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ABSTRACT 

 

In this thesis the variational iteration method is implemented to give exact solutions for 
seepage flow derivatives in porous media. A correction functional for the fractional partial 
equation is well constructed by a general Lagrange multipliers which can be identified 
optimally via variational theory. Some examples are given and comparisons are made with 
the Adomian Decomposition Method (ADM).The comparisons show that the method is very 
effective ,convenient and overcome the difficulty arising in calculating Adomian 
polynomials andwe have solved seepage flow derivatives in porous media by using the 
Adomian Decomposition method(ADM). Our solution proved rapid convergence to the exact 
solution.  
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لخلاصةا  

 

معادلة . لمسالة تدفق السائل في الاوساط المسامیة الحلول الدقیقة لإعطاءالتغایرتكرار طریقة تم تنفیذ البحثفي ھذا 
 التغییر نظریة من خلال النحو الأمثل یھا علىعل ویمكن التعرف التصحیح للكسر الجزئي تعطى بمضاریب لاجرانج

وتم حل مسألة .مریحة، جدا الطریقة فعالة أن ةتظھرالمقارن.طریقة ادومیاناعطیت بعض الأمثلة وتمت مقارنة الحل مع .
  .في الحل الدقیقو السریع التقارب لدینا ثبت.عن طریق ادومیان  تدفق السائل في الاوساط المسامیة
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Introduction 

 

 Calculus is a very important branch of mathematics. It was invented by European 

mathematicians, Isaac Newton and Gottfried Leibnitz in the seventieth century. The first 

thought in fractional calculus was introduced in the following question: L'Hospital asked 

Leibniz about the possibility that  be  fractional. Liebniz (1695) replied; it will lead to a 

paradox.”  But he added prophetically, ‘From this apparent paradox, one day useful 

consequences will be drawn’.” In the years following, a little advancement was made in the 

development of fractional calculus. One of the earliest meaningful results given by 

Lacroix(1819) and Joseph Liouville (1832).  

Fractional calculus  represents more accurately some natural behaviour related to 

different areas of engineering and is applied to modern application of science, engineering 

and mathematics. Some of the areas where fractional calculus has made a profound impact 

include viscoelasticity and rheology, electrical engineering, electrochemistry, biology, 

biophysics and bioengineering, signal and image processing, mechanics, physics and control 

theory [1-5]. 

In recent years, it has turned out that many phenomena can be successfully modelled 

by the use of fractional derivatives and integrals. Several analytical and numerical  methods 

have been proposed to solve fractional ordinary, integral and partial differential equations of 

physical interest. The most commonly methods used are: Adomian Decomposition Method 

(ADM) and Variational Iteration Method . 

 In this thesis , we introduced the method of solution of nonlinear ordinary and partial 

differential equation . The two  methods studied are Adomian Decomposition Method 

(ADM) and Variational  Iteration Method  (VIM), many illustrated examples was given. 

 We introduced  the main topic needed   throughout  this work , including the definition 

of flow through porous and the equations that govern this flow , Also fractional calculus and 

its important properties where studied. 
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  The Adomian Decomposition Method (ADM) was introduced . This  method and the 

improvement made by the noise phenomenon and modified  Decomposition  Method [19] 

are reliable and effective techniques of promising results. This method provide the solution 

in an infinite series form. 

 The Varational  Iteration Method (VIM), was investigated. This method provides the 

solution in an infinite series   

 We applied the Variational Iteration Method (VIM) in solving fractional three 

dimensional Darcy’s law, and we obtained an exact solution. 
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Chapter One 

Adomian Decomposition Method (ADM) 
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1.1 Adomian Decomposition Method 

The Adomian Decomposition Method has been receiving much attention in recent years in 
applied mathematics in general, and in the area of series solution in particular.The method 
proved tobe powerful, effective, and can easily handle a wide class of linear or nonlinear, 
ordinary or partial differential equation,and nonlinear integralequation .The decomposition 
method demonstrates fast convergence of the solution and therefore provides several 
significant advantages. The method will be successfully used to handle most types of partial 
differential equation that appear in several physical models and scientific applications.The 
method attacks the problem in a direct way and in a straightforward fashion without using 
linearization, perturbation or any other restrictive assumption that may change the physical 
behaviour of the model under discussion. 

 The Adomian Decomposition Method was introduced and developed by George 
Adomian is well addressed in the literature. A considerable amount of research work has 
been invested recently in applying this method to a wide class of linear and nonlinear 
ordinary differential equation, partial differential equation and integral equation as well. 

The Adomian Decomposition Method consists of decomposing the unknown function 
),( yxu  of any equation into a sum of an infinite number of components defined by 

decomposition serie 

 

)1.1(
 

Where the components 0),,( nyxu n  are to  be determined in a recursive 
manner . 

The decomposition method concerns itself  with finding the components 
...,, 210 uuu individually .As will be seen through the table, the determination of these 

components  can be achieved in an easy way through a recursive relation that usually involve 
simple integrals. 

To give a clear overview of  Adomian decomposition method, we first consider the 
linear differential equation written in an operator form by 

)2.1(  
where L  is, mostly, the lower order derivative which is assumed to be invertible, R

 

,),(),(
0







n

n yxuyxu

,gRuLu 
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Is other linear differential operator , and g  is a source term. We apply the inverse 

operator 1L  to both sides of equation )2.1(  and using given condition to obtain 

)(1 RuLfu  )3.1(  

Where the function f  represents the terms arising from integrating the source term
g andfrom using the given conditions that are assumed to be prescribed. As indicated 

before. Adomian decomposition method defines the solution u by an infinite series of 
components given by  







0n

nuu )4.1(
 

Where the components ...,, 210 uuu  are usually 

 recurrently determined. Substituting )4.1(  into both side of )3.1(  leads to 

  

)5.1(
 

For simplicity . equation )5.1(  can be rewritten as  

...)).((... 210
1

210   uuuRLfuuu )6.1(
 

 To construct the recursive  relation needed for the components ...,, 210 uuu  

It is important to note that Adomian decomposition method suggests that zeroth component 

0u  is usually defined by the function f  described above, i.e.by all terms, that are not 

included under the inverse operator 1L  , which arise from the initial data and from 
integrating the inhomogeneous term. Accordingly, the formal recursive relation is defined by 

,0 fu   

,0)),((1
1  

 kuRLu kk )7.1(  

Or equivalently 
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n uRLfu
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,0 fu   

)),(( 0
1

1 uRLu   

)),(( 1
1

2 uRLu  )8.1(  

)),(( 2
1

3 uRLu   

.

.

.

 

It is clearly seen that the relation )8.1(  reduced the differential equation under 
consideration into an elegant determination of computable components. Having determined 
these components, we then substitute it into )4.1(  to obtain the solution a series form. 

It was formally that if an exact solution exists for the problem, then the obtained series 
converges very rapidly to that solution. The convergence concept of the decomposition series 
was thoroughly investigated to confirm the rapid convergence of the resulting series. 

However, for concrete problems, where a  closed form solution is not obtainable, a 
truncated number of terms is usually used for numerical purposes. It was also shown by 
many that the series obtained by evaluating few terms gives an approximation of high degree 
of accuracy if compared with other numerical techniques. 

It seems reasonable to give a brief outline about the works conducted by Adomian in 
applying Adomian’s method. Adomian and in many other works introduced his method and 
applied it to many deterministic and stochastic problems. He implemented his method to 
solve frontier problems ofphysics The Adomian’sachievements in this regard are remarkable 
and of promising results. 

Adomian’smethod has attracted a considerable amount of research work. A 
comparison between the decomposition method and the perturbation technique showed the 
efficiency of the decomposition method compared to the tedious work required by the 
perturbation method. A comparative study between Adomian’s method and Taylor series 
method has been  examined to show that the decomposition method requires less 
computational work if compared with Taylor series.  

Other comparisons with traditional method such as finite difference method have been 
conducted in the literature. 
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It is to be noted that many studies  have shown that few terms of the decomposition 
series provide a numerical result of a high degree of accuracy. Many other studies implement 
the decomposition method for differential equations, ordinary and partial, and for integral 
equation, linear and nonlinear. 

It is normal in differential equations that we seek a closed form solution or a series 
solution with a proper number of terms.It seems reasonable to use the decomposition method 
to discuss two ordinary differential equation where an exact solution is obtained for the first 
equation and a series approximation is determined for the second equation. For the first 
problem we consider the equation. 

Auxuxu  )0(),()(' )9.1(  

In an operator form, equation )9.1(  becomes 

,uLu  )10.1(  

Where the differential operator L is given by  

,
dx
dL  )11.1(  

And therefore  the inverse operator 1L  is defined by  

,(.)(.)
0

1 
x

dxL )12.1(  

Applying 1L  to both sides of )10.1(  and using the initial condition we obtain 

),()( 11 uLLuL   )13.1(  

So that  

),()0()( 1 uLuxu  )14.1(  

Or equivalently 

),()( 1 uLAxu  )15.1(  

 Substituting the series assumption )5.1(  into both sides of )15.1(  gives 



 
 

5  

 

),)(()(
0

1

0











n

n
n

n xuLAxu )16.1(  

In view of )16.1( , the following recursive relation 

Axu )(0 )17.1( ,0)),(()( 1
1  

 kxuLxu kk  

Follows immediately. Consequently ,we obtain 

Axu )(0  

,))(()( 0
1

1 AxxuLxu    

,
!2

))(()(
2

1
1

2
xAxuLxu   )18.1(

,
!3

))(()(
3

2
1

3
xAxuLxu  

 

.

.

.

 

 

Substituting )18.1(  into )5.1(  gives the solution in a series form by 

...),
!3!2

1()(
32


xxxAxu )19.1(  

And it a closed form by 

,)( xAexu  )20.1(  

We next consider the well-Known Airy’s equation 

,)0(,)0(),()( ''' BuAuxxuxu  )21.1(  

In an operator form, equation )21.1(  becomes 

,xuLu  )22.1(  
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Where the differential operator L  is given by 

,2

2

dx
dL  )23.1(  

And therefore the inverse operator 1L is defined by 

,(.)(.)
0 0

1  
x x

dxdxL )24.1(  

Operating 1L  with on both sides of )21.1(  and using the initial conditions we obtain  

),()( 11 xuLLuL   )25.1(  

So that  

),()0()0()( 1' xuLuxuxu  )26.1(  

Or equivalently  

),()( 1 xuLBxAxu  )27.1(  

Substituting the series assumption )5.1(  into both sides of )27.1(  yields 

),)(()(
0

1

0











n

n
n

n xuxLBxAxu )28.1(  

Following the decomposition method we obtain the following recursive relation 

 

)29.1( ,0)),(()( 1
1  

 kxxuLxu kk  

Consequently, we obtain 

BxAxu )(0  

,
126

))(()(
43

0
1

1
xBxAxxuLxu  

,
504180

))(()(
76

1
1

2
xBxAxxuLxu   )30.1(  

,)(0 BxAxu 
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.

.

.

 

Substituting )30.1(  into )5.1(  gives the solution in a series form  

...),
50412

(...)
1806

1()(
7463


xxxBxxAxu )31.1(  

Other components can be easily computed to enhance the accuracy of the approximation. 

We consider the inhomogeneous partial differential equation : 

),()0,(),(),0(
),,(

xhxuygyu
yxfuu yx




)32.1(  

In an operator form, Eq )32.1(  can be written as 

),,( yxfuLuL yx  )33.1(  

Where 

,,
y

L
x

L yx 






 )34.1(  

Where each operator is assumed easily invertible, and thus the inverse operators
1
xL and 

1
yL exist and given by  


x

x dxL
0

1 ,(.)(.) )35.1( 
y

y dyL
0

1 ,(.)(.)
 

This mean that  

),,0(),(),(1 yuyxuyxuLL xx  )36.1(  

Appling  1
xL  to both sides of )33.1(  gives  

),()),(( 111 uLLyxfLuLL yxxxx
  )37.1(  

Or equivalently  
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),()),(()(),( 11 uLLyxfLygyxu yxx
  )38.1(  

Obtained by using  )36.1(  and by using the condition )(),0( ygyu   As stated 

 Above the decomposition method sets  

,),(),(
0







n

n yxuyxu )39.1(  

Substituting )39.1(  into both sides of  )38.1(  we find 

),),((()),(()(),(
0

11

0











n

nyxx
n

n yxuLLyxfLygyxu )40.1(  

This can be rewritten as  

...),()),(()(... 210
11

210   uuuLLyxfLyguuu yxx )41.1(  

The zeroth component  0u  ,as suggested by Adomian method is always identified  by the 

given initial condition and the terms arising from )),,((1 yxfL x
 both side of which are 

assumed to be known. Accordingly, we set 

)),,(()(),( 1
0 yxfLygyxu x

 )42.1(  

Consequently, the other components  0,1  ku k  are defined by using the relation 

,0),(),( 1
1  

 kuLLyxu kyxk )43.1(  

Combining )42.1( and )43.1(  we obtain the recursive scheme  

)),,(()(),( 1
0 yxfLygyxu x

 )44.1(  

,0),(),( 1
1  

 kuLLyxu kyxk  

That form the basis for a complete determination of the components  ,...,, 210 uuu  
therefore, the components can be easily obtained by   

)),,(()(),( 1
0 yxfLygyxu x

  

),,((),( 0
1

1 yxuLLyxu yx
 )45.1(  
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),,((),( 1
1

2 yxuLLyxu yx
  

),,((),( 2
1

3 yxuLLyxu yx
  

And so on. Thus the components nu  can be determined recursively as far as we like. 

It is clear that the accuracy of the approximation can be significantly improved by 
simply determining more components. Having established the components of  ),( yxu , 
the solution in a series form follows immediately. However, the expression  

,),(
1

0







n

r
rn yxu )46.1(  

Is considered the  n -term approximation to  u . For  concrete problems, where  exact 
solution is not easily obtainable, we usually use the truncated series )46.1(  for numerical 
purposes. As indicated earlier, the convergence of Adomian Decomposition Method has 
been established. 

It is important to note that the solution can be obtained by finding the y - solution by 

applying the inverse operator 1
yL  to both sides of the equation 

,),( uLyxfL xy  )47.1(  

The equality of the x - solution and the y - solution is formally justified and will be 
examined through the coming examples. 

 It found, as will be seen later, that very few terms of the series obtained in  

)39.1(  provide a high degree of accuracy level which makes the method powerful when 
compared with other existing numerical techniques. In many cases the series representation 
of ),( yxu  can be summed to yield the closed form solution. Several works in this 
direction have demonstrated the power of the method for analytical and numerical 
application. 

 The essential features of the decomposition method for linear and nonlinear equation, 
homogeneous and inhomogeneous, can be outlined as follows: 

1.Express the partial differential equation, linear or nonlinear, in an operator form.  

2.Apply the inverse operator to both sides of the equation written in an operator for. 
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3.Set the unknown function ),( yxu  into a decomposition series 

,),(),(
0







n

n yxuyxu )48.1(  

Whose components are elegantly determined. We next substitute the series )48.1(  
into both sides of the resulting equation. 

4.Identify the zeroth component ),(0 yxu  as the terms arising from the given condition 

and from integrating the source term ),,( yxf both are assumed to be known. 

5.Determine the successive components of the series solution 1, ku k  by applying the 

recursive scheme ),44.1( where each component ,ku  can be completely determined by 

using the previous component 1ku  . 

6.Substitute the determined components ),48.1( to obtain the solution in a series form. 
An exact solution can be easily obtained in manyequation if such a closed form solution 
exists. 

It is to be noted Adomian Decomposition Method approaches any equation, homogeneous or 
inhomogeneous, and linear or nonlinear in a straightforward manner without any need to 
restrictive assumptions such as linearization, discretization or perturbation. There is not need 
in using this method to convert in homogeneous condition to homogeneous condition as 
required by other techniques. 

 The essential steps of the Adomian Decomposition Method will be illustrated by 
discussing the following examples. 

Example 1.  

Use Adomian Decomposition Method to solve the following inhomogeneous PDE 

,0)0,(,0),0(,  xuyuyxuu yx )49.1(  

Solution.  

In an operator form, Eq. ),49.1( can be written as  

,uLyxuL yx  )50.1(  
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Where  

,,
y

L
x

L yx 






 )51.1(  

It clear that xL is invertible, hence 1
xL exists and given by  

,(.)(.)
0

1 
x

x dxL )52.1(  

The x - solution: 

This solution can be obtained by applying 1
xL to both sides of ),50.1( hence we find 

,)( 111 uLLyxLuLL yxxxx
  )53.1(  

Or equivalently 

),(
2
1

)(
2
1),0(),(

12

12

uLLxyx

uLLxyxyuyxu

yx

yx









)54.1(  

Obtained upon using the given condition ,0),0( yu Eq. )36.1( and by integrating 
yxyxf ),( with respect to ,x As stated above, the decomposition method 

identifies the unknown function ),,( yxu as  an infinite of components 

0),,( nyxu n  given by 







0

),(),(
n

n yxuyxu )55.1(  

Substituting )55.1( in to  both sides of ),54.1( we find 

)),),(((
2
1),(

0

12

0











n

nyx
n

n yxuLLxyxyxu )56.1(  

Using few terms of the decomposition ),55.1( we obtain 
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...)),((
2
1... 210

12
210   uuuLLxyxuuu yx )57.1(  

As presented before, the decomposition method identifies the zeroth component 0u by all 

term arising from the given condition and from integrating ,),( yxyxf 
therefore we set 

,
2
1),( 2

0 xyxyxu  )58.1(  

Consequently, the recursive scheme that will enable us to completely determine the 
successive components thus constructed by  

,
2
1),( 2

0 xyxyxu  )59.1(  

,0)),((),( 1
1  

 kuLLyxu kyxk  

This in turn gives 

 

,
2
1))

2
1((

))((),(

221

0
1

1

xxyxLL

uLLyxu

yx

yx









)60.1(  

.0))
2
1(())((),( 21

1
1

2   xLLuLLyxu yxyx  

Accordingly, 2,0  ku k . Having determined the components of ),,( yxu we 
find 

xyxxyxuuuu  22
210 2

1
2
1... )61.1(  

The y - solution: 

 It is important to note that the exact solution can be finding the y - solution. In an 
operator form we can write equation by 
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,uLyxuL xy  )62.1(  

Assume that 1
yL exists and given by  

,(.)(.)
0

1 
y

y dxL )63.1(  

Applying 1
yL to both sides of the Eq. ),62.1( gives 

).(
2
1),( 12 uLLyxyyxu xy

 )64.1(  

As mentioned above, the decomposition method sets the solution ),( yxu in an series 
form by 







0

),(),(
n

n yxuyxu )65.1(  

Inserting )65.1( into both sides of the ),64.1( we obtain  

)),),(((
2
1),(

0

12

0











n

nxy
n

n yxuLLyxyyxu )66.1(  

Using few terms only for simplicity reasons, we obtain 

...)),((
2
1... 210

12
210   uuuLLyxyuuu xy )67.1(  

The decomposition method identifies the zeroth component 0u by all term arising from the 

given condition and from integrating ,),( yxyxf  therefore we set 

,
2
1),( 2

0 yxyyxu  )68.1(  

Consequently, the recursive scheme that will enable us to completely determine the 
successive components thus constructed by  

,
2
1),( 2

0 yxyyxu  )69.1(  
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,0)),((),( 1
1  

 kuLLyxu kxyk  

This gives 

,
2
1))

2
1((

))((),(

221

0
1

1

yyxyLL

uLLyxu

xy

xy









)70.1(  

.0))
2
1(())((),( 21

1
1

2   yLLuLLyxu xyxy  

Accordingly, 2,0  ku k . Having determined the components of ),,( yxu we 
find 

xyyyxyuuuyxu  22
210 2

1
2
1...),( )71.1(  

Example 2.  

Use Adomian Decomposition Method to solve the following homogeneous PDE 

,)0,(,),0(,0 xxuyyuuu yx  )72.1(  

Solution.  

 In an operator form, Eq. ),72.1( can be written as  

),,(),( yxuLyxuL yx  )73.1(  

  Where                                           

,,
y

L
x

L yx 






 )74.1(  

Applying the inverse operator  1
xL to both sides of ),73.1( and using the given 

condition yyu ),0( yields 

).(),( 1 uLLyyxu yx
 )75.1(  
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As mentioned above, the decomposition method sets the solution ),( yxu in an series 
form by 







0

),(),(
n

n yxuyxu )76.1(  

Inserting )76.1( into both sides of the ),75.1( we obtain 

)).),(((),(
0

1

0











n

nyx
n

n yxuLLyyxu )77.1(  

Using few terms only for simplicity reasons, we obtain 

...)),((... 210
1

210   uuuLLyuuu yx )78.1(  

Proceeding as before, we identify the zeroth component ),,(0 yxu by 

,),(0 yyxu  )79.1(  

Having identifies the zeroth component ),,(0 yxu we obtain the recursive scheme 

,),(0 yyxu  )80.1(  

,0)),(),( 1
1  

 kuLLyxu kyxk  

The components ,...,, 210 uuu are thus determined as follows: 

,),(0 yyxu  )81.1(
 

,)(),( 1
0

1
1 xyLLuLLyxu yxyx  

 

,0)(),( 1
1

1
2   xLLuLLyxu yxyx  

It is obvious that all components, 2,0  ku k .consequently, the solution is given by 

yxuuuuyxu  1010 ...),( )82.1(  

The exact solution obtained by using the decomposition series )76.1( . 
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It is important to note here that the exact solution given by )82.1( can be also be 
obtained by determining the y - solution as discussed above.  

1.2 nonlinear partial differential equation 

Adomian decomposition method has been I mentioned before and has been applied to a wide 
class of linear partial differential equation. The method has been applied directly and in a 
straightforward manner to homogeneous and inhomogeneous problems without any 
restrictive assumptions or linearization. The method usually decomposes the unknown 
function u  into an infinite sum of components that will be determined recursively through 
iterations as discussed before. 

The Adomian decomposition method will be applied on next part to handle nonlinear 
partial differential equations. An important remark should be made here concerning the 
representation of the nonlinear terms that appear in the equation. Although the linear term 
u  is expressed as an infinite series of components, the Adomian decomposition method 
requires a special representation for the nonlinear terms such as 

.,,,,sin,,, 2432 etcuuueuuuu xx
u that appear in the equation. The method 

introduce a formal algorithm to establish a proper representation for all forms of nonlinear 
terms. The representation of the nonlinear teams is necessary to handle the nonlinear 
equation in an effective and successful way. 

In the following, the Adomian scheme for calculating representation of nonlinear term 
will be introduced in details. The discussion will be supported by several illustrative 
examples that will cover a wide variety of forms of nonlinearity. In a like manner, an 
alternative algorithm for calculating Adomian polynomials will be outlined in details 
supported by illustrative examples. 

1.3 Calculation of Adomian Polynomials 

It is well known now that Adomian decomposition method suggest that the unknown 
linear function u may be represented by the decomposition series  

,
0







n

nuu )83.1(  

Where the components 0, nu n can be elegantly computed in a recursive way. 

However, the nonlinear term ),(uF such as 
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.,,,,sin,,, 2432 etcuuueuuuu xx
u  can be expressed by an infinite series of the 

so-called. Adomian polynomials nA given in the form 







0

210 ),,...,,,()(
n

nn nuuuAuF )84.1(  

Where the so-called Adomian polynomials nA can be evaluated for all forms of 
nonlinearity. 

The Adomian polynomials nA for the nonlinear term )(uF can be evaluated by 
using the following expression 

,...2,1,0,
!

1

00




















 nuF

d
d

n
A

n

i
i

i
n

n

n



 )85.1(  

The general formula )85.1( can be simplified as follows. Assuming that the nonlinear 
function is ),( uF therefore by using ),85.1(  Adomian polynomials are given by 

),( 00 uFA   

),( 0
'

11 uFuA   

),(
!2

1)( 0
''2

10
'

22 uFuuFuA  )86.1(  

),(
!3

1)()( 0
'''3

10
''

210
'

33 uFuuFuuuFuA   

),(
!4

1)(
!2

1)()
!2

1()( 0
)4(4

10
'''

2
2
10

''
31

2
20

'
44 uFuuFuuuFuuuuFuA   

Other polynomials can be generated in a manner. 

Two important observation can be made here. First, 0A depends only on 10 , uu and ,2u
and so on. Second substituting  )86.1( into )84.1( gives 
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...,)( 3210  AAAAuF  

)(...)()( 0
'

3210 uFuuuuF   

...)(...)22(
!2

1
0

''2
23121

2
1  uFuuuuuu  

...)()(
!2

1)(...)()( 0
''2

00
'

00  uFuuuFuuuF  

The last expansion confirms a fact that the nA  polynomials is a Taylor series about a 

function 0u  and not about a point as is usually used. The few Adomian polynomials given 

in )86.1(  clearly show that the sum of subscripts of the components of u of each term 

of nA  is equal to n . As stated before, it is clear that 0A  depends only on ,0u 1A  

depends only on 0u  and ,1u 2A  depends only on ,0u 1u and 2u  . 

In the following ,we will calculate Adomian polynomials for several forms of 
nonlinearity that may arise in nonlinear ordinary or partial differential equations. 

Calculation of Adomian Polynomials nA  

1.Nonlinear polynomials 

Case 1. 2)( uuF   

The polynomials can be obtained as follows: 

,)( 2
000 uuFA   

,2)( 100
'

11 uuuFuA   

,2)(
!2

1)( 2
1200

''2
10

'
22 uuuuFuuFuA   

,22)(
!3

1)()( 21300
'''3

10
''

210
'

33 uuuuuFuuFuuuFuA   

Case 2. 3)( uuF   

The polynomials are given by 
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,)( 3
000 uuFA   

,3)( 1
2
00

'
11 uuuFuA   

,33)(
!2

1)( 2
102

2
00

''2
10

'
22 uuuuuFuuFuA   

,63)(
!3

1)()( 3
12103

2
00

'''3
10

''
210

'
33 uuuuuuuFuuFuuuFuA  Case 3.

4)( uuF   

Proceeding as before we find 

,)( 4
000 uuFA   

,4)( 1
4
00

'
11 uuuFuA   

,64)(
!2

1)( 2
1

2
02

3
00

''2
10

'
22 uuuuuFuuFuA   

,1244)(
!3

1)()( 21
2
00

3
13

3
00

'''3
10

''
210

'
33 uuuuuuuuFuuFuuuFuA   

In a parallel manner, Adomian polynomials can be calculated for nonlinear polynomials of 
higher degrees. 

II. Nonlinear Derivatives 

Case 1. 2)()( xuuF   

,)( 2
000 x

uuFA   

,2)( 100
'

11 xx
uuuFuA   

,2)(
!2

1)( 2
1200

''2
10

'
22 xxx

uuuuFuuFuA   

,22)(
!3

1)()( 21300
'''3

10
''

210
'

33 xxxx
uuuuuFuuFuuuFuA   
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Case 2. 3)()( xuuF   

 The Adomian polynomials are given by 

,)( 3
000 x

uuFA   

,3)( 1
2
00

'
11 xx

uuuFuA   

,33)(
!2

1)( 2
102

2
00

''2
10

'
22 xxxx

uuuuuFuuFuA   

,63)(
!3

1)()( 3
12103

2
00

'''3
10

''
210

'
33 xxxxxx

uuuuuuuFuuFuuuFuA 

Case 3. )(
2
1)( 2uLuuuF xx   

            The Adomian polynomials for nonlinearity are given by 

,)( 0000 x
uuuFA   

,)2(
2
1

1010101 xx
uuuuuuLA x   

,)2(
2
1

021120
2

1202 uuuuuuuuuLA
xxxx   

,)22(
2
1

0312213021303 uuuuuuuuuuuuLA
xxxxx   

III. Trigonometric Nonlinearity 

Case 1. uuF sin)(   

The Adomian polynomials for nonlinearity are given by 

,sin)( 000 uuFA   

,cos)( 010
'

11 uuuFuA   
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,sin
2
1cos)(

!2
1)( 0

2
1020

''2
10

'
22 uuuuuFuuFuA 

,cos
!3

1sincos)(
!3

1)()( 0
3
1021030

'''3
10

''
210

'
33 uuuuuuuuFuuFuuuFuA 

 

Case 2. uuF cos)(   

Proceeding as before gives 

,cos)( 000 uuFA   

,sin)( 010
'

11 uuuFuA   

,cos
2
1sin)(

!2
1)( 0

2
1020

''2
10

'
22 uuuuuFuuFuA 

,cos
!3

1sincos)(
!3

1)()( 0
3
1021030

'''3
10

''
210

'
33 uuuuuuuuFuuFuuuFuA   

IV. Hyperbolic Nonlinearity 

Case 1. uuF sinh)(   

The Adomian polynomials for nonlinearity are given by 

,sinh)( 000 uuFA   

,cosh)( 010
'

11 uuuFuA   

,sinh
2
1cosh)(

!2
1)( 0

2
1020

''2
10

'
22 uuuuuFuuFuA 

,cos
!3

1sincos)(
!3

1)()( 0
3
1021030

'''3
10

''
210

'
33 uuuuuuuuFuuFuuuFuA 

 

Case 2. uuF cosh)(   

Proceeding as before gives 

,cosh)( 000 uuFA   
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,sinh)( 010
'

11 uuuFuA   

,cosh
2
1sinh)(

!2
1)( 0

2
1020

''2
10

'
22 uuuuuFuuFuA 

,cos
!3

1coshsinh)(
!3

1)()( 0
3
1021030

'''3
10

''
210

'
33 uuuuuuuuFuuFuuuFuA   

V. Exponential Nonlinearity 

Case 1. ueuF )(  

The Adomian polynomials for nonlinearity are given by 

,)( 0
00

ueuFA   

,)( 0
10

'
11

ueuuFuA   

,)
2
1()(

!2
1)( 02

120
''2

10
'

22
ueuuuFuuFuA 

,)
!3

1()(
!3

1)()( 03
12130

'''3
10

''
210

'
33

ueuuuuuFuuFuuuFuA 
 

Case 2. ueuF )(  

Proceeding as before gives 

,)( 0
00

ueuFA   

,)( 0
10

'
11

ueuuFuA   

,)
2
1()(

!2
1)( 02

120
''2

10
'

22
ueuuuFuuFuA 

,)
!3

1()(
!3

1)()( 03
12130

'''3
10

''
210

'
33

ueuuuuuFuuFuuuFuA 
 

VI. Logarithmic Nonlinearity 

Case 1. 0,ln)( uuuF   
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The nA  polynomials for logarithmic nonlinearity are given by 

,ln)( 000 uuFA   

,)(
0

1
0

'
11 u

uuFuA   

,
2
1)(

!2
1)( 2

0

2
1

0

2
0

''2
10

'
22 u

u
u
uuFuuFuA 

,
3
1)(

!3
1)()( 3

0

3
1

2
0

21

0

3
0

'''3
10

''
210

'
33 u

u
u
uu

u
uuFuuFuuuFuA 

 

Case 2. 11),1ln()(  uuuF   

The nA  polynomials for logarithmic nonlinearity are given by 

),1ln()( 000 uuFA   

,
1

)(
0

1
0

'
11 u

uuFuA


  

,
)1(2

1
1

)(
!2

1)( 2
0

2
1

0

2
0

''2
10

'
22 u

u
u

uuFuuFuA







,
)1(3

1
)1(1

)(
!3

1)()( 3
0

3
1

2
0

21

0

3
0

'''3
10

''
210

'
33 u

u
u
uu

u
uuFuuFuuuFuA










 

1.4 Alternative Algorithm for Calculating Adomian Polynomials 

It is worth noting that a considerable amount of research work has been invested to 
develop an alternative method to Adomian algorithm for calculating  Adomian polynomials 

.nA The aim was to develop a practical technique that will calculate Adomian polynomials 
in a practical way without any need to the formulae  introduced before. However, the 
methods developed so far in this regard are identical to that used by Adomian. 

We believe that a simple and reliable technique can be established to make the 
calculation less dependable on the formulae presented before. 
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In the following, we will introduce an alternative algorithm that can be used to 
calculate Adomian polynomials for nonlinear terms in an easy way. The newly developed 
method depends mainly on algebraic and trigonometric identities, and on Taylor expansions 
as well. Moreover, we should use the fact that the sum of subscripts of the components of 
u in each term of the polynomial .nA is equal to .n  

The alternative algorithm suggests that we substitute u as a sum of components 
0, nu n as defined by the decomposition method. It is clear that 0A is always 

determined independent of the other polynomials 1, nA n where 0A is defined by 

)( 00 uFA  )87.1(
 

The alternative method assumes that we first separate )( 00 uFA  for every nonlinear 

term ).(uF With this separation done, the remaining components of )( uF can be 
expanded by using algebraic operation, trigonometric identities, and Taylor series as well. 
We next collect all terms of the expansion obtained such that the sum of the subscripts of the 
components of u in each term is the same. Having collected these terms, these terms, the 
calculation of the Adomian polynomials is thus completed. Several examples have been 
tested, and the obtained results have shown that Adomian polynomials can be elegantly 
computed without any need to the formulas established by Adomian. The technique will be 
explained by discussing the following illustrative examples. 

Adomian Polynomials by Using the Alternative Method  

1.Nonlinear polynomials 

Case 1. 2)( uuF   

We first set 







0n

nuu )88.1(  

Substituting )88.1( into 2)( uuF   gives 

....)()( 2
3210  uuuuuF )89.1(  

Expanding the expression at the right hand side gives 
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....2222)( 2130
2

12010
2

0  uuuuuuuuuuuF )90.1(  

The expansion in )90.1( can be rearranged by grouping all terms with the sum of 
the subscripts is the same. This means that we can rewrite g )90.1( as  



...22222

2222)(

54

3210

324150
2
23140

2130
2

12010
2
0





    

  

AA

AAAA

uuuuuuuuuuu

uuuuuuuuuuuF

)91.1(  

This completes the determination of Adomian polynomials given by 

Case 1. 2)( uuF   

,2
00 uA   

,2 101 uuA   

,2 2
1202 uuuA   

,22 21303 uuuuA   

,22 2
231404 uuuuuA   

,222 3241505 uuuuuuA   

Case 2. 3)( uuF   

Proceeding as before, we set 

,
0







n

nuu )92.1(  

Substituting )92.1( into 3)( uuF   gives 

....)()( 3
3210  uuuuuF )93.1(  

Expanding the right hand side yields 
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...6333

63333)(

3100
2
22

2
14

2
0

3
12103

2
0

2
102

2
01

2
0

3
0

uuuuuuuuu
uuuuuuuuuuuuuuF




)94.1(  

The expansion in )94.1( can be rearranged by grouping all terms with the sum of 
the subscripts is the same. This means that we can rewrite g )94.1( as  



...6333

63333)(

4

3210

3100
2
22

2
14

2
0

3
12103

2
0

2
102

2
01

2
0

3
0





  

    

A

AAAA

uuuuuuuuu

uuuuuuuuuuuuuuF

)95.1(  

Consequently, Adomian polynomials can be written by  

,3
00 uA   

,3 1
3
01 uuA   

,33 2
102

3
02 uuuuA   

,33 2
102

2
03 uuuuA   

,63 3
12103

2
04 uuuuuuA   

 

II. Nonlinear Derivatives 

Case 1. 2)()( xuuF   

We first set 







0n

nuu )96.1(  

Substituting )96.1( into 2)( xuuF   gives 

....)()( 2
3210 
xxxx

uuuuuF )97.1(  

Squaring the right side gives 
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....2222)( 2130
2
12010

2
0 

xxxxxxxxxx
uuuuuuuuuuuF )98.1(  

Grouping the terms as discussed above we find 



...22

2222)(

4

3210

3140
2
2

2130
2
12010

2
0





  

  

A

AAAA

xxxxx

xxxxxxxxxx

uuuuu

uuuuuuuuuuuF

)99.1(  

Adomian polynomials are given by 

,2
00 x

uA   

,2 101 xx
uuA   

,2 2
1202 xxx

uuuA   

,22 21303 xxxx
uuuuA   

,22 2
231404 xxxxx
uuuuuA   

Case 2. xuuuF )(  

We first set 







0n

nuu )200.1(  







0n

nx x
uu  

Substituting )200.2( into xuuuF )(  gives 

...)(
...)()(

3210

3210




xxxx
uuuu

uuuuuF
)201.1(  

Multiplying the two factors gives 
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....

)(

2231314040

031221

30021120

2
1101000









xxxxx

xxx

xxxx

xxxx

uuuuuuuuuu

uuuuuu

uuuuuuuu

uuuuuuuuF

)202.1(  

Proceeding with grouping the terms we obtain 



...

)(

0413223140

03122130

021120

011000

4

3

2

10









uuuuuuuuuu

uuuuuuuu

uuuuuu

uuuuuuuF

xxxxx

xxxx

xxx

xxx

A

A

A

AA

  

  

  



)203.1(  

It then follows that Adomian polynomials are given by 

,000 uuA
x

  

,01101 uuuuA
xx

  

,0211202 uuuuuuA
xxx

  

,2 031221303 uuuuuuuuA
xxxx

  

,04132231404 uuuuuuuuuuA
xxxxxx

  

III. Trigonometric Nonlinearity 

Case 1. uuF sin)(   

Note that algebraic operations cannot be applied here. Therefore, our main aim is to 
separate )( 00 uFA  from other terms. To achieve this goal, we first substitute 
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0n

nuu )204.1(
 

 Into  uuF sin)(  to obtain 

  ....sin)( 43210  uuuuuuF )205.1(  

To calculate ,0A recall the trigonometric identity 

.sincoscossin)sin(   )206.1(  

Accordingly, Equation )205.1( becomes  

...)sin(cos
...)cos(sin)(

3210

3210




uuuu
uuuuuF

)207.1(  

Separating   00 sin)( uuF  from other factors and using Taylor expansions for  

...)cos( 321  uuu and  ...)sin( 321  uuu give 

...),...)(
!3

1...)((cos

...)...)(
!4

1...)(
!2

11(sin)(

3
21210

4
21

2
210





uuuuu

uuuuuuF

)208.1(  

So that 

...),
!3

1...)((cos

...))2(
!2

11(sin)(

3
1210

21
2

10





uuuu

uuuuuF

)209.1(  

Note that we expanded the algebraic terms; then few terms of each expansion are 
listed. The last expansion can be rearranged by grouping all term with the same sum of 

subscripts. This means that Eq.  )209.1( can be rewritten in the form 
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...cos
!3

1sincos

sin
!2

1coscossin)(

3

2
10

0
3
102103

0
2
102010





  

  


A

A
AA

uuuuuuu

uuuuuuuuF

)210.1(  

Case 2. uuF cos)(   

Proceeding as before gives 

...)cos
!3

1sincos(

)cos
!2

1sin(sincos)(

3

2
10

0
3
102103

0
2
102010





  

  


A

A
AA

uuuuuuu

uuuuuuuuF

 

)211.1(

 

IV. Hyperbolic Nonlinearity 

Case 1. uuF sinh)(   

To calculate the nA polynomials for ,sinh)( uuF  we first substitute 







0n

nuu )212.1(  

Into  uuF sinh)(  to obtain 

...)).(sinh()( 3210  uuuuuF )213.1(  

To calculate nA recall the hyperbolic identity  

.sinhcoshcoshsinh)sinh(   )214.1(  

Accordingly, Eq. )213.1( becomes 
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...).sinh(cosh
...)cosh(sinh)(

3210

3210




uuuu
uuuuuF

)215.1(  

Separating   00 sinh)( uuF  from other factors and using Taylor expansions for  

...)cosh( 321  uuu and  ...)sinh( 321  uuu give 

...),...)(
!3

1...)((cosh

...)...)(
!4

1...)(
!2

11(sinh)(

3
21210

4
21

2
210





uuuuu

uuuuuuF

)216.1(  

So that 

...),
!3

1...)((cosh

...))2(
!2

11(sinh)(

3
1210

21
2

10





uuuu

uuuuuF

)217.1(  

By grouping all term with the same sum of subscripts 

...cosh
!3

1sinhcosh

sinh
!2

1coshcoshsinh)(

3

2
10

0
3
102103

0
2
102010





  

  


A

A
AA

uuuuuuu

uuuuuuuuF

)218.1(

 

Case2. uuF cosh)(   

Proceeding as in  usinh we find 
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...)sinh
!3

1coshsinh

cos
!2

1sinh

sinhcosh)(

3

2

10

0
3
102103

0
2
102

010







  

  



A

A

AA

uuuuuuu

uuuu

uuuuF

)219.1(  

V. Exponential Nonlinearity 

Case 1. ueuF )(  

Substituting  

,
0







n

nuu )220.1(  

Into  ueuF )( gives 

,)( ...)( 3210  uuuueuF )221.1(  

Or equivalently 

,)( ...)( 3210  uuuu eeuF )222.1(  

Keeping the term 0ue and using the Taylor expansion for the other factor we obtain

...),...)(
!2

1...)(1()( 2
2121

0  uuuueuF u )223.1(  
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By grouping all term with the same sum of subscript

 

...)
!4

1
!2

1
!2

1(

)
!3

1(

)
!2

1()(

4

0

3

0

2

0

1

0

0

0

4
12

2
1

2
2314

3
1213

2
121







  

  

  

A

u

A

u

A

u

A

u

A

u

euuuuuuu

euuuu

euueueuF

)224.1(  

Case 1. ueuF )(  

Proceeding as before we find 



...)
!4

1
!2

1
!2

1(

)
!3

1(

)
!2

1()()(

4

0

3

0

2

0

1

0

0

0

4
12

2
1

2
2314

3
1213

2
121













  

  

  


A

u

A

u

A

u

A

u

A

u

euuuuuuu

euuuu

euueueuF

)225.1(  

VI. Logarithmic Nonlinearity 

Case 1. 0,ln)( uuuF   

Substituting  

,
0







n

nuu )226.1(  

Into  uuF ln)(  gives 

...)ln()( 3210  uuuuuF )227.1(  

Equation )227.1( can be written as  



 
 

34  

 

...))1(ln()(
0

3

0

2

0

1
0 

u
u

u
u

u
uuuF )228.1(  

Using the fact that ,lnln)ln(   Equation )228.1( can be written as 




...
3
1

2
1ln)(

3

21

0

3
0

3
1

2
0

21

0

3

0

2
1

0

2

0

1
0





  



A

AA
A

u
u

u
uu

u
u

u
u

u
u

u
uuuF

)229.1(  

Case 1. 11),1ln()(  uuuF   

In a like manner we obtain 

...
)1(3

1
)1(1

)1(2
1

11
)1ln()(

3

21

0

3
0

3
1

2
0

21

0

3

2
0

2
1

0

2

0

1
0





















  

  


A

AA
A

u
u

u
uu

u
u

u
u

u
u

u
uuuF

)230.1(  

As stated before, there are other methods that can be used to evaluate Adomian 
polynomials. However, these method suffer from the huge size of calculation. For this 
reason, the most commonly used methods are presented in this chapter. 

Example 3.  

Use Adomian Decomposition Method to solve the following homogeneous PDE 

,)0,(,0),0(,3 2xxuyuuuxu yx  )231.1(  

Solution.  

 In an operator form, Eq. ),231.1( can be written as  

),,(),(3),( yxuxLyxuyxuL xy  )232.1(  

  Where                                           
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,,
y

L
x

L yx 






 )233.1(  

Applying the inverse operator  1
yL to both sides of ),232.1( and using the given 

condition 2)0,( xxu  yields 

).3(),( 12 uxLuLxyxu xy   )234.1(  

As mentioned above, the decomposition method sets the solution ),( yxu in an series 
form by 







0

),(),(
n

n yxuyxu )235.1(  

Inserting )235.1( into both sides of the ),234.1( we obtain 
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0
),(),(3),(

n
nx

n
ny

n
n yxuxLuxuLxyxu )236.1(  

By considering few term of  the decomposition of ),,( yxu Eq. ),236.1( becomes 

...)),(

...)(3(...

210

210
12

210



 

uuuxL
uuuLxuuu

x

y
)237.1(  

Proceeding as before, we identify the zeroth component ),,(0 yxu by 

,),( 2
0 xyxu  )238.1(  

Having identifies the zeroth component ),,(0 yxu we obtain the recursive scheme 

,),( 2
0 xyxu  )239.1(  

,0),3(),( 1
1  

 kuxLuLyxu kxkyk  

The components ,...,, 210 uuu are thus determined as follows: 

,),( 2
0 xyxu  )240.1(
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,)()3(),( 221
00

1
1 yxxLuxLuLyxu yxy  

 

.

.

,
!2

)()3(),(
22

21
11

1
2

yxyxLuxLuLyxu yxy  

 

Consequently,the solution is given by 

xexyyxuuuyxu 2
2

2
210 ...

21
1...),( 








 )241.1(

Example 4.  

Use Adomian Decomposition Method to solve the following homogeneous PDE 

,)0,(,0 xxucuu xt  )242.1(  

where c is constant 

Solution.  

 In an operator form, Eq. ),242.1( can be written as  

),,(),( txucLtxuL xt  )243.1(  

  Where                                           

,,
t

L
x

L tx 






 )244.1(  

It is clear that operator tL is invertible, and the inverse operator 1
tL is an indefinite 

integral from 0 to t . Applying the inverse operator  1
tL to both sides of ),243.1( and 

using the given condition xxu )0,( yields 

).,((),( 1 txuLcLxtxu xt
 )245.1(  

As mentioned above, the decomposition method sets the solution ),( yxu in an series 
form by 
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0

),(),(
n

n txutxu )246.1(  

Inserting )246.1( into both sides of the ),245.1( we obtain 

















 








 0

1

0
),(),(

n
nxt

n
n txuLcLxtxu )247.1(  

By considering few term of  the decomposition of ),,( txu Eq. ),247.1( becomes 

...)),((... 210
1

210   uuuLcLxuuu xt )248.1(  

Proceeding as before, we identify the zeroth component ),,(0 txu by 

,),(0 xtxu  )249.1(  

Having identifies the zeroth component ),,(0 txu we obtain the recursive scheme 

,),(0 xtxu  )250.1(  

,0),(),( 1
1  

 kuLcLtxu kxtk  

The components ,...,, 210 uuu are thus determined as follows: 

 

,),(0 xtxu  )251.1(
 

,)1()(),( 1
0

1
1 ctcLuLcLtxu txt  

 

,0)0()(),( 1
1

1
2  

yxt LuLcLyxu  

We can easily observe that 2,0  ku k .It follows that the solution in a closed 
form is given by 

 
ctxyxu ),( )252.1(  

Example 5.  

Use Adomian Decomposition Method to solve the following PDE 
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yxzx

zy
zyx

eeyxueezxu

eezyuuuuu





1)0,,(,1),0,(

1),,0(,
)253.1(  

where  

),,( zyxuu   

Solution.  

 In an operator form, Eq. ),253.1( can be written as  

,),,( uLuLuzyxuL zyx  )254.1(  

  Where                                           

z
L

y
L

x
L zyx 











 ,, )255.1(  

Assume  that the operator xL is invertible, and the inverse operator 1
xL is an 

indefinite integral from 0 to x . Applying the inverse operator  1
xL to both sides of 

),254.1( and using the given condition zy eezyu  1),,0( yields 

),(1),,( 1 uLuLuLeezyxu zyx
zy   )256.1(  

As mentioned above, the decomposition method sets the solution ),,( zyxu in an 
series form by 







0

),,(),,(
n

n zyxuzyxu )257.1(  

Inserting )257.1( into both sides of the ),256.1( we obtain 
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n
n uLuLuLeezyxu )258.1(  

By considering few term of  the decomposition of ),,,( zyxu Eq. ),258.1( becomes 
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...))((...))((

...)(1...

210
1

210
1

210
1

210








uuuLLuuuLL

uuuLeeuuu

zxyx

x
zy

)259.1(  

Proceeding as before, we identify the zeroth component ),,,(0 zyxu by 

,1),,(0
zy eezyxu  )260.1(  

Having identifies the zeroth component ),,,(0 zyxu we obtain the recursive scheme 

,1),,(0
zy eezyxu  )261.1(  

))(())(()(),,( 111
1 kzxkyxkxk uLLuLLuLzyxu 
   

The components ,...,, 210 uuu are thus determined as follows: 

!3
)

!2
()(),,(

,
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)()(),,(

,)1()1()(),,(
,1),,(

32
1

222
1

3

2
1

111
1
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11
000

1
1

0

xxLuLuLuLzyxu

xxLuLuLuLzyxu

xLeeeeLuLuLuLzyxu
eezyxu

xzyx

xzyx

x
zyzy

xzyx

zy















)262.1(  

And so on. Consequently, the solution in a series form is given by  

,...
!3!2

1),,(
32

zy eexxxzyxu 







 )263.1(

 

And in a closed form  

,),,( zyx eeezyxu  )264.1(  

1.5.Homogeneous and inhomogeneous  Heat Equations  

1.5.1 one Dimensional Heat Flow 

The Adomian decomposition method will be used to solve the following homogeneous 
heat equation[6] where the boundary conditions are also homogenous. 
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Example 6. 

Use the Adomian decomposition method to solve the initial-boundary value problem 

  PDE              0,0,  txuu xxt   

 BC                 ,0,0),(
,0,0),0(



ttu
ttu

  )265.1(  

 IC                    ,sin),( xtxu   

Solution: 

In an operator form, Equation )265.1( can  be written as 

),,(),( txuLtxuL xxt   )266.1(  

Applying the inverse operator  1
tL to both sides of ),266.1( and using the initial  

condition we find 

)),,((sin),( 1 txuLLxtxu xxt
 )267.1(  

We next define the unknown function  ),( txu by a sum of components defined by the 
series 







0

),(),(
n

n txutxu  )268.1(  

substituting the decomposition )268.1( into both sides of the ),267.1( we obtain 

,),(sin),(
0

1

0
















 








 n
nxxt

n
n txuLLxtxu )269.1(  

Or equivalently 

...)),((sin... 210
1

210   uuuLLxuuu xxt )270.1(  

Identifying the zeroth component ),,(0 txu as assumed before we obtain 
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 )271.1(  

Consequently, the solution ),( txu in a series form is given by 

)272.1(  

and in a closed form by 

,sin),( xetxu t  )273.1(  

Obtained upon using the Taylor expansion of te  .The solution )273.1( satisfies the 
PDE, the boundary conditions and the initial condition. 

Example 7. 

Use the Adomian decomposition method to solve the initial-boundary value problem 

 PDE              )0(),0(,  txuu xxt   

 BC                 ,0,),(
,0,),0(







tetu
tetu

t

t

  )274.1(  

 IC                    ,cos),( xxtxu   

Solution: 

It is important to note that the boundary conditions in this example are 
inhomogeneous. The decomposition method does not require any restrictive assumption on 
boundary conditions when approaching the problem in the t .direction or in the x direction. 

 

.

.

.

,sin
!2

)sin())((),(

,sinsin))((),(

,sin),(

2
1

1
1
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1
0
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xtxtLuLLtxu

xtxLuLLtxu
xtxu

txxt

txxt
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!2

1sin

...),(),(),(),(
2

210













ttx

txutxutxutxu
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In an operator form, Equation )274.1( can  be written as 

),,(),( txuLtxuL xxt   )275.1(  

Applying the inverse operator  1
tL to both sides of ),275.1( and using the initial  

condition we find 

)),,((cos),( 1 txuLLxxtxu xxt
 )276.1(  

We next define the unknown function  ),( txu by a sum of components defined by the 
series 







0

),(),(
n

n txutxu  )277.1(  

substituting the decomposition )277.1( into both sides of the ),276.1( we obtain 

,),(cos),(
0

1

0
















 








 n
nxxt

n
n txuLLxxtxu )278.1(  

Or equivalently 

...)),((cos... 210
1

210   uuuLLxxuuu xxt )279.1(  

Identifying the zeroth component ),,(0 txu as assumed before we obtain 

 

 

 )280.1(  

 

 

.

.

.

,cos
!3

)cos
!2

())((),(

,cos
!2

)cos())((),(

,coscos))((),(

,cos),(
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txt
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Consequently, the solution ),( txu in a series form is given by 

)281.1(  

and in a closed form by 

,sin),( xetxu t  )282.1(  

Obtained upon using the Taylor expansion of te  . 

           It is important to point out that the decomposition method has been used in the last 

two examples in the t dimension by using the differential operator tL and by operating 

with the inverse operator .1
tL However, the method can also be used in the x

dimension. Although the he x solution can be obtained in a similar fashion, however it 
requires more computational work if compared with the solution in the t dimension. This 
can be attributed to the fact that we used the initial condition IC only in using He t
dimension, where as a boundary condition and an initial condition are used to obtain the 
solution in  He x direction. This can be clearly illustrated by discussing the following 
examples. 

Example 8: 

Use the Adomian decomposition method to solve the initial-boundary value problem 

  PDE              )0(),0(,  txuu xxt   

BC                 ,0,0),(
,0,0),0(



ttu
ttu

  )283.1(  

  IC                    .sin)0,( xxu   

 

 

 

 

,...
!3!2

1cos

...),(),(),(),(
32

210













tttxx

txutxutxutxu
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Solution: 

In an operator form, Equation )283.1( can  be written as 

),,(),( txuLtxuL tx   )284.1(  

  Where                                           

t
L

x
L tx 







 ,2

2

)285.1(  

so that 1
xL is a to two-fold integral operator defined by 

  x x

x dxdxL
0 0

1 (.)(.) )286.1(  

This means that 

),0(),(),0(),0(),(1 txutxutxututxuuLL xxxx   )287.1(  

Applying the inverse operator  1
xL to both sides of ),284.1( and using the proper 

boundary  condition we obtain 

)),(()(

)),,((),0(),(
1

1

txuLLtxh
txuLLtxutxu

tx

txx







)288.1(  

Where 

).,0()( tuth x  )289.1(  

We next define the unknown function  ),( txu by a sum of components defined by the 
series 







0

),(),(
n

n txutxu  )290.1(  

substituting the decomposition )290.1( into both sides of the ),288.1( we obtain 
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,),()(),(
0

1

0
















 








 n
ntx

n
n txuLLtxhtxu )291.1(  

Or equivalently 

...)),(()(... 210
1

210   uuuLLtxhuuu tx )292.1(  

Identifying the 
zeroth 

component 
),,(0 txu as 

assumed before 
we obtain 

 

 

 )293.1(  

Accordingly, the solution ),( txu in a series form is given by 

)294.1(  

 

 

The unknown function )( th should be derived so that the solution ),( txu is completely 
determined. This can be achieved by using the initial condition 

,sin)0,( xxu   )295.1(  

Substituting 0t into )294.1( using the initial condition ),295.1( and using the 
Taylor expansion of xsin we find 
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)296.1(  

 

Equating the coefficients of like powers  of x in both sides gives 

)297.1(  

Using th Taylor expansion of )( th and the result )297.1( in  

 

)298.1(  

 

 

Combining  )294.1( and )298.1( the solution ),( txu in a series is 

 )299.1(  

 

and in a closed form  is given by 

,sin),( xetxu t  )300.1(  

 

1.5.2Two Dimensional Heat Flow 

The Adomian decomposition method will be used to solve the following homogeneous 
heat equation in two dimensions with homogeneous or inhomogeneous boundary conditions 
[4,6,9] 

 

Example 9. 

Use the Adomian decomposition method to solve the initial-boundary value problem 

  PDE                )0(),,0(,  tyxuuu yyxxt   
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  BC                 ,,0),,(),0,(
,0),,(),,0(




txutxu
tyutyu




 )301.1(  

IC                    ,sinsin)0,,( yxyxu   

Solution: 

In an operator form, Equation )301.1( can  be written as 

,uLuLuL yxt   )302.1(  

  Where                                           

2

2

2

2

,,
y

L
t

L
x

L ytx 










 )303.1(  

Applying the inverse operator  1
tL to both sides of ),302.1( and using the initial  

condition we find 

)),,,(),,((sinsin),,( 1 tyxuLtyxuLLyxtyxu yxt   )304.1(  

We next define the unknown function  ),,( tyxu by a sum of components defined by the 
series 







0

),,(),,(
n

n tyxutyxu  )305.1(  

substituting the decomposition )305.1( into both sides of the ),304.1( we obtain 

,sinsin
00

1

0

























 












 n
ny

n
nxt

n
n uLuLLyxu )306.1(  

Or equivalently 

...)),(...)((

sinsin...

210210
1

210




 uuuLuuuLL

yxuuu

yxt
)307.1(  

Having identifies the zeroth component ),,,(0 tyxu we obtain the recursive scheme 
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,sinsin),,(0 yxtyxu  )308.1(  

)(),,( 1
1 kykxtk uLuLLtyxu  
  

With 0u defined as shown above ,the first few terms of the decomposition  )305.1( are 
given by  

 

 

)309.1(
 

 

And so on.Combining )305.1( and )309.1( the solution ),( txu in a series is  
 

)310.1(  

 

and in a closed form by 

,sinsin),,( 2 yxetyxu t  )311.1(  

 

Example 10. 

Use the Adomian decomposition method to solve the initial-boundary value problem 

PDE                )0(),,0(,  tyxuuuu yyxxt   

BC                 ,sin),,(),0,(
,0),,(),,0(

3 xetxutxu
tyutyu
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Solution: 

In an operator form, Equation )312.1( can  be written as 

,uuLuLuL yxt   )313.1(  

  Where                                           

2

2

2

2

,,
y

L
t

L
x

L ytx 










 )314.1(  

Applying the inverse operator  1
tL to both sides of ),313.1( and using the initial  

condition we find 

)),,,(),,(),,((
cossin),,(

1 tyxutyxuLtyxuLL
yxtyxu

yxt 


 )315.1(  

We next define the unknown function  ),,( tyxu by a sum of components defined by the 
series 







0

),,(),,(
n

n tyxutyxu  )316.1(  

substituting the decomposition )316.1( into both sides of the ),315.1( we obtain 
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Or equivalently 

...)),(...)(...)((
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 uuuLuuuLuuuLL

yuuu

yxt
)318.1(  

Having identifies the zeroth component ),,,(0 tyxu we obtain the recursive scheme 
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,cossin),,(0 yxtyxu  )319.1(  

)(),,( 1
1 kkykxtk uuLuLLtyxu  
  

With 0u defined as shown above ,the first few terms of the decomposition  )319.1( are 
given by  

)320.1(  

 

And so on.Combining )316.1( and )320.1( the solution ),,( tyxu in a series is  

 

 

)321.1(  

and in a closed form by 

.cossin),,( 3 yxetyxu t  )322.1(  

1.5.3 Three Dimensional Heat Flow 

The Adomian decomposition method will be used to solve the following homogeneous 
heat equation in three dimensions with homogeneous or inhomogeneous boundary 
conditions . 
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Example 11. 

Use the Adomian decomposition method to solve the initial-boundary value problem 

PDE                )0(),,0(,  tyxuuuu zzyyxxt   

  BC                 ,,0),,,(),,0,(
,0),,,(),,,0(




tzxutzxu
tzyutzyu




 )323.1(  

   IC                    .sinsinsin2)0,,,( zyxzyxu   

Solution: 

In an operator form, Equation )323.1( can  be written as 

,uLuLuLuL zyxt   )324.1(  

  Where                                           

2

2

2

2

2

2

,,,
z

L
y

L
t

L
x

L zytx 














 )325.1(  

Applying the inverse operator  1
tL to both sides of ),324.1( and using the initial  

condition we find 

),(sinsinsin2),,,( 1 uLuLuLLzyxtzyxu zyxt   )326.1(  

We next define the unknown function  ),,,( tzyxu by a sum of  defined by the series 







0

),,,(),,,(
n

n tyzxutzyxu  )327.1(  

substituting the decomposition )327.1( into both sides of the ),326.1( we obtain 
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sinsinsin2
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Or equivalently 

...)),(...)(...)((

sinsinsin...

210210210
1

210




 uuuLuuuLuuuLL

zyxuuu

zyxt
)329.1(  

Having identifies the zeroth component ),,,,(0 tzyxu we obtain the recursive scheme 

,sinsinsin2),,,(0 zyxtzyxu  )330.1(  

)(),,,( 1
1 kkykxtk LuuLuLLtzyxu  
  

It follows that the first few terms of the decomposition series of ),,,( tzyxu are given 
by  

 

 

)331.1(  

 

And so on.Combining  )327.1( and )331.1( the solution ),,,( tzyxu in a series 
is 

 

 )332.1(  

and in a closed form by 

,sinsinsin2),,,( 3 zyxetzyxu t  )333.1(  
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Example 12. 

Use the Adomian decomposition method to solve the inhomogeneous initial-boundary value 
problem 

 PDE   0,,0,sin  tyxzuuuu zzyyxxt   

  BC  

)sin(),,,(),0,,(
,sinsin),,,(
,sinsin),,0,(
,sinsin),,,(
,sinsin),,,0(

2

2

2
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2

yxetyxutyxu
xeztzxu
xeztzxu
yeztzyu
yeztzyu

t

t

t

t

t



























)334.1(  

IC           .sin)sin()0,,,( zyxzyxu   

Solution: 

In an operator form, Equation )334.1( can  be written as 

,sin zuLuLuLuL zyxt   )335.1(  

Where                                           
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L
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L zytx 














 )336.1(  

Applying the inverse operator  1
tL to both sides of ),335.1( and using the initial  

condition we find 

),(
sinsin)sin(),,,(

1 uLuLuLL
ztzyxtzyxu

zyxt 


 )337.1(  
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We next define the unknown function  ),,,( tzyxu by a sum of  defined by the series 







0
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n

n tyzxutzyxu  )338.1(  

substituting the decomposition )338.1( into both sides of the ),337.1( we obtain 
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)339.1(  

Or equivalently 

...)),(...)(...)((

sinsin)sin(...
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 uuuLuuuLuuuLL

ztzyxuuu

zyxt
)340.1(  

Having identifies the zeroth component ),,,(0 tyxu we obtain the recursive scheme 

,sinsin)sin(),,,(0 ztzyxtzyxu  )341.1(  

0),(),,,( 1
1  
 kLuuLuLLtzyxu kkykxtk  

It follows that the first few terms of the decomposition series of  ),,,( tzyxu are given 
by 
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And so on.Combining  )338.1( and )342.1( the solution ),,,( tzyxu in a series 
is 

 

)343.1(  

 

 

and in a closed form by 

),sin(sin),,,( 2 yxeztzyxu t    )344.1(  

1.6. Nonlinear PDEs Systems by Adomian Decomposition Method(ADM) 

Systems of nonlinear partial differential equations will be examined by using (ADM). 
Systems of nonlinear partial differential equations arise in many scientific models such as the 
propagation of shallow water waves and model of chemical reaction-diffusion model. To 
achieve our goal in handling systems of nonlinear partial differential equations, we write a 
system in an operator for by 

,),(
,),(

22

11

gvuNuLvL
gvuNvLuL

xt

xt




  )345.1(  

With initial data 

)()0,(
),()0,(

2

1

xfxv
xfxu




     )346.1(  

Where tL and xL are considered, without loss generality, first order partial differential 

operators, 1N and 2N are nonlinear operators, and 1g and 2g are source terms. 

Operating with the integral operator 1
tL to the system )345.1( and using initial data  

)346.1( yields 

),,()(),(

),,()(),(
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1

vuNLuLLgLxftxv
vuNLvLLgLxftxu

txtt
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)347.1(  
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The linear unknown functions  ),( txu and ),( txv can be decomposed by infinite 
series of components 
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n
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n
n

txvtxv

txutxu

)348.1(  

However, the nonlinear operators, ),(1 vuN and ),(2 vuN should be represented by 

using the infinite series of the so-called Adomian polynomials nA and nB as follows:
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,),(

,),(

n
n

n
n

BvuN

AvuN

)349.1(  

Where ),( txu n and 0),,( ntxv n are the components of e ),( txu and 

0),,( ntxv respectively that will be recurrently determined, and nA and

0, nB n  are Adomian polynomials that can be generated for all forms of nonlinearity. 

The algorithms for calculating Adomian polynomials were introduced in 3.1 and 4.1 . 
Substituting )349.1( into )347.1( gives  
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BLuLLgLxftxv

ALvLLgLxftxu

)350.1(  

Two recursive relations can be constructed from )350.1( given by 

,0),()(),(
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kALvLLtxu
gLxftxu

ktkxtk

t
)351.1(  

And 
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,0),()(),(

,)(),(
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1

2
1
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kBLuLLtxv
gLxftxv

ktkxtk

t
)352.1(  

It is an essential feature of the decomposition method that the zeroth components  
),(0 txu and ),(0 txv are defined always by all terms that arise from initial data and 

from integrating the source terms. Having defined the zeroth pair ),( 00 vu the remaining 

pair e ,1),,( kvu kk can be obtained in a recurrent manner by using  )351.1( and 
)352.1( . Additional pairs for the decomposition series solution normally account  for 

higher accuracy. Having determined the components of ),( txu and ),( txv the solution 
),( vu of the system follows immediately in the form  a power series expansion upon 

using )348.1( . 

Example 13. 

Consider the nonlinear system: 

,1
,1




vuvv
uvuu

xt

xt
  )353.1(  

With the condition  

x

x

exv
exu




)0,(
,)0,(

     )354.1(  

Solution : 

Operating with 1
tL on )353.2( we obtain 

),(),(

),(),(
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1

vuvLtetxv
uvuLtetxu

xt
x

xt
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)355.1(  

The linear term  ),( txu and ),( txv can be represented by the  decomposition series  
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)356.1(  

And the nonlinear term  xvu and xuv  by an infinite series of Adomian polynomials 
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)357.1(  

Wher nA and nB  are  the  Adomian polynomials that can be generated for any  forms of 

nonlinearity. Substituting )356.1( and )357.1(  into )355.1( gives  
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)358.1(  

To accelerate the convergence of the solution, the modified decomposition method will be 
applied here. The modified decomposition method defines the recursive relations in the form 

,1),(),(

),(),(
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1
1

00
1

1

0












kuALtxu
uALttxu

etxu

kktk

t

x

)359.1(  

And 
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x

)360.1(  

The Adomian polynomials for the  nonlinear term  xvu are given by 
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The Adomian polynomials for the  nonlinear term  xuv are given by 
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Using the derived Adomian polynomials into  )359.1( and )360.1(  we obtain the 
following pairs of components 
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)361.1(  

Accordingly, the solution of the system in a series form is given by 

 

,...
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3232


























  tttetttevu xx

)362.1(  

And in a closed form by 

 ,,),( txtx eevu  )363.1(  
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Example 14. 

Consider the nonlinear system: 

5
,5

,1







yxt

yxt

yxt

vuw
uwv
wvu

  )364.1(  

With the condition  

,2)0,,(
,2)0,,(
,2)0,,(

yxyxw
yxyxv
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  )365.1(  

Solution : 

Operating with 1
tL on )364.1( we obtain 
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)366.1(  

The linear term  ),,(),,,( tyxvtyxu and ),,( tyxw can be represented by the  
decomposition series  
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)367.1(  

And the nonlinear term  yxyx uwwv , and yx vu  by an infinite series of Adomian 
polynomials 
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Wher nn BA , and nC  are  the  Adomian polynomials that can be generated for any  

forms of nonlinearity. Substituting )368.1( and )367.1(  into )366.1( gives  
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)369.1(  

To accelerate the convergence of the solution, the modified decomposition method will be 
applied here. The modified decomposition method defines the recursive relations in the form 

,0),(),,(

,2),,(
1

1

0






 kALtyxu
tyxtyxu

ktk
)370.1(  

And 
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And 
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)372.1(  

The Adomian polynomials for the nonlinear term  yx wv are given by 
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The Adomian polynomials for the nonlinear term  yx uw are given by 
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The Adomian polynomials for the nonlinear term  yx vu are given by 
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Substituting these polynomials into the appropriate  recursive relations we find 

 

 

 

 



 
 

63  

 

 

 
 

  .2,0,0,0),(
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kvu
tttwvu

tyxtyxtyxwvu

kk

)373.1(  

Consequently, the exact solution of the system of nonlinear partial differential equations is 
given by 

)32,32,32(),,( tyxtyxtyxwvu  )374.1(  

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Chapter Two 

Varational  Iteration Method      

(VIM). 
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2.1The Variational Iteration Method (VIM) 

It was stated before that Adomian Decomposition Method, with its modified form and the 
noise terms phenomenon, and some of the traditional methods will be used in this chapter. 
The other well-known methods, such as the inverse scattering method, the pseudo spectral 
method, 

 In addition to Adomian Decomposition Method, the newly developed variational 
iteration method will be applied. The variational iteration method(VIM) is thoroughly used 
by mathematicians to handle a wide variety of scientific and engineering applications: linear 
and nonlinear, and homogeneous and inhomogeneous as well. It was shown that this method 
is effective and reliable for analytic and numerical purposes. The method gives rapidly 
convergent successive approximations of the exact solution if such a solution exists. The 
(VIM) does not require specific treatments for nonlinear problems as in Adomian method, 
perturbation techniques, etc. in what follows, we present the main steps of the method. 

Consider the differential equation 

),( tgNuLu  )1.2(  

Where L and N are linear and nonlinear operators respectively, and )( tg  is the 
source inhomogeneous term. 

The variational iteration method presents a correction functional for Eq. )1.2(  in 
the form 

,))()(~)()(()()(
0

1  

t

nnnn dguNLututu  )2.2(  

Where  is a general Lagrange multiplier, which can be identified optimally via the 

variational theory, and u~ is a restricted variation which means 0~ nu . 

 It is obvious now that main steps of the He’s variational iteration method require first 
the determination of the Lagrange multiplier )( that will be identified optimally. 

Integration by parts is usually used for the determination of the Lagrange multiplier )( . 
In other words we can use 
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   duudu nnn )()()()()()( ''
 

   duuudu nnnn )()()()()()()()( '''''' )3.2(  

And so on. The last two identities can be obtained by integrating by parts. 

 Having determined the Lagrange multiplier )( the successive approximations 

,0,1  nu n of the solution u will be readily obtained upon using any selective 

function 0u . Consequently, the solution 

.lim nn
uu


 )4.2(  

In other words, the correction functional )2.2( will give several approximations, and 
therefore the exact solution is obtained as the limit of the resulting successive 
approximations. 

 The variational iteration method will be used now to study the same examples used 
before in chapter1 to help for comparison reasons. 

Example 1: 

Use variational iteration method to solve the following inhomogeneous PDE 

.0)0,(,0),0(,  xuyuyxuu yx )5.2(  

Solution: 

The correction functional for equation )5.2( is  

 


















x
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y
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1 .),(~),()(),(),( 


 )6.2(  

using )3.2( the stationary conditions 

 

 

,01    x
 )7.2(   
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,0'   x
  

Follow immediately. This in turn gives 

,1 )8.2(  

Substituting this value of the Lagrange multiplier 1 into the functional )6.2(
gives the iteration formula 
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)9.2(  

As stated, we can select 0),0(),(0  yuyxu from the given conditions. Using 

this selection into )9.2( we obtain the following successive approximations  
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,),( xyyxu n 
 

The VIM admits the use of  

).,(lim),( yxuyxu nn 
 )11.2(

 
That gives the exact solution by  



 
 

67  

 

.),( xyyxu  )12.2(
 

Example 2: 

Solve the following homogeneous partial differential equation by the variational iteration 
method 

.)0,(,),0(,0 xxuyyuuu yx  )13.2(
 

Solution: 

The correction functional for equation )13.2( is 
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 )14.2(

 

This gives the stationary condition 

,01    x
 )15.2(  

,0'   x


 
This gives  

,1 )16.2(
 

Substituting this value of the Lagrange multiplier 1 into the functional )15.2(
gives the iteration formula 
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)17.2(
 

We now  select yyuyxu  ),0(),(0 from the given conditions. Using 

this selection into )17.2( we obtain the following successive approximations  

,),(0 yyxu   
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The VIM gives the exact solution by 

.),( yxyxu  )18.2(
 Example 3 

Usethe variational iteration method to solve the following homogeneous partial differential 
equation  

.)0,(,0),0(,3 2xxuyuuxuu xy  )19.2(
 

Solution: 

The correction functional for equation )19.2( is 
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As presented before the stationary conditions 

,01    x
 )21.2(  
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,0'   x


 
And this gives  

,1 )22.2(
 

Substituting this value of the Lagrange multiplier 1 into the functional )20.2(
gives the iteration formula 
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)23.2(
 

We can  select 2
0 ),( xyxu  from the given conditions. Using this selection into 

)23.2( we obtain the following successive approximations  
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...).
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1
!2

11(),( 322  yyyxyxu n

 

The VIM gives the exact solution by 

.),( 2 yexyxu  )25.2(
 

Example 4: 

Solve the following  partial differential equation by the variational iteration metho 
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)26.2(
 

where  

).,,( zyxuu 
 

Solution: 

The correction functional for equation )26.2( is 
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This gives the stationary condition 

,01    x
 )28.2(  

,0'   x


 
This gives  

,1 )29.2(
 

Substituting this value of the Lagrange multiplier 1 into the functional )27.2(
gives the iteration formula 
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We now  select zy eezyxu  1),,(0 from the given conditions. Using 

this selection into )30.2( we obtain the following successive approximations  
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As a result, the exact solution is given by  

.),( zyx eeeyxu  )32.2(
 

2.2.Homogeneous and inhomogeneous  Heat Equations  

Example5: 

Use the (VIM)to solve the initial-boundary value problem 

PDE ),0(),0(,  txuu xxt 
 

BC ,0,0),(,0),0(  ttutu  )33.2(  

IC            .sin)0,( xxu 
 

Solution: 

The correction functional for equation )33.2( is 
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As presented before the stationary conditions 
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,01    x
 )35.2(  

,0'   x


 
And this gives  

,1 )36.2(
 

Substituting this value of the Lagrange multiplier 1 into the functional )34.2(
gives the iteration formula 
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We can  select xxu sin)0,(0  from the given conditions. Using this selection 

into )37.2( we obtain the following successive approximations  
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The VIM gives the exact solution by 

.sin),( xeyxu t )39.2(
 

,sin),(0 xyxu 
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Obtained upon using the Taylor expansion of  te  .
 

Example6: 

Use the (VIM)to solve the initial-boundary value problem 

PDE         ),0(),0(,sin  txxuu xxt 
 

BC           ,0,)0,(
,0,),0(








teu
tetu
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t


)40.2( IC            .cos)0,( xxu 

 

Solution: 

The correction functional for equation )40.2( is 
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As presented before the stationary condition 

,01    t )42.2(  
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And this gives  

,1 )43.2(
 

Substituting this value of the Lagrange multiplier 1 into the functional )41.2(
gives the iteration formula 
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We can  select xxu cos)0,(0  from the given conditions. Using this selection 

into )44.2( we obtain the following successive approximations  

 ,cos),(0 xyxu 



 
 

75  
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Accordingly, the exact solution 
 

.sin)1(cos),( xexeyxu tt   )46.2(
 

2.3 Homogeneous and inhomogeneous  Wave Equations  

As stated before the variational iteration method (VIM) gives rapidly convergent 
successive approximations of the exact solution if an exact solution exists. Otherwise, the 
method provides an approximation of high accuracy level by using only few iterations. In 
what follows,The variational iteration method will be used in the following wave equations. 

Example7: 

Use the (VIM)to solve the initial-boundary value problem 

PDE         ),0(),0(,  txuu xxtt 
 

BC           ,0,0),(,0),0(  ttutu  )46.2(  

IC            .sin)0,( xxu 
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Solution: 

The correction functional for equation )46.2( is 
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As presented before the stationary conditions 
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And this gives  
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Substituting this value of the Lagrange multiplier t  into the functional 
)47.2( gives the iteration formula 
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We can  select xtxu sin),(0  from the given conditions. Using this selection 

into )50.2( we obtain the following successive approximations 
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This  gives the exact solution by 

.cossin),( txyxu  )52.2(
 

By noting that nn
utxu


 lim),(

 
Example 8: 

Use the (VIM)to solve the initial-boundary value problem 

PDE         ),0(),0(,2  txuu xxtt 
 

BC   ,0,),(,0),0( 2  ttutu  )53.2(  

IC            .sin)0,(,)0,( 2 xxuxxu t 
 

Solution: 

The correction functional for equation )53.2( is 
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As presented before the stationary conditions 
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And this gives  

,t  )56.2(
 

Substituting this value of the Lagrange multiplier t  into the functional 
)54.2( gives the iteration formula 
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We can  select xtxtxu sin),( 2
0  from the given conditions. Using this 

selection into )57.2( we obtain the following successive approximations  
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This  gives the exact solution by 

.sinsin),( 2 txxyxu  )59.2(
 

By using Taylor series for tsin and by  noting that nn
utxu


 lim),(

 
 

,sin),( 2
0 xtxtxu 
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Example 9: 

Use the (VIM)to solve the initial value problem 

PD ),0(),(,  txeuu t
xxtt   )60.2(  

IC       xxuxu t sin1)0,(,1)0,( 
 

Solution: 

Note that the initial value problem is inhomogeneous.  

The correction functional for equation )61.2( is 
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As presented before the stationary condition 

,01    t
  

,0'   t
 )63.2(

 

,0''   t


 
And this gives 

,t  )64.2(
 

Substituting this value of the Lagrange multiplier t  into the functional 
)62.2( gives the iteration formula 
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We can  select xtttxu sin1),(0  from the given conditions. Using this 

selection into )65.2( we obtain the following successive approximations 
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This  gives the exact solution by 

.sinsin),( txeyxu t )67.2(
 

By noting that   nn
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2.4 Nonlinear PDEs by Variational Iteration Method (VIM) 

Systems of nonlinear partial differential equation arise in many scientific models such as the 
propagation of shallow water waves and the Brusselator model of chemical reaction-
diffusion model. To use the (VIM), we write a system in an operator form by 

,),,(),,(
,),,(),,(
,),,(),,(

333

222

111

gwvuNwvuRuL
gwvuNwvuRuL
gwvuuNwvuRuL

t

t

t





)68.2(
 

With initial data 

),()0,(
),()0,(
),()0,(
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1

xfxw
xfxv
xfxu





)69.2(
 

Where tL is considered a first order partial differential operator, 31,  jR j and 

31,  jN j are linear and nonlinear operators respectively, and 21 , gg and 3g are 

source terms. The correction functionals  for equations of the system )68.2( can be 
written as 
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)70.2(  
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Where 31,  jj are general Lagrange's multipliers, which can be identified 

optimally via the variational theory, and  ,~,~
nn vu and nw~ as restricted variations which 

means  0~,0~  nn vu  and 0~ nw . It is required first to determine the 

Lagrange's multipliers j that will be identified optimally via integration by parts. The 

successive approximations 0),,(),,(),,( 111  ntxwtxvtxu nnn of the 
solutions ),(),,( txvtxu and ),( txw will follow immediately upon using the 
obtained Lagrange's multipliers and by using selective functions 00 , vu and 0w . The 
initial values are usually used for the selective zeroth approximations. Whit the Lagrange's 
multipliers j determined, then several approximations 

0),,(),,(),,( jtxwtxvtxu jjj  can be determined [18]. Consequently, the 
solutions are given by 

),,(lim),(

),,(lim),(

),,(lim),(
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2
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n

n
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)71.2(  

Example 10: 

Use the (VIM)to solve inhomogeneous nonlinear system 

PDE ,1
,1
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)72.2( IC          .)0,(,)0,( xx exvexu 

 

Solution: 

The correction functional for equation )61.2( is 
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The stationary conditions are given by 
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)74.2(  

So that 

,121   )75.2(
 

Substituting this value of the Lagrange multiplier 121   into the functional 
)73.2( gives the iteration formula 
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The zeroth approximations  ,),(0
xetxu  and xetxv ),(0 are selected by 

using the given initial conditions. Therefore, we obtain the following successive 
approximations 
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By cancelling the noise terms between ,..., 32 uu and between  ,..., 32 vv we find 
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!3!2

1),(

,...
!3!2

1),(

32

32





















 tttetxv

tttetxu

x
n

x
n

)78.2(  

And as a result, the exact solution are given by 

,),(
,),(
tx

tx

etxv
etxu








)79.2(  

Obtained upon using the Taylor expansion for te  and te . It is obvious that we did not use 
any transformation formulas or linearization assumptions for handling the nonlinear terms. 

              In what follows, a system of three nonlinear partial differential equations in three 
unknown functions n ),,(),,,( tyxvtyxu and ),,( tyxw  will be studied. It is 
worth that noting that handling this system by traditional methods is quiet complicated.  

Example 11: 

Use the (VIM)to solve inhomogeneous nonlinear system 

PDE           
,5

,5
,1
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)80.2(
 

With the initial conditions 
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Solution: 

The correction functional for equation )61.2( is 
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The stationary conditions are given by 
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)83.2(  

So that  

,1321   )84.2(
 

Substituting this value of the Lagrange multiplier 1321   into the 

functional )82.1( gives the iteration formula 
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The zeroth approximations  
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)86.2(  

are selected by using the given initial conditions. Therefore, we obtain the following 
successive approximations 

 

 

 

 

 

 

 

 

 



 
 

87  

 













































,32),,(
,32),,(
,32),,(

.

.

.

,32),,(
,32),,(
,32),,(

,2),,(
,2),,(
,2),,(

1

1

1

0

0

0

tyxtyxw
tyxtyxv
tyxtyxu

tyxtyxw
tyxtyxv
tyxtyxu

yxtyxw
yxtyxv
yxtyxu

n

n

n

)87.2(  

Are readily obtained .Notice that the successive approximations become the same for 
u after obtaining the first approximation .The same conclusion can be made for v and w 
.Based on this, the exact solutions are given by 

.32),,(
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Chapter Three 
Seepage flow Derivatives in porous 

media. 
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3.1 Definition of a porous media 

  In order to study the flow of fluid through porous media, it is first of all necessary to clarify 
what is understood by the terms that denote the two materials involved fluids and porous 
media. 

                    We define(porous media) as solid bodies that contain pores, (pores) are void 
spaces which must be distributed more or less frequently through the material if it is to be 
called(porous). 

3.2 Darc'y law 

Darc'y law derived experimentally and was thus considered an empirical law based on 
volume average of the Navier Stock momentum equation. The assumption needed for 
derivation of Darc'y law include low flow speeds and that porous fluid direction is a 
dominating actiong on the fluid. 

3.2.1 Single-Phase Flow 

The differential form for the Darc'y law in single-phase is 











cg
gpku 

 )1.3(  

Where 

k is absolute permeability tensor of the porous medium. 

  is fluid viscosity.    

g  is gravitational. 

cg  is conversion constant. 

  is fluid density. 

u     is fluid velocity. 
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3.2.2 Permeability 

The hydraulic conductivity tensor  describes the influence of the fluid and rock properties 
on the volumetric flow density(flow velocity), and given as  




k
 )2.3(  

Where 

k represents the absolute permeability of the given porous medium. 

3.3 Introduction to Fractional Calculus 

The calculus was the first achievement of modern mathematic, Isaac Newton & Leibniz 
discover calculus in the seventieth century. 

Leibniz first introduced the idea of symbolic method and based the symbol. 

yD
dx

yd n
n

n

 )3.3(  

For the nth derivative, where n is non-negative. L'Hospital asked Leibniz about the 
possibility that n be fractional Leibniz replied it well lead to paradox. 

3.3.1 Lacrox formula 

In 1819 Lacrox developed the formula for the nth derivative of mxy  where m is 
positive integer 

nmx
nm

myD nmn 









  ,
)!(

!
)4.3(  

Replacement of the factorial symbol by the gamma function goes 

nmx
nm

myD nmn 










  ,

)1(
)1(

)5.3(  

Now of )5.3( is define for other n integer or not (arbitrary number) 
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3.3.2 Lioville’s Formula For Derivative 

3.3.2.1Lioville’sFirst Formula  

For any integer n we have 

axnaxn eaeD  )6.3(  

Lioville’s replace of n by an arbitrary order  (rational ,irrational ,or complex) it is clear 
that the Right Hand Side (RHS) of )6.3( is well define case, that obtained the following 
formula 

axax eaeD   )7.3(  

This formula is called first Lioville’s formula. 

In series expansion of )( x ,Lioville’s formula is given by 
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neacxfD  )8.3(  

Where 
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necxf )9.3(  

 

3.3.2.2  Lioville’s second formula: 

Lioville’s  formulated another definition of (second formula) fractional derivative based on 
the gamma function to extendLacriox formula. 
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This is called Lioville’s second definition of fractional derivative according to Lioville’s 
derivative of a constant 0  

But the derivative of a constant function to Lacroix formula is  

0
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This lead to a discrepancy between the two definition of fractional derivative. But other 
mathematicians preferred Lioville’s definition. 

In 1822.Fourier obtained the following integral representation for )( xf and it is 
derivatives 

,)(cos)(
2
1)(   

x

a

x

a

n dttttdfxf 
 )12.3(  

And 
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)13.3(  

Replacing  integer n by arbitrary real   
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 )14.3(  

Greer derived formula for the fractional derivative of trigonometric 
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3.3.3 Fractional Derivatives And Integral 

The idea of fractional derivative or fractional integral can be described in different ways. We 
consider a linear homogeneous nth order ordinary differential equation 

   10,0
0





nkay
yD

k

n

)16.3(  

The solution is fundamental set  12 ,...,,1 nxxxP i.e 

 

)17.3(  
3.3.4 Non homogeneous O.D.E 

 

)18.3(  

 

Solution: 

We use Laplace transform   
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where 
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 )21.3(  

 

This formula is called Rimman integral. 

In general 

 

  )22.3(   

Is called Rimman-Lioville’s. 

Replacing n by real  gives the Rimman-Lioville’s fractional integral  

 

)23.3(  

Where 

     Is the Rimman-Lioville’s operator. 

If 

0a   Is called Rimman fractional integral and 

If 

a called Lioville’s fractional integral.  
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Chapter Four 

The application of Varational 

Iteration Method (VIM). 
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4.1 Liouville'sFirst Formula: 

4.1.1 Exponential Function: 

With the know result axnaxn eaeD   where Nn
dx
dD  , , and extended it 

at first in the particular case 2,
2
1

 a and then to arbitrary order  (rational, 

irrational or complex) by 
 

axax eaeD   )1.4(  

He assumed the series representation for )( xf as 
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)(
k
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k

kecxf  and defined 

the derivative of arbitrary order  by 
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4.2Liouville’sSecond Formula: 

4.2.1Power Function: 

Where this isLiouville's first approach, his second method was applied to the explicit 
function x . He considered the integral 
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1 dueuI xu )3.4(  

Substituting txu  gives t he result 
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Operating on both sides of )(
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x  whit D  with respect to x heobtained 
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 xxD 1 )5.4(  

Liouville used the latter in this investigation of potential theory  
 
That lead to 

)1(,
1

1





  


  xxD )6.4(  

4.3The Partial Differential Equation Of SeepageFlowThrough Porous Media 

          The partial differential equation for incompressible single phase percolation flow 
under the hypotheses for continuity and Darcy low can be written general as follows   

 

)7.4(  

 ),,( zyx  

 

)8.4(  

 

Where yx kk , and zk  are the percolation coefficients along the yx ,  and  z direction 

respectively , p is the pressure, and  denotes the percolation domain , and 21 ss 
covers all its percolation domain. 

4.4 The Fractional Partial Differential Equation Of Seepage 

The above percolation is  (seepage) equation under the assumptions of continuity of 
seepage flow and Darcy low .Generally these two assumptions are not valid for real seepage 
flow. 
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We proposes the following modified Darc’ysLow or generalized Darc’ysLow with 
Riemman-Lioville's fractional derivatives 

 

 

)9.4(  

 

 

 

In case of 1321   )9.4(  correspond Darcy low, the Riemmanlioville's 
fractional derivatives generally 
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 )10.4(  

Under the assumptions of continuity of seepage flow we have following fractional 
differential equation 

 

)11.4(  

 ),,( zyx  

From )9.4(  

If seepage flow is considered as rigid body motion the continuity equation can be written as 
follows 

)12.4(  

 

),,( zyx  

Actually the seepage flow is neither continued or rigid, so the more general equation for 
seepage can be expressed as follows 
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)13.4(  

 ),,( zyx  

Where )1,,0( 321    

It is exciting that thevariatianaliterantial method (VIM) is also valid for such fractional 
differential equation , which are very difficult to solve even with numerical simulation. Duo 
to the fact that fractional differential equation can be excellently describe the natural 
phenomena approximation approach to it has caught attention by numerous mathematician 

We will apply the variatianaliterantial method (VIM) to obtain an analytical solution 
for a fractional differential equation. 

Consider first the following system 
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)14.3(  

Solution: 

According to the variatianliterantial method (VIM), we construct the following correction 
functional 

)()()(1 xFIxuxu nn
   )15.4(  

Where  I  the Riemman-lioville's fractional integrate defined as follows 
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To identify approximately the Lagrange multiplier we apply restricted variations to nonlinear 

term and also to  



x
u




 when there exist derivative with integer order. 

But where there exists no derivative with integer order, as far as there exists no way 
stationary conditions directly from a functional with the Riemman-lioville's fractional 
integrateso the correction functional can be approximately expressed as follow 
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Substituting the identified Lagrange multipliers in also to )14.4( results in the following  

iteration procedures 
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Example 1: 

Solve 
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 uxuD


0)0( u , )10(  x )20.4(  

By using (VIM) 

Solution: 

According to the variatianliterantial method (VIM), we have following correction functional 

)()()(1 xFIxuxu nn
   )21.4(  

 

 

 

 

 



 
 

100  

 

Then 
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And it is stationary conditions can be readily obtained 
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So the multiplier can be identified by 1 substitute in )22.4( yield 
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We start with ,0)0(0 u by the variatianal  iteration formula ),24.4( we have 
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The exact solution my obtained by using  

),(lim),( txutxu nn 
 )26.4(  

Then the exact solution is  

...
8
3

2
)( 2  xxxu )27.4(  

Example 2:  
 

Solve homogeneous partial differential equation by (VIM) 
 

డഀ௨(௫,௬)
డ௬ഀ + ݔ డ௨(௫,௬)

డ௫
= ,ݔ)ݑ3 (ݕ = 0  , ,ݔ)ݑ 0) = ,ଶݔ ,0)ݑ (ݕ = 0 )28.4(  

 
Solution: 

,ݔ)ାଵݑ (ݕ = ,ݔ)ݑ (ݕ + ∫ ߣ ቆడഀ௨(௫,క)
డకഀ + ݔ డ௨(௫,క)

డ௫
− ,ݔ)ݑ3 ቇ(ߦ ௬ ߦ݀


)29.4(  

As presented before, the stationary conditions are 
 
�1 + కୀ௫|ߣ = 0 
หకୀ௫ˋߣ� = 0 )30.4(  
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This gives ߣ = −1 
 
Substituting this value of the Lagrange multiplier ߣ = −1 in to the functional )29.4(
gives  
 
the iteration formula  

,ݔ)ାଵݑ (ݕ = ,ݔ)ݑ (ݕ − ∫ ቆడഀ௨(௫,క)
డకഀ + ݔ డ௨(௫,క)

డ௫
− ,ݔ)ݑ3 ቇ(ߦ ௬ߦ݀

 , ݊ ≥ 0 )31.4(  

 
We can select ݑ(ݔ, (ݕ = ,ݔ)ݑ 0) =   ଶ from the given conditions. Using this selection intoݔ
 
(4.31) we obtain the following successive approximations 
 
,ݔ)ݑ (ݕ =   ଶݔ

,ݔ)ଵݑ (ݕ = ,ݔ)ݑ (ݕ − න ൭
߲ఈݑ(ݔ, (ߦ

ఈߦ߲ + ݔ
,ݔ)ݑ߲ (ߦ

ݔ߲
− ,ݔ)ݑ3 ൱(ߦ ߦ݀

௬



= ଶݔ − න ൬
߲ఈ

ఈߦ߲ (ଶݔ) + (ݔ2)ݔ − ଶ൰ݔ3 ߦ݀

௬



= ଶݔ − න(0 − ߦ݀(ଶݔ

௬



= ଶݔ +   ݕଶݔ

,ݔ)ଶݑ (ݕ = ,ݔ)ଵݑ (ݕ − න ൭
߲ఈݑଵ(ݔ, (ߦ

ఈߦ߲ + ݔ
,ݔ)ଵݑ߲ (ߦ

ݔ߲
− ,ݔ)ଵݑ3 ൱(ߦ ߦ݀

௬



= ଶݔ + ݕଶݔ − න ൭
߲ఈ

ఈߦ߲ ଶݔ) + (ߦଶݔ + ݔ2)ݔ + (ߦݔ2 − ଶݔ)3 + ൱(ߦଶݔ ߦ݀

௬



= ଶݔ + ݕଶݔ − න ቆ0 +
ଵିఈߦଶݔ

Γ(2 − (ߙ − ଶݔ − ቇߦଶݔ ߦ݀

௬



= ଶݔ + ݕଶݔ + 

ଶݕଶݔ

2!
+ ቆ−

ଶିఈݕଶݔ

Γ(3 − (ߙ +  ቇݕଶݔ

,ݔ)ଷݑ (ݕ = ,ݔ)ଶݑ (ݕ − න ൭
߲ఈݑଶ(ݔ, (ߦ

ఈߦ߲ + ݔ
,ݔ)ଶݑ߲ (ߦ

ݔ߲
− ,ݔ)ଶݑ3 ൱(ߦ ߦ݀

௬
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= ଶݔ + ݕଶݔ +
ଶݕଶݔ

2!
+ ቆ−

ଶିఈݕଶݔ

Γ(3 − (ߙ + ቇݕଶݔ

− න ቌ
߲ఈ

ఈߦ߲ ൭ݔଶ + ߦଶݔ +
ଶߦଶݔ

2!
+ ቆ−

ଶିఈߦଶݔ

Γ(3 − (ߙ + ቇ൱ߦଶݔ

௬



+ ݔ ൭2ݔ + ߦݔ2 +
ଶߦݔ2

2!
+ ቆ−

ଶିఈߦݔ2

Γ(3 − (ߙ + ቇ൱ߦݔ2

− 3 ൭ݔଶ + ߦଶݔ +
ଶߦଶݔ

2!
+ ቆ−

ଶିఈߦଶݔ

Γ(3 − (ߙ + ቇ൱ቍߦଶݔ  ߦ݀

= ଶݔ + ݕଶݔ +
ଶݕଶݔ

2!
+ ቆ−

ଶିఈݕଶݔ

Γ(3 − (ߙ + ቇݕଶݔ

− න ቆ
ଵିఈߦଶݔ

Γ(2 − (ߙ +
ଶିఈߦଶΓ(3)ݔ

2! Γ(3 − (ߙ + ቆ−
ଶΓ(3ݔ − ଶିଶఈߦ(ߙ

Γ(3 − (ߙ2 +
ଵିఈߦଶݔ

Γ(2 − ቇ(ߙ

௬



− ଶݔ − ߦଶݔ −
ଶߦଶݔ

2!
+

ଶିఈߦଶݔ

Γ(3 − (ߙ − ቇߦଶݔ  ߦ݀

= ଶݔ + ݕଶݔ +
ଶݕଶݔ

2!
+ ቆ−

ଶିఈݕଶݔ

Γ(3 − (ߙ + ቇݕଶݔ −
ଶିఈݕଶݔ

Γ(3 − (ߙ −
ଷିఈݕଶݔ

Γ(4 − (ߙ

+
ଶΓ(3ݔ − ଷିଶఈݕ(ߙ

Γ(4 − (ߙ2 −
ଶିఈݕଶݔ

Γ(3 − (ߙ + ݕଶݔ +
ଶݕଶݔ

2!
+

ଷݕଶݔ

3!
−

ଷିఈݕଶݔ

Γ(4 − (ߙ

+
ଶݕଶݔ

2!

= ଶݔ + ݕଶݔ +
ଶݕଶݔ

2!
+ ቆ−

ଶିఈݕଶݔ

Γ(3 − (ߙ + ቇݕଶݔ + ቆ−
ଷିఈݕଶݔ2

Γ(4 − (ߙ +
ଶݕଶݔ2

2!
ቇ

+ ቆ−
ଶିఈݕଶݔ2

Γ(3 − (ߙ + ݕଶݔ +
ଶΓ(3ݔ − ଷିଶఈݕ(ߙ

Γ(4 − (ߙ2 ቇ +
ଷݕଶݔ

3!
 

. 

. 

. 
,ݔ)ݑ (ݕ

= ଶݔ + ݕଶݔ +
ଶݕଶݔ

2!
+

ଷݕଶݔ

3!
+ ⋯ +

ݕݔ

݊!
+ ቆ−

ଶିఈݕଶݔ

Γ(3 − (ߙ + ቇݕଶݔ

+ ቆ−
ଷିఈݕଶݔ2

Γ(4 − (ߙ +
ଶݕଶݔ2

2!
ቇ + ቆ−

ଶିఈݕଶݔ2

Γ(3 − (ߙ + ݕଶݔ +
ଶΓ(3ݔ − ଷିଶఈݕ(ߙ

Γ(4 − (ߙ2 ቇ

+ ⋯ 
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,ݔ)ݑ (ݐ = lim→ஶ ,ݔ)ݑ (ݕ = ቀ− ௫మ௬మషഀ

(ଷିఈ) + ቁݕଶݔ + ቀ− ଶ௫మ௬యషഀ

(ସିఈ) + ଶ௫మ௬మ

ଶ!
ቁ +

ቀ− ଶ௫మ௬మషഀ

(ଷିఈ) + ݕଶݔ + ௫మ(ଷିఈ)௬యషమഀ

(ସିଶఈ) ቁ + ⋯ + ∑ ௫௬

!
ஶ
ୀ = ቀ− ௫మ௬మషഀ

(ଷିఈ) + ቁݕଶݔ +

ቀ− ଶ௫మ௬యషഀ

(ସିఈ) + ଶ௫మ௬మ

ଶ!
ቁ + ቀ− ଶ௫మ௬మషഀ

(ଷିఈ) + ݕଶݔ + ௫మ(ଷିఈ)௬యషమഀ

(ସିଶఈ) ቁ + ⋯ = ቀ− ௫మ௬మషഀ

(ଷିఈ) +

ቁݕଶݔ + ቀ− ଶ௬యషഀ

(ସିఈ) + ଶ௫మ௬మ

ଶ!
ቁ + ቀ− ଶ௫మ௬మషഀ

(ଷିఈ) + ݕଶݔ + ௫మ(ଷିఈ)௬యషమഀ

(ସିଶఈ) ቁ + ⋯ + ଶ݁௫ݔ

)32.3(  
 

When ߙ = 1 then the exact solution is ݔଶ݁௫ 

4.5 A Fractional Model Of Fluid Flow Through Porous MediaIn TwoDimensionBy 
(VIM): 

If seepage flow is considered as rigid body motion the continuity equation can be written as 
follows in one dimension 

 

)33.4(  

x  

 

4.6  Solution AFractional Model Of Fluid Flow Through Porous Media In Two 
dimension by (VIM): 

Solve FPDE BY (VIM) 
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Solution: 
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)35.4(  

 
As presented before, the stationary conditions are 

 
�1 + కୀ௫|ߣ = 0 
หకୀ௫ˋߣ� = 0 )36.4(  

 
This gives ߣ = −1 
 
Substituting this value of the Lagrange multiplier ߣ = −1 in to the functional (4.36)  
 
gives the iteration formula 
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The exact solution my obtained by using  

),(lim),( txptxp nn 
 )39.4(  

Then the exact solution is  
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)40.4(  

When ߙ = 1 then the exact solution is x
v

t 1
  

4.7Solution AFractional Model Of Fluid Flow Through Porous Media In 
ThreeDimensionBy (VIM) 

If seepage flow is considered as rigid body motion the continuity equation can be written as 
follows in one dimension 

 

)41.4(  

If   21 and 1 kkk yx then we have 

 

)42.4(  

),,( zyx  

Solve FPDE  by(VIM): 
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As presented before, the stationary conditions are 
 

�1 + కୀ௫|ߣ = 0 
หకୀ௫ˋߣ� = 0 )45.4(  

 
This gives ߣ = −1 

 
Substituting this value of the Lagrange multiplier ߣ = −1 in to the functional (4.44)  
 
gives the iteration formula 
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The exact solution may obtained by using  
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)47.4(  

When ߙ = 1 then the exact solution is v
xtxy eetyxp
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Chapter Five 

The application of Adomian 

Decomposition Method (ADM) 
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5.1Theorem  1: 

The Riemann-Liouville fractional integration of polynomial function of nttf )(  is 
defined as following [28]; 

    







 nn t
n
ntJtfJ

1
1)( )1.5(  

5.2Theorem  2: 

The Riemann-Liouville fractional derivative of polynomial function of nttf )(  is 
defined as following [28]; 

    







 nn t
n
ntDtfD

1
1)( )2.5(  

Example 1. 

Use Adomian Decomposition Method to solve the following homogeneous FPDE 

,)0,(,0),0(,3 2xxuyuu
x
ux

y
u













)3.5(  

Solution.  

 In an operator form, Eq. ),3.5( can be written as  

),,(),(3),( yxuxLyxuyxuL xy  )4.5(  

  Where           

,, 




y
L

x
L yx 







 )6.5(  

We assume that the inverse of the operator exists as the 
yy JL   

Applying the inverse operator  
yJ to both sides of ),4.5( and using the given condition

2)0,( xxu  yield 
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)).,(),(3(),( 2 yxuxLyxuJxyxu xy   )7.5(  

As mentioned above, the decomposition method sets the solution ),( yxu in an series 
form by 
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n yxuyxu )8.5(  

Inserting )8.5( into both sides of the ),7.5( we obtain 
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)9.5(  

Using few terms only for simplicity reasons, we obtain 

...)),(...)(3(
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 )10.5(  

Proceeding as before, we identify the zeroth component ),,(0 yxu by 

,),( 2
0 xyxu  )11.5(  

Having identifies the zeroth component ),,(0 yxu we obtain the recursive scheme 

,),( 2
0 xyxu  )12.5(  

,0)),(3(),(1  kuxLuJyxu kxkyk


 

The components ,...,, 210 uuu are thus determined as follows: 
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It is obvious that all components 1,0  ku k .Consequently, the solution is given by  
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The exact solution obtained by 1 . 
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5.3 A fractional Model Of Fluid Flow Through Porous Media In TwoDimension 

If seepage flow is considered as rigid body motion the continuity equation can be written as 
follows in one dimension 
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5.4 Solution of a fractional model of fluid flow through porous media in Two dimension 
by(ADM) 

Use Adomian Decomposition Method to solve the following homogeneous FPDE 
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 In an operator form, Eq. ),16.5( can be written as  
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We assume that the inverse of the operator exists as the 
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As mentioned above, the decomposition method sets the solution ),( yxu in an series 
form by 
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Using few terms only for simplicity reasons, we obtain 
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Proceeding as before, we identify the zeroth component ),,(0 txp by 
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Having identifies the zeroth component ),,(0 txp we obtain the recursive scheme 
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The components ,...,, 210 ppp are thus determined as follows: 
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We can easily observe that 2,0  kpk .It follows that the solution in a closed form is 
given by 
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The exact solution obtained by 1 . 
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5.5 Solution Of  Fractional Model Of Fluid Flow Through Porous Media In Three 
Dimension By (ADM) 

If seepage flow is considered as rigid body motion the continuity equation can be written as 
follows in one dimension 
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Solution of  FPDE  by(ADM): 
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We assume that the inverse of the operator exists as the 
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Applying the inverse operator  
xJ to both sides of ),29.5( and using the given 
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As mentioned above, the decomposition method sets the solution ),,( tyxp in an series 
form by 
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Inserting )32.5( into both sides of the ),31.5( we obtain 
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Using few terms only for simplicity reasons, we obtain 
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Proceeding as before, we identify the zeroth component ),,,(0 tyxp by 
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obvious that all components, 1,0  kp k .Consequently, the solution is given by  
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The exact solution obtained by 1 . 
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conclusion 

The fundamental goal of this work has been to construct an approximate solution of seepage 
flow derivatives in porous media. The goal has been achieved by using the (ADM) and 
(VIM). The methods was used in a direct way without using linearization, perturbation or 
restrictive assumptions. Comparing this method with others, we consider this method to be 
more effective. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

127  

 

References  

[1] Abdul-majid-wazwaz-partial differential equation and solitary-waves theory nonlinear 

physical science-(2009). 

[2] Alexander G. Abanov, on  the effective hydrodynamics of the fractional quantum     Hall 

effect, J . phy .A :Math .Theor . 46(2013)292001(9pp) 

 [3] AhmetYildirim ,Analytical approach to fractional partial differential  equations in fluid 

mechanics by means of the homotopyPertubation method ,International Journal of Numerical 

Method for Heat & fluid Flow ,Vol. 20 Iss: 2, pp. 186 -200. 

[4]Bbatiha.A Variational  Lteration Method for Solving the Nonlinear klein, Gordon 

Equation ,Australian journal of basic and Applied Sciences, 3(4):3876-3890,(2009). 

[5] Debnath L. Bhatta D. –integral transforms and their applications (2ed,crc,2007) ISBN. 

[6] DAMAIN P. WATSON. Fractional calculus and its Applications .April (2004). 

[7] Francesco Mainardi, Yuri Luchko, Gianni Pagnini , The fundamental solution of the 

space-time fractional diffusion equation, Journal of Fractional Calculus and Applied 

Analysis, Vol. 4 No 2 (2001) 153-192. 

[8] J.H,He, Approximate analytical solution for seepage flow with fractional derivatives in 

porous media, computer meth apple mesh, Eng. 167(1998),57-68. 

[9] J.H.He,variational iteration method for autonomous ordinary differential systems, Apple 

mesh comput,114,(2000),115-123. 

 

 

 

 

 



 
 

128  

 

 [10] JafarBiazar, FatemehMohammadi , Application of Differential Transform Method to 
the Sine –Gordon Equation , International Journal of Nonlinear Science Vol. 
10(2010)No.2,pp. 190 -195 

[11] J.H.He,variatianl iteration method-a kind of non-linear analytical technique some 
examples, int j. nonlin-mech.34( 1999),699-708. 

[12] Ji-HuanHe,Approximate analytical  solution for seepage flow with fractional derivatives 

in porous media ,ELSEVIER,12January (1998). 

[13] J.K. Zhou, DifferentialTransformation and itsApplications for 

ElectricalCircuits,Huazhong University Press,Wuhan, China, 1986 (in Chinese). 

[14] Kimeu.Joseph Fractional calculus and application,(2009). 

[15]LokenathDepnath, recent applications of fractional calculus to science and engineering, 
IJMMS:54, 3413-3442.  (2003). 

[16] Muhammad Bhatti, Fractional Schrodinger wave equation and fractional uncertainty 

principle, Int. J.Contemp. Math. Sciences , Vol.2, 2007, no.19,943-950. (2007). 

[17]M.Hussain and MajidKhan.AVariationalIterational Method for solving the linear and 

nonlinear Klein-Gordon Equations. Applied mathematical Sciences,vol.4,2010.no.39,(1931-

1940). 

[18]M.Hussain and Majed khan .A Variational lteration method for solving the linear and 

Nonlinear klein- Gordon equations. Australian journal of basic and Applied Sciences (2009). 

[19]Ming – Jyi Jang , Chieh – Li Chen , Yung  - Chin Liy ,On Solving the initial –value 
problems using the differential  transformation  method, AppliedMathematics and 
Computation  115(2000) 145-160. 

[20] Ming – Jyi Jang , Chieh – Li Chen , Yung – Chin Liu ,Two- dimensional differential 
transform for  partial differential equations , Applied mathematics and computation  
121(2001) 261-270. 

 

 

 



 
 

129  

 

[21]Podlubny, Fractional Differential equations, Academic Press, (1999). 

[22]Ricardo Enrique Gutierrez, Joao Maurıcio Rosario,and Jose Tenreiro Machado, 

Fractional Order Calculus: Basic Concepts and Engineering Applications, mathematical 

problem in engineering, Article ID375858,19 pages (2010). 

[23] ShaherMomani.SalahAbuasad, Zaidobibat ,variational iteration method for solving 

boundary value problems (2006). 

  [24] SaeidehHesam, AlirezaNazemi and Ahmad Haghbin, Analytical Solution for the 

Zakharov – Kuznetsov equations by differential transform method, World Academy Science 

Engineering and Technology 75, 2011.                                  

[25] Syed Tauseef Mahmud, Din and AhmetYildihim and Hussein. Variational lteration 

method for nonlinear Witham borer kaup equation using domains polynomials-World 

Applied Sciences Journal 10(2):147-153,2010-12-31. 

[26] Sennur Somali and GuzinGokmen. Adomain Decomposition Method for nonlinear 

Strum-Liouvilleproblems.ISSN 1842-6298-volume 2(2007),11-20 

[27] S. A. El- Wakil , M. A. Abdou , On The Generalized Differential Transform Method 

and its applications, Mathematics Scientific Journal Vol. 6, No. 1 , S. N. 12, (2010), 17-32 

[28] VedatSuatErturk, Application of Differential Transformation Method to linear Sixth- 

order boundary value problems,   Applied mathematical Sciences,Vol. 1, 2007 ,on .2, 51 -58. 

[29] Vasily   E. Tara sov, Fractional hydrodynamic equations for fractal media ,Annals of 

Physics 318(2005) 286 -307. 

 

 

 

 

 



 
 

130  

 

 

[30] X . H .Chen , L . Wei ,L . Zheng , X . X. Zhang, Analytical approach to time – fractional 
partial differential equations in fluid mechanics ,Advanced material Research , volume 347 , 
pp . 463 -466 ,Oct 2011 

[31] Xuehui Chen, Liang Wei, Jizhe Sui, Xiaoliang Zhang, Solving fractional partial 
differential equations in fluid mechanics by generalized differential transform method, 
ICMT, 2573-2576, July 2011. 

[32] YildirayKeskin and GalipOturanc, The Differential Transform Methods For Nonlinear 
Functions and its Applications, Selcuk  J . Appl Math. Vol. 9. No.1 pp. 69 -76, 2008. 

[33]Yahya Qaida Hassan and Liu Ming Zhu, modified Adomian decomposition method 

modified for singular initial value problems in the second, order ordinary differential 

equation .surveys in Mathematic and its Applications-(2008). 

[34] Y. Keskin and G. Oturanc, Reduced Differential  Transform Method For Solving  
Linear and Nonlinear  Wave Equations, Iranian Journal of Science Technology , Transaction 
A Vol. 34, No. A2 printed in the Islamic Republic of Iran ,2010. 

[35] ZaidOdibat , ShaherMomani , Ageneralized Differential Transform Method for linear 
partial  differential equations of fractional order , Applied mathematics Letters 21 (2008) 194 
-199 . 

[36]Zhangxin Chen*and Richard E.EWingt,Comparison of various Formulations of Three-

phase Flow in Porous media, August 2,(1996) ,ARTICLE No,CP96541. 

[37] Z. Odibat, S. Momani, Comput. Math. Appl. 58 (2009) 2199. 


