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CHAPTER ONE 

THE QUANTUM MECHANICAL STATE SPACE 

Section (1.1): Introduction to the Quantum Mechanical State Space 

            When we talk about physics, we attempt to find a mathematical 
description of the world. Of course, such a description cannot be justified from 
mathematical consistency alone, but has to agree with experimental evidence. 
The mathematical concepts that are introduced are usually motivated from our 
experience of nature. Concepts such as position and momentum or the state of a 
system are usually taken for granted in classical physics. However, many of these 
have to be subjected to a careful re-examination when we try to carry them over 
to quantum physics. One of the basic notions for the description of a physical 
system is that of its ’state’. The ’state’ of a physical system essentially can then be 
defined, roughly, as the description of all the known (in fact one should say 
knowable) properties of that system and it therefore represents your knowledge 
about this system. The set of all states forms what we usually call the state space. 
In classical mechanics for example this is the phase space (the variables are then 
position and momentum), which is a real vector space. For a classical point-
particle moving in one dimension, this space is two dimensional, one dimension 
for position, one dimension for momentum. We know that the quantum 
mechanical state space differs from that of classical mechanics. One reason for 
this can be found in the ability of quantum systems to exist in coherent 
superposition of states with complex amplitudes, other differences relate to the 
description of multi-particle systems. This suggests, that a good choice for the 
quantum mechanical state space may be a complex vector space. 

Before we begin to investigate the mathematical foundations of quantum 
mechanics, we would like to present a simple example (including some live 
experiments) which motivates the choice of complex vector spaces as state 
spaces a bit more. Together with the hypothesis of the existence of photons it will 
allow us also to ’derive’, or better, to make an educated guess for the projection 
postulate and the rules for the computation of measurement outcomes. 
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In the next subsections we will briefly motivate that the quantum 
mechanical state space should be a complex vector space and also motivate some 
of the other postulates of quantum mechanics. 

 

(1.1.1): From Polarized Light to Quantum Theory 

          Let us consider plane waves of light propagating along the z-axis. This light 
is described by the electric field vector Eሬሬ⃗  orthogonal on the direction of 
propagation. The electric field vector determines the state of light. the magnetic 
field is given by ܤሬ⃗  =  ݁⃗௭ × ሬ⃗ܧ   . Given the electric and magnetic field, Maxwells 
equations determine the further time evolution of these fields. In the absence of 
charges, we know that ܧሬ⃗ ,ݎ⃗)   cannot have a z-component, so that we can write (ݐ

ሬ⃗ܧ ,ݎ⃗)  (ݐ = ,ݎ⃗)௫ܧ ௫⃗݁(ݐ + ,ݎ⃗)௬ܧ ௬⃗݁(ݐ = ቆ
,ݎ⃗)௫ܧ (ݐ
,ݎ⃗)௬ܧ ቇ(ݐ                                (1.1) 

The electric field is real valued quantity and the general solution of the free wave 
equation is given by 

,ݎ⃗)௫ܧ (ݐ = ௫ܧ
 cos(݇ݖ − ݐݓ +  (௫ߙ

,ݎ⃗)௬ܧ (ݐ = ௬ܧ
 cos(݇ݖ − ݐݓ +  (௬ߙ

Here ݇ = ݓ,is the wave-number ߣ/ߨ2  =  ௬ are theߙ ௫ andߙ ,the frequency ݒߨ2 
real phases and ܧ௫

 and ܧ௬
 the real valued amplitudes of the field components. 

The energy density of the field is given by 

,ݎ⃗)߳ (ݐ =
1

ߨ8
ቀܧሬ⃗ ଶ(⃗ݎ, (ݐ + ሬ⃗ܤ ଶ(⃗ݎ,  ቁ(ݐ

=
1

ߨ4 ቂ(ܧ௫
)ଶ cosଶ(݇ݖ − ݐݓ + (௫ߙ + ൫ܧ௬

൯ଶ cosଶ(݇ݖ − ݐݓ +  ௬)ቃߙ

For a fixed position ⃗ݎ we are generally only really interested in the timeaveraged 
energy density which, when multiplied with the speed of light, determines the 
rate at which energy flows in z-direction. Averaging over one period of the light 
we obtain the averaged energy density ߳(̅⃗ݎ) with 
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(ݎ⃗̅)߳ =
1

ߨ8 ቂ(ܧ௫
)ଶ + ൫ܧ௬

൯ଶ
ቃ                                                        (1.2) 

For practical purposes it is useful to introduce the complex field components 

,ݎ⃗)௫ܧ (ݐ = ܴ݁൫ܧ௫݁(௭ି௪௧)൯    ܧ௬(⃗ݎ, (ݐ = ܴ݁൫ܧ௬݁(௭ି௪௧)൯                 (1.3) 

With ܧ௫ = ௫ܧ
݁ఈೣ  and ܧ௬ = ௬ܧ

݁ఈ. Comparing with Eq. (1.2) we ϐind that the 
averaged energy density is given by 

߳ (ݎ⃗̅) =
1

ߨ8 ቂ|ܧ௫|ଶ + หܧ௬หଶ
ቃ                                                          (1.4) 

Usually one works with the complex field 

,ݎ⃗)௫ܧ (ݐ = ൫ܧ௫݁⃗௫ + ௬݁⃗௬  ൯݁(௭ି௪௧)ܧ = ൬
௫ܧ
௬ܧ

൰ ݁(௭ି௪௧)                             (1.5) 

This means that we are now characterizing the state of light by a vector with 
complex components. 

The polarization of light waves are described by ܧ௫ and ܧ௬. In the general case of 
complex ܧ௫  and ܧ௬ we will have elliptically polarized light. There are a number of 
important special cases. 

௬ܧ (1) =  0: linear polarization along the x-axis. 
௫ܧ (2) =  0: linear polarization along the y-axis. 
௫ܧ (3) =  ௬: linear polarization along 45-axisܧ
௬ܧ (4) =  .௫: Right circularly polarized lightܧ݅
௬ܧ (5) =  .௫: Left circularly polarized lightܧ݅−

In the following we would like to consider some simple experiments for which I 
will compute the outcomes using classical electrodynamics. Then I will go further 
and use the hypothesis of the existence of photons to derive a number of 
quantum mechanical rules from these experiments. 

Experiment (1.1.1) : 

Let us first consider a plane light wave propagating in z-direction that is 
falling onto an x-polarizer which allows x-polarized light to pass through (but not 
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y polarized light). After passing the polarizer the light is x-polarized and Light of 
arbitrary polarization is hitting a x-polarizer. 

The expression for the energy density Eq. (1.4) we ϐind that the ratio 
between incoming intensity ܫ (energy density times speed of light) and 
outgoing intensity ܫ௨௧ is given by 

௨௧ܫ

ܫ
=

௫|ଶܧ|

௫|ଶܧ| + หܧ௬หଶ                                                                  (1.6) 

So far this looks like an experiment in classical electrodynamics or optics. 

Now to discuss the quantum interpretation, let us change the way of 
looking at this problem and thereby turn it into a quantum mechanical 
experiment. We heard at various points in our physics course that light comes in 
little quanta known as photons. The first time this assumption had been made 
was by Planck in 1900 ’as an act of desperation’ to be able to derive the 
blackbody radiation spectrum. Indeed, you can also observe in direct 
experiments that the photon hypothesis makes sense. When you reduce the 
intensity of light that falls onto a photodetector, you will observe that the 
detector responds with individual clicks each triggered by the impact of a single 
photon (if the detector is sensitive enough). The photo-electric effect and various 
other experiments also confirm the existence of photons. So, in the low-intensity 
limit we have to consider light as consisting of indivisible units called photons. It 
is a fundamental property of photons that they cannot be split – there is no such 
thing as half a photon going through a polarizer for example. In this photon 
picture we have to conclude that sometimes a photon will be absorbed in the 
polarizer and sometimes it passes through. If the photon passes the polarizer, we 
have gained one piece of information, namely that the photon was able to pass 
the polarizer and that therefore it has to be polarized in x-direction. The 
probability  for the photon to pass through the polarizer is obviously the ratio 
between transmitted and incoming intensities, which is given by 

 =
௫|ଶܧ|

௫|ଶܧ| + หܧ௬หଶ                                                                  (1.7) 

If we write the state of the light with normalized intensity 
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ሬ⃗ܧ ே =
௫ܧ

ට|ܧ௫|ଶ + หܧ௬หଶ
݁⃗௫ +

௬ܧ

௫|ଶܧ| + หܧ௬หଶ ݁⃗௬                                          (1.8) 

Then in fact we find that the probability for the photon to pass the x-polarizer is 
just the square of the amplitude in front of the basis vector ݁⃗௫.  

Furthermore we see that the state of the photon after it has passed the ݔ-
polarizer is given by 

ሬ⃗ܧ ே = ݁⃗௫                                                                                 (1.9) 

ie the state has has changed from ൬
௫ܧ
௬ܧ

൰ to ቀܧ௫
0 ቁ. This transformation of the state 

can be described by a matrix acting on vectors, ie 

ቀܧ௫
0 ቁ = ቀ1 0

0 0ቁ ൬
௫ܧ
௬ܧ

൰                                                                (1.10) 

The matrix that we have written here has eigenvalues 0 and 1 and is therefore a 
projection operator, in fact this reminds strongly of the projection postulate in 
quantum mechanics. 

Experiment (1.1.2) : 

Now let us make a somewhat more complicated experiment by placing a 
second polarizer behind the first x-polarizer. The second polarizer allows 
photons polarized in ݔᇱ direction to pass through. If we slowly rotate the 
polarizer from the ݔ direction to the ݕ direction, we observe that the intensity of 
the light that passes through the polarizer decreases and vanishes when the 
directions of the two polarizers are orthogonal. We would like to describe this 
experiment mathematically. How do we compute the intensity after the polarizer 
now? To this end we need to see how we can express vectors in the basis chosen 
by the direction ݔᇱ  in terms of the old basis vectors ݁⃗௫ , ݁⃗௬ . 

The new rotated basis ݁⃑௫, ݁⃑௬ can be expressed by the old basis by 

݁⃑௫ = cos ߶ ݁⃗௫ + sin ߶ ݁⃗௬    ݁⃑௬ = − sin ߶ ݁⃗௫ + cos ߶ ݁⃗௬                            (1.11) 

And vice versa 
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݁⃗௫ = cos ߶ ݁⃑௫ − sin ߶ ݁⃑௬    ݁⃗௬ = sin ߶ ݁⃑௫ + cos ߶ ݁⃑௬                                 (1.12) 

Note that cos ߶ = ݁⃑௫ . ݁⃗௫  and sin ߶ = ݁⃑௬ . ݁⃗௬ where we have used the real scalar 
product between vectors. 

The state of the x-polarized light after the first polarizer can be rewritten in the 
new basis of the x’-polarizer. We find 

ሬ⃗ܧ = ௫݁⃗௫ܧ = ௫ܧ cos ߶ ݁⃑௫ − ௫ܧ sin ߶ ݁⃑௬ = .௫(݁⃑௫ܧ ݁⃗௫)݁⃑௫ − .௫(݁⃑௬ܧ ݁⃗௬)݁⃑௬ 

Now we can easily compute the ratio between the intensity before and after the 
 ᇱ-polarizer. We find that it isݔ

௧ܫ

ܫ
= |݁⃑௫. ݁⃗௫|ଶ = cosଶ ߶                                                       (1.13) 

Or if we describe the light in terms of states with normalized intensity as in 
equation (1.8), then we find that 

௧ܫ

ܫ
= ห݁⃑௫ . ሬ⃗ܧ ேห

ଶ
=

ห݁⃑௫. ሬ⃗ܧ ேห
ଶ

ห݁⃑௫. ሬ⃗ܧ ேห
ଶ

+ ห݁⃑௬ . ሬ⃗ܧ ேห
ଶ                                             (1.14) 

Where ܧሬ⃗ ே is the normalized intensity state of the light after the x-polarizer.  

This demonstrates that the scalar product between vectors plays an important 
role in the calculation  of the intensities (and therefore the probabilities in the 
photon picture). 

Varying the angle ߶ between the two bases we can see that the ratio of the 
incoming and outgoing intensities decreases with increasing angle between the 
two axes until the angle reaches 90 degrees. 

Interpretation(1.1.3) : 

Viewed in the photon picture this is a rather surprising result, as we would 
have thought that after passing the x-polarizer the photon is ’objectively’ in the 
 ᇱ-polarizer we find that itݔ polarized state. However, upon probing it with an-ݔ
also has a quality of an ݔᇱ-polarized state. In the next experiment we will see an 
even more worrying result. For the moment we note that the state of a photon 
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can be written in different ways and this freedom corresponds to the fact that in 
quantum mechanics we can write the quantum state in many different ways as a 
quantum superpositions of basis vectors. 

Let us push this idea a bit further by using three polarizers in a row. 

Experiment (1.1.4) : 

If after passing the x-polarizer, the light falls onto a y-polarizer, then no 
light will go through the polarizer because the two directions are perpendicular 
to each other. This simple experimental result changes when we place an 
additional polarizer between the x and the y-polarizer. Assume that we place a x’-
polarizer between the two polarizers. Then we will observe light after the y-
polarizer depending on the orientation of ݔᇱ. The light after the last polarizer is 
described by ܧ෨௬݁⃗௬. The amplitude ˜Ey is calculated analogously as in Experiment 
(1.1.2). Now let us describe the (x-x’-y) experiment mathematically. The complex 
electric field (without the time dependence) is given by 

before the x-polarizer: 

ሬ⃗ܧ ଵ = ௫݁⃗௫ܧ +  ௬݁⃗௬ܧ

after the x-polarizer: 

ሬ⃗ܧ ଶ = ൫ܧሬ⃗ ଵ݁⃗௫൯݁⃗௫ = ௫݁⃗௫ܧ = ௫ܧ cos ߶ ݁⃑௫ − ௫ܧ sin ߶ ݁⃑௬ 

after the x’-polarizer: 

ሬ⃗ܧ ଷ = ൫ܧሬ⃗ ଶ݁⃑௫൯݁⃑௫ = ௫ܧ cos ߶ ݁⃑௫ = ௫ܧ cosଶ ߶ ݁⃗௫ + ௫ܧ cos ߶ sin ߶ ݁⃗௬ 

after the y-polarizer: 

ሬ⃗ܧ ସ = ൫ܧሬ⃗ ଷ݁⃗௬൯݁⃗௬ = ௫ܧ cos ߶ sin ߶ ݁⃗௬ 

Therefore the ratio between the intensity before the x’-polarizer and after the y-
polarizer is given by 

௧ܫ

ܫ
= cosଶ ߶ sinଶ ߶                                                       (1.15) 
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Again, if we interpret this result in the photon picture, then we arrive at the 
conclusion, that the probability for the photon to pass through both the x’ and the 
y polarizer is given by cosଶ ߶ sinଶ ߶. This experiment further highlights the fact 
that light of one polarization may be interpreted as a superposition of light of 
other polarizations. This superposition is represented by adding vectors with 
complex coefficients. If we consider this situation in the photon picture we have 
to accept that a photon of a particular polarization can also be interpreted as a 
superposition of different polarization states. 

All these observations suggest that complex vectors, their amplitudes, 
scalar products and linear transformations between complex vectors are the 
basic ingredient in the mathematical structure of quantum mechanics as opposed 
to the real vector space of classical mechanics. Therefore the rest of this chapter 
will be devoted to a more detailed introduction to the structure of complex 
vector-spaces and their properties. 

(1.1.2): Complex vector spaces 

             We will now give a formal definition of a complex vector space and will 
then present some of its properties. Before we come to this definition, we 
introduce a standard notation that we will use in this chapter. Given some set V 
we define 

Notation (1.1.5) : 

〈 ݔ|∀ (1) ∈  ܸ means: For all |ݔ〉 that lie in ܸ . 
〈 ݔ|∃ (2) ∈  ܸ means: There exists an element |ݔ〉 that lies in ܸ . 

Note that we have used a somewhat unusual notation for vectors. We have 
replaced the vector arrow on top of the letter by a sort of bracket around the 
letter. We will use this notation when we talk about complex vectors, in 
particular when we talk about state vectors. Now we can state the definition of 
the complex vector space. 

Definition (1.1.6) : 

Given a (V, C, +,·) where V is a set of objects (usually called vectors), C 
denotes the set of complex numbers, + denotes the group operation of addition 
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and · denotes the multiplication of a vector with a complex number. (V, C, +,·) is 
called a complex vector space if the following properties are satisfied: 

(1) (ܸ, +) is an Abelian group, which means that 
a. ∀|ܽ 〉, |ܾ〉  ∈  ܸ ⇒  |ܽ〉  + |ܾ〉  ∈  ܸ.       (closure) 
b. ∀|ܽ 〉, |ܾ〉, |ܿ〉  ∈  ܸ ⇒  |ܽ〉  + |ܾ〉 + |ܿ〉 = (|ܽ〉  + |ܾ〉) + |ܿ〉.       

(associative) 
c. ∃|ࣩ 〉 ∈ 〈 ܽ|∀  ݐℎܽݐ ݏ ܸ ∈  ܸ ⇒ |ܽ〉  + |ࣩ〉 = |ܽ〉.       (zero) 
d. ∀|ܽ 〉, |ܾ〉  ∈  ܸ:  ∃(−|ܽ〉) ∈ 〈ܽ| ݐℎܽݐ ݏ ܸ   + (−|ܽ〉) = |ࣩ〉.       

(inverse) 
e. ∀|ܽ 〉, |ܾ〉  ∈  ܸ ⇒  |ܽ〉  + |ܾ〉 = |ܾ〉 + |ܽ〉 .       (Abelian) 

(2) The Scalar multiplication satisfies 
a. ∀ߙ ∈ ,ܥ 〈ݔ| ∈  ܸ                  ⇒ 〈ݔ|ߙ  ∈  ܸ 
b. ∀|ݔ〉 ∈  ܸ                                ⇒  1. 〈ݔ| =  (unit)       〈ݔ|
c. ∀ܿ, ݀ ∈ ,ܥ 〈ݔ| ∈  ܸ              ⇒ (ܿ. ݀). 〈ݔ| = ܿ. (݀.  (associative)    (〈ݔ|
d. ∀ܿ, ݀ ∈ ,ܥ ,〈ݔ| 〈ݕ| ∈  ܸ      ⇒ ܿ. 〈ݔ|) + ܿ. (〈ݕ| = ܿ. 〈ݔ| + ܿ.  〈ݕ|

ܽ݊݀ (ܿ + ݀). 〈ݔ| = ܿ. 〈ݔ| + ܿ.  (distributive)    〈ݕ|

This definition looks quite abstract but a few examples will make it clearer. 

Examples (1.1.7) : 

(1) A simple proof 

We would like to show how to prove the statement 0. 〈ݔ| = |ࣩ〉 .This might 
look trivial, but nevertheless we need to prove it, as it has not been stated as an 
axiom. From the axioms given in Definition (1.1.6). We conclude. 

|ࣩ〉     (1݀)
=  − 〈ݔ| +  〈ݔ|

                                                                              (2݀)
=  − 〈ݔ| + 1.  〈ݔ|

                                                                                = 〈ݔ|−  + (1 + 0).  〈ݔ|

                                                                              (2݀)
=  − 〈ݔ| + 1. 〈ݔ| + 0.  〈ݔ|

                                                                              (2݀)
=  − 〈ݔ| + 〈ݔ| + 0.  〈ݔ|
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                                                                              (1݀)
=  |ࣩ〉 + 0.  〈ݔ|

                                                                              (1ܿ)
=  0.  〈ݔ|

(2) The  

This is the set of two-component vectors of the form 

|ܽ〉 = ቀ
ܽଵ
ܽଶ

ቁ                                                               (1.16) 

Where the ܽ are complex numbers. The addition and scalar multiplication are 
defined as 

ቀ
ܽଵ
ܽଶ

ቁ + ൬ܾଵ
ܾଶ

൰ : = ൬ܽଵ + ܾଵ
ܽଶ + ܾଶ

൰                                                   (1.17) 

ܿ. ቀ
ܽଵ
ܽଶ

ቁ : = ቀ
ܿ. ܽଵ
ܿ. ܽଶ

ቁ                                                          (1.18) 

It is now easy to check that ܸ =  ଶ together with the addition and scalarܥ 
multiplication defined above satisfy the definition of a complex vector space. The 
vector space  ܥଶ is the one that is used for the description of spin-ଵ

ଶ
 particles such 

as electrons. 

(3) The set of real functions of one variable ࢌ ∶ → ࡾ   ࡾ 

The group operations are defined as 

( ଵ݂ + ଶ݂)(ݔ) ≔ ଵ݂(ݔ) + ଶ݂(ݔ) 

(ܿ. (ݔ)(݂ = ܿ.  (ݔ)݂

Again it is easy to check that all the properties of a complex vector space are 
satisfied. 

(4) Complex  ×   matrices  

The elements of the vector space are 
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ܯ = ൭
݉ଵଵ ⋯ ݉ଵ

⋮ ⋱ ⋮
݉ଵ … ݉

൱                                                    (1.19) 

Where the ݉୧୨ are arbitrary complex numbers. The addition and scalar 
multiplication are defined as 

൭
ܽଵଵ ⋯ ܽଵ

⋮ ⋱ ⋮
ܽଵ … ܽ

൱ + ൭
ܾଵଵ ⋯ ܾଵ

⋮ ⋱ ⋮
ܾଵ … ܾ

൱ = ൭
ܽଵଵ + ܾଵଵ ⋯ ܽଵ + ܾଵ

⋮ ⋱ ⋮
ܽଵ + ܾଵ … ܽ + ܾ

൱ 

ܿ. ൭
ܽଵଵ ⋯ ܽଵ

⋮ ⋱ ⋮
ܽଵ … ܽ

൱ = ൭
ܿ. ܽଵଵ ⋯ ܿ. ܽଵ

⋮ ⋱ ⋮
ܿ. ܽଵ … ܿ. ܽ

൱ 

Again it is easy to confirm that the set of complex ݊ × ݊ matrices with the rules 
that we have defined here forms a vector space. Note that we are used to 
consider matrices as objects acting on vectors, but as we can see here we can also 
consider them as elements (vectors) of a vector space themselves. 

(1.1.3): Basis and Dimension 

Some of the most basic concepts of vector spaces are those of linear 
independence, dimension and basis. They will help us to express vectors in terms 
of other vectors and are useful when we want to define operators on vector 
spaces which will describe observable quantities. 

Quite obviously some vectors can be expressed by linear combinations of 
others. For example 

ቀ1
2ቁ = ቀ1

0ቁ + 2. ቀ0
1ቁ                                                                   (1.20) 

It is natural to consider a given set of vectors {|ݔ〉ଵ, . . . ,  } and to ask the〈ݔ|
question, whether a vector in this set can be expressed as a linear combination of 
the others. Instead of answering this question directly we will first consider a 
slightly different question. Given a set of vectors {|ݔ〉ଵ, . . . ,  }, can the null〈ݔ|
vector |ࣩ〉 can be expressed as a linear combination of these vectors? This means 
that we are looking for a linear combination of vectors of the form 

. +ଵ〈ݔ|ଵߣ . . 〈ݔ|ଶߣ+ = |ࣩ〉                                                  (1.21) 
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Clearly Eq. (1.21) can be satisϐied when all the ߣ  vanish. But this case is trivial 
and we would like to exclude it. Now there are two possible cases left: 

(a) There is no combination of ߣ’s, not all of which are zero, that satisfies   
Eq.(1.21). 

(b) There are combinations of ߣ’s, not all of which are zero, that satisfy Eq. 
(1.21). 

These two situations will get different names and are worth, 

Definition (1.1.8) : 

A set of vectors {|x〉ଵ, . . . , |x〉୩} is called linearly independent if the equation 

. +ଵ〈ݔ|ଵߣ . . 〈ݔ|ଶߣ+ = |ࣩ〉                                                  (1.22) 

has only the trivial solution ߣଵ = . . . = ߣ  =  0. 

If there is a nontrivial solution to Eq. (1.22), i.e. at least one of the ߣ = 0, then we 
call the vectors {|ݔ〉ଵ, . . . ,  .} linearly dependent〈ݔ|

Now we are coming back to our original question as to whether there are vectors 
in {|ݔ〉ଵ, . . . ,  } that can be expressed by all the other vectors in that set. As a〈ݔ|
result of this definition we can see the following 

Lemma (1.1.9) : 

For a set of linearly independent vectors {|x〉ଵ, . . . , |x〉୩}, no |x〉୧ can be 
expressed as a linear combination of the other vectors, i.e. one cannot find λ୨ that 
satisfy the equation 

ଵ〈ݔ|ଵߣ} + ⋯ + ିଵ〈ݔ|ିଵߣ + ⋯ + ାଵ〈ݔ|ାଵߣ + ⋯ + 〈ݔ|ߣ =  }           (1.23)〈ݔ|

In a set of linearly dependent vectors {|ݔ〉ଵ, . . . ,   that〈ݔ| } there is at least one〈ݔ|
can be expressed as a linear combination of all the other |ݔ〉. 

Example (1.1.10) : 

The set {|ࣩ〉} consisting of the null vector only, is linearly dependent in a 
sense that will become clearer when we really talk about quantum mechanics, in 



13 
 

a set of linearly independent set of vectors, each vector has some quality that 
none of the other vectors have. 

After we have introduced the notion of linear dependence, we can now 
proceed to deϐine the dimension of a vector space. Evidently a plain surface is 2-
dimensional and space is 3-dimensional. Why do we say this? Consider a plane, 
for example. Clearly, every vector in the plane can be expressed as a linear 
combination of any two linearly independent vectors |݁〉ଵ, |݁〉ଶ. As a result you 
will not be able to find a set of three linearly independent vectors in a plane, 
while two linearly independent vectors can be found. This is the reason to call a 
plane a two-dimensional space. Let’s formalize this observation in the following 
definition 

Definition (1.1.11) : 

The dimension of a vector space V is the largest number of linearly 
independent vectors in V that one can find. 

Now we introduce the notion of basis of vector spaces. 

Definition (1.1.12) : 

A set of vectors {|x〉ଵ, . . . , |x〉୩} is called a basis of a vector space V if 

(a)  {|ݔ〉ଵ, . . . ,  .} are linearly independent〈ݔ|
(b) ∀|ݔ〉 ∈ ܸ: ߣ∃ ∈ ܥ ⟹ ݔ = ∑ ߣ


ୀଵ  〈ݔ|

Condition (b) states that it is possible to write every vector as a linear 
combination of the basis vectors. The first condition makes sure that the set 
,ଵ〈ݔ|} . . . ,  } is the smallest possible set to allow for condition (b) to be〈ݔ|
satisfied. It turns out that any basis of an ܰ dimensional vector space ܸ contains 
exactly ܰ vectors. Let us illustrate the notion of basis. 

Examples (1.1.13) : 

(1)   Consider the space of vectors ܥଶ with two components. Then the two 
vectors 

ଵ〈ݔ| = ቀ1
0ቁ ଶ〈ݔ|        = ቀ0

1ቁ                                                             (1.24) 
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  Form a basis of ܥଶ. A basis for the ܥே can easily be constructed in the same way. 

 

(2)    An example for an infinite dimensional vector space is the space of 
complex polynomials, i.e. the set 

ܸ = {ܿ + ܿଵݖ + ⋯ + ܿݖ|arbitrary k and ∀ܿ ∈  (1.25)                ܥ

Two polynomials are equal when they give the same values for all ݖ ∈  .ܥ 
Addition and scalar multiplication are defined coefficient wise. It is easy to see 
that the set {1, ,ݖ ,ଶݖ . . . } is linearly independent and that it contains infinitely 
many elements. Together with other examples you will prove (in the problem 
sheets) that Eq. (1.25) indeed describes a vector space. 

(1.1.4): Scalar Products and Norms on Vector Spaces 

           Any set of ܰ linearly independent vectors of an N dimensional vector space 
ܸ form a basis. But not all such choices are equally convenient. To find useful 
ways to chose a basis and to find a systematic method to find the linear 
combinations of basis vectors that give any arbitrary vector |ݔ〉 ∈ ܸ we will now 
introduce the concept of scalar product between two vectors. This is not to be 
confused with scalar multiplication which deals with a complex number and a 
vector. The concept of scalar product then allows us to formulate what we mean 
by orthogonality. Subsequently we will define the norm of a vector, which is the 
abstract formulation of what we normally call a length. This will then allow us to 
introduce orthonormal bases which are particularly handy. 

The scalar product will play an extremely important role in quantum 
mechanics as it will in a sense quantify how similar two vectors (quantum states) 
are. you can easily see qualitatively that the pairs of vectors become more and 
more different from left to right. The scalar product puts this into a quantitative 
form. This is the reason why it can then be used in quantum mechanics to 
quantify how likely it is for two quantum states to exhibit the same behaviour in 
an experiment. 

To introduce the scalar product we begin with an abstract formulation of 
the properties that we would like any scalar product to have. Then we will have a 
look at examples which are of interest for quantum mechanics. 
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Definition (1.1.14) : 

    A complex scalar product on a vector space assigns to any two vectors 
|x〉, |y〉 ∈ V a complex number (|x〉, |y〉) ∈ C satisfying the following rules 

(a)  ∀|ݔ 〉, ,〈ݕ| 〈ݖ|  ∈  ܸ, ߙ ∈ :ܥ ,〈 ݔ|) ,〈ݕ|ଵߙ (〈ݖ|ଶߙ = ,〈 ݔ|)ଵߙ (〈ݕ| +
,〈 ݔ|)ଶߙ         .(〈ݖ|

(b) ∀|ݔ 〉, 〈ݕ| ∈ ܸ ∶ ,〈 ݔ|) (〈ݕ| = ,〈 ݔ|)  (symmetry)       .∗(〈ݕ|
(c) ∀|ݔ 〉  ∈ ,〈 ݔ|)  :ܸ  (〈ݕ| ≥ 0.       (positivity) 
(d)  ∀|ݔ 〉  ∈ ,〈 ݔ|)  :ܸ  (〈ݕ| = 0 ⟺ 〈 ݔ| = |ࣩ 〉. 

These properties are very much like the ones that you know from the ordinary 
dot product for real vectors, except for property 2 which we had to introduce in 
order to deal with the fact that we are now using complex numbers. Note that we 
only defined linearity in the second argument. This is in fact all we need to do. 

,〈 ݔ|∀ ,〈ݕ| 〈ݖ| ∈ ܸ, ߙ ∈ :ܥ ,〈 ݔ|ߙ) ,〈ݕ|ߚ (〈ݖ| = ,〈ݔ|)∗ߙ (〈ݖ| + ,〈ݕ|)∗ߚ  (1.26)     (〈ݖ|

Vector spaces on which we have defined a scalar product are also called unitary 
vector spaces. We will now present some examples that play significant roles in 
quantum mechanics. 

Examples (1.1.15) : 

(1)       The scalar product in  

Given two complex vectors |ݔ 〉, 〈ݕ| ∈   we defineݕ  andݔ  with componentsܥ
the scalar product 

,〈 ݔ| 〈ݕ| =  ݔ
 ݕ∗



ୀଵ

                                                               (1.27) 

Where ∗ denotes the complex conjugation. 

(2)     Scalar product on continuous square integrable functions 

A square integrable function  ߰ ∈ ℒଶ(ࡾ) is one that satisfies 

න ଶ|(ݔ)߰|
ஶ

ିஶ
ݔ݀ < ∞                                                                  (1.28) 
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Eq. (1.28) already implies how to deϐine the scalar product for these square 
integrable functions. For any two functions  , ߰, ߶ ∈ ℒଶ(ࡾ)  we define 

(߰, ߶) = න (ݔ)߶∗(ݔ)߰
ஶ

ିஶ
 (1.29)                                               ݔ݀

We can even define the scalar product for discontinuous square integrable 
functions, but then we need to be careful when we are trying to prove property 
(4) for scalar products. One reason is that there are functions which are nonzero 
only in isolated points (such functions are discontinuous) and for which Eq. 
(1.28) vanishes. An example is the function 

(ݔ)݂ = ൜1 for ݔ = 0
0 anywhere else 

The solution to this problem lies in a redefinition of the elements of our 
set. If we identify all functions that differ from each other only in countably many 
points then we have to say that they are in fact the same element of the set. If we 
use this redefinition then we can see that also condition 4 of a scalar product is 
satisfied. 

An extremely important property of the scalar product is the Schwarz 
inequality which is used in many proofs. In particular I will used it to prove the 
triangular inequality for the length of a vector and in the proof of the uncertainty 
principle for arbitrary observables. 

Theorem (1.1.16): (The Schwarz inequality)  

For any |ݔ 〉, 〈ݕ| ∈ ܸ we have 

,〈 ݔ|)| ଶ|(〈ݕ| ≤ ,〈 ݔ|) ,〈 ݕ|)(〈ݔ|  (1.30)                                                (〈ݕ|

Proof 

  For any complex number ߙ we have 

0 ≤ 〈 ݔ|) + ,〈ݕ|ߙ 〈 ݔ| +  (〈ݕ|ߙ

    = ,〈 ݔ|) (〈 ݔ| + ,〈ݔ|)ߙ (〈ݕ| + ,〈ݕ|)∗ߙ (〈ݔ| + ,〈ݕ|)ଶ|ߙ|  (〈ݕ|

    = ,〈 ݔ|) (〈 ݔ| + ,〈ݔ|)ܴ݁ݒ2 (〈ݕ| − ,〈ݔ|)݉ܫݓ2 (〈ݕ| + ଶݒ) + ,〈ݕ|)(ଶݓ  (〈ݕ|
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=: ,ݒ)݂  (1.31)                                                                                                       (ݓ

In the definition of ݂(ݒ, ߙ in the last row we have assumed (ݓ = + ݒ   To .ݓ݅ 
obtain the sharpest possible bound in Eq. (1.30), we need to minimize the right 
hand side of Eq. (1.31). To this end we calculate 

0 =
݂݀
ݒ݀

,ݑ) (ݓ = ,〈ݔ|)2ܴ݁ (〈ݕ| + ,〈ݕ|)ݒ2  (1.32)                                       (〈ݕ|

0 =
݂݀
ݓ݀

,ݑ) (ݓ = ,〈ݔ|)݉ܫ2− (〈ݕ| + ,〈ݕ|)ݓ2  (1.33)                                   (〈ݕ|

Solving these equations, we find 

ߙ = ݒ + ݓ݅ = −
,〈ݔ|)ܴ݁ (〈ݕ| − ,〈ݔ|)݉ܫ݅ (〈ݕ|

,〈ݕ|) (〈ݕ| = −
,〈ݕ|) (〈ݔ|
,〈ݕ|)  (1.34)         (〈ݕ|

Because all the matrix of second derivatives is positive definite, we really have a 
minimum. If we insert this value into Eq. (1.31) we obtain 

0 ≤ ,〈ݔ|) (〈ݔ| −
,〈ݕ|) ,〈ݔ|)(〈ݔ| (〈ݕ|

,〈ݕ|) (〈ݕ|                                        (1,35) 

This implies then Eq. (1.30). Note that we have equality exactly if the two vectors 
are linearly dependent, i.e. if |ݔ〉 =  .〈ݕ|ߛ 

Having defined the scalar product, we are now in a position to define what we 
mean by orthogonal vectors. 

Definition (1.1.17): 

Two vectors |x〉, |y〉 ∈ V are called orthogonal if 

,〈ݔ|) (〈ݕ| = 0                                                                       (1.36) 

We denote with |x〉ୄ a vector that is orthogonal to |x〉. 

Now we can define the concept of an orthogonal basis which will be very useful 
in finding the linear combination of vectors that give |x〉. 
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Definition (1.1.18): 

An orthogonal basis of an N dimensional vector space V is a set of N 
linearly independent vectors such that each pair of vectors are orthogonal to 
each other 

Example (1.1.19): 

In C the three vectors 

൭
0
0
2

൱ ,        ൭
0
3
0

൱ ,      ൭
1
0
0

൱   ,                                                          (1.37) 

Form an orthogonal basis. 

Now let us chose an orthogonal basis {|ݔ〉ଵ, . . . ,  ே} of an N dimensional vector〈ݔ|
space. For any arbitrary vector |ݔ〉 ∈ ܸ we would like to find the coefficients 
ଵߣ , … ,  ே such thatߣ

 〈ݔ|ߣ

ே

ୀଵ

                                                                              (1.38) 

Of course we can obtain the ߣ  by trial and error, but we would like to find an 
efficient way to determine the coefficients ߣ . To see this, let us consider the 
scalar product between |ݔ〉 and one of the basis vectors |ݔ〉. Because of the 
orthogonality of the basis vectors, we find 

, 〈ݔ|) (〈ݔ| = ,〈ݔ|)ߣ  )                                                              (1.39)〈ݔ|

Note that this result holds true only because we have used an orthogonal basis. 
Using Eq. (1.39) in Eq. (1.38), we ϐind that for an orthogonal basis any vector |ݔ〉 
can be represented as 

〈ݔ| = 
, 〈ݔ|) (〈ݔ|
,〈ݔ|) (〈ݔ|

ே

ୀଵ

                                                         (1.40)〈ݔ|

In Eq. (1.40) we have the denominator (|ݔ〉 ,  which makes the formula a (〈ݔ|
little bit clumsy. This quantity is the square of what we usually call the length of a 
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vector which shows a vector |ݔ〉 = ቀܽ
ܾቁ in the two-dimensional real vector space 

ଶ. Clearly its length is √ܽଶࡾ + ܾଶ. If we multiply the vector by a number ߙ then 
we have the vector ݔ|ߙ〉 which evidently has the length √ߙଶܽଶ ଶܾଶߙ + =
ଶܽ√|ߙ| +  ܾଶ. Finally we know that we have a triangular inequality. This means 

that given two vectors |ݔ〉ଵ = ቀ
ܽଵ
ܾଵ

ቁ  and |ݔ〉ଶ = ቀ
ܽଶ
ܾଶ

ቁ the length of the |ݔ〉ଵ +  ଶ〈ݔ|

is smaller than the sum of the lengths of |ݔ〉ଵ and |ݔ〉ଶ. In the following we 
formalize the concept of a length and we will arrive at the definition of the norm 
of a vector |ݔ〉. The concept of a norm is important if we want to define what we 
mean by two vectors being close to one another. In particular, norms are 
necessary for the definition of convergence in vector spaces, a concept that we 
will introduce in the next subsection. In the following we specify what properties 
a norm of a vector should satisfy. 

Definition (1.1.20) :  

      A norm on a vector space V associates with every |x〉 ∈ V a real number 
 .with the properties , ‖〈ݔ|‖

〈ݔ|∀ (1) ∈ ‖〈ݔ|‖     :ܸ ≥ ‖〈ݔ|‖  ݀݊ܽ 0 = 0 ⟺ 〈ݔ| = |ࣩ〉.       (positivity) 
〈ݔ|∀ (2) ∈ ܸ , ߙ ∈ ܥ ∶ ‖〈ݔ|ߙ‖  = .|ߙ|  (linearity)     ‖〈ݔ|‖
,〈ݔ|∀ (3) 〈ݕ| ∈ 〈ݔ|‖  :ܸ + ‖〈ݕ| ≤ ‖〈ݔ|‖ +  (triangular inequality)  .‖〈ݕ|‖

A vector space with a norm defined on it is also called a normed vector space. 
The three properties in Deϐinition (1.1.20) are those that you would intuitively 
expect to be satisfied for any decent measure of length. As expected norms and 
scalar products are closely related. In fact, there is a way of generating norms 
very easily when you already have a scalar product. 

Lemma (1.1.21) : 

             Given a scalar product on a complex vector space, we can define the norm 
of a vector |x〉 by 

‖〈ݔ|‖ = ඥ(|ݔ〉,  (1.41)                                                                     (〈ݔ|

Proof 
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 Properties (1) and (2) of the norm follow almost trivially from the four 
basic conditions of the scalar product. 

 The proof of the triangular inequality uses the Schwarz inequality. 
〈ݔ|‖          + ଶ‖〈ݕ| = 〈ݔ|)|  + ,〈ݕ| 〈ݔ| +  |(〈ݕ|
                                  = ,〈ݔ|)| 〈ݔ| + (〈ݕ| + ,〈ݕ|) 〈ݔ| +  |(〈ݕ|
                                  ≤ ,〈ݔ|)| 〈ݔ| + |(〈ݕ| + ,〈ݕ|)| 〈ݔ| +  |(〈ݕ|

≤ .‖〈ݔ|‖ 〈ݔ|‖+ + ‖〈ݕ| + .‖〈ݕ|‖ 〈ݔ|‖ +  (1.42)                  ‖〈ݕ|

Dividing both sides by ‖|ݔ〉 +  yields the inequality. This assumes that the ‖〈ݕ|
sum |ݔ〉 + 〈ݕ| ≠ |ࣩ〉. If we have |ݔ〉 + 〈ݕ| = |ࣩ〉 then the Schwarz inequality is 
trivially satisfied. 

Lemma (1.1.21) shows that any unitary vector space can canonically (this 
means that there is basically one natural choice) turned into a normed vector 
space. The converse is, however, not true. Not every norm gives automatically 
rise to a scalar product. 

Using the concept of the norm we can now define an orthonormal basis for 
which Eq. (1.40) can then be simpliϐied. 

Definition (1.1.22) : 

An orthonormal basis of an N dimensional vector space is a set of N 
pairwise orthogonal linearly independent vectors {|x〉ଵ, . . . , |x〉} where each 
vector satisfies ‖|x〉‖ଶ = (|x〉୧ , |x〉୧) = 1, i.e. they are unit vectors. For an 
orthonormal basis and any vector |x〉 we have 

〈ݔ| = (|ݔ〉 , (〈ݔ|
ே

ୀଵ

〈ݔ| =  〈ݔ|ߙ

ே

ୀଵ

                                        (1.43) 

Where the components of |x〉 with respect to the basis {|x〉ଵ, . . . , |x〉} are the 
α୧ = (|x〉୧ , |x〉). 

(1.1.5): Completeness and Hilbert Spaces 

What do we mean by complete? To see this, let us consider sequences of 
elements of a vector space (or in fact any set, but we are only interested in vector 
spaces). We will write sequences in two different ways 
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{〈ݔ|} = 0, … , ∞ ≡ , 〈ݔ|) , ଵ〈ݔ| ଶ〈ݔ| … )                                                 (1.44) 

To define what we mean by a convergent sequences, we use norms because we 
need to be able to specify when two vectors are close to each other. 

Definition (1.1.23) : 

 A sequence {|x〉୧}୧ = 0, … , ∞ of elements from a normed vector space V 
converges towards a vector |x〉 ∈ V if for all  ϵ >  0 there is an n such that for all 
n > n we have 

〈ݔ|‖ − ‖〈ݔ| ≤ ߳                                                                         (1.45) 

But sometimes you do not know the limiting element, so you would like to 
find some other criterion for convergence without referring to the limiting 
element. This idea led to the following 

Definition (1.1.24) :   

A sequence {|x〉୧}୧ = 0, … , ∞ of elements from a normed vector space V is 
called a Cauchy sequence if for all ϵ >  0 there is an n such that for all m, n > n 
we have 

〈ݔ|‖ − ‖〈ݔ| ≤ ߳                                                                         (1.46) 

Now we can wonder whether every Cauchy sequence converges. Well, it sort of 
does. But unfortunately sometimes the limiting element does not lie in the set 
from which you draw the elements of your sequence. How can that be? To 
illustrate this we will present a vector space that is not complete. Consider the 
set 

ܸ =  .{ are non-zero 〈ݔ|  only finitely many components of : 〈ݔ|}

An example for an element of  ܸ is |ݔ〉 =  (1, 2, 3, 4, 5, 0, . . . ). It is now quite easy 
to check that ܸ  is a vector-space when you define addition of two vectors via 

〈ݔ| + 〈ݕ| = ଵݔ) + , ଵݕ ଶݔ +  (ଶݕ

and the multiplication by a scalar via 

〈ݔ|ܿ = , ଵݔܿ) , ଶݔܿ … ) 



22 
 

Now we define a scalar product from which we will then obtain a norm via the 
construction of Lemma (1.1.21). We define the scalar product as 

, 〈ݔ|) (〈ݕ| =  ݔ
ݕ∗

ஶ

ୀଵ

 

Now let us consider the series of vectors 

ଵ〈ݔ| = (1,0,0,0, … )                 

ଶ〈ݔ| = ൬1,
1
2

, 0, … ൰                  

ଷ〈ݔ| = ൬1,
1
2

,
1
4

, 0, … ൰             

ସ〈ݔ| = ൬1,
1
2

,
1
4

,
1
8

, 0, … ൰        

⋮ 

〈ݔ| = (1,
1
2 , … ,

1
2ିଵ , 0, … ) 

For any ݊ we find that for ݉ >  ݊ > ݊ we have 

〈ݔ|‖ − ‖〈ݔ| = ฯ|0, … ,0,
1

2 , … ,
1

2ିଵ , 0, … ฯ ≤
1

2ିଵ 

Therefore it is clear that the sequence {|ݔ〉}ୀଵ,…,ஶ is a Cauchy sequence. 
However, the limiting vector is not a vector from the vector space  , because the 
limiting vector contains infinitely many nonzero elements. 

Considering this example let us define what we mean by a complete vector space. 

Definition (1.1.25) : 

A vector space V is called complete if every Cauchy sequence of elements 
from the vector space V converges towards an element of V  

Now we come to the definition of Hilbert spaces. 
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Definition (1.1.26) :  

A vector space ℋ is a Hilbert space if it satisfies the following two conditions 

(1) ℋ is a unitary vector space. 
(2) ℋ is complete. 

Following our discussions of the vectors spaces, we are now in the position to 
formulate the first postulate of quantum mechanics. 

Postulate 1 The state of a quantum system is described by a vector in a Hilbert space ℋ 

Let us argue physically. We know that we need to be able to represent 
superpositions, i.e. we need to have a vector space. From the superposition 
principle we can see that there will be states that are not orthogonal to each 
other. That means that to some extent one quantum state can be ’present’ in 
another non-orthogonal quantum state -they ’overlap’. The extent to which the 
states overlap can be quantified by the scalar product between two vectors. In 
the first section we have also seen, that the scalar product is useful to compute 
probabilities of measurement outcomes. This requires that we have a norm 
which can be derived from a scalar product. Because of the obvious usefulness of 
the scalar product, we require that the state space of quantum mechanics is a 
vector space equipped with a scalar product. The reason why we demand 
completeness, can be seen from a physical argument which could run as follows: 
Consider any sequence of physical states that is a Cauchy sequence. Quite 
obviously we would expect this sequence to converge to a physical state. It would 
be extremely strange if by means of such a sequence we could arrive at an 
unphysical state. Imagine for example that we change a state by smaller and 
smaller amounts and then suddenly we would arrive at an unphysical state. That 
makes no sense! Therefore it seems reasonable to demand that the physical state 
space is complete. 

What we have basically done is to distill the essential features of quantum 
mechanics and to find a mathematical object that represents these essential 
features without any reference to a special physical system. 

In the next subsection we will continue this programme to formulate more 
principles of quantum mechanics. 
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(1.1.6): Dirac Notation : 

In the following we will introduce a useful way of writing vectors. This 
notation, the Dirac notation, applies to any vector space and is very useful, in 
particular it makes life a lot easier in calculations. As most quantum mechanics 
books are written in this notation it is quite important that you really learn how 
to use this way of writing vectors. If it appears a bit weird to you in the first place 
you should just practice its use until you feel confident with it. for example, is to 
rewrite in Dirac notation all the results that we have presented so far. 

So far we have always written a vector in the form |ݔ〉. The scalar product 
between two vectors has then been written as (|ݔ〉 ,  Let us now make the .(〈ݕ|
following identification 

〈ݔ| ⟷  (1.47)                                                                              〈ݔ|

We call |ݔ〉 a ket. So far this is all fine and well. It is just a new notation for a 
vector. Now we would like to see how to rewrite the scalar product of two 
vectors. To understand this best, we need to talk a bit about linear functions of 
vectors. 

Definition (1.1.27) : 

A function f ∶  V →  C from a vector space into the complex numbers is 
called linear if for any |ψ〉, |ϕ〉 ∈ V and any α, β ∈ C we have 

〈߰|ߙ)݂ + (〈߶| ߚ = (〈߰|)݂ߙ +  (1.48)                                                 (〈߶|)݂ߚ

With two linear functions ଵ݂ , ଶ݂ also the linear combination ߤ ଵ݂ + ߭ ଶ݂ is a linear 
function. Therefore the linear functions themselves form a vector space and it is 
even possible to define a scalar product between linear functions. The space of 
the linear function on a vector space ܸ is called the dual space ܸ∗. 

Now we would like to show you an example of a linear function which we define 
by using the scalar product between vectors. We define the function 

|݂థ〉 ∶  ܸ → ܥ  , where |߶〉 ∈ ܸ is a fixed vector so that for all |߰〉 ∈ ܸ 

|݂థ〉(|߰〉) ≔ (|߶〉, |߰〉)                                                                        (1.49) 
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Now we would like to introduce a new notation for |݂థ〉. From now on we will 
identify 

|݂థ〉 ↔ |߶〉                                                                                      (1.50) 

and use this to rewrite the scalar product between two vectors |߶〉, |߰〉 as 

〈߶|߰〉 ≔ 〈߶(߰〉) ≡ (|߶〉, |߰〉)                                                                 (1.51) 

The object |߶〉 is called bra and the Dirac notation is therefore sometimes called 
braket notation. 

(1.2): Linear Operators 

So far we have only dealt with the elements (vectors) of vector spaces. 
Now we need to learn how to transform these vectors, that means how to 
transform one set of vectors into a different set. Again as quantum mechanics is a 
linear theory we will concentrate on the description of linear operators. 

Definition (1.2.1): (Dirac notation)  

 A linear operator A ∶ ℋ → ℋ associates to every vector |ψ〉 ∈ ℋ a vector 
A|ψ〉 ∈ ℋ such that 

A(λ|ψ〉 + μ|ϕ〉) = λA|ψ〉 + μA|ϕ〉                                             (1.52) 

for all |ψ〉, |ϕ〉 ∈ ℋ and λ, μ ∈  C. 

A linear operator ܣመ ∶ ℋ → ℋ can be specified completely by describing its action 
on a basis set of ℋ. To see this let us chose an orthonormal basis {|݁〉|݅ =
 1, . . . , ܰ}. Then we can calculate the action of ܣመ on this basis. We find that the 
basis {|݁〉|݅ =  1, . . . , ܰ} is mapped into a new set of vectors {| ݂〉|݅ =  1, . . . , ܰ} 
following 

| ݂〉 ≔  መ |݁〉                                                                                 (1.53)ܣ

Of course every vector | ݂〉 can be represented as a linear combination of the 
basis vectors {|݁〉|݅ =  1, . . . , ܰ}, i.e. 

| ݂〉 ≔  ܣ


|݁〉                                                                           (1.54) 
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Combining Eqs. (1.53) and (1.54) and taking the scalar product with ห ݁〉 we find 

ܣ = 〈 ݁ห  መܣ


݁〉)                                                 (1.55) 

  = 〈 ݁ห ݂〉 

= 〈 ݁หܣመ|݁〉                                                              (1.56) 

The ܣ are called the matrix elements of the linear operator ܣመ with respect 
to the orthonormal basis {|݁〉|݅ =  1, . . . , ܰ}. 

We will now go ahead and express linear operators in the Dirac notation. 
First we will present a particularly simple operator, namely the unit operator ॴ, 
which maps every vector into itself. Surprisingly enough this operator, expressed 
in the Dirac notation will prove to be very useful in calculations. To find its 
representation in the Dirac notation, we consider an arbitrary vector |݂〉 and 
express it in an orthonormal basis {|݁〉|݅ =  1, . . . , ܰ}. We find 

|݂〉 =  ݂

ே

ୀଵ

ห ݁〉 = ห ݁〉
ே

ୀଵ

〈 ݁|݂〉                                                            (1.57) 

To check that this is correct you just form the scalar product between |݂〉 and any 
of the basis vectors |݁〉. Now let us rewrite Eq. (1.57) a little bit, thereby deϐining 
the Dirac notation of operators. 

|݂〉 = ห ݁〉
ே

ୀଵ

〈 ݁|݂〉 =: ቌห ݁〉
ே

ୀଵ

〈 ݁ห ቍ |݂〉                                                    (1.58) 

The right hand side is defined in terms of the left hand side. The object in the 
brackets is quite obviously the identity operator because it maps any vector |݂〉 
into the same vector |݂〉. Therefore it is totally justified to say that 

ঌ ≡ ห ݁〉
ே

ୀଵ

〈 ݁ห                                                                         (1.59) 
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This was quite easy. We just moved some brackets around and we found a way to 
represent the unit operator using the Dirac notation. Now we can already guess 
how the general operator will look like, but we will carefully derive it using the 
identity operator. Clearly we have the following identity 

መܣ = ঌመܣመঌመ                                                                                     (1.60) 

Now let us use the Dirac notation of the identity operator in Eq. (1.59) and insert 
it into Eq. (1.60). We then ϐind 

መܣ = ቌห ݁〉
ே

ୀଵ

〈 ݁ห ቍ መܣ ൭|݁〉
ே

ୀଵ

〈݁| ൱ 

= ቌห ݁〉
ே



 ቍ ൫〈 ݁หܣመ〈݁|൯〈݁|        

= ൫〈 ݁หܣመ〈݁|൯
ே



ห ݁〉〈݁|                

=  หܣ ݁〉
ே



〈݁|                                                                 (1.61) 

Therefore you can express any linear operator in the Dirac notation, once you 
know its matrix elements in an orthonormal basis. 

Matrix elements are quite useful when we want to write down linear 
operator in matrix form. Given an orthonormal basis {|݁〉|݅ =  1, . . . , ܰ} we can 
write every vector as a column of numbers 

|݃〉 =  ݃|݁〉


= ൭
݃ଵ
⋮

݃ே

൱                                                                  (1.62) 

Then we can write our linear operator in the same basis as a matrix 

መܣ = ൭
ଵଵܣ ⋯ ଵேܣ

⋮ ⋱ ⋮
ேଵܣ … ேேܣ

൱                                                                     (1.63) 
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(1.2.2): Adjoint and Hermitean Operators 

Operators that appear in quantum mechanics are linear. But not all linear 
operators correspond to quantities that can be measured. In this subsection we 
will describe these operators. In the following subsection we will then discuss 
some of their properties which then explain why these operators describe 
measurable quantities. 

In the previous section we have considered the Dirac notation and in 
particular we have seen how to write the scalar product and matrix elements of 
an operator in this notation. Let us reconsider the matrix elements of an operator 
݅|〈መ in an orthonormal basis {|e୧ܣ =  1, . . . , ܰ}. We have 

(〈݁|ܣመ〈 ݁ห) = (〈݁|ܣመ)〈 ݁ห                                                                  (1.64) 

Where we have written the scalar product in two ways. While the left hand side 
is clear there is now the question, what the bra 〈݁|ܣመ on the right hand side 
means, or better, to which ket it corresponds to. To see this we need to make the, 

Definition (1.2.2) : 

The adjoint operator Aற  corresponding to the linear operator A  is the 
operator such that for all |x〉, |y〉 we have 

൫Aற|x〉, |y〉൯ ≔ ൫|x〉, A|y〉൯                                                               (1.65) 

or using the complex conjugation in Eq. (1.65) we have 

〈y|Aற|x〉 ≔ 〈x|A|y〉∗                                                                   (1.66) 

In matrix notation, we obtain the matrix representing ܣመற by transposition and 
complex conjugation of the matrix representing ܣመ. 

 

Example (1.2.3) : 

መܣ = ቀ1 2݅
݅ 2 ቁ                                                                              (1.67) 

and 
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መறܣ = ቀ 1 −݅
−2݅ 2 ቁ                                                                         (1.68) 

The following property of adjoint operators is often used. 

Lemma (1.2.4) : 

               For operators A and B we find 

൫ܣመܤ൯ற =  መற                                                                                 (1.69)ܣறܤ

Proof  

Eq. (1.69) is proven by 

,〈ݔ|) ൫ܣመܤ൯ற|ݕ〉 =(൫ܣመܤ൯|ݔ〉,  (〈ݕ|

                                                                             = ܤመ൫ܣ) ,൯〈ݔ|  .Now use Def. (1.2.2)  (〈ݕ|

                                                                            = ൫ܤ ,൯〈ݔ|  .Use Def. (1.2.2).again (〈ݕ|መறܣ

                                                                             = ,(〈ݔ|)   (〈ݕ|መறܣறܤ

As this is true for any two vectors |ݔ〉 and |ݕ〉 the two operators ൫ܣመܤ൯ற and ܤறܣመற 
are equal. 

It is quite obvious that in general an operator ܣመ and its adjoint operator ܣመற 
are different. However, there are exceptions and these exceptions are very 
important. 

Definition (1.2.5) : 

  An operator A  is called Hermitean or self-adjoint if it is equal to its adjoint 
operator, i.e. if for all states |x〉, |y〉 we have 

〈y|A|x〉 = 〈x|A|y〉∗                                                                 (1.70) 

In the finite dimensional case a self-adjoint operator is the same as a Hermitean 
operator. In the infinite-dimensional case Hermitean and self-adjoint are not 
equivalent. 
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The difference between self-adjoint and Hermitean is related to the 
domain of definition of the operators ܣመ and ܣመற which need not be the same in the 
infinite dimensional case. In the following I will basically always deal with finite-
dimensional systems and we will therefore usually use the term Hermitean for 
an operator that is self-adjoint. 

(1.2.3):Eigenvectors, Eigenvalues and the Spectral Theorem 

Hermitean operators have a lot of nice properties and we will explore 
some of these properties.  Mostly these properties are concerned with the 
eigenvalues and eigenvectors of the operators. We start with the definition of 
eigenvalues and eigenvectors of a linear operator. 

Definition (1.2.6) : 

A linear operator A on an N-dimensional Hilbert space is said to have an 
eigenvector |λ〉 with corresponding eigenvalue λ if 

A|λ〉 = λ|λ〉                                                                                 (1.71) 

or equivalently 

൫A − λঌ൯|λ〉 = 0                                                                       (1.72) 

This definition of eigenvectors and eigenvalues immediately shows us how to 
determine the eigenvectors of an operator. 

Because Eq. (1.72) implies that the ܰ columns of the operator ܣመ −  ঌ are linearlyߣ
dependent we need to have that 

det൫ܣመ − ঌ൯ߣ = 0                                                                         (1.73) 

This immediately gives us a complex polynomial of degree ܰ. As we know from 
analysis, every polynomial of degree ܰ has exactly ܰ solutions if one includes the 
multiplicities of the eigenvalues in the counting. In general eigenvalues and 
eigenvectors do not have many restriction for an arbitrary ܣመ. However, for 
Hermitean and unitary operators there are a number of nice results concerning 
the eigenvalues and eigenvectors. 

We begin with an analysis of Hermitean operators. 
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Lemma (1.2.7) :  

For any Hermitean operator A we have 

(1) All eigenvalues of A   are real. 
(2) Eigenvectors to different eigenvalues are orthogonal. 

Proof  

(1)  Given an eigenvalue ߣ and the corresponding eigenvector |ߣ〉 of a 
Hermitean operator ܣመ. Then we have using the hermiticity of ܣመ 

∗ߣ = ∗〈ߣ|መܣ|ߣ〉 = 〈ߣ|መறܣ|ߣ〉 = 〈ߣ|መܣ|ߣ〉 =  (1.74)                                        ߣ

which directly implies that ߣ is real. 

(2)  Given two eigenvectors |ߤ| ,〈ߣ〉 for different eigenvalues ߣ and ߤ. Then 
we have 

〈ߤ|ߣ〉ߣ = ∗(〈ߣ|ߤ〉ߣ) = ൫〈ܣ|ߤመ|ߣ〉൯∗ = 〈ߤ|መܣ|ߣ〉 =  (1.75)                                  〈ߤ|ߣ〉ߤ

As ߣ and ߤ are different this implies 〈ߤ|ߣ〉 = 0. This finishes the proof. 

Completeness Theorem:  

For any Hermitean operator ܣመ on a Hilbert space ℋ the set of all 
eigenvectors form an orthonormal basis of the Hilbert space ℋ, i.e. given the 
eigenvalues ߣ  and the eigenvectors |ߣ〉 we find 

መܣ =  〈ߣ|ߣ


 |                                                                   (1.76)ߣ〉

And for any vector |ݔ〉 ∈ ℋ we find coefficients ݔ such that 

〈ݔ| =  〈ߣ|ݔ


                                                                      (1.77) 

Now let us briefly consider the case for degenerate eigenvalues. This is the case, 
when the characteristic polynomial has multiple zero’s. In other words, an 
eigenvalue is degenerate if there is more than one eigenvector corresponding to 
it. An eigenvalue ߣ is said to be fold degenerate if there is a set of ݀ linearly 
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independent eigenvectors {|ߣଵ〉, … ,  Quite .ߣ ௗ〉} all having the same eigenvalueߣ|
obviously the space of all linear combinations of the vectors {|ߣଵ〉, … , -݀ ௗ〉} is aߣ|
dimensional vector space. Therefore we can find an orthonormal basis of this 
vector space. This implies that any Hermitean operator has eigenvalues ߣଵ, … ,  ߣ
with degeneracies ݀(ߣଵ), . . . , ߣ To each eigenvector .(ߣ)݀  we can find an 
orthonormal basis of ݀(ߣ) vectors. Therefore the above completeness theorem 
remains true also for Hermitean operators with degenerate eigenvalues. 

Now you might wonder whether every linear operator ܣመ on an ܰ 
dimensional Hilbert space has ܰ linearly independent eigenvectors? It turns out 
that this is not true. An example is the 2 × 2 matrix 

ቀ0 1
0 0ቁ 

which has only one eigenvalue ߣ = 0. Therefore any eigenvector to this 
eigenvalue has to satisfy 

ቀ0 1
0 0ቁ ቀܽ

ܾቁ = ቀ0
0ቁ 

which implies that ܾ =  0. But then the only normalized eigenvector is ቀ1
0ቁ and 

therefore the set of eigenvectors do not form an orthonormal basis. 

We have seen that any Hermitean operator ܣመ can be expanded in its eigenvectors 
and eigenvalues. The procedure of finding this particular representation of an 
operator is called diagonalization. Often we do not want to work in the basis of 
the eigenvectors but for example in the canonical basis of the vectors 

݁ଵ = ቌ
1
0
⋮
0

ቍ , … , ݁ =

⎝

⎜
⎜
⎛

0
⋮
0
1
0
⋮
0⎠

⎟
⎟
⎞

, … , ݁ே = ቌ
0
⋮
0
1

ቍ                                              (1.78) 

If we want to rewrite the operator ܣመ in that basis we need to find a map between 
the canonical basis and the orthogonal basis of the eigenvectors of ܣመ. If we write 
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the eigenvectors |ߣ〉 = ∑ ߙ  ห ݁〉ே
ୀଵ  then this map is given by the unitary 

operator (we will define unitary operators shortly) 

ܷ = หߣ〉
ே

ୀଵ

〈݁| = ൭
ଵଵߙ … ଵேߙ

⋮ ⋱ ⋮
ேଵߙ … ேேߙ

൱                                                (1.79)  

Which obviously maps a vector |݁〉 into the eigenvector corresponding to the 
eigenvalue |ߣ〉. Using this operator ܷ we find 

ܷறܣመ ܷ =  ߣ


ܷற|ߣ〉〈ߣ| ܷ =  ߣ


|݁〉〈݁|                                 (1.80) 

The operator in Eq. (1.79) maps orthogonal vectors into orthogonal vectors. In 
fact, it preserves the scalar product between any two vectors. 

Let us use this as the defining property of a unitary transformation. 

Definition (1.2.8) : 

A linear operator U on a Hilbert space ℋ is called unitary if it is defined for 
all vectors |x〉, |y〉 in ℋ, maps the whole Hilbert space into the whole Hilbert 
space and satisfies 

〈x|U றU|y〉 = 〈x|y〉                                                                        (1.81) 

In fact we can replace the last condition by demanding that the operator satisfies 

U றU = ঌ    and    UU ற = ঌ                                                       (1.82) 

Eq. (1.81) implies that a unitary operator preserves the scalar product and 
therefore in particular the norm of vectors as well as the angle between any two 
vectors. 

Theorem (1.2.9) : 

Any unitary operator U on an N-dimensional Hilbert space ℋ has a 
complete basis of eigenvectors and all the eigenvalues are of the form e୧ம with 
real ϕ. 

Proof  
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We will not give a proof that the eigenvectors of U form a basis in ℋ. What 
we will proof is that the eigenvalues of ℋ are of the form e୧ம with real ϕ. To see 
this, we use Eq. (1.82). Be |λ〉 an eigenvector of U to the eigenvalue λ, then 

λU ற|λ〉 = U றU|λ〉 = |λ〉                                                                     (1.83) 

This implies that ߣ ≠ 0 because otherwise the right-hand side would be the null-
vector, which is never an eigenvector. From Eq. (1.83) we ϐind 

1
ߣ

= หߣ〉 ܷற|ߣ〉 = หߣ〉 ܷ|ߣ〉∗ =  (1.84)                                                                   ∗ߣ

This results in 

ଶ|ߣ| = 1 ⟺ ߣ = ݁థ                                                                         (1.85) 

(1.2.4): Functions of Operators 

Definition (1.2.10) : 

Given an operator A with eigenvalues ai and a complete set of eigenvectors 
|a୧〉. Further have a function f ∶  C → C that maps complex numbers into complex 
numbers then we define 

f൫A൯ =  f


୧ୀଵ

(a୧)|a୧〉〈a୧|                                                               (1.86) 

Definition (1.2.11) : 

Given a function f ∶  C → C that can be expanded into a power series 

f(z) =  f୧

ஶ

୧ୀଵ

z୧                                                                       (1.87) 

Then we define 

f൫A൯ =  f୧

ஶ

୧ୀଵ

A୧                                                                  (1.88) 

Definition (1.2.12) :  
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The derivative of an operator function f൫A൯ is defined via g(z)  =  ୢ
ୢ

(z) as 

݂݀൫ܣመ൯
መܣ݀

(ݖ) = ݃൫ܣመ൯                                                                       (1.89) 

Let us see whether the two definitions Def. (1.2.10) and (1.2.11) coincide for 
operators with complete set of eigenvectors and functions that can be expanded 
into a power series given in Eq. (1.87). 

݂൫ܣመ൯ =  ݂

ஶ

ୀଵ

 ܣ

                                     =  ݂

ஶ

ୀଵ

ቌ ܽห ܽ〉〈 ܽห
ே

ୀଵ

ቍ



 

                             =  ݂

ஶ

ୀଵ

 ܽ
ห ܽ〉〈 ܽห

ே

ୀଵ

 

                                   =  ൭ ݂ ܽ


ஶ

ୀଵ

൱
ே

ୀଵ

ห ܽ〉〈 ܽห 

                                                                     
= ∑ ݂( ܽ)ே

ୀଵ ห ܽ〉〈 ܽห                                           (1.90) 

For operators that do not have a complete orthonormal basis of eigenvectors of 
eigenvectors it is not possible to use Definition (1.2.10) and we have to go back 
to Definition (1.2.11). In practise this is not really a problem in quantum 
mechanics because we will always encounter operators that have a complete set 
of eigenvectors. 

As an example consider a Hermitean operator ܣመ with eigenvalues ܽ and 
eigenvectors |ܽ〉 and compute ܷ = ݁ . We find 

ܷ = ݁ =  ݁ೖ 
ே

ୀଵ

|ܽ〉〈ܽ|                                                      (1.91) 
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This is an operator which has eigenvalues of the form ݁ೖ  with real ܽ. 
Therefore it is a unitary operator, which you can also check directly from the 
requirement ܷ ܷற = ঌ = ܷற ܷ . In fact it is possible to show that every unitary 
operator can be written in the form Eq. (1.91). 

Lemma (1.2.13) :  

To any unitary operator U there is a Hermitean operator H  such that 

ܷ = ݁ு                                                                                                  (1.92) 

Show that for any unitary operator ܷ we have ݂ ( ܷறܣመ ܷ )  = ܷற݂(ܣመ) ܷ 

Proof 

We use the fact that ܷ ܷற = ঌ to find 

݂൫ ܷறܣመ ܷ ൯ =  ݂

ஶ

ୀ

൫ ܷறܣመ ܷ൯ 

                =  ݂

ஶ

ୀ

ܷறܣመ ܷ 

                       = ܷற ൭ ݂

ஶ

ୀ

መ൱ܣ ܷ 

         = ܷற݂(ܣመ) ܷ 

If you have functions, then you will also expect to encounter derivatives of 
functions. Therefore we have to consider how to take derivatives of matrices. To 
take a derivative we need to have not only one operator, but a family of 
operators that is parametrized by a real parameter s. An example is the set of 
operators of the form 

(ݏ)መܣ = ቀ1 + ݏ ݅. ݏ
−݅. ݏ 1 − ቁݏ                                                               (1.93) 

Another example which is familiar to you is the time evolution operator eି୧ୌୱ. 
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Now we can define the derivative with respect to s in complete analogy to the 
derivative of a scalar function by 

መܣ݀
ݏ݀

(ݏ) ≔ lim
∆௦→

ݏ)መܣ + (ݏ∆ − (ݏ)መܣ
ݏ∆

                                                  (1.94) 

This means that we have defined the derivative of an operator component wise. 

Now let us explore the properties of the derivative of operators. First let us see 
what the derivative of the product of two operators is. We find 

Property (1.2.14): 

For any two linear operators A(s)and B(s) we have 

݀൫ܣመܤ൯
ݏ݀

(ݏ) =
መܣ݀
ݏ݀

(ݏ)ܤ(ݏ) + (ݏ)መܣ
ܤ݀
ݏ݀

 (1.95)                                       (ݏ)

This looks quite a lot like the product rule for ordinary functions, except that now 
the order of the operators plays a crucial role. 

You can also have functions of operators that depend on more than one variables. 
A very important example is the commutator of two operators. 

Definition (1.2.15):   

For two operators A and B the commutator ൣA, B൧ is defined as 

,መܣൣ                      ൧ܤ = ܤመܣ −  መ                                                                    (1.96)ܣܤ

While the commutator between numbers (1 × 1 matrices) is always zero, this is 
not the case for general matrices. For example the operators corresponding to 
momentum and position do not commute, i.e. their commutator is nonzero. Other 
examples are the Pauli spin-operators 

ߪ = ቀ1 0
0 1ቁ ଵߪ         = ቀ0 1

1 0ቁ 

ଶߪ = ቀ0 −݅
݅ 0 ቁ ଷߪ      = ቀ1 0

0 −1ቁ                                              (1.97) 

For ݅, ݆ =  1, 2, 3 they have the commutation relations 
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൧ߪ,ߪൣ = ݅߳ߪ                                                                          (1.98) 

Where ϵ୧୨୩ is the completely antisymmetric tensor. It is defined by ϵଵଶଷ = 1 and 
changes sign, when two indices are interchanged, for example ϵ୧୨୩ = −ϵ୨୧୩. 

Lemma (1.2.16):  

             For arbitrary linear operators A , B, C  on the same Hilbert space we have       

                                                        
ܤመܣൣ , መ൧ܥ = ܤመൣܣ , መ൧ܥ + ,መܣൣ ܤመ൧ܥ                                                              (1.99)                                 

0 = ቂܣመ, ܤൣ , መ൧ቃܥ + ቂܤ , መܥൣ , መ൧ቃܣ + ቂܥመ, ,መܣൣ   ൧ቃ                                              (1.100)ܤ

Lemma (1.2.17): 

            Two commuting observables A and B have the same eigenvectors, i.e. they 
can be diagonalized simultaneously. 

Proof  

For simplicity we assume that both observables have only nondegenerate 
eigenvalues. 

Now chose a basis of eigenvectors {|a୧〉} that diagonalizes A. Now try to see 
whether the |a୧〉 are also eigenvectors of B. Using ൣA, B൧we have 

ܤመ൫ܣ |ܽ〉൯ = 〈መ|ܽܣܤ = ܽ൫ܤ |ܽ〉൯                                               (1.101) 

This implies that B|a୧〉 is an eigenvector of A with eigenvalue a୧. As the eigenvalue 
is non-degenerate we must have 

〈|ܽܤ                                         = ܾ|ܽ〉                                                                           (1.102) 

For some bi. Therefore |a୧〉 is an eigenvector to B. 

 

 

Lemma (1.2.18) : 
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            Given two linear operators A and B which have the commutator ൣB, A൧ = ঌ. 
Then for the derivative of an operator function f൫A൯ we find 

ܤൣ                             , ݂൫ܣመ൯൧ = ௗ
ௗ

൫ܣመ൯                                                                      (1.103) 

Proof  

Remember that a function of an operator is defined via its expansion into a 
power series, see Eq. (1.88). Therefore we find 

ܤൣ , ݂൫ܣመ൯൧ = ܤ ,  ݂ܣመ



൩ 

                   =  ݂


ܤൣ ,  መ൧ܣ

Now we need to evaluate the expression ൣܤ ,  መ൧. We proof by induction thatܣ
ܤൣ , መ൧ܣ = = ݊ መିଵ. Forܣ݊  1, this is true. Assume that the assumption is true for 
݊. Now start with ݊ +  1 and reduce it to the case for ݊. Using Eq. (1.99) we ϐind 

ܤൣ , መ(ାଵ)൧ܣ ≡ ܤൣ , መ൧ܣመܣ = ܤൣ , መܣመ൧ܣ + ܤመൣܣ ,  መ൧                            (1.104)ܣ

Now using the ൣܤ , መ൧ܣ = ঌ and the induction assumption we find 

ܤൣ , መ(ାଵ)൧ܣ = መܣመିଵܣ݊ + መܣ = (݊ +  መ                                  (1.105)ܣ(1

Now we can conclude 

ܤൣ , ݂൫ܣመ൯൧ =  ݂ൣܤ , መ൧ܣ


 

                  =  ݂݇


 መିଵܣ

        =
݂݀
መܣ݀

൫ܣመ൯ 

This finishes proof. 

A very useful property is 
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Lemma (1.2.19) :  

(Baker-Campbell-Haussdorff) For general operators A and B we have 

݁ መ݁ିܣ = መܣ + ܤൣ , መ൧ܣ +
1
2 ቂܤ , ܤൣ , መ൧ቃܣ + ⋯                        (1.106) 

For operators such that ቂܤ , ܤൣ , መ൧ቃܣ = 0 we have the simpler version 

݁ መ݁ିܣ = መܣ + ܤൣ ,  መ൧                                                   (1.107)ܣ

Proof  

Define the function of one real parameter ߙ 

(ߙ)݂ = ݁ఈ መ݁ିఈܣ                                                         (1.108) 

We can expand this function around ߙ = 0 into a Taylor series ݂(ߙ) =

∑ ఈ

!
ஶ
ୀ

ௗ
ௗఈ  ఈୀ and therefore we need to determine the derivatives of the|(ߙ)

function ݂(ߙ). We find 

݂݀
ߙ݀

ఈୀ|(ߙ) = ܤൣ ,  መ൧ܣ

݀ଶ݂
ଶߙ݀ ఈୀ|(ߙ) = ቂܤ , ܤൣ ,  መ൧ቃܣ

⋮ 

⋮ 

The rest of the proof follows by induction. The proof of Eq. (1.107) follows 
directly from Eq. (1.106). 

(1.3): Operators with Continuous Spectrum 

(1.3.1):The Position Operator 

The most natural place where an infinite dimensional state space appears 
is in the analysis of a particle in free space. Therefore let us briefly reconsider 
some aspects of wave mechanics. The state of a particle in free space (maybe 
moving in a potential) is described by the square-integrable wave-function  ߰(ݔ). 
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The question is now as to how we connect the wave-function notation with the 
Dirac notation which we have used to develop our theory of Hilbert spaces and 
linear operators. 

Let us remember what the Dirac notation for finite dimensional systems 
means mathematically. Given the ket-vector |߶〉 for the state of a finite 
dimensional system, we can find the components of this ketvector with respect 
to a certain basis {|݁〉}. The i-th component is given by the complex number 
〈݁|߶〉. 

Therefore in a particular basis it makes sense to write the state |߶〉 as a 
column vector 

|߶〉 ⟷ ൭
〈݁ଵ|߶〉

⋮
〈݁|߶〉

൱                                                                 (1.109) 

Let us try to transfer this idea to the wave-function of a particle in free space. 
What we will do is to interpret  ߰(ݔ) as the component of a vector with infinitely 
many components. Informally written this means 

|߰〉 ⟷ ൭
⋮

(ݔ)߰
⋮

൱                                                                 (1.110) 

where we have given the column vector a name, |߰〉. Obviously the set of vectors 
defined in this way form a vector space as you can easily check. Of course we 
would like to have a scalar product on this vector space. This is introduced in 
complete analogy to the finite dimensional case. There we had 

(|߶〉, |߰〉) = 〈߶|݁〉


〈݁|߰〉                                             (1.111) 

We just replace the summation over products of components of the two vectors 
by an integration. We have (see also Eq (1.29) 

(|߶〉, |߰〉) ∶= න ݔ݀
ஶ

ିஶ
 (1.112)                                        (ݔ)߰(ݔ)∗߶
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Now we have a space of vectors (or square integrable wave functions) ℋ 
equipped with a scalar product. Indeed it turns out to be a complete space so that 
we have a Hilbert space. 

Now that we have introduced ket vectors we also need to define bra-
vectors. In the finite dimensional case we obtained the bra vector via the idea of 
linear functionals on the space of state vectors. Let us repeat this procedure now 
for the the case of infinite dimensions. We define a linear functional 〈߶| by 

〈߶|(|߰〉) ≡ 〈߶|߰〉 = (|߶〉, |߰〉)                                                     (1.113) 

Now we would like to investigate a particular ket vector (linear functional) that 
will allow as to define a position state. We define a linear functional 〈ݔ| by 

(〈߰|)|ݔ〉 ≡ 〈߰|ݔ〉 ∶=  (1.114)                                                   (ݔ)߰

We are already writing this functional very suggestively as a bra-vector. Thats 
perfectly ok, and we just have to check that the so defined functional is indeed 
linear. Of course we would like to interpret the left hand side of Eq. (1.114) as a 
scalar product between two ket’s, i.e. 

,〈ݔ|) |߰〉) ≔ 〈߰|ݔ〉  =  (1.115)                                                   (ݔ)߰

Using the scalar product Eq. (1.112), we have 

න ݔ݀
ஶ

ିஶ
௫బߜ

∗ (ݔ)߰(ݔ) = ,〈ݔ|) |߰〉) = 〈߰|ݔ〉  =  (1.116)               (ݔ)߰

This means that the function ߜ௫బ
∗ -has to act like a delta-function! The wave (ݔ)

function corresponding to the bra 〈ݔ| is a delta-function. A delta-function 
however, is not square-integrable! Therefore it cannot be an element of the 
Hilbert space of square integrable functions. However, as we have seen it would 
be quite convenient to use these wave-functions or states. Therefore we just add 
them to our Hilbert space, although we will often call them improper states or 
wave-functions. In fact we can use basically all the rules that we have learned 
about finite dimensional Hilbert-spaces also for these improper states. All we 
need to demand is the following rule for the scalar product 

:〈ݔ|߰〉 = ∗〈߰|ݔ〉  =  (1.117)                                                 (ݔ)∗߰
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Now we can write for arbitrary kets |߶〉, |߰〉 ∈ ℋ 

〈߶|߰〉 = න (ݔ)∗߶ ݔ݀(ݔ)߰ = න〈߶|ݔ〉 ݔ݀〈߰|ݔ〉 = 〈߶| ൬න|ݔ〉〈ݔ| ൰ݔ݀ |߰〉     (1.118) 

Then we can conclude 

න|ݔ〉〈ݔ| ݔ݀ = 1                                                                                (1.119) 

Inserting this identity operator in 〈ݔ|߰〉, we obtain the orthogonality relation 
between position kets 

න ݔ)ߜ − (ᇱݔ ᇱݔ݀(ᇱݔ)߰ = (ݔ)߰ = 〈߰|ݔ〉 = න〈ݔ|ݔᇱ〉  ᇱݔ݀〈߰|ᇱݔ〉

                                                                          = න〈ݔ|ݔᇱ〉  ᇱݔ݀(ᇱݔ)߰

Therefore we have 

〈ᇱݔ|ݔ〉 = ݔ)ߜ −  ᇱ)                                                                        (1.120)ݔ

Now we can derive the form of the position operator from our knowledge of the 
definition of the position expectation value 

〈߰|ොݔ|߰〉    ≔ න ݔ  ݔଶ݀|(ݔ)߰|

                         = න〈߰|ݔ〉  ݔ݀〈߰|ݔ〉ݔ

 = 〈߰| ൬න 〈ݔ|ݔ ൰ݔ݀ |߰〉                                      (1.121) 

where we defined the position operator 

ොݔ = න |ݔ〉〈ݔ|ݔ ݔ݀ =  ොற                                                   (1.122)ݔ

Now we see why the improper position kets are so useful. In this basis the 
position operator is automatically diagonal. The improper position kets |ݔ〉 are 
eigenvectors of the position operator 
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〈ݔ|ොݔ =  〉                                                                  (1.123)ݔ|ݔ

This makes sense, as the position kets describe a particle that is perfectly 
localized at position ݔ . Therefore a position measurement should always give 
the result ݔ. So far we have dealt with one-dimensional systems. All of the above 
considerations can be generalized to the d-dimensional case by setting 

〈ොݔ| = ොଵ݁⃗ଵݔ + ⋯ + ොௗ݁⃗ௗݔ                                                             (1.124) 

The different components of the position operator commute are assumed to 
commute. 

(1.3.2):The Momentum Operator 

Now we are going to introduce the momentum operator and momentum 
eigenstates using  the ideas of linear functionals in a similar fashion to the way in 
which we introduced the position operator. Let us introduce the linear functional 
 defined by |〉

: 〈߰|〉 =
1

ℎߨ2√
න ݁ି௫ ⁄  (1.125)                                        ݔ݀(ݔ)߰

Now we define the corresponding ket by 

∗ 〈߰|〉 = ߰∗() =:  (1.126)                                                   〈|߰〉

Combining Eq. (1.125) with the identity operator as represented in Eq. (1.119) 
we find 

1
ℎߨ2√

න ݁ି௫ ⁄ ݔ݀(ݔ)߰ = = 〈߰|〉 න〈ݔ|〉 〈ݔ|߰〉݀(1.127)                 ݔ 

Therefore we find that the state vector |〉 represents a plane wave, because 

= 〈|ݔ〉
1

ℎߨ2√
݁௫ ⁄                                                                    (1.128) 

As Eq. (1.128) represents a plane wave with momentum  it makes sense to call 
 a momentum state and expect that it is an eigenvector of momentum 〈|
operator ̂ to the eigenvalue . Before we define the momentum operator, let us 
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find the decomposition of the identity operator using momentum eigenstates. To 
see this we need to remember from 

the theory of delta-functions that 

1
ℎߨ2√

න ݁(௫ି௬) ⁄ ݀ = ݔ)ߜ −  (1.129)                                          (ݕ

Then we have for arbitrary |ݔ〉 and |ݕ〉 

= 〈ݕ|ݔ〉 ݔ)ߜ − (ݕ =
1

ℎߨ2√
න ݁(௫ି௬) ⁄ = |ݔ〉 ൬න|〉〈| ൰݀  (1.130)       〈ݕ|

and therefore 

න|〉〈| ݀  = ঌ                                                                          (1.131) 

The orthogonality relation between different momentum kets can be found by 
using Eq. (1.131) in Eq. (1.125). 

〈߰|〉 〈߰|ঌ|〉 = = න〈|ᇱ〉 〈ᇱ|߰〉݀ᇱ                                   (1.132) 

So that 

= 〈ᇱ|〉 )ߜ −  ᇱ)                                                               (1.133)

The momentum operator ̂ is the operator that has as its eigenvectors the 
momentum eigenstates |〉 with the corresponding eigenvalue . This makes 
sense, because |〉 describes a plane wave which has a perfectly defined 
momentum. Therefore we know the spectral decomposition which is 

̂ = න |〉〈|  (1.134)                                                                         ݀

Clearly we have 

〈|̂ =  〉                                                                            (1.135)|

Analogously to the position operator we can extend the momentum operator to 
the d-dimensional space by 
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መ⃗ = ଵ݁⃗ଵ̂ + ⋯ + ௗ݁⃗ௗ̂                                                             (1.136) 

The different components of the momentum operator are assumed to commute. 

(1.3.3): The Position Representation of the Momentum Operator and the 
Commutator Between Position and Momentum 

We have seen how to express the position operator in the basis of the 
improper position kets and the momentum operator in the basis of the improper 
momentum kets. Now we would like to see how the momentum operator looks 
like in the position basis. 

To see this, differentiate Eq. (1.128) with respect to ߯ which gives 

ℎ
݅

߲
ݔ߲

= 〈|ݔ〉
ℎ
݅

߲
ݔ߲

1
ℎߨ2√

݁௫ ⁄ =  (1.137)                                    〈|ݔ〉

Therefore we find 

〈߰|̂|ݔ〉 = න〈|ݔ〉                       ݀ 〈߰|〉

 =
ℎ
݅

߲
ݔ߲

න〈|ݔ〉  ݀ 〈߰|〉

  =
ℎ
݅

|ݔ〉 ൬න|〉〈|൰ |߰〉      

 =
ℎ
݅

߲
ݔ߲

 (1.138)                                                                       〈߰|ݔ〉

In position representation the momentum operator acts like the differential 
operator, i.e. 

̂ ⟷
ℎ
݅

߲
ݔ߲

                                                                         (1.139) 

Knowing this we are now able to derive the commutation relation between 
momentum and position operator. We find 

,ොݔ]|ݔ〉 = 〈߰|[̂ ̂ොݔ)|ݔ〉 −  ( 〈߰|ොݔ̂
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                                            =
ℎ
݅

ݔ
߲

ݔ߲
〈߰|ݔ〉 −

߲
ݔ߲

 ൨(〈߰|ݔ〉ݔ)

    = ݅ℎ〈ݔ|߰〉 

       =  〈߰|ℎঌ݅|ݔ〉

Therefore we have the Heisenberg commutation relations 

,ොݔ] [̂ = ݅ℎঌ                                                                            (1.140) 


