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CHAPTER FOUR 

HEISENBERG UNCERTAINTY RELATIONS FOR PHOTONS 

Section (4.1): Relativistic Uncertainty Relations  

As in the standard Heisenberg form of uncertainty relation for photons is 
somewhat difficult identity its position operator. However, it is apparently, 
photon can be influenced by the spread of momentum and the extension in space 
that represent the famous Heisenberg phrase “Je genauer der Ort bestimmt ist, 
desto ungenauer ist der Impuls bekannt und umgekehrt.” 

The photon uncertainty relations is mainly divided into two defined 
notions: the photon wave function as mentioned in momentum space and then 
the energy density of the quantized electromagnetic field. Thus, when the second 
momentum is applied, it is generated the following form 

݌∆ݎ∆ ≥ 4ℎ                                                                    (4.1) 

This chapter is aimed to construct a definition for the uncertainty of the photons 
position so that can be analogous to the standard definition. This to illustrate the 
importance of ෠ܴ as the center of energy to the first momentum. Therefore, this 
method is going to serve in making uncertainty relation as close as the original 
form of Heisenberg, 

ඥ∆ܴଶඥ∆ܲଶ >
݀
2

ℎ                                                         (4.2) 

Where ݀ is the number of dimensions. A characteristic feature of the uncertainty 
relation for photons is that the left-hand side in this inequality in two and in 
three dimensions is never equal to ݀ℎ/2, but it tends to this limit with the 
increase of the average photon momentum. Only in the infinite-momentum 
frame is the uncertainty relation for photons the same as for nonrelativistic 
massive particles. However, in one dimension, the inequality (4.2) is saturated so 
that in this case there is no difference between photons and massive 
nonrelativistic particles. 

We also prove the following sharp inequality 
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ට〈 ෠ܴ . ෠ܴ〉ට〈 ෠ܲ. ෠ܲ〉 ≥
3
2

ℎඨ1 +
4√5 

9
                                        (4.3) 

In nonrelativistic quantum mechanics, the inequalities obeyed by the two 
measures of uncertainty, ∆ܴଶ∆ܲଶ and 〈 ෠ܴ . ෠ܴ〉〈 ෠ܲ . ෠ܲ〉, are completely equivalent. 
They have equal lower bounds and they are both saturated by Gaussian 
functions. This equivalence does not hold for photons. Nevertheless, the two 
inequalities are intimately related. We shall first prove (4.3) and then use the 
information about the photon states that saturate this inequality to elucidate the 
intricate properties of the inequality (4.2). 

Study has been done by Schwinger, he came up with the rough estimate 
that the lower bound of ∆ܴଶ∆ܲଶ is of the order of ℎଶ. 

            This chapter is endeavored to derive a related uncertainty relation for 
photons beams. Making use of Coherent states of the electromagnetic field to find 
a description of such beams in the limit of a large number of photons so as to 
prove the sharp inequality as follows 

ඥ∆Rଶඥ∆Pଶ ≥
3
2

hඨ1 +
4√2

9
                                           (4.4) 

and we find the mode functions of the coherent states that saturate this 
inequality. 

The nonexistence of the local photon density in configuration space is due 
to the fact that in quantum electrodynamics the operator of the total number of 
photons ܰ ෡ involves not a single but a double integral: 

෡ܰ =
1

ଶℎܿߨ4
න ݀ଷݎ න ݀ଷݎᇱ ×: ቈ

,ݎ)෡ܦ .(ݐ ,ᇱݎ)෡ܦ (ݐ
ݎ|ߝ − ᇱ|ଶݎ +

,ݎ)෠ܤ .(ݐ ,ᇱݎ)෠ܤ (ݐ
ݎ|ߤ − ᇱ|ଶݎ ቉ 

=
1

ଶℎܿߨ2
න ݀ଷݎ න ݀ଷݎᇱ : ቈ

,ݎ)෠றܨ .(ݐ ,ᇱݎ)෠ܨ (ݐ
ݎ| − ᇱ|ଶݎ ቉                                        (4.5) 

We use systematically the Riemann-Silberstein vector (the RS vector)  
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,ݎ)෠ܨ (ݐ =
,ݎ)෡ܦ (ݐ

√2߳
+ ݅

,ݎ)෠ܤ (ݐ

ඥ2ߤ
                                                (4.6) 

Which will allow us to write many formulas in a compact form. The normal 
ordering removes the (infinite) contribution from the vacuum state. In contrast 
to the total-number operator, the total-energy operator of the electromagnetic 
field ܪ෡ (the Hamiltonian) is an integral of a local density 

෡ܪ = න ݀ଷݎ ,ݎ)̂ߝ .4)                                                          (ݐ 7) 

Where 

,ݎ)̂ߝ (ݐ =: ,ݎ)෠றܨ .(ݐ ,ᇱݎ)෠ܨ  (4.8)                                              :(ݐ

The center of the energy operator can be introduced in any relativistic theory. All 
we need for this construction is the set of generators of the Poincar´e group. We 
define the operator ෠ܴ as follows: 

෠ܴ =
1

෡ܪ2
෡ܰ + ෡ܰ 1

෡ܪ2
=

1

ඥܪ෡
෡ܰ 1

ඥܪ෡
                                        (4.9) 

Where ܰ ෡ is the first moment of the energy distribution, 

෡ܰ = න ݀ଷݎ ,ݎ)̂ߝݎ  (4.10)                                                      (ݐ

Example (4.1.1): 

Prove that ෠ܴ = ଵ
ଶு෡

෡ܰ + ෡ܰ ଵ
ଶு෡

= ଵ
ඥு෡

෡ܰ ଵ
ඥு෡

 

Proof 

The symmetrization in (4.9) is necessary to obtain a Hermitian operator. 
The inverse of the Hamiltonian is well defined, provided we exclude the vacuum 
state. The spectrum of the Hamiltonian is non negative, therefore the positive 
square root is unique. The significance of ෡ܰ is further underscored by its being 
the generator of Lorentz transformations. Since the operators ܪ෡ and ෡ܰ do not 
commute (the energy changes under Lorentz transformations), the equivalence 
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of the two forms of ෠ܴ in (4.9) is not obvious and to prove the equality of the two 
forms of ෠ܴ in (4.9) we will first prove the following lemma[93] 

,෡ܪൣ ݂݅ መ൧ܥ = ,෡ܪℎ݁݊  ቂඥݐ  0 መቃܥ = 0                                (4.11)  

In the proof, we use the fact that the eigenvectors of the Hamiltonian form a 
basis. Acting on an arbitrary state in this basis |ܧ〉 (excluding the vacuum), we 
have 

ቀඥܪ෡, ቁܧ√ = ቂඥܪ෡, መቃܥ 〈ܧ| = ,෡ܪൣ 〈ܧ|መ൧ܥ = 0                   (4.12) 

Since the factor ቀඥܪ෡,  ቁ does not vanish, it can be dropped and the validity ofܧ√

the lemma is established. 

Next, we use the commutation relations between the Hamiltonian and the 
generator of the Lorentz transformations 

,෡ܪൣ ෡ܰ൧ = −݅ℏ ෠ܲ                                                     (4.13) 

to obtain 

቎ܪ෡, ቈ
1

ඥܪ෡
෡ܰ 1

ඥܪ෡
,

1

ඥܪ෡
቉቏ = ቈ

1

ඥܪ෡
,෡ܪൣ ෡ܰ൧

1

ඥܪ෡
,

1

ඥܪ෡
቉ =

ℏ
݅

ቈ
෠ܲ

෡ܪ
,

1

ඥܪ෡
቉ = 0     (4.14) 

Finally, using the lemma, we may replace H෡  by ඥH෡  in the first term and expand 
the resulting double commutator[93]: 

0 = ቎ඥH෡ ቈ
1

ඥܪ෡
෡ܰ 1

ඥܪ෡
,

1

ඥܪ෡
቉቏ =

1
෡ܪ

෡ܰ + ෡ܰ 1
෡ܪ

− 2
1

ඥܪ෡
෡ܰ 1

ඥܪ෡
            (4.15) 

The vanishing of the difference of two expressions for ෠ܴ appearing in (4.9) 
means that they are equal. 

It follows from the commutation relations between the generators of the 
Poincar´e group [33], [34], 

ൣ ෡ܰ௜, ෠ܲ௝൧ = ݅ℎߜ௜௝ܪ෡                                                            (4.16) 
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That ෠ܴ and the total momentum ෠ܲ obey the canonical commutation relations 
between the position and momentum, 

ൣ ෠ܴ௜, ෠ܲ௝൧ = ݅ℎߜ௜௝                                                                   (4.17) 

We must, however, resist the temptation to treat ෠ܴ as a bona fide position 
operator because its components do not commute, 

ൣ ෠ܴ௜, ෠ܴ௝൧ = −݅ℎܿଶܪ෡ିଵ መܵ௜௝ܪ෡ିଵ                                                  (4.18) 

Where መܵ௜௝ is the operator of the intrinsic angular momentum: the difference 
between the total angular momentum and the orbital angular momentum, 

መܵ௜௝ = ෡௜௝ܯ − ൫ ෠ܴ௜, ෠ܲ௝ − ෠ܴ௝, ෠ܲ௜൯                                                  (4.19) 

Note that the effects of the noncommutativity are present in all systems with 
intrinsic angular momentum and decrease with the increasing energy. We shall 
fully confirm this observation in Section (4.3). 

Despite all of the differences between the nonrelativistic and relativistic 
dynamics we may derive a sharp Heisenberg uncertainty relation along one 
direction, say ݔ, for any relativistic system. This one-dimensional uncertainty 
relation is based solely on the commutation relations between ෠ܺ  =  ෠ܴ௫ and 
෠ܲ  =  ෠ܲ௫ and has the standard form 

ඥ∆ܺଶඥ∆ܲଶ ≥
1
2

ℎ                                                                 (4.20) 

Where 

∆ܺଶ = 〈൫∆ ෠ܲ൯ଶ〉 , ∆ ෠ܺ = ෠ܺ − 〈 ෠ܺ〉                                       (4.21ܽ) 

∆ܲଶ = 〈൫∆ ෠ܲ൯ଶ〉 , ∆ ෠ܲ = ෠ܲ − 〈 ෠ܲ〉                                         (4.21ܾ) 

The one-dimensional uncertainty relation holds for any relativistic quantum 
system. A simple proof of (4.20) uses the commutation relations (4.17) and the 
non-negative expectation value of the operator: 

                                〈൫∆ ෠ܺ − Δߣ݅ ෠ܲ൯൫∆ ෠ܺ + Δߣ݅ ෠ܲ൯〉 ≥ 0                                          (4.22) 
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Where ߣ is an arbitrary real number. The condition that this expression treated 
as a function of ߣ can have at most one real root gives (4.20). This inequality is 
saturated by the quantum state whose state vector satisfies the condition 

൫∆ ෠ܺ − Δߣ݅ ෠ܲ൯|Ψ〉 =  0.                                                   (4.23) 

The specific form of |Ψ〉 depends, of course, on the system under study. Note that 
we may remove the average values ℏ 〈 ෠ܺ〉 and  ℏ〈 ෠ܲ〉 from (4.23) by choosing |Ψ〉 
in the form 

                            หΨ〉 = 〉൫݅݌ݔ݁  ෠ܲ〉 ෠ܺ ℎ − ݅〈 ෠ܺ〉 ෠ܲ ℎ⁄⁄ ൯หΨᇱ〉                                  (4.24) 

Since the inequality must hold for all vectors, replacing |Ψ〉 by |Ψᇱ〉 makes no 
difference and the two forms of the uncertainty relation in one dimension, 
namely, 

                     √∆ܺଶ√∆ܲଶ ≥ ଵ
ଶ

ℎ   ܽ݊݀   ට൫ ෠ܺଶ൯ට൫ ෠ܲଶ൯ ≥ ଵ
ଶ

ℎ                                (4.25) 

are completely equivalent. In nonrelativistic quantum mechanics the equivalence 
holds in any number of dimensions. A spherically symmetric Gaussian function 
shifted in the coordinate space by 〈ݎ〉 and in the momentum space by 〈݌〉 by the 
unitary transformation of the form (4.24) will automatically saturate the 
inequality (4.2). This equivalence, however, is no longer valid for relativistic 
systems in three dimensions. 

To extend our analysis to two and three dimensions, we introduce the 
dispersion in position that involves two or three components of the center-of-
energy vector ෠ܴ , 

                                            ∆ܴଶ = 〈∆ ෠ܴ . ∆ ෠ܴ〉                                                           (4.26) 

Where ∆ ෠ܴ = ෠ܴ − 〈ܴ〉  and the dispersion in momentum, 

                                             ∆ܲଶ = 〈∆ ෠ܲ. ∆ ෠ܲ〉                                                          (4.27) 

Where ∆ ෠ܲ = ෠ܲ − 〈 ෠ܲ〉. Following the same procedure as the one used in deriving 
(4.20), we obtain (4.2). The proof is based this time on the expectation value of 
the following positive operator: 
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〈൫∆ ෠ܴ − Δߣ݅ ෠ܲ൯൫∆ ෠ܴ + Δߣ݅ ෠ܲ൯〉 > 0                              (4.28) 

In contrast to the one-dimensional case, the inequalities (4.2) and (4.28) are not 
sharp because there is no state vector that is annihilated by all three components 
of the vector operator ܣመ = ∆ ෠ܴ + ߂ߣ݅ ෠ܲ and even by two components. This is due 
to the fact that the commutators (4.18) of the components of ෠ܴ do not vanish. 
Should there exist a state vector annihilated by ܣመ, then this vector would also be 
annihilated by the commutators of the components of ܣመ. These commutators are 
proportional to the components of spin. Therefore, for any relativistic quantum 
system endowed with spin the inequality (4.2) cannot be saturated.  

In the next section, we introduce a convenient formalism to describe 
photon states that will be later applied to derive the inequalities (4.3) and (4.4) 
and also to elucidate the meaning of the inequality (4.2). 

Section (4.2): Uncertainty Relation for the Product of 〈܀෡  · ෡۾〉 ෡〉 and܀   ·  〈෡۾ 

In what follows, we shall consider one-photon states of the 
electromagnetic field. These states are generated from the vacuum state by the 
action of the photon creation operators, 

|݂〉 = න
݀ଷ݇

݇
ൣ ା݂(݇)ܽା

ற (݇) + ݂ି (݇)ܽି
ற (݇)൧|0〉                         (4.29) 

Where ܽ±
ற (݇) create photons with momentum ℏ݇ and positive or negative 

helicity ߣ (left-handed or right-handed circular polarization). We assume the 
normalization of these operators such that the commutation relations have the 
form 

ൣܽఒ(݇), ܽఒᇲ
ற (݇ᇱ)൧ = ݇)(ଷ)ߜఒఒᇲ݇ߜ − ݇ᇱ)                                   (4.30) 

This leads to the relativistic form (the volume element on the light cone ݀ଷ݇ ݇⁄  is 
invariant under Lorentz transformations) of the scalar product, 

ൻ݂(ଵ)ห݂(ଶ)ൿ = න ෍
1
݇ ఒ݂

(ଵ)∗(݇) ఒ݂
(ଶ)(݇)                                (4.31) 

and the associated norm of one-photon state vectors, 
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⟨݂|݂⟩ = ‖݂‖ଶ = න ෍
1
݇

| ఒ݂(݇)|ଶ                                        (4.32) 

The symbol ∫ ∑ stands for the summation over ߣ and the integration over ݇ 

න ෍ = ෍ න ݀ଷ݇
ఒ

                                                            (4.33) 

The functions ା݂(݇) and ݂ି (݇) are the photon wave functions in momentum 
space. Their moduli squared are the probability densities to find the left- or 
right-handed photons with momentum ℏ݇. 

The creation and annihilation operators are connected with the field 
operators through the expansion of the RS  operator (where (RS)  is Riemann–
Silberstein)  into plane waves, 

,ݎ)෠ܨ (ݐ = √ℏܿ න
݀ଷ݇

ଷ(ߨ2) ଶ⁄ × ݁(݇)[ܽା(݇)݁௜௞.௥ି௜௪௧ + ܽି(݇)݁ି௜௞.௥ା௜௪௧]           (4.34) 

The normalized polarization vector ݁(݇) is: 

݁(݇) =
݇ × (݊ × ݇) − ݅݇(݊ × ݇)

√2݇|݊ × ݇|
                                                    (4.35) 

Where ݊  is an arbitrary unit vector. 

In order to find the action of all relevant operators on one-photon states, 
we first express these operators in terms of creation and annihilation operators. 
This task is simplified by using the RS vector in the form (3.34)  

෡ܪ = න ෍
1
݇

ℏܽݓఒ
ற(݇)ܽఒ(݇)                                                   (4.36ܽ) 

෠ܲ = න ෍
1
݇

ℏ݇ܽఒ
ற(݇)ܽఒ(݇)                                                      (4.36ܾ) 

෡ܯ = න ෍
1
݇

ℏܽఒ
ற(݇) ൬݇ ×

1
݅

ఒܦ + ߣ
݇
݇

൰ ܽఒ(݇)                                 (4.36ܿ) 

෡ܰ = න ෍
1
݇

ℏܽݓఒ
ற(݇)݅ܦఒܽఒ(݇)                                                    (4.36݀) 
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Where ܦఒ is the covariant derivative in momentum space on the light cone, 

ఒܦ = ∇ −  (4.37)                                                                  (݇)ߙߣ݅

(݇)ߙ = ݅݁∗(݇). ∇݁(݇) =
(݊. ݇)(݊ × ݇)

݇|݊ × ݇|ଶ                                      (4.38) 

the dot denotes the scalar product of polarization vectors, and ߘ denotes the 
derivatives with respect to ݇. 

In relativistic quantum mechanics of photons, the generators of the 
Poincar´e group (4.36) act on the photon wave functions as follows: 

෡ܪ ఒ݂(݇) = ℏݓ ఒ݂(݇)                                                           (4.39ܽ) 

෠ܲ ఒ݂(݇) = ℏ݇ ఒ݂(݇)                                                             (4.39ܾ) 

෡ܯ ఒ݂(݇) = ℏ ൬݇ ×
1
݅

ఒܦ + ߣ
݇
݇

൰ ఒ݂(݇)                                         (4.39ܿ) 

෡ܰ ఒ݂(݇) = ℏܦ݅ݓఒ ఒ݂(݇)                                                         (4.39݀) 

Where we stretched our notation keeping the same symbols to denote the 
operators acting on the states of the field and the operators acting on the photon 
wave functions. Since all of these operators are Hermitian with respect to the 
scalar product (4.31), they generate two unitary representations ା݂(݇) and ݂ି (݇) 
of the Poincar´e group.  

The center-of-energy operator ෠ܴ given by the second expression in (4.9) 
has the following representation in quantum mechanics of photons: 

෠ܴ ఒ݂(݇) = ఒܦ݇√݅
1

√݇ ఒ݂(݇)                                                (4.40) 

It is often convenient to replace the function ఒ݂(݇) by its rescaled counterpart 
݃ఒ(݇), 

݃ఒ(݇) = ఒ݂(݇)

√݇
                                                                 (4.41) 

The transformation properties of ݃ఒ(݇) under the Lorentz transformations are 
more complicated than those of ఒ݂(݇), but this function is similar to the 
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nonrelativistic wave function because in contrast to (4.32) its norm (and also the 
scalar product) has a familiar nonrelativistic form 

‖݃‖ଶ = න ෍ ݃ఒ
∗ ݃ఒ                                                      (4.42) 

The center-of-energy operator acting on ݃ఒ(݇) is 

෠ܴ௚ഊ =  ఒ௚ఒ(݇)                                                           (4.43)ܦ݅

As a simple application of this formula, we find now the function that saturates 
the general one dimensional uncertainty relation (4.20) in the case of photons. 
Choosing the direction in this relation along the ݊ vector, we find that the 
covariant derivative (4.37) becomes an ordinary derivative along this direction 
because the component of ߙ(݇) along n vanishes. Therefore, the function ݃ఒ(݇) 
which saturates the inequality is a Gaussian in the direction ݊. This result has 
been obtained before by Holevo in the framework of estimation theory. 

The extension of the Heisenberg uncertainty relation for photons from one 
to three dimensions is nontrivial. In the next section, we use the representation 
(4.43) of the operator ෠ܴ to fulfill this aim. 

           The formulation of the uncertainty relation for the photon will be carried 
out with the use of the operators R෡ and P෡ acting on the photon wave functions 

ఒ݂(݇) in momentum space. In this section we shall consider the product of the 
quantities 〈R෡  ·  R෡〉 and 〈P෡  ·  P෡〉, instead of their variances. The variances ܴ߂ଶ and 
ଶ reduce to 〈R෡ܲ߂  ·  R෡〉 and 〈P෡  ·  P෡〉 only when both 〈 ෠ܴ〉 and 〈 ෠ܲ〉 vanish. 

The quantities 〈R෡  ·  R෡〉 and 〈P෡  ·  P෡〉 expressed in terms of the rescaled wave 
function ݃ఒ are 

〈R෡  ·  R෡〉 =
1

‖݃‖ଶ න ෍(ܦఒ݃ఒ)∗ .  ఒ݃ఒܦ

=
1

‖݃‖ଶ න ෍ൣ∇݃ఒ
∗ . ∇௚ఒ + ଶ(݇)݃ఒߙଶߣ

∗݃ఒ + .(݇)ߙߣ݅ ൫݃ఒ
∗∇௚ఒ−௚ఒ∇݃ఒ

∗൯൧        (4.44) 

〈P෡  ·  P෡〉 =
ℏଶ

‖݃‖ଶ න ෍ ݃ఒ
∗ ݇ଶ݃(4.45)                                                   ߣ 
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There is one immediate conclusion that can be drawn by inspecting the 
integrand in the formula for 〈R෡  ·  R෡〉. Namely, the presence of ߙ(݇) rules out 
spherically symmetric functions. To obtain a finite value of 〈R෡  ·  R෡〉 we must 
eliminate the singularity at |݊ ×  ݇|  =  0 by the appropriate angular dependence 
of ݃ఒ. Our analytic solution will confirm this expectation. The breaking of the 
spherical symmetry is an important difference between the uncertainty relation 
for photons and for the nonrelativistic particles. 

Further calculations are most easily done after the transformation of the 
integrals to spherical coordinates, 

〈R෡  ·  R෡〉 =
1

‖݃‖ଶ ෍ න ݀݇
ஶ

଴஛

݇ଶ න ߠ݀ sin ߠ
గ

଴
න ݀߮
ଶగ

଴

 

× ൥|߲௞݃ఒ|ଶ +
|߲ఏ݃ఒ|ଶ

݇ଶ +
ห߲ఝ݃ఒหଶ

݇ଶ sinଶ ߠ
+

ଶߣ cosଶ ߠ |݃ఒ|ଶ

݇ଶ sinଶ ߠ

+
ߣ݅ cos ఒ݃)ߠ

∗߲ఝ݃ఒ − ݃ఒ߲ఝ݃ఒ
∗)

݇ଶ sinଶ ߠ
቉                                                              (4.46) 

〈P෡ · P෡〉 =
ℏଶ

‖݃‖ଶ ෍ න ݀݇
ஶ

଴஛

݇ଶ න ߠ݀ sin ߠ
గ

଴
න ݀߮
ଶగ

଴

݇ଶ|݃ఒ|ଶ                           (4.47) 

‖݃‖ଶ = ෍ න ݀݇
ஶ

଴஛

݇ଶ න ߠ݀ sin ߠ
గ

଴
න ݀߮
ଶగ

଴

݇ଶ|݃ఒ|ଶ                                       (4.48) 

The left-hand side of the uncertainty relation for R෡  ·  R෡  and P෡ · P෡ divided by ℏଶ is 
a dimensionless quantity which will be denoted by ߛଶ, 

ଶߛ =
〈R෡  ·  R෡〉〈P෡ · P෡〉

ℏଶ                                                              (4.49) 

We shall determine the minimal value of ߛ applying a variational procedure. The 
variation of ߛଶ with respect to ݃ఒ

∗(݇) leads to the following  equation for ݃ఒ(݇): 
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ቈ−
1

ଶߢ ߲௞݇ଶ߲௞ −
1

ଶߢ sinଶ ߠ
൫߲ఏ sin ߠ ߲ఏ + ߲ఝ

ଶ − ଶߣ − ߣ2݅ cos ߮ ߲ఝ൯ −
ଶߣ

ଶߢ + ଶߢߛ

− ൨ߛ2 ݃ఒ(ߢ, ,ߠ ߮) = 0                                                                                (4.50) 

Where we replaced ݇  by the dimensionless variable ߢ, 

ߢ = ݇ ቆℏଶ 〈R෡  ·  R෡〉
〈P෡ · P෡〉

ቇ
ଵ ସ⁄

                                                          (4.51) 

After performing the variation, we put ||݃|| ଶ =  1. The variational equations for 
two values of ߣ decouple, so that we may take one value of ߣ at a time. Since the 
change of the sign of ߣ is compensated by complex conjugation, we will consider 
only positive helicity ߣ =  1. 

Equation (4.50) allows for the separation of variables, 

݃ఒ(ߢ, ,ߠ ߮) = (ߢ)ࣥ ⊝  ௜௠ఝ                                                 (4.52)݁(ߠ)

and we obtain the following equations for the radial and the angular parts 

ቈ−
1

ଶߢ ߲௞݇ଶ߲௞ +
݆(݆ + 1) − ଶߣ

݇ଶ + ଶ቉ߢߛ (ߢ)ࣥ =  (4.53)                          (ߢ)ࣥߛ2

ቈ−
1

sin ߠ
߲ఏ sin ߠ ߲ఏ +

݉ଶ + ଶߣ − ݉ߣ2 cos ߠ
sinଶ ߠ

቉ ⊝ (ߠ) = ݆(݆ + 1) ⊝  (4.54)        (ߠ)

The equation for ⊝  is the same as in the theory of magnetic monopoles. Its (ߠ)

solutions are given in terms of Jacobi polynomials ௝ܲ
(௠,௠ᇲ)(ݔ) (also known as 

“monopole harmonics”), 

⊝ (ߠ) = sinఒ ߠ cos௠ ߠ ௝ܲି௠
(ఒି௠,ఒା௠)(cos  (4.55)                                   (ߠ

Regular solutions are obtained when ݆ is a natural number starting from ݆ =  1. 
For ݆ =  0, not only are both solutions of the angular equation, namely, 1/ ߠ ݊݅ݏ 
and ܿߠ ݐ݋, singular, but also the radial equation does not have regular solutions 
because the centrifugal force becomes attractive. Therefore, the states are ruled 
out as we already observed before. 
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The equation for ࣥ(ߢ) is the radial part of the Schrodinger equation for 
the three-dimensional harmonic oscillator with a modified centrifugal force. This 
equation after the substitution, 

(ߢ)ࣥ = ௩ିଷߢ ଶ⁄ exp ൬−
1
2

ଶ൰ߢ ෩ࣥ  (4.56)                                  (ߢ)

reduces to the equation for the confluent hypergeometric function, 

෩ࣥ (ߢ) = 1ܨ1 ቀ
ݒ − ߛ

2
, ;ݒ  ଶቁ                                        (4.57)ߢ

where  ߥ =  1 + ඥ݆ + ݆ଶ  −  3/4. To obtain a regular solution, 1F1 must become 
a polynomial and this leads to the quantization condition for the parameter ߛ, 

ߛ = 2݊ + 1 + ඥ݆ +  ݆ଶ  −  3/4       ݊ = 0,1,2, …             (4.58) 

The lowest value of ߛ is obtained for ݆ =  1 and ݊  =  0, 

ߛ = 1 +
√5
2

=
3
2

ඨ1 +
4√5

9
                                              (4.59) 

This is the right-hand side in the uncertainty relation (4.3). In what follows, we 
shall denote by ߛ always its lowest value (4.59). This eigenvalue is degenerate. 
There are three eigenfunctions that saturate the inequality (4.3) corresponding 
to ݉  =  0, ±1: 

଴݂(ߢ, ,ߠ ∅) = ܽܣ sin ߠ ݌ݔఊିଵ݁(ߢܽ) ൬−
1
2

ଶ൰(ߢܽ)                     (4.60ܽ) 

,ߢ)݂± ,ߠ ∅) = ܽܣ
(1 ± cos (ߠ

√2
݁±௜∅(ܽߢ)ఊିଵ݁݌ݔ ൬−

1
2

ଶ൰(ߢܽ)          (4.60ܾ) 

where the normalization constant is 

ܣ = ඨ
3

(ߛ)Γߨ4
                                                            (4.61) 

and the parameter a sets the length scale. The value of a is arbitrary because 
there is no intrinsic length associated with the photon. 
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To exhibit the geometric structure of the wave functions (4.60) we shall 
rewrite them as components of a Cartesian vector ݂ =  ( ௫݂ , ௬݂ , ௭݂) in Cartesian 
coordinates 

݂(݇) = ݌ݔఊିଵ݁(ߢܽ)ଶܽܣ ൬−
1
2

ଶ൰(ߢܽ) ×
ߢ × (݊ × (ߢ + ݊)ߢ݅ × (ߢ

|݊ × |ߢ         (4.62) 

The presence of the unit vector in the direction n ×  k means that there is a 
vortex line in momentum space along the ݊ direction with unit intensity. To 
obtain the formulas (4.60) we must choose the direction of ݊ as the ݖ axis in 
spherical coordinates. 

The increase of the lower bound in the uncertainty relation (4.3) from the 
value 3ℏ/2 underscores the unique properties of photons. This increase is due to 
the specific angular dependence of the photon wave function in momentum 
space enforced by the nontrivial geometry on the light cone. As a result, all three 
functions (4.60) vanish at ݇  =  0, in contrast to the Gaussian functions saturating 
the standard Heisenberg relation. In this case, the angular dependence is the 
same. However, the radial dependence is different and this difference is reflected 
in the values of the lower bounds. The scaling of ߢ is chosen so that the 
uncertainties in position and momentum are equally distributed, 

〈R෡  ·  R෡〉 = aଶ൫1 + √5 2⁄ ൯                                          (4.63a) 

〈P෡  ·  P෡〉 = (ℏ a⁄ )ଶ൫1 + √5 2⁄ ൯                                   (4.63b) 

Of course, their product is scale independent and gives the lower bound. 

Section (4.3): Uncertainty Relation for the Product of ࡾࢤ૛ ࡼࢤ ࢊ࢔ࢇ૛ and Photon            
Beams 

              The information gained in the analysis of the uncertainty relation (4.3) 
will now be used to improve the bound in (4.2). The ϐirst observation is that 
〈ܴ ෡ 〉 =  0 for all three 
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FIG. (4.1). Dependence of the product of variances (in units of ℏଶ) on the squared 
mean momentum (in units of ℏଶ/ܽଶ). The leftmost dot represents the exact 
valueof ߛଶ obtained for vanishing average momentum. The remaining dots (from 
left to right) mark the values obtained for the trial functions (4.65) with none, 
one, two, and up to six terms. The solid curve represents the two-parameter fit 
(4.66). 

Functions that saturate (4.3), whereas the value of 〈ܲ ෡ 〉 does not vanish for 
the states with ݉ = ±1, 

〈ܲ ෡ 〉 = ±
Γ(3 2⁄ + √5 2⁄ )
2Γ(1 + √5 2⁄ )

ℏ
ܽ

݊ = ±0.686
ℏ
ܽ

݊                        (4.64) 

Thus, already in this simple case the value of ܴ߂ଶܲ߂ଶ  = 〈R෡  ·  R෡〉〈P෡  ·  P෡〉 −
〈R෡  ·  R෡〉〈ܲ ෡ 〉ଶ  is lower than the value of  〈R෡  ·  R෡〉〈P෡  ·  P෡〉. 

In the general case, the bigger 〈ܲ ෡ 〉 is, the bigger will be the average photon 
energy. Thus, the noncommutativity of the components of R෡ plays a decreasing 
role, bringing us closer to the situation in nonrelativistic quantum mechanics. 
This is clearly seen in Fig.(4.1) where we show the exact value (4.3) obtained for 
the vanishing mean momentum and the results of numerical calculations of 
 ଶ. The points in this plot were obtained by choosing the trial functions asܲ߂ଶܴ߂
the product of ±݂(݇, ,ߠ ߮) and a polynomial in ݇ ܿߠ ݏ݋, 

1 + ܽଵ݇ cos ߠ + ܽଶ(݇ cos ଶ(ߠ + ܽଷ(݇ cos ଷ(ߠ + ⋯                 (4.65) 

where ܽ௜ are variational parameters. These parameters are determined by 
requiring that they give the lowest value of ܴ߂ଶܲ߂ଶ. The points in Fig.(4.1)  
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represent the values obtained with none, one, two, and up to six parameters. The 
solid line represents a simple two-parameter fit of the form 

9 4⁄ +
√5

1 + 1.14〈ܲ ෡ 〉ଶ + 0.8〈ܲ ෡ 〉ସ                                         (4.66) 

to all eight results. The numerical results clearly show the convergence to the 
value 9/4 when  〈ܲ ෡ 〉 tends to infinity. This result is also in agreement with the 
formula (4.18) for the commutator of the center-of-energy operators since the 
right-hand side tends to zero with the increase of the energy, so that at infinite 
energy these operators behave as their nonrelativistic counterparts. We shall 
confirm now this result with analytic considerations. We show that in the 
infinite-momentum frame, we indeed obtain as a lower bound in the uncertainty 
relation the limiting value 3ℏ/2. Thus, our aim is to find the minimal value of the 
expression 

ଶܲ߂ଶܴ߂ = 〈൫ ෠ܴ − 〈ܴ ෡ 〉൯ଶ〉 〈൫ ෠ܲ − 〈ܲ ෡ 〉൯ଶ〉                           (4.67) 

in the limit of infinite 〈ܲ ෡ 〉. 

In the first step, we eliminate 〈ܴ ෡ 〉 by applying the unitary transformation 
෡ ܴ〉݅−)݌ݔ݁ 〉. ෠ܲ ℏ⁄ ) (i.e., by choosing the center of the energy as the origin of the 
coordinate system). The elimination of  〈ܲ ෡ 〉 by the unitary transformation 
෡ ܲ〉݅)݌ݔ݁ 〉. ෠ܴ ℏ⁄ ) is not so painless because the components of ෠ܴ do not commute 
and we are left with the expression 

ଶߛ =
1

ℏଶ 〈݁ି௜〈௉ ෡ 〉.ோ෠ ℏ⁄ ෠ܴ . ෠ܴ݁௜〈௉ ෡ 〉.ோ෠ ℏ⁄ 〉〈ܲ ෡ . ܲ ෡ 〉                            (4.68) 

which is to be minimized. We find by the variational procedure that the 
minimum of ߛ is indeed equal to 3ℏ/2. 

To apply the variational procedure, we rewrite the functional (4.68) in the 
one-photon space. To simplify the calculations, we choose n in the direction of 
the average momentum. With this choice, the operator in ෠ܴ reduces to an 
ordinary derivative with respect to ݇௭ because the scalar product ݊.  .vanishes ߙ
Therefore, the unitary operator ݁௜〈௉ ෡ 〉.ோ෠ ℏ⁄  acting on the photon wave functions 
becomes just the shift operator. Therefore, in the functional (4.44) the argument 
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݇௭ of ߙ(݇) is shifted now by ݇௭ = 〈 ෠ܲ௭ ℏ⁄ 〉. The solution of the differential equation 
obtained by varying ߛଶ is a very difficult task because the variables ݇ and ߠ can 
no longer be separated. 

However, in the limiting case when 〈݇௭〉 tends to infinity, there is a radical 
simplification. In this limit, ߙ(݇ + 〈݇〉) becomes 

lim
〈௞〉→ஶ

݇)ߙ + 〈݇〉) =
݊ × ݇

|݊ × ݇|ଶ                                          (4.69) 

 is very simple leading to the nonrelativistic lower bound in the uncertainty 
relation for photons (4.2). 

In most experiments photons appear in the form of photon beams. In this 
section we derive the uncertainty relation for a very common representation of 
such beams: the coherent state of the electromagnetic field. The exact 
determination of the uncertainty relation for the coherent state does not seem to 
be feasible but the important case—the limit when the mean photon number 〈ܰ〉 
is large—is tractable. 

Coherent states |ܿ݋ℎ〉 are generated from the vacuum state by the unitary 
Glauber displacement operator ܦ, 

ܦ = ݌ݔ݁ ൬ඥ〈ܰ〉 ෍ න
1
݇

ൣ ఒ݂(݇)ܽఒ
ற(݇) − ఒ݂

∗(݇)ܽఒ(݇)൧൰ 〈ℎ݋ܿ| =  (4.70)       〈0|ܦ

where the function ఒ݂(݇) that so far represented a singlephoton state now 
describes an arbitrary nonmonochromatic mode of electromagnetic radiation 
.We pulled out the square root of the mean photon number 〈ܰ〉 in the coherent 
state to have better control of the large 〈ܰ〉 limit. The function ݂ will be 
normalized to 1 as in (4.32). 

Our aim, as in Section (4.2), is to minimize the left-hand side of the 
uncertainty relation (4.67). All expectation values are to be evaluated in the 
coherent state (4.70), 

ଶߛ =
൫〈ܴ ෡ . ܴ ෡ 〉 − 〈ܴ ෡ 〉. 〈ܴ ෡ 〉൯൫〈ܲ ෡ . ܲ ෡ 〉 − 〈ܲ ෡ 〉. 〈ܲ ෡ 〉൯

ℏଶ                      (4.71) 
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 We evaluate the leading terms of the expansion in 1/〈ܰ〉 for the dispersion in 
position (4.26) and momentum (4.27) evaluated in the coherent state of the 
electromagnetic field. In this calculation, we use the second form of the position 
operator (4.9). The expectation value of any combination of creation and 
annihilation operators in a coherent state is tantamounts to the vacuum 
expectation value of the same combination of these operators transformed by the 
action of the displacement operator ܦ, 

றܽఒܦ
ற(݇)ܦ = ܽఒ

ற(ܦ) + ඥ〈ܰ〉 ఒ݂
∗(݇)                             (4.72ܽ) 

ܦ(݇)றܽఒܦ = ܽఒ(ܦ) + ඥ〈ܰ〉 ఒ݂(݇)                            (4.72ܾ) 

We will need only the following lowest-order correction to the operators ܪ෡ , ෡ܰ 
and 

ܦ෡ܪறܦ = 〈ܰ〉ℏܿ ቈ෍ න ఒ݂
ற(݇) ఒ݂(݇)  

+
1

ඥ〈ܰ〉
෍ න ܽఒ

ற(݇) ఒ݂(݇) + ఒ݂
∗(݇)ܽఒ(݇) + ࣩ ൬

1
〈ܰ〉൰቉                    (4.73ܽ) 

றܦ ෡ܰܦ = 〈ܰ〉ℏܿ ቈ෍ න ఒ݂
ற(݇)݅ܦఒ ఒ݂(݇)

+
1

ඥ〈ܰ〉
෍ න ܽఒ

ற(݇)݅ܦఒ ఒ݂(݇) + ఒ݂
(݇)ఒܽఒܦ݅(݇)∗ + ࣩ ൬

1
〈ܰ〉൰቉        (4.73ܾ) 

றܦ ෠ܲܦ = 〈ܰ〉ℏ ቈ෍ න ఒ݂
ற(݇)݊ ఒ݂(݇)

+
1

ඥ〈ܰ〉
෍ න ܽఒ

ற(݇)݊ ఒ݂(݇) + ఒ݂
∗(݇)݊ܽఒ(݇) + ࣩ

1
〈ܰ〉቉                     (4.73ܿ) 

The first two formulas lead to the following expression for ෠ܴ 

றܦ ෠ܴܦ =
1

ℋ
ቈ෍ න +

1

ඥ〈ܰ〉
෍ න ቀܽఒ

ற(݇)݅ܦఒ ఒ݂(݇) + ఒ݂
ఒܽఒ(݇)ቁܦ݅(݇)∗

−
ℛ

ඥ〈ܰ〉
෍ න ቀܽఒ

ற(݇) ఒ݂(݇) + ఒ݂
∗(݇)ܽఒ(݇)ቁ + ࣩ ൬

1
〈ܰ〉൰቉                   (4.74) 
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Where 

ℋ = ෍ න ఒ݂
∗(݇) ఒ݂(݇)                                              (4.75ܽ) 

ࣨ = ෍ න ఒ݂
ఒܦ݅(݇)∗ ఒ݂(݇)                                         (4.75ܾ) 

ℛ = ࣨ ℋ⁄                                                                      (4.75ܿ) 

In both factors of (4.71), the leading terms cancel because they are c numbers, so 
that there is no difference between the averaged square and the square of the 
average. We shall first calculate the next-order corrections to the difference 
〈 ෠ܴ . ෠ܴ〉 − 〈 ෠ܴ〉. 〈 ෠ܴ〉. First, note that if the contribution comes from only one ෠ܴ, then it 
does not con tribute to the difference because it cancels out between the two 
terms. The ࣩ(1 〈ܰ〉⁄ ) terms are not canceled by their counterparts in 〈 ෠ܴ〉. 〈 ෠ܴ〉 only 
when the corrections appear in both operators 〈 ෠ܴ〉 in ෠ܴ. ෠ܴ. The same observation 
holds for the momentum operator. Therefore, the lowest-order corrections come 
only from the products of two terms linear in the creation and annihilation 
operators, and the final results can be written in the form 

〈൫ ෠ܴ − 〈 ෠ܴ〉൯ଶ〉 =
1

ℋଶ〈ܰ〉 × ෍ න ݇ ఒܦ݅)] − ℛ) ఒ݂(݇)]∗. ఒܦ݅) − ℛ) ఒ݂(݇)     (4.76) 

〈൫ ෠ܲ − 〈 ෠ܲ〉൯ଶ〉 = 〈ܰ〉ℏଶ ෍ න ݇ ఒ݂
∗

ఒ݂(݇)                                (4.77) 

Without any loss of generality [the function ఒ݂(݇) is at this point arbitrary and it 
will be determined from the variational procedure later], we can make the 
following replacement: 

ఒ݂(݇) → exp(−݅݇. ℛ) ఒ݂(݇)                                                  (4.78) 

This change of phase makes no difference in (4.77), but it leads to the elimination 
of the ℛ -dependent terms in (4.76), and we obtain 

〈൫ ෠ܴ − 〈 ෠ܴ〉൯ଶ〉 =
1

ℋଶ〈ܰ〉 ෍ න ݇ ఒܦ| ఒ݂(݇)|ଶ                           (4.79) 

 Using the formulas (4.79) and (4.77) we obtain the following expression for ߛଶ 
valid for large values of 〈ܰ〉: 
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ଶߛ =
∑ ∫ ఒܦ|݇ ఒ݂(݇)|ଶ ∑ ∫ ݇| ఒ݂(݇)|ଶ

[∑ ∫| ఒ݂(݇)|ଶ]ଶ + ࣩ ൬
1

〈ܰ〉൰                      (4.80) 

In what follows we will tacitly assume that all results are valid only in the limit 
when 〈ܰ〉 →  ∞, and we will omit the symbol ࣩ(1/〈ܰ〉). 

Before subjecting this expression to the variational procedure, let us note 
that it does not depend on the normalization of ఒ݂(݇). Therefore, we may vary the 
function ఒ݂(݇) freely, as we did in all previous cases. The variation with respect 
to ݂ ఒ

∗(݇) leads to the following equation for ݂ ఒin the spherical coordinate system 

ቈ−
1

ଷߢ ߲௞݇ଷ߲௞ −
1

ଶߢ sinଶ ߠ
൫߲ఏ sin ߠ ߲ఏ + ߲ఝ

ଶ − ଶߣ − ߣ2݅ cos ߮ ߲ఝ൯ −
ଶߣ

ଶߢ −
ଶߢߛ

ߢ

+ ଶ൨ߛ ఒ݂(ߢ, ,ߠ ߮) = 0                                                                                 (4.81) 

we have omitted here all intermediate steps because they are analogous to those 
followed in Sec.(4.2). The dimensionless parameter ߢ is defined as 

ߢ =
ℏ݇
ܿ

〈෡ܪ〉
Δܲଶ = ݇

∑ ∫| ఒ݂(݇)|ଶ

∑ ∫ ݇| ఒ݂(݇)|ଶ                                           (4.82) 

After the separation of variable we obtain the following equation for the radial 
part 

ቈ−
1

ଷߢ ߲௞݇ଷ߲௞ +
݆(݆ + 1) − ଶߣ

ଶߢ −
ଶߛ2

ߢ
቉ (ߢ)ࣥ =  (4.83)                  (ߢ)ଶࣥߛ−

while the angular part is the same as in (4.54), so that the lowest allowed value 
of ݆ is 1. The equation for the radial part after the substitution, 

(ߢ)ࣥ = ඥ௝(௝ାଵ)ିଵߢ exp(−ߢߛ) ෩ࣥ  (4.84)                                      (ߢ)

reduces to the equation for the confluent hypergeometric function, 

෩ࣥ (ߢ) = 1F1 ቀ
μ
2

− ,ߛ ;ߤ  ቁ                                                  (4.85)ߢߛ2

where ߤ =  1 +  2ඥ݆(݆ + 1). To obtain a regular solution, 1F1 must become a 
polynomial and this leads to the quantization condition for the parameter ߛ, 
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ߛ =
2݊ + 1 + 2ඥ݆(݆ + 1)

2
        ݊ = 0,1,2, … . .                      (4.86) 

The lowest value of ߛ is obtained for ݆ =  1 and ݊ =  0, 

ߛ =
1
2

+ √2 =
3
2

ඨ1 +
4√2

9
                                              (4.87) 

again, as in Section (4.2), the solution corresponding to the lowest value of ߛ has 
a threefold degeneracy. The three normalized solutions, which are the 
counterparts of (4.60), are 

଴݂(݇, ,ߠ ∅) = ܽܣ sin ߠ  ଶିଵ݁ିఊ௔௞                                  (4.88ܽ)√(ߢܽ)

,ߢ)݂± ,ߠ ∅) = ܽܣ
(1 ± cos (ߠ

√2
݁±௜∅(ܽߢ)√ଶିଵ݁ିఊ௔௞               (4.88ܾ) 

Where 

ܣ = ଶඨ√(ߛ2)
3

Γ൫2√2൯ߨ8
                                                        (4.89)  

and the parameter a sets the scale as in the case of a single photon. 

       Our uncertainty relations for individual photons can be connected with 
observations through the Glauber theory of photodetection [35], as we have 
indicated in [36]. The interpretation of the uncertainty relation for photons is 
basically the same as in the case of the standard Heisenberg uncertainty relation. 
The only difference is that the photodetection relies on the energy density of 
photons— the photon is where its energy is localized—rather than on the 
probability density to find the particle (its charge or mass) at a given location. To 
test our uncertainty relation, one would have to make repeated measurements 
on photons produced by the same source. 

The uncertainty relation plays a different role in the case of photon beams. 
In this case, the limitation on the dispersion ܴ߂ଶ imposed by the uncertainty 
relation finds its physical interpretation in terms of the directly observable 
quantity: the focal volume. Of course, the focal volume does not have sharp 
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boundaries. However, the moments of the energy distribution give reasonable 
measures of its size. Thus, a sensible measure of the size of the focal volume ௙ܸ  is: 

௙ܸ = ଷ(ଶܴ߂) ଶ⁄                                                              (4.90) 

The uncertainty relation in three dimensions gives precise bounds on the size of 
the focal volume for a given spectral composition of the beam. According to this 
relation, the decrease of V୤ is limited by the dispersion of momentum 

௙ܸ ≥
ℏଷߛଷ

ଷ(ଶܴ߂) ଶ⁄                                                            (4.91) 

It is worth mentioning here that the one-dimensional uncertainty relation (4.20) 
can give only a rough estimate of the focal volume due to the strong correlations 
imposed by the noncommutativity of the components of ෠ܴ. 

         The reduction of the size of the focal volume is important in many practical 
applications of laser beams, such as fluorescence microscopy, optical tweezers, 
material processing and also in medicine. We are far from suggesting that our 
uncertainty relations will lead to an improvement in any of these techniques, but 
we believe that they are relevant at the fundamental level. 

Section (4.4): Conclusion 

            This chapter focuses on the uncertainty relation for photons on a measure 
of the spatial extension of the photon wave function, the measure is mainly  built 
around the center-of-energy vector: the first moment of the energy distribution 
divided by the total energy. The replacement of the second moment of energy 
used in Ref. [36] by the first moment of energy, it serves to bring the analysis as 
close as the measurement standard quantum-mechanical treatment. 

The suitable substitute for the nonexistent photon position operator, is 
going to be the center of energy vector. Never the less, the non commutativity of 
its components leads to significant differences compared to the non relativistic 
case. In nonrelativistic Heisenberg uncertainty relations, the lowest value of 
 ଶ doesnt depend on the average position and on the averageܲ߂√ଶܴ߂√
momentum. It does not work with photons. The lowest possible value of 
 ଶ depends on the choice of the Lorentz frame. It varies betweenܲ߂√ଶܴ߂√
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3/2ℏ(1 +  4√5/9) and 3ℏ/2, when the average momentum changes from 0 to 
infinity. Then the photons is going to take the same uncertainty relations as 
nonrelativistic particles. This can be proved and explained by the special 
properties of relativistic dynamics in the infinite-momentum frame. 

Eventually, the uncertainty relations based on the center-of energy 
operator were also derived for photon beams and that can be described by 
Coherent states of the electromagnetic field. Findings were obtained in the limit 
of a large number of photons. These uncertainty relation provide a fundamental 
limitation on the reduction of the beam focal volume. 


