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CHAPTER THREE 

CANONICAL SEPARATION OF ANGULAR MOMENTUM OF 
LIGHT INTO ITS ORBITAL AND SPIN PARTS 

Section (3.1): Quantum Mechanics of Photons 

Many authors have emphasized the difficulties encountered in the 
separation of the total angular momentum of light into its orbital and spin parts . 
A popular formula expressing this separation, has the form 

∫݀ଷݎݎ ×  (∈଴ ܧ × (ܤ = ∫݀ଷݎ ∈଴ ௜ܧ ݎ) × ௜ܣ(∇ + ∫ ݀ଷݎ ∈଴ ܧ × ܣ     (3.1)  

This prescription is marred by a defect: the splitting is gauge dependent 
because it involves the vector potential  ࡭. This problem has been resolved by an 
ad hoc postulate that the potential must be evaluated in the transverse gauge but 
this prescription lacks a deeper foundation. Most of the separation has been 
given only for monochromatic fields or in the paraxial approximation. An 
additional problem that has not been resolved to the satisfaction of many authors 
was caused by their wish to disentangle completely the orbital and spin degrees 
of freedom. This is possible for massive particles but not for massless particles. 
The direction of the spin for all massless particles is firmly locked onto the 
direction of momentum: it can only be parallel or antiparallel to momentum. In 
other words, the helicity of massless particles— the projection of its total angular 
momentum on the direction of momentum—can only take the values ±s. This 
fact makes it impossible to independently rotate the orbital and spin degrees of 
freedom of photons. 

(3.1.1): Darwin’s Theory 

Darwin’s  theory of evolution is the widely held notion that all life is 
related and has descended from a common ancestor: the birds ,bananas and the 
flowers all related. Darwin’s general theory presumes the development of life 
from non-life and stresses a purely naturalistic (undirected) “descent with 
modification”. That is, complex creatures evolve from more simplistic ancestors 
naturally over time. In a nutshell, as a random  genetic mutations occur within an 
organism’s  genetic code, the beneficial mutations are preserved because they aid 
survival –a process known as “ natural selection”. These beneficial mutations are 
passed on to the next generation. Over time, beneficial mutations accumulate and 
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the result is an entirely different organism (not just a variation of the original, 
but an entirely different creature). 

(3.1.2): Fourier Transforms 

Localized wave packets can be constructed by superposing, in the same 
region of space, waves of slightly different wavelengths, but with phases and 
amplitudes chosen to make the superposition constructive in the desired region 
and destructive outside it. Mathematically, we can carry out this superposition by 
means of Fourier transforms. For simplicity, we are going to consider a one-
dimensional wave packet; this packet is intended to describe a "classical" particle 
confined to a one-dimensional region; for instance, a particle moving along the x-
axis. We can construct the packet ߰(ݔ,  by superposing plane waves (ݐ
(propagating along the x -axis) of different frequencies (or wavelengths): 

,ݔ)߰ (ݐ =
1

ߨ2√
න ∅(݇)
ஶ

ିஶ
݁௜(௞௫ିఠ௧)݀݇                                    (3.2) 

∅(݇) is the amplitude of the wave packet. 

 In what follows we want to look at the form of the packet at a given time; we will 
deal with the time evolution of wave packets later. Choosing this time to be 
= ݐ  0 and abbreviating ߰ ,ݔ) 0) by ߰଴(ݔ), we can reduce (3.2) to  

 ߰଴(ݔ) =  ଵ
√ଶగ

∫ ∅(݇)ஶ
ିஶ ݁௜௞௫݀݇                                           (3.3) 

Where ∅(݇) is the Fourier transform of  ߰଴(ݔ), 

∅(݇) =  
1

ߨ2√
න ߰଴(ݔ)
ାஶ

ିஶ
݁ି௜௞௫݀(3.4)                                       ݔ 

Definition (3.1.1): Normalizing the Wave function 

When a wave function that solves the Schrödinger equation is multiplied 
by an undetermined constant A, we normalize the wave function by solving [92]: 

1
ଶܣ

=  න ,ݔ)߰| ଶ|(ݐ
ାஶ

ିஶ
 ݔ݀

The normalized  wave function  is then ݔ)߰ܣ,  :Normalization means that .(ݐ
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 න |߰|ଶ
ାஶ

ିஶ
ݔ݀ = 1                                                          (3.5) 

 

Example (3.1.2) 

Find  ܣ and ܤ so that: 

(ݔ)∅ = ൜
0          ݎ݋݂            ܣ ≤ ݔ ≤ ܽ
ܽ          ݎ݋݂            ݔܤ ≤ ݔ ≤ ܾ 

Is  normalized. 

Solution 

න ଶ|(ݔ)∅|
ାஶ

ିஶ
ݔ݀ = න ଶܣ

௔

଴
ݔ݀ +න ଶܤ

௕

௔
 ݔଶ݀ݔ

 

= |ݔଶܣ
ܽ
0

+
ଷݔଶܤ

3
ቤ
ܾ
ܽ

= ଶܽܣ +
ଶ(ܾଷܤ − ܽଷ)

3
                     (3.6) 

using   ∫ ଶାஶ|(ݔ)∅|
ିஶ ݔ݀ = 1, we obtain 

 

ଶܽܣ +
ଶ(ܾଷܤ − ܽଷ)

3
= 1,⟹ ଶܣ = ൬

1
ܽ
൰ ቆ1 −

ଶ(ܾଷܤ − ܽଷ)
3 ቇ              (3.7) 

As long as  ∫ ଶାஶ|(ݔ)∅|
ିஶ ݔ݀ = 1 is satisfied, we are free to arbitrarily choose one of 

the constants as long as it’s not zero. So we set  ܤ = 1: 

ଶܣ = ൬
1
ܽ
൰ ቆ1 −

(ܾଷ − ܽଷ)
3 ቇ ⟹ ܣ = ඨ൬

1
ܽ
൰ቆ1 −

(ܾଷ − ܽଷ)
3 ቇ              (3.8) 

Example (3.1.3) 

Find the Fourier transform for ∅(݇) = ൜ܣ
(ܽ − |݇|)       |݇| ≤ ܽ

0                         |݇| > ܽ 

Where a is a positive parameter and A is a normalization factor to be found. 
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Solution 

The normalization factor A can be found at once 

1= ∫ |∅(݇)|ଶ݀݇ =ାஶ
ିஶ ଶ|ܣ| ∫ (ܽ + ݇)ଶ଴

ି௔ ݀݇ + ଶ|ܣ| ∫ (ܽ − ݇)ଶ௔
଴ ݀݇ 

=
2ܽଷ

3
 ଶ|ܣ|

which  yields  ܣ = ඨ
3

(2ܽଷ)ൗ   ,∅(݇) = ඨ
3

(2ܽଷ)ൗ (ܽ − |݇|) 

Now the Fourier transform of ∅(݇) is 

߰଴(ݔ) =  
1

ߨ2√
න ∅(݇)
ାஶ

ିஶ
݁௜௞௫݀݇ 

=  
1

ߨ2√
ඨ 3

2ܽଷ
ቈන (ܽ + ݇)݁௜௞௫

଴

ି௔
݀݇ + න (ܽ − ݇)݁௜௞௫

௔

଴
݀݇቉ 

=  
1

ߨ2√
ඨ 3

2ܽଷ
ቈන ݇݁௜௞௫

଴

ି௔
݀݇ − න ݇݁௜௞௫

௔

଴
݀݇ + ܽන ݁௜௞௫

௔

ି௔
݀݇቉             (3.10) 

using the integrations 

න ݇݁௜௞௫
଴

ି௔
݀݇ =

ܽ
ݔ݅
݁ି௜௔௫ +

1
ଶݔ
൫1 − ݁ି௜௫൯ 

න ݇݁௜௞௫
௔

଴
݀݇ =

ܽ
ݔ݅
݁௜௔௫ +

1
ଶݔ
൫݁௜௫ − 1൯ 

න ݁௜௞௫
௔

ି௔
݀݇ =

1
ݔ݅
൫݁௜௔௫ − ݁ି௜௔௫൯ =

(ݔܽ)݊݅ݏ2
ݔ

 

and after some straight forward calculations, we end up with 

߰଴(ݔ) =  
4
ଶݔ
ଶ݊݅ݏ ቀ

ݔܽ
2
ቁ                                               (3.11) 
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The correct, gauge invariant separation of the total angular momentum into its 
orbital and spin parts was proposed a long time ago by Darwin. Darwin’s classic 
work was cited without a comment. (The authors rederived his result, usually in 
a special case of monochromatic waves). The Darwin formula is based on the 
Fourier transforms of the electromagnetic field. Therefore, it does not suffer from 
gauge dependence. With slight changes of notation it reads: 

න݀ଷݎݎ ×  (∈଴ ܧ ×  (ܤ

= −2݅ ∈଴ න
݀ଷ݇
ܿ|݇| × ݇)(݇)∗௜ܧ] × ∇௞)ܧ௜(݇) + (݇)∗ܧ ×  (3.12)          [(݇)ܧ

Where ܧ(݇) is the plane-wave component of the electric field, 

,ݎ)ܧ (ݐ = න
݀ଷ݇

ଷ(ߨ2) ଶ⁄ ௜௪௞௧ା௜௞௥ି݁(݇)ܧ] + ܿ]                               (3.13) 

We follow in the footsteps of Darwin who wrote ‘The main principle of the idea 
that, since matter and light both possess the dual characters of particle and wave, 
a similar mathematical treatment should be applied to both, and that this has not 
been yet done as fully as should be possible’. We show that, indeed, the wave 
particle duality enables one to determine the correct separation of total angular 
momentum. Namely, we shall show that the Darwin separation of the total 
angular momentum for an arbitrary electromagnetic field into two parts follows 
from the photon picture of the electromagnetic field. It is in essence the 
separation into the part perpendicular to the photon momentum and the part 
parallel to the photon momentum. The first part must be identified with the 
orbital angular momentum whereas the second part must be identified with 
spin—represented by helicity. In this way, by seamlessly joining the particle and 
the field aspect of electromagnetism, we complete the program started by 
Darwin. Our analysis  of the angular momentum of light starts from the quantum 
mechanical description of photons. 

There is no consensus as to what represents the photon wave function in 
the coordinate representation (cf, [27]) but there is no disagreement as to the 
meaning of the photon wave function in momentum space. This wave function 
was introduced in the early years of quantum electrodynamics and was used as a 
standard concept. Once we accept the existence of the photon wave function in 
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momentum space we should define then action of various operators 
representing physical quantities. 

Definition (3.1.4): 

Ordinary quantum mechanical systems have a fixed number of particles, 
with each particle having a finite number of degrees of freedom. In contrast, the 
excited states of QFT can represent any number of particles. This makes 
quantum field theories especially useful for describing systems where the 
particle count number may change over time, a crucial feature of relativistic 
dynamic. 

Example (3.1.5): 

Calculate the group and phase velocities for the wave packet 
corresponding to a relativistic particle. 

Solution 

Recall that the energy and momentum of a relativistic particle are given by 

ܧ = ݉ܿଶ =
݉଴ܿଶ

ඨ1 − ଶݒ
ܿଶൗ

݌, = ݒ݉ =
݉଴ݒ

ඨ1 − ଶݒ
ܿଶൗ

                              (3.14) 

Where ݉଴  is the  rest mass of the particle and c is the speed of light in a vacuum. 
Squaring and adding the expressions of E and p, we obtain ܧଶ = ଶܿଶ݌ + ݉଴

ଶܿସ, 
hence 

ܧ = ܿඥ݌ଶ +݉଴
ଶܿଶ                                                             (3.15) 

Using this relation along with ݌ଶ +݉଴
ଶܿଶ = ݉଴

ଶܿଶ (1 − ଶݒ
ܿଶൗ൘ ) we can show 

that the group velocity is given as follows 

௚ݒ =
ܧ݀
݌݀

=
݀
݌݀

ቀܿඥ݌ଶ + ݉଴
ଶܿଶቁ =

ܿ݌

ඥ݌ଶ + ݉଴
ଶܿଶ

=  (3.16)                 ݒ

The group velocity is thus equal to the speed of the particle, ݒ௚ =  .ݒ
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The phase velocity can be found from (3.15): ݒ௣௛ = ܧ ൗ݌ =  ܿඨ1 + ݉଴
ଶܿଶ

ଶ൘݌  

Which, when combined with     ݌ = ݉଴ݒ ඨ1 − ଶݒ
ܿଶൗ ,൘     leads to 

ඨ1 +݉଴
ଶܿଶ

ଶ൘݌ = ܿ ⁄ݒ ,   

hence 

௣௛ݒ =
ܧ
ܲ

= ܿඨ1 +
݉଴

ଶܿଶ

ଶ݌
=
ܿଶ

ݒ
                                          (3.17) 

This show that the phase velocity of the wave corresponding to a relativistic 

particale with ݉଴ ≠ 0 is larger than the speed of light, ݒ௣௛ = ܿଶ ൗݒ > ܿ. This is 

indeed unphysical. The result ݒ௣௛ > ܿ seems to violate the special theory of 
relativity, which states that the speed of material particles cannot exceed c. In 
fact, this principle is not violated because ݒ௣௛ does not represent the velocity of 
particle which represented by the group velocity (3.16). As a result, the phase 
speed of a relativistic particle has no meaningful physical significance. 

Finally, the product of the group and phase velocity is equal to ܿଶ, i.e., 
௣௛ݒ௚ݒ = ܿଶ. 

Definition (3.1.6): ( Poincar´e Group) 

The  Poincar´e group is the group of  Minkowski  spacetime  isometries. It 
is a ten dimensional  noncompact  Lie group. The abelian group of translations is 
a normal subgroup, while the Lorentz group is also a subgroup, the stabilizer of 
the origin. The Poincar´e group itself is the minimal subgroup of the affine group 
which includes all translations and Lorentz translations. More precisely, it is a 
semi direct product of the translations and Lorentz group. 

In a relativistic theory—and there is no nonrelativistic theory of photons—
we   should first of all define the operators representing ten generators of the 
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Poincar´e group: the generators of translation in space (momentum ෠ܲ ), 
translation in time (energy ܪ෡), rotation (angular momentum), and Lorentz 
boosts (moment of energy ܭ෡). These operators must obey the following 
commutation relations appropriate for the Poincar´e group [92]: 

, ෡ܪൣ పܲ෡൧ = 0 , , ෡ܪൣ ప෡൧ܬ = 0 , ప෡ܭ, ෡ܪൣ ൧ = −݅ℎܿ పܲ෡                            (3.18ܽ) 

ൣ పܲ෡  , ఫܲ෡൧ = 0, , ప෡ܬൣ ఫ෡൧ܬ = ݅ℎ߳௜௝௞ܬመ௞  , ప෡ܭ ൣ ఫ෡ܭ, ൧ == −݅ℎܿଶ߳௜௝௞ܬመ௞      (3.18ܾ) 

, ప෡ܬൣ ఫܲ෡൧ = ݅ℎ߳௜௝௞ ෠ܲ௞  , ఫ෡ܭ, ప෡ܬൣ ൧ = ݅ℎ߳௜௝௞ܭ෡௞  , ప෡ܭൣ  , ఫܲ෡൧ = ݅ℎߜ௜௝ܪ෡          (3.18ܿ) 

There are no problems with the construction of the generators for massive 
particles. The following set of operators was given long time ago by Foldy [28] 

෡ܪ =  ௣                                                                    (3.19ܽ)ܧ

෠ܲ =  (3.19ܾ)                                                                      ݌

መܬ = ℎ∇୮ × ݌  + ܵ                                                             (3.19ܿ) 

෡ܭ =  ݅ℎܧ௣∇୮ −
ୗ×୮

୫ୡమା୉౦
                                                        (3.19d)  

Where ࢖ࢺ denotes the gradient with respect to the components of momentum 
and the spin vector ࡿ is built from three (2ݏ + 1) × + ݏ2)   1) matrices that 
obey the commutation relations of angular momentum. The matrices ࡿ act on the 
+ ݏ2)  1) component wavefunctions describing the states of a particle with spin 
 In this case, the splitting of the angular momentum into its orbital and spin .ݏ
parts is quite obvious. 

The representation of the generators of the Lorentz group for massless 
particles was given by Lomont and Mose [29].We will use here a modified 
version of these generators for photons [30], [31] that exhibits its geometrical 
meaning. The momentum operator, by definition, acts on the wavefunctions in 
momentum representation as a multiplication by ℎ࢑. There is no question that 
the operator representing the energy of the photon (the Hamiltonian) must be 
the modulus of the momentum vector multiplied by c. The complete list of 
generators also contains the operator of angular momentum and the boost 
operator [92], 

෡ܪ = ℎݓ௞                                                                (3.20ܽ) 
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෠ܲ = ℎ݇                                                                 (3.20ܾ) 

መܬ = ݅ℎܦ × ݇ + ℎݔො݊௞                                                 (3.20ܿ) 

෡ܭ = ݅ℎݓ௞(3.20݀)                                                           ܦ 

Where ݊௞ = ݇
|݇|ൗ , the photon helicity operator  ݔො has the eigenvalues ±1, and D 

stands for the covariant derivative on the light cone (∇௞= ߲
߲݇ൗ ), 

D = ∇୩ − ixො ∝ (k)                                               (3.21) 

These operators act on the two-component photon wavefunctions 

݂(݇) = ൬ ௅݂(௞)

ோ݂(݇)൰                                                          (3.22) 

And satisfy the commutation relations (3.18a)–(3.18c) appropriate for the 
Poincar´e group. The two components of the photon wavefunction correspond to 
two eigenvalues of ݔො , 

ොݔ ൬ ௅݂(௞)

ோ݂(݇)൰ = ൬ ௅݂(௞)

− ோ݂(݇)൰                                                    (3.23) 

We used the indices L and R to denote the eigenfunctions of the helicity operator 
since they correspond to left-handed and right-handed circular polarization. The 
properties of the covariant derivative are obtained from the commutation 
relations for the angular momentum and they read: 

௝൧ܦ,௜ܦൣ = ො߳௜௝௟ݔ݅
݊௟

|݇|ଶൗ                                                (3.24) 

These conditions determine the vector ߙ(݇) up to a gauge transformation 

(݇)ߙ → (݇)ߙ  + ∇௞߮(݇)                                              (3.25) 

Which is connected to the change of the phase of the wavefunction, in analogy to 
the theory of charged particles coupled to an electromagnetic field. The 
generators (3.20ܽ)– (3.20ܾ) are Hermitian with respect to the following Lorentz-
invariant scalar product 



82 
 

⟨݂|݃⟩ = න
݀ଷ݇
ℎݓ௞

݂ற(݇) ∙ ݃(݇) = න
݀ଷ݇
ℎݓ௞

[ ௅݂
∗(݇)݃௅(݇) + ோ݂

∗(݇)݃ோ(݇)]      (3.26) 

Section (3.2): Electromagnetic Field 

In order to solve the problem of the total angular momentum separation 
into two parts for the classical electromagnetic field, we shall employ the 
correspondence between the fundamental physical quantities (energy, 
momentum, and angular momentum) in photon quantum mechanics and in 
Maxwell theory. In the quantum mechanics of photons these quantities are 
represented by the operators  (3.20ܽ)– (3.20݀) . 

(3.2.1): Maxwell’s Theory 

Maxwell’s  equations can be cast into covariant form. As Einstein 
expressed it: The  general  laws of  nature are to be expressed by equations 
which holds  good for all systems of coordinates that is are covariant with 
respect to any  substitution whatever  generally covariant”. 

Maxwell’s theory of electromagnetism  is alongside with  Einstein’s theory 
of  gravitation, on of the most beautiful of classical field theories. Having chosen 
units in which  ߤ଴ =∈଴= ܿ = 1, Maxwell’s equations then take the  form [92]:  

∇ ∙ ܧ =  (3.27)                                                            ߩ

∇ × ܤ − డா
డ௧

=   (3.28)                                                     ܬ

∇ ∙ ܤ = 0                                                           (3.29) 

∇ × ܧ +
ܤ߲
ݐ߲

= 0                                                     (3.30) 

Where ܧ and ܤ the electric and magnetic field. ߩ  and ܬ are the charge and 
current densities. 

In Maxwell theory these quantities are given as space integrals of 
corresponding densities built from quadratic expressions in field vectors. A very 
convenient tool in this construction is a complex vector F, 

ܨ = ඨ
∈଴
2

ܧ) +  (3.31)                                               (ܤܿ݅
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That was named the Riemann–Silberstein (RS) vector in [27]. 

The Maxwell equations expressed in terms of F are 

߲௧ݎ)ܨ, (ݐ = −݅ܿ∇ × ,ݎ)ܨ ∇,(ݐ ∙ ,ݎ)ܨ  (ݐ = 0                   (3.32) 

The field energy H,  the field momentum P, the field angular momentum J,  and 
the  field moment of  energy K can all be constructed from the energy–
momentum tensor of the electromagnetic field. These quantities expressed in 
terms of the RS vector are: 

ܪ =
1
2
න݀ଷݎ ቈ∈଴ ଶܧ + ଶܤ ଴ൗߤ ቉ = න݀ଷܨݎ∗ ∙ ܨ                  (3.33ܽ) 

ܲ = න݀ଷ ଴∋]ݎ ܧ × [ܤ =
1
2݅
න݀ଷܨݎ∗ × ܨ                 (3.33ܾ) 

ܬ = න݀ଷ ݎݎ × [∈଴ (ݎ)ܧ × [(ݎ)ܤ =
1
2݅
න݀ଷݎݎ × ∗ܨ) ×  (3.33ܿ)      (ܨ

ܭ =
1
2
න݀ଷݎݎ ቈ∈଴ ଶܧ + ଶܤ ଴ൗߤ ቉ = න݀ଷ ∗ܨ)ݎݎ ∙  (3.33݀)           (ܨ

These quantities, like their counterparts in photon quantum mechanics (3.20ܽ) – 
(3.20݀) serve as the generators of Poincar´e transformations of the 
electromagnetic field. They have analogous algebraic properties of the  Poincar´e 
group (3.18a)–( (3.18c), with  quantum  commutators replaced by Poisson 

brackets, [ܽ, ܾ]
݅ℎൗ → [ܽ, ܾ]. 

All solutions of Maxwell equations in vacuum can be decomposed into 
plane waves with positive and negative frequencies. This decomposition gives 
the   following  Fourier  representation of ݎ)ܨ,  :(ݐ

නݎ)ܨ, (ݐ = √ܰන
݀ଷ݇

ଷ(ߨ2) ଶ⁄ ݁(݇)[ ௅݂(݇)݁ି௜௪ೖ௧ା௜௞∙௥ + ோ݂
∗(݇)݁௜௪ೖ௧ି௜௞∙௥]     (3.34) 

Where the complex polarization vector  ݁(݇) = [݈ଵ(݇) + ݈݅ଶ(݇)] √2⁄  has the 
following  properties: 

ܿ݇ × ݁(݇) =  ௞ ݁(݇)                                                 (3.35ܽ)ݓ݅−
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݁(݇) ∙  ݁(݇) = 0                                                          (3.35ܾ) 

݁∗(݇) ∙  ݁(݇) = 1                                                       (3.35ܿ) 

݁∗(݇) ×  ݁(݇) = ݅݊௞                                                  (3.35݀) 

݁∗(݇) ∙ ݁(−݇) = 0                                                     (3.35݁) 

݁(݇) ×  ݁(݇) = 0                                                      (3.35݂) 

݁௜∗(݇) ௝݁(݇) =
1
2
൬ߜ௜௝ + ݅߳௜௝௟

݇ଵ
|݇|൰                                       (3.35ℎ) 

The  identification of  the  Fourier  coefficients with the components of the 
photon wave function in the formula (3.34) will be justified in the next section 
where we will unify the field picture and the photon picture. The second term in 
(3.34) involves complex conjugation. This is  dictated by the fact that the photon 
energy is always positive. Therefore, the time evolution of the wave function is 
given by the factor ݁݌ݔ(−݅߱௞ݐ) Therefore, the reversal of the sign in the 
exponent requires complex conjugation. We pulled out the factor √ܰ to assure 
the normalization of  ݂. 

Section (3.3): Separation of Angular Momentum 

We shall combine now the field picture and the photon picture to obtain 
the decomposition of the total angular momentum of the field. To this end, we 
substitute the Fourier representation of the field into the formulas (3.33ܽ), 
(3.33݀)[92]. 

ܪ = ܰන
݀ଷ݇
ℎݓ௞

݂ற(݇) ∙ ℎݓ௞݂(݇)                                      (3.36ܽ) 

ܲ = ܰන
݀ଷ݇
ℎݓ௞

݂ற(݇) ∙ ℎ݂݇(݇)                                         (3.36ܾ) 

ܬ = ܰන
݀ଷ݇
ℎݓ௞

݂ற(݇) ∙ [݅ℎܦ × ݇ + ℎݔො݊௞]݂(݇)                       (3.36ܿ) 

ܭ = ܰන
݀ଷ݇
ℎݓ௞

݂ற(݇) ∙ ݅ℎݓ௞(3.36݀)                               (݇)݂ܦ 
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Note, that the resulting expressions have the form of quantum mechanical 
expectation values 

ܪ = ܰൻ݂หܪ෡ห݂ൿ                                                       (3.37ܽ) 

ܲ = ܰൻ݂ห ෠ܲห݂ൿ                                                       (3.37ܾ) 

ܬ = ܰൻ݂หܬመห݂ൿ                                                        (3.37ܿ) 

ܭ = ܰൻ݂หܭ෡ห݂ൿ                                                       (3.37݀) 

These   formulas  exhibit a perfect  agreement between the results  obtained from 
the particle picture and from the field picture, as Darwin had anticipated. Every 
value calculated for the total  electromagnetic  field is a product of the quantum 
mechanical average value per one photon, multiplied by N. That means that the 
normalization factor N is the total number of photons. We may now 
unambiguously split the total angular momentum of the electromagnetic field 
(3.36ܿ) into two parts. The vector ܬ଴ whose integrand is perpendicular to the 
wave vector is the orbital  part and the vector ܬ௦ whose integrand is parallel to 
the wavevector is the spin part  represented by helicity. 

଴ܬ = ܰන
݀ଷ݇
ℎݓ௞

݂ற(݇) ∙ [݅ℎܦ × ݇]݂(݇)                               (3.38ܽ) 

௦ܬ = ܰ ∫ ௗయ௞
௛௪ೖ

݂ற(݇) ∙ ℎݔො݊௞݂(݇) = ܰ ∫ ௗయ௞
௪ೖ

݊௞[| ௅݂(݇)|ଶ − | ோ݂(݇)|ଶ]      (3.38ܾ)  

The final step of our analysis is the proof that the expressions for ܬ଴ and ܬ௦ 
coincide with those obtained by Darwin. To this end, we employ the relation 
between E(݇) and f (݇) that follows from the formulas (3.13) and (3.34) 

(݇)ܧ = ඨ
ܰ

2 ∈଴
[݁(݇) ௅݂(݇) + ݁∗(݇) ோ݂(݇)]                       (3.39) 

Upon substituting this relation into the second term in (3.12), with the use of the 
properties of the polarization vectors (3.35݀) and (3.35݂), we obtain 

−2݅߳଴න
݀ଷ

ܧ|݇|ܿ
∗(݇) ×  (݇)ܧ
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= −݅ܰන
݀ଷ

ܿ|݇|
[݁∗(݇) × ݁(݇)| ௅݂(݇)|ଶ + ݁(݇) × ݁∗(݇)| ோ݂(݇)|ଶ] =  ௦     (3.40)ܬ

In the same way we may establish the equality of the orbital part in the Darwin 
form and in the quantum mechanics of photons. Note that the separation of the 
total angular momentum into its orbital and spin parts is conserved in time since 
both parts are separately time independent. 

Deϐinition (3.3.1): Bessel Beam 

A Bessel beam is a field of electromagnetic, acoustic or even gravitational 
radiation whose amplitude is described by a Bessel function of the first kind.  

A true Bessel beam is non- diffractive. This means that as it propagates, it 
does not diffract and spread out, this is in contrast to the usual behavior of light 
(or sound), which spreads out after being focused down to small spot. Bessel 
beams are also self-healing, meaning that the beam can be partially obstructed at 
one point, but will re-form at a point further down the beam axis. 

As an illustration, we consider the Bessel beam characterized by the 
frequency ܿ|݇|, the z-component of the total angular momentum m, the 
component ݇௭ of the wave vector in the z-direction, and the helicity ±1. In this 
case, the Darwin vector (3.39) (up to a normalization factor) as given in [32] has 
the for 

ሖ,∅,ܭ௞,௠,௞೥൫ܧ ሖ௭൯ܭ  =

⎝

⎜
⎛
−(݇௭ ݇⁄ ) cos∅ ± ݅ sin∅
−(݇௭ ݇⁄ ) sin∅ ∓ ݅ cos∅

ቆ݇ୄൗ݇ ቇ
ଶ

⎠

⎟
⎞
݁௜௠∅ߜ൫݇ୄ − ݇ሖୄ ൯ߜ൫݇௭ −  ሖ௭൯  (3.41)ܭ

Since the Bessel beam has an infinite extension in space, both parts of the total 
angular momentum are infinite. However, their ratio is well defined. For the 
components in the beam direction, the ratio of the orbital to spin parts equals to 

݉݇ ݇௭ ∓ 1⁄ . 

In order to express ܬ௢ and ܬ௦ as integrals in coordinate space we have to 
invert the Fourier transformation in (3.13) for t = 0 as follows: 
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(݇)ܧ = න
݀ଷݎ

ଷ(ߨ2)2 ଶ⁄ ݁ି௜௞∙௥ ൤(ݎ)ܧ +
݅ܿ
|݇|∇ × ൨(ݎ)ܤ                  (3.42) 

Where  we made use of Maxwell equations. Inserting this formula into the 
Darwin expression for the spin part  ܬ௦, after the integration over k, we obtain 

௦ܬ =∈଴ න݀ଷ නݎ
݀ଷ́ݎ
ߨ4

(ݎ)ܧ ×
∇ × ሖ(ݎ́)ܤ

ݎ| − |ݎ́                           (3.43) 

Where we used the formula 

න
݀ଷݎ

ଷ(ߨ2)
݁௜௞∙௥

|݇|ଶ =
1

|ݎ|ߨ4                                            (3.44) 

This gauge invariant integral representation of ܬ௦ becomes equal to the last term 
in (3.1) if the vector potential is identified with the following integral: 

(ݎ)ܣ = න
݀ଷ́ݎ
ߨ4

∇ሖ × (ݎ́)ܤ
ݎ| − |ݎ́                                                    (3.45)  

This representation of the vector potential is valid in the transverse gauge, as has 
been anticipated. Note that the seemingly local form of the formula (3.1) is 
misleading because the gauge invariant vector potential is a nonlocal function of 
the magnetic field. 

Section (3.4): Conclusions 

We have shown that the separation of the total angular momentum of the 
electromagnetic field into its orbital and spin parts dictated by quantum 
mechanics of photons reproduces the results derived from the properties of 
Maxwell fields by Darwin. This separation, when expressed in the form of 
coordinate-space integrals, coincides with the results derived heuristically by 
many authors, provided the vector potential is related to the magnetic field by 
the integral formula (3.45). In contrast to energy, momentum, and the total 
angular momentum of the electromagnetic field, the orbital angular momentum 
and the spin parts cannot be expressed as integrals of local densities: they are 
intrinsically nonlocal objects. 

 

 


