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3.1 Introduction: 

In this chapter we recall the definition of the most common stochastic 

models which are used to repairable system model, reliability models, 

homogenous Poisson process and non homogenous process and families of 

lifetime distribution. 

3.2: Reliability: 

   Reliability is defined as the probability of success or the probability that 

the system will perform as intended function under specified design 

limits  1 . 

More specific reliability is the probability that a product part will operate 

properly for specified period of time (design life) under the design operating 

condition without failure. In other words, reliability may be used as measure 

of the system success in providing, Its function properly. Reliability is once 

of quality characteristics that consumer require from the menufacture of 

products  1 . 

Mathematically: reliability R(t) is the probability that a system will be 

successful in the interval from time 0 time t:  

 

( ) ( )R t P T t        0t  ……………………(3.1) 

 

Where T is a random variable denoting the time -to-failure or failure 

time . 

Unreliability F(t), a measure of failure, is defined as the probability that the 

system will fail by time t: 

( ) ( )F t P T t        for   0t   
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In other words, F(t) is the failure distribution function. If the time-to-

failure random variable T has a density function f(t) . Then 

 

( ) ( )
t

R t f s ds



  ……………………….(3.2) 

or , equivalently 

 ( ) ( )
d

f t R t
dt

   

 

The density function can be mathematically described in terms of T. 

 

0
lim ( )
t

p t T t t
 

   ……………………..(3.3) 

 

This can be interpreted as the probability that the failure time T will 

occur between the operating time t and the next interval of operation ,  

t t . 

Consider new and successfully tested system that operates well when 

put into service at time 0t  , the system becomes less likely to remain 

successful as the time interval of course , is zero. 

3.2.1: Fault Rate:  

   The possibility of fault machine in specific time period 1t , 2t  can be 

expressed with following non reliability, equation  24 . 

   

2 1 2

1

1 2( ) ( ) ( ) ( ) ( )

t t t

t

f t dt f t dt f t dt F t F t
 

       
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 Or can be expressed with reliability 

2

1 1 2

1 2( ) ( ) ( ) ( ) ( )

t

t t t

f t dt f t dt f t dt R t R t

 

       

 

The rate that a fault took place with in specific period of time is called 

as "Fault Rate" through out the period  1t  indicates for no fault in the 

beginning of period and therefore the equation can be expressed as follows: 

 

 
2

2 1 1

( ) ( )

( )

R t R t

t t R t




…………………………..(3.4) 

 

It has been observed that the fault rate depend on time if the period 1t  

denoted as t t  the equation (3.4) stated as follow:   

 

 
( ) ( )

. ( )

R t R t t

t R t

 


…………………………(3.5) 

 

and means with rate of number of faults in each unit time. 

3.2.2: Hazard Rate:  

 Define as limits of rate of faults for a period of near-zero equation 

can be written in the form: 

 

0

( ) ( ) 1 ( )
( ) lim

. ( ) ( )t

R t R t t dR t
h t

t R t R t dt 

   
     

 

 
( )

( )
( )

f t
h t

R t
 …………………………….(3.6) 
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to find out possibility of fault machine it have age t in time period 

 ,t t t written as: 

 

( ).posf h t dt ………………………………(3.7) 

 

The hazard rate refer to change in rate fault through age of machine. 

To find out hazard rate for the sample machines N  (machine consisting of n 

elements), we will assume  that ( )sN t is a random variable denotes the 

number of machines working successfully at time t  thus, the ( )sN t is 

binomial distribution  24 .   

     ( ) ( ) 1 ( )
.( )

n N n

s

N
P N t n R t R t

N N n


   


 

 0,1,...,n N  

  the expected value for ( )sN t : 

   ( ) . ( ) ( )sE N t N R t N t   

     Hence 

 

( ( )) ( )
( ) sE N t N t

R t
N N

  ……………………….(3.8) 

 

and reliability in time t, it is arithmetic mean for rate success in t. 

Thus: 

( ) ( )
( ) 1 ( ) 1

N t N N t
F t R t

N N


     ……………….(3.9) 

 

and rate density fall equal 
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( ) 1 ( )
( ) .

dF t dN t
F t

dt N dt
    

 

3.2.2: System Mean Time To Failure: 

Suppose that the reliability function for a system is given by R(b) , the 

expected failure time during which a component is expected to perform 

success fully , or the system mean time to failure ( MTTF) , given by  1 : 

 

0

( )MTTF tf t dt



  ……………………………..(3.10) 

Substituting  

 ( ) ( )
d

f t R t
dt

   

 

From equation (3.10) and performing integration by part, we obtain. 

 

   
0

0 0

( ) ( ) ( )MTTF tdt R t tR t R t dt

 


      ………………(3.11) 

 

The first term on the right hand side of above equation equals zero at 

both limits, since the system must fail after a finite amount of operating time 

, therefore , we must have ( ) 0tR t    as ( ) 0tR t  this leaves the second term , 

which equals. 

0

( )MTTF R t dt



  ………………………………….(3.12) 
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Thus, MTTF is the definite integral evalution of the reliability 

function. In general . if ( )t is defined as the failure rate function , then , by 

definition , MTTF is not equal to 1/ ( )t . 

The MTTF should be used when the failure time distribution function 

is specified because the reliability level implicit by the MTTF depends on 

the underlying failure time distribution . Although the MTTF measure is one 

of the most widely used reliability calculation , it also one of most missed 

calculations , it has been misinterpreted as " guaranteed minimum life time". 

3.2.3 Maintainability: 

When a system fails to perform satisfactory, repair is normally carried 

out to locate and corrected the fault. The system is restored to operational 

effectiveness by making an adjustment is defined as the probability that a 

failed system will be restored to specified conditions within a given period 

of time when maintenance is performed according to pre cribbed procedures 

resources, in other words , maintainability is the probability of isolating and 

repairing a fault in system within a given time  1 . 

Let T denote the random variable of the time to repair or the total 

downtime. If the repair time T has a repair  time density function g (t) , then 

the  maintainability ,v(t) , is defined as the probability that the failed system 

will back in service by time t. 

0

( ) ( ) ( )

t

V t P T t g s ds     

For example , if  ( ) tg s e    where  0   is a constant repair rate , them 

( ) 1 tV t e   ………………………(3.13) 
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  Which represents the exponential form of the maintainability function 

. An important measure of time used in maintenance studies is mean time to 

repair (MTTR) or the mean downtime . MTTR is the expected value of the 

random variable repair time , not failure time , and is given by: 

0

( )MTTR tg t dt



  ……………………(3.15) 

When the distribution has a repair time density given by  , then from 

the  above equation ,   when the repair time is T. 

3.2.4 :Availability  

Reliability is a measure that requires system success for an entire 

mission time . no failure or repairs are allowed. 

The availability of a system is defined as the probability that the 

system is successful at time t , mathematically: 

 

system up time
Availability =

system up time+system down time
……………………..(3.15) 

 

 Availability is a measure of success used primarily for 

repairable system. For non-repairable system availability A(t) equals 

reliability R(t) .In repairable system A(t) will be equal to or greater than R(t) . 

The mean time between failure (MTBF) is an important measure in 

repairable system. This implies that the system has MTBF is an expected 

value of the random variable time between failures mathematically 1 . 

 

MTBF=MTTF+MTTR ………………………….(3.16) 
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3.5: Homogeneous Poisson Process (HPP): 

  If a system in service can be repaired to a good new condition 

following each failure, then the failure process is called a renewal process. 

For renewal process, the time between failure are independent and 

identically distributed  2 . 

A special case of this is the homogeneous Poisson process (HPP) . 

Which has Independent and exponential time between failures. A counting 

process is homogenous Poisson process with parameter 0  if: 

1. N(0)=0  

2. The process has independent increments. 

3. The number of failures in any interval of length t is distributed 

as a Poisson distribution with parameter  . 

There are several implications to this definition of the Poisson 

process. The distribution with parameter  1 2,t t therefore , the probability 

mass function is: 

 
   2 1

2 1

2 1( ) ( )
!

t t
t t e

p N t N t n
n




  
     ………………………(3.17) 

 

The expected number of failures by time t is  ( )E N t t    where   

is often called the failure intensity or rate of occurrence of failure 

(ROCOF). ( ) ( )u t t    .the intensity function is therefore   if 1 2, ,...   are 

identically corresponds to Poisson process. 
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3.4:Non homogenous Poisson Process (NHPP). 

The non-homogenous Poisson Process (NHPP) that represents the 

number of failures experienced up to time t  is ( ), 0 .N t t   

 The main issue in the NHPP model is to determine an appropriate 

mean value function to denote the expected number of failures experienced 

up to a certain time with different assumptions , the model will end up with 

different functional forms of the mean value function. Note that in renewal 

time between failures is relaxed and in the NHPP ,the stationary assumption 

is relaxed  1 . 

 The NHPP model is based on the following assumptions : 

1. The failure process has an independent increment. 

     The number of failures during the time interval ( , )t t s depends on s, and  

       does not depend on the past history of the process. 

2. The failures rate of the process is given by : 

      P{exactly one failure in ( , )t t t }=  ( , ) ( ) 1 ( ) 0P N t t t N t t t t        

      Where t is the intensity function.  

3. During a small interval t , the probability of more than one failure  

      negligible that is, 

P{two or more than failures in ( , )t t t } = 0 

On the basis of these assumptions the probability of exactly n failures 

occurring during the time interval (0,t)  for the NHPP is given by: 
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 
 

r

( )
P ( )

!

n mtm t e
N t n

n



  ………………………………….(3.18) 

 Where  
0

( ) ( ) ( )

t

m t E N t t ds   and t is the intensity funcation, 

it can be easily show that mean value funcation ( )m t  is non-decreasing. 

3.5: Test for the Time Trend and Repair Effect: 

    First, the Laplace test is utilized in testing for the time trend, and the 

repair. The hypothesis is expressed as  2 : 

Ho: No time trend exist (HPP) 

H1: Time trend exist (NHPP) 

For Laplace test given r repair 
1 2, ,...., rT T T and censoring time trend 


rT  we calculate the statistic: 

 

1

2 ln
r

i i

Trend
T

T

  ………………………….(3.19) 

 

This test statistic follows a standard normal distribution, this test is 

recommended for the case when the choice is between trend exist (HPP) and 

trend not exist (NHPP). 

3.6: Repair Rate: 

A different approach is used for modeling the rate of occurrence of 

failure incidences for a repairable system. These rates are called repair rates. 

Time is measured by system power-on-hours from initial turn-on at time 

zero, to the end of system life. Failures occur as given system ages and the 

system is repaired to a state that may be the same as new, better, or worse. 
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 The frequency of repairs may be increasing, decreasing, or staying at 

a roughly constant rate  24 . 

 Let ( )N t be a counting function that keeps track of the cumulative 

number of failures of a given system has had from time zero to time t. 

( )N t is a step function that jumps up one every time a failure occurs and 

stays at the new level until the next failure. Every system will have its own 

observed ( )N t function over time. If we observe the ( )N t curves for a large 

number of similar systems and "averaged" these curves, we would have an 

estimate of M(t)= the expected number (average number) of cumulative 

failures by time t for these systems. The derivative of M(t) denoted ( )m t is 

defined to be the Repair Rate or the Rate of Occurrence of Failures at t or 

ROCOF.  

3.7: Common Distribution Functions 

This section presents some of the common distribution functions and 

several hazard models that have applications in reliability engineering  1  . 

3.7.1:Poisson Distribution 

Although the Poisson distribution can be used in a manner similar to 

the binomial distribution, it is used to deal with events in which the sample 

size is unknown. This is also a discrete random variable distribution whose 

pdf is given by 

 
 

!

x tt e
P X x

x

 

       for    0,1,2,...x   

 

where   constant failure rate, x is the number of events. In other 

words,  ( )P X x is the probability of exactly x failures occurring in 
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time t. Therefore, the reliability Poisson distribution, p(k) (the 

probability of k or fewer failures) is given by 

 

 
 

0 !

x tk

x

t e
P k

x

 



 …………………………(3.20) 

 

This distribution can be used to determine the number of spares 

required for the reliability of standby redundant systems during a given 

mission. 

3.7.2: Exponential Distribution 

 The exponential distribution plays an essential role in reliability 

engineering because it has a constant failure rate. This distribution has been 

used to model the lifetime of electronic and electrical components and 

systems. This distribution is appropriate when a used component that has not 

failed is as good as a new component – a rather restrictive assumption. 

Therefore, it must be used diplomatically since numerous applications exist 

where the restriction of the memory less property may not apply 1 .  

 

 
1

1
, 0tf t e e t 



   ……………………..(3.21) 

 

Where 
1

0


   is an MTTF’s parameter and 0    is a constant 

failure rate. The hazard function or failure rate for the exponential density 

function is constant, i.e., 
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 
 

 

1

1

1

1
ef t

h t
R t

e





 


     

The failure rate for this distribution is   ,a constant, which is the main 

reason for this widely used distribution. Because of its constant failure rate 

property, the exponential is an excellent model for the long flat “intrinsic 

failure” portion of the 18 System Software Reliability bathtub curve. Since 

most parts and systems spend most of their lifetimes in this portion of the 

bathtub curve, this justifies frequent use of the exponential (when early 

failures or wear out is not a concern). The exponential model works well for 

inter-arrival times. When these events trigger failures, the exponential 

lifetime model can be used. 

3.7.3: Normal Distribution 

The normal distribution plays an important role in classical statistics 

owing to the Central Limit Theorem. In reliability engineering, the normal 

distribution primarily applies to measurements of product susceptibility and 

external stress. This two parameters distribution is used to describe systems 

in which a failure results due to some wear out effect for many mechanical 

systems. 

The normal distribution takes the well-known bell shape. This 

distribution is symmetrical about the mean and the spread is measured by 

variance. The larger the value the flatter the distribution. The pdf is given 

by: 

 

 

2
1

2 /1

2

t

e
f t e t





 

 
  

     ………………….(3.22) 
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Where   is the mean value and   is the standard deviation. 

The reliability function is the cumulative distribution funcation i.e 

 

 

2
1

21

2

s

t

R t e ds





 

 
  

 



   

 

There is no closed form solution for the above equation. However, 

tables for the standard normal density function are readily available  and can 

be used to find probabilities for any normal distribution.  

where   is a standard normal distribution function. Thus, for a normal 

random variable T, with mean   and standard deviation  . 

 

 
t t

P T t P z
 


 

    
      

     

 

Where   yields the relationship necessary if standard normal tables 

are to be used. 

The hazard function for a normal distribution is a monotonically 

increasing function of t. This can be easily shown by proving that ( ) 0h t   

for all t. Since 

 
 

 

f t
h t

R t
  

 
     

 

2

2
0

R t f t f t
h t

R t


   ………………….(3.23) 
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One can try this proof by employing the basic definition of a normal 

density function f. 

3.7.4: Log Normal Distribution 

The log normal lifetime distribution is a very flexible model that can 

empirically fit many types of failure data. This distribution, with its 

applications in maintainability engineering, is able to model failure 

probabilities of repairable systems and to model the uncertainty in failure 

rate information. The log normal density function is given by: 

 

 

2
1 ln

21
0

2

t

f t e t
t





 

 
  

   ………………….(3.24) 

 

Where   and  are parameters such that    and, 0    Note 

that   and    are not the mean and standard deviation of the distribution. 

The relationship to the normal (just take natural logarithms of all the 

data and time points and you have “normal” data) makes it easy to work 

with many good software analysis programs available to treat normal data. 

Mathematically, if a random variable  x is defined as lnX T , then X 

is normally distributed with a mean of  and a variance of 2  . That is, 

 

E(X) = E(lnT) =    

and 

2V(X) = v(lnT) =    

 

Since xT e  , the mean of the log normal distribution can be found by 

using the normal distribution. Consider that 
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   
 

21

21

2

x
xE T E e e dx



 

 
 

 



    

And by rearrangement of the exponent, this integral becomes 

 

 
 

2 2
2

2

2

22
1

2

x

E T e e dx


 


 

    
 



  
 

 

Thus, the mean of the log normal distribution is 

 
2

2E T e




  

 Proceeding in a similar manner, 

     222 2XE T E e e
 

   

 

Thus, the variance for the log normal is 

   
2 22 1V T e e     

The cumulative distribution function for the log normal is 

 

2
1

2

0

1

2 2

inst

F t e ds





 

 
  

    

And this can be related to the standard normal deviate Z by 

 

     F t P T t P lnT Int

lnt
P z





   

 
  

 

 

 

Therefore, the reliability function is given by 
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 
lnt

R t P z




 
  

 
 …………………….(3.25) 

 

And the hazard function would be 

 
 

   

int

f t
h t

R t tR T







 
 
    

 

Where   is a cdf of standard normal density. 

Mechanisms. Some of these are: corrosion and crack growth, and in 

general, failures resulting from chemical reactions or processes. 

3.7.5: Weibull Distribution 

The exponential distribution is often limited in applicability owing to 

the Memoryless  property. The Weibull distribution is a generalization of the 

exponential distribution and is commonly used to represent fatigue life, ball 

bearing life, and vacuum tube life. The Weibull distribution is extremely 

flexible and appropriate for modeling component lifetimes with fluctuating 

hazard rate functions and for representing various types of engineering 

applications. The three-parameters probability density function is 

 

 
 

1

0

t y
t y

f t e t y








  
 
 


   ……………..(3.26) 

Where   and   are known as the scale and shape parameters, 

respectively, and y is known as the location parameter. These parameters are 

always positive. By using different parameters, this distribution can follow 

the exponential distribution, the normal distribution, etc. It is clear that, for 

t y , the reliability function R(t) is 
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t-y
-

R(t)= e 0, 0, 0for y



  
 
 
       

Hence, 

 
1

t-y
R(t)= 0, 0, 0t y






 





     

It can be shown that the hazard function is decreasing for 1   , 

increasing for 1  , and constant when  1  . 

3.7.5.1:Other Forms of Weibull Distributions 

The Weibull distribution again is widely used in engineering 

applications. It was originally proposed for representing the distribution of 

the breaking strength of materials. The Weibull model is very flexible and 

also has theoretical justification in many applications as a purely empirical 

model. Another form of Weibull probability density function is, for example, 

 

y-1f(x)= yx ye  
……………………..(3.27) 

 

When 2   , the density function becomes a Rayleigh distribution. 

It can easily be shown that the mean, variance and reliability of the 

above Weibull distribution are, respectively, as follows: 

Mean  
1 1

1
y y


 

   
 

 

Variance    

2

1 1 1
1 1

y y y


     
                 

   

Reliability 
tye   
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3.7.6: Gamma Distribution 

  Gamma distribution can be used as a failure probability function for 

components whose distribution is skewed. The failure density function for a 

gamma distribution is 

 

 
 

1 t

B
t

f t e


 




   0, , 0t    …………………… (3.28) 

 

Where   is the shape parameter and   is the scale parameter. Hence, 

 

 
 

1
1

t

t

t
R t s e ds

 
 

 

 



 

 

If t is an integer, it can be shown by successive integration by parts 

that 

 
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0 !

i

t

i

t

R t e
i

 




 
 
 

   

 

and 

 
 

 

1

1

0

1

1

!

t

i

i

t e
f t

h t
R t t

i

 


















 
 
 
  

 

The gamma density function has shapes that are very similar to the 

Weibull distribution. At 1  , the gamma distribution becomes the 
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exponential distribution with the constant failure rate 1   . The gamma 

distribution can also be used to model the time to the nth failure of a system 

if the underlying failure distribution is exponential. Thus, if Xi is 

exponentially distributed with parameter 1  , then 1 2 ... nT X X X     ,is 

gamma distributed with parameters   and n . 

The other form of the gamma probability density function can be 

written as follows: 

 

 
 

1

x tt
f e

 







   for 0t  ……………………..(3.29) 

 

This pdf is characterized by two parameters: shape parameter   and 

scale parameter  . When 0 1  , the failure rate monotonically decreases; 

when 1  , the failure rate monotonically increase; when 1   the failure 

rate is constant. 

The mean, variance and reliability of the density function in equation 

(3.27) are, respectively, 

     Mean( MTTF) =   

        Variance = 2   

Reliability = 
 

1
x

t

t
e dx




 

 


  

The gamma model is a flexible lifetime model that may offer a good 

fit to some sets of failure data. It is not, however, widely used as a lifetime 

distribution model for common failure mechanisms. A common use of the 

gamma lifetime model occurs in Bayesian reliability applications. 
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3.7.8: Beta Distribution 

The two-parameter Beta density function, ( )f t  is given by 

 

 
 

   
 

11 1 0 1, 0, 0f t t t t
 

 
 


 

     
 

……….(3.30) 

 

Where   and   are the distribution parameters. This two-parameter 

distribution is commonly used in many reliability engineering applications. 

3.7.9: Pareto Distribution 

The Pareto distribution was originally developed to model income in a 

population. Phenomena such as city population size, stock price fluctuations, 

and personal incomes have distributions with very long right tails. The 

probability density function of the Pareto distribution is given by 

 

 
1

,
k

f t k t
t








   ………………….(3.31) 

 

The mean, variance and reliability of the Pareto distribution are, 

respectively, 

Mean =   k/ -1  for 1   

Variance  
   

2

2

k
= 

-1 2



  
 for 2   

Reliability  
k

=
t


 
 
 

 

The Pareto and log normal distributions have been commonly used to 

model the population size and economical incomes. The Pareto is used to fit 
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the tail of the distribution, and the log normal is used to fit the rest of the 

distribution. 

3.7.10: Rayleigh Distribution 

The Rayleigh function is a flexible lifetime distribution that can apply 

to many degradation process failure modes. The Rayleigh probability 

density function is: 

 

2

22

2

t

t
f t e





 
  
     ………………….(3.32) 

The mean, variance, and reliability of Rayleigh function are, 

respectively, 

Mean =  

1

2

2



 
 
 

 

Variance = 22
2




 
 

 
 

Reliability = 2 

3.10: Maximum Likelihood Estimation Method 

The method of maximum likelihood estimation (MLE) is one of the 

most useful techniques for deriving point estimators. in general, one deals 

with a sample density  1 : 

       1 2 1 2, ,... , , ...... ,n nf x x x f x f x f x    

Where 1 2, ,..., nX X X  are random, independent observation from a 

population with density function f(x). For the general case, it is desired to 

find an estimate or estimates, 1 2
ˆ ˆ ˆ, ,..., m     (if such exist) where: 

 

1 2, ,... nX x x x  
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Notation 1 2
ˆ ˆ ˆ, ,..., m   refers to any other estimates different 

than.
1 2
ˆ ˆ ˆ, ,..., m   Let us now discuss the method of MLE. Consider a random 

sample 1 2, ,..., nX X X from a distribution having pdf  ,f x   . This distribution 

has a vector’ 1 2
ˆ ˆ ˆ, ,..., m    of unknown parameters associated with it, where 

m is the number of unknown parameters. Assuming that the random 

variables are independent, then the likelihood function, ( , )L X  , is the 

product of the probability density function evaluated at each sample point: 

 

   
1

, .
n

i

i

L X f X 


 ………………………….    (3.33) 

Where 1 2, ,... nx x x  The maximum likelihood estimator ̂  is found by 

maximizing ( , )L X   with respect to  . In practice, it is often easier to 

maximize ln ( , )L X   to find the vector of MLEs, which is valid because the 

logarithm function is monotonic. The log likelihood function is given by 

 

 
 log ,

1,2,...,i

i

L X
U fori m






    


………..… (3.34) 

 

And is asymptotically normally distributed since it consists of the sum 

of n independent variables and the implication of the central limit theorem. 

Since  ,L X   is a joint probability density function for 1 2, ,... nx x x , it 

must integrate equal to1, that is, 

 
0 0 0

... , 1L X dX
  

    
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Assuming that the likelihood is continuous, the partial derivative of 

the left-hand side with respect to one of the parameters, i , yields 

   
0 0 0 0 0 0

... , ... ,
i i

L X dX L X dX 
 

     
 


        

 
 

0 0 0

log ,
... ,

i

L X
L X dX






   


    

 log ,

i

L X
E





 
  

 
 

  1,2,...,iE U fori m     

 

Where 1 2( ) ( ( ), ( ),..., ( ))nU U U U    ' is often called the score vector 

and the vector ( )U   has components 

 

 
 log ,

1,2,...,i

i

L X
U fori m






    


 …………….(3.35) 

 

Which, when equated to zero and solved, yields the MLE vector  . 

Suppose that we can obtain a non-trivial function of 1 2, ,...., nX X X , say 

 1 2, ,...., nh X X X , such that, when  is replaced by  1 2, ,...., nh X X X , the 

likelihood function L will achieve a maximum. In other words, 

 

    , ,L X h X L X 
 

 

For every  . The statistic  1 2, ,...., nh X X X  is called a maximum 

likelihood estimator of   and will be denoted as 
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 1 2
ˆ , ,...., nh X X X    ………………(3.36) 

 

The observed value of ̂  is called the MLE of  . In general, in  an  

exponential  censored  case , the  non conditional joint  pdf of that items  

have  failed  is given by: 

 

 
1

,
n

n

i

i

L X e x  



     (r failed items) …………….   (3.37) 

 

And  the  probability distribution  that (n-r)  items  will survive is: 
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  
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Thus, the joint density function is 
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1 1

n n r

i i

i j

T x t


 

    ……………..(3.38) 
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!

!

n
lnL In rIn T

n r
 

 
     

 

and 



62 

 

0
InL r

T
 


  


 

Hence, 

ˆ r

T
  ……………………….(3.37) 

 

Note that with the exponential, regardless of the censoring type or 

lack of censoring, the MLE of  is the number of failures divided by the 

total operating time. 

Definition : Let 1 2, ,...., nX X X represent a random sample from the 

Weibull distribution with pdf 

 

  1, , xf x x e
       …………………(3.39) 

 

The likelihood function is 
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As noted, solutions of the above two equations for  and   are 

extremely difficult and require either graphical or numerical methods. 
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3.10: Goodness of fit  Techniques 

The problem at hand is to compare some observed distribution with 

theoretical distribution .Two common techniques that will be discussed are 

the 2 good ness- of- fit test and the Kolmogorov-Smirnov "d" test  1 . 

3.11.1: Chi-squared test: 

    The following statistic: 

 

2

2

1

k
i i

i i

X 




 
  

 
 ……………………..(3.40) 

Has chi-square 
2 distribution with K degree of freedom. The steps of  

chi-square test are as follows: 

1. Divide the sample data into the mutually exclusive cells such the 

range of random variable is covered. 

2. Determine the frequency if , of sample observation is each cell. 

3. Determine the theoretical frequency, iF for each cell.(are a under 

density funcation between cell boundaries nX  total sample size). 

4. Form the statistic  

 
1

k

i i

i

i

f F

S
F








……………………..(3.41) 

5. Form the 2  table, choose a value of 2 with the desired significance 

level and degrees of freedom  1k r  , where r is number of 

population parameters estimated. 

6. Reject the hypothesis that the sample distribution is the same as 

theoretical distribution if  1 . 

1 , 1

2
k rS      
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3.11.2: Kolmogorov-Simrnov Test: 

 Both the  2  and  d test are non-parametric .However, the 2  

assumes large sample normality of the observed frequency about its mean 

while "d" only assumes a continuous distribution let 

1 2 3 ... nX X X X    denote the ordered sample value .Define the observed 

distribution function, nF , as follows  1 : 

 

1

1

0

( )

1

n i i

n

for x x

i
F x for x x x

n

for x x







  




……………………………….(3.42) 

 

Assume the testing hypothesis: 

 

0: ( ) ( )Ho F x F x  

 

Where 0 ( )F x is a given continuous distribution and ( )F x  is an 

unknown distribution let. 

 

0( ) ( )n
x

d Sup F x F x
 

  ………………………..(3.43) 

       

Since 0 ( )F x  is a continuous increasing funcation, we can evaluated 

0( ) ( )F x F x  for each n. if ,n nd d  then we would not reject the hypothesis 

that; otherwise, we would reject it when ,n nd d  . The value ,nd  can be 
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found from table. where n is the sample size and a is the level of 

significance. 


