,]] — R which satisfies

H(v, p) = L(V) - L(Us) + PL(Uy) + PN(V) = > p"f (1) (87)
If f(r) consists of two terms only then the homotopy (87) reduce to the
homotopy (86).

In this case the term f, is combined with the componentu,, f, is combined

with componentu,, f, is combined with componentu, and so on, this
suggestion will facilitate the calculations of the terms u,,u,,u,,... and hence
accelerate the rapid convergence of the series solution.

Note (1.5.21)

It is easy to observe that the algorithm of the (MHPM) based on the homotopy
given in Eqg. (86) and Eq. (87) reduces the number of terms involved in each
component and hence the size of the calculation is minimized compared to the
standard HPM.

Moreover, this reduction of terms in each component facilitates the
construction of the homotopy perturbation solution.

It is to be also noted that the (MHPM) will be applied, wherever it is
appropriate to all differential equations of any order. To demonstrate the
effectiveness of the (MHPM) we compare the (MHPM) with standard (HMP)
in the following examples.

Example (1.5.22) Consider the nonlinear differential equation [17]
u”+tzu’+u3=6+t6 (88)
Subject to theinitial conditions
u(0)=0, u'(0)=0. (89)

The standard HPM: To solve Eq. (88) by HPM we construct the following
homotopy:

u"+%u'+ p[ug—t6—6]:0 (90)
Suppose the solution of EQ. (90) has the form
U=u,+ pu, + pu, +... (91)
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Substituting (91) and the initial conditions (89).into the homotopy (90) and
eguating the term with identical powers of p, we obtain the following set of

linear differential equations
p®:uf +%ug =0, U,(0)=0, uy(0)=0

pl:u{’+%ul':—u§+t6+6, u(0)=0, u/(0)=0 (92
2 " 2 ' 2 '
p :u2+?u2 =3uju,, Uu,(0)=0, u,(0)=0

n 2 ! !
p®:ul T = —3u,Uf —3uiu,, uy(0)=0, ui(0)=0

Consequently, solving the above equation, we obtain
u, =0,

t8 3tl4 3tZO t26
Y= T T 141572 2021727 2627.(72)°
And so, in this manner the rest of HPM can be obtained. The solution for Eq.
(88) given by setting p=1in Eq. (91)

U=U, +U, +U, +U; +..=t? (93)

The modified HPM: in view of the homotopy (86), we construct the following
homotopy:

u"+%u'+ p[us—tﬁ]:6 (94)

Substituting (91) into (94) and equation term with identical powers of p, we
obtain the following set of linear differential equations

p°:ug+%ug=6, Uy, (0)=0, u;(0)=0

p': uf+T2u1 =-ud +t% u,(0)=0, u/(0)=0 (95)
2 " 2 ’ 2 i

p :u2+?u2:3u0u1, u,(0)=0, u,(0)=0

2
pd:ul +?u; =-3u,u’ -3ulu,, u,(0)=0, ui(0)=0

Consequently, solving the above equation the first few components of the
homotopy perturbation solution of Eq. (88) are derived as follows
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u, =t%,
u =0 k2>1

The exact solution
u(t) = t? (96)

Follows immediately the success of obtaining the exact solution by using two
iterations is the result of the proper selection of f,(r)and f,(r).

Example (1.5.23) Consider the partial differential equation [17]

2 2
a—l:—a—l;+u2 = —xcost + x* cos® t (97)
ot 0
Subject to theinitial conditions
u(x,0) = x, Z—l:(x,O) =0. (98)

The modified HPM: in the view of the homotopy (86), we construct the
following homotopy:

o%u o%u

P p{—eruz - x? coszt}:—xcost (99)
Assume the solution of Eq. (99) in the form

U= U, + pu, + p°u, +... (100)

Substituting Eg. (100) and the initial conditions into the homotopy (99) and
eguating the terms identical power of p, we obtain the following set of linear

differential equation

0. 0°Ug
P2t = —xcost, Uy(%,0)=X, Uy,(x0)=0
2 2
p*: aatgl - aa oruf=xtcos’ X, U(x0)=0, Uy (x0)=0 (101)
X
2 2
p2 : aatliz - aaXLil + 2U0U1 = O, UZ(X,O) = 07 u2t (X’O) = 0

Solving the above equation, we obtain
U, = Xcost

u =0 k>0

The exact solution
u(x,t) = xcost (102)

Follows immediately, it’s clear that we used two iteration only to obtain exact
solution
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Example (1.5.24) Consider the linear differential equation [17]

U +2tu=2te" (103)
Subject to theinitial condition:
u(0) =0 (104)

The standard HPM: to solve Eq. (103) with initial condition (104) by HPM we
construct the following homotopy:

u'+ p2tu—2e]=0 (105)
Assume the solution of Eq. (105) has the form,
U=u,+ pu, + p°u, +... (106)

Substituting Eq. (106) and initial condition (104) into the homotopy (105) and
eguating the terms with identical power of p, we obtain

p°®:u, =0, u,(0)=0
piul+2tu, =2te™, u,(0)=0 (107)
p*:u,+2tu, =0, u,(0)=0
p’:ul+2tu, =0, u,(0)=0
Consequently, solving the above equation, we get

u, =0,
_t2
u=1-e ,
2
u,=1-t>-e™",
t* 2

U, :1—t2+3—e :

4 6
u, =1-t? PR S
2 6
And so on. In this manner the rest of components of the homotopy perturbation
solution can be obtained, if we compute more terms we can show that the
solution convergesto

u(t) =t%e™ (108)

The modified HPM: in the view of the homotopy (87) and using the Taylor
expansion
0 (_1)nt2n+1

et => (109)
n=0 n!
We construct the following homotopy
0 ng 2n+l
u'+ p[2t] = 2> p" EHT (110)

n=0 n!
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Substituting (110) and the initial condition (104) into the homotopy (110) and
eguating the terms with identical powers of p, we obtain

p®:u,=2t, u,(0)=0
p'iul +2tu, =2t%, u(0)=0 (111
p*:u,+2tu, =t°, u,(0)=0
Y

7

3

U+ 2tu, = u;(0)=0

Consequently, 'solvi ng the above equation, the first few components of the
homotopy perturbation solution for Eq. (103) are derived as follows
u, =t?,

u, =-t*,
t6
U2 :E,
—t8
U3 :?.
The solution in aseriesform is given by setting p=1 in Eq. (106)
6 8
u=t2—tr-L L (112)
2 3
And in closed form
u(t) =t%e™ (113)
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CHAPTER TWO

APPLICATION OF HOMOTOPY PERTURBATION
METHOD TO LINEAR PARTIAL DIFFERENTIAL
EQUATIONS

2.1: Introduction

It iswell known that most of the phenomena that arise in mathematical physics
and engineering fields can be described by partial differential equations
(PDESs). In physics, for example, the heat flow and the wave propagation
phenomena are well described by partial differential equations.

A partial differential equation is an equation that contains an unknown function
of several variables, and one or more of its partial derivatives. There are two
types of partial differential equation: linear and nonlinear partial differential
equations. The linear partial differential equations are very important in
mathematics as well as in applied sciences; In particular, the wave equation,
heat equation and Laplace's equation are known as three fundamental linear
partial differential equations and occur in many branches of physics, in applied
mathematics and in engineering. It is to be noted that severa methods are
usually used in solving linear partial differential equation. Including, spectral
method, characteristic method, variation iteration method and Adomian’s
decomposition method. In this chapter, we applied the homotopy perturbation
method and the related improvements of the modified technique and noise
terms phenomena will be effectively used .the homotopy perturbation method
has been used extensively to solve nonlinear boundary and initial value
problems. The method attacks the problem in a direct way and in a
straightforward fashion without using linearization, or any other restrictive
assumption that may change the physical behavior of the model under
discussion. Therefore, homotopy perturbation method is of great interest to
many researchers and scientists
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2.2. First-Order Linear Partial Differential Equation

Partial differential equations of the first order are used to model traffic flow on
a crowded road, blood flow through an elastic-walled tube, shock waves and as
special cases of the general theories of gas dynamics and hydraulics. In this
section, we will apply the homotopy perturbation and the related phenomenon
of the noise terms and the modified homotopy perturbation method to the first-
order linear partial differential equation homogeneous and inhomogeneous.

Example (2.2.1) Consider the following homogeneous partial differential

eguation [18]
M, Mg 0, u(x,0) = x>. (1)
oX oy
To solve Eq. (1) by (HMP), we construct the following homotopy:
@_ai p(x@_g\/.'_aijzo (2)
oay oy OxX oy
Assume the solution of Eq. (2) has the following form
V=V, + pv, + PV, +... (3)
Substituting Eg. (3) into Eq. (2) and equating the terms of like power p,
po : % _% =0
oy oy
oV, ov, ou
p': El+ §—3V 6;:0’ v,(x,0)=0 (4)
OoV. ov,
p?: EZJF &—BV =0, V,(x,0)=0
p®: %+x%—3v2:0, V4(x0)=0

oy oX

y
Starting withv, (x, y) = u,(x, y) = x*, and Appling the inverse operator J.(o)dy to
0

above system, we obtain

V(% y) = I( x—+3v —%l;fjdy X%y,
V,(Xy) = j( xa—+3vjdy_ 2>Il ,
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2,,3

o oov X2y
V(X Y) = (—x—2+3v jdy:—,
: -([ ox 2

Then the approximate solution of Eq. (1) obtain by setting p=1in Eg. (3)
u(x,y) = x>+ x°y + Xy’ + Xy’ +..=x% (5)

Which is an exact solution.

Example (2.2.2) Consider the following inhomogeneous partia differential
eguation [19]
ou ou

—+—-—Xxu=yeY +Xx, u(0,y) =0. (6)
oX oy

Sandard HPM: To solve Eg. (6) by (HMP), we construct the following
homotopy:

ov ou, ov ou, Xy

— %t p ——xv+—2— -x|=0 7

™ ax”{ay XV+6y ye XJ (7)
Assume the solution of Eq. (6) has the following form

V=V, + pv, + PV, +... (8)
Substituting Eq. (8) into Eq. (7) and equating the terms of like power p,

po- %_%:O

oox o oox
p: %+%—wo+%:yew+x, v,(0,y)=0 9)
oV, OV
p?: 6—)(2+El—xv1:0, v,(0,y)=0
p®: %+%—xv2=0, v,(0,y) =0

ox oy

Starting withv, (x, y) = u,(x,y) = 0, and Appling the inverse operator j(o)dx to
the above system, we obtain:

X 2
V(X Y) :I(—%+ XV, —%+ ye? +x]dx:eXy —1+X—,
o\ Oy oy 2

0

 ov x> x4
VZ(X,y):J(_El'FXVl]dX:—?-FE y
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¢ ov Xt x°
: ! oy ° 8 40

2

2
It is easlly observed the noise terms %and —% appears in v,and v,

2
respectively. By canceling the noise term %invl, and by verifying that the

remaining non-canceled terms of v, satisfy Eq. (7) we find the exact solution
given by
ux,y) =v,(x,y)=e? -1 (10)

Modified HPM: To solve Eg. (6) by (MHMP), we construct the Following
homotopy:

N Y x| ven

Pl p( ey XV xj ye (11)
Assume the solution of Eq. (11) has the form Eq. (8) substituting Eq. (8), into
Eq. (11) and equating the terms of like power p,

ov

p°: a—)f:yexy, Vo(0,y) =0
ov, oV,

p': a_lerEO_XVO:X’ v,(0,y)=0 (12)
oV, OV

p®: a_x2+El_XVl:O’ v,(0,y) =0

Appling the inverse operator j (°)dx to above system, we obtain
0

Vv, = I(yexy)dx =Y -1,
0

v, =0, k>1.
It then follows that the solution is
u(x,y) =ve(x,y)=e* -1 (13)
This example clearly shows that the solution can be obtained by using two
iterations, and hence the volume of calculation is reduced.
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2.3: Second -Order Linear Partial Differential Equation

In this section, we consider the second-order quasi-liner partial differential
eguation,
2 2 2
a82+bau+cag+d=0 (14)
oX oxoy oy

With initial conditions:

ou(x,0) _

U(X10) =f (X) ’ 2 g(X) ’ (15)
Y
Or
u(,y) = f(y), % = g(y). (16)

o%u o4 o%u
ox?oxay  oy®
I.e., the second-order derivative occurs only to the first degree. An equation
(14) is said to be hyperbolic, parabolic or elliptic accordingly as b*-4ac is
positive, zero, or negative. Numerical methods of solving Eg. (14), which are
common, used as a characteristics method [20], needed large size of
computation work and usually the round-off error causes the loss of accuracy.
Her homotopy perturbation method needs less computation and leads higher
accuracy. We have applied homotopy perturbation method for special casesin
which the coefficient in the Eq. (14) do not depend on partial derivatives andu.
To solve Eq. (14) with the initial conditions (15), according to the homotopy
perturbation, we construct the following homotopy:

Where a,b,c and d may be functions of x,y,z but not of,

d%v 0%, aov bo*v o*v d
A-pP)| S |*P -+ +—+—|=0
oy- oy COX~ coxoy oy ¢
Or,
2 2 2 2 2
94T _p 20Y DIV 0% d (17)
oy: oy COX® coxoy oy C
Assume the solution of Eg. (16) has the following form
V=V, + pv, + PV, +... (18)

Putting (18) in to (17) and comparing the coefficient of identical degrees of p,
d%v, 0%
0. 0 _ 0

Py Ty

-0,
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.. 0%, ad’, bo’v, d 0%,
o T i
oy® cox* coxogy ¢ oy’
2. 0%, _ ad’, bd’v
- oy? c ox> coxoy
For simplicity, wetakev, = u, = f (x) + g(x)y. Accordingly, we have:

v, (x,0) = O,%(X,O) =0 (19)

ov
,(%0) =0, —%(x,0)=0
V,(x,0) ay(><)

tt( addy, b oy,
(-2 _D 9N gy gy, 20
v -([I( 2 " coxox )Y (20)

The approximate solution of Eq. (14) can be obtained by settingp =1.
U=V, +V, +V, +..

Similarly, to solve Eq. (14) with initial condition (15) we construct the

following homotopy:

ov o4, (_ cov b v %y, dj

aoy’ aoxoy oX° a
With initial approximationv, =u, = f (y) + g(y)x. Suppose the solution of Eq.
(21) has the form (18), according to the mentioned procedure we have:
0. 0%V _azuo _
x> ox?
2 2 2 2
;. 0%, ¢y bd*y

ox*  ox?

(21)

p-: = 5 : vz(x,O)zo,%(x,O)=0

OX a oy aoxoy oX
So we have

V, :jsjs(—gazvo _Eﬂ_ngx dX

el aox’ aodyox a '
X X 2 2,

VZ:” _28_\21_96v1 dx dx, (23)
oo\ aox® aoyox

Setting p =1, result in the approximation solution of Eq. (14)

U=Vy+V,+V, +...
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Example (2.3.3) Consider the following equation with initial conditions [21]
ou o o

S+~ — 2%~ 4+1=0, (24)
oxX® oxoy oy
u(x,0) = x, M: X
oy

According to the homotopy (16), we have;

v %, (10 10V 1 o,
oy oy p[z o 2oxdy 2 oy J (29)
Beginning with v, = u, = x+ xy and from (20) we have:
tt(10%, 10%, 1 &%, 1,
== = —_ dx dy ==
h {!(2 o 2oy 2 op ) YT 2Y
yy 2 2
VZ:H 1o \21+1 O dxdy=0
2o\ 2 OX™ 2 0Xoy
v,=0, k=2
So the first-order approximate obtain by setting p=1in Eqg. (18)
1
U=Vo(xY) + (X Y) = X+ Xy + 2y (26)
Which is an exact solution.
The results are compared with characteristicsin table (2.3.4)
Table (2.3.4):
The solution of u(x,y) for different valuesof x and vy
X y u(x,y) (HPM) u(x, y) (characteristics method)
0.139 0.074 0.213 0.212
0.448 0.077 0.525 0.526
0.758 0.075 0.833 0.834
0.819 0.152 0.971 0971
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Example (2.3.5) Consider the following equation with initial conditions [21]

2 2
U _ 48U o, (27)
£ oy?
u(x0) = X2, ou(x,0) _

According to homotopy (16), we have:

2 2 2
oV %y, (1 R auoj (28)

& o Mol o
Beginning with v, =u, = x* and from (20) we have;

[ 22
{4
el e 2

So the fourth-order approximate obtain by setting p=1in Eqg. (18)
2 4 6 8
u=~ X +1y—+iy—+l%+£% (29)
4x* 32x° 640x 2048 x

The results are compared with characteristics in table (2.3.6)

Table (2.3.6)
The solution of u(x,y) for different valuesof Xand Y
X y u(x,y) (HPM) u(x, y) (characteristics method)
0.133 0.067 0.1442 0.1444
0.833 0.067 0.8911 0.8911
0.067 0.133 0.0848 0.0844
0.767 0.133 0.8779 0.8778




2.4. The Heat Equation

In this section, we will study the physical problem of Heat conduction in arod
of length L. The temperature distribution of a rad is governed by an initial-
boundary value problem [18] that is often defined in the general form by:

ou , o4

E—ky—u_f(x), O<x<L, t>0 (30)
With initial condition:

u(x,0) = g(x), (31)

And boundary conditions:
u(o,t) = fo(t), u(L,t)=f,(t). (32)
where u(x,t) represents the temperature of the rod at the position x at timet and

k isthe thermal diffusivity of the material that measures the rod ability to heat
conduction. It is interesting to note that Eq. (30) arise in two different types,

namely,
- homogeneous heat equation : this type of equation is often given by
ou , 0%
Rl ey o 33
o ox? (33)

Further, heat equation with aliteral lossisformally derived as a homogeneous
PDE in the form,

ou 0%

——k=—+u= 4

- k Ve +u=0 (34)
- Inhomogeneous Heat Equation : thistype of equationsis often given by

ou 0%

Pkl 35

ot ox? () (35)

Where f(x)is called the heat source which isindependent of time.

Many researchers have applied the HPM to the problem, homogeneous or
inhomogeneous, and it was formally proven by [22, 23, 24] that the method
attacks the problem, homogeneous or inhomogeneous, in a straightforward
manner without any need for transformation formulas. Further, there is no need
to change the inhomogeneous boundary conditions to homogeneous conditions
as required by the method of separation of variables [18], and finite difference
method [20], and Pdé approximate [18], and other methods.

In order to solve Eq. (30) with the initial condition (31), (i.e., t —solution) by
the HPM, we choose the initial approximation v, = g(x) and construct the

following homotopy:
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v au, o%v du,

— =L =plk—-v——2+ f(xt 36

ot ot (axzvatJr(x)J (36)
Assume the solution of Eq. (16) has the following form

V=V, + PV, + P2V, +... (37)
Putting (37) into (36) and comparing the coefficients of identical degrees of p,

po : %_% =0

ot oot
ov, , 0%, ou
p': El_k 8x20 +V, +?0: f(x,t), v(x0=0 (38)
2
. %—ka Vi +v,=0,, V,(x0)=0,

ot X2

t
We can start withv, = u, = g(x). And Appling the inverse operator j (o) dt to
0

above system we obtain the following recreation formula

o 0%, ou
Y K—2 v, ——2— f(x,t)]dt,
' {[ ox> 0 ot
t
!

The approximate solution of Eq. (30) can be obtained by settingp =1.
U=V, +V, +V, +..

Vi

0%V,
[k a:’('z‘l—vj_let, j>2. (39)

An important conclusion can be made here; the (t —solution) is obtained by
using the initial condition only without using the boundary conditions. The
obtained solution can be used to show that it satisfies the given boundary
conditions. However, we can also obtain the (x-solution) In fact; the solution
obtained in this way requires the use of boundary conditions and initial
condition aswell. This leads to an important conclusion that solving the PDE in
the t direction reduces the size of computational work. This important
observation will be confirmed through examples that will be discussed later. To
give a clear overview of the content of the HPM method, we have chosen
several examples, homogeneous and inhomogeneous, to illustrate the
discussion given above.
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Example (2.4.7) Consider the homogeneous one dimension diffusion equation
[18]
ou o

a:y, O<x<p, t>0. (40)
With initial condition

u(x,0) = 9(x), (41)
And boundary conditions

u(0,t)=0, u(p,t)=0. (42)

According to the homotopy (36), we have;

v au, o*v  au,
— 20 - 43
ot ot '[{ax2 ﬁtJ (43)
Beginning with v, = u, = g(x) and from the recreation formula (39) we have
_ [av oy jdt_ o,
ox> ot

j( jdt_ <4>(x)
[ 2V2 g = @ L
V3_-([£6x2]dt_g 05

Other components can be determined in a like manner as far as we like. The
accuracy level can be effectively improved by increasing the number of
components determined. Then the series solution of EQ. (40) obtain by setting
p=1inEq. (37)

u(e =3 g% (9% (44

Example (2.4.8) Consider the homogeneous one dimension diffusion equation
[18]
ou _ou

o U O<x<p, t>0 (45)
With initial condition

u(x,0) =sinx, (46)
And boundary conditions

u(0,t)=0, u(p,t)=0. (47)
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According to homotopy (36), we have;

v au, o%v ou,
— 0= —u- 48
ot ot 'O[ax2 ot j (48)
Beginning with v, = u, = sinx and from the recreation formula (39) we have;
t 2
Vv, = I[a—vzo—vo —%jdt =-2tsinx,
o\ OX ot
t 2 2
VZ:J' 8—\21—v1 dt:(Zt) sinx,
o\ OX 2
t 62\/2 (2t)2
V3=££a7—vz dt=— 3 f

Then the approximate solution of Eq. (42) obtain by setting p=1in Eq. (37)

2 3

u(x,t):sinx(l—(2t)+%—%+...j:e2‘sinx (48)
Which is an exact solution.
Example (2.4.9) Consider the one-dimensional initial boundary value problem
which describes the heat-like models [22]

ou 1 ,0%

- =X — ,

o 2 ox?
With initial condition

u(x,0) = x?, (50)
And boundary conditions

u(0,t)=0, u(@t)=¢. (51)
According to homotopy (36), we have:

O<x<l t>0 (49)

ot ot 2 X ot
Beginning with v, = u, =sinx and from recreation formula (39) we have

2
v _duy _ plzxzﬂ_%J (52)

v:j1 20V _ g dt = x°t
P2t e ot

Vv :j' L 2 0, dt = zﬁ

2 27 ax? 2
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t 2 3
vgz.[ 1xzavj dt=x2 L,
2" & 3

Then the approximate solution of EQ. (42) obtain by setting p=1in Eq. (37)
2 t* 2t
u(x,t) = x (1+t+§+§+... = X°€ (53)
Which is an exact solution.

Example (2.4.10) Consider the inhomogeneous one dimension diffusion
eguation [23]
ou 0%

E=8_2+COSX’ O<x<p, t>0 (54)
X

With initial condition:

u(x,0) =0, (55)
And boundary conditions:

u©Ot)=1-e*, u(,t)=e"-1. (56)
According to homotopy (36), we have;

2
N _ My _ P 4 \2/— Mo , cosx (57)
ot ot OX ot

Beginning with v, =u, = 0 and from the recreation formula (36) we have;

2
v = | a—vzo—%+cost dt =t cosx,
o\ OX ot
t 2 2
v, :j(a \glldt — Y cosx
o\ OX
t 2 3
Vs :I(a ijdt _ Y cosx
o\ OX

Then the approximate solution of Eq. (54) obtain by setting p=1in Eq. (37)

t? 3 o
u(x,t) = cosx(t ~Sitat j = (1-e")cosx (58)

Which is an exact solution.
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2.5: The Wave Equations

Since the governing equations on many experiments in engineering as well as
science leads to the wave equation. The wave equation usually describes water
waves, the vibrations of a string or a membrane, the propagation of
electromagnetic and sound waves, or the transmission of electric signalsin a
cable. Analytical methods commonly used for solving the wave equation are
Very restricted and can be used in very special cases so they can not be used to
solve equations of numerous realistic scenarios. Numerical techniques, which
are commonly used, encounter difficulties in terms of the size of computational
works needed and usually the round-off error causes the loss of accuracy. The
homotopy perturbation method has been widely used with promising results in
linear and nonlinear partia differential equations that describe wave
propagations [22,25,26].in this section; we will apply the HPM to handle the
wave equation. This method has proven to be very effective and results in
considerable saving in computation time.

Now consider the following homogeneous wave equation

ou ou
ety 0O<x<L, t>0 (59)
With initial conditions:
0
ux0)= 09, S(x0)=9(9). (60)
And boundary conditions:
u(0,t)=0, u(L,t)=0. (61)

In order to solve Eq. (39) with theinitial conditions (31), (i.e., t —solution) by
the HPM, we construct the following homotopy:

v 9%y, , 0°v  9%u,

XN - 1 62

ot ot? [C ox: o’ (62)
Assume the solution of Eq. (59) has the following form

V=V, + pv, + PV, +... (63)

Putting (63) into (62) and comparing the coefficients of identical degrees of p,
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o, 0%V, 0%y,
ot? ot?
L 0%, ,0%, 0%u,

~0,v,(x0) =0, %(X,O) ~0

P I AT
0%V 0%V ov.
2. —2_02_1:011 V. X!O :O!_2X7O :0
ot? x> :(x0) ot (0)
R 0%v ov.
3 3 _ 2 2 0 v.(x0 =O,—3X,0=O
e v 3(%,0) P (x,0)

We aways start withv, = f (x) +t g(x) asinitial approximate. Appling the

tt
inverse operator [[(c)dtdt to above system we obtain;

00

o%v, 0% t? t3
_ 2 0 0 _ 2 g A"
v, = (c + atzJdtdt_c(mf (x)+3!g(x)J,
c? az dtdt =c®| L f‘4’(x)+ g“(x) |,
4 5!

2 7
v, = (c OV, Jdtdt “’(t@ @ (x) + “”(x)]

7

By continuing the calculation, we thus have the solution given by
Uu=Vy+Vv,+V, +...

4

{f(x)+c f”(x) +c f<4>(x) +C f<6>(x) t }

[g”(x)t+c g(x) +c g(“)(x) S+C g(6)(x) }

(64)

(65)

It is important to note that we can aso obtained the (x—sol ution) by using the
boundary conditions in this way requires more work because the boundary
condition v, (0,t) is not always available. To give a clear overview of the HPM

method, we have selected homogeneous and inhomogeneous equations to

illustrate the procedure discussed above.
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Example (2.5.11) Consider the wave equation in the infinite domain [26]

o’u  o%u

Fribey —o<X<o t>0 (66)
With initial conditions:

u(x,0) =sinx, %(X,O) = COSX. (67)
With f (X) =sinx andg(x) = cosx, we find

fe(x)=(-1)"sinx, n=012,.. (68)
And

g (x)=(-)"cosx, n=012,.. (69)

Substituting Eqg. (68) and (69) into (65) produces
2 4 3 5
u(x,t)=sin x[l—t—+t——...j+cosx(t—t—+t——...j
2! 4l 3 5
And in aclosed form by
u(x,t) =sin(x+t) (70)
Thisisthe same as D'Alembert solution [18]

Example (2.5.12) Consider the following inhomogeneous wave equation [18]
o’u o

¥:y+6t+zx, O<X<p, t>0 (71)
With initial conditions
u(x,0) =0, Z—ltj(x,O) =dginx. (72)

And boundary conditions

Z—:'((o,t)zt2+sint, Z—i(p,t):tz—sint. (73)

To solve Eq. (71) with the initial condition (72), by the HPM, we construct the

following homotopy:
ov:  olu o%v 0d°u
T at20 = (axz - atzo +6t+2x] (74)
Assume the solution of Eq. (74) has the form Eqg. (63) substituting (63) in (74)
and comparing the coefficients of identical degrees of p,
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0. 0%V, 0%, _
at? ot
L 0%, 0%y, | D%uy
ot? ox* ot?
2. Ny 0%

=6t +2x ,v,(x,0) =0, %(X,O) =0 (75)

v, (%,0) =0, %(X,O) -0

a o

oV, 0% ov.
3. 23 _Z 20 v, (x0)=0, —=(x,0)=0
P o T o :(x0) at( )

Start with v, =tsinxasinitial approximate. Appling the inverse operator

tt
[[(e)dtdt to above system we obtain;
00

2 2 3
(6 \20 + U, +6t+2x]dtdt =13 +t2x—t—sinx,
ot? 3l

Then the approximate solution of Eq. (71) obtain by setting p=1 in Eq. (63)
2 3
u(x,t) :t3+t2x+(t—%+§+..)sinx:t3+t2x+sinxsint (76)

Which is an exact solution.

Example (2.5.13) Consider two-dimension initial boundary value problem
which describes the wave-like models [ 26]

o°u  1( ,0°u ,0%
S A X ==ty — |
otz 12\ ax? oy?

Subject to theinitial conditions:

0<xy<l t>0 (77)

u(x y,0) = x*, %(x. y,0) =y*. (78)
And the Neumann boundary conditions:

a—u(O, y,t)=0, @(L y,t) = 4cosht ,
OX oX

%“(x,o,t) _o, %“(x,],t) _ 4sinht. (79)
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To solve Eq. (77) with the initial condition (78), by the HPM, we construct the
following homotopy:

ar oz N2 a2l oy

Assume the solution of Eq. (80) has the form Eq. (63) substituting (63) in (80)

and comparing the coefficient of identical degrees of p,
0. 0%, 0°u,
oz ot
L 0%V, 1, 0%, _iy2 %V, 0°U,
ot 120 ox® 127 oy? oy?
2. Ny 1.2 52V1+i 2 0%V,
ot 127 ax® 127 oy?

2 2 2 2 2
v %y, (1X25V+i zﬂ_aqu (80)

=0,Vv,(x,0) = O,%(X,O) =0 (81)

—0, v,(x0)=0, %(X,O) 0

Start with v, = x* + y*t asinitial approximate. Appling the inverse operator

tt
[[)dtdt to above system we obtain;
00

—x2% %, 2 + 920 gtdt = X — + y*
(12 ax 127 oy o 2 Y 3

2 2 4 5
Vv, = ixza\glJriyza\g dtdt:x4t—+y2t—,
12 ox= 12° oy 4! 5!

1 _,0%, LA , 0%V, azuoj t? t3

Then the approximate solution of Eq. (77) obtained by setting p=1 in Eq. (63)

W, 2 t° W, 2P A il
ux,t) =x*1-—+—+.. [+ x*|t——+—+..|=x*cosht + y*sinht ~ (82)
2! 4l 3 5

Which is an exact solution.



2.6: The Laplace Equation

The Laplace equation is often encountered in heat and mass transfer theory,
fluid mechanics, elasticity, electrostatics, and other areas of mechanics and
physics. The two-dimensional Laplace equation has the following form:

2 2
Or
Vi=0 (84)

Where v? islaplacian.

The Dirichlet boundary conditions for Laplace’s equation consist in finding a
solution of u on domain D such that on the boundary of D is equa to some
given function [15,18].0ne physical interpretation of this problem which arises
in heat equations is as follows: fix the temperature on the boundary of the
domain and wait until the temperature in the interior does not change anymore;
the temperature distribution in the interior will then be given by the solution to
the corresponding Dirichlet problem. The Neumann boundary conditions for
Laplace’s equation specify not the function itself on the boundary of D, but its
Normal derivative [15,18]. Physically, this is similar to the construction of a
potential for avector field whose effect is known at the boundary of D alone.

In this section, we will apply the (HPM) to Laplace’s equation with specified

boundary conditions [27,28].
Now consider the two dimension Laplace equation

Z%+2—;l::0 0<x<al<y<b (85)
With boundary conditions

u(G,y)=0, u(a y) = f(y),

u(x,0) =0, u(x,b) =0. (86)

In order to solve Eq. (85), by the HPM, with boundary conditions (86) (i.e.,
y — solution), we construct the following homotopy:

v o%u, o%v 0%y,

N S 87

ayZ 8y2 p( 6X2 ayZ j ( )
Assume the solution of Eq. (86) has the following form

V=V, + pv, + PV, +... (88)

Putting (88) into (86) and comparing the coefficient of identical degrees of p,
00 0%y 0%Uy _
oy*  oy*
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0%v. 9%v, o&%u oV
ety 04 0-0,v(0,y)=0, —2(0,y)=0 89
p 5 ot oy (0,y) ay( y) (89)
o%v, 0°v. oV
2. 2,- 1-0,, v,(0,y)=0,—2(0,y)=0
P 5 ok ,(0,y) ay( y)

We note thatu, (x,0)= g(x) , boundary condition that is not given but will be
determined now start withv, = yg(x) asinitial approximate. Appling the

yy
inverse operator || (-)dydy to above system we obtain;
00

d%v, 0% s
ﬂ “h—f}wwz—yg<m,

yy
V, = Z_
' ! l x> oy 3
tt aZV 5
v, = M[— aX;Jd.\/olyz%g(‘”(x) : (90)

By continuing the calculation, we thus have the solution given by
U=Vy+V, +V, +...

=m®—%d®+%¢”@t- (92)

To complete the determination of the solution of u(x, y) , we should determine
g(x) This can be easily done by using the inhomogeneous boundary condition
u(a,y)= f(y). Substituting x=ainto (89), using the Taylor expansion for
f(y)and equating the coefficients of like terms in both sides’ leads to the
complete determination of g(x) .

Example (2.6.14) Consider the two dimension Laplace equation [27]
o%u 0%

¥+¥=o O<x,y<p, (92)
With Dirichlet boundary conditions:

u(,y) =0, u(,y)=sinhpsiny,

u(x,0) =0, u(x,p) =0. (93)

According to homotopy (86), we have;
ov?  o%u, o%v  0°u,
o e

ox>  oy?
Beginning with v, = y g(x) and according to Eg. (90) the solution of (92) reads;
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y_3 " Y_S (4)
a1 9 (x)+ o 9 (X) + ...
To determine the function g(x) , we use the inhomogeneous boundary condition

u(p,y) =sinhp siny, and by using the Taylor expansion of siny we obtain

u(x,y) = yg(x) -

y3 " y5 (4 o y3 y5
YIP) =5 9'P)+ 5 9 R) +o =il y = Tk (94)
Equating the coefficient of like terms on both sides gives
gP)=9"(P)=9"“(p) =...=sinhp (95)
This means that
g9(x) =sinhx (96)

The only function that when substituted in (90) will also satisfy the remaining
Boundary conditions, consequently, the solution is given by

u(x,y):sinhx(y—é—j+y—5+ ..... j (97)

Andinaclosed form
u(x,y) =sinhxsiny (98)

Example (2.6.15) Consider the two dimension Laplace equation [27]

2 2
272+%:0 0<Xy<p, (99)
With Neumann boundary conditions:
u,(0,y)=0, u,(p.y)=0,
u,(x,0)=cosx,  u,(x,p)=coshp cosx. (100)

In order to solve Eq. (99), by the HPM, with boundary conditions (100) (i.e.,
x—solution), we construct the following homotopy:
o' 0%u, o%v 9y,
ool (_ S _67]
Assume the solution of Eg. (101) has the form (88) substituting (88) into (101)
And comparing the coefficient of identical degrees of p,

(101)

o, 0%V, 0%y,

-0,

ox>  ox?

0%v, 9%, 0o%u oV
.2ty 047 00,y (x0)=0, —X(x,0)=0 102
p o o o 1(X,0) ax( ) (102)

2 2
p>: 0 V22 0 \21 =0, V,(x0)=0, %(X,O):O

OX oy OX
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We note thatu(0, y) = h(y), boundary condition that is not given but will be
determined now start withv, =h(y) asinitial approximate. Appling theinverse

operator | [(<)dxdx to above system we obtain;
00

SR o7, 8 u 2

ol Gt e o

v, :JX‘JX( o, ]dxdx —h(“)(y) (103)
ol oy’ 4!

By continuing the calculation, we thus have the solution given by
U=V, +V, + v2 +..

= h(v)——h"(y)+ h(“)(y)+ (104)

To determineh(y), we use the boundary condition u, (x,p) = coshp cosx to obtain

2 4
u, (xp) =h'(p)- h”’(p) + h<5> (O)+. = coshp(l—%+)j7+ ] (105)
Equating the coefficients of like terms on both sides we get;
h'(p) =h"()=h® () +...= coshp (106)
Then
h(y) =sinhy
Consequently, the solution is given by;
2 4
u(x,y) = sinh y[l—%+%+...} (107)

It is worth pointing out that the Neumann problem has a property that the
solution is determined up to an arbitrary additive constant which cannot be
defined by this method or even separation of variables [18]. So, the solution is
given inthe closed form as

u(x,y) = C+sinh ycosx

The important things which we want to mentioned here, the results of this
section were published as scientific paper in [80,81].
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CHAPTER THREE

APPLICATION OF HOMOTOPY PERTURBATION
METHOD TO LINEAR AND NONLINEAR
PHYSICAL MODELS

3.1: Introduction

This chapter is devoted to treatments of linear and nonlinear particular
applications that appear in applied sciences. A wide variety of physicaly
significant problems modeled by linear and nonlinear partial differential
eguations has been the focus of extensive studies for the last decades. A huge
size of research and investigation has been invested in these scientific
applications. Nonlinear PDES have undergone remarkable developments.
Nonlinear problems arise in different areas including gravitation, chemical
reaction, fluid dynamics, dispersion, nonlinear optics, plasma physics,
acoustics, inviscid fluids and others.

The importance of obtaining the exact or approximate solutions of nonlinear
partial differential equations in physics and mathematics is still a significant
problem that needs new methods to discover exact or approximate solutions.
Most new nonlinear equations do not have a precise analytic solution; so,
numerical methods have largely been used to handle these equations. There are
also analytic techniques for nonlinear equations. Some of the classic analytic
methods are Lyapunov’s artificial small parameter method, perturbation
techniques, d-expansion method, and Hirota bilinear method. In recent years,
many authors have paid attention to studying the solutions of nonlinear partial
differential equations by using various methods. Among these are the Adomian
decomposition method (ADM), He’s semi-inverse method, the tanh method,
the sinh—cosh method, the differential transform method and the variational
iteration method (VIM).

In this chapter, the homotopy perturbation method, the modified homotopy
perturbation method, and the self-canceling noise-terms phenomenon will be
employed in the treatments of these physical models.
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3.2: He’s Polynomials

The homotopy perturbation method has been outlined before in previous
chapters and has been applied to a wide class of linear partial differential
eguation; the method has been applied directly and straightforward manner to
homogeneous and inhomogeneous problems without any restrictive assumption
or linearization. The method considered the solution as a summation of an
infinite series usually converging to the solution. The homotopy perturbation
method will be applied in this chapter to handle nonlinear partia differential
equations. An important remark should be made here concerning the
representation of the nonlinear terms that appear in the equation, although the
linear term is expressed as an infinite series of components. The homotopy
perturbation method requires special representation for nonlinear terms such as
nonlinear polynomials, trigonometric nonlinearity, hyperbolic nonlinearity,
exponential nonlinearity and logarithmic nonlinearity that arise in nonlinear
equations. The method introduces a formula logarithm to establish a proper
representation for al nonlinear terms, the representation of nonlinear term is
necessary to handle the nonlinear equations in an effective and successful way,
in the [29] Asghar Ghorbani introduced the a logarithm for calculating the
polynomials that expressed the nonlinear terms as polynomials, and this
polynomial are called He’s polynomials.

3.2.1: Homotopy Perturbation Method
Now consider the functional equation

u-N(Qu)=f D
Where N is nonlinear operator from Hilbert space HtoH, uis unknown
function, and f isknown functioninH .
Consider Eq. (1), in the form,

L(v)=v-f(X)=N(v)=0 (2

With solution u(x) . As a possible remedy, we can define homotopy H(v, p) as

follows:

H(v,0) = F(v), H(v,) = L(Vv)
Where F(p) isan integral operator with known solution v, which can be
obtained easily, typically we may choose a convex homotopy in the form

H(v, p) = @- p)F(v) + pL(v) =0 ©)
And continuously trace implicitly defined curve from starting point
H(v,,0) = F(v), to the solution function H(u,1) = L(v), the embedding parameter
p monotonically increase from zero to unit as the trivial problem F(v)=0 is
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continuously deformed form to origina problem L(v)=0, the embedding
parameter p < [0.1] can be considered as an expanding parameter

V=V, + PV, + PV, +... 4)
When p — 1, Eq. (3), corresponds to Egs. (2) and (4) becomes the approximate
of Eq. (2) i.e.

U=|FELT1‘V=V0+V1+V2+--- (5)

Theorem (3.2.1)

Suppose N(v) isnonlinear function, v= i p“v, then we have
k=0

an an 0 ar‘l n
——N(V), :—nN( p v, j =— N[ p v, ] (6)
op " op kzo oo D kzo ‘) o

Proof: Since

V= vak vak+2pvk ()

k=n+1

We have such result as foII0W| ng
" (3w £ )
p=0

an an 0
—N(V) :—nN( p v, j =
6p e ap kZO “ p=0 k=n+1

o" S
= N V, 8
z (zp j ®)

Therefore we obtain

g -l
V)po =— N pv, =—-N pv,
L LU b

k=0 k=0

Theorem (3.2.2)
The He’s polynomial can be calculated from the formula

1 an n k
H,=———N V, , n=012,... 9
n! ap [kZ:o p k]p—o ( )
Pr oof:
Taking F(v) = v(x)- f(x) and substituting (2) in to (3) we have
H(v, p) = v(x) - f(x) - pN(v) =0 (10)
According to Maclaurine expansion of N(v) with respect to p we have;
0 1 o?
N(V):N(V)p_0+(a_pN(v)p_ij [2'6 2 ( )p ij +.
10"
+( e N(v) . OJp +.. (12)

Substituting (4) into (11), we have;
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N(v) = N@ pkvk] ) [ [kfj pkka _Jm[zl. aapz N(g pkvkjp_onz +

[18" ipvk Jpw (12)

n! op" k=0

According to theorem (3.2.1)

N(V) = N(v, L [z p vk] . ]p+(%;;22N(kZ; p vk]p_()]p2 +...
+(1 " N[z pkvkj ]p ‘. (13)

n! dp k=0
Substituting (4) and (13) in to (10) and equating the indicated powersp, we
have
P’ v, - f(X)=0=>v, = f(X),
p': v, —N(V,) =0= v, = N(v,) ,

- (] omu- INEe)

p=0
1 0° 2 1 0°
Va(x)_?a_ (Z kak] =0=Vv;(X) =~ 21 op? (Zp VkJ )
p=0 p=0

k=0 k=0

k=0 k=0

nel . 10" -k 10" -k
; N =0 =———N :
P Va0 - o [vakjp_o =% = o [vakjp_o
Then the He polynomials is defined as follows

10"
H (v,,V,,V,,...) = — \Y; , h=012,...
n( 0r Y11 Y2 ) n! ap (kzop k]p_o :L

Therefore, the approximate solution obtained by the homotopy perturbation
method can be expressed in He polynomials

a 1
u(x) = F(X)+N(v,) +—N| Y p“v j ( p*v, j +..
%/L 6p kZ:(;) v p=0 2| 8p ;) “ p=0

Hp
H; H;

10" (&,
+—=——N| ) pV +. (14)
n! op (kz_:; “ ) oso

The nonlinear term N(u) can be also expressed in He polynomials
N(U) = 3 H, (Vouoi V) = Ho (V) + H, (Vo V) + ot H, (Vo e Vi) (15)

n=0

Where
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10"
H,(Vy,..,V,) = ( p“v j , n=012,..
0 n!ap" kzo s oo

Alternatively, the approximate solution can be expressed as follows
U(X) = £ () + S H, (Voo Vy) (16)

It is interesting to point out that we can obtain He polynomials and the solution
simultaneously making the solution procedure much more attractive an
fascinating. Now the general formula of He polynomial

H, _10 - N(Z p"vkj ,n=012,,...
p=0

n! op k=0

Can be smplified as follows
H, :N(Vo)
H, =Vv,N'(v,)

1 1 14
H, = Vv,N'(v,) +§V12N (V)
1A 14 l 14
H3 = V3N (Vo) +V1V2N (Vo) +§V13N (Vo) (17)

H, =V,N'(V,) + (%vﬁ + vlvst”(vo) + %vazN’”(vo) + %v{‘N(“) (Vo)

Other polynomials can be generated in asimilar manner.

Notes (3.2.3): Two important observations can be made here,

First: H, depends only onv,, H, depends only on v, andv,, H, depends only
onv,, v,and v, and so on.

Second: the series iHn Is general Taylor series about a function v, and not

n=0
about a point as usually used
Proof:

N(v)=>H,=H,+H,+H, +..
n=0
= N(Vp) +V,N'(V,) + —V1 N (Vo) + VN (Vo) + VaN' (Vo) + Vv, N (V) + ..
=N(V,) + (Vg +V, +V, +..N’ (v)+ (v +2V,V, + 2V, +VE )N"(v)

1
+ 5(\/12 +3V7V, + VAV, + BV, W,V + ...)N'”(vo) +.

=N(V,) +(V—Vy )N+ 21 (V=V, )’ N"(V) + ...
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Then we have

N = H, = 3 (=% NO () (18)

n=0 n=0 '

A definition which is called it as He’s polynomials has presented by Ghorbani
in [29]. The Adomian decomposition method [30,31,32] is a method to solve
functional equations [33,34,35,36]. The crucia part of this method is
calculating Adomian polynomials. The homotopy perturbation method is used
to calculate Adomian Polynomials [37], making the solution procedure in
Adomian method remarkable simple and straightforward. It is well-known that
the main disadvantage of the Adomian method is the complex and difficult
procedure for calculation the so- Adomian polynomials, in [38] Ozis, and
Yildirim compared Adomian’s method and He’s homotopy perturbation
method for solving certain nonlinear problems. Li also has shown that the
ADM and HPM for solving nonlinear equations are equivalent [39]. Hossein
Jafari [40], proved that He’s polynomials are only Adomian’s polynomials with
different name. We will also show that the standard Adomian decomposition
method and the standard HPM are equivalent when applied for solving
nonlinear functional equations.
In the following an attempt is made to calculate homotopy polynomials for
different forms of nonlinearity that may arise in nonlinear ordinary or partial
differential equations.

3.2.2: Calculation of Homotopy Polynomials H

. Nonlinear Polynomials
Casel: N(u) =u?
The polynomials can be obtained as follows:
Hy = u§7
H, = 2uyu, ,
H,= 2u,u,+u’
H,= 2u,u,+2u,u,.

Case2: N(u) = u®
The polynomials are given by
H,= ug’
H,= 3uu,,
H, = 3u?u,+3u,u’,
H, = 3ulu, +6uyu, u, +Uu;.



Case3: N(u) =u*
Proceeding as before we find
H, = ug’
H, = 4u; u,,
H, = 4uiu,+6u;u?,
H, = 4uju, +4udu, +12uZ u, u, .
In a parallel manner, homotopy polynomials can be calculated for nonlinear
polynomials of higher degrees.

[I.  Nonlinear Derivatives
Case 1: N(u)=(u, )’
Hy=u;
H, =2u, u;_
H, = 2u, U, +u; ,
H, =2u, u;, +2u, u, .
Case2: N(u) =u®
The homotopy polynomials are given by
Hy,=us ,
H, =3uj u, +3u, U/,
H,= 3u; u, +3u, u;,
H, = 3ug u; +6u, U, U, +uy .
Case 3: N(u) =uu,
The homotopy polynomials for this nonlinearity are given by
Hy, = ug Uy s
H, = U, U +u,u, ,
H,=U, U,+Uu, U,+U, Uy,

H, = Uy Ug+U; U, +U, U +Ug Ug.

[I1.  Trigonometric Nonlinearity

Case l: N(u)=snu

The homotopy polynomials of thisform of nonlinearity are given by
H, =snu,,
H, = u, cosu,,

1 .
H, = u,cosu, — Eufsmuo,
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. 1,
H, = u, cosu, —u, U, sinu, =3t O0SUs

Case 2: N(u)= cosu
Proceeding as before gives
H, = cosu,,
H, = —u,sinu,,

. 1
H,=-u,sinu, — Euf cosu,,

. 1 ..
H, = —u,sinu, — U, U, Cosu, + Y sinu;.

V. Hyperbolic Nonlinearity

Case 1: N(u) = sinhu

The H,, polynomials of thisform of nonlinearity are given by
H, =sinhu,,
H, = u, coshu,,

1 .
H,=u,coshu, + —u’sinhu,,
2!

. 1
H, = u,coshu, + u, uzsmhuo—guf coshu,.

Case 2: N(u) = coshu

The homotopy polynomials are given by
H, = coshu,,
H, = u,sinhu,,

: 1
H,= u,sinhu, + 5“12 coshu,,

. 1 .
H, = u,sinhu, + u, u, coshu, + Euf’smhuo.

V. Exponential Nonlinearity

Casel: N(u) = ¢"

The homotopy polynomials for this form of nonlinearity are given by
H, = e,

U,

H, =ue”,

1 u
H, = (u2+aufj e’ ,
B 1
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Case2: N(u)= e
Proceeding as before gives
H,=¢e ",

Ug

H, =-ue*,

1 _
H, :(—u2+5ufJe Yo
H. = 1 3 - Up
2= | TUs Uy — Uy e

VI. Logarithmic Nonlinearity
Casel: N(u)=Inu, u>0
The H,, polynomials for logarithmic nonlinearity are given by

H, = Inu,,
u
H, = %,
l"IO
2
H _ U U
27 u, 2u?’
0 0
3
H _ u3 l"IluZ l'Il
T u u? 3u?
0 0 0

Case2: N(u) = In(l+u), -1<u <1
The H,, polynomials are given by

H, = In(1+u,),
u1
H, = ,
1+u,
2
u2 ul
H,=—=-—
U, 2u]
3
u u,u u
H3 _ 3 142 + 1

1+u,  (1+u,)®  3(@+u,)’
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3.3: The Nonlinear Advection problem

Nonlinear phenomena have important effects on applied mathematics, physics
and issues related to engineering; many such physical phenomena are modeled
in terms of nonlinear partial differential equations. For example, the advection
Problem which are of the form

ou ou

EHJ& =f(xt) u(x0)=g(x) (29
Arise in various branches of physics, engineering and applied sciences. The
problem has been handled by using the characteristic method and numerical
methods such as Fourier series and Runge-Kutta method.In this section, we
approach the advection problem by utilizing the homotopy perturbation method
to obtain the exact solution [41]. The modified Homotopy perturbation method
and the phenomenon of self-canceling noise term will be used where

appropriate.

To solve Eq. (19) by (HMP), we construct the following homotopy:

ov ou, ov 0du,
N _ My N Do _fxt)|=0 20
a o +'O(Vaf a )J 20
Assume the solution of Eg. (20) has the following form
V=V, + PV, + POV, +... (22)
Substituting Eg. (21) into Eg. (20) and equating the terms of like power p,
po . %_%:O
. at at )
oV, ov, au
ot a_tl+v°a_>?+8_toz f(xt), v,(x0)=0 (22)
oV, OoV. oV,
p?: a—t2+voa—;+vla—)?=0, V,(x0) =0
ooov, 2 ov ,
pJ a_tj_i_évk éxklzo, VJ(X,O):O, J22

Starting withv, (x, y) = u,(x,y) = g(x), asinitial approximate and applying the
t

Inverse operator j(o)dt to above system, we obtain the following recreation
0

formula,

t
ov, 0du,
v, = [| —v, =2 -0 4 f(xt) |dt,

! {[ °ox ot ( )]
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j[ivk L “] j>2 (23)

0 \ k=0

The approximate solution of (20) can be obtained by setting p=1 in Eqg. (21)
u=limv=vy +v; +V, +... (24)
p—

Example (3.3.4) Consider the homogeneous Advection problem

ou ou 2

- +u o =0, u(x0) =x>. (25)
According to homotopy (36), we have;

@_%4_ p[v@+%j 0 (26)

ot ot ox ot

Beginning with v, =u, = x* and from recreation formula (23) we have;

v, = [— v, %_6%] dt = —2x%

t
0
t oV, ov,
v, = || -v, =2~V dt = 5x*t?
? JI ox % ox
t
i

v, = —VZ%—vlav1 Nz g = A2 53
OX ox  °ox 3

Then the approximate solution of Eq. (25) obtain by setting p=1in Eq. (21)

u=limv=v,+v, +Vv, +...
p—1

u:x2—2x3t+5x4t2—4—32x3t3+... (27)
Example (3.3.5) Consider the inhomogeneous Advection problem
au u@_2t+x+t3+xt u(x,0) = 0. (28)
ot ox
Sandard HPM: According to homotopy (20), we have
Ny p(V@-F%—zt—X—ts—thj:O (29)
ot ot ox ot
Beginning with v, =u, =0 and from recreation formula (23), we have
t 4 3
A :j(—vo%—aﬂJtherH3 +xt2jdt =t? +xt+t—+Xt—,
) ox ot 4 3
t
ov, av
v -([( o 8x)
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2oy, —t-y, = -
OX OX oX 4 3 15 72 63 98’

; v, oV, oV, t* xt® 2xt> 7® o oxt’ t®
v3=I -V,
0
It is important to recall here that the noise terms appear between the

components v, andv,, where the noise terms are those pairs of terms that are
3
identical but carrying opposite signs. More precisely, the noise terms + Z’i%

Between the components v, andv, can be cancelled and the remaining terms of

v, still satisfy the equation. The exact solution is therefore
u=t>+xt (30)

Modified HPM: To solve Eq. (28) by (MHMP), we construct the following
homotopy:

ov ov 3 5

P p(v&—t —xt j=2t+x (31)
Assume the solution of Eq. (28) has the form Eq. (21) substituting Eqg. (21) in
to Eq. (28) and equating the terms of like power p,

p®: —2=2t+x, Vv, (x,0) =0
p: %+v0 afﬂx =t*+xt*, v(x0=0 (32
pZ: aVz aVl Vl%:()’ VZ(X,O) 0

—+V,—+
ot OX
t
Appling the inverse operator j (o)dt to above system, we obtain
0

Jt'(2t+x)dx =t? + xt,
0
H Y %—ts xtz]dt=o,
v, =0, k>1.
It then follows that the solution is
u(x,y) = vy (x,y) =t +xt (33)

This example clearly shows that the solution can be obtained by using two
iterations, and hence the volume of calculation is reduce

v, =

60



Example (3.3.6) Consider the inhomogeneous Advection problem

8—u+ua—u=—sin(x+t)—lsin2(x+t), u(x,0) = cosx . (34
ot OX 2
Sandard HPM: According to homotopy (20), we have;
VT - O SRR O _
PR +p(vax+ - +S|n(x+t)+23m2(x+t)J 0 (35)

Beginning with v, =u, = cosx and from recreation formula (23) we have;

Ov._,.-»

( ————sm(x+t)—%sm2(x+t)jdt

%t Sin 2X+ CoS(X + t) — COSX + %cosZ(x +t)— %cost :

t oV,
vV, =||-v,— -V, dt
2 J-( ' ox ax

. . 1 . . .
—thsmxsm2x+§t2 COSXCOS2X —SiN XSiN(X+t) +sin? x

. 1. . 1. .
+ COSXCOS(X + 1) + cos® x+tsm2x—§sm xsm2(x+t)+§sm XSin2x

+%cosx0052(x+t) —%COSXCOSZX+%tSin xcost+1tcosxsin 2X,

Then the approximate solution of Eq. (34) obtain by setting p=1inEq. (21)
u=limv=v,+v, +Vv, +...
p—1

u= %(cosx — 2t% cosX +12c0s2X + 3c0S3X — 6t > coS3X + 16 cos(X + ) — cos(2t + X)

16CoS(2x + 4) + 4c08(2x + 2t) — 3cos(3x + 2t) — 2t sin x—8tsin2x - 6tsin3x) +... (36)

The behavior of the solution(36) obtained by HPM and the exact solution (39)
isshown in Fig (3.3.7) we achieve a good agreement with the actual solution by
using two terms only in HPM derived about.
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Fig (3.3.7) the surfaces show the exact solution in (a) and the approximate
solution given by HPM in (b).

(@ (b)
Modified HPM: To solve Eq. (34) by (MHPM), we construct the Following
homotopy:

ov ov 1. .
E+ p(v&—aan(xH)j_—sm(xH) (37)

Assume the solution of Eq. (37) hasthe form Eq. (21) substituting Eg. (21) in
to Eq. (37) and equating the terms of like power p,

p®: %:—sin(xﬂ), V, (x,0) = cosx

A ov, 1.
D —L4v, —2=—Zgn2(x+t), v,(x0)=0 38
phe TEHvp = —osn2(x+) , w(X0) (38)
2. OV, A% Ny
D —=+Vv,—+Vv,— =0, v,(x,00=0
por Ve T ,(%,0)

t
Appling the inverse operator j (o)dt to above system, we obtain
0

t
V, = cosx+_f(—sin(x+t)dx:cos(x+t) ,
0
t

o, 1.
A :j[—v0&+§sm2(x+t)jdt =0,

0
v, =0, k>1.
It then follows that the solution is
u(x, y) = vy (X, y) = cos(x +1t) (39)
Which is an exact solution.
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3.4: TheKlein-Gordon Equation

The Klein-Gordon and sine-Gordon equations model many problems in
classical and guantum mechanics, solitons and condensed matter physics. The
Klein-Gordon equation arise in physics in linear and nonlinear form and it is
has been extensively studied by using traditional method such as finite
difference method, finite element method, Backlund transformations. The
parametric finite-difference method, discrete singular convolution algorithm,
predictor-corrector scheme, variable separated ODE method tanh method,
mapping method, Jacobi elliptic function expansion method and inverse
gpectral  transform, are presented handling the Sin-Gordon equation.
Approximate analytical solutions of Klein-Gordon equation such a domain
decomposition method, variation iteration method were present to solve the
Sine-Gordon equation. In this section, the HPM will be applied to obtain exact
solution if exist and approximate to the solution for concrete problems, the
modified homotopy perturbation method used where appropriate. [42,43,44,45]

3.4.1: Linear Klein-Gordon Equation

The linear Klein-Gordon equation in its standard form is given by

o°u o
e —erau_h(x,t), (40)
Subject to theinitial conditions
0
u(x,0) = f(x), EU(X,O) = g(x). (41)

In order to solve Eq. (40) with the initial condition (41), (i.e., t —solution) by
the HPM, we construct the following homotopy:

d*v 0d°u o°u, 0%

e atzo + p( axzo v +av-— h(x,t)J =0 (42)
Assume the solution of Eq. (42) has the following form

V=V, + pv, + PV, +... (43)

Putting (43) and (41) into (42) and comparing the coefficients of identical
degrees of p,

0. 0%, 0°u,

oz ot

L 0%, 0%y, | D%uy

Sot? ox* o ot?

+av, = h(x,t) ,v,(x,0)=0, %(X,O) =0 (44)
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, 0%, 0%,

ot ox?

+av, =0, Vv,(x0)=0, %(X,O) =0

We aways start withv, = f(x)+tg(x)as initial approximate. Appling the

tt
inverse operator [[(c)dtdt to above system we obtain the following recreation
00

formulg;
tt 62V0 azuo
v1=_££(87—av0— e +h(x,t) |dtdt,
tt aZV-,l
Vj :IJ.( 6XJ2 _avjl]dtdt, (45)
00

The approximate solution of (41) can be obtained by setting p=1 in Eqg. (43)

u=limv=v, +Vv, +V, +... (46)
p—l

Example (3.4.8) Consider the homogeneous linear Klein Gordon equation [42]

o’u o4

— - =u, 47

ot? ox? (47)
Subject to theinitial conditions

u(x,0) =1+sinx, g—ltj(x,O) =0. (48)
According to homotopy (42), we have;

v 9%y, o%u, 0°*v

—~ -—-v|=0 49
a o p( x> ox? Vj (49)

Beginning with v, =1+sinx and from the recreation formula (39) we have;

tt 62V0 azuoj t2
V]_= —+Vo_— dtdtz_,
[[[5e- 5 jaa-




Hence, the approximate series solution is,
2 4 2
u(x,t)=1+sinx+t—+—+t—+... (50)
2 24 720
And thiswill, in the limit of infinitely many terms, yield the closed-form
solution

u(x,t) = sin x+ cosht (51)

Example (3.4.9) Consider the inhomogeneous linear Klein Gordon equation
[42]

o’u o4 .

W—y—ZU:—Zgnxsnt (52)
Subject to theinitial conditions

u(x,0) =0, %(X,O) =sinx. (53)

According to homotopy (42), we have;

ov: 0%, o°u, 8% o
— + - +2v+2sinxsint |[=0 54
ot?  ot? p( ox>  ox® (54)

Beginning with v, =tsinx and from the recreation formula (39) we have;

2 2 3
V, = ﬂ—Zv —%—Zsinxsint dtdt =—-sin —t——ZSint —-2tsinx,
! ° a2 6

2 5
[6 Vi —2vl]dtdt :%sin x(;—o—lZSint—ZtsJ+2tsinx,

X2
7

2
v, = [[[ 222~ 2v, |dtdt = —Lsinx L — 1240sint - 2t° + 40¢° | - 2tsinx,
ox 1200 | 42

Hence, the approximate series solution is
2t t7 P
u(x,t)=sin>{t——+———+—+..) (55)

And thiswill, in the limit of infinitely many terms, yield the closed-form
solution
u(x,t) =sinxsint (56)
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3.4.2: Nonlinear Klein-Gordon Equation

The nonlinear Klein-Gordon equation in its standard form is given by:

o%u o%u
ST ta gt bu+aqu* = h(x1t), (57)
Subject to theinitial conditions
0
ux0 =109,  Z(x0=9(9. (58)

Wherea ,b and g are known constants, when k = 2we have quadratic
nonlinearity and when k = 3 we have cubic nonlinearity

Now to solve Eq. (57) with theinitial condition (58), (i.e., t —solution) by the
HPM, we construct the following homotopy:

ov: o o%u o%v
Assume the solution of Eg. (59) has the following form
V=V, + PV, + PPV, +... (60)

Putting (58) and (60) into (59) and comparing the coefficient of identical
degrees of p,
0. 0%, 0%°u,

_ =0,
ot? o2
2 2 2
L Zt\gl Gatlio a %XVZO +bv, +ov¢ = h(xt),v(x,0) =0, %(x,o) =0 (61)
R R B oV
p®: at22 +a 8x20 +bv, +gkv,vit =0, v,(x0)=0, 8_'[2()(’0) -0

We aways start withv, = f(x)+tg(x)as initial approximate. Appling the

tt
inverse operator [[(z)dtdt to above system we obtain:
00

tt 0%, a2u
v, =—|||a +bv, + Qv +—2 —h(x,t)]dtdt,
! !-([( ox? T ox?
_1fa 2% 4 by, + ghes |atd 62
V, = ”aax2+ v, +gkv,vy ™ [dtdt, (62)
00

The approximate solution of (57) can be obtained by setting p=1 in Eqg. (43)

u:lr!irllv=v0+v1+v2+... (63)
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Example (3.4.10) Consider the inhomogeneous nonlinear Klein Gordon

equation [42]
2 2
0 L; ALY ? = —xcost + x* cos’ t, (64)
ot ox?
Subject to theinitial conditions
u(x,0) = x, %(X,O) =0. (65)

Sandard HPM: According to the homotopy (59), we have;

2 A2 2 2
?[/2 - aatuzo + [aa U20 —2 \2/+v2 + xcost — X cosztj =0 (66)
X X

Beginning with v, = x and from (62) we have;

2

t
:” 0* VO V2 — 0"y — xcost + x? cos?t |dt dt
) o’

= —x+£x2 —%xzt2 + xcost—lx2 COS2X,

8
tt 1 1 t*
” — 2V, |dtdt = ——x*+=t? ——— - 2x® +t°X?
00 16 8 24
3 2.3 4.,3
X UxT ot NG COSt—iCOSZX_iXS cos2X,
16 8 16 16

The approximate solution of (57) can be obtained by setting p=1 in Eqg. (43)
U=limv=y,+v, +V, +... (66)
pP—

Modified HPM: To solve Eq. (64) by (MHMP), we construct the Following
homotopy;

2 2
Z\t/—z+ p(—%+v — x® cos tJ —xcost (67)
Assume the solution of Eq. (64) has the form Eq. (43) substituting Eqg. (43) into
Eqg. (64) and equating the terms of like power p,

2

oV
0. 0:—XCOSt, \Y/ X,O :X’_OX,O =0
atz O( ) at ( )
2 2
L. aat\:l - aaxvzo +V2 - x? cos? t, v, (x0) =0, %(X,O) =0 (68)
o, o, ov
2. 2 —2v,v, =0, v,(x0)=0,—2(x0=0
o o 170 V000 =050

67



tt
Appling the inverse operator j j (o) dtdt to above system, we obtain:

tt
x+” xcost dtdt = Xcost ,
0

0
tt
ol

=0, k>1.
It then fol Iows that the solution is
u(x, y) =V, (X, y) = xcost (69)
Which is an exact solution.

Example (3.4.11) Consider the nonlinear Klein Gordon equation with cubic
nonlinearity [42]

+Ve — X costh dtdt=0

2 2
6‘: +—L21+u+u3:2x+xt2+x3t6, (70)
ot oX
Subject to theinitial conditions
u(x,0) =0, %(X,O) =0. (71)

According to the homotopy (59), we have;

2 2 2 2
?[/2 —aatuzo + (6(;20 +2 +V+V - 2x—xt? tGJ:O (72)
x?

Beginning with v, =0 and from (62) we have;

tt 2 2

H 8v0 g—éuzo+2x+x’[2+x3t6 dt dt

) at
= Xxt? +ix £ 4Lyt

56 12

tt

” av —3v2v, |dtdt = Loae Lo L oge 1w

) 56 12 360 840
_ixstlo _ 1 32 _ _ 1 NG L 3 X5t _ 1 x5t16

336 6336 31496 10192 26380

1 5418 3 74+ 20 1 7422 _ 1 94 26

822528 1191680 5795328 114150400

It is obvious that the self-canceling ‘noise’ terms appear between various
components, looking into the last terms v, and the first term v, isthe self-
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canceling ‘noise’ terms. Hence, the non-noise termin v, yields the exact
solution of Equation (70), given by

u(x,t) = xt? (73)

3.4.2: Sine-Gordon Equation
The standard form of sin-Gordon equation is given by:

62[: —cza—ZL;+asinu=O (74)
ot OX
uxO=109,  Sx0=9(. (75)

Where canda are constants.

Now to solve Eq. (74) with theinitial conditions (75), (i.e., t —solution) by the
3 5
HPM, the homotopy takingsinu =u- % + % , and we construct the following

homotopy:

ov? 0%, o’u, , 0% viove
— + -C +a|lv-——+—1|=0 76
ot?  ot? p( ot? ox? (70)

Assume the solution of Eq. (76) has the following form
V=V, + PV, + PV, +... (77)
Putting (77) into (76) and comparing the coefficients of identical degrees of p,
o*v, 0o%u
0. 0 0

o2 at? ’
o%v, o4 oV, a a ov.
p': atzl atzo —c? ax20 +av, _EVS+_120V§ =0,v(x0) =0, a—tl(x,O) =0
R R a a oV
2. 2 _c?—Liav, ——Viv, ——Viv, =0,,Vv,(x0) =0, —2(x,00=0 (78
ot2 X2 1201 2401 2() at() ()

We aways start withy, = f (x) +t g(x) as initial approximate. And solving above

tt
systemwith [[(s)dtdt give an approximate solution
00

u:lr!irllv=v0+v1+v2+... (79)
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Example (3.4.12) Consider the sine-Gordon equation [42,43]

o’u  o%u .

e —ersmu:O (80)

u(x,0) =0, %(X,O) = 4sechx. (81)
The exact solution is

u(x,t) = 4tan*(t sechx) (82)
According to homotopy (76), we have;

o%v  d%u, o°u, 0% v oo

_ - ——+—|=0 83
o ot Eat2 o6 +120j (83)

Assume the solution of Eg. (83) has the form (77) substituting (77) into (83)
And comparing the coefficients of identical degrees of p,
o. 0%V, 0%

0
-0,
o> ot?

d%, 0’u, 0%V 1 1 v,
L2 02 0y —Svi+—v2 =0,y (x0) =0, —2(x0)=0
o e e ' T 0020 5O

,. 0%, 0%, 1,

+v, —=Vioy, —%v{}vl =0,Vv,(x0) =0, %(X,O) =0 (84)

o2 ox? 2

Start with v, = 4tsechx and integrating above system with [ [ () dtdt , we get;
00

t 2 2
” 8v0 vg—ivg-a“; dt dt
)] 120 ° ot
_ 4sech®x
315

5 5
“ VA vov L iy, |dedt = 2N Goa000 _ 3360t° cosh? x
24 2027025

— 4290t * cosh? x +14300t* cosh? x — 2059t % cosh” x + 51480t cosh® x
— 270270cosh* X+ 405405cosh* ),
Hence, the 3-term HPM solution is

9
u(x,t) = X (G040t _ 33606t cosh? x — 4290t° cosh* x + 143000t cosh 2x
2027025

—308880t° cosh” x + 51480t cosh* x + 143000t ° cosh® x + 405405t * cosh* x
— 675675c0sh°® x + 2027025cosh® x) (85)

(~16t" + 42t° cosh® x—150t* cosh? x),
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Fig (3.4.13) shows a very good agreement between the 3-term HPM (85) and
the exact solution (82)

@ (b)
(a) The exact solution, (b) the approximate solution given by HPM

3.4.3: The Modified of HPM to Sine-Gordon Equation
The sine —Gordon equation it is inevitable that we have to solve equation that
involvesinu, this makes it very complicate to solve sine-Gordon equation, to
avoid this disadvantage, we apply the modified HP M [43]
Now to solve Eg. (74) by the modified of HPM, we construct the following
homotopy;
2 2

ZZ—Z—pCZ%+asin(pv):O (86)
To obtain the approximate solution of Eq. (86) we consider the Taylor
expansion of sinv in the following

R A = i -

3 5 (2n-1)!

Assume the solution of Eg. (86) has the form (77) substituting (77) and (87)
into (86) and comparing the coefficients of identical degrees of p,

o%v, ov.
0. 0 -0, v.(x0="f(x), =2(x0)=g(X
p 2 1(x0) = f(X) pn (x,0) = g(x)
o%v o%v ov
2 L _¢c?2Z94av,=0,v,(x0)=0, —%(x,0)=0
p atg axz 0 1( ) at( )
o%v o%v ov
Z: at—zz—czaTzlJravl:O, v, (x,0) =0, EZ(X,O):O (88)

71



o%v. R V2 oV
3. S _c?*~—2+av,-a-—2=0, v,(x0=0, =2
ot2 OX? 2 73 2(%0) ot

(x,0=0

Solving these equations by applying | [ ()dtdt , give an approximate solution
00

u:lgirllv=v0+v1+v2+... (89)

Obvioudly it is easy calculate more components to improve that accuracy of
approximate solution.

Example (3.4.14) Consider the sine—Gordon (80) with initial conditions (81)
To solve Eq. (80) by MHPM according to homotopy (86), we have;

ot oV .

at—z—py+sm(pv)—0 (89)
Assume the solution of Eq. (89) has the form (77) substituting (77) and (87) in
to (89) and comparing the coefficient of identical degrees of p,

. a;io ~0, v,(x0)=0, %(X,O) _ 4sechx
p': (Z[\;l - 662)(\/20 +V, =0 ,v,(x0) =0, %(X,O) =0
p®: 8;\22 - ?;21 +v, =0, v,(x,0=0, %(X,O) =0 (90)
oo Vs O, v, Vo _g v,(x0) =0, 22 (x0) =0

Coot? ox® 3 ot

By applying the inverse operator [ [ ()dtdt , to Egs. (90) We obtain

2 43
avo—v0 dtdt = a sech®x,
0 3

2 3
[6 \;1 —vlet dt = 4L(2— coshx)sech’x,
OX 5

t 2 3 7
A :” ﬂ—v2+v—0 dtdt:—8t—sech3x—2t—sech4X(1—2%ChX),
15 315

Then this approach leads to the third-order approximation
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4t3 3 4t5 5 8t5 3
u(x,t) = dtsechx — ——sech®x + — (2 — cosh x)sech®x — ——sech®x
3 15 15

7

A chix(1—
315sech X(1-2sechx) (91)

Fig (3.4.15) we plot the results for the analytical solution (82) and the
approximate solutions (91) obtained with MHPM

(b)

(a) The exact solution, (b) the approximate solution given by MHPM
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3.5: The Burgers’ Equation

Burgers’ equation is used to describe various kinds of phenomena such as
turbulence and the approximate theory of flow through a shock wave traveling
in a viscous fluid; one and two dimensional Burgers’ equations are quite
famous in wave theory, which has applications in gas dynamics and in plasma
physics. Great potential of research work has been invested on Burgers
equation. Several exact solutions have been derived by using distinct
approaches. In this section, we have employed HPM, to

Solve one and two dimensional Burgers’ equation [46, 47, 48, 49, 50, 51].

3.5.1: On-Dimensional Burger’s Equation
Consider the following one- dimensional Burgers’ Equation
ou ou_du

+U—=n—, n>O0isparameter (92

ot oX oX

Subject to the conditions
u(x,0)= f,(x), 0<x<I (93)

And
u(0,t) = f,(t),u, (0,t) = f,(t), t>0 (94)
To solve Eq. (94) by (HMP), we construct the following homotopy:

2
@_%+p(ﬂ_nﬂ+%}o (95)

Assume the solution of Eg. (95) has the following form

V=V, + PV, + POV, +... (96)
Substituting Eqg. (96) into Eqg. (95) and equating the terms of like power p,

po . % _% =0,

ov. oV, oV, ou

e Zlyy =% n—24+-0-0, v(x0)=0 97
P T e /(%0 7)
, OV, ov, ov, 0%,

D —=+V,—+V,— N
P ot °ox  tox ox?

Coov, 2 oy, 0%V,
p . — [vk J’H]—n = -0, v, (x0) =0,

=0, V,(x,0)=0

—+
ot = OX ox?
Starting withv, (x,y) = u,(x,y) = f,(x), SO we derive the following recurrent
relation
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t a -1
v, = j[ T ]Z:k ‘“Jdt, j=123,.. (98)

0

An approximate to the solution of (92) can be obtained by setting p=1
u=limv=vy +v; +V, +... (99)
p—

Similarly, to solve Eqg. (92) with boundary conditions (94) we construct the
following homotopy:

o%v 0%, o°u, 1(av avj
- + -=|—+v—||=0 100
ox*  ox? p( ox? n (100)

With initial approximate v, (x,y) = u,(x,y) = f, (t) + xf, (t)
Suppose the solution of EQ. (100) has the form (96), then
00 0%V, 0%Uy _
ox?  ox?
L 0% 1[0y, Ly Mo +62u0
- ox® at % ox

2
2 aaxvzz 1[8\/ +voﬂ+vlaa\;] 0,v,(0,t)=0, —Z(Ot) 0

= ~0, Mo =
5¢ =00 =0,—-(01)=0 (101)

ot OX

0%, 1fov, i ov, ov
i i+ -1 v k-1 =0, v.(x0 :O,—2 0,t)=0
e n[at S, axj (x0)=0, 22 (0
Which yields
X X( OV, j-1 oV.
el g e e o
00 k=0

An approxi mate to the solution of (92) can be obtained by setting p=1

=limv=v,+Vv, +V, +..
p—l

Example (3.5.16) Consider the following one-dimensional Burgers’ equation
[46]
ou ou o
_+ =

U—="—> (103)
ot OX 0OX
Subject to theinitial condition
u(x,0) = 2x (104)
According to homotopy (95), we have;
2
a_a_p(@a_a_)o (105)
ot ot oX OX ot



Beginning with v, = u, = 2x and from the recreation formula (98) we have;

22
{( O%jdtz&ctz,
i

vlﬁ—v()% dt = -16xt°,
OX OX

Then the approximate solution of Eq. (103) obtain by setting p=1 in Eq. (96)

u(x,t) = 2x—4xt +8xt* —16xt° + ... (106)
In closed form
2X
1) = 107
u(xt) Lo (107)

Example (3.5.17) Consider the following one-dimensional Burgers’ equation
[46]
ou ou _du
—+UuU—-=n

ot x  ox (108)
Subject to the boundary conditions

u(,t) =0, %(O,t) - %— ;; . (109)
According to homotopy (100), we have;

R RLr eI (110
Beginning with v, =u, = [%— p;}( and from the recreation formula (102) we
have;

[t s

oo

v =n1££(ﬂt2 ? ao Vl% V"a_;j - 4(1);)2(;5;8 ’
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Then the approximate solution of Eq. (108) obtain by setting p=1 in Eq. (96)

X X 33 5x® 17p "X’
uxty=>-P/Px__PX , PX ___ PX . | (111
t tl2vt 3% 15(2)°55t° 315(2)7v't

In closed form

u(x,t) = ?X - % tanh[g—\)/(tj (112)

Which is an exact solution.
3.5.2: Two-Dimensional Burgers’ Equations
Consider the following system of two-dimensional Burgers’ Equations [46]

ou ou ou 1(o%u o4
—tU—4V— = ——
ot ox oy Rl ay?

@+u@+v@=1(a—2\;+a—2\;] (113)
ot ox oy R{ox® oy
Subject to the conditions

u(x,y.00=f(xy), (xy)eD,

V(% y,0)=9(xy), (xy)eD. (114)
And

u(x, y,t) = f,(x y,t), (xy)eadb, t>0,

V(x,y,0)=f,(xyt), (Xxy)edD t>0. (115)
Here,D = {(x,y),a< x<h,a<x<b}, 6D denotesthe boundary of D, u(x,y,t)and
v(x,y,t)Are the velocity components to be determined, Ris the Reynolds
number. In order to solve Eq. (113) with the initial conditions (114), (i.e.,
t —solution) by the HPM, we construct the following homotopy:

oy, (UQ Vﬂ_i(azu 62Uj+8uo}=o

+ +
ot ot OX oy Rl ox* oy? ot
2
ﬂ_%er UﬂJrvﬁ_l 82\2/+8\2/ +8V° =0 (116)
ot ot OX oy R\ ox oy ot

Suppose the solution of Eq. (116) has the form
U=U,+pU, + p°U, +...
V =V, + pV, + pV, +.. (117)
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Substituting (17) into (16), and equating the terms with the identical powers of
P,

U, _au,
o, ) ot ot
MoV _
ot ot
2 2
8U1+au0+U06U0 V@UO 1(0U +8U ~0,U,(x0) =0,
. ot ot OX oy R| ox2 oy?
p:
av1+avo+uoavo+voav0_1 0%V, 82V ~0,V,(x0) =0,
ot oX oy R{ ox? ay
(118)
ou. = oU ouU . o°U. o°U.
J+ Uk j—k-1 +Vk j—k-1 _i 21—1+ 2]—1 IO,U]-(X,O)ZO,
,- a > OX OX Rl ox oy
p’:
%+1—1 y av"k’l+v Nia) 1 62VJ-,1+62VJ-,l _0.V.(x0)=0
=] “ X Rl ox*?  oy? B

With initial approximate
Up=Uy=TF(Xy), Vo=Vy=0(XxYy).
And we have the following recurrent equati ons,

0%U o%U . t -1 ouU .
.:_I( 9y 4}“-[2[ '“ +V, J‘“]dt, j=123,...

OX

- | = eI oV,
= ay;]dt— | (uk g“ +V, é“jdt, j=123.. (119
X 0 X X

An approximation to the solution of (113) can be obtained by setting p= 1
u=|ir§lU =U,+U, +U, +...
e

V= Iinl1V =V, +V, +V, +...
p:

Example (3.5.18) Consider the following two-dimensional Burgers’ equation
(113) (R=1) [46] with following initial conditions

u(x,y,0) = x+y

v(X,y,0) =x-y (120)
According to homotopy (116), we have;
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2 2,
oU auo+p(uau Vau_(au au}auo}o

T~ A Ay 2 T2
o ot OX oy oX oy ot
2
ﬂ—%+puﬂ+vﬂ— 8\2/+82\2/ +6V0 =0 (122)
ot ot OX oy \ox° oy ot
Start with
U, =U,=Xx+Yy
Vo=V, =X-Y
And from recreation the formula (119) we have;
t 2 2
u, =] 0o 0Y0 y, Moy, Mo |- o,
o\ OX oy OX OX
t 2
V=] 62\20 + Yoy, Moy Noge_ oy,
o\ OX oy OX OX
t 2, 2,
U, = [[ o2+ Ty, Py, Py Po_y, P g o4 21,
oL OX oy OX OX OX OX
t 2
V= [[ D0 TV Ly Moy Ny Moy N o2 oy,
oL ox® oy OX OX OX OX
t 2, 2
ou, ou oU ouU ouU oU ouU ouU
U3=I[ ax22 ! ay22 V2 axo ! 8x1_U° 8x2 Ve axo e axl Vo aledt=—4xt3
0
t 2 2
v, ZI 08\22 0 \/22 U, v, _Ulzav1 U, YA v, v, v oV, v, YA dt= 4y’
o\ OX oy OX OX OX OX OX OX

Then the approximate solution of Eq. (120) obtained by setting p=1 in Eq.
(117)

U(X, Y,t) = X+ y—2xt + 2xt% + 2yt* — 4xt® + 4xt* + 4yt* + ..

2 4 2 4 2 4 X+ Yy—2xt
=x(1+2t + 4t +...)+ y(1+2t +4t +...)—2xt(1+2t + 4t +...):W (122)
V(X, Y,t) = X— y— 2yt + 2xt® — 2yt® — 4yt® + Axt* + 4yt + ...
= x(1+ 2t% + 4t* +...)— y(1+ 2t% + 4t* +...)—2yt(1+ 2t? + 4t* +...): —le;tfyt (123)

Which are exact solution.
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3.5.3: (1+2) Burgers’ Equations

Example (3.5.19) Consider the following (1+2) Burgers’ Equation [47]
ou_0°u 0% du

i +W+ u& (124)
Subject to the condition

u(x,y,0) = x+vy (125)
To solve Eq. (124) by (HMP), we construct the following homotopy:

N Ko, p(a% e —V@] =0 (126)

ot ot ot ox° oy OX

Assume the solution of Eq. (124) has the form (96) Substituting EqQ. (96) into
Eq. (126) and equating the terms of like power p,

0. Vg 0OUg

ot ot
ot v, 0%, 0%, ov, 0u,

=0, 0) =0 127
ot ox:  oy: Y ox ot 1. (x0) (127)

2 2
X X X

2 2
0° 6v3_6\/22_8\/22 oV, vlavl VO%:O’ v,(x,0)=0
ot ox oy OX OX OX

Starting withv, (x, y) = u,(x, y) = x+ y, and integrating above system with I (o)dtt
we get;

t
J~ avo avo O8v0_8u0 dt = (x+ )t
0 ox ot
v, 0%, ov, ov, 2
= + -V —-v,— |dt = (X+ y)°t,
? J-(ax2 ay? Tt ox Oﬁx) )

o%v, 0°v oV, oV, ov, 3
+V, —+V,—= |dt = (x+ y)t°,
j( V2 ax o TVo o (X+Y)

An approximate to the sol ution of (124) can be obtained by setting p=1
u=limv=(x+y)+(x+y)t+(x+ Y)ItZ + (x+ Yt +
p—

(128)
The exact solution is expressed as
X+Yy
Yit) = 129
Uy =1 (129)
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3.6: The Nonlinear Schrodinger Equation

The nonlinear Schrodinger equations occur in various areas of physics,
including nonlinear optics, plasma physics, superconductivity and quantum
mechanics. The Schrodinger equation generally exhibits solitary type solutions.
A soliton, or solitary wave, is a wave where the speed of propagation is
independent of the amplitude of the wave. Solitons usually occur in fluid
mechanics. The inverse scattering method is usually used to handle the
nonlinear Schrédinger equation where solitary type solutions were derived.

The nonlinear Schrodinger equation will be handled differently in this section,
by using the homotopy perturbation method [52,53,54,55]. Consider the

following Schrodinger equation with the following initial condition [52]

iéu(a)t(’t) :—%V2u+nd(X)u+bd|u|2u, XeRt>0

u(X,0)=u’(X), Xe®R° (130)
Wheren, (X) isthe trapping potential and b, isarea constant

u*=uz And @ is conjugate of u

To solve Eg. (130) by homotopy perturbation method, we construct the
following homotopy:

%_%Jr p(i(—%vzv+nd(X)v+ bdvz\_/j+%j:0 (131)

Assume the solution of Eq. (130) has the following form

V=V, + pv, + PV, +... (132)
Substituting Eqg. (132) into Eq. (131), and equating the terms of like power p,

po: Mo Mo

ot ot
p: %4‘%— i (%Vzvo —n, (X)v, - bdvévoj =0, v(x0) =0, (133)
p*: Ny [%Vzvl —ny(X)v, - ble:1Z_i:vivk\7lfkfi ] =0, V,(x0)=0,
i=0 k=0

2
p31 aVS_i(_Vzvz —nd(x)Vz_bdZ Vivkvz—k-ijzo’ V3(x,0)=0,
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Starting withv, (X,t) = u,(X,t) = u®(X), having this assumption we get the
following recurrent relation recreation

(1 &5 :
v :Ij (Evzvjl—nd(X)vjl—bdz A let j=123.. (134)
An approximate to the solution of (130) can be obtained by setting p=1,
u:lirqv:v0+vl+v2+...
p—

Example (3.6.20) Consider the following one-dimensional Schrodinger
equation with the following initial condition [52]
2
iﬁu(x,t) _locu |u|2

——="——u°u, t=0
ot 2 Ox?
u(x,0) = e*. (135)
According to homotopy (131), we have;
2
v, p(i (N_Jﬁj ~0 (136)
ot ot 2 OX ot
Starting with v, = u, = e*and by using (134) we obtain the recurrence relation
1 a V ~ i 1] i-1 ]
,J‘ [2 o~ 1 +.Z(; >, A 1}dt j=123,... (137)
The solution reads

= 16\' + V2V, dtzliteix,
. 2

2
[18 + 2V, V,V, +vv]dt_—; t2e™,

2
= (18 + VW,V + VPV, + 2V VY, +vdet —%lt%‘x

An approximate to the solution of (135) can be obtained by setting p=1

u(x,t) = e” + Litex _Lipeen _ Lise
2 8 48

2 3
ey 1(1njeix +£(Enj & +£(1itj e (138)
12 2\ 2 32

i x+1tj

u(x,t) :e[ 2

In closed form

(139)
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Example (3.6.21) Consider the following one-dimensional Schrodinger
equation with the following initial condition [52]

ou(x,t)  10%

i =" —+ucos’ x+u’u, t>0
ot 20X
u(x,0)=sinx. (140)
According to homotopy (131), we have;
2
@—%+ p(i [—la—\zl+vcoszx+v2\7j+%]:o (141)
ot ot 2 OX ot

Starting with v, = u, = sinxand by using (134) we obtain the recurrence relation

t(1 o3v. L -1 j-i-1
v :ij 572 -V cos Xx=Y Y VvV, j=123.. (142
0 X i=0 k=0
The solution reads
v, =i| | =—2 -V, cos® x— V.V, (dt :—Eitsinx,
2 Ox? 2

10° e 9.,
(58721_\/1 cos’ X — 2V, V,V, —vgvlet = _Etz snx,

L1O0N, _\ cos? x— 2V, ¥, — VAT, — V¥, — VY, ldt = —it*sinx
2 axz 2 0¥2%0 170 0"1"1 0Y2 16 '

An approximate to the solution of (135) can be obtained by setting p=1

u(x,t):sinx—gitsinx—gtzsinx+3it3sinx+....
2 3
_sinx+s —Eit sSnx+ = —§it snx+ = —Eit sinx+....(143)
e 2 A0 2 3L 2
In closed form

Sy
u(x,t)=e 2 sinx

(144)
Which is an exact solution.
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Example (3.6.22) Consider the following two-dimensional Schrodinger
eguation [52]

ou(xt)  1{0%u 2% y
=" 2[6x2 +8y ]+n(x ylu+u’u,  (xy)e[02p]x[0,2p]
u(x, y,0)=sinxsiny, (145)

Wheren(x,y)=1-sin® xsin’ y
According to homotopy (131), we have;

N _ My, p(i[—i(a—zv+ﬂj+n(x YN+ V2 vj+%}=0 (146)

ot ot 2\ ox?  ox®

Starting with v, =u, = sinxsin yand by using (134) we obtain the recurrence
relation

t a 62 j j-1 j-i-1
|I{ [ VJ 1 ijl)_n )V V|Vk ki 1Jdt, ] =123,... (147)
° i

=0

I
o
=~

The solution reads

2
v, =i (1(6\/2 +ﬂ]—n(x,y)vo—v§\70Jdt:—2itsinxsiny,

t
{ 2( ox?  oy?
—ij(l(azvl+azvj n(x, YV, — 2V\,V, — V2V ]dt ~2t?sinxsiny
2= Py - 0 0 - J
cl2l o oy? '
t 2 2
v3=ij'[ (8 V22+8V2j—v(x YNV, — 2V,V,V, — A NAA vv}dt_—ﬂlt snxsiny
12l o ay? 3

An approximate to the solution of (135) can be obtained by setting p=1

u(x,t) =sinxsiny - 2itsinxsiny — 2t’sin x—git"‘sin Xsiny+...

=sinxsin y+%(— 2it)sin x+%(— 2it)* sinxsin y+%(— 2it)’sinxsiny+... (148)
In closed form
u(x,t) =e
Which is an exact solution.

Ztsnxsiny (149)



3.7: The Goursat problem

The Goursat problem arisesin linear and nonlinear partial differential equations
with mixed derivatives. The standard form of the Goursat problem is given by:

o%u

oxot
u(x,0)=g(x), u(0,t)=h(t), g(0)=h(0)=u(0,0). (150)

This equation has been examined by several methods, such as Runge-Kutta

method, Adomian decomposition method, variational iteration method and

geometric mean averaging, for the functional values of f(x.t,u,u,u,). It is

worth to note that the major advantage of He’s HPM is that the perturbation
equation can be freely constructed in many ways (therefore it is dependent to
the problems that are interested) by homotopy in topology and the initial
approximation can also be freely selected. In this section we employ the HPM
[56,57], to solve linear and nonlinear Goursat problem with different initial
conditions

:f(x,t,u,ux,uy), as<x<b,a<t<b

3.7.1: The Homogeneous Linear Goursat Problem

We consider the homogenous linear Goursat problem [56]

o%u
= f(u),
oxot W

u(x,0) = g(x),u(0,t) = h(t), g(0) = h(0) = u(0,0). (151)

In order to solve Equation (151) by HPM, we construct the following
homotopy:

2 2 2
8v_6 Uozp(v_ﬁ UOJZO (152)
oxot  oxot oxot
Assume the solution of Eq. (152) has the following form
V=V, + pv, + PV, +... (153)

Substituting Eqg. (153) into Eq. (152) and equating the terms of like power p,
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o, 0%V, 0%y,

P et oot
0%V, o2
1. 1_y — 9 =-0,v,(x,0=0,v,(0,t)=0, v.(0,00=0 154
Pt~ o o - 00 =00  (00) (154)
2. 62V2
p . axat :Vl y VZ(X,O) = O,Vz(o,t) :O’ V2(O,0)
i 0%,
P oo = Vi Via(x0) =0,v;, (0 =0, v;,(00)

Now start with two different initial approximate, in the first way, we start with

V, = U, = Uu(x,0) +u(0,t) —u(0,0), (155)
And in asecond way, we start with
Vo = U = 9(X) (156)

X t
Integrating (154) with [ { (<)dxdt , we have the following recurrent equations
00

X t aZU

v, = L[[vo(x,t)— aXaf[’]dxdt,

v, = ﬁ(vj (x,t))dxdt, j=2 (157)
00

An approximate to the solution of (151) can be obtained by setting p=1

u=limv=v,+v, +V, +...
p—l

Example (3.7.23) Consider the homogeneous Goursart problem [56]

ofu
oxot
u(x,0) = e*,u(0,t) = €', u(0,0) =1. (158)
According to homotopy (152), we have;
o°v oy, _ p(v_ azuoj 0 (150)
oxot  oxot oxot

First adaptation of HPM: start withv, =u, =e* + €' —1, asinitia approximate,
and from Eq. (157) we have;
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<
Il

7\
<
—~

X
—
~
|

Ojdxdt =te* + xe' — x—t — xt,

2 2 2 2 2 2 242
v, (X,t) dxdt :t—eX X X T Xt X Xt ,
2 2 2 2 2 2 4

3 3 3 3 3 3 243 3;2 3:3
vz(xt)dxdt—t— +—e€ X v X x Xt _xi ,
6 6 6 6 6 6 6 6 36

Then the series solutions expression by HPM can be written in the form
u=limv=v,+v, +V, +..

p—l

Then, the approximate solution in aseriesform s

2 3 2 3
u(x,t) = e JWR STELERVIL SN PRI L N S
2 3 2 3

<
Il

<

)

Il
Ot=— X Ot=m—mx O—3Xx
Ot Ot Oy

2 3 2 3
B IS SE S PSR (160)
2 3 2 3

Second adaptation of HPM: start withv, = u, = g(x) = €*, asinitial approximate,
and from Eq. (157), we have;

2
(v (x,t) - axl;
t

X t

Vv, = ” jdxdtztex,
00
X t 2

Vv, ”vl(xt)dxdt_—
00 2
X t

w-J[v
00

t3
x,t)dxdt = —e*
L (X, 1) 5

An approximate to the solution of (158) can be obtained by setting p=1
t2 t3 X+t
u(x,t)=e [1+t+5+§+ J e (161)

We obtained the solution by choosing a suitable homotopy with different initial
conditions. We showed two adaptations of homotopy: firstly we obtained the
approximate analytical solution of the equation in the form of a convergent
power series with easily computable components and secondly we obtained the
exact solution with less computational work compared with first method.
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3.7.2: Thelnhomogeneous Linear Goursat Problem

We consider the inhomogeneous linear Goursat problem [56]

o’u
ot f(u) + w(x,t),
u(x,0) = g(x),u(0,t) = h(t), g(0) = h(0) =u(0,0). (162)

In order to solve Eq. (162) by HPM, we construct the following homotopy:
o%v 9%y, o%u,

— = — = 1
oxot  oxat p[w woe) axatj 0 (163)
Assume the solution of Eq. (163) has the form (153)
Substituting Eqg. (153) into Eq. (162) and equating the terms of like power p,

d%v, 0%

0. 0 _ 0

oxot  oxot
p': 21—v +W(Xt)_62uo_o v, (x,0)=0,v,(0,t) =0, v, (0,0) =0
Caxat O U kot n T Ty T
.. 0%V,
P g =V (60 =0, (00 =0, v;(00) (164)
j %V,
P oxot = Vi Jl(XO) OVJ ,(0,t)=0, V; ,(0,0)

The power of HPM isthat we can select the proper zeroth approximation

Now start with two different initial approximate, in the first way we start with
V, = U, = U(x,0) +u(0,t) —u(0.0) , (165)
And preferably by using the boundary conditions in the case

X t
Integrating (154) With” (o)dxdt , we have the following recurrent equations

o%u
(vo (X,1) + w(x,t) — axa: J dxdt,

v, (%, t) dxdt, j>2. (166)

gl
Il

88



Example (3.7.24) Consider the homogeneous Goursart problem [56]

o’u
oxat
u(x,0) = e*,u(0,t) =t +¢€', u(0,0) =1. (167)
According to homotopy (163), we have;
o°v oy, _ p(v_t 0 uOJ 0 (168)
oxot  oxot oxot

First adaptation of HPM: start withv, =u, =e* +¢e' +t -1, asinitial
approximate, and from Eq. (166) we have;

0%u

v, (X t) -t ——=2
(0( ) oxet

<
Il

dedt =te* + xe' — x—t—xt,

2 2 2 2 2 2 242
v, (X,t) dxdt :t—eX X X T Xt X Xt ,
2 2 2 2 2 2 4

3 3 3 3 3 3 243 342 3:3
X X X X X X
vz(xt)dxdt—%e +Ee XU X X XU X Xt ’

<
Il

<

N

Il
Ot——X Ot=——x O——Xx
Ot Ot Oy

Then, the approximate solution in aseriesform s

t? t° x> x°
u,t) =t+e*|1+t+—+—+..|+€ |1+ X+ —+—+...
2 3 2 3

2 3 2 3

—(1+X+X—+X—+...J(1+t+t—+t—+...]:t+eX+t (169)
2 3 2 3

Second adaptation of HPM.: start withv, = u, =t +¢*, asinitia approximate, and

from Eq. (166) we have;
”[vo(x t) -t ot dedt te”,

2

0
t

V. xtdxdt—
ll( ) 5 €
t

||
X Otmm—mx O

:”v (xt)dxdt = & ¢

An approximate to the solution of (167) can be obtained by setting p=1
2 3
u(x,t)=t+ex(1+t+t—+t—+...j=t+eX+t (170)
2 3

Which is an exact solution of Equation (167)
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Example (3.7.25) Consider the homogeneous Goursart problem [56]
o%u
oxot

u(x,0) = e*,u(0,t) = €', u(0,0) =1. (171)

According to homotopy (163), we have;

2 2 2
Gv—auozpv+4xt—x2t2—% =0 (172)
oxot  oxot oxot

First adaptation of HPM: start withv, =u, = * + €' -1, asinitial approximate,
and from Eq. (166) we have;

= U+ 4xt - x°t?%,

X t azu X3t3
Vv, = ” Vo (X, 1) +4xt — x°t* ——2 |dxdt =te* + xe' — x—t—xt + Xt — ,
ot 9
00
X t 2 2 2 2 2 2 242 343 4.4
Vv, = ”v(xt)dxdt_t—e X XXt X xt +Xt _xt ,
2 2 2 2 2 2 4 9 144

Then, the approximate solution in aseriesform s

uxt)=xt"+el+t+—+—+...|+e |1+ X+ —+—+...
2 3 2 3

x> x t? t°
|l X+ It — 4 [ = X e (172)
2 3 2 3

Second adaptation of HPM.: start withv, = u, = x*t* + &*, asinitia approximate,
and from Eq. (166) we have

2

9% okt = te*
oxot

<
I

(vo(x,t) +4xt — X°t? -

t2
v, (X,t)dxdt = —
[(xDdkdt =" e

V3

<

Il
Ot X Ot=m—mx O——Xx
Ot O+ Oy

V, (X t)dxdt = —
An approximate to the solution of (171) can be obtained by setting p=1
2 3
U(X,t)=X2t2+ex(1+t+t5+t§+...j=xzt2+ex+t (173)

Which is an exact solution of Equation (171)

Also we observe that, the second adaptation in the inhomogeneous problems is
less computational work compared with firs method
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3.7.2: The Nonlinear Goursat Problem

We consider the non-linear Goursat problem
o%u
=N(u),

oxot
u(x,0) = g(x),u(0,t) = h(t), g(0) = h(0) = u(0,0). (174)

Where N(u) is nonlinear function

In order to solve Eq. (174) by HPM, we construct the following homotopy:
2 2 2
v 0y, _ [ ()_6 ] 0 (175)
oxot  oxot oxot

Assume the solution of Eq. (175) has the form (153)
Substituting Eqg. (153) in to Eq. (175) and equating the terms of like power p,

o, 0%V, 0%y,

P oot ot
ot Y vy = @Y gy (x0) = 0,v.(0) = 0, v (0.0) = 0
" oxot 0 PR B TR
2. 82V2
p°: v =H(v,,Vv,) , V,(x,0)=0,v,(0,t)=0, v,(0,0) (176)

18“
Where H(v,,V;,...,V,) = v
(Vo Vs WAy [ZO pjo

Start with v, =u, = u(x,0) +u(0,t) —u(0,0) and integrating (176) with I j (o)dxdlt ,

then an approximate to the solution of (174), can be obtained by settingp =1,

=limv=v,+Vv, +V, +..
p—l

Example (3.7.26): Consider the non-linear Goursart problem [56]
aZu X+t U
=e e,

oxot
u(x0) = In2-2In{1+€*),u(0,t) = In2-2In{l+¢'), u(,0) = —In2. (177)

In order to solve Equation (177) by HPM, we construct the following

homotopy:
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2 2 2
OV _0, _ p ex”ev——8 Y -0 (178)
oxot  oxot oxot

Assume the solution of Eq. (163) has the form (153)
Substituting Eqg. (153) into Eq. (162) and equating the terms of like power p,
o°v, 0o°u
0. 0 _ 0

P et oot
R o%u
o L_egeh -~ 0 -0, v, (x0=0,v(0t)=0, v.(0,00=0
p ot ot ,(%,0) 1(0,1) ,(0,0)
2. 82\/ X+t
p°: 8x6t_e v,e” ,v,(x,0)=0, v,(0,t) =0, v,(0,0) (179)
p®: % ex+‘(;vf+v2J v, (%,0) =0,v,(0,t) =0, v,(0,0)
X

We can start with v, = u, = 3In2-2In(L+e*)- 2In(1+ €' ) and integrating (179)

Withjx'j (o)dxdt , we get;
00

2 X
etg 9o | g - o (& B — 1)1
oxot e’ +1)le' +1

And so on to not that the integrals involved above can be obtained by
substituting z=1+€”,dz=e’dyinview
Then the approximate solution in a series form obtained by setting p=1

u(x,t)=3In2- 2In(1+ ex)—2ln(1+e )+ Z{Ee +3£§t +1ﬂ+ﬁ§: IBES ;BT +...(180)

u(x,t) :3In2—2In(1+ ex)—2ln(1+ e‘)+ Z[iwj (181)

N
X t_
Where K(x,t) = e -1 et L
e*+1)le' +1

Recall that the Taylor expansion for In(1-t) is given by

2

In(l— y):-(y+y7—y— ]_—Zy (182)

~n
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This means that Eq. (181)

u(xt) =3In2-2In{1+e*)- 2In(l+ €' )+ 2Infl- K (x, y)] (183)
. . e -1)e' -1

u(x,t) =3In2- 2In(1+ e*)- 2In(1+ e )+ 2In{1—%ex—+1%et—+lﬂ (184)

u(x,t) = In2—2|n(eX +ey) (185)

The results for the exact solution (185) and the approximate solution (180)
obtained using the HPM are shown in Table (3.7.27) and Fig (3.7.28) it can be
seen from Table (3.7.4) that the solution obtained by the HPM is nearly
identical with the exact solution. It is to be noted that only the second-order
approximate solution was used. To increase the accuracy of the results or to
decrease the error, we increase the number of components.

Table (3.7.27) Numerical results of the exact solution (185) and the
approximate solution (180)

(x,t) Exact solution Approximate solution
(0.0,0.0) -0.6931471806 -0.6931471806
(0.2,0.2) -1.093147180 -1.093147839
(0.4,0.4) -1.493147181 -1.493187785
(0.6, 0.6) -1.893147179 —-1.893582447
(0.8,0.8) —-2.293147179 —-2.295398534
(1.0, 1.0 —-2.693147179 —2.700896101

Fig. (3.7.28): The surfaces show the approximate solutions obtained by HPM
and the exact solution respectively. (a) HPM plot (Eg. (180)); (b) Exact plot Eq.
(185)
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3.8: TheKorteweg-de Vries (KdV) Equation

The Korteweg-de Vries (KdV) in the general form given by [58]
3

%+wm%+27g: f(x,t,u™u,) (186)
Where m=1.2
The KdV equation arises in a number of different physical applications
Problems, in the study of shallow water waves, in particular, the KdV equation
Is used to describe long waves traveling in canals, and the KdV equation has
solitary waves as solution hence it can have number of solitions, severa
numerical and analytical techniques were employed to the KdV equation such
as inverse scattering method, Backlund transform method, Adomian
decomposition method, and variational iteration method. In this section, we
will use HPM to study the nonlinear KdV equation [58,59,60,61,62] the
phenomenon of self-canceling “noise terms” will be used where appropriate,
now we discuss two special cases for the Eq. (186)

I-form=1, g=+6 or +1 we obtain one of the standard KdV equations

ou ou o

E+QJ&+§_ f(x1) (187)
I1-form=2, g=+6 or +1 equation (186) called modified KdV, (MKdV)
Equation given by

u pdu, o

- +ou PVl el f(xt) (188)

3.8.1: TheKdV Equation
Consider the initial value problem

ou ou ou

E+QJ&+¥: f(xt),
u(x,0) = g(x). (189)
To solve Eq. (189) by (HMP), we construct the following homotopy;
3
%—%+ p(g\/%+%+%—f(x,t)jzo (190)
Assume the solution of Eq. (189) has the following form
V=V, + pv, + PV, +... (191)
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Substituting Eq. (191) into Eq. (189) and equating the terms of like power p,

o v
. at 8t )
3
A Ny, OV n OUq =f(xt), v(xx0=0 (192)

D+ +
P ot gv"ax ox® ot

ov oV, v, | 0
& E”“{VO x a_;}r 5 =0 L(0=0

. ov. O, i1 oV,
S I K110, v.(x0)=0, |>2
P 5 T e g(% Ox  (%0) ’

Starting withv, (x, y) = u,(x, y) = g(x) , having this assumption we get the

following iterative equations;

¢ ov, 0%, adu
v, = _J'{gvo 8)? + 8x30 + ato - f(x,t))dt,

__I[a Via ;

An approximate to the solution of (189) can be obtained by setting p=1

u=limv=v,+v, +V, +...
p—->1

av"‘k‘l ]dt, j>2 (193)

Example (3.8.29) Consider the specia case of homogeneous nonlinear KdV

eguation [58]
g0, 0
a o oox o
u(x,0) = E : (194)
According to the homotopy (192) we have;
3
@_%w(%_e\,@ﬁ_\s{j:o (195)
ot ot ot OX OX

We start withv, = u, =% , asinitial approximate, and from Eq. (193) we have;
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ox® 8t

t 3 2
V2=J 6(\/1%—'—\/0%]_8_\21 dt=Xt_’
0 OX oX ) OX 6

t 3 3
v3=I6v2%+vlav vai —8\/32 ot =2
0 OX OX OX OX 6

¢ ov, &% _ du, xt
v, :j[Gvo 6; 0 di=—,
0

The approximate solution can be obtained by setting p =1in Eq. (191)
: x xt xt? xt®
u=limv=—+—+—+—

+ (196)
p—1 6 6
This series has closed form

u(xt) =

(197)
6(1 t)
Which is the exact solution of the problem

Example (3.8.30) Consider the specia case of homogeneous nonlinear KdV
eguation [58]

3
Mgy M, U _g,
ot ox  ox®

2
u(x,0) = _; sechz{gx]

(198)
According to homotopy (192) we have;
N_Mo p(% ov . VJ (199)
ot ot ot ox ox3

2
We start withv, =u, = a

> sechz[gx}, as initial approximate, and from Eq.
(193) we have;

t 5
j6 al_azvao_auo dt:_k sechz[Ex}tanhFx}t,
5 ox ox> ot 2 2 2
; oV ov,) o K® k
v, =|| 6 v, —2+v,— |- —2 |dt =—sech? 2 — coshkx|)t?,
2 !((%X "axj ax?'J 8 {2 }( o]
t
!

3 11
v, Moy My Mo _a"s dt_k—sech{k }1lsinhF } smh{sk }t
ox | Yox % ox ) ox 487 |2 2

—X
2
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The approximate solution can

2

11 T
+ k—sec h{h x} 11s nh{E X
48 2 2 |

This solution is convergent to
2

2 5
u= K sech{hx}—k—sechz[
2 2

u(xt) = sech?

be obtained by setting p=1in Eq. (191)

k k® Kk

5 x} tanh[; x}t + g S hA[E x}(z — cosh[kx])t?
-sinhF—zk th3 o (200)

the exact solution

e
> (x—k t)} (201)

The behavior of the solution(200) obtained by HPM and the exact solution
(201) is shown in Fig (3.8.31) we achieve a good agreement with the actual
solution by using four terms only in HPM derived about.

Fig (3.8.31) The surfaces show the approximate solutions obtained by HPM

and the exact solution respecti
(201)

vely. (d) HPM plot (Eg. (200)); (b) Exact plot Eq.

U”Llj'“f{::} il (L0 {;qq-l."“'ﬁ:\-_ % II|
—0.055 __:':,nn 'I'J.i‘].ﬂ_l _,"'JZII
ey m';_E —10 1|}1J,.,, 3

TR QL0 b
—A ¢ —00F T | & .
Wl T k) R (R =
o -H""--l’( La T ERE 10
R0 010
(@ (b)
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Example (3.8.32) Consider the specia case of homogeneous nonlinear KdV
eguation [58]
3
a—u+ua—u+a—l:=sinx+tcosx(tsinx—1) ,
ot OX OX

u(x,0) = 0. (202)

According to the homotopy (192) we have;
v _oug [% ov  o%

——=2 +V—+——sinx—tcosx(tsinx—-1) |=0 (203)
ot ot ot OX 0OX

We start withv, =u, =0, asinitia approximate, and from Eq. (193) we have;

3
—V, No _ 0O \;o _ My +sinx+tcosx(tsinx—1) |dt
ox ox® ot

Vv, =

O t—y

:tsjnx—%t2 cosx+%t3sin XCOSX,

t 3
oV, ov, 0%V,
V= —v, =2V, —— dt
; j( tox U ax ax3}

= 1t2 cosx—£t3sin xcosx+lt4 cost+lt3 sinx,
2 3 3 6

We can easily observe that the last two terms in v,and the first two terms in
v, are the self-canceling ‘noise’ terms. Hence, the non-noise term in v, yields
the exact solution of Equations (202), given by

u(x,t) =tsinx (204)

This can be justified through substitution .It is worth mentioning that the
remaining ‘noise’ terms of v, will be canceled by other noise terms of the other
componentsy,, j > 2.
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3.8.1: TheModified KdV Equation (MKdV)
Consider theinitial value problem

ot ox  ox°

u(x,0) = g(x). (205)
To solve Eq. (189) by (HMP), we construct the following homotopy

ov  ou, ,0v 0% adu,

HN_ T BT i IO = 2

P p(gv =5t o f(x,t)] 0 (206)

Assume the solution of Eq. (206) has form Eqg. (191) Substituting Eq. (191)
Into Eq. (206) and equating the terms of like power p,

0. aVO auO_O

ot ot
ov. ov, o3, adu
Lo 2y 04 04 20— f(xt), v.(x0)=0 207
p 8t 9/0 8X 8X3 8t ( ) 1( ) ( )
oV oV ov,) o3
2 2249l 2vv, —2+vE 2 |+ —2=0, v,(x0=0
P % g( ot ox 0 GXJ ox® 2(X0)

o ov, 0%, jtids N,
Ll R v, ——11 -0, v,(x0)=0, j>2
p ot 8X3 ,Z(; kzol(gll k OX J( ) J

Starting withv, (x,y) = u,(x, y) = g(x), having this assumption we get the
following iterative equations:

t 3
A :—I(gvg N + 8):/0 + a;to - f(X,t)Jdt,
0

ox  ox°
t( 9%y, j-1 j—i- ov. . .
v, = I = vV, —== | dt, j>2 (208)
ol OX i=0 k=0 OX

An approximate to the solution of (205) can be obtained by setting p=1

u=limv=v,+v, +V, +...
p—l
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Example (3.8.33) Consider the inhomogeneous MKdV equation [58]
ou ,ou d%
ot ox  ox°
u(x,0) = g(x)=0. (209)

According to homotopy (206) we have;

v du, (% ,ov 8%  au,

N _ o VP T+ 0 x1-xt?) [=0 210
ot ot ot V6x+6x3+6t X )J (210)

We start withv, =u, = 0, asinitia approximate, and from Egs. (206) we have;

3
Vgavo_a \go—au°+x(1—xt3) dt = xt —
oX  0OX ot

= X(l_ Xt3) ’

NG

4

ox 2 ox  oxd

3 2+ 4 347 4410 5413
v, = 2v0v1%+v2%—avl d=xt Xt +xt _xt
4 7 32 416

We can easily observe that the last term in v,and the first termin v, are the self-
canceling ‘noise’ terms. Hence, the non-noise term in v, yields the exact
solution of Equations (209), given by

u(xt) = xt (211)
Which is an exact solution of the problem
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3.9: TheK (n, n) Equation
The genuinely nonlinear dispersive equation K(n,n) which generalizes of KdV
given by:

ut+(u”)x+(u”)m=0, na>1 (212)
The K(n,n) equation is characterized by the genuinely nonlinear term(u"),, and
genuinely nonlinear dispersion term, (u"),, the balance between them gives

rise to the so-called compacton, solitary wave with compact support and
without tails or wings. In this section, we will use HPM [63,64,65] to derive the
numerical and exact compacton solution of the nonlinear dispersive K(n,n)
equation of the following initial conditions:

u, +(u”)X +(u”)xxx =0,
u(x,0) = f(x). (213)

To solve Eq. (213) by (HMP), we construct the following homotopy

oV ou 0 0% [ a). OUg )
5_8_to+ p(ax(v )+§(v )+a—t°]_0 (214)

Assume the solution of Eq. (214) has the following form

V=V, + pv, + PV, +... (215)
Substituting Eq. (191) into Eq. (189) and equating the terms of like power p,

0. OV 8u0_0
o oot
.oy, 0 ou, 3
P T () 2 ( )+ =0, w(x0)=0 (216)
3
p?: % ai(nvv ) aaxg(nvlvgl)zo, V,(x,0)=0

Starting withv, (x,y) = u,(x,y) = f (x) and Appling the inverse operator j(o)dt to
0

Above system, we obtain:
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t 3 0
v = (g(vsﬁ%(vs%%]dn

0
t 3
Vv, = —_([ (% (nvlvg‘1)+ % (nvlvg‘1 )J dt, (217)

An approximate to the solution of (213) can be obtained by setting p=1
u:lirqv:v0+vl+v2+...
p—

Example (3.9.34) Consider the K(2,2) equation [63]

u, + (U2), + (%), =0,

u(x,0) = gccos2 G xj : (218)
According to homotopy (214) we have;

N A R U

a o p(ax(v )+ ax° )+ ot ]_0 (219)

We start withv, =u, = gccosz(% xj , asinitial approximate, and from Egs. (217)

we have;
t 3
Vv, = —I(%(vgﬁ%(vgﬁ%]dt :%cztsintéxj,

0 o3 1 1
o (2vow, )+ > (2voV, )j dt = "1 c’t? CO{E xj :

3

v, =— (%(vf + 2v0v2)+ %(vf + 2V,V, )J dt = —7—120“t3 sin(% XJ :

The approximate solution will be as follows:

u(xt) = ﬂccosz(lxj +102tsin(ixj EREY cos(l xj ENSE sin(lxj +.. (220)
3 4 2 2 12 2 72 2

This givesthe solution in a close form

4 o1
= =(x—ct —ct|<2

Lxt) = 5C00S (4(x C)J Jx—ct|<2p (221)
0 ,other wise

Which is an exact solution
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The behavior of the solution (220) obtained by the HPM and the exact solution
(221) are shown in Figs. (3.9.35) and (3.9.36) we have plotted these equations
with some different values of c, t versus distancex.

Fig (3.9.35)
The surfaces show the approximate solutions obtained by HPM and the exact

solution, respectively. (a) HPM plot (Eqg. (220)); (b) Exact plot (Eq. (221)).

. et - g )
T . s
- eyt = 1 . o
X - - =
- = . L= f
o a
]

@ (b)

Fig (3.9.36)

The comparison of the results by HPM and the exact solutions for different
values of ¢ and t, versus distance x (a) ¢ =2, t=(1/2); (b) c=2t=(-1/2);
(©)c=(3/2),t=(3/2); (d)c=(-3/2) t=(-1/2).
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Example (3.9.37) Consider the K(3,3) equation [63]
u, +(u3)X +(u3)XXX =0,
X

u(x,0) = %ccos(:—l3 j (222)
According to homotopy (214) we have;

vy (0 (ay, 0% (a), B )

P p(ax(v )+ Ve (v )+ - ]_O (223)

We start withv, =u, :\/%ccos(%x) as initial approximate, and from Eqgs.
(217) we have;

of 0 0° ou 1 (1
vlz_;[&(vgp%(vgp ont:Ec@sn(ng,

ot

3
v, =— (%(&§v1)+ %(ngl)j dt = —3—16c2\/§t2 cos(% xj ,

8 0 1 (1
(& (3v2v, +3vpv? )+ %(C-Névz +3VVy )j dt = —@cs‘ﬁﬁ s n(g x)

The approximate solution will be as follows,
3c 1 1 (1 1 1
u(x,t :1/—000 =X |+=cy6etsin| =x |——c?+/6¢t? cos = x
(1) 2 {3 ] 6 (3) 36 {3 ]
1 4 —s. (1
———c’6et’sin| =
g oatsn( 3x) s

This givesthe solution in a close form

3c 1, ) ﬁ
u(x,t) = \/;CO{g(X Ct)) |x—ct| < ;

0
Which is exact solution

(224)

(225)

,other wise
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The behavior of the solution (224) obtained by HPM and the exact solution
(225) are shown in Figs (3.9.38) and (3.9.39); with different values of candt,
versus distancex. We achieve a good agreement with the actual solution by
using four terms only in homotopy perturbation method derived about.

Fig (3.9.38)
The surfaces show the approximate solutions obtained by HPM and the exact

solution, respectively. (a) HPM plot (Eqg. (224)); (b) Exact plot (Eq. (225)).

€Y (b)

Fig (3.9.39)

The comparison of the results by HPM and the exact solutions for different
vaues of ¢ andt, versus distance x (a)c=3/2t=3/2;(b)c=3/2,t=(1/10)
(©)c=(5/2),t =0; (d) c=(5/2) t=(7/2).
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CHAPTER FOURE
CONVERGENCE OF THE HOM OTOPY
PERTUTBATION METHOD

4.1: Introduction

In this chapter, we will study the convergence of (HPM); the convergence
concept of the (HPM) was thoroughly investigated by many researchers to
confirm the rapid convergence of the resulting series. Ji-He examined the
convergence of (HPM) in [1]. In addition, J. Biazar presented the sufficient
Condition of convergence [68,69]. However, this theorem requires knowledge
of the exact solution in prior, in [66,67,70 ] the Authors have shown that the
(HPM) converges to the exact desired solution, without a priori knowledge of
the exact solution.

4.2: Theorems of conver gence of HPM

To investigate the theorem of the (HPM), we consider the functional equation;
AU -f(r)=0, reQ, (D

With boundary conditions

B u,@ =0, rel,
oh

Where A is differential operator, B is boundary operator, f(r)is a known
analytic function, and T is boundary of the domainQ. Generally speaking the
operator A can bedivided intwo parts L andN, where Lalinear is, and N isa
non linear operator EQ. (1), therefore, can be rewritten as follows:

L(u)+N(u)-f(r)=0 (2
We construct a homotopy which satisfies

H(v, p) = (1= p)[L(v) ~ L(up)]+ PLAW) - f (1] =0, pe0a]
Or

H(V, p) = L(v) ~ L(up) + PL(U) + pN(v) - f (1] =0, 3)
Where u, isan initial approximation of Eg. (1), assume the solution of Eq. (3)
Has the following form

V=V, + pv, + pv2+...:§:p‘vi (4)
i=0
Whenp — 1, Eg. (3) corresponds to Egs. (2) and (4) becomes the approximate
of Eq. (2) i.e.
u=limv=v, +Vv, +V, +... 5)

p—l
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Let’s rewrite the Eqg. (3) as the following:
L(v) ~L(uo) = p[f (r) — L(u,) - N(W)]
Substituting (4) in (6) leads to:

L(i p‘vij— L(ug) = p{f(r) ~L(u,) —N[_m ply ﬂ

So
> L(PY) L) = p{f(r)— L(uo)—N(: P H
Now we set I_ I_
N(ivi pij:iHi p'
Where : :

n

H, Vg,V vn):{1 & N[Zvip‘D , n=012,...

E@p”

i=0

Is He’s polynomials, substituting (9) in (8), we drive;
D L(P'V) — L(uy) = p{ f(r)—L(u,)- > H;p' }
i=0 i=0

By equating the terms with identical powersinp:
p”: L(ve)—L(uy) =0,

pl : L(Vl) = f(r)_L(uo)_Ho,

pz . I—(Vz) =-H,,

pn+l : L(V ) = _Hn’

n+l

So we derive
V, = Uy,

vy = L[ (D] -u, — L7 (H,)

v, =-L7*(H,),

Via =— L_l (H n )’
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Theorem (4.2.1) Homotopy perturbation method used the solution of Eq. (1)
Is equivalent to determining the following sequence;[66]
S, =V, +--+V,,

S =0, (14)
By using the iterative scheme:
S, = LN, (S, +V,)—U, + L[ ()] (15)
Where
Nn[zn:viJ:Zn:Hi, n=0L12,- (16)
i=0 i=0

Proof: For n=0, from Eq. (15), we have;
S = _L_lNo(So +Vo)_ U, + L_l[f (r)l

=L (Hg)—ug + L[ (r)] (17)
Then
v, = —L(H,)—u, + L (r)] (18)
For n=1:
s, = LN, (s, + Vv, )—u, + L[ ()],
=—L*(H, +H,)—u, + L[f ()], (19)
Substituting (18) in (19) we get;
=—L'(H,)+v,
According to s, =v, +Vv,, we get;
v, =-L"(H,) (20)

This theorem will be proved by strong induction let’s assume that
V,, =-L*(H,) Fork=12,...,n-1,

So S,y =—LN (s, +V,)—U, + L[ ()]
= —Ll[zn:Hij— u, + L[ f(r)]

= —Zn: LMH,)-u, + L f(N)]=v, +v, +...v, - L(H,) (21)

Then, from (14), it can drive;
Via =~ Lil (H n ) (22)
Which is the same as the result of (13) from HPM, and the theorem is proved.
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Theorem (4.2.2) let B be a Banach space [66]

(a) The series solution ivi obtained by (13), convergenceto se B, if

i=0

30<1 <), st (yneN=|v,[<1 |v,.) (239)

(b)s=Y v, , satisfiesin

s=-L"N(s+V,)—u, + L[ f(r)] (24)

Proof: (a) we have

Is <V Vol <12 Via] <o <1 v (25)

n+1

=Su| =[Vos

Foranyn,meN,nzm,we

31 = Sl = (80 = S0-2)+ (Sh2 = 02 )+ -+ + (St = S0 )|

<[, Snlll [Srs =Sz + -+ Sms = S0
Vol + 1™ Vo +++-1 ™ v

<17
(n+|n1+ +|m+1)
<|m™

Vol

(I”m‘1+l”m‘ 4ot | +1)|v0||
<12 @)
Since0<1 <1,wehavel-1"" <1 ; then,
i Tw”s ~s,|=0 (27)
Then{s,}, is Caushy sequence in Banach space and it is convergent, i.e.,
Jse B,st=lims, _Zv._s (28)

n—ow

(b) From Eg. (15), we have;
lims,, =L limN, (s, +V,)—u, + L[ (r)]

N—o0 N—

=—L*limN (Zvj u, + L[ ()], (29)

n—ow
i=0

i=1

S=—L I|mZH —u, + L[ ()]

n—oo £

109



_—L’le —u, + Lf ()],

But by Egs. (9) and (16) for p=1, we drive;

i=0

s:—L‘lN(Zw: ] FLF)

= —L™N(s+V,)—uy + L[ (r)]

Lemma (4.2.3) Eq. (24) is equivalent to; [66]
L(u)+N(u)-f(r)=0 (31)

Proof: we rewrite Eq. (24) asfalows,
S+U, = —LN(s+v, )+ L[ ()] (32)

By applying the operator L to Eqg. (32) we derive;

L(s+uy)=-N(s+v,)+ f(r) (33)
Butu, =v,, then,
L(s+V,)=-N(s+V, )+ f(r) (34)

By consideringu = s+v, = ivi , EQ. (31), has been derived which isthe origina
i=0

Equation. Then solution of EQ. (24) is the same solution of A(u) - f(r) =0.

It is worth mention in other wards we proved in theorem (4.1.2) that the series

i p'v, defined in (4) converges absolutely at p=1 to the solutionse B, over

i=0

the domain of definition oft, also we proved that if the series solution defined
in (5) is convergent, then it converges to the exact solution of the nonlinear
Problem (1)
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Theorem (4.2.4) Error Estimate [67]

The maximum absolute truncation error of the series solution ivi of the

problem (1) is estimated to be

M +

| (35)

|
E. <
M1

Proof: Making use of inequality (26) of Theorem (4.1.2), we immediately
obtain

. 1_| n-M
-sa st 2wl @

And taking into accountl-1"" <1, EQ. (36) directly leads to the desired
formula (35). This completes the proof.

Theorem (4.2.5) (Sufficient Condition of Convergence).[68]
Suppose that X and Y be Banach spaceand N : X — Y isa contraction mapping
that is

v,V e X; [N(v)-N@)| <1 |v-¥], 0<I <1 (37)
Which according to Banach's fixed point theorem, having the fixed pointu, that
ISN(u) =u.
The sequence generated by the HPM will be regarded as,

n-1
S, =N(S,1), Sps =2V, N=123...
i=0

And supposethat s, =V, = u, < B, (u)whereB, (u) = {u° € X Ju =] < r}, and then
we have the following statements:
() fls, —ul <1 "uo —ul,
(i) s, € B, (u),
(iii) lims, =u.
Proof: (i) By induction method on, for n=1 we have
s —ul <[N(so) = N <1 v — ]
Assume that ||s, , —ul| <! "*|v, —u| asan induction hypothesis, then
5, = [NGS, )~ NG < s~ <11 ] <1 v, o]
(if) Using (i), we have
Is, —u<1"[vo—u|<I"r <r=s, B, (u).
(iii) Because of s, —u| <1 "|v, —ul, andliml " =0, we drive lim|s, —u| =0

nN—o0 nN—oo

lims, =u

n—o
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Example (4.2.6) Consider the following Burgers’ equation [46]

du ou o4
E‘FU&—W (X, y) S RX[O,].), (38)
Subject to theinitial conditions
u(x,0) = 2x. (39)
With the exact solution
2X
1) = 40
uxt) =% (40)

To solve Eq. (38) with initial condition (39) by (HMP), we construct the
following homotopy:

2
v Uy ol v vV ﬂ Mo | _, (42)
ot ot oxX  ox? 8t

Assume the solution of Eq. (40) has the following form
V=V, + pv;, + PV, +... (42)
Substituting Eq. (42) into Eq. (41) and equating the terms of like power p,
0. aVO auO

v, —2— 5 =0, Vv, (x0)=0 (43)

pl: —L4 =0, v, (x0)=0,

Starting withv, (x, y) = u,(x, y) = 2x, SO we derive the following recurrent
relation

v, —j[az Jz R 1Jdt j=123,... (44)
0 k=0
The solution reads
Vv, (X,t) = —4xt
Vv, (x,t) = 8xt?

V(X t) = —16xt°
v (x,t) = ()" 2" xt
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n t(o%v , 2 ov,
so=vo=uo,vn=ZI{ e vk'—“]dt. n=123,.. (45)

AndtSIE, 0<Il <1

According to the theorem for nonlinear mapping N , a sufficient condition for
convergence of the HPM is strictly contractionN . Therefore, we have:

I P
o =uf = |2¢ 1+2t||_4{1+2t||'
xt’ |
R R R L e L b e (46
xt° RS
o, = o v, + v, —u] =192 < 16@ > ZH W
_ _ 5 _ _ n+2x't_n+1 n+2(|_jn Xt H_ n _
Is, u||—;vj uj=2 Lot <2M S Tl Vo =
Therefore,
li ms, —u| < lim| "|vo —u| =0, (47)
Thatis
u(xt) = lims, = =% (49)

n—ew 1+ 2t
Which is an exact solution

Example (4.2.7) Consider the following Schrodinger equation [52]

2
i Gu(a)t(,t) = —%272—| |2u , (x,1) € Rx [0,2] (49)
Subject to initial condition
u(x,0)=e”. (50)
With the exact solution
. Et
u(x,t) = e[ 3 (51)
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To solve Eq. (49) with initial condition (50) by (HMP), we construct the
following homotopy:

2
z@_p((w_]a_]o (52
ot ot 20X ot
Assume the solution of Eq. (52) has the following form
V=V, + pv, + PV, +... (53)
Substituting Eqg. (53) into Eq. (52) and equating the terms of like power p,
0 : %_% =0
ot ot
2
p: %+%_{;% . +vvj 0, v(x0)=0 (54)
, . OV, 1 0%y,
D —=- 0, ,0)=0
pP: .[ > o j v, (x,0)
2
p: % —i (% aa):/j + 2V, Y, + VIV, + 2V, V,V, + vjvzj =0, vy(x0)=0

BV, 1 0%v j1j-i-1
pj:ﬁ_tj_ (2 6X11+Zol _Ov, Jk'lJ O,vj(x,O):O,

Starting with initial condition v, =u, = e* Eq. (54) gives

¢ 82 . 1j-i-1
= iJ' [1 Via +JZ'ZV A 1}dt j=123,... (55)
0

2 ox* &

Which has solutions
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Supposethat N:Rx[0,2] > CxC, s, =N(s,,), S, =V, =U, then:

n t 162\/ B j-1j—-i-1
v, = II > o +ZZVVk i dt, n=123.. (56)
=00 i=0 k=
Thus,
i| x+ Ei
Vo —u| = e'x—e[ th 1-e?
1 1+1|t—e2
Iy~ = vy v, — u =1+ Zit - e2'| < J1— e .
2 1-e?
1+1it—e%it
Since, for all t e[0,2] we have|—2——| <1 =0507 <1, therefore, (57)
1-e?
Lit
s -ul<1 -e | =1 -y
1. t2
2 I+ L it—— —e?
Is, —u] = }.ldrlit—t——e2t <+ Lit—e 8 :
2 8 2 1+1 e2 H
2
1+1it—ﬁ—e%it
But, for alt €[0,2], ——<0336<I, thus
1+it—e?
s, —ull <1 *[v -]
1. 1., t> u
2 Ei 2 1+ |t—7|t ———e2
||33—u||=1+1it—iit3—t——et 1+1|t———e2 2 48 8
2 48 8 2 8 1. 2L
1+ —it——-—e? H
1+1it—iit3—ﬁ— -
But, for all t<[0,2], |[—2—48 - 8 <0.251<1 thus
1.t ~it
1+=it——-—e?
2 8

;=<1 Jvo —ul,
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Therefore,
I|m||s —u||<I|mI ||v —u||

n—oo

Thatis

i(x+1t)

u(x,t) =lims, =e 2 (58)

n—o

Which is an exact solution
Example (4.2.8) Consider the fourth-order parabolic equation [52]

2 4 4 4
ag+(y+z_lj8l:+ Z+ X —18f+(x+y—1}33=0
ot 2C0sXx oX 2cosy oy 2c0sz 0z

O<x,y,z<%,0sts1 (59)

Subject to initial condition
u(x,y,z0)= —2—1:(x, Y,2,0)= X+ Y+ Z— (COSX + COSY + C0S2),, (60)

And the boundary conditions
u(0,y,zt)=e"(-1+ y+z—cosy - cosz),

u( Y z,tj = e‘{%jt y+ z—cosy—coszj,

u(x,0,z,t)= e (~1+ X+ z— COSX — C0S2),

u(x,B , j ‘t(2p X+ z—cosx—cosz), (61)
3 6

u(x,y,0,t)= " (~1+ X+ y—cosx—cosy),

u(x, y,g,tj (2p6_3+x+ z—cosx—cosyj,

gu(o,y,z,t): Z;(XO z,t)= (2 (x,y,0t)=¢"

8_U(B’y1z’tj:a_u(X1B,Z1tj:@(X’y’B’t):\/§+2et
ox\ 3 oyl 3 oz 3 2

The exact solution is

u(x,y,zt)=e"(X+y+ z—CoSX—CoSy - C0S2), (62)

For solving Eqg. (60) with theinitial condition (61), we construct a homotopy
v(r, p) : Q@x[01] - R*which satisfies

2 2 4 4 2
8_2/_6 u20er ( y+2z _1Ja v, [z+x |0 :/J{ X+y _1j8 l/+6 u20 _0(63)
ot ot 2C0SX ox* | 2cosy oy 2cosz 0z ot
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Assume the solution of Eq. (63) has the following form
V=V, + pv, + PV, +... (64)
Substituting Eqg. (64) in to EQ. (63) and equating the terms of like power p,
o*v, ou?
0. o “YYo

ar ot
ot o%v, +( y+2z _1J64v0 Jzrx 0%V, J{ X+Yy _1j64v0 +62u0 o
at? \2cosx ) ox* \2cosy )oy* \2cosz ) ozt ot? ’
ot 82v2+( erz_JavJr Z+X 4 84v1+( x+y_1j6“vlzo (65)
a2 \2cosx ) ox* \2cosy )oy* \2cosz ) ozt

ol oV, +( y+2 _1ja4v,-_1+ Z+X 54Vj_1+( X+ Y _1j54V,-_1 Y
ot 2cosx ox* 2cosy oy* 2cosz oz*

For simplicity we take v, = u, = (x+ y+ z— cosx—cosy — cosz)(1-t).
So we have

2CoSX x4 2cosy oy*  \2cosz oz’ '
=12 (66)
Which has solutions

vV, =(X+y+ z—cosx—cosy—cosz)[—— J

v
2 3

—
S

—
o

V, =(X+ Y+ Z—C0SX—COSY — COSZ)

o
|

EI
QJ|

6 7
V; = (X+ Y+ Z—COSX—COSY — COSZ) ta—t_')
t2n+1
V, = (X+Yy+Z-CoSX—cos Cosz ’
S - )(Zn) (2n+1)!]

Supposethat N:R*x[01] > R* s, = N(s,,), S, =V, = U, then:

n tt 84V- 64\/. 84\/'
” (Y+z_j L_lJ{ Z+ X _1] ,4_1+( x+y_1j |,
050l \2C0SX oX 2cosy oy 2c0sz oz

i—12.- (67)
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Thus
Vo —u| = ‘1—t —e' H

t? t°
<fi-t-e*|f- 2 34
e +t-1

2 3
s, — u = l—t+tE—t§—e“

Since, for all t[01] wehave 1-—2 2 |<| =0.94<1, therefore,

el +t-1

”g—wﬂslh—t—e*uzlwh—uw
I PPN S S S
||sz—u||_H1 t+2I 3!+4] 5 e
4 5
t? 4 s H
_Hl—t-FE—E—et 4 25 3
%H_t_t_q
2 3
ot
But, for alte[0],[1- 4’-t25!t3 <0.35<I ,thus

s, —ul <1 %Jvo —u]

2 3 4 5 6 7
e

t° t’
t? 2 tt t° 6 7 H
<ty -t o[t 8 7
2 3 4 5
2 3 4 5 et t_t_1H
2 3 4 5
t® ot
But, for allt < [0,2], - tzat37!t4 5| <0018<1 , thus
el Ht————+———— 1
2 3 4 5

;=<1 Jvo —ul,

s, —ul <1 7vo —ul
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Therefore,
limls, —ul <liml "|v, —u| =0 (69)

n—oo n—oo

That is

U(X, Y, z,t) = lim> (x+ y+ z— cOSX—COSy — C0S2) Y| (—1r)]| t
n—oo j:0 n:O—.

= (X+ Y+ 2Z-C0SX—Cosy—cosz)e" (70)
Which is an exact solution

4.3: Convergencerate of HPM

Definition (4.3.9) for every i e N, we defing;

Vol
=1 vl

o Iu=0

”Vi ” * O’ (71)

In theorem (4.2.2), > v, converges to exact solution, when 0<1, <1.

i=0

If v, and v/ are obtained by two different homotopy, and |, <1/ for each

i e N, therate of convergence of ivi is higher thaniv{ :

i=0 i=0

Example (4.3.10) Consider the Lan-Emden equation in the following form

2
u"+=u+u=x>+30x°

X
u(0)=0, u'(0)=0 (72)
With the exact solution
u(x) = x° (73)
To solve Eq. (72) by (HMP), we consider the linear part as follows
Lu=u" (74)

And construct the following homotopy;
u"-uy = p[x5+30x3—2u'—u—ugJ (75)
X
Let’s consider the solution u as the summation series,

u= iui (76)
i=0
Substituting (76) into (75) leads to;
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iu"—ug = p[x5 +30x° —Eiui’ —iui —ugj (77)
i-0 X'iZo i-0
Beginning with the u, = 0, we get;

u, = 25 x? — X' §x5 + 1 Ne
3 ’
36288 216 8 332640
19958400 435456 9072 16 51891840

Uy = —————— X" + + X7 + X X
148262400 119850400 5225472 54432 32 10897286400

By considered | f (x)| = max|f (x)|, we have
| , =0.5210503471
|, =0.5139910140,
| ; = 0.5093374003,
|, = 0.5062439696,
| ¢ =0.5041785188,
| ¢ = 0.5027965117.

If the linear part of equation is consider as follows,

Lu=u"+2u = x‘zi[x2 %j (78)
X dx dx
Then we construct the following homotopy
(v”+gv’j—(ug+gu3j: p(x5+30x3—v—ug—gug] (79)
X X X
Where
X X d
LHu) = [ x?|—(x? d 80
(u) _([x !dx (x u(x))jx X (80)

Suppose the solution of EQ. (74) has the following form;
V= Zw: p'v. (81)
i=0

Substituting (76) into (74) and equating the term of like powers, we get;
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p°: (vg+§vgj—(ug+§ugj:0,

pl:vf+§v{+vo+ug+§ug =x>+30x%, u(0)=0, u;(0)=0

p2:v;’+gv;+v1:0, u,(0)=0, u,(0)=0
X

Starting withv, = u, = 0, then the solution reads
v, = 1 X" +X°,
56

1 o 1.4
———x*-—x
5040 56
Vv, = CHNC T
665280 5040
_ 1 13 _ 1 N
121080960 665280
u, = 1 s 1 Ny
29059430400 121080960

Vv, =

V, =

Then;

|, =0.0177387914

| , =0.0110722610,
| , = 0.00756010906,
|, = 0.00548724954,
| . = 0.00416293765,
| ¢ = 0.00326590091.

By comparison between the obtained results in the above Example, it can be
concluded that the rate of convergence of homotopy (79) is higher than
homotopy (77) (see Fig. 4.3.11).
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Fig (4.3.11): Plots of solution of HPM and exact solution for Ex. (4.3.10).

The important things which we want to mentioned here, the results of this
section were published as scientific paper in [79].
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CHAPTER FIVE
HOMOTOPY PERTUTBATIONT TRANSFORM
METHOD

(5.1)Introduction

In this chapter, we use the homotopy perturbation method coupled with the
Laplace transformation, called homotopy perturbation transform method
(HPTM) for solving the linear and nonlinear PDESs. The Laplace transform is
totally incapable of handling nonlinear equations because of the difficulties that
are caused by the nonlinear terms. Various ways have been proposed recently
to deal with these nonlinearities such as the Laplace decomposition algorithm
[71-74] and the homotopy perturbation transform method (HPTM) [75-78] to
produce highly effective techniques for solving many nonlinear problems. The
basic motivation of this chapter to apply an effective modification of HPM to
overcome the deficiency, it is worth mentioning that the (HPTM) is an elegant
combination of the Laplace transformation, the homotopy perturbation method,
and He’s polynomials, The (HPTM) algorithm provides the solution in a rapid
convergent series which may lead to the solution in a closed form. The
advantage of this method is its capability of combining two powerful methods
for obtaining exact solutions for linear and nonlinear partial differential
equations

(5.2)Analysisof (HPTM)

The HPTM is a combined of the HPM and L aplace transform method. We
apply HPTM to the following general nonlinear partia differential equation
with the initial conditions of the form,

Du(x,t) + Ru(x,t) + Nu(x,t) = g(x,t), (D
u(x,0)=h(x), u,(x0) = f(x). (2
Where D is the second order linear differential operator, D :st_"‘z’ R is linear
differential operator of less order than D; N represents the general nonlinear
differential operator and g(x,t) isthe source term.
Taking the Laplace transform (denoted by L ) on both sides of Eq. (1):
L[Du(x,t)]+ L[Ru(x,t) ]+ L[Nu(x,t)] = L[g(x,t)] (3)

S2L[u(x,t)]— su(x,0) — u, (x,0) + L[Ru(x,t)]+ L[Nu(x,t)] = L[g(x,t)]  (4)
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Using the initial conditions:
L[u(x,t)]= &SX) + fS(2x) + 5_12 L[g(x1)]- 3_12 L[Ru(x,t)]- S—lz L[Nu(x,t)] (5)
Operating with Laplace inverse on both sides of Eq. (5) gives

u(x,t) = G(x,t) — L‘l[s—lz L[Ru(x,t) + Nu(x,t)]} (6)

Where G(x,t)represents the term arising from the source term and the
prescribed initial conditions. Now we apply the HPM

u(x,t) = p"u,(x.t) (7)
And the nonlinear term can be decomposed as
Nu(x,t)= > p"H,(u) (8)
n=0

Where H  (u) are He’s polynomials given by;

10" U
H Uy, =|— N 'u , =012,... 9
n(uO u1 un) (nl apn (IZC; p ul jjp=0 n l' ( )

Substituting Eq. (7) and (8) in Eq. (6), we get,

U, (x,1) = G(x.1) - p{ LLi L[Ri P, (% 1)+ p“Hn(u)m. (10)

Which is the coupling of the Laplace transform and the HPM using He’s
polynomials.

Comparing the coefficient of like powers of p, the following approximations
are obtained.

P%: Uy(x,t) = G(x,t),

pt: oy (xt)= —Ll[s—lz L[Rug (x,t) + Ho(u)]}
p?: U,(x,t)= —L‘lL—lz L[Ru, (x,t) + Hl(u)]},
1

p*: Uy (x,t) = —Ll[—z L[Ru, (x,t) + Hz(u)]},

n

And so on
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Example (5.2.1) Consider the linear Klein-Gordon equation [78]

o’u  o%u
o (1)
Subject to theinitial conditions
u(x,0) =1+sinx, %(X,O) =0. (12)
By applying the aforesaid method subject to theinitial condition, we have
1+sinx 1 o%u
- —LHu-—
u(x,s) s @ {u PV } (13)
The inverse of the Laplace transform implies that
2
u(x,t) =1+sinx+ L‘{iz L{u+a—gﬂ (14)
S oX

Now, we apply the homotopy perturbation method; we have
u(x,t) = i p"u, (x,t) (15)
n=0

i p"u,(x,t)=1+sinx+ p[L‘lL—l2 L{i p"u, (x,t) +§722i p”un(x,t)ﬂJ (16)

n=0
Comparing the coefficient of like powersof p, we have

p® i Uy(x,t) =1+sinx

4l 1 o2u, || t?
pl Ul(X,t) = L l|:? L|:Uo +aTZO__ :E’
41 o, || t*
p%u,(x,t) =L 1{? L{u1 + ale =7 (17)

So that the solution is given by

2 4 6
u(x,t)=l+sinx+—+—+t—+~-~ (18)
2 24 720
In series form, and
u(x,t) = sin x+ cosht (19)

In closed form
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Example (5.2.2) Consider the following diffusion-convection problem [76]

a_o

u_ou_ (20)
ot ox

With theinitial condition
u(x,0) = x+e™>. (21)

Taking the Laplace transform on the both sides, subject to the initial condition,
we get

x+e* 1 |0%
,S) = U —- 22
u(x,s) P {axz u} (22)
Taking inverse Laplace transform, we get
a1, 0%
u(x,t)=x+e*+L {—L{—Z—uﬂ (23)
S | ox

Now, we apply the homotopy perturbation method; we have
u(x,t) = i p"u, (x,t) (24)

i p'u, (Xx,t)=x+e + p(UE L{%i p"u, (xt) —Z:O: p”un(x,t)ﬂ} (25)

n=0
Comparing the coefficient of like powersof p, we have

p® Uy (x,t) = x+e™%,

2
pl . ul(xyt) = I-_l|:l |_|:—a uo - uo = _Xt,
S

ox? 1]
. N AT S
P U, (xt) =L {EL{W—Q —XE, (26)

1 | d%u t3
Siu(xt)=L7 =L Z_u, ||=-x—,
p 3( ) |:S |:6X2 2i|:| 3

And so on. Therefore the series solution is given by
x t? t°
u(x,t)=e +><[1—t+5_§+..) (27)

Which converge very rapidly to the exact solution

u(x,t)=e> +xe™ (28)
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The numerical results of u(x,t) for the approximate solution (27) obtained by
using HPTM, the exact solution and the absolute error E, (u) = |u,, —u,,|for

various values of t and x are shown by Fig. (5.2.3)(a)—(c). It is observed from
Fig. (5.2.3) (a) and (b) that u(x,t) increases with the increase in x and decrease
int. Fig. (5.2.3) (d—-(c) clearly show that the approximate solution (27)
obtained by HPTM is very near to the exact solution. It is to be noted that only
the seventh order term of the HPTM was used in evaluating the approximate
solutions for Fig. (5.2.3). It is evident that the efficiency of the HPTM can be
dramatically enhanced by computing further terms of u(x,t) when the HPTM is
used.

Fig (5.2.3): The surface shows the solution u(x,t)for Eq. (20): (a) exact

solution; (b) approximate solution (27); () |u,, — Uy,

(©)
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Example (5.2.4) Consider the following diffusion-convection problem [76]

ou ou .
E_WH 1+cosx—sin® x)u, (29)
With theinitial condition
1
,O - OOSX—ll. 30
u(x0) =1t e (30

Taking the Laplace transform on the both sides, subject to the initial condition,
we get

2
u(x,s) = %%e‘m‘“ + % LBT;J + (~=1+cosx—sin? x)u} (31)
Taking inverse Laplace transform, we get

2
u(xt) = %e‘m” + Ll{é L[ZTB + (~1+ cosx—sin® x)uﬂ (32

Now, we apply the homotopy perturbation method; we have
u(xt) = i p"u. (x,t) (33)
n=0

00

> p"u,(x1) =L gwecnn p L? 1 a—zi p"u, (1)
Y10 s* | ox? e

n=0 n=0

+(~1+ cosx—sin® x)i p”un(x,t)ﬂj (34)

n=0

Comparing the coefficient of like powersof p, we have

1
0 ‘u X,t :_ecosx—111
P () =75

1. |0% ) l 1
1LI X,t :Lil —L —0+ _1+COSX_Sn2X u :_ecosx—ll —t
sl [s{aﬁ ( )°__ 0® Y
1 azu . 1 t2
2 U X,t :L—l L 1+ —1+COSX—Sn2XU =_ecosx—11 — 35
p* U, (x1) L{axz ( =5 (Zj( )
l 62U ) 1 t3
ou ) = LY 2L S82 4 (C14 cosx—sin?X)u, || = —ex i L |
p* ruy(x.) {s{@xz ( )ﬂ L (aj
And so on. Therefore the series solution is given by
U(X t)_iecosx—ll 1_t+£_i+... (36)
10 2 3
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Which converge very rapidly to the exact solution

U(X,t) :%ecosx—ll—t (37)

The numerical results of u(x,t) for the approximate solution (36) obtained with

the help of HPTM, the exact solution and the absolute error E, (u) = |u, — Uy

for various values of t and x are shown by Fig. (5.2.5)(a)—(c), we observed

that the approximate solution (36) obtained by the HPTM is very near to the
exact solution.

Fig (5.2.5): The surface shows the solution u(xt)for Eg. (20): (a) exact
solution; (b) approximate solution (27); () |u,, — Uy,
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Example (5.2.6) Consider the following Advection problem [75]

ou ou

——+U— = 2L+ X+t° + xt?, (38)
ot OX

With theinitial condition
u(x,0)=0. (39)

Taking the Laplace transform on the both sides, subject to the initial condition,
we get

2 x 6 2x 1 ou
U(X,S):§+?+§+?—EL|:U&:| (40)
Taking inverse Laplace transform, we get
4 3
u(x,t) =t> + xt LR L‘lF L{u@ﬂ (41)
4 3 S OX
Now, we apply the homotopy perturbation method; we have
u(xt) = plu, (x.) (42)
n=0
0 . 5 t4 Xt3 » 1 ) N
D op"u,(xt) =t?+xt+—+——p L =L D p"H, (43)
n=0 4 3 S n=0

Where H, are He’s polynomials that represent the nonlinear terms

The first few components of He’s polynomials, for example, are given by
H, (U) = UgUy,,
H, (u) = u,u,, +u,U,,,

Hz(u) = UgUy, + U Uy, +UsU,,,

Comparing the coefficient of like powers of p, we have
U, (X)) =t +xt+—+—,

P~ - Up(X,1) 23
1 tt o xt® 2x® 7t 1 1

Loy (xt)=-LM ZLH,W]|=—— - - T - ot =18, 44
P () [s["()ﬂ 4 3 15 72 63 08 (44)

p? 1 u,(xt) —_L—l[l L[H (u)]} Bt | 2xt™ | 2783  38xt°  143t°
TU, (X t) = )
S

= +
8064 2079 302400 2835 2880
2xt’  7t®  2xt®
+—+
315 12 15
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It is important to recal here that the noise terms appear between the
4 3
components u,(x,t) andu, (x,t) , more precisely, the noise terms + tz + Xt?
Between the components u,(x,t) and u, (x,t) can be cancelled and the remaining
terms of u,(x,t) still satisfy the equation.
The exact solution is therefore
u(x,t) =t> + xt (45)

Example (5.2.7) Consider the following homogeneous nonlinear PDE [77]

ou o (ou )’

FR o E R 40
With theinitial condition

u(x,0) = Jx. (47)

Taking the Laplace transform on the both sides, subject to the initial condition,
we get

2 2
u(x,s)=£+EL{u+ua—L;+(a—uj } (48)
S s OX oX
Taking inverse Laplace transform, we get
L1 o°u (ou)’
u(x,t) = vx+ L {E L|:u+ua7+(&j ﬂ (49)
Now, we apply the homotopy perturbation method; we have
u(xt) = i p"u, (x,t) (50)
i p"u_ (X,t) = VX + p( L1E L[u]+ % L{i p"H, (u)ﬂJ (51)

Where H, are He’s polynomials that represent the nonlinear terms
The first few components of He’s polynomials, for example, are given by

2 2
Ho(u):uo—a Uzo +(%j _0,
oX

OX
0%u o%u ou, ou
H,(u)=u Ly —242-21-0Q
(W)= ox2 ' oox? OX OX
0%u 0%u 0%u au )’ _éu, éu
H,(u)=u Ziu Liu 0 4] =] +2—=-=2 -0,
(1) Coaxz Toaxt P oax? (axj X oOx
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Comparing the coefficient of like powers of p, we have
p° 1 Uy (X,t) = VX,

P x) = 1| 0] @) | =, (52)
b 00 =L St Lt @) | x5,
P 0,000 =L 2L e Uit | -4,

And so on. Therefore the series solution is given by

u(x,t)=\/§(1+t+%+g+mj (53)

Which converge very rapidly to the exact solution
u(x,t) = +/xe (54)

(5.3)Comparison of Rate of Convergence of HPM and HPTM

Example (5.3.8) Consider the inhomogeneous Advection problem [18]

2—?+ua—l::—sin(x+t)—%sin2(x+t), u(x,0) = cosx . (55)
Sandard HPM: According to homotopy Eqg. (35) in example (3.3.6) we have

v _duy (v 1 _

P p(vaXJr - +sin(x+t) + 2sm2(x+t)J 0 (56)
And the solution for first few steps reads:

V, = COSX,

1 . 1 1
Vv, = —tsin2x+ cos(X +t) —cosx+20052(x+t) —ZCOSZX,
1.,. : 1 . . :
Vv, = —thsm xsm2x+§t2cosx0052x—sm Xsin(x+t) +sin® x
) . 1. . 1. .
+ COSXCOS(X + t) + cos x+tsm2x—§smxsm2(x+t)+§smxsm2x

+ 1cosxcosZ(x+ t)— %cosxcost + %t SiN XCOS2X + %t COSXSin2x
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Therefore the approximate solution of Eq. (55) can be written as

u= %(cosx — 2t% coSX +12c0s2X + 3c0S3X — 6t > c0S3X + 16 CoS(X + t) — cos(2t + X)

16008(2X + 4) + 4C0S(2x + 2t) — 3cos(3X + 2t) — 2tsin x— 8tsin 2x— 6tsin3x)+--- (57)

HPTM: to solve Eq. (55) by MPTM, taking the L aplace transform on the both
sides, subject to theinitial condition, we get
CoSX 1[(— cosX—ssin xj 1(2c032x+ ssin ZXH 1

ou
g ooosx, 1 Lo (s
uix.s) s s 1+ s? 4+ S {uﬁx}( )

2
Taking inverse Laplace transform, we get

u(x,t) = cos(x +1) + 1cosZ(x+ t) - 1cost— LlF L{u@ﬂ (59)
4 4 S OX
Now, we apply the homotopy perturbation method; we have
u(xt) = i p"u, (x,t) (60)

i p"u. (x,t) = cos(x +t) +%0052(x+t) —%cost— p(UE L[i p”HnHJ (61)

n=0
Where H, are He’s polynomials that represent the nonlinear terms

The first few components of He’s polynomials, for example, are given by
Ho(u) = UyUo,

H, (u) = upu,, +u,U,,,

Comparing the coefficient of like powers of p, we have

P® @ Uy (X,t) = cos(x+t) + %cosZ(x+ t) - %cost,

a1 1 1 1
p':u,(x,t)=-L {g L[Ho(u)]} = —Zc032(x+t) +Zcosx+acos4x+-~, (62)

It is important to recal here that the noise terms appear between the
components  u,(x,t)andu,(x,t), more precisely, the noise terms

i%cosZ(xH)i%cost between the components u,(x,t)and u,(xt)can be

cancelled and the remaining terms of u,(x,t) still satisfy the equation.
The exact solution is therefore
u(x,t) = cos(x +1) (62)
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Example (5.3.9) Consider the inhomogeneous nonlinear Klein Gordon
equation [42]

2 2
a—g—a—l:+u2 = —xcost + x* cos’ t, (63)
ot OX
Subject to theinitial conditions
u(x,0) = x, %(X,O) =0 (64)

Sandard HPM: According to homotopy Eg. (65) in example (3.4.10), we have
2 2 2 2
Zt;/_aatlio + (8 Yy 0 \2/+v2+xcost—xzcoszt]:0 (66)

ox>  Ox
And the solution for first few steps reads:
Vy =X,

1 1
v, = —X+=X° —§x2t2 + Xcost — = x% cos2x,
8 4 8

4 3 2,3 4.,3
v2:—%x2+ét2—%—2x2+t2x2+z—6—t; t

+ 2x? cost

—iCOSZX—iX3 COS2X,
16 16

Therefore the approximate solution of Eq. (63) can be written as

4 3 2,3 4.3
16 8 24 16 8

+ Xcost

_1ye cosox+ 2x2 cost - iCOSZX—%XB COS2X+... (67)

HPTM: To solve Eq. (55) by MPTM, taking the Laplace transform on the both
sides, subject to theinitial condition, we get

24,2 2
H(x.9) :E‘ s(1rsz) " (323:45;?5);) %L{ng _uz} (68)
Taking inverse Laplace transform, we get
u(x,t) = xcost — % x* cost + X:fz + XT: + L‘1E L{% - uzﬂ (69)
Now, we apply the homotopy perturbation method; we have
u(xt) = i p"u. (x,t) (70)
ary
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B 1 2t2 X2
D p"u, (x.t) = xcost — = x* cost + +—
T 8 4 '8

+ p[ Ll{é LL%;; p"u, (1) —[g p”HnﬂD (71)

Where H, are He’s polynomials, the first few components of He’s
polynomials, for example, are given by

Ho(u) = ug,

H,(u) = 2u,u,,

Comparing the coefficient of like powersof p, we have

242 2
P s Uy (x,t) = xcost — L x? cost + 2\ + X
8 8
2 242 2
p'iu(xt) = LlE L{aa;zo —Ho(u)ﬂ zéxz cost—%—%+6—14x4 cos2t +---  (72)
242 X2

The noise terms i%xz cost + J_rg between the components u,(x,t)and

u,(x,t)can be cancelled and the remaining terms of u,(xt)still satisfy the

eguation.
The exact solution is therefore

u(x,t) = xcost (73)

Example (5.2.10) Consider the following inhomogeneous nonlinear PDE [77]

o2u o%u (au’

atZ +W+(&] =2X+t4, (74)
With theinitial conditions

u(x,0) =0, %(X,O) =a (75)
Sandard HPM: According to homotopy perturbation method we have:

av: o4 ov (ov)® 8%

7 8t20 + p[axz +(&j + ax20 —2x+t4j=0 (76)

Let’s ignore the first few steps and start from determining v,
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Vv, = at,
v, = xt2+it6,
30
v, =0,
1

v, = —t°,
30

v, =0, k=>4
Therefore, we obtain
Vg =Vo+V,+V, +Vo+...

= at + xt’. (77)

HPTM: To solve Eq. (74) by MPTM, taking the Laplace transform on the both
sides, subject to theinitial condition, we get

a 2x 4 1 |du (oeu)’

U(X,S):?+?+?—?L|:y+[&J :l (78)

Taking inverse Laplace transform, we get
S e LN

u(xt) =at+xt* + 0 L Lz L|:8X2 + p (79)
Now, we apply the homotopy perturbation method; we have

u(x,t) = i p"u, (x,t) (80)

n=0

n=0

ip“u (xt):at+xt2+£—p & = @+ip“H (u) (81)
e 30 s | ox? & "
The first few components of He’s polynomials, for example, are given by
ou, \’
H,(u)=| —2| =t*,
()
X OX
oX OX 0OX

H,(u) =2 0,

Hz(u)=( =0,

Comparing the coefficient of like powers of p, we have
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t6
O u(xt)=at+xt?+—,
P Uy (Xt) .

1. s 0%u, :_i
pt iU, (X,t) =-L Lz (L{ e }+ L[Ho(u)]ﬂ 3" (82)

2. a1 oy, _
p”ru,(xt)=L l:S[L|: o }"’ L[Hl(u)]j} =0,

u (x,t)=0 k=2

Therefore the exact solution is given by
u(x,t) = at + xt* (83)

Remark (5.3.11)
From comparison, it is clear that the rate of convergence of HPTM is faster

than homotopy perturbation method (HPM).

Furthermore, the exact solution can easily be obtained by using HPTM in
comparison to HPM in some equation.

The HPTM usually result in the exact solution for the inhomogeneous problem,
even for the problem which HPM |eads to an approximate solution
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