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1.1. Introduction  

The renewal processes, the arrival time process and the counting 

process are inverses, in a sense. The arrival time process is the partial sum 

process for a sequence of independent, identically distributed variables (the 

interarrival times). Thus, it seems reasonable that the fundamental limit 

theorems for partial sum processes (the law of large numbers and the 

central limit theorem), should have analogs for the counting process. That 

is indeed the case, and the purpose of this section is to explore the limiting 

behavior of renewal processes. The main results that we will study, known 

appropriately enough as renewal theorems, are important for other 

stochastic processes, particularly Markov chains. 

Thus, consider a renewal process with interarrival distribution F and 

mean interarrival time μ, with the assumptions and basic notation 

established in the introductory section. When μ=∞, we let. When μ<∞, we 

let σ denote the standard deviation of the interarrival distribution. 

2.1. Renewal Process   

  A renewal process is used to model occurrence of events happening 

at random times, where the times between the occurrences are modeled 

using independent and identically distribution random variables. many of 

even the most complicated models have within them an embedded renewal 

process. The formal model is as follows.   

We let , 1nY n  .be a sequence of independent and identically 

distributed random variables which take only non- negative values. We also 

let 0Y  be a non-negative random variable, independent from , 1nY n   though 

not necessarily of the same distribution. The range of these random 

variables could be discrete, perhaps {0,1,3,…}, or continuous  0, .The 

random variables nY  will be the inter- event times of the occurrences. we 

assume throughout that for all 1n   34 . 
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 0 1 1............................................(2.1)P Y    

Next, for all 0n  ,we define the process nS  as : 

1

........................................(2.2)
n

n i

i

S Y


  

Where  

, 2 0 1 2S Y Y Y   , and 1 0 1S Y Y   , 0 0S Y . 

 

Note  that the random variable nS  gives the amount of “time’’ that 

random unit passes the nth occurrence (we think of 0Y as the “zeroth” 

occurrence). 

The sequence   , 1nS n   is called a renewal sequence the time nS are 

called renewal times. The occurrences are usually called the renewal. Not 

that if we define ( )iE Y  , 1i  then for 1n  . 

        

0 0( ) ( ) ... ( ) ( )...................(2.3)n nE S E Y E Y n E Y      

 

 

2.1.1. Type of renewal processes 

  If   0 0 0P Y   ,then the process is called delayed. If on the 

other hand, we have that  0 0 1P Y   ,in which case 0 0 0S Y   with 

probability of one, then the process is pure.    

       Recalling that the Indicator function,  1 : 0,1A R  ,satisfies  1  

 

 ( )
1 ..

0 ..
AI x

if x A

if x A

 



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 We define the counting process  

    
0

( ) 1 0,1 ,............................(2.4)n

n

N t S




  

  Which yield the number of renewals in the time interval 0,1  .Note 

that if the process is pure, then 0 0Y  and (0) 1N   with probability one N is 

counting functions. 

A few more definition is required. if   1nP Y    for 1n  ,then the 

renewal process is called proper. 

However, if   1nP Y   ,then the process is called defective. Note 

that in the defective case there will be a final renewal. In this case ( )N t  

remains bound with a probability of one, though the bound is a random 

variable. In fact, the bound is geometric random variable with parameter 

 nP Y    34 . 

2.2. Renewal theory  

Let  r r N
X


be a sequence of independent identically distribution 

random variables with the property that  0 0rP X   .put
 

1

n

n r

r

S X


 , 0 0S  ,and define the renewal process ( )N t  by 

 0( ) max :N t n S t  , 0t  .The mean  ( ) ( )m t E N t is called the renewal 

function. we have ( )N t n if and only if nS t , and hence 4 . 

  

     1( ) ....................(2.5)n nP N t n P S t P S t      

and 

 

      
1 1

( ) ( ) ....................(2.6)r

r r

E N t P N t r P S t
 

 

      
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2.2.1. Theorem 

If   0rE X  then ( )N t  has finite  moments  for all  t  . 

Proof: since   0rE X   there exists 0  such that   .rP X    . 

 Put  
1

( ) max :
n

r

r

m t n I X t 


 
   

 
 . Since 

   
1 1 1

n n n

r r r

r r r

I X I X X  
  

     it follows that ( ) ( )N t m t , and bence with 

1m t     , 

       
1 1

( ) ( ) ( ) 1
rX

n n

E N t E t P t n t


  
 


 

     
     

 

 
 1,...,1 ,

, , ,
n

j j

n

P X j X j


 




 

         

 

  
 

  1 1

1 1,...,

1
n

n n m

P X P X 


  

     

  

                       1 1

1 0

(1 )
n m

kn n k

k

n k

C P X P X 
 



 

    

     1 1

0

) 1
m

n kk n

k

k n k

P X C P X 




 

      

     1 1

0 0

) 1
m

nk n k

n

k n

P X C P X 




 

      

 
 

1 1
1 .....................................(2.7)

k

rP X 

 
  

  
 

 

In final equality in (2.7) we used the equality: 

                 



12 

 

         
 

1
0

1
)

1

n k k

n k
n

C Z
Z










  for 1Z  , putting the inequality in (2.7) 

follows theorem (2.2.1) it follows that  E N t   is finite whenever  rE X is 

strictly positive. This fact will be used in theorem(2.2.2). 

 

2.2.2. Theorem 

The following equality is valid: 

   

            ( ) 1 1 ( ) 1 ..........................(2.8)N tE S E X E N t
      

 

The equality in theorem (2.2.2) is called wald equality  

 

Proof: the time ( ) 1N t   is stopping time with respect to filtration. 

 

                 1( : 0 ) ( : 0 )n r rf X r n S rE X r n         

 

Notice that the process  1nn S nE X   is a martingale, and hence 

 

      1( ) 1 ( ) 1
n n

E S N t N t E X
 

   
 

 

 

      10 0
( ) 1 ( ) 1 0...................(2.9)E S N t N t E X

 
     
 

 

 

Since  ( )E N t  is finite, from (2.9) we get by letting n tend to  . 

 ( ( ) 1) 10 lim (( ( ) 1) )
nN t n

n
E S N t E X

 


      

 

   1( ) 1
(( ( ) 1) ................................(2.10)

N t
E S N t E X


   
 
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         Consequently, the conclusion in above theorem 

2.2.3. Theorem 

Let ( )r r NX  be a sequence of independent, identically distributed 

random variables such that  0 0rP X    put 0 0S   and 
1

n

n r

r

S X


 . Let the 

process ( )N t  be defined as in theorem (2.2.2) . let ( )F t  be the distribution 

function of the variable rX . Put   ( ) ( )m t E N t ,then ( )m t  satisfied the 

renewal funcation:  

  

       *

10

( ) ( ) 0,1 ......................(2.11)

t
k

F

k

m t f t m t s dF S 




     

 

Where 

 , ( ) ( )F a b F b F a   ,and      1 2 1 2,

0 0

, ( )
a b

a b I S t d S d   
 

    ,0 a b   

i.e. convolution product of the measures 1 and 2 . 

Moreover,
0 0

(1 ( )) ( )s se dF S e dF s 
 

    . 

If rX  are independent exponentially distributed random variables, and thus 

the process  ( ) : 0N t t   is Poisson of parameter 0  , then ( )m t t . 

Proof: on the event  1X t we have ( ) 0N t  , and hence by using 

conditional expectation we see 34  

 

   1( ) ( ) ( )1m t E N t E N t X t      1 1( )1 ( )E E N t X t X       

 

 
   11 11 ( ) ( ) ( ) 1

X t
E X t E N t N t X E


            
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 1 1( ) ( )E N X X    (on the event  1X t  we have 1( ) 1N X  ) 

  

                 1 1 1 11
1 ( ) ( ) ( ) 1 1 ( )

X t
E X t E N t N X X E E X 


               

 

 

The distribution of ( ) ( )N t N S ,t S ,is the same as the distribution of  

( )N t S . 

 

   1 1 1 11
1 ( ) ( ) 1 1 ( )

X t X t
E E N t X X E E X 

 
               

 

 

   1 1
( )1 1

X t X t
E N t S E

 
     
   

 

 

0

( ) ( ) ( ).......................................(2.12)

t

m t X dF X f t    

 

This completes the proof of theorem (2.2.3) 

2.3. The behavior of ( ) /N t t  as t   

Our goal in this section is to characterize the limiting behavior of 

( ) /N t t  as t  . where we preserve the notation from the previous section. 

We begin with a law of large result  4 . 

 2.3.1.Theorem  

 Let ( )N t  be the counting process  associated with the renewal 

sequence , 0nS n  letting 1( )E Y  , 

 

( ) 1
lim ............................................(2.13)
t

N t

t 
   
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with a probability of one, where the right-hand side is interpreted as 

zero if   . 

Proof. Note that if the process is defective, then (i)   , and 

(ii) N(t) is uniformly bounded in t. Using (ii) we have that 
( )

lim 0
t

N t

t
  with 

probability one, and the result holds. Hence, we need only consider the case 

that the process is proper, in which case ( )N t  as t with a 

probability of one. we begin by recalling the strong law of large numbers. 

Suppose that  nZ
are i.i.d. non-negative random variables with  nE Z    . 

Then 

 

    1 1

1
... nZ Z E Z

n
   ,as t   

 

almost surely. Note that the above allows for  nE Z   . 

Returning to our processes, the strong law of large numbers states that with 

a probability one. 

1 ...
lim n

n

Y Y

n




 
  

Thus, we may conclude that with probability one, 

 

0

1

1 n
n

i

i

YS
Y

n n n




   ,as n   

 

Noting that ( )N t  as t  , we can therefore conclude that 

 

( )

1
,

( )
N tS

N t
 as ........................................(2.14)t   

 

Almost surely. By construction, for ( ) 1N t  we have that 
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( ) 1 ( )N t N tS t S    

 

Therefore, so long as ( ) 2N t  , 

 

( ) 1 ( ) ( ) 1 ( )

( ) ( ) ( ) ( ) 1 ( ) ( )

N t N t N t N tS S S St t

N t N t N t N t N t N t

 
    


 

 

 

Applying (2.14), we see that as t   

 

( )

( )

t N t t

N t t



    

 

Note that the above result is intuitively pleasing as it says that the 

shorter the wait between events, as characterized by  , the more events 

you expect to see in a given time interval. Note that it also says that  34 . 

 

1
( ) 0( )N t t


  ,as  ..........................................(2.15)t   

 

2.4. Point Process 

As the name suggests, the basic idea of a point process is to allow us 

to model a random distribution of points in a space, usually a subset of 

Euclidean space such as  , 0, ,R   or 
dR , for 1d  . Here are a few examples  

of renewal processes distributed points on  0, so that gaps between points 

are i.i.d. random variables.  

 The Poisson process, which will be the main object of our focus, is a 

renewal process which distributes points oo gaps are i.i.d. exponential 

random variables. 
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We begin with an important mathematical notion, that of a measure. 

2.4.1. Definition 

Let E be a subset of Euclidean space, and let F be a   algebra of E. 

Then, : f R  is a measure if the following three conditions hold: 

1. For A f , i.e. for A a subset of E, 0  . 

2. If  iA are disjoint sets of F, then 

 

  ( ).....................................(2.16)i i i

i

U A A   

3.   0   . 

We assume that , 0nX n   are random elements of E, which 

represent points in the state space E. Next, we define the discrete (random, 

as it depends upon the point nX ) measure by: 

 

 

( )
1 ..

0 ..
AI x

if x A

if x A

 




…………………………(2.17) 

 

Note, therefore, that Xn
1  is a function whose domain is F, i.e. the 

subsets of E, and whose range is  0,1 , and that it takes the value one 

whenever nX is in the subset of interest. Next, we note that by taking the 

sum over n, we find  the total number of the points  nX  contained in the 

set A. Therefore, we define  the counting measure 

N by 

n

def

X

n

N I ……………………………..(2.18) 
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So that for A E , 

 

 ( ) ( )
nX

n

N A I A …………………………(2.19) 

 

simply gives the total number of points in A E . 

 

2.4.2. Definition 

The function N is called a point process, and  nX are called the 

points. We note that as N depends explicitly on the values of the points, 

nX , it is natural to call such an object a random measure since the points 

themselves are random. we will make the (technical) running assumption 

that bounded regions of A must always contain a finite number of points 

with a probability of one. That is, for any bounded set A 34 , 

 

 ( ) 1P N A   …………………………,(2.20) 

 

For a renewal process, we have  0,1E  , and the points are the 

renewal times 
0n n

S



. The point process is 

0
nS

n

N I




 …………………………………(2.21) 

  

 Note that the notation for the counting process has changed from ( )N t  

to  ( 0,1 )N . 

 An important statistic of a point process is the mean measure, or 

intensity, of the process, which is defined to be 

 

 ( ) ( )A EN A   
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giving the expected number of points found in the region A. We note 

that the intensity is commonly referred to as the propensity in the 

biosciences. 

 

2.5 The Poisson Process 

Poisson processes will play a critical role in our modeling and 

understanding of continuous time Markov chains. We will eventually 

develop a general notion of a Poisson process, though we begin with the 

formulation of the one-dimensional model that most people see in their first 

introduction to probability course. We will refer to this as the first 

formulation. 

We suppose that starting at some time, usually taken to be zero, we 

start counting events. For each t, we obtain a number, N(t), giving the 

number of events that has occurred up to time t. Note that we have 

reverted, for the time being, to our notation from renewal processes. 

   Recalling that a function f is said to be o(h), and written ( )f o h or 

( )f o h , if 
( )

0
f h

h
 as 0h  , we make the following modeling 

assumptions on the process N(t) (= N([0; t])) . 

1. For some 0  , the probability of exactly one event occurring in a 

given time interval of length h is equal to h + o(h) . Mathematically, 

this assumption states that for any t  0 . 

 

  ( ) ( ) 1 ( )P N t N N t h o h     ,as 0h  ……………..(2.22) 

 

2. The probability that 2 or more events occur in an interval of length h 

is o(h)  34 : 
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 ( ) ( ) 2 ( )P N t N N t h o h     ,as 0h  …………….(2.23) 

 

3. The random variables 1 1N(t ) - N(s ) and 2 2N(t ) - N(s ) ) are independent 

for any choice of 1 1 2 2s   t   s   t   . This is usually termed an 

independent interval assumption. 

  We then say that N(t) is a homogeneous Poisson process with 

intensity, propensity, or rate,  . The following proposition describes the 

distribution associated to the random variables N(t) - N(s) , and makes clear 

why the process N(t) is termed a Poisson process. 

Proposition (2.5.1): 

   Let N(t) be a Poisson process satisfying the three assumptions 

above. Then, for any t  S  0   and  0,1,2,...k  . 

 

      
( ) ( )

!

k

t s
t s

P N t N S K e
K




 


   …………(2.24) 

 

Proof. 

 We will prove the proposition in the case S = 0 , with the more 

general case proved similarly. We must show that under the above 

assumptions, the number of events happening in any length of time t has a 

Poisson distribution with parameter t . That is, we will show that: 

 

 
 

( )
!

k

t
t

P N t K e
K

 
   

 

We begin by breaking the interval [0; t] up in to n subintervals of 

length 
t

n
, where n should be thought of as large. We will eventually let 

n  . We define the two events  33  
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
def

nA k of the subintervals contain exactly 1 event and other n - k contain zero  


def

nB k  and at least one of the subintervals contains 2 or more eventsg  

 

The events are mutually exclusive and: 

 

              ( ) n nP N t k P A P B   ………………….(2.25) 

 

Note that the left hand side does not depend upon n. We will show 

that   0nP B  , as n  , hence proving that events happen one at a time. 

This is called orderliness .Using Boole's inequality, which states that 

 

   i i
i

i

P U C P C , 

for any set of events  iP C , we have 

 

   at least one subinterval has 2 or more eventsnP B P   

  
1

at least one subinterval has 2 or more events
n

i
P U


  

 
1

ith subinterval contains 2 or more
n

i

P


  

      

   
 

1

0n

i

t
nt to no t

n n t
n



 
   
 
  

  

 

Thus,   0nP B  , as n  . Now we just need to understand the 

limiting behavior of  nP A . We see from assumptions 1 and 2 that 
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 P{ 0 events occur in a given interval of length h } 

Now using assumption 3, independence of intervals, we see that 

 

 { } 1

n kk

n

n k

t t
P A

n n






    
     

    
 

 

 
 

! 1 1
1 1

! !

nk k
k n t

t t
n k k n n n


 


      

        
       

 

 

 

Noting that 

 

 

   . 1 ... 1! 1

!

k

k

n n n kn

n k n n

   
  

  
 

 

1 1
1. 1 ... 1 1

k
nk

n n n

   
       

   
 

 

1
1

n
n

tt e
n




  
   

  
, 

 

1 1

k
nt

n




 
  

 
, 

 

 we find that 

 

 
 

!
lim

kt

n
n

e t
P A

k

 



  

 

 Therefore, we see that: 
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     
 

( ) lim lim
!

kt

n n
n n

e t
P N t k P A P B

k

 

 
    ………….(2.26) 

 

2.6. Continuous renewal processes  

A Poisson process can be defined as a counting process for which the 

Interarrival times are iid  which an exponential distribution. A renewal  

process is more general counting process than Poisson process, which is 

defined as below  33 .  

 

2.6.1. Definition : 

 Renewal process a with counting process for which the Interarrival  

times are iid with an arbitrary distribution is said to be renewal process. 

A is  never is called a renewal   if upon its occurrence every thing 

stints over again probabilistically. Let  1X   be the time to the first renewal 

and let nX   (n=2,3,...) be the time between (n-1)  st renewal and n-th 

renewal. Assume that nX  (n=1,2,...) are iid random variable with 

distribution function F. to be non trivial, assume that:  

 

 ( ) 1nF o p X o    

Let  

  ( )......................(2.27)n
o

M E X XdF x


    

 

Which will be positive. Define the time of the n-th  renewal by :  

 

                  
1

1

.........................(2.28)
n

n

c

S X



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Let N(t) be the number of renewals by time so that  

 ( ) max : ...........................(2.29)t nN n S t 
 

 

Then, the counting process  ( ) , 0tN t  will be renewal process. 

Consider a component that is used continuously with replacement. 

let y be the life time of the component, which is random with distribution 

function of G. the component is replaced by a new one upon failure or at 

affixed time period T which ever comes first ( The replacement policy is 

called an age replacement ) then each replacement will be a renewal so 

counting the number of replacements leads to renewal process. An 

Interarrival time X will be y or T depending on whether life time is shorter  

or not. That is, 

 

 min ,

Y IF Y T

X Y T T IF Y T

 
 

   
 
 

 

Then mean interarrival time is obtained by  

 

 
0

min( , ) (min( , ) )M E Y T P Y T X dx


    

 
0 0

( ) ..........................(2.30)
T T

cP Y X dx G x dx     

 

2.7. Distribution of the Number of Renewals 

 Suppose we are interested in the distribution of  N(t). The  following 

result holds.  

      Proposition: for a renewal process  ( ), 0N t t   with interarrival  

  1( ) ( ) ( ), ,1,...n nP N t n F t F t n o     

Where nF is no fold correlation of F with lF o )(  
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Proof :  

 The event  ( )N t n  is equivalent to the event   tSn , so. 

   ( ) , ( )n

nP N t n P S t F t     

Therefore , 

      )()(1 1

)()()( tFtFnNPnNPnNP nn

ttt

  

Proposition (2.7.1): 

Let  )()( tNEtm   then m(t) is called a renewal funcation 

Proposition : the renewal function is given by  

1

( ) ( )...............................(2.31)n

n

m t F t




  

Proof 

    ).()()()(
11

tFntNPtNEtm
n

n

n










  

The second equality holds since ( )N t  is a non- negative 

2.8 Random stopping times   

 Visualize performing an experiment repeatedly by successive sample 

out puts of given random variable (i.e. ,observing an out come of 

1 2, ,...,X X were the ,

iX S  are iid ). The experiment is stopped when enough 

data has been accumulated for the par poses at hand  33 .  

This type of situation occurs frequently in application for example, 

we might be required  3 .  

Definition: stopping An integer –value N is said to be a stopping 

time for the sequence of independent variables, ,...,, 21 XX  if the event 

{N=n} is independent of ,...,, 21  nn XX for all  n=1,2,… 

 Example  
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(a) For a renewal process 1)(,),(  tNottN ,  is a stopping time for 

interarrival times ,

iX S .It can be seen that following events are 

equivalent : 

         1 1( ) 1 ( ) 1 ... 1 ... ( ) 1n nN t n N t n X X t and X X t so N t n              

depends only on nXX ,...1 and independent of ,..., 21  nn XX  

(b) For a renewal process )(}),({ tNottN  is not a stopping time for 

interarrival times ,

iX S The reasoning may be similar to (a) 

2.9. Wald’s Equation: 

If ,...,, 21 XX are iid random variables with  E X   and if the 

stopping time for ,.., 21 XX  such that  E N    

 

   
1

...........................(2.32)
N

i

C

E X E N E X


 
 

 
  

Proof  

   Let for  n=1,2,… 

    
1

0
n

if n N

if n N


  


 

   Then  

     
1 1

n

n n n

n n

X X


 

     

Hence  

 
1 1 1

n

n n n n n

n n n

E X E X P X
 

  

   
       
   
    

Since N is stopping time the event {N=n} or n{I =1} depends only on 

11,... nXX and is independent of nX so, n  is independent of nX therefore, 
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             NEXEnNPXEnEXEXE
n

n

n

N

n

n 







 







 111

. 
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2.9.1. Proposition 

 The expected time of the first renewal after t is given by:  

   
 ( ) 1 ( ) 1

.................................(2.32)N t M t
E S M 
     

Proof : 

 The result immediately follows from wald’s equation since is 

( ) 1N t  stopping  time  for ,

iX S . 

 Not that we cannot apply weld’s equation to obtain  )(tnSE  since N(t) 

is not a stopping time. In fact, the interarrival time containing time , 

1)( tNX .has a different distribution form the usual ones. We will consider 

this quality ( called spread at t ) later  33 . 

       Suppose that  ( ), 0N t t  is a Poisson process having rate  .then, 

 

( ) 1

1 1
( ( ) 1) ( 1)N tE S m t t t 

 


        
 

 

Which is also intuitively derived since 1)( tNS is t  plus  time to next 

event. But, 

 

( ) ( )

( )
(1)

( ) 1
N t N t

N t
E S E S N t

N t

 
               

 

The second equality holds since ntNS tN )()(  is the largest one 

among a sample of size n from unif(0,t) using the property that: 

  








 










 

1

1

y
E

y

y
E for  y poi )(  

We have 



29 

 

 
 

11)(

)(













t

t

N
tESE

t

tN
 

Which is different from ( ) 1m t   

2.9.2. Definition  

 Suppose that  ( ), t 0N t  is renewal process  

(a) The at t of the renewal process defined by: 

( ) ( )t N tA t S   

(b) The excess at t of the renewal process is defined by:  

                                      ( ) ( ) 1t N ty S t   

(c) The spread at t of the renewal process is defined by: 

)()(1)( tttN yAy   

2.10. Long –run Renewal Rate  

 This section deals with the average number of renewal (permit time ) 

in the long run, which will be called a long-run renewal rate  

Proposition (2.10.1): 

 For a renewal process  ( ), t 0N t   having df F for interarrival times, 

 

t

N(t) 1
lim       w.p.1

t 
  ………………………….(2.33) 

Where  

( )xdF x




   

Proof 

 Since )(tNS is the last renewal time prior to t and 1)( tNS is the 

first renewal time after t, 
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1)()(  tNtN StS   or     
)(

1)(

)()(

)(

t

tN

tt

tN

N

S

N

t

N

S 
  

 

But 

 N(t) 1 ( )

(t)

X ...
lim  lim     

N N(t)

N t

t t

S X
E X 

 

 
    

and  

 N(t) 1 N(t) 1 ( ) 1

(t) (t) 1 ( )

lim  lim     
N N

t

t
t

t

S S N
E X M

N

  






    

For a renewal process  ( ), t 0N t   having M of mean interarrival time. 

2.11 Renewal Reward Processes 

 Consider a renewal process  ( ), t 0N t   let us assume that reward 

will be earned at time of renewal. There can be lost or profit attached to the 

renewal. let nR denote the reward earned at the time of n-th renewal 

 1,2,...n  ,which are iid random variables having a common mean E{R} . 

nR  may depend on nX . Then, the total reward earned by t, R(t) will be 33   

 

( )

( )

1

...................................(2.33)
N t

t n

n

R R


 
 

 

The new process  0 t,)( tN  is called a renewal reward  

Proposition (2.11.1): 

 Suppose that  ( ), t 0R t   is called a renewal reward process having 

     and  . E R E X   then, the long –run rate or long-run average 

reward is given by :  

 

t

( ) ( ( ))
lim    ...........................(2.34)

t ( )

R t E R t

E X

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Proof : since 

( )

1( ) N(t)
  

t N(t) t

N t

n

n

R
R t 



 

 

The result follows if  SLLN is applied to each the interarrival time 

the a renewal process is often as renewal cycles. the above result says that 

the long-run reward rate is obtained by: 

 

 
 

E reward during  acycle  
 reward rate 

E reward acycle length
long run   

Proposition (2.11.2): 

 Suppose that  0 t,)( tR  is called a renewal reward process 

having      and  . E R E X  then  

 
t

( ) ( )
lim    

t ( )

E R E R

E X
  

 

2.12. Key Renewal Theorem 

  If F is not lattice and Q(t) is directly Riemann integrable, then: 

 

   
0 0

1
lim ( )

t

t
Q t t dm x Q t dt






   ………………(2.35) 

 

0

( ) ( )u t xdF x



   

 

Sufficient conditions for Q(t) to be directly Riemann integrable are: 
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1. ( ) 0Q t   

 2. ( )is nonincreasingQ t  

 3. 
0

( )Q t dt



   

Limiting mean excess: 

 let Y(t) be the excess at t. The mean excess is obtained in example by 

 

   
0

( ) ( ) ( )

t

E Y t h t h t x dm x   …………………..(2.36) 

Where 

 ( ) ( )
t

h t x t dF x



   

So, 

     
0 0

lim ( ) lim ( ) lim ( ) lim ( )

t t

t t t t
E Y t h t h t x dm x h t x dm x

   
       

   

  If we assume that the second moment of an interarrival time (X, say) 

is finite, then the function h(t) is directly Riemann integrable. If we assume 

that F is not lattice in addition, we can apply key Renewal Theorem to 

obtain the limiting mean excess as follows: 

   
0

lim ( ) lim ( )

t

t t
E Y t h t x dm x

 
   

 
0 0

1 1
( ) ( )

t

h t dt x t dF x dt
 

  

     

 

If we change the order of two integrals, we have 

   
0

1
lim ( ) ( )

x

t
t

E Y t x t dtdF x dt





    

 

2

2

0

1

2 2

E X
x dx

E X

      
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Note that the result is same as the average excess 

 

2.13. Blackwell’s Theorem: 

 

1. If F is not lattice, then 

 lim ( )
t

a
m t a m t


      

2. If F is lattice with period d, then 

 

 lim .. .. .. ..
n

d
E number of renewals at nd


  

 

Note that Blackwell’s Theorem for lattice case states 

 

 lim .. ..
n

d
P renewals occurs nd


  

 

since the number of renewals at time nd will be 1 or 0. 

 

3.14. Alternating Renewal Processes 

 Consider a renewal process whose interarrival times are sN  having 

the distribution F. Suppose that an interarrival time consists of an ON 

period and  nY  an OFF period such that n n nX Z Y  where nZ  is the n-th 

ON period nZ and is the n-th OFF period. Suppose also that are iid as H and 

are iid as G. and may not be independent  33 . 

Let  
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( )
1 .. .. .. ..

0
I t

if the system ON t

otherwise





  

 

 

 

We are interested in 

1. What is the long-run proportion of time that the system is ON ?  

 

0

( )

lim ?

t

t

I X dx

t



 

 

2. What is the limiting probability that the system is ON ? 

 

  lim 1 ?
t

P I t


   

 

The long-run proportion of time that the system is On is given by 

 

 
 

0

( )

lim

t

n

t
n

I X dx
E Z

t E X



 

 

Obvious from the result from the renewal-reward process. 

and F is non-lattice, then  n nE Z X If  

 

  
 

   
lim 1 ..............................(2.37)

n

t
n n

E Z
P I t

E Z E Y
 


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2.15. Delayed Renewal Processes 

Consider a renewal process having distribution F for the interarrival 

times. Suppose we start observing the process from a certain time point.  

Let 

1X : time to the first renewal after observing 1X  

:nX (n=2,3,…): time between (n-1)st and n-th renewal 

Then, 1X  has the different distribution G, say, from F for other 

interarrival times. Let us define the time of the n-th event as before 

(n=1,2,…): 

 
1

n

n i

i

S X


 ……………………..(2.38) 

 

Let 

 ( ) max :D nN t n S t   

  

Then,  ( ), 0DN t t  is said to be a delayed (or general) renewal 

process. Note that if G=F it will be an ordinary renewal process 

2.16 Expected number of renewals 

The purpose of this section is to evaluate E [N(t)], denoted m(t) , as a 

function of t> 0 for arbitrary renewal processes. We first find an exact 

expression, in the form of an integral equation, for m(t) . This can be easily 

solved by Laplace transform methods in special cases. For the general case, 

however, m(t) becomes increasingly messy for large t, so we then find the 

asymptotic behavior of m(t) . Since N(t)/t approaches 1/X with probability 

1, we might expect m(t) to grow with a derivative m (t)  that asymptotically 

approaches 1/X . This is not true in general. Two somewhat weaker results, 

however, are true. The first, called the elementary renewal theorem, states 
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that lim ( ) / 1/
t

m t t X


 . The second result, called Blackwell’s theorem, states 

that, subject to some limitations on > 0 ,  lim ( ) ( ) /
t

m t m t X 


   . This 

says essentially that the expected renewal rate approaches steady state 

as t 1 . We will find a number of applications of Blackwell’s theorem 

throughout the remainder of the text  33 . 

The exact calculation of m(t) makes use of the fact that the expectation of a 

nonnegative random variable is defined as the integral of its 

complementary distribution function, 

 

    
1

( ) ( ) ( )
n

m t E N t P N t n




    

 

Since the event {N(t)  n}  is the same as n{S   t} , m(t) is expressed in 

terms of the distribution functions of nS , n  1 , as follows. 

 

 
1

( ) n

n

m t P S t




  …………………..(2.39) 


