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ABSTRACT

In this thesis the variational iteration method is implemented to give exact solutions for
seepage flow derivatives in porous media. A correction functional for the fractional partial
equation is well constructed by a general Lagrange multipliers which can be identified
optimally via variational theory. Some examples are given and comparisons are made with
the Adomian Decomposition Method (ADM).The comparisons show that the method is very
effective ,convenient and overcome the difficulty arising in calculating Adomian
polynomials andwe have solved seepage flow derivatives in porous media by using the
Adomian Decomposition method(ADM). Our solution proved rapid convergence to the exact
solution.
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Introduction

Calculus is a very important branch of mathematics. It was invented by European
mathematicians, Isaac Newton and Gottfried Leibnitz in the seventieth century. The first

thought in fractional calculus was introduced in the following question: L'Hospital asked

Leibniz about the possibility that 7 be fractional. Liebniz (1695) replied; it will lead to a
paradox.” But he added prophetically, ‘From this apparent paradox, one day useful
consequences will be drawn’.” In the years following, a little advancement was made in the

development of fractional calculus. One of the earliest meaningful results given by

Lacroix(1819) and Joseph Liouville (1832).

Fractional calculus represents more accurately some natural behaviour related to
different areas of engineering and is applied to modern application of science, engineering
and mathematics. Some of the areas where fractional calculus has made a profound impact
include viscoelasticity and rheology, electrical engineering, electrochemistry, biology,
biophysics and bioengineering, signal and image processing, mechanics, physics and control
theory [1-5].

In recent years, it has turned out that many phenomena can be successfully modelled
by the use of fractional derivatives and integrals. Several analytical and numerical methods
have been proposed to solve fractional ordinary, integral and partial differential equations of
physical interest. The most commonly methods used are: Adomian Decomposition Method
(ADM) and Variational Iteration Method .

In this thesis , we introduced the method of solution of nonlinear ordinary and partial
differential equation . The two methods studied are Adomian Decomposition Method

(ADM) and Variational Iteration Method (VIM), many illustrated examples was given.

We introduced the main topic needed throughout this work , including the definition
of flow through porous and the equations that govern this flow , Also fractional calculus and

its important properties where studied.

\"



The Adomian Decomposition Method (ADM) was introduced . This method and the
improvement made by the noise phenomenon and modified Decomposition Method [19]
are reliable and effective techniques of promising results. This method provide the solution

in an infinite series form.

The Varational Iteration Method (VIM), was investigated. This method provides the

solution in an infinite series

We applied the Variational Iteration Method (VIM) in solving fractional three

dimensional Darcy’s law, and we obtained an exact solution.
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Chapter One

Adomian Decomposition Method (ADM)



1.1 Adomian Decomposition Method

The Adomian Decomposition Method has been receiving much attention in recent years in
applied mathematics in general, and in the area of series solution in particular.The method
proved tobe powerful, effective, and can easily handle a wide class of linear or nonlinear,
ordinary or partial differential equation,and nonlinear integralequation .The decomposition
method demonstrates fast convergence of the solution and therefore provides several
significant advantages. The method will be successfully used to handle most types of partial
differential equation that appear in several physical models and scientific applications.The
method attacks the problem in a direct way and in a straightforward fashion without using
linearization, perturbation or any other restrictive assumption that may change the physical
behaviour of the model under discussion.

The Adomian Decomposition Method was introduced and developed by George
Adomian is well addressed in the literature. A considerable amount of research work has
been invested recently in applying this method to a wide class of linear and nonlinear
ordinary differential equation, partial differential equation and integral equation as well.

The Adomian Decomposition Method consists of decomposing the unknown function
u(x,y) of any equation into a sum of an infinite number of components defined by

decomposition serie

0

wu(x,y) =2 wu,(x,y), (1.1

n =20

Where the components u , (x,y),n 20 areto be determined in a recursive

manner .

The decomposition method concerns itself — with finding the components
Uy,Uy,U,.. individually .As will be seen through the table, the determination of these

components can be achieved in an easy way through a recursive relation that usually involve
simple integrals.

To give a clear overview of Adomian decomposition method, we first consider the
linear differential equation written in an operator form by

Llu + Ru = g, (1.2)

where L is, mostly, the lower order derivative which is assumed to be invertible, R




Is other linear differential operator , and & 1is a source term. We apply the inverse

operator L~ ' to both sides of equation (1 .2 ) and using given condition to obtain
u=f—L "(Ru) (1.3)

Where the function f represents the terms arising from integrating the source term
g andfrom using the given conditions that are assumed to be prescribed. As indicated

before. Adomian decomposition method defines the solution u# by an infinite series of
components given by

W= u, (1.4)

Where the components % ,, U, U , ... are usually

recurrently determined. Substituting (1 .4 ) into both side of (1 .3) leads to

>, = f = LRCY w,)

n=0

(1.5)

For simplicity . equation (1.5) can be rewritten as
uy+u, +u,+..=f—-—L"(R(u, +u, +u,+..)). (1.6)

To construct the recursive relation needed for the components U o, U, U , ...

It is important to note that Adomian decomposition method suggests that zeroth component

u , is usually defined by the function f described above, i.e.by all terms, that are not

included under the inverse operator L~ ' , which arise from the initial data and from
integrating the inhomogeneous term. Accordingly, the formal recursive relation is defined by

u, = f,
u, ., =—-L "(R(u,)), k>0, (.7)

Or equivalently




uy = f,
u, = _L_l(R(uo))a
u, = L (R (u,), (1.8)

uy =L (R (u,))

It is clearly seen that the relation (1.8) reduced the differential equation under
consideration into an elegant determination of computable components. Having determined

these components, we then substitute it into (1 .4) to obtain the solution a series form.

It was formally that if an exact solution exists for the problem, then the obtained series
converges very rapidly to that solution. The convergence concept of the decomposition series
was thoroughly investigated to confirm the rapid convergence of the resulting series.

However, for concrete problems, where a closed form solution is not obtainable, a
truncated number of terms is usually used for numerical purposes. It was also shown by
many that the series obtained by evaluating few terms gives an approximation of high degree
of accuracy if compared with other numerical techniques.

It seems reasonable to give a brief outline about the works conducted by Adomian in
applying Adomian’s method. Adomian and in many other works introduced his method and
applied it to many deterministic and stochastic problems. He implemented his method to
solve frontier problems ofphysics The Adomian’sachievements in this regard are remarkable
and of promising results.

Adomian’smethod has attracted a considerable amount of research work. A
comparison between the decomposition method and the perturbation technique showed the
efficiency of the decomposition method compared to the tedious work required by the
perturbation method. A comparative study between Adomian’s method and Taylor series
method has been examined to show that the decomposition method requires less
computational work if compared with Taylor series.

Other comparisons with traditional method such as finite difference method have been
conducted in the literature.
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It is to be noted that many studies have shown that few terms of the decomposition
series provide a numerical result of a high degree of accuracy. Many other studies implement
the decomposition method for differential equations, ordinary and partial, and for integral
equation, linear and nonlinear.

It 1s normal in differential equations that we seek a closed form solution or a series
solution with a proper number of terms.It seems reasonable to use the decomposition method
to discuss two ordinary differential equation where an exact solution is obtained for the first
equation and a series approximation is determined for the second equation. For the first
problem we consider the equation.

u (x)=u(x),u(0)=4 (1.9)
In an operator form, equation (1.9) becomes
Lu = u, (1.10)

Where the differential operator L is given by

d
L:—, .
= (1.11)

And therefore the inverse operator L ' is defined by
Lo =[0Odr, 1.12)
0

Applying L~ to both sides of (1.10 ) and using the initial condition we obtain
L '"(Lu )= L "(u), (1.13)

So that

u(x)—-—u(0)= L "(u), (1.14)

Or equivalently

u(x)= A+ L "(u), (1.15)

Substituting the series assumption (1 .5) into both sides of (1 .15 ) gives




0

D2 ou,(x) =4+ L‘l(i u,(x)), (1.16)

n=0

In view of (1 .16 ) | the following recursive relation
uo(x)=4 1.17) u,,, (x)=L "(u,(x)), k>0,
Follows immediately. Consequently ,we obtain

u,(x)= 4

u,(x)= L' (u,(x) = Ax,

2

w,(x) =L (u,(x)) = A’;—,, (1.18)

3

wy(x) = L7 (u,(x)) = A’;—,,

Substituting (1 .18 ) into (1.5) gives the solution in a series form by

2 3

* vy )
X ) (1.19)

u(x)= A0+ x + Y

And it a closed form by

u(x)= Ae *, (1.20)

We next consider the well-Known Airy’s equation

u (x)=xu (x),u(0)= A4,u (0)= B, (1.21)
In an operator form, equation (1 .21 ) becomes

Lu = xu, (1.22)

5]



Where the differential operator L is given by

2

L de—2> (1.23)

And therefore the inverse operator L " is defined by
L) = [[Odvdx , (1.24)
00

Operating L~ with on both sides of (1 .21 ) and using the initial conditions we obtain
L '"(Lu )= L "(xu), (1.25)

So that

u(x)—xu (0)—u(0)= L "(xu), (1.26)

Or equivalently

u(x)= A+ Bx + L "(xu), (1.27)

Substituting the series assumption (1.5) into both sides of (1 .27 ) yields

D u,(x)=4+Bx + L' (x> u,(x)), (1.28)

n=20 n=

Following the decomposition method we obtain the following recursive relation

u,(x)= 4 + Bx ,
(129) Z’lk+1(x) = L_l(xu k(x))’ k 2 09

Consequently, we obtain

u,(x)= A + Bx

x> x*
u (x)=L "(xu ,(x)) = A—+ B ,
 (x) (xu ,(x)) ¢ 3
6 7
u,(x)=L "(xu,(x) = 4 * g2t (1.30)
? 1 180 504 °
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Substituting (1.30 ) into (1.5) gives the solution in a series form

3 6 4 7

X X X
u(x)=A»01+—+ +.)+B(x+—+
(x) ( 6 180 ) ( 12 504

+...), (1.31)

Other components can be easily computed to enhance the accuracy of the approximation.

We consider the inhomogeneous partial differential equation :

u, +u, = f(x,y),

w(0,y) = g(y)u(x,0)=h(x) &%)

In an operator form, Eq (1 .32 ) can be written as
Lou+ L u= f(x,y) (1.33)

Where

0
L= =2 q
* O x g 0y (1.34)

—1
Where each operator is assumed easily invertible, and thus the inverse operators = and
-1
L, existand given by

X y
L)O =[0d.a35)L,0 =[0d.
0 0
This mean that
L;leu(x,y)= u(x,y)—u(O,y), (136)
Appling L' to both sides of (1.33 ) gives

L'L.u=L,"(f(x,y) - L, (L,u), (1.37)

Or equivalently
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u(x,y)=g(y)+ L, (f(x,y) — L' (L,u), (1.38)
Obtained by using (1 .36 ) and by using the condition # (0, ¥) = g () As stated

Above the decomposition method sets

u(x.y) =3 u,(x,9) (1.39)

n=0

Substituting (1 .39 ) into both sides of (1.38 ) we find

0

S () = g(0) + L (f(xy) = L, (Y (20 y), (1.40 )

n=0

This can be rewritten as

Ug+u, +u, +..=g(y)+ L;l(f(x,y)) —L;lLy(uo +u, +u, +...), (1.41)

The zeroth component U , ,as suggested by Adomian method is always identified by the

given initial condition and the terms arising from L ;1 ( f (x,y)), bothside of which are

assumed to be known. Accordingly, we set
wo(x,y)=g(y)+ L (f(x,p) (1.42)

Consequently, the other components % ,,,,k = 0 are defined by using the relation

wp(x,y)=—=L"L (u,), k>0, (1.43)
Combining (1 .42 ) and (1 .43 ) we obtain the recursive scheme
uo(x,y)=g(y)+ L (f(x,»), (1.44)

g (x,9)=—LL,(u;) k>0,

That form the basis for a complete determination of the components © o, U, U, ,...

therefore, the components can be easily obtained by

wo(x,y)=g(y)+ L. (f(x,p)),

u,(x,y)=-L"(L,u,(x,y), (1.45)

8]



u,(x,y)=—-L."(L,u,(x,y)
uy(x,y)=—-L.(L,u,(x,y)

And so on. Thus the components % , can be determined recursively as far as we like.

It is clear that the accuracy of the approximation can be significantly improved by
simply determining more components. Having established the components of # (x, y) ,
the solution in a series form follows immediately. However, the expression

n—1

¢, =2 u,(x,¥), (1.46 )

r=0

Is considered the 7 -term approximation to % . For concrete problems, where exact
solution is not easily obtainable, we usually use the truncated series (1 .46 ) for numerical

purposes. As indicated earlier, the convergence of Adomian Decomposition Method has
been established.

It is important to note that the solution can be obtained by finding the ) - solution by

applying the inverse operator L ;1 to both sides of the equation

L,= f(x,y)—- L,u, (1.47)

The equality of the X - solution and the ) - solution is formally justified and will be

examined through the coming examples.

It found, as will be seen later, that very few terms of the series obtained in

(1.39 ) provide a high degree of accuracy level which makes the method powerful when

compared with other existing numerical techniques. In many cases the series representation
of #(Xx,y) can be summed to yield the closed form solution. Several works in this

direction have demonstrated the power of the method for analytical and numerical
application.

The essential features of the decomposition method for linear and nonlinear equation,
homogeneous and inhomogeneous, can be outlined as follows:

1.Express the partial differential equation, linear or nonlinear, in an operator form.

2.Apply the inverse operator to both sides of the equation written in an operator for.

9



3.Set the unknown function # (X, ¥ ) intoa decomposition series

0

u(x,y)= D, u,(x,»), (1.48)

n=0

Whose components are elegantly determined. We next substitute the series (1 .48 )

into both sides of the resulting equation.

4 Xdentify the zeroth component U o (X, ) as the terms arising from the given condition

and from integrating the source term f (x, y), both are assumed to be known.

5.Determine the successive components of the series solution ; , K = 1 by applying the
recursive scheme (1 .44 ), where each component % ; , can be completely determined by
using the previous component U j _

6.Substitute the determined components (1.48 ), to obtain the solution in a series form.

An exact solution can be easily obtained in manyequation if such a closed form solution
exists.

It is to be noted Adomian Decomposition Method approaches any equation, homogeneous or
inhomogeneous, and linear or nonlinear in a straightforward manner without any need to
restrictive assumptions such as linearization, discretization or perturbation. There is not need
in using this method to convert in homogeneous condition to homogeneous condition as
required by other techniques.

The essential steps of the Adomian Decomposition Method will be illustrated by
discussing the following examples.

Example 1.

Use Adomian Decomposition Method to solve the following inhomogeneous PDE

u_ +u, =x+y,u(0,y)=0,u(x,0)=20, (1.49)

X y
Solution.

In an operator form, Eq. (1.49 ), can be written as

L.u=x+y—-L,u, (1.50)

10



0
L,=—-=L, ===, (.
X y a)} (1 51 )

. . -1 . .
It clear that L | is invertible, hence L, exists and given by

L0 =[O d, 1.52)

The x - solution:

This solution can be obtained by applying L ;1 to both sides of (1 .50 ), hence we find

X

L)'Lou=L"(x+y)—-L.L,u, (.53)

Or equivalently

| _
u(x,y)=u(0,y)+ Exz +xy — L' (L,u)
1, L (1.54)
= Ex +xy— L, (Lu),
Obtained upon using the given condition # (0, ) = 0, Eq. (1.36 ) and by integrating

S (x,y)= x+ y with respect to X, As stated above, the decomposition method

identifies the unknown function u# (X, )), as an infinite of components

u,(x,y),n =0 givenby

0

u(x,y)= Y u,(x,y) (1.55)

n=0

Substituting (1 .55 ) into both sides of (1 .54 ), we find

[o0] 1 B [o0]

2, U, (%) = —xt + oy = LNL, (2w, (5, ) (1.56)
n=0 n=0

Using few terms of the decomposition (1 .55 ), we obtain

11



|
Ug+u, +u, +...= Exz +xy— L (L, (uy+u; +u, +..)), (1.57)

As presented before, the decomposition method identifies the zeroth component U ( by all

term arising from the given condition and from integrating f (Xx,») = x + y,

therefore we set
|
uy(x,y) = SX T, (1.58)

Consequently, the recursive scheme that will enable us to completely determine the

successive components thus constructed by
1
uy(x,y) = S W, (1.59)

Uy, (x,y)= _L;I(Ly(uk))a k=0,

This in turn gives

w,(x,y) ==L (L,(uy))

- LG ) = o, ()

uy (%, y) = —L7 (L, (1)) = —L;I(Ly(—%xZ)) - 0.

Accordingly, #, = 0, k=2, Having determined the components of % (X, ) ), we
find

1 1
u=u0+u1+u2+...=5x2+xy—5x2 =xy (1.61)
The V - solution:

It is important to note that the exact solution can be finding the } - solution. In an

operator form we can write equation by

12



Lou=x+y—-L.u, (1.62)

Assume that L _yl exists and given by
y
~1
L0 =[0Ode, (1.63)
0
Applying L_yl to both sides of the Eq. (1 .62 ), gives

1
u(x,y)=xy + Eyz — L (Lu). (1.64)

As mentioned above, the decomposition method sets the solution # (X, ¥ ) in an series

form by

0

u(x,y)= Y u,(x,y) (1.65)

n=0

Inserting (1 .65 ) into both sides of the (1 .64 ), we obtain

i w,(x,y) = xy + %yz - L, (Lx(i u,(x,5))), (1.66)

n=0

Using few terms only for simplicity reasons, we obtain

|
Ug+u, +u, +..=xy +5y2 —L;I(Lx(uo +u +u, +..)), (1.67)

The decomposition method identifies the zeroth component U ( by all term arising from the

given condition and from integrating f (X, ¥) = x + y, therefore we set

1
uo(x,y)=xy+5y2, (1.68)

Consequently, the recursive scheme that will enable us to completely determine the
successive components thus constructed by

1
uo(x,y)=xy+5y2, (1.69)

13|



Wy (x,9)= =L (L, (u,) k20,
This gives

u(x,y) = _L;I(Lx(uo))

) 1 1 1.70
= —L (L (xy + Eyz)) = —Eyz, ( )

uy(x,y) = —L (L, (1)) = —L;I(Lx(—éyZ)) - 0.

Accordingly, #, = 0, k=2, Having determined the components of % (X, ) ), we
find

1
u(x,y)=u,+u, +u, +..=2xy + — —

L
2 2

2

y o =xy (1.71)
Example 2.

Use Adomian Decomposition Method to solve the following homogeneous PDE

u, —u,=0,u(0,y)=y,u(x,0)=x,(1.72)

Solution.

In an operator form, Eq. (1.72 ), can be written as

Lou(x,y)=L u(x,y) (1.73)

Where

0 0
L = —>L = > .
Tk T gy (L)

Applying the inverse operator L;l to both sides of (1.73 ), and using the given
conditionu (0, y) = y yields

u(x,y)=y+ L;I(Lyu). (1.75)

14|



As mentioned above, the decomposition method sets the solution # (X, ¥ ) in an series

form by

0

u(x,y)= u,(x,y) (1.76)

n=0

Inserting (1 .76 ) into both sides of the (1 .75 ), we obtain

0

>, (vay) =y o+ L (Y, (60)) (1.77)

n=20

Using few terms only for simplicity reasons, we obtain

Ug+u, +u, +..= y+L;1(Ly(u0 +u, +u,+..)), (1.78)
Proceeding as before, we identify the zeroth component U (x,y), by
uy(x,¥) = v, (1.79)

Having identifies the zeroth component U o (X, ¥ ), we obtain the recursive scheme

uy(x,7) = v, (1.80)

U, (x,py) = L;lLy(”k)), k=0,

The components U, U ,U,,... are thus determined as follows:

uy(x,) = v, (1.81)

wy(x,y)= L, Lu,=L"L,(y)=x,

u,(x,y) = L;lLyu1 = L;lLy(x) =0,

It is obvious that all components, ¥ ; = 0, k =22 .consequently, the solution is given by
u(x,y)=uy,+u, +..=u,+u, =x+y (1.82)

The exact solution obtained by using the decomposition series (1 .76 ) .

15



It is important to note here that the exact solution given by (1 .82 ) can be also be

obtained by determining the ) - solution as discussed above.

1.2 nonlinear partial differential equation

Adomian decomposition method has been I mentioned before and has been applied to a wide
class of linear partial differential equation. The method has been applied directly and in a
straightforward manner to homogeneous and inhomogeneous problems without any
restrictive assumptions or linearization. The method usually decomposes the unknown
function # into an infinite sum of components that will be determined recursively through
iterations as discussed before.

The Adomian decomposition method will be applied on next part to handle nonlinear
partial differential equations. An important remark should be made here concerning the
representation of the nonlinear terms that appear in the equation. Although the linear term
u is expressed as an infinite series of components, the Adomian decomposition method

requires a  special  representation  for the  nonlinear terms  such  as

2 3 4 - 2 : :
u',u”,u’,sin u,e” ,uu ,u,,etc .that appear in the equation. The method

introduce a formal algorithm to establish a proper representation for all forms of nonlinear
terms. The representation of the nonlinear teams is necessary to handle the nonlinear
equation in an effective and successful way.

In the following, the Adomian scheme for calculating representation of nonlinear term
will be introduced in details. The discussion will be supported by several illustrative
examples that will cover a wide variety of forms of nonlinearity. In a like manner, an
alternative algorithm for calculating Adomian polynomials will be outlined in details
supported by illustrative examples.

1.3 Calculation of Adomian Polynomials

It is well known now that Adomian decomposition method suggest that the unknown
linear function # may be represented by the decomposition series

0

u=> u,, (1.83)

n=0

Where the components % , , 7 2 0 can be elegantly computed in a recursive way.

However, the nonlinear term F (u# ), such as

16



2 3

4 2
u-,u’,u",sin u,e” ,uu

, U ., elc . canbe expressed by an infinite series of the

X

so-called. Adomian polynomials 4 , given in the form
F(u) = Z A, (ug,u,uy,.., n,), (1.84)

n=20

Where the so-called Adomian polynomials 4, can be evaluated for all forms of

nonlinearity.

The Adomian polynomials A | for the nonlinear term F (u ) can be evaluated by

using the following expression

1 d" " .
A = — F Alu ,n=20,1,2,..
" nl dl”{ (Zo ’HH (1.85)

The general formula (1 .85 ) can be simplified as follows. Assuming that the nonlinear

function is £ (u ), therefore by using (1 .85 ), Adomian polynomials are given by
A 0o — F (u 0 ))

A, =u ,F (u,),
, | A
A, =u,F (u0)+;u1F (uy), (1.86)

. " 1
Ay =uF (uy)+uu,F (“0)+;“13F (u,),

: 1 y 1 1
A, =u ,F (u0)+(5u22+u1u3)F (u0)+5u12u2F (u0)+zu14F(4)(u0),

Other polynomials can be generated in a manner.

Two important observation can be made here. First, 4, depends onlyon % o, %, and U ,,

and so on. Second substituting (1 .86 ) into (1.84 ) gives
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Fu)y=A4,+ A, + 4, + A, + ...,
= F(uy,)+ (u, +u, +u, +.)F (u,)

1

2!

(ul +2uu, +2uu, +ui +..) F (u,)+..

=F(uy,)+u—-u, +...)F'(u0)+%(u —uy) F (uy)+ ...

The last expansion confirms a fact that the 4, polynomials is a Taylor series about a
function# , and not about a point as is usually used. The few Adomian polynomials given
in (1.86 ) clearly show that the sum of subscripts of the components of # of each term
of A, is equal to n . As stated before, it is clear that 4, depends only on u,, A4,

depends onlyon # , andu#,, A, dependsonlyon #,, U ,andu , .

In the following ,we will calculate Adomian polynomials for several forms of
nonlinearity that may arise in nonlinear ordinary or partial differential equations.

Calculation of Adomian Polynomials 4,
1.Nonlinear polynomials
Casel.F (u)=u"’

The polynomials can be obtained as follows:
Ay = F(u,)=u,,

A4, =u1F'(u0) = 2u,u,,

, 1 "
A, =u,F (u,)+ ;ule (uy)=2u u, +u’,

. y 1
A, =uF (uy)+uu,F (u0)+;u13F (uy)=2uu, +2u,u,,

Case2. F (u) = u’

The polynomials are given by
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4, =F(u0):u§,

A, =u1F’(u0) = 3u02u1,

, 1 "
A, =u,F (u,)+ ;ule (uy)=3uju, +3u,u’,

. " 1
A, =u F (u,)+uu,F (u0)+§u13F (uy)=3uju, +6uyu,u, +u,,Case 3.
F(u)=u"

Proceeding as before we find

Ay = F(u,)=u,,

A, =u1F’(u0) = 4u§u1,

, 1 "
A, =u,F (u,)+ ;ule (u,)=4uu, + 6uju’,

. " |
A, =uF (uy)+uu,F (u,)+ ;uﬁF (uy) = 4uguy + duu, +12ujuu,,

In a parallel manner, Adomian polynomials can be calculated for nonlinear polynomials of
higher degrees.

I1. Nonlinear Derivatives
Casel.F' (u) = (“x)2
A4y = F(u,) = ”OZX>

Ay =u F (u,) = 2uy u,y

: 1 "
A, =u,F (”o)+;”12F (u0)=2uoxu2x+u12,

X

. " |
A, =u F (uy) +uu,F (u,)+ aufF (uy) =2uy uy +2u, u, ,
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Case2. F (u) = (“x)3
The Adomian polynomials are given by

A4, =F(u0)=u§x,

A4, =u1F’(u0) = 3u02xu1x,
_ ' 1 2 " _ 2 2
A, =u,F (uo)+;u1F (o) =3ug u, +3u, uy,

. " |
A, =u F (uy) +uu,F (u,)+ aufF (u,) = 3u§xu3x +6u, uy u, + ufx ,

1
Case3. ' (u) = uu , = 2_Lx(u2)

The Adomian polynomials for nonlinearity are given by
A4y = F(u,) = Uogly

1
4, = ?Lx(Zuoul) = Uy U, UU,

1
A, = —L (Qu,u, +u/

5 ) = Uy U, F U U, F U, U,

1
4, = ELX(Zuou3 +2uu,) = Ug Uy + Uy Uy + Uy U+ Uy U,

II1. Trigonometric Nonlinearity
Casel.F (u) = sin u
The Adomian polynomials for nonlinearity are given by

A, = F(u,) =sin u,,

A, =u,F (u,) = u,cos u,,
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: 1 " 1 :
A, =u,F (uo)+;u12F (u,) = u, cos uo—?uf sin u

' " 1 m . 1
A, =uF (uy) +uu, F (u,) +§u13 F (u,) =u, cosu, —uu, siny, —guf cosu,,

Case2. F (u) = cos u

Proceeding as before gives

A, = F(u,) =cos u,,

A, =u,F (u,) = —u,sin u,,

: 1 " : 1
A, =u,F (u,)+ ;ule (uy)=—u,sin u, - 5”12 cos u,,

' " 1 m . 1
A, =uF (uy) +uu,F (u,) + 5”13 F (u,) =u, cosu, —uu,sinu, — 5”13 cosu,,

IV. Hyperbolic Nonlinearity
Case 1. F (u) = sinh u
The Adomian polynomials for nonlinearity are given by

A, = F(u,) = sinh u,,

A, =u,F (u,)=u,cosh u,,

: 1 y 1 :
A, =u,F (uo)+;u12F (u,) = u, cosh u0+5u12 sinh u,,

' " 1 3 m . 1 3
A, =uF (uy) +uu, F (1) +§u1 F (uy) =u, cosu, +u,u, sinuy, +§u1 cosu,,

Case?2. F (u) = cosh u
Proceeding as before gives

A, = F(u,) = cosh u,,
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A, =u ,F (u,)=u,sinh u,k,

: 1 " : 1
A, =u,F (uo)+;u12F (u,) = u, sinh u0+?u12 cosh u,,

' " 1 m . 1
A, =uF (uy) +uu, F (u,) +§u13 F (u,) =u, sinhu, +u,u, coshu, + 5”13 cosu,,

V. Exponential Nonlinearity
Casel. ' (u) = e"

The Adomian polynomials for nonlinearity are given by
A, = F(u,)=e",

A, :ulF'(uo) =u,e"",
. Lo, -
A, =u,F (uo)+;”1F (”o):(”2+5”1)e ’
' " 1 m 1
Ay =usF (uy) +up, F (u0)+§u13F (uO):(u3+ulu2+§uf)eu‘),

Case2. F(u) =e™"
Proceeding as before gives
A, = F(u,)=e ",
A, =u,F (u,)=-u,e ",
. Lo -

A, =u,F (”o)+;”1F (”o):(_”2+5”1)e )

. Y ..
A, =uF (uy) +uu, F (u0)+§u1F (Uy) = (—u; +uu, —§u1 e ",

VI. Logarithmic Nonlinearity

Casel.F(u)=Inu,u >0
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The A, polynomials for logarithmic nonlinearity are given by
Ay, = F(uy) =l u,,

, u
A, =u F (u,) = —,

u,

: 1 "
A, =u,F (”o)‘i'Eule (uy)=—"—-——5

. " 1 u, uu, lu
A, =uyF (1) +uu, F (u0)+—ul3F (uo):_3_1—22+__13:
3! u, uy, 3u

Case2. F(u)=In(l+u)-1<uc<l
The A4, polynomials for logarithmic nonlinearity are given by
Ay = F(u,y)=In(1+u,),

u,

A, =u ,F (u,) = ——,
+ U,
A, =u,F (u )+1—u2F”(u )= —22 LW
e o o ltu, 2 0+uy)?’
U, uu, +1 u

. ] 1
A =u.F () +uiF u)+—iu’F ()= — D SEE—
3 3 ( 0) 1%*2 ( 0) 3' 1 ( 0) 1+u0 (1+u0)2 3 (1+u0)3

1.4 Alternative Algorithm for Calculating Adomian Polynomials

It 1s worth noting that a considerable amount of research work has been invested to
develop an alternative method to Adomian algorithm for calculating Adomian polynomials

A, . The aim was to develop a practical technique that will calculate Adomian polynomials

in a practical way without any need to the formulae introduced before. However, the
methods developed so far in this regard are identical to that used by Adomian.

We believe that a simple and reliable technique can be established to make the
calculation less dependable on the formulae presented before.
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In the following, we will introduce an alternative algorithm that can be used to
calculate Adomian polynomials for nonlinear terms in an easy way. The newly developed
method depends mainly on algebraic and trigonometric identities, and on Taylor expansions
as well. Moreover, we should use the fact that the sum of subscripts of the components of

u in each term of the polynomial 4 , . is equalto 7.

The alternative algorithm suggests that we substitute # as a sum of components

u,,n = 0 as defined by the decomposition method. It is clear that 4 , is always

determined independent of the other polynomials 4, ,7 = 1 where 4 is defined by
A, = F(u,) (1.87)

The alternative method assumes that we first separate 4, = F (u ) for every nonlinear

term F (u ). With this separation done, the remaining components of F (u ) can be

expanded by using algebraic operation, trigonometric identities, and Taylor series as well.
We next collect all terms of the expansion obtained such that the sum of the subscripts of the
components of # in each term is the same. Having collected these terms, these terms, the
calculation of the Adomian polynomials is thus completed. Several examples have been
tested, and the obtained results have shown that Adomian polynomials can be elegantly
computed without any need to the formulas established by Adomian. The technique will be
explained by discussing the following illustrative examples.

Adomian Polynomials by Using the Alternative Method
1.Nonlinear polynomials
Casel.F (u)=u’

We first set

u =Y u, (1.88)

n=20
Substituting (1 .88 ) into F (u) = u g gives
Fu)=(u, +u, +u, +u, +..)7°.(1.89)

Expanding the expression at the right hand side gives
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F(u)=u, +2uqu, +2uqu, +u +2uqus +2u,u, +.. (1.90)

The expansion in (1 .90 ) can be rearranged by grouping all terms with the sum of
the subscripts is the same. This means that we can rewrite g (1 .90 ) as
F(u)=uj +2ugu, + 2uu, +u +2u,u, + 2u,u,

—— — (NS S — —
4y 4, 4, 43

1.91

+2ugu, + 2uuy +ui + 2ugug + 2uu, + 2u i, + o ( )
;_ﬂ___—J ;___v___—J

A, 45

This completes the determination of Adomian polynomials given by
Casel.F (u) =u’

A, =u;,

A, = 2u,u,,

A, =2uu, +u/,

A, = 2uguy + 2u,u,,

A, =2uu, +2uu, +u;,

Ay = 2ugus +2uu, + 2u,u,,

Case2. F (u) = u’

Proceeding as before, we set
wo= D, u,, (1.92)
n=0
Substituting (1.92 ) into £ (u) = u . gives

Fu)= (u, +u, +u, +u,+.)".(1.93)

Expanding the right hand side yields

25



3
F(u)=u, +3ulu, +3uju, +3ugu’ +3uju, + 6w u, +u’
(1.94)

+3uju, +3ulu, + 3ulu, + 6uguu,...

The expansion in (1 .94 ) can be rearranged by grouping all terms with the sum of

the subscripts is the same. This means that we can rewrite g (1 .94 ) as

_ .3 2 2 2 2 3
Fu)=uy, +3uyu, +3ugu, + 3uu, +3uju, + 6uuu, + u;
— \_“,_J ;ﬂ__—J ;_—v___—J

4, A, A, Ay

1.95
+3ugu, +3ulu, +3udu, + 6uguu, + ... ( )
;_____v______J
Ay

Consequently, Adomian polynomials can be written by
A4, = ug,

A, = 3u§u1,

A4, = 3u§u2 + 3u0u12,

4, = 3u§u2 + 3u0u12,

. 2 3
A, =3uju, + 6uuu, +u,,

I1. Nonlinear Derivatives
Casel.F' (u) = (“x)2

We first set

0

u=>Y u, (1.96)

n=0
Substituting (1.96 ) into F' (u ) = Mﬁ gives
Fu)=(uy +u, +u, +tu; +.) 2.(1.97)

Squaring the right side gives
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F(u)=u,  +2uyu, +2uyu, +u’ +2u, uy +2u, u, +... (1.98)
Grouping the terms as discussed above we find

F(u)—u0 +2u, uy +2u, u, +u1 +2u, uy +2u, u,
—— —
4 4, A, 43

(1.99 )

+u2 +2u, uy +2u u3 + ...

Ay
Adomian polynomials are given by
A, = u 02 ,
A, =2u, u, ,

_ 2
Ay, =2uy u, +uy,

X
Ay =2uy us +2u u,
2
Ay =2u, uy +2u uy +u,,

Case2. F' (u) = uu

We first set

n=0
Substituting (2.200 ) into F (u ) = uu , gives

Fu)=(u,+u, +u, +u;+..) x

(uy +u, +u, +u; +.) (1.201)

Multiplying the two factors gives
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_ 2
F(u) =ugu, +uy u, +ug, +u;
+ Uy Uy U U U, Uy U Uy
TU Uy T Uy U+ U U (1.202 )
+uy U, U, U Uy U, FUuU,
Proceeding with grouping the terms we obtain

Fu)=uy, u, +u, u, +u, u,

e ;__\f_ —
4o A,

tug uy tuy, uptu, u,

N o X

A2

Uy Uy Uy Uy Uy Uy F Uy U (1.203 )

| S — ——\/——————J

A3

FUg Uy Uy Uy Uy Uy Uy U U, UG
;—————\/——————J

A,
It then follows that Adomian polynomials are given by

4, = Uy Uy,

Ay =2uy us +uy Uy +u, Uy +uy Uy,

Ay =y uy+uy Uy U, Uy + Uy U+ Uy, Uy,
II1. Trigonometric Nonlinearity

Casel. F'(u) = sin u

Note that algebraic operations cannot be applied here. Therefore, our main aim is to

separate 4, = F (u ) from other terms. To achieve this goal, we first substitute
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u =ij u, (1.204 )

n=20

Into F (u) = sin u to obtain

F(u)y=sin[u, + (u, +u, +u, +u, +..)] (1.205)
To calculate A4 , recall the trigonometric identity

sin( @ + ¢) =sin 6 cos ¢ + cos O sin ¢. (1.206 )
Accordingly, Equation (1 .205 ) becomes

F(u)=sin uycos( u, +u, +u;+..)

+cos ugsin( u, +u, +u; +..) (1.207 )

Separating F (u,) = sin u, from other factors and using Taylor expansions for

cos( u, +u, +uy+..) and sin( u, +u, +u,; + ..) give

F(u) = sin uo(l—%(u1 ‘u, +.) 0+ %(u1 ‘u, +..) =)
' i ' (1.208 )
+COSMO(UM'+M2'F“)'—STUH'+M24-M)3+M“L

So that

F(u)=sinu,(l- %(ul2 + 2uu, + ...))

1 (1.209 )
+cos uy((u, +u, +..) — yul + ...),

Note that we expanded the algebraic terms; then few terms of each expansion are
listed. The last expansion can be rearranged by grouping all term with the same sum of

subscripts, This means that Eq. (1.209 ) can be rewritten in the form
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: 1, .
F(u) =sinu, +u, cosu, +u, cosu, ——u; sinu, +

4 . —
Ay 1 e

: 1 ; (1.210)
U, COSU, — U U, SINU, —— U] COSU, +...
3!

Vo

4

Case2. FF (u) = cos u

Proceeding as before gives

: : 1,
F(u) =cosu, +u, sinu, +(—u, sinu, ——u, cosy,)
— 2!
AO A] o 7 J
2

: 1
+ (—u, cosu, —u,u, sinu, + Euf CoSty )+ ... 1.211)

o J

Vv

A3
IV. Hyperbolic Nonlinearity
Case 1. F (u) = sinh u

To calculate the 4 , polynomials for F' (u) = sinh u, we first substitute

0

u =y u, (1212)

n=20

Into F (u) = sinh u to obtain

F(u)=sinh( uy+ (u, +u, +u,+..)). (1213)

To calculate 4, recall the hyperbolic identity

sinh( 6 + ¢) = sinh 0 cosh ¢ + cosh 6 sinh ¢. (1.214)

Accordingly, Eq. (1.213 ) becomes
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F(u)=smnh w,cosh( u, +u, +u;+..)

+ cosh w,sinh( w, +u, + u; +..). (1.215)

Separating F (u,) = sinh u  from other factors and using Taylor expansions for

cosh( u, +u, +uy+..) and sinh( w, + u, + u; + ..) give

F(u) = sinh u,(1 + %(u1 ‘u, +..)°0 + %(u1 tu, )+ )
' i ' (1.216)
+cosh uy((u, +u, +..) + 5(% Fu, )0+ ),

So that
Funzsmhuﬂl+%ﬁmz+2umz+mn
' (1.217)

|
+cosh wuy((u, +u, +..) + yuls + ..,

By grouping all term with the same sum of subscripts

1

F(u) = sinhu, +u, coshu, +u, coshu, +—u; sinhu, +
—_— 2!
4o 4 h X
1 (1.218)

u, coshu, +u,u, sinhu, +—u; coshu, +...
3!

Vo

A3
Case2. F (1) = cosh u

Proceeding as in sinh u we find
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F(u) =coshu, +u, sinhu,

4y PA
. 1 ,
+u,sinhu, +—u” cosu
2 0 2' 1 0

Vo

4 (1.219)

: |
+ u, sinhu, +uu, coshu, + §u13 sinhu,) +...

.
o J
Vo

4,

V. Exponential Nonlinearity
Casel. F(u)=-¢e"

Substituting
u =Y u,, (1.220)
n=20
Into F(u) = e" gives
F (Z/t) — e(u0+u1+u2+u3+...) , (1221)

Or equivalently

F (Z/t) — euoe(u1+u2+u3+...) , (1222)

Keeping the term e “° and using the Taylor expansion for the other factor we obtain
png g y p

|
Fu)=e“(+ (u, +u,+..)+ 5(“1 +uy +) ), (1.223)
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By grouping all term with the same sum of

1
Fu)=e" +ue” + (u, + —u’)e"
HA,O—J A ;—2_' P
I A
2

- 3 (1.224)
A3
1 1 1
+ (u, +uu, + 'u22+5 lu, + —ul)e" +
———

Casel. F(u)=e"

Proceeding as before we find

1
Fuy=e " +(-u)e ™ + (—u, + —'ulz)e “o
AO Al ;__%r.__—J
AZ
1 3 —u
+ (—uy; +uu, §u1)e 0
K
+(—u, +uu, + —u 1—uzu+11/t4)e”°+
4 13 2' 2 2' 1 2 4' 1
R _—_— Y —
A,

VI. Logarithmic Nonlinearity
Casel.F(u)=Inu,u >0

Substituting
u =Y u,, (1226
n=0
Into F(u) = In u gives
Fu)=In(u, +u, +u, +u, +..) (1.227)

Equation (1.227 ) can be written as

subscript
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U,

+ 22 B4 ) (1.228)

Uy Uy Uy

Fu)=mhn(u,+

Using the factthat In( ¢ ) = In a + In B, Equation (1 .228 ) can be written as

u I u
Fu)y=hwu, + -+ —2-——
u, u, 2u,
A
0 (S —
A, A,
u, wu, 1ul (1.229)
+ =+ —==+ ——
u, u, 3 u,
—— — ~— —— _J
A3

Case . F (u)=In(l+u),-1<uc<l

In a like manner we obtain

2
F(u):ln(1+u0)+ 4y 4 —l—u—lz
—— l+u, l+u, 2(+u,)
4, [ -
A, A,
1 u’ (1.230)

“s + s — + ...
l+u, (A+uy)’ 3(+u,)’

_—
45

As stated before, there are other methods that can be used to evaluate Adomian
polynomials. However, these method suffer from the huge size of calculation. For this
reason, the most commonly used methods are presented in this chapter.

Example 3.

Use Adomian Decomposition Method to solve the following homogeneous PDE

X

xu +u, =3u,u(0,y)=0,u(x,0)= x?, (1.231)
Solution.

In an operator form, Eq. (1.231 ), can be written as
Lou(x,y)=3u(x,y)—xL u(x,y) (1.232)

Where
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0 0
L,=——L,=—,(.
: =gy (1233)

Applying the inverse operator L_yl to both sides of (1.232 ), and using the given
condition# (x,0) = x ? yields

u(x,y)=x"+ L;1(3u —xL u). (1.234)

As mentioned above, the decomposition method sets the solution # (X, ¥ ) in an series
form by

0

u(x,y)= u,(x,y) (1.235)

n=0

Inserting (1.235 ) into both sides of the (1.234 ), we obtain

i uw,(x,y)=x"+ L;({i un(x,u)J - xLx(i un(x,y)D (1.236 )

n=0 n=0 n=0
By considering few term of the decomposition of % (x, ), Eq. (1.236 ), becomes

Ug + U, + Uy +.= X7 +L;1(3(u0 +u +u,+..) (1.237 )
—xL (uy+u, +u,+..), '

Proceeding as before, we identify the zeroth component U (x,y), by
u,(x,y)=x>, (1.238 )

Having identifies the zeroth component ¥ o (X, ¥ ), we obtain the recursive scheme
u,(x,y)=x>, (1.239 )

u, (x,y)= L_yl(3uk - xL u,) k=20,

The components U, U ,U,,... are thus determined as follows:

u,(x,y) = x?2, (1.240 )
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u,(x,y) = L_yl(?au0 - xL u,)= L_yl(xz)z xy,

2 2

_ _ X
uZ(x>y):Lyl(3ul_xLxul):Lyl(xzy): 2)'; 9

Consequently,the solution is given by

u(x,y)=u,+u, +u,. = xz(l + ¥y + %+ j = x’e" (1.241 )
Example 4.

Use Adomian Decomposition Method to solve the following homogeneous PDE
=0,u(x,0)=x, (1.242 )

u, + cu

X
where c¢ is constant

Solution.
In an operator form, Eq. (1.242 ), can be written as
Lu(x,t)=—-cL u(x,t), (1.243)

Where

Lx = —7Lt
ox

9 (1.244 )
at, .

It is clear that operator L, is invertible, and the inverse operator Lt_l 1s an indefinite
integral from O to 7. Applying the inverse operator L;l to both sides of (1.243 ), and
using the given condition# (x,0) = X yields

u(x,t)=x—cL;"(L u(x,t) (1.245)

As mentioned above, the decomposition method sets the solution # (X, ¥ ) in an series
form by
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0

u(x,t) =Y u,(x,t) (1.246 )

n=20
Inserting (1.246 ) into both sides of the (1.245 ), we obtain

> u, () = x—cL,l(Lx(Z”Oun(x,oD (1.247 )

By considering few term of the decomposition of % (x,t1), Eq. (1.247 ), becomes
ug+u, +u, +..=x—cL'(L (uy+u, +u, +..)), (1.248 )

Proceeding as before, we identify the zeroth component U (x,1), by

uy(x,t) =x,(1.249 )

Having identifies the zeroth component U o (X, ), we obtain the recursive scheme
uy(x,t) =x, (1.250 )

u, (x,t)=—-cL ;' (L .u,) k>0,

The components U, U ,U,,... are thus determined as follows:

uy(x,t)=x, (1.251)
u,(x,t)=—-cL;'"(L.u,)=—-cL;'(1)=—ct,
wy(x,y)=—cL ;' (L.u)=1L,(0)=0,

We can easily observe that u, = 0,k > 2 It follows that the solution in a closed
form is given by
u(x,y)=x—ct (1.252 )
Example S.

Use Adomian Decomposition Method to solve the following PDE
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X

u +uy+uz=u,u(0,y,z)=1+ey+ez
. (1.253 )

X

u(x,0,z)y=1+e*"+e’,u(x,y,0)=1+e" + e
where

u=u(x,y,z)

Solution.

In an operator form, Eq. (1.253 ), can be written as

Lou(x,y,z)=u— L u-L_u, (1.254)

Where

0
L - —,L = —’LZ = — .
! Y oy 0z (1.255)

Assume that the operator L, is invertible, and the inverse operator L;l IS an
: L. . . -1 .
indefinite integral from O to x . Applying the inverse operator L, to both sides of

(1.254 ), and using the given condition# (0, y,z) =1 + e’ + €7 yields

u(x,y,z)=1+e” +e” + L. (u —L,u—-L_u) (1.256)

As mentioned above, the decomposition method sets the solution % (x,Y,2z)inan

series form by

u(x,y,z) =D u,(x,y,2z) (1.257 )
n=0
Inserting (1.257 ) into both sides of the (1.256 ), we obtain

iun(x,y,z) =1l+e’ +e’ +Lxl(iun —Ly(iunJ—Lz(i uD (1.258 )
n=0 n=0 n=0

n=0

By considering few term of the decomposition of % (x,y,2z), Eq. (1.258 ), becomes
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_ y z -1
Ug+u +u,+..=1+e’ +e" +L (u,+u, +u,+..)

—L;l (Ly (Ug +u, +u, +...)) — L;l (L (uy +u, +u, +..)) (1.259°)

Proceeding as before, we identify the zeroth component U (x,y,z2), by
uy(x,y,z)y=1+e" +e*, (1.260 )

Having identifies the zeroth component 4 o (X, }, Z), we obtain the recursive scheme
uy(x,y,z)=1+e’ +e”, (1.261 )

o (%, 9,2) = L () = L)L, () = L)L, (u,)

The components U, U ,U,,... are thus determined as follows:

u,(x,y,z)=1+e" +e,
u,(x,y,z) =L (u, —Lu,—Lu,)= L'(l+e’+e -’ —€e)=L'(1)=x,

2

uy(x,y,2) = L} (uy— Lu, — Luy) = L) (x) = %, (1.262 )

2 3
X

- X
u(x,y,2) =L, (u, — Lu,—Lu,))= L (?!) =3

And so on. Consequently, the solution in a series form is given by

2 3

( z) = I+ x+ 2+ 24 + e’ +e”
u xaya - 2' 3' ’ (1263 )

And in a closed form
u(x,y,z)y=e* " +e’ +e”, (1.264 )

1.5.Homogeneous and inhomogeneous Heat Equations
1.5.1 one Dimensional Heat Flow

The Adomian decomposition method will be used to solve the following homogeneous
heat equation[6] where the boundary conditions are also homogenous.
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Example 6.

Use the Adomian decomposition method to solve the initial-boundary value problem

PDE u, =u_,0 < x<m7m,t >0
u(0,t)=0,t>0,

BC w(m.t)=0,t>0, (1.265)

IC u(x,t) =sin x,

Solution:

In an operator form, Equation (1.265 ) can be written as

Lu(x,t)=L_u(x,t), (1.266 )

Applying the inverse operator L;l to both sides of (1.266 ), and using the initial

condition we find
u(x,t)=sin x+ L' (L _u(x,t)), (1.267 )

We next define the unknown function © (Xx,?) by a sum of components defined by the

series

u(x,t)=iun(x,t) (1.268 )

n=0

substituting the decomposition (1.268 ) into both sides of the (1 .267 ), we obtain

D u,(x,1)=sinx+L;' L(Z ”n(x,t)j ' (1.269 )
n=0

n=0
Or equivalently
uy+u, +u, +..=sin x+ L'(L_(u,+u, +u,+..), (1.270)

Identifying the zeroth component U (x,1), as assumed before we obtain
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u,(x,t) =sin x,

u,(x,t) = L' (L_ (u,)) = L;'(~sin x)= —tsin x,
;2 (1.271 )
u,(x,t) =L (L _(u,)) =L (~tsin x) = ;sin X,

Consequently, the solution u# (X, f) in a series form is given by

u(x,t)=u,(x,t)+u, (x,t)+u,(x,t)+.. (1.272)

t2
= sin x(l —t+ — - J,
2!

and in a closed form by

u(x,t)=e 'sin x, (1.273 )
Obtained upon using the Taylor expansion of e ~" The solution (1 .273 ) satisfies the
PDE, the boundary conditions and the initial condition.

Example 7.

Use the Adomian decomposition method to solve the initial-boundary value problem

PDE u, =u_,(0<x=<m),(t>0)

u(0,t)y=e ',t >0,

1.274
BC u(r,ty=m—e '",t 20, ( )

IC u(x,t) = x + cos x,

Solution:

It is important to note that the boundary conditions in this example are
inhomogeneous. The decomposition method does not require any restrictive assumption on
boundary conditions when approaching the problem in the 7 .direction or in the X direction.
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In an operator form, Equation (1.274 ) can be written as

Lu(x,t)=L_u(x,t), (1.275 )

Applying the inverse operator L;l to both sides of (1.275 ), and using the initial

condition we find
u(x,t)y=x+cos x+ L' (L_u(x,t)), (1.276 )

We next define the unknown function © (Xx,?) by a sum of components defined by the

series

u(x,t)=iun(x,t) (1.277 )

n=0
substituting the decomposition (1.277 ) into both sides of the (1.276 ), we obtain
. -1
Z u,(x,t)=x+cosx+ L, Lxx(z un(x,t)j ' (1.278 )
n=0 n=0
Or equivalently

Uy +u, +u, +..=x+cos x+ L (L (uy+u, +u,+.)), (1.279 )

Identifying the zeroth component U (x,1), as assumed before we obtain

u,(x,t) = x + cos x,

wy(x,t) = L' (L, (uy)

w,(x,t) =L (L, (u,))

L;l(— cos x): —tcos x,

t2
L' (tcos x) = Syeos X,

t? t?
uy(x,t) =L, (L,(u,) = L;l(—FCOS x) = 3708 ¥

(1.280 )
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Consequently, the solution ¢ (X, f) in a series form is given by

u(x,t)=u,(x,t)+u, (x,t)+u,(x,t)+.. (1.281)
tr 1

= X + coS x(l—t+———+...},
21 3!

and in a closed form by
u(x,t) = e 'sin x, (1.282 )

Obtained upon using the Taylor expansion of € '

It i1s important to point out that the decomposition method has been used in the last

two examples in the ¢ — dimension by using the differential operator L, and by operating

: . -1 :
with the inverse operator L, .However, the method can also be used in the x —

dimension. Although the he X — solution can be obtained in a similar fashion, however it
requires more computational work if compared with the solution in the  — dimension. This
can be attributed to the fact that we used the initial condition IC only in using He? —
dimension, where as a boundary condition and an initial condition are used to obtain the
solution in He X — direction. This can be clearly illustrated by discussing the following
examples.

Example 8:

Use the Adomian decomposition method to solve the initial-boundary value problem

PDE u, =u_,(0<x=<m),(t>0)

M(O,t) = O,t 2 07
BC w(z.t) =020, (1.283 )
IC u(x,0) =sin x.
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Solution:

In an operator form, Equation (1.283 ) can be written as

L u(x,t)=L,u(x,t), (1.284 )
Where

02 0
L = ——,L, = — (1.285
* Ox?’ 8t( )

so that L ;1 is a to two-fold integral operator defined by

L) = jox jo" () dxdx  (1.286 )

This means that

L'Lu=u(x,t)-—u(0,t)—xu_(0,t)=u(x,t)—xu (0,t) (1.287 )

Applying the inverse operator L;l to both sides of (1.284 ), and using the proper
boundary condition we obtain

u(x,t)=xu (0,t)+ L' (L,u(x,t)),
xh (t)+ L' (L,u(x,t)) (1.288 )

Where

h(t)=u_(0,¢) (1.289 )

We next define the unknown function © (Xx,?) by a sum of components defined by the
series

0

u(x,t)=Zun(x,t) (1.290 )

substituting the decomposition (1.290 ) into both sides of the (1.288 ), we obtain
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2% (x,t) =xh(t)+ L;{L{iun (x,t)j], (1.291 )

Or equivalently
Uy +u, +u, +..=xh(t)+ L (L, (uy, +u, +u, +..)), (1.292 )

Identifying the

zeroth
u,(x,t) = xh(t), component
’ 1 ’ uo (xat)a as
u (5,0 = L)L () = L (b ()= =B (0, assumed beore
3! we obtain
1 ! 1 ’

u, (x,0) =L, (L, (u))) =L (§x3h (2)) = ;XSh (1),

(1.293 )

Accordingly, the solution % (X, ?) in a series form is given by

u(x,t)zuo(x,t)+u1(x,t)+u2(x,t)+m (1294)

_ Loy s Loy
—xh(t)+3!xh(t)+5!xh(t)+...

The unknown function 7 (¢) should be derived so that the solution % (X, 1) is completely
determined. This can be achieved by using the initial condition

u(x,0) =sin x, (1.295 )

Substituting ¢ = 0 into (1.294 ) using the initial condition (1.295 ), and using the

Taylor expansion of Sin X we find
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1 \ 1 "
=xh (0)+ —xh (0)+ —x"h (0) + ... = si =
X (0) 4 Sk (0) + gpxh (0) AT (1296 )
x—l—x3+1—x5
3! 51

Equating the coefficients of like powers of X in both sides gives

h(0)=0,A(0)=—-1,nh"(0) =1,. (1.297)

Using th Taylor expansion of h(t) and the result (1.297 ) in
. 1 . ) | IR

h(t)=h(0)+ A (0)t + Eh (0)t” — ;h T+ ...

(1.298 )
1

=1—-—t¢t+ —t
21

Combining (1.294 ) and (1 .298 ) the solution u# (X, ?) in a series is

| | (1.299 )
u(x,t) = e’(x - —x + —x + j,

3! 5!
and in a closed form is given by
u(x,t)=e 'sin x, (1.300 )

1.5.2Two Dimensional Heat Flow

The Adomian decomposition method will be used to solve the following homogeneous
heat equation in two dimensions with homogeneous or inhomogeneous boundary conditions
[4,6,9]

Example 9.

Use the Adomian decomposition method to solve the initial-boundary value problem

PDE utz(uxx+uyy),(0<x,y<7r),(t>0)
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u0,y,t)=u(r,y,t) =0,

BC w(x.0.0)=u(x,z,0y=0, 130)
IC u(x,y,0) =sin xsin y,
Solution:

In an operator form, Equation (1.301 ) can be written as

Lu=1Lu+L, u, (1.302 )
Where

0 0 0
L, =——,L,=—,L 6 = (1.303 )

oooaxrT et T oy’

Applying the inverse operator L;l to both sides of (1.302 ), and using the initial

condition we find
u(x,y,t)=sin xsin y+ L' (L u(x,y,t)+ Lou(x,y,t)), (1.304)

We next define the unknown function ¢ (x, y,t) by a sum of components defined by the

series

u(x,y,t) = u,(x,y,t) (1.305 )
n=0
substituting the decomposition (1.305 ) into both sides of the (1.304 ), we obtain
o . -1
Zun =smxsmn y+ L, Lx(z unj+Ly(Z unj ' (1.306 )
n=0 n=0 n=0
Or equivalently
U, +u, +u, +...=sinxsin y

+ L (L (g + 1y 1y + )+ L (g + 1y +1uy +..2)), (1.307 )

Having identifies the zeroth component U o (X, ¥, 1), we obtain the recursive scheme
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uy,(x,y,t) =sin xsin y, (1.308 )

e (x,,0) = L' (L, + Lyu,)

With U defined as shown above ,the first few terms of the decomposition (1.305 ) are
given by

u,(x,y,t) =sin xsin y,

u (x,y,t)=L"(Lu,+ Lou,) = L' (— 2 sin x sin y): —2¢sin xsin y,
2
u,(x,y,t)=L"(Lu,+ Lou)= L, (4sin xsin y) = %sin xsin y, (1.309 )

(2t)°

uy(x,y,t)=L"(Lu, + Lyu,)= L, (—-8sin xsin y) = — 3t

sin xsin y,

And so on.Combining(l .305 )and (1.309 ) the solution u (X,%) in a series is

2 3
u(x,y,t)=sin Xxsin y(l -2t + (2;') — (2;') + j, (1.310 )

and in a closed form by

u(x,y,t)=e *'sin xsin y, (1.311)

Example 10.

Use the Adomian decomposition method to solve the initial-boundary value problem

PDE ut:(uxx+uyy—u),(0<x,y<7r),(t>0)

u0,y,t)y=u(r,y,t)=0,

BC u(x,0,t)=—-u(x,m,t)=e 'sin x,

(1.312 )

IC
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Solution:

In an operator form, Equation (1.312 ) can be written as

Lu=Lu+L u-u, (1.313 )
Where
02 0 02
L. =—,L, = —,L = )
* ox? ot g 8y2 (1.314)

Applying the inverse operator L;l to both sides of (1.313 ), and using the initial
condition we find

u(x,y,t)=sin xcos y
+-L;1(Lxu(x’y’t)+-Lyu(xayat)_'u(X,)@f)L (1.315 )

We next define the unknown function ¢ (x, y,t) by a sum of components defined by the
series

u(x,y,t)=iun(x,y,t) (1.316 )

n=0

substituting the decomposition (1.316 ) into both sides of the (1.315 ), we obtain

[e¢]
Zun = sin x cos y

n=0
~ [e¢] [e¢] [e¢] 1. 1
+ L Lx(zunj+Ly(Zunj+zun , (1317
n=0 n=0 n=0
Or equivalently

U, +u, +u, +...=sIncosy

+L (L, (uy +u, +u, +o L (g + 1y 1y +. )+ L, +M1+u2+...)),(1 318 )

Having identifies the zeroth component U o (X, ¥, ), we obtain the recursive scheme

49



uy,(x,y,t) =sin xcos y, (1.319 )
Upy(x,p,8) = L;l(Lx”k +Lu, —u,)

With U, defined as shown above ,the first few terms of the decomposition (1.319 ) are
given by

u,(x,y,t) =sin xcos y, (1.320 )
u,(x,y,6)=L,"(Luy+ Lu,—u,)=L,"(-3sin xcos y)

= —3¢sin x cos Yy,

u,(x,y,t)=L"(L u, + Lou, —u)= L.'(9tsin xcos y)

31)? .
= %sm X Ccos y,

2

us(x,y,0) =L (Luy + Lou, —u,) =L (=27 %sin X cos y)

(30)°

= sin x cos
31 "

And so on.Combining (1.316 ) and (1.320 ) the solution u (X, V,t) in a series is

2 3
u(x,y,t) =sin x cos y(1—3t+ (37) - (37) +...j,

21 3!

(1.321)

and in a closed form by

3

u(x,y,t)=e °'sin xcos y. (1.322 )

1.5.3 Three Dimensional Heat Flow

The Adomian decomposition method will be used to solve the following homogeneous

heat equation in three dimensions with homogeneous or inhomogeneous boundary
conditions .
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Example 11.

Use the Adomian decomposition method to solve the initial-boundary value problem

PDE ut:(uxx+uyy+uzz),(0<x,y<7r),(t>0)
uO0,y,z,t)=u(n,y,z,t) =0,

BC u(x.0.z.0) =u(x.m,z,6)=0,, (1:323)

IC u(x,y,z,0) =2sin xsin ysin z.

Solution:

In an operator form, Equation (1 .323 ) can be written as

Lu=Lu+L u+L.u, (1.324 )

Where

L =iL =ﬂ,L = 0 , L. = 0 (1.325)

oooaxrT et Y oy’ oz’

Applying the inverse operator L;l to both sides of (1.324 ), and using the initial

condition we find
u(x,y,z,t)=2sin xsin ysin z+ L;'(L.u+ L,u+ L.u), (1.326 )

We next define the unknown function # (x, v, z,t) by a sum of defined by the series

0

u(x,y,z,t) = u,(x,z,y,1) (1.327 )
n=0
substituting the decomposition (1.327 ) into both sides of the (1.326 ), we obtain

[e¢]
Zun = 28In xsin ysin z
n=0

oo )ou e B0
0 n=0 n=0

n=
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Or equivalently

Uy, +u, +u, +...=sinxsin ysinz

+ L (L (g 1y 1y )+ L (g +uy 1y +02)+ L (g +uy +uy +..0), (1.329 )

Having identifies the zeroth component 4 o (X, ¥, Z,1), we obtain the recursive scheme
uy(x,y,z,t) =2sin xsin ysin z, (1.330 )
u, (x,y,z,t) = L;I(Lxuk + Lu, + Lu,)

It follows that the first few terms of the decomposition series of U (x,y,z,t) are given
by

u,(x,y,z,t)=2sin xsin ysin z,

u (x,y,t)=L"(L u, + Lou,+L.uy)= L' (- 6sin xsin ysin z)

= —2(3¢)sin xsin ysin z, (1.331)
u,(x,y,t)=L"(Lu, + Lou +Lu)= L;'(18 sin xsin y sin z)
_2(30)?

sin xsin ysin z,

uy(x,y,t)=L"(L.u,+ Lou,+L.u,)= L,'(-54 sin xsin ysin z)

2(3t)° . . .
= —Tsm xsin ysin z,

And so on.Combining (1.327 ) and (1.331 ) the solution # (X, ¥, z,t) in a series

1S

o . . B (31)*  (31)°
u(x,y,t)=2sin xsin ysin z(l 3t + Y Y + ..., (1.332)

and in a closed form by

3

u(x,y,z,t)=2e °'sin xsin ysin z, (1.333)
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Example 12.

Use the Adomian decomposition method to solve the inhomogeneous initial-boundary value
problem

PDEut=(Mxx +u, +uzz)+sm z,0<x,y=<m,t >0

. Dt .
u(0,y,z,t)=sinz+e ' sin y,
. 2t
u(r,y,z,t)=sinz—e ' sin y,
u(x,0,z,t) =sinz+e ' sinx,
. —2t .
Bc u(x,m,z,t)=sinz—e - sinx, (1.334 )
-2t .
u(x,y,0,t) =u(x,y,m,t)=e " sin(x+y)
IC u(x,y,z,0)=sin( x+ y)+ sin z.
Solution:

In an operator form, Equation (1.334 ) can be written as

Lu=L.u+L u+ L. u+sn z, (1.335)
Where
0’ 0 0’ 0’
L. =—,L, = —,L = , L. = ,
* ox’ ot g oy’ 0z’ (1.336)

Applying the inverse operator L;l to both sides of (1.335 ), and using the initial

condition we find

u(x,y,z,t)=sin( x+ y)+sin z+tsin z

+ L' (Lau+ Lu+ L), (1.337°)
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We next define the unknown function # (x, v, z,t) by a sum of defined by the series

u(x,y,z,0) =) u,(x,z,y,1) (1.338 )

n=0

substituting the decomposition (1.338 ) into both sides of the (1.337 ), we obtain

Zun =sin(x+ y)+sin z+¢sin z

n=0
- N N N 1.339
cL L S, |+ L Yy, [+ L) S, | ], )
n=0 n=0 n=0
Or equivalently

Uy, +u, +u, +...=sin(x + y)+sinz+¢sinz

+L;1(Lx(“o+“1+”z+---)+Ly(”o+“1+Mz+---)+LZ(u0+u1+u2+,,,)),(1 340 )

Having identifies the zeroth component U o (X, ¥, ), we obtain the recursive scheme
uy(x,y,z,t) =sin(x+ y)+sin z+tsin z, (1.341 )
u, (x,y,z,t)=L"(Lu,+ Lou,+Lu,),k=0

It follows that the first few terms of the decomposition series of U (x,y,z,t) are given
by

u,(x,y,z,t)=sin( x+ y)+sin z +¢sin z,
u (x,y,t)=L"(Lu,+ Lou,+ Luy)= L,'(=2sin( x + y) —sin z —tsin z)

t* (1.342 )

= —=2tsin( x + y) —tsin z—asin z,
2

. . .
u,(x,y,t)=L"(Lu, + Lu +Lu)= L;'(4tsin( x + y) +tsin z + 7s1n z)

2 2 3
= ﬂsin( x+y)+ t—sin z+ t—sin z,
2! 2! 3!
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And so on.Combining (1.338 ) and (1.342 ) the solution # (X, ¥, z,t) in a series

1S

u(x,y,z,t) =sin z

., (207 (20’ j (1.343)
21 31

+ sin( x + y)(l —

tZ tZ
+(tsin Zz—1tsin z — —sin z + —sIn z+...j,
2! 2!
and in a closed form by
u(x,y,z,t)=sin z+e *'sin( x + y), (1.344 )

1.6. Nonlinear PDEs Systems by Adomian Decomposition Method(ADM)

Systems of nonlinear partial differential equations will be examined by using (ADM).
Systems of nonlinear partial differential equations arise in many scientific models such as the
propagation of shallow water waves and model of chemical reaction-diffusion model. To
achieve our goal in handling systems of nonlinear partial differential equations, we write a
system in an operator for by

Lu+L v+ N, (u,v)=g,,

Lv+L u+ N,(u,v)=g,, (1.345)

With initial data

u(x,0) = f,(x)

v(x,0) = £,(x) (1.346)

Where L, and L , are considered, without loss generality, first order partial differential
operators, N, and N, are nonlinear operators, and &, and & , are source terms.

Operating with the integral operator L;l to the system (1 .345 ) and using initial data
(1.346 ) yields

u(x,t)= fi(x)+ L_lg1 - L;lev — L;lNl(u,v),

t

1.347
v(x. )= fo(x) 4 L'y — L' Lo — LN, (uyv), %)
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The linear unknown functions # (Xx,?) and v(X,?) can be decomposed by infinite

series of components

o0

u(x,t) = Z u,(x,t),

”0:0 (1.348 )
v(x,t) = Z v, (x,1),

n=0

However, the nonlinear operators, N, (u,v)and N, (u,v) should be represented by

using the infinite series of the so-called Adomian polynomials 4, and B, as follows:

o0

N, (u,v) = Z .

n=0
o (1.349 )
DJ2 (M,‘V) = ZE: l;na

n=0

Where #,(x,f)and Vv,(x,f),n = 0 are the components of e u(X,?) and
v(x,t), n 2 0 respectively that will be recurrently determined, and 4, and

B,,n 2 0 are Adomian polynomials that can be generated for all forms of nonlinearity.

The algorithms for calculating Adomian polynomials were introduced in 1.3 and 1.4 .
Substituting (1.349 ) into (1.347 ) gives

S u, (xn.0) = f(x)+ Li'g, - LﬂLx[f vnj— L(z Anj,

n=0 n=0

. . . (1.350 )
S v, (50 = fa(x)+ Lo L;Lx[z j L;[z an,

n=0 n=0 n=0

Two recursive relations can be constructed from (1.350 ) given by

uy(x,t)= fi(x)+L;'g,,

1.351
wo ()= =L (Lv,) =L (4,), k=0, 131

And
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vo(x,0) = f,(x)+ L,'g,,

1.352
vy (e t) = =L (Lu, ) - L' (B, ) k=0, 132

It is an essential feature of the decomposition method that the zeroth components
uy(x,t)and vy (X,7) are defined always by all terms that arise from initial data and
from integrating the source terms. Having defined the zeroth pair (ug,Vv,) the remaining
pair e (4, ,v,), k =21, can be obtained in a recurrent manner by using (1.351 ) and
(1.352 ) . Additional pairs for the decomposition series solution normally account for
higher accuracy. Having determined the components of % (x,2) and v(x,t) the solution

(u,V) of the system follows immediately in the form a power series expansion upon

using (1.348 ) .
Example 13.

Consider the nonlinear system:

u, +vu  +u =1,

X

(1.353 )

With the condition

u(x,0) =e",

1.354
v(x,0)=¢e " ( )
Solution :

Operating with L;l on (2.353 ) we obtain
u(x,t)y=e* +t—L, " (vu ., +u),
(1.355)

vix,t)=e " +t+ L;l(uvx + V),

The linear term # (X, ?) and v (X, ?) can be represented by the decomposition series
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o0

u(x,t) = Z u,(x,t),

n=0

G (1.356 )
v(x,t) = Z v, (x,1),

n=0

And the nonlinear term VU , and UV , by an infinite series of Adomian polynomials

vux=ZAn,

n=0
o (1.357 )

uy = B,
n=0

Wher 4, and B, are the Adomian polynomials that can be generated for any forms of

nonlinearity. Substituting (1.356 ) and (1.357 ) into (1.355 ) gives

i u, (x,t)=e" +1- Ltl(i Anj — Ltl(i unj,

n=0 n=0

i v (x,t)=e " +1+ Ltl(i BnJ+ Ltl(i unj,
n=0 n=0

n=0

(1.358 )

To accelerate the convergence of the solution, the modified decomposition method will be
applied here. The modified decomposition method defines the recursive relations in the form

u()(xat) = ex’

u(x,0) =t— L7 (4, +uy), (1.359 )
Uy (x,0) = =L (A, +uy), k21,

And

vo(x,1) =e 7,

vi(x,t)=t+ L' (B, +v,), (1.360 )
Via(x,0) = L (By + v ),k 21,

The Adomian polynomials for the nonlinear term VU . are given by
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o = Voldy >
L= ViUt ovou,

X

SO N NN

= ViU,

; + VU ViU, VU,

X

The Adomian polynomials for the nonlinear term UV , are given by

By =uyv, ,

X

B, = Uvy +uyv, ,

X

B, =u,vy, +tu,v, +u,v, ,

X X X

By =uvy +u,v, +u;v, +u,v,,

Using the derived Adomian polynomials into (1.359 ) and (1.360 ) we obtain the

following pairs of components

(Ug,vy) = (ex,e—x)
(u,,v,) = (— tex,te_x)

£? xt2

u,,v - —e g_e_xa
(#2,2) [2! 21 J (1.361 )

>t
(u3,v3)—[—§e ,ge J,

Accordingly, the solution of the system in a series form is given by

) t2 t3 . t2 t3
(u’v): e 1—l‘+2—!—§+... , € 1+l‘+2—!+§+--- 3(1362)

And in a closed form by

(u,v) = (ex_t,e‘x“) (1.363 )
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Example 14.

Consider the nonlinear system:

u, —v,w, =1,
vV, = w,u, =5, (1.364 )
w,—u. v, =35

With the condition

u(x,y,0)=x+ 2y,

v(x,y,0)=x-2y, (1.365 )
w(x,y,0)=—-x+2y,

Solution :

Operating with ;' on (1.364 ) we obtain
u(x,y,t)=(x+2y+1t)+ L;l(vxwy),

v(x,y,t) = (x =2y +56)+ L (w,u,), (1.366 )
w(x,y,t)=(=x+2y+5¢t)+ L;l(uxvy),

The linear term u# (x, y,t), v(x, y,t) and W(Xx, y,t) can be represented by the

decomposition series

u(x,y,t) = u, (x,y,t),

n=0
v(x,y,t) = v,(x,y,t),

nZ=:0 (1.367 )
w(x,y,0)=> w,(x,y,1)

n=0

And the nonlinear term V,W ,,W U  and ¥ .V, by an infinite series of Adomian

polynomials
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oy

n

nz;o " (1.368 )
2

n=0

Wher 4 .» B and C » are the Adomian polynomials that can be generated for any
forms of nonlinearity. Substituting (1 .368 ) and (1.367 ) into (1.366 ) gives

8

Z u,(x,y,t)= (x+2y+t)+Ltl(Zw: Anj,

n=0

n=0
Z vn(xayat) = (X— 2y+ St)+ Ltl(z ana
n=0 n=0 (1369 )
Z w (X, p,t)=(=x+2y+5t)+ Ltl(z an,
n=0 n=0

To accelerate the convergence of the solution, the modified decomposition method will be
applied here. The modified decomposition method defines the recursive relations in the form

uy(x,y,t)=x+2y+t,
wyp (xyat) = L7 (4, k> 0, (13700

And

vo(x,y,t)=x—-2y+ 5t,

Vo (ayoty= LBk 20, U371
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And

wo(x,y,t)=—-x+ 2y + 5¢,

ven (6, p,0) = L7(C,), k=0, P72

The Adomian polynomials for the nonlinear term V W ,, are given by

4, = Vo, Wo, >
4, = Vi We, t Ve Wy,
2 TV W, TV W F vy oW,

A
A, = Vi Wo t VY, WY, Wy Y, Wy,

The Adomian polynomials for the nonlinear term W U | are given by

0o = Wo Uy >
=Wy U + Wo Uy,

=Wy Uy WU+ Wy Uy

% % T W

W

=Wy Uyt Wy Uy W U, W Uy
The Adomian polynomials for the nonlinear term ¥ .V , are given by

C, = Uog Vo, >
Cio=u, vy, +u, v,
C, = Uy Vo, T Uy Vi UGV,

Cy=uy vy tuy vy +u; vy +uy vy,

Substituting these polynomials into the appropriate recursive relations we find
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(Uy, Ve, W,) = (x+ 2y +t,x -2y +5t,—x+2y+ St),
(uy,viwy) = (26,-21,-21), (1.373 )
(u,,v,)=1(0,0,0)k > 2.

Consequently, the exact solution of the system of nonlinear partial differential equations is
given by

(u,v,w)=(x+2y+3t,x—-2y+3t,—x+2y+3¢t) (1.374 )
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Chapter Two

Varational Iteration Method

(VIM).



2.1The Variational Iteration Method (VIM)

It was stated before that Adomian Decomposition Method, with its modified form and the
noise terms phenomenon, and some of the traditional methods will be used in this chapter.
The other well-known methods, such as the inverse scattering method, the pseudo spectral
method,

In addition to Adomian Decomposition Method, the newly developed variational
iteration method will be applied. The variational iteration method(VIM) is thoroughly used
by mathematicians to handle a wide variety of scientific and engineering applications: linear
and nonlinear, and homogeneous and inhomogeneous as well. It was shown that this method
is effective and reliable for analytic and numerical purposes. The method gives rapidly
convergent successive approximations of the exact solution if such a solution exists. The
(VIM) does not require specific treatments for nonlinear problems as in Adomian method,
perturbation techniques, etc. in what follows, we present the main steps of the method.

Consider the differential equation

Lu + Nu = g(t), (2.1)

Where L and N are linear and nonlinear operators respectively, and g () is the

source inhomogeneous term.

The variational iteration method presents a correction functional for Eq. (2.1) in

the form
U, () =u,)+ I/I(f)(lfun(ﬁﬂ Nu, (&) - g(&)dE, (2.2)

Where A is a general Lagrange multiplier, which can be identified optimally via the

variational theory, and # is a restricted variation which means 0, = 0

It is obvious now that main steps of the He’s variational iteration method require first

the determination of the Lagrange multiplier A (&) that will be identified optimally.
Integration by parts is usually used for the determination of the Lagrange multiplier A (&) .

In other words we can use
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[ A& u,(&)ds = 2(&)u, (&)= [ 2/ (&, (&)dé
A, (&)dE = MG, (&)= A(Em, (&) + [ X (G, (E)dé (2.3)

And so on. The last two identities can be obtained by integrating by parts.

Having determined the Lagrange multiplier A (&) the successive approximations
u,,..,n 2 0, of the solution # will be readily obtained upon using any selective

function U , . Consequently, the solution

u=1m wu,.(2.4)

n— o©

In other words, the correction functional (2.2) will give several approximations, and

therefore the exact solution is obtained as the Ilimit of the resulting successive
approximations.

The variational iteration method will be used now to study the same examples used
before in chapterl to help for comparison reasons.

Example 1:

Use variational iteration method to solve the following inhomogeneous PDE

u, +u, =x+y,u(0,y)=0,u(x,0)=20.(2.5)

x y
Solution:

The correction functional for equation (2.5) is

1 (5) =1, (5, ) + jz(g)(é”";‘g’y) + Wnéfy) -¢ —yjdé. (2.6)

using (2.3) the stationary conditions

L+, =0,(2.7)
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z,'i,g:x =0,

Follow immediately. This in turn gives

A =-1,(2.8)

Substituting this value of the Lagrange multiplier 4 = — 1 into the functional (2.6)
gives the iteration formula

u,(&.9) , ou,(5.))
& oy

Mnﬂ(x,y):un(x,y)ﬂ( S —deé-,nZO (2.9)

As stated, we can select # o (x,y) = u (0, y) = 0 from the given conditions. Using

this selection into (2.9 ) we obtain the following successive approximations

u,(x,y) =0,

Ul(x,y) :0_]‘(6140(59_)}) + auo(éay) _

- - g_yjdg:%xuxy,

uz(x,y)%xz+xy—f(6ulé§’y)+5%§’y)—§—y E=x)%(2.10)

us(x,y) = xy_j‘(ﬁuz(g,y) + 0u, (S, )

o o —é—deéZ:xy,

u,(x,y)=xy,
The VIM admits the use of

u(x,y)= liin u,(x,y) (2.11)

That gives the exact solution by
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u(x,y)=xy.(2.12)

Example 2:

Solve the following homogeneous partial differential equation by the variational iteration
method

u,—u,=0,u(0,y)=y,u(x,0)=x.(2.13)

X

Solution:

The correction functional for equation (2.13 ) is

ou,(&,y) ou,S,y)
o5 oy

This gives the stationary condition

U, (X, y)=u,(x,y) +fﬂ«(§)( jdé- (2.14)

L+, =0,(2.15)

z'i,g:x =0,

This gives
A=-1,(2.16)

Substituting this value of the Lagrange multiplier A = — 1 into the functional (2.15)
gives the iteration formula

o, (&) au,(S,)
o& oy

Uy (x,y)=un(x,y)—f( jdénzo- (2.17)

We now select #,(x,y) = u(0,y) = ¥ from the given conditions. Using

this selection into (2 .17 ) we obtain the following successive approximations

u,(x,y) =y,
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st oy [[RED BEN

uz(x,y)=X+y—f(8ulé§’y ) &tlg’y) —f—y}'f =X+, (2.18)

u,(&,y)  ouy(S,y)
o8 oy

ug(x,y)=x+y—f( —é—yjd§=x+y,

u, (x,y)=x+y,

The VIM gives the exact solution by

u(x,y)=x+y.(2.18)
Example 3

Usethe variational iteration method to solve the following homogeneous partial differential

equation

u, +xu  =3u,u(0,y)=0,u(x,0)=x".(2.19)

y X
Solution:

The correction functional for equation (2.19 ) is

ou, (8 , 4T, (x,€)
o0& o

U, (X, ¥) =1, (x,y) + Iﬂ«(é)( jdé- (2.20)

As presented before the stationary conditions

L+, =0,(2.21)
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x'i,g;x= 0,

And this gives
A =-1,(2.22)

Substituting this value of the Lagrange multiplier A = — 1 into the functional (2.20 )

gives the iteration formula

au, (58) | (58
PR ox '

MnH()C,y):Mn(x,y)—J‘( )dé’nzo (2 .23 )

We can select %, (X, ¥) = X~ from the given conditions. Using this selection into

(2.23 ) we obtain the following successive approximations

uo(xay): x2,

u (x,y)=x" - j-(&uo (x,0) +x uy(%,8) _ 3u, (x, 5))015 =x"+x°y,

PY: o
(%, ) =x" +x2y—f(6”§’@+xé”l o) 3, (x,@jdcf
L (2.24)
=x2+x2y+5!x2y2,
uy(x,y)=x"+x’y _Jy-(éuz(;); °) +x Guz(g;c, ) —3u, (x, §)jd§
2 2 1 2.2 1 2. 3
=x"+x y+5!x % +§x v,
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1 1
— 2 o, 2 3
u, (x,y)=x (1+y+2!y +3!y + ..).

The VIM gives the exact solution by
u(x,y)=x%e’.(2.25)
Example 4:

Solve the following partial differential equation by the variational iteration metho

u,+u,+u, =u,

u(0,y,z)y=14+4e” +e°,
u(x,0,z)=14+e" +e”, (2.26)

u(x,y,0)=1+e* +e”,
where

u=u(x,y,z).

Solution:

The correction functional for equation (2.26 ) is
u. (xy,z2)=u(x,y,z)

. ! Z@Laun(géy,z} +%(g;y,z)+6ﬁn(g; y’Z)—un(aj,y,z)jdg. s
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This gives the stationary condition

L+, =0,(2.28)

z,'i,g:x =0,

This gives
A=-1,(2.29)

Substituting this value of the Lagrange multiplier A = — I into the functional (2 .27 )
gives the iteration formula

u,.(x,2)=u,(xy,z2)
jﬂ(@(au (62 a(e:y,z) D¢ y)z)%nzo.(z.so)

We now select u,(x,y,z) =1+ e’ + e~ from the given conditions. Using

this selection into (2 .30 ) we obtain the following successive approximations
uy(x,y,z)y=1+e’ +e’,

u(x,y)=1+e" +e

_I Ouy(£.9,2) | 0uy(&,.2) | ouy(S,.2)
o0& oy oz

=l+x+e" +e°,

—U (59 Vs Z)Jdé

0

u,(x,y)=l+x+e" +€

@) aEr) s .
I( & o ul(é’y’)jdé(z-“)

ltxtr b e
2!

0
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1
1/13(x,y)=1+x+5x2 +e’ +eé

_J.(auz(éjyjz)+5u2(§’y92)+5u2(§’y92)—Mz(é,y,z)jdé
)\ e v oz
=1+x+lx2+lx3+ey+ez,
2! 3!
u, (x,y,z)=(1+x+ %xz + %x3 +.) +e’ +e”.

As a result, the exact solution is given by
u(x,y)=e* " +e’ +e”.(2.32)
2.2.Homogeneous and inhomogeneous Heat Equations
ExampleS:

Use the (VIM)to solve the initial-boundary value problem
PDEu, =u_,(0 < x <m), (> 0),
BCu(0,t) =0,u(x,t)=0,t>0, (2.33)
IC u(x,0) =sin x.

Solution:

The correction functional for equation (2.33 ) is

ou,(x,&) 0, (x,8)
P o

U, (60 =u,(x,0)+ Iﬂ«(é)( jdé- (2.34)

As presented before the stationary conditions
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L+, =0,(2.35)

2y, =0,
And this gives
A =-1,(2.36)

Substituting this value of the Lagrange multiplier A = — 1 into the functional (2.34 )

gives the iteration formula

ou 4
né(g@_ ”g)g"f)__?,unjdg,nzO. (2.37)

U, ()C, t) =u, ()C, t) _j‘[

We can select # o (x,0) = sin X from the given conditions. Using this selection

into (2.37 ) we obtain the following successive approximations

u,(x,y)=sn x,
u,(x,y) =sinx —¢sinx

: : 1, .
uz(x,y):slnx—tsmx+5t sinx (2.38)

: : 1, . 1 5.
u3(x,y):smx—tsmx+5t smx—gt sinx

- L, 1,
u, (x,y)=-sin x(1 t+2—!t Et + ...

The VIM gives the exact solution by

u(x,y)=-e 'sin x.(2.39)
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Obtained upon using the Taylor expansion of € -
Example6:
Use the (VIM)to solve the initial-boundary value problem

PDE u, =u_ +sin x,(0 < x=<mx),(t>0),

t XX

u(0,t)=e ",t 20

BC _
u(z,0)=-e '",t >0,

(2.40) 1C u(x,0) =cos x.

Solution:

The correction functional for equation (2.40 ) is

ou,(x,8) 0'u,(x8)
PE o’

U, (x,0) =u,(x,1) +fﬂ«(§)( Sinxjdé- (2.41)

As presented before the stationary condition

I+ A4 ei=0,(2.42)

,1‘\1%:[:0,

And this gives
A =-1,(2.43)

Substituting this value of the Lagrange multiplier A = — 1 into the functional (2.41)

gives the iteration formula

ou,(x,§) u,(x,8)
PE o’

u,, (xt)=u,(x,t) —j‘[ Siﬂx}dﬁ,n 20.(2.44)

We can select # o (Xx,0) = c0S X from the given conditions. Using this selection

into (2 .44 ) we obtain the following successive approximations

u,(x,y)=cos x,
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u,(x,y) =cosx —tcosx +1sinx,

: 1, . 1,
uz(x,y):cosx—tcosx+t51nx+5!t smx+5!t cosy, (2.45)

B 1, 15 . 1, 1,
u;(x,y) =cosx(l t+2!t 3!t)+smx(t Z!t +3!t),

B 1 , 1 ;5 : 1 , 1 ;4
u,(x,y)=cos x(1 t+2—!t at +...) +sin x(¢ 2—!1‘ +§t +...).

Accordingly, the exact solution
u(x,y)=e 'cos x+(1—-e ")sin x.(2.46)
2.3 Homogeneous and inhomogeneous Wave Equations

As stated before the variational iteration method (VIM) gives rapidly convergent
successive approximations of the exact solution if an exact solution exists. Otherwise, the
method provides an approximation of high accuracy level by using only few iterations. In

what follows, The variational iteration method will be used in the following wave equations.
Example7:
Use the (VIM)to solve the initial-boundary value problem

PDE u, =u_,(0<x<m),(t>0),
BC u(0,t) =0, u(mr,t) =0,t>20, (2.46)

IC u(x,0) =sin x.
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Solution:

The correction functional for equation (2.46 ) is

() =0, 50+ | z(e:)(a e "5)}15. (2.47)

As presented before the stationary conditions

L+, =0,
2y, =0,(2.48)

2y .. =0,
And this gives
A=¢&—-1t,(2.49)

Substituting this value of the Lagrange multiplier A = & — f into the functional
(2.47 ) gives the iteration formula

O'u, (8 O'u,(x,8)
08> o’

U (60 =1, (00 | @—f)[ jdénzo- (2.50)

We can select U o (X,%) = sin X from the given conditions. Using this selection

into (2.50 ) we obtain the following successive approximations

u,(x,t) =sn x,

. 1, .
u,(x,t) =sinx——¢’ sinx,
2!
(x,y) =si —itzi it“i
u, (x, y) =sinx ” snx4! smx, (2.51)

: 1, . 1, . 1 6 .
u3(x,y):slnx—5t smx+zt smx——'t sin.x,
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: 1 1
u, (x,y) = sin x(l—;z‘2 + —t" - —t

This gives the exact solution by

u(x,y) =sin xcos t.(2.52)

By noting that ¥ (x,7) = lim u,

1> o
Example 8:

Use the (VIM)to solve the initial-boundary value problem
PDE u, =u_ —2,(0<x=<m),(t>0),
BC u(0,t)=0,u(m,t)=nmx",t>0, (2.53)
IC u(x,0)=x>,u,(x,0) =sin x.
Solution:

The correction functional for equation (2.53 ) is

u,(v,8) 58

t,0(60) =1, (x,0)+ | 1(5)( 5 .

jdé- (2.54)

As presented before the stationary conditions




And this gives
A=¢&—1t,(2.56)

Substituting this value of the Lagrange multiplier A = & — f into the functional
(2.54) gives the iteration formula

o o
e +2Jdén20- (2.57)

U, (50 =u,(x,) +j‘(§ _t{

2 . . .. : .
We can select U, (X,f) = X~ + £sin X from the given conditions. Using this

selection into (2 .57 ) we obtain the following successive approximations

2

u,(x,t)=x"+tsin x,

: 15 .
u,(x,t)=x" +tsinx ——'t3 sinx,
u,(x,)=x" +tsinx—it3 sinx+lt5 sinx, (2.58)
’ 3 5 '

) : 15 . 1 5 . |
u(x,y)=x +tsmx—§t smx+§t smx——'t sin.x,

1 1 1
_ 2 . - 43 I
u,(x,y)=x"+sin x(¢ 3!1‘ + S!t 7!1‘ + ...).

This gives the exact solution by

u(x,y)= x> +sin xsin ¢. (2.59)

By using Taylor series for sin ¢ and by noting that ¥ (x,t) = lim u n

n— ®©
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Example 9:

Use the (VIM)to solve the initial value problem

PDu, =u_ +e ',(—0 < x <o) (t>0) (2.60)
iIc u(x,0)=1,u,(x,0)=—-1+sin x

Solution:

Note that the initial value problem is inhomogeneous.

The correction functional for equation (2.61) is

qun (x,&) B 527/7; (x,6) _
OE? ox’

(1) =0, (1) + | z@( e jdf- (2.62)

As presented before the stationary condition
1+ 2] ., =0,

2y, =0,(2.63)

A \ng,Z 0,
And this gives
A=¢&—1t,(2.64)

Substituting this value of the Lagrange multiplier A = & — f into the functional
(2.62 ) gives the iteration formula

(g
)= 0 (e:—t{ aém éz”éif@—ef}@nzo. (2.65)

We can select 4 o (x,¢) = 1— ¢+ £8in X from the given conditions. Using this

selection into (2.65 ) we obtain the following successive approximations
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u,(x,t)y=1—-+¢t+tsin x,

_ . |
u(x,t)=e’ + z‘smx—§t3 sinx,

u,(x,y)=e" Fesiny—— £ sinx-+— sinx 2.66
2y 3 g' S (2:660)

: 1, . 1, . 1 6 .
uy(x,y)=sinx——t" sinx+—1¢ sinx——t¢" sinx,
2! 4! 6!

_¢ 5

: 1 1
u, (x,y)=-e '+ sin x(z‘—;z‘3 + —t

5!
This gives the exact solution by

u(x,y)=-e "sin xsin ¢. (2.67)

By noting that % (x,¢) = lim u

n— o
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2.4 Nonlinear PDEs by Variational Iteration Method (VIM)

Systems of nonlinear partial differential equation arise in many scientific models such as the
propagation of shallow water waves and the Brusselator model of chemical reaction-

diffusion model. To use the (VIM), we write a system in an operator form by

Ltu + RI(M,V,W)+ NIM(M,V,W) = gl’
Lou+ Ry(u,v,w)+ Ny(u,v,w)=2g,, (2.68)
Lu+ Ry(u,v,w)+ N, (u,v,w)= g5,

With initial data

u(x,0) = f(x),

v(x,0) = 12(x) (2.69)

W(X,O) = f3('x)9

Where L, is considered a first order partial differential operator, R F 1 < j <3 and

N j ,] < j < 3 are linear and nonlinear operators respectively, and & ,, € , and & 5 are

source terms. The correction functionals for equations of the system (2.68 ) can be

written as

u ., (x,t)=u(x,1)

+ [ A (Lu, (6,8 + R @, 5,,%,) + N, 0L, 7, ,) - &, (£)d,
0

v . (x,t)=v (x,1)

+J12(Lvn(x,§)+Rz(ﬁn,Vn,Wn)+N2(L7n,\7n,v7/n)—g2(§))d§,
0 (2.70)

w(x,1) =w, (x,1)

[ A (L, (x,€) + Ry(@,, 7, )+ Ny (0,7, %,) — g, (),

81



Where 4 ;,1 < j < 3 are general Lagrange's multipliers, which can be identified
optimally via the variational theory, and u,,V,,and W, as restricted variations which
means i, = 0,5V, = 0 and 6w, = 0 .Itis required first to determine the
Lagrange's multipliers 4 ; that will be identified optimally via integration by parts. The

successive approximations # , ., (x,t), v, (x,t), w, ,(x,t), n =2 0 ofthe
solutions u (x,t), v(x,t) and w (x,t) will follow immediately upon using the
obtained Lagrange's multipliers and by using selective functions « ,, v, and w , . The
initial values are usually used for the selective zeroth approximations. Whit the Lagrange's

multipliers 4 ; determined, then several approximations

u (x,t),v,(x,t), w,;(x,t), j 2 0 canbe determined [18]. Consequently, the

solutions are given by
u(x,t)=Im u (x,t),
n— ©
v(x,2) = lim v, (x,0), 5 97
w(x,t)=Ilm w;(x,1),
n—> ®©
Example 10:
Use the (VIM)to solve inhomogeneous nonlinear system
u, +vu +v=1,
PDE v =1 (2.72) 1C u(x,0)=e*,v(x,0) =
Solution:

The correction functional for equation (2.61) is

)=, 50+ 18] S5, (M (x,@—ljdé,
&, (%.8) &u@ (2.73)

o 1/7;1 ()C, g)

V@0 =y, 0+ [ 4,(6) v@f)ljé

og

The stationary conditions are given by
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1+ 4, =0,1,( =1)=0,

42, 20,2, =0)=0, >

So that
ﬂ,l = ﬂ,z = -1, (2.75)

Substituting this value of the Lagrange multiplier A, = A, = —1 into the functional

(2.73 ) gives the iteration formula

0 (50) =10, (50) ( ) n(x,@%%(x@—l}da

(2.76 )
by (50) =, ()~ j(av ) )~ 1}15

The zeroth approximations u ,(x,t) = e*,and v,(x,t) = e * are selected by
using the given initial conditions. Therefore, we obtain the following successive

approximations

u,(x,t)y=e",vy(x,t)=e ",

u (x,t)y=e" —te*,v (x,t)=e " +te ",
2
u,(x,t)=e" —te* + —'ex + noiseterms

2
-Xx -Xx ! -Xx .
v,(x,t)=e " +te e + noiseterms (2.77)
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By cancelling the noise terms between u , ,u , ,... and between v,,v,,.. we find

t?
u,(x,t) = ex[l—t+ —— —+ J,

PEEE (2.78)
v, (x,t) = ex[l +t+ —+ —+ J,
21 3!

And as a result, the exact solution are given by

u(x,t)y=e* ',

2.79
V(x,t):e_x+t,( )

Obtained upon using the Taylor expansion for e ~* and e ’ . It is obvious that we did not use
any transformation formulas or linearization assumptions for handling the nonlinear terms.

In what follows, a system of three nonlinear partial differential equations in three
unknown functions n u (x, y,t), v(x, y,t)and w (x, y,t) will be studied. It is
worth that noting that handling this system by traditional methods is quiet complicated.

Example 11:

Use the (VIM)to solve inhomogeneous nonlinear system

u, —v.w, =1,
PDE VT WLl =359 .80)
w,—u.,v,6 =5,

With the initial conditions
u(x,y,0)=x+ 2y,

IC v(x,y,0) =x-2y, (2.81)
w(x,y,0)=—-x+ 2y.
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Solution:

The correction functional for equation (2.61) is

un+l(xsy,t):Mn(x,y,t)-kj.ﬂl(g) aun(xﬁysg)_avn(xsysg)*awn(xsysg)_ljdg,

05 ox oy
Vn+1(x,y,l‘)=vn(x,y,t)+.|',12(§) a"n(;%y’@ awn(;;%@*aun(;;y,ﬁ)_sjdé .
Wn+l(x,y,t) W+l(x,y,t)+j,qg(§)(aw (xéy,ﬁ) 8u (2;)/95) 8\/ (;C;}y’g) jdﬁ,

The stationary conditions are given by

1+, =0,4,( =1)=0,
1+ﬂy2 = 0,1'2 5 = t)= 0, (283)
1+, =0,1,(&=¢t)=0,

So that

A=A, =2, =-1,(2.84)

Substituting this value of the Lagrange multiplier A, = A, = A, = — 1 into the

functional (1.82) gives the iteration formula

u,, (6, v,0) =1, (%, ,0) I(&t (;%y,é) o, (2;%5) £, (;y,y,é) 1 e,

v )=y Cpid)— I(@vn(g%y,@ wn(;y,@*@un(;y,@ she

w0 =w (X, ,6)— J’(@W (x;/a@ ou, (38;)/,5) ov (x 8 jdf

The zeroth approximations
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u,(x,y,t)=x+ 2y,
vol(x,y,t) = x -2y, (2.8)

welx,y,t)=—-x+ 2y,

are selected by using the given initial conditions. Therefore, we obtain the following

successive approximations
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(u,(x,y,t)=x+2y,

VO(X,)/,{)Z X—z)/,
(wo(x,y,t)=—x+2y,

\

rul(x,y,t) =x+ 2y + 3t,

\

v, (x,y,t)=x—-2y+3t,
(w (x,y,t)=—x+2y+ 3t,

-

(2.87)

k.

run(x,y,t)z x+ 2y + 3¢,

\

v (x,y,t)=x—-2y+ 3¢,

w,(x,y,t)=—-x+2y+3t,

Are readily obtained .Notice that the successive approximations become the same for
u after obtaining the first approximation .The same conclusion can be made for v and w
.Based on this, the exact solutions are given by

u(x,y,t)=x+2y+ 3t,

v(x,y,t)=x—-2y+ 3t, (2.88)
w(x,y,t)=—-—x+2y+ 3¢.
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Chapter Three

Seepage flow Derivatives 1n porous
media.



3.1 Definition of a porous media

In order to study the flow of fluid through porous media, it is first of all necessary to clarify
what is understood by the terms that denote the two materials involved fluids and porous
media.

We define(porous media) as solid bodies that contain pores, (pores) are void
spaces which must be distributed more or less frequently through the material if it is to be
called(porous).

3.2 Darc'y law

Darc'y law derived experimentally and was thus considered an empirical law based on
volume average of the Navier Stock momentum equation. The assumption needed for
derivation of Darc'y law include low flow speeds and that porous fluid direction is a
dominating actiong on the fluid.

3.2.1 Single-Phase Flow

The differential form for the Darc'y law in single-phase is

k
u = —(Vp + pij (3.1)
H g

4

Where

k is absolute permeability tensor of the porous medium.
K is fluid viscosity.

g 1is gravitational.

g . 1s conversion constant.

P s fluid density.

u is fluid velocity.
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3.2.2 Permeability

The hydraulic conductivity tensor A describes the influence of the fluid and rock properties
on the volumetric flow density(flow velocity), and given as

k
A= —
L (3:2)

Where
k represents the absolute permeability of the given porous medium.
3.3 Introduction to Fractional Calculus

The calculus was the first achievement of modern mathematic, Isaac Newton & Leibniz
discover calculus in the seventieth century.

Leibniz first introduced the idea of symbolic method and based the symbol.
d"y
dx "

= D"y (3.3)

For the nth derivative, where n is non-negative. L'Hospital asked Leibniz about the
possibility that n be fractional Leibniz replied it well lead to paradox.

3.3.1 Lacrox formula

In 1819 Lacrox developed the formula for the nth derivative of Y = X " where m is

positive integer

! mn
Dny:((m”i—n)!jx M 21 (3 .4)

Replacement of the factorial symbol by the gamma function goes

; I + 1 e n
b y:(r(m(nin:an = (3.5)

Now of (3.5) is define for other 7 integer or not (arbitrary number)
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3.3.2 Lioville’s Formula For Derivative
3.3.2.1Lioville’sFirst Formula

For any integer # we have

D"e®™ =a"e™ (3.6)

Lioville’s replace of 7 by an arbitrary order & (rational ,irrational ,or complex) it is clear
that the Right Hand Side (RHS) of (3.6) is well define case, that obtained the following

formula
D™ =a%e™ (3.7)
This formula is called first Lioville’s formula.

In series expansion of (X ) ,Lioville’s formula is given by

D*f(x)= i c,a,e’" (3.8)

n=0

Where

f(x) = Zw: c,e’” (3.9)

n=0

3.3.2.2 Lioville’s second formula:

Lioville’s formulated another definition of (second formula) fractional derivative based on
the gamma function to extendLacriox formula.

rg = Itﬁ‘le"“dt
0

r(p)x " = J't_ﬁx_ﬁe_’dt,ﬁ = 0

Let ¢t = xt = dt = xdt
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C(B)x "’ = jtﬁ_ﬂ”tﬂ_ﬂme_“xdt,

C(B)x " =[t' e ™dt,B >0
0

T(B)D“x ™’ =[t! e ™dt,p » 0
0

Il
~

_l)ajta+ﬁ—le—xtdt

0

D%x P = i]?t“”}_le_“dt
Irp )
(-1)°

= Wr(ﬁ +a)x_'8

o -p _ (=D
Dt = rp Tp Fra)x (3.10)

This is called Lioville’s second definition of fractional derivative according to Lioville’s

derivative of a constant S = 0

But the derivative of a constant function to Lacroix formula is

x—(l
D1 = # 0
Tl_a) (3.11)
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This lead to a discrepancy between the two definition of fractional derivative. But other
mathematicians preferred Lioville’s definition.

In 1822.Fourier obtained the following integral representation for f (x) and it is

derivatives

1 X X
f(x) = ﬁj f(@)d@{r" cos t(t—&)dt, (3.12)

And

nm
2

D”(f(x)):ﬁjf(é)dfjt”cos {t(x—§)+ }dt,(3.13)

Replacing integer 7 by arbitrary real o

04/

D“(f(x)) =$jf(§)d§jt“ cos {t(x—§)+T}dt, (3.14)

Greer derived formula for the fractional derivative of trigonometric

ax

D“(e™)=i"a%e™ =i"a”(cos ax + isin ax )

o ar .. ar ..
=a”| cos — + i sin 5 (cos ax + isin ax )

cos ax — sin

sin  ax j

D% cos ax = a® cos (a;r_Jr axj (3.15)

COS ax j

= D% cos ax = a"‘(cos

D “ sin ax = a"‘(cos

) ) ar
D% sin ax = a? sin (2—+ axj
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3.3.3 Fractional Derivatives And Integral

The idea of fractional derivative or fractional integral can be described in different ways. We
consider a linear homogeneous nth order ordinary differential equation

D"y =0

3.16
y©(a)=0,0<k < (3.16)
The solution is fundamental set P {I,xax yoos x"! }i.e

n—1 n—1
:iZoCix :rzzocrx (3.17)
3.3.4 Non homogeneous O.D.E

D"y = f(x)
y(k)(O)z 0, < x £ ¢

Solution:

We use Laplace transform /

ly(0) = £(0) = y“(0) =0

(D" (y)=tf(x)= s"F = F(s) O
where

v=({y}and f(s)=({f}

v=1s5"f(s)

Tt s ) = (3:20)
y(x)=¢" ‘1f(s)

Used convolution
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I B PR (3.21)
ﬂﬂ—rn“xt)fﬂwt

This formula is called Rimman integral.

In general

1 g o1
y(X)=ﬁ£(x—t) f(t)dt (3.22)

Is called Rimman-Lioville’s.

Replacing n byreal @ gives the Rimman-Lioville’s fractional integral

. B _a_l_x et
Y(X)=,DE(f(x) =J —agu O (de (393

Where

DY (f(x) =J ° Is the Rimman-Lioville’s operator.
If

a = 0 Is called Rimman fractional integral and

If

a = —oo called Lioville’s fractional integral.
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Chapter Four

The application of Varational

Iteration Method (VIM).



4.1 Liouville'sFirst Formula:

4.1.1 Exponential Function:

With the know result D "e®™ = a”"e™ where D = P n € N | and extended it
1

2

at first in the particular case & = ,@ = 2 and then to arbitrary order & (rational,

irrational or complex) by
D“e™ =a%e™ (4.1)

He assumed the series representation for f (x) as f(x)= Z cre" and defined
=0

the derivative of arbitrary order @ by

0

D f(x)= c,ape’’ (4.2)

k=0

4.2Liouville’sSecond Formula:
4.2.1Power Function:

Where this isLiouville's first approach, his second method was applied to the explicit

function x ~“ . He considered the integral

0

I = J'u P=le™™du (4.3)
0
Substituting xu = ¢ gives ¢ he result

0

I=xP[t!edt = x"T(B),,,,Re a > 0 (4.4)

0

b
L(B)

Operating on both sides of * = whit D “ with respect to X heobtained
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r(p)b“*“x" = J'uﬁ_lD“e_x“du

0

Da(e—xu): (_l)auae—xu

Liouville used the latter in this investigation of potential theory

That lead to

D*x? = F’Br’f;_ilxﬁ_a,(ﬂ = —=1) (4.6)

4.3The Partial Differential Equation Of SeepageFlowThrough Porous Media

The partial differential equation for incompressible single phase percolation flow
under the hypotheses for continuity and Darcy low can be written general as follows

o 0 0 0 o 0 10
b, Ly ke, Ly s ke, Ly = 22,
ox ox Oy oy 0Oz oz v ot (4.7)

(x,y,z)e Q

p(t,x,y,z)s, = ¢,

a t’ M M
p(t,x,y Z)S2=§02 (4.8)
on

p(t,x,y,z)=¢,(x,y,2z)

Where k ., k , and k _ are the percolation coefficients along the X, ¥ and z direction
respectively , P is the pressure, and €2 denotes the percolation domain , ands, + s,
covers all its percolation domain.

4.4 The Fractional Partial Differential Equation Of Seepage

The above percolation is (seepage) equation under the assumptions of continuity of
seepage flow and Darcy low .Generally these two assumptions are not valid for real seepage
flow.
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We proposes the following modified Darc’ysLow or generalized Darc’ysLow with
Riemman-Lioville's fractional derivatives

g. = k. Zila{’ (0 < a, < 1)
qy—kyaaizaf,(0-<a2-<l) (4.9)
g. =k, aaj:a{’ (0 < a, < 1)

Incaseof ¢, = ¢, = a; =1 (4.9) correspond Darcy low, the Riemmanlioville's

fractional derivatives generally

0“u 1 d ¢
= —t) “ t)dt
" Tl o !)(x ) “u(t)dt (4.10)

Under the assumptions of continuity of seepage flow we have following fractional
differential equation

0 0" 0 0" 0 0“ 10
= =, = = =~
ox Oox ™ oy oy ™ 0z 0z rot (4.11)

(x,y,z) e Q
From (4.9)

If seepage flow is considered as rigid body motion the continuity equation can be written as
follows

60 k aa,p aO k aazp aO k aa3p _la_p (4 12 )
a 0( X a )+ 0( y a )+ ()( z a )_ s
X ox ™ oy oy ™ 0z 0z r Ot

(x,y,z) € Q

Actually the seepage flow is neither continued or rigid, so the more general equation for
seepage can be expressed as follows
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ob aaup LLE 50!2p BLE 5a3p 1 op
k + k + k =——
O’ (%, e ) oy’ (k, oy ) P (k. Dz % ) F ot (4.13)

(x,y,z) € Q

Where (0 < B,,8,,8, < 1)

It is exciting that thevariatianaliterantial method (VIM) is also valid for such fractional
differential equation , which are very difficult to solve even with numerical simulation. Duo
to the fact that fractional differential equation can be excellently describe the natural
phenomena approximation approach to it has caught attention by numerous mathematician

We will apply the variatianaliterantial method (VIM) to obtain an analytical solution
for a fractional differential equation.

Consider first the following system

0%u
= (x,u) (1 < a < 2)
ox*“ / (3.14)
u(a) =5
Solution:

According to the variatianliterantial method (VIM), we construct the following correction
functional

w,,(x)=u,(x)+ [°F (x) (4.15)

Where [ “ the Riemman-lioville's fractional integrate defined as follows
1 ¢ 1
I1“F (x)=——|(x—-1t)" " F(t)dt (4.1
(x) = — {( ) TUF (1)dt (4.16)

For example, from Lacrox

1 1
L Tn+1  aek
D 2t" = n + lt 2’n>__1(4.17)
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To identify approximately the Lagrange multiplier we apply restricted variations to nonlinear
a a u . . . . .

term and also to 8x—“ when there exist derivative with integer order.

But where there exists no derivative with integer order, as far as there exists no way

stationary conditions directly from a functional with the Riemman-lioville's fractional

integrateso the correction functional can be approximately expressed as follow

ra ou
u = + | A L
s (x) = u, (x) j { -

- f(x,un)}dx (4.18)

Substituting the identified Lagrange multipliers in also to (4 .14 ) results in the following

iteration procedures

o 0"u,
Example 1:
Solve
1
L x? b

D2y = 1(u+1),,/t(())=0,(0<x<1)(4.20)

T2
By using (VIM)
Solution:

According to the variatianliterantial method (VIM), we have following correction functional

w,.(x)=u,(x)+ 1“F (x) (4.21)
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Then

1 1
Mn+1(X)=Mn(X)+]2 )‘ Dzun_ l(un_i_l)2 (422)

And it is stationary conditions can be readily obtained

A(r) = 0
A(T)—i_l:Oﬂﬂﬂﬂﬂatﬂﬂﬂﬂﬂﬂjt:T (4.23)

So the multiplier can be identified by 4 = — 1 substitute in (4 .22 ) yield
2

1 1
w, (X)) =u, (x)= 124 D2u, - Z—(u, + 1) (4.24)
7-[2

We start with # , (0) = 0, by the variatianal iteration formula (4 .24 ), we have

uo(O) = O)

L 1 2
u, (x)=u,(x)—-1° Dzuo—x—l(uo+1)2
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1
1 7 1 1 r —+1
- ]2 x? — 1 b 2{ X 2} _ 1 2
1 1 L 1 | 1
2 2 : ' —+ 1+ —
T T T ’ )
1 F:i X
_ : 2 X
~ T2 2
T
1
I 1 2
u,(x)=u,(x)—- 17?2 D *u, - 1(“1+1)2
T2

The exact solution my obtained by using

u(x.1) = lim u, (x.1) (4.26)

Then the exact solution is

u(x)=—+ g—xz + .. (4.27)

X
2

Example 2:

+ D7 |t (4.25)

Solve homogeneous partial differential equation by (VIM)

0%u(x, du(x,
(y)_l_x (x,y)
oy« ox

Solution:

0Uued) | ou(rd)
Un41(x, ) =un(x,y)+f0y/1< R

As presented before, the stationary conditions are

1+/1|E=x=0
,1|E=x:o(4.30 )

=3u(x,y) =0 ,u(x,0) = x%,u(0,y) =0 (4.28 )

3u(x,§)> dé (4.29)
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This gives 4 = —1

Substituting this value of the Lagrange multiplier A = —1 in to the functional (4 .29 )
gives

the iteration formula

aa n U a n ]
Un+1(x,y) =un(x,y)—f0y< L;;ff)+x “ai‘f)—Bun(x,f))df,nz 0(4.31)

We can select uy(x,y) = u(x,0) = x? from the given conditions. Using this selection into

(4.31) we obtain the following successive approximations

uo(x,y) = x?

y
¢ ) 9] )
uy (x,y) = uo(x, y) — f( Lg}(f 2 + x uoa(;c D _ 3u, (x, E)) dé

¥ y
f afa(xz)+x(2x)—3x)dé’—x —f(O—xZ)dE—x + x2y
0

1, (5, y) = 1y (x, y) — f <a“u1(x E) alu(x, §) 3, (x, €)> de

0x

y

= x%y — f(ﬁ(x +x28) + x(2x + 2x&) — 3(x? +x25)> dé
Oy (28l-a
0

x x2y2 a
21 +< r(3—a)+x2y>
9%u, (x, du, (x,
u3(6,9) = u(x,) —f(%m%—m(m) %

0
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2!

Y xZEl—a xZF(B)EZ—a XZF(B _ a)EZ—Za xZEl—a
_f<F(2—a)+ 2IT3 — ) +<_ (3 - 2a) +F(2—a)>

x2€2 xZEZ—a
2 2 2
— X% — X2 — — %% )d
S R TR T g xf) :
x2 2 x2 2—«x x2 2—a x2 3—a
=x%+x%y + Y 4 —y—+x2y S A
2! 'G—a) I[B—a) THA-—a)
xZF(B _ a)y3—2a _ xzyz—a N x2 N x2y2 N x2y3 _ x2y3—a
[(4—2a) MG-a) 77720 "3 Tl-a
x2y2
+ 2!
x2y2 x2y2—a 2x2y3—a 2x2y2
24 .2 _ 2 _
AT +< fG-a ~ y>+< G- 2 )
2. 2-a 2002 _ o \3-2a 2,3
_2x%y +x2y+x rG—a)y xX°y
I'G—a) I'4 - 2a) 3!
un(x’y) 2.,2 2.,3 24,2
NI AN AU A (. AR
=x"+x"y+ o + 3] + -t oy + F(3_0()+xy

2x2y3—a 2x2y2 2x2y2—a N x21’*(3 _ a)y3—2a
- + ——= 5 < txy+
r(4—a) 2! r'(3 —a) T'(4 - 2a)
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u(x, t) = limy o up (x,y) = (_ Xy + X }/) (_ 2y + szyz) +

, - rG-a) r(4— a)2 . 2!
(-5 ety e I g S < ()
(B2 s (Bt s S o (22
)+ () (g Py
(3.32)

When a = 1 then the exact solution is x%e*

4.5 A Fractional Model Of Fluid Flow Through Porous Medialn TwoDimensionBy
(VIM):

If seepage flow is considered as rigid body motion the continuity equation can be written as
follows in one dimension

o™ 18
(k - Py __9P _y,

xt vt (4.33)
x e Q)

4.6 Solution AFractional Model Of Fluid Flow Through Porous Media In Two
dimension by (VIM):

Solve FPDE BY (VIM)
0" p(x,t) 10op(x,t) 4
ox*“ V ot
p(0,t) =1t
(4.34)

p(x,0)=—

v
Po(xat) = t
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Solution:

pHAXJ)=prJ)+lIa gng)_%ég%gild (4.35)

nz=0
As presented before, the stationary conditions are

1+/1|E=x:0
/1|E=x:o(4.36 )

This gives 4 = —1
Substituting this value of the Lagrange multiplier A = —1 in to the functional (4.36)

gives the iteration formula

0P, (£ L0p, (5.0,
oE* Y (4.37)

poa(xt)=p,(x,0)-|

Po(x,t)=1
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pi(x,t) = p,(x,t)- dé

fa Pﬂff) 10p,(&,1)
) v ot

a(x

s
-

1
(1) - ja—t(f)df

O——dé —t—(——x)—t+1—x
% %

pi(x,0) =1+ =
1%

xaapl(gat) lapl(éat)
1) = 1) — S A RAEAY.
pr(x,t) = p (x,1) { e - ¢
¢ 0“ 1 1 0 1
=t+ —x - t+ —&)—- ——((+ —&)d
- £a§a< —E) - — (4 —&)de
X l-a
=z+lx—j S L
% OvFZ—a %
X xi 1 1 x?2 ¢ 1
=1+ —- - —X|=7+—Xx - + —X
% vI3 -« % % vI3 -« %
X X x2
X, 1) =t+ —+ | —— ——
Pal ) % {v vF3—a}
xaapz(éat) lapz(f,t)
1) = 1) — S d
py(x,t) = p,(x,1) { T s ¢
2 x?2 7
=t+—x+ |- —|—
% vI3 -«
. 2 52_“ 1 0 2 52_“
+ - - ) ——(t+ —& - —=2——)d
-[85“( vg vF3—a) v@t( vé vF3—a) .
2-a X l-a 2-2a
P SN SO BT S - Lyace
% vI3 -« vI2 -« vI3—-al'3 -2« %

0
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2 xZ—(x 2x2—(x x3—2(x 1
=t+ —-x - —— — - —X
% vI3 -« vI3 -« vI4 -2al'3 -« v
2 xZ—a 2x2—(x x3—2a 1
=t+ —x— — + + —x
% vI3 -« vI3 -« vI4-2al'3 -« v
3x2—(x x3—2(x
=1+ —x - +
v vI3 -« vI3—-al'4 -2«
X 2 3x2°¢ x3 %
pi(x,t)=t+—+| —- +
v v vI3 -« vI3—-al'4 -2«
2 3 4 n
p,(x,t)=t+—x+—x+—x+..+—X
1 1 1 1 (4.38)

X x2 2x 3x27¢ x>
=+ — + +
v vI3-«a % vI3 -« vI3—-al'4 -2«

The exact solution my obtained by using
p(x,t)=1lm p, (x,t) (4.39)
Then the exact solution is

. . 1 n
Im p, (x,t)=1lm ¢t+ —x+ —x+ —x+ —x + ... + —X
n—

n— ® % % % % %
x2—a 3x2—a x3—2a
+ |- —| - + +
{ vF3—a} vI3 -« vI3-al'4 - 2a
xZ—a 4 x3—2a 1
=t+| - —+ —x |+ | - + —x
vI'3 -« % vI3—-—al'4 -2« %
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4a’ + 4 + x + ! X |+ ...+1+ ! X (4 .40
-+ —x — — —
vI3—a v vI3—al4-2a v y (4. )

When a@ = 1 then the exact solution is 7 + 7 X

4.7Solution AFractional Model Of Fluid Flow Through Porous Media In
ThreeDimensionBy (VIM)

If seepage flow is considered as rigid body motion the continuity equation can be written as
follows in one dimension

0 p(x,y,t 0 p(x, y,t 1 op(x, y,t
(k. p( al;v ))+(ky p(azy ))__ p(x,y )=0,
Ox oy % ot (4.41)

Ifa;=a,=a and k, = k, = k =1 then we have

0" plx,y,t) 9" plx,y,0) 10p(x,p.0)
ox“* oy“ v ot
(x,y,z) e Q

) (4.42)

Solve FPDE by(VIM):

0" p(x,y,t) 0"p(x,y,t) 10p(x,p.0) _,
ox"“ oy"“ v ot
p(0,y,,t)=1+¢e’ + &'

_ x(rl) t
p(x,0,t)=1+¢e¢ + e (4.43)

Lo

p(x,y,0) =1+ ex(v )+ e’

Po(x,y,t)y=1+e’ + e~
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Solution:

Pun (X, 1) = p, (X, ,1)
(8 pE ) P, (80 10p,(8,y,0)
) age oy” v ot
n=>0
(4.44 )

dg

As presented before, the stationary conditions are

1+/1|E=x:O
Ale_, =0(4.45)

This gives 4 = —1

Substituting this value of the Lagrange multiplier A = —1 in to the functional (4.44)

gives the iteration formula

Pon(X,3,8)=p,(x,,1)

X

_If?“pn(é,y,t)+8“pn(§,y,t)_18pn(§,y,t) dé
L oy° vooot (4.46 )

n=>0

Po(x,y,t)y=14+e” + €~
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0" po(8,,) 0" py(S,»,1) 1 9py(S, 1) dc

p](xayat):po(xayat)_'[
0

oc” ay* v ot
X a y ‘ y ,
lte’ 4 ja (1+e +e) 0 (1+ea+e)_la(1+e +e)d§
0 oy % ot
=1l+e’ +¢€ JO+ey——ed§
0

X X
=l+e’ +e —xel + ¢ :1+[1—x]ey+[1+—}et
v v

P](xay,f)=1+ 1—i ey_|_ 1+i et
1! I'v

0" pi (G, 3,1) 0" py(E,x.1) 10p,(&,).1)
o&” oy“ % ot

Py (%, 3,0) = py (%, 3,0) = | d¢

_1+1 xe +[1+ }

Ia{“ [1+ﬂe} a{1+[1_§]ey+[l+i}e’} 1al+[1—§]ey+[1+ﬂe’}d§

o0& oy*” % ot

B T X lI-a l-a B
=1+[1-x]e’ + 1+3 e’—j— 6 e’ + 6 e’+[1—€§]ey—l 1+é}etd§

v y 12—« vI2 -« vl v

B T i 2-a 2-a 2y t 2t
:1+[1—x]ey+ 1+ e -] - 6 e’ + 6 e’+§ey—§ e’ _ge _§e2

L v i 2-a)r2-a v2-a)li2-a 2 v o 2v

x|, [ xFe x> x’e’ xe' x’e
—1+[l-x]e’ +] 1+ = |e" —| - e’ + e' +xe’ — -

v | [3-« vI3 -« 2 v 2y

B x2 x2—a 2 1 x2—a
X, ) =1+|1-2x+"—+ e’ +|1+=x+ x* - e’
P2 (%.7:0) M3—a T Y o

(x,y,t) = 1—£+£+ — X+ 7 e +| 1+ + X + - x e'
Py (X, ), o2 I3—« Iy 202 v vI3-a
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¢ 0“ , 1) 0° b)) 10p, (&t
P3(x,3,8) = py (%, 3,0) = I pZ(éy) pz(iy ) _1%p,(6.» )d§
0 oy % ot
x2 x2—a
=1+|1- 2x+—+ e’ + 1+ x+ > e
2v7 VI3 -«
2-a 2 2-a
o*|1+|1- 2§+§+§ e’ +|1+— §+ 52_ S o
J- [3—« v 2ve VI3 -«
0 o0&
2 2-a 2 2-a
aa 1_|_ 1_2§+§+§ €y+ 1+2§+ é . _ é et
2 I3- v 27 VI3 -«
_|_
oy”
2 2—a 2 2
ol1-26+° 1+ 5 |oril142e4 8 - &
1 2 I3-« v 2yt w3-« i
4 ot

p}(xﬁyat) =

X X 72 e
=1+{1-2x+—+ e+ 1+—x+—5— ¢
2 13-« v 2 W3-«

'—'o

X 25 l-a 1—352—05 | F3_a§2_2a ey 25 l-a 52—05 1—-352 —20 t
0F2a2'F3aF3aF32a vF2a2vF3avF3aF32a

{1 ERAAN }ey—{lﬁgﬁi— < }e‘dé

- % % v V33—«
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p3(x,y,t) =

x2 2—a 2 x2 x2—a
=1+|1-2x+—+ e’ +|1+—x+—-—
[3—« v 2lv7 W3-«
i 2-a 3-a 3-2a
- R - - .
2-al2-a (B-a)3-a (3-2al3-2a)
B 2 f 2-a f 3-a o) f 3-2a

_|_

f

1%

p3(x,y,t) =

:1{

X

1—2x+2+

3—a

é 3~a

(B-a)3- a}y
53 53—05

2-a2-a vV(B-alB3-a v3-2a)3-2a

3 W3-alB3-a

H

2 2—-a

I[3—-« %

3-2a
X

_{ 2x*7°

2
2x7¢

MB-a T4-

a T4-2a

3-a

3-2
X 2x>7¢

_|_ —
vI3—a

: +
vid-—-a v[4-2a

1+z

f

},

X+

}ef
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P (x,3,0) =
2 3 2-a 3—a 3-2a
S P O P e A W T« e’
2! 3 IT3—-a T4-a T4-2a
2 x3 3x2—a 3x3—a 2x3—2a

3-a
x }e,

I+ —+—
v 2y

3x  x* x
+ t ot T T2 + T2
v 3 WI3-a vIid4-a vid-2a vIid4-a

3-2a

? ’ 2a 3-a
pS(xayat):1+ 1_£+x———+ —2x+ 3x — X + x2_ 2x o’
o2 3 I'B-a T4-2a T4—q
B P S Y T St N S S T D S
v 2 34 |y W3-« vI3—a vI4-2a T4—-g vIid—a

X X2 x3 n 2-a 3x2—a x3—2a ) 2x3—a
p,(x,y,t)=14+|1-—+———+_ 4+ —+| —x+ +|—2x+ - +|x° - d
r o2 3 n! I'3-«a I3—-aa T4-a I'd—«
. 1+_+ 2 . x3 xn E_ x2—a . _2x2—a . 2x3—2a . x3—a _ x3—a et
My 202 30 T v V33—« vI[3—-a vI[4-2a viTd—-a VvT4-a
+...

The exact solution may obtained by using

p(x,y,t)=1lm p, (x,y,7)

Then the exact solution is

1i (x,y,t) =1+ 1—£+x—2—x—3+ PR L +| —2x+ LA 2 2
1mp, %), T Moo MHoo Td-a Td—q
x3 xn X x27oc _ 2x27a 2x372oc x.’ﬁ(x x.’ﬁ(x ,
+] = - + + + = —— e
vI3—-a vWI4-2a vid—-a vIid-a

X X
I+ —+—+—+.. -
I'v 2y 3y nly v V3-a

+...
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) i 2-a 32 32 . 2 % (_ l)n ¥
,Vot) = I+ |—x+ +|—2x+ - +|x" — +
p&Y.0) 1}5? {x F3—a} { * [3—« F4—a} [x F4—a} ,,Z_(J: n!
X e __2x27a 2x32 o X = x|,
+|| = - + + +| —— +Y—— e
v W3-a]| [VI3-a W['4-2a vid—a vIid4-a| Snv
+...
2—a 2—a 3-2a 3-a
3 2
ple,y,t)=||—x+ al T N, PO S T P e
[3—-a [3—a T4-a [4—a
X x2—a _ 2x2—a 2x3—2a x3—a x3—a .
+ | =— + + + = -— e
v UA3-«a U3—a W4-2a vIid—a vI4d-a
+o4l+ree +ee
T (4.47 )

X
t+ =

When a = 1 then the exact solutionis p(x, y,t) =1+e’" " + e 7
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Chapter Five

The application of Adomian
Decomposition Method (ADM)



5.1Theorem 1:

The Riemann-Liouville fractional integration of polynomial function of f (#) = t" s
defined as following [28];

F[1+n] fna
I'l'+n+ «

Jf)y=J" )= (5.1)

5.2Theorem 2:

The Riemann-Liouville fractional derivative of polynomial function of f () = t" is
defined as following [28];

F[1+n] o
I''+n-a«o

pefy=n"f]-

“(5.2)

Example 1.

Use Adomian Decomposition Method to solve the following homogeneous FPDE

0%u ou

+ x—=3u,u (0, =0,u(x,0)=x7,
5y ™= (0,y) (x,0) (5.3)
Solution.

In an operator form, Eq. (5.3), can be written as

Liu(x,y)=3u(x,y) - xL u(x,y), (5.4)

Where
0 0
L, =—,L 5= » (5.6
a X y a y a ( )
We assume that the inverse of the operator exists as the L _ya =J f

Applying the inverse operator f to both sides of (5.4 ), and using the given condition
u(x,0)=x" yield
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u(x,y)=x"+ JyQGBu(x,y)—xL u(x,y)). (5.7)

As mentioned above, the decomposition method sets the solution # (X, ¥ ) in an series
form by

0

u(x,y)= u,(x,5) (5.8)

n=0

Inserting (5.8) into both sides of the (5.7 ), we obtain

0

Y ou,(x,y)=x"

n=20
o g (5.9)
+ Y3 u, (x,y) = xL (D u,(x,))
n=20 n=20
Using few terms only for simplicity reasons, we obtain
Ug + 1, + Uy +.= X0+
(5.10)

JyGBug+uy +uy +..) —xL (uy +u, +u, +..)),
Proceeding as before, we identify the zeroth component U (x,y), by
u,(x,y)=x>,(5.11)

Having identifies the zeroth component ¥ o (X, ¥ ), we obtain the recursive scheme
u,(x,y)=x>,(5.12)

U (x,y)=J7Q@Bu, —xL (u,)), k20,

The components U, U ,U,,... are thus determined as follows:
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u,(x,y) = J;‘(?xuo — xL xu0)= J;‘(3x2 - xLx(xz))

uy(x,y)=x*, _ ., 2 2y _xy”

2 o 2 o
w,(x,y)=J%QBu, — xL u,)= J“(“—y xL (Lﬂ

"\ T(a+1) ~ *'T(a +1)
_ g 3x’y” B 2x°y° _ 3x%y T (a +1)
"\ T'(a +1) T(a +1) F'(a + D' (2a +1)
x2 2a
u, = 4 ,
'2a +1)
u,(x )—J“(?’u —xLu)—J“ 3x7y”" — xL _( x Ty )
A r o "\ T(2a +1) T(Q2a +1)
_Ja 3x2y2a - 2x2y2a _Ja x2y2a
"\ T'(2Qa +1) T'(2a +1) "\ T'(2Qa +1)
xz 3a
u, = 4 ,
'2a +2)

It is obvious that all components # , = 0, k=1 .Consequently, the solution is given by

u(x,y)=u,+u, +u,..

a 2a 3a
u(x,y)=x"+ y—x2 + y—x2 + y—x2 + ...
I'a +1) I'2a +1) I'Ga +1)

(5.13)

a 2a 3a

u(x,y) = xz(l 2 Y P + J,
I'a+1) T'Ca+1) T'Ga+1)

The exact solution obtained by o = 1 .
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2 3 4 5.14
u(x,y)=x2(1+f/—'+y + L 2 +} ( )
u(x,y) = x’e”,
5.3 A fractional Model Of Fluid Flow Through Porous Media In TwoDimension

If seepage flow is considered as rigid body motion the continuity equation can be written as
follows in one dimension

(ké‘“l)_lé_p: 0
ox“* v Ot ’ (5.15)

x e Q

5.4 Solution of a fractional model of fluid flow through porous media in Two dimension
by(ADM)

Use Adomian Decomposition Method to solve the following homogeneous FPDE

0% p 1 op X
= — > Oat = ta 90 = .
PR P,(0,7) p(x,0) > (5.16)

Solution.

In an operator form, Eq. (5 .16 ), can be written as

1
LS p(x,1) = —Lip(x.0), (5.17)

Where
0 0
L, =—— L% = , (5.18
t Ot Ox® ( )
We assume that the inverse of the operator exists as the L ;a = J f

Applying the inverse operator J < to both sides of (5.17 ), and using the given
condition p (0,¢) = ¢ yield
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p(x,t) = p(0,¢) + Jf(i—L,(p(x,t))j-
{ (5.19)
p(x,t) =1+ Jf(—Lt(p(x,t))j
A%

As mentioned above, the decomposition method sets the solution # (X, ¥ ) in an series

form by

p(x,t) = Zool p,(x,t) (5.20)

n=0

Inserting (5.20 ) into both sides of the (5.19 ), we obtain

0

Y p.(x,0) =1+ Jf(i—L,(pn(x,t))j- (5.21)

n=20

Using few terms only for simplicity reasons, we obtain
a1
PotDitp,+..=t+J] (;L,(po +ptp,+), (5.22)

Proceeding as before, we identify the zeroth component P (x,1), by
po(x,t)=1¢,(5.23)

Having identifies the zeroth component P o (X, ), we obtain the recursive scheme

po(x,t)=1¢,(5.24)
pk+1(x9t) = J:(I_Lt(pk(xat))jnk 2 09
%

The components Pg, P> P, »--- are thus determined as follows:
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po(x,1) = Jf(i—upo)j - Jf(i—ur)j
pO(xﬂt)zt) B x(x
pl(x’t)_vr(l-l-a)’

o 1 e x“ B
palrt) = JX(QTL’(pI{]_ Jx(x»Lt[vr(1+¢x)J)__o

p,(x,t) =0,

We can easily observe that p, = 0,k > 2 It follows that the solution in a closed form is

given by

p(x,t)= p,+ p,

p(x.1) = (¢+ x“ j,(s.zs)

vI(a +1)

The exact solution obtained by o = 1 .
( 1 )
p(x,t)y=|t+ —x |,
v

5.5 Solution Of Fractional Model Of Fluid Flow Through Porous Media In Three
Dimension By (ADM)

If seepage flow is considered as rigid body motion the continuity equation can be written as
follows in one dimension

o p(x,y,t 0 p(x, y,t 1 op(x, y,t
(k. pa( al;v ))+(ky p(azy ))__ p(x,y ):0’
X oy v ot (5.26)

Ifa,=a,=aand k. = k, = k =1 then we have

y
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0" p(x,y,t) 0" p(x,y,t) 10p(x,p,8)
ox“ oy“ v ot

, (5.27)
(x,y,z)e Q
Solution of FPDE by(ADM):

0" p(x,y,t) 0"p(x,yp,t) 10p(x,p.0) _,
ox"“ oy"“ v ot

p(0,y,,t)=1+¢e’ + &'

1
p(x,0,6) =1+ ex(v_l) + e

()
p(x,y,0)=1+¢ " + e’

Po(x,y,t)y=1+e’ + e~

(5.28)

Solution:
a 1 Y
pr(x,y,t) = 7Lt(p(x9y9t) - Ly(p(xayat))a (529 )
Where
0 0 0

L, =——, L% = , L = 5.30

Y oxe T gy (3:30)
We assume that the inverse of the operator exists as the L;a = J f

Applying the inverse operator J < to both sides of (5.29 ), and using the given
condition po (x,y,1) =1+ e’ + e’ yield

p(x,y,t)=po(x,y,t)+J] (1—L,(p(x,y,t)) - L“y(p(x,y,t))j-
v (5.31)

a 1 a
p(x,y,t)=1+e’ +e" + J? (;L,(p(x,y,t)) - L (p(x,y,1))

As mentioned above, the decomposition method sets the solution p (x, y,t) in an series

form by
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p(x,y,1) =2 p,(x,y.,1) (5.32)
n=20
Inserting (5.32 ) into both sides of the (5.31 ), we obtain

an(x,y,t):1+ey+et+

J:(%Lt(i pn(xa yat)j - L(;(i pn(xa yat)jJ

Using few terms only for simplicity reasons, we obtain

(5.33)

Do+t P +p,+.=1+e" +¢

ol . 5.34
+J; (;Lt(po +p+p,+.)—-Li(py+p +p,+..)), ( )

Proceeding as before, we identify the zeroth component P (x,y,t), by
po(x,y,t)=1+e” +e', (5.35)
Having identifies the zeroth component P o (X, ¥, 1), we obtain the recursive scheme

po(x,y,t)=1+e"+e', (5.36)
pk+1(x9y9t) =

J;x(‘l}—[,t(pk(x,y,t)) o Lo;(p(xayat))jak 2 O:

The components Pg, Py, P, »--- are thus determined as follows:
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po(x,y,t)=1+¢e” +¢',

p.(x,y,t) = Jil(%-Lt(po(x,y,tD —<Li(po(x,Jut))j

1
= Jf(;[,t(l+ey +e')-LS(1+e’ +et)j

a _t a y
:Jf(l—(et)—eyj: * ¢ _ X €
v vI(a +1) T'(a +1)

pl(x,t):x“( ! e' — ! eyj,
vI(a + 1) I'(a +1)

pr(x,y,t) = Jﬁ‘(%-Lt(pl(x,y,tD - L (p,(x,y,1))

1 ( a( 1 t 1 yjj
_Lz X e — e —
v vI(a +1) I'(a +1)
L“(x“( ! e' — : eyjj

g vl (a +1) F'(a +1)

(e )]
=J7| — e’ |- | — e’
vivl(a +1) I'(a +1)

:(l_ x2T(a +1) etj+( x2T(a +1)

vil(a+)I'(2a +1) I'la +1H)I'(2a +1)
1

pz(an’at): xza(

J

)]

: e’ + ! e’ |,
VAT (2a + 1) F(2a + 1)
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py(x,y,t) = Jf(i—Lt(pz(x,y,t))—L“;(pz(x,y,t))j
1 ( M( 1 t 1 n
— L, | x > e' + e’ -
v v I(2a +1) I'2a +1)

a( 2(1( 1 t 1 jj

L | x e’ + e’

g v (2a +1) ' 2a +1)

2a 2a
=J? L : al e’ | — al e’
viv li(2a +1) I'2a +1)

1 x3T(a +1) s xT(a +1) .
v vl (@ +)T (2a + 1) I'(a + DT (2a +1)

x3a . x3a .
= 3 e — e
vl (2a + 2) Fr(2a + 2)

pi(x,y,t)=x° : e’ — : e”
PR vl (2a + 2) F2a + 2) ’

It is
obvious that all components, p; = 0, k=1 .Consequently, the solution is given by
pP(x,y,0) = po+ P+ Py

pP(x,y,0) = po+ py+ py+ ..

x,y,t) =l+e” +e' + x” e' — x e’ |+
plx.y.1) (vl“(a +1) 'l +1)

x2a . x2a ’ x3a . x3a ’
3 e + e + 3 e — ————¢€ .
vl (2a +1) F(2a +1) vIrQa + 2) F(2a +2)
xa x2a x3a :| ’

+ - + ... |e
F'(@ +1) TQ2a+1) TQQa+2)

p(xayat):1+|:1_

xa x2a x3a .
+ 1+ + — + = + ... |e
vI(a +1) vI(2a +1) v'I(2a + 2)
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The exact solution obtained by «

X X
p(x,y,l‘) =1+ |:1_ﬁ+ 7—

p(x’y’t) =1+ [e—xey]+ |:€ve
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conclusion

The fundamental goal of this work has been to construct an approximate solution of seepage
flow derivatives in porous media. The goal has been achieved by using the (ADM) and
(VIM). The methods was used in a direct way without using linearization, perturbation or

restrictive assumptions. Comparing this method with others, we consider this method to be
more effective.
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