
I

SUDAN UNIVERSITY OF SCIENCE AND

TECHNOLOGY

COLLEGE OF COMPUTER SCIENCE AND

INFORMATION TECHNOLOGY

SCRUM DEVELOPMENT

PLATFORM

OCTOBER 2015

THESIS SUMITTED AS A PARTIAL REQUIREMENTS 0F B.Sc.

(HONOR) DEGREE IN SOFTWARE ENGINEERING

II

SUDAN UNIVERSITY OF SCIENCE AND

TECHNOLOGY

COLLEGE OF COMPUTER SCIENCE AND

INFORMATION TECHNOLOGY

SOFTWARE ENGINEERING DEPARTMENT

SCRUM DEVELOPMENT PLATFORM

Prepared By:

Ahmed Taj elsir Ali

Ayman Adam Dawood

Hammad Dafer Mohammed Osman

Supervisor:

Hana Al-tayb

THESIS SUMITTED AS A PARTIAL REQUIREMENTS 0F B.Sc.

(HONOR) DEGREE IN SOFTWARE ENGINEERING

Supervisor Signature: Date:

………………………. 51/10/2015

October 2015

III

 الآيـــة

 قال تعالى:

 ﴿ وَمَا توَْفيِــقِي إلَِّا باِللاهِ

 عَليَْهِ توََكالــتُْ وَإلَِيْهِ أنُيِبُ ﴾

 صدق الله العظيم

﴾88سورة هود الآية ﴿

IV

 الحمــد لله

نَفْسَك حَمِدْتَ كَمَا الحَمْدُ لك اللاهُما

بوُرِ والِإنْجيْلِ ةِ والتاوْرَا الكِتاَبِ أمُِ في والفــرُْقَان والــزا

أكَْــــمَلُهُ، الحَمْــــــــــــدُ لك اللاهُما

ـــــــناَءُ ولك أجْــــــــمَلُهُ، الثاـ

أبْلَغهُُ، القــــــــــــوَْلُ ولك

أحْــكَمُهُ، العِلْــــــــمُ ولك

لْــــطَانُ ولك أقْوَمُهُ، السُّ

أعْظَمُهُ الجَلالُ ولك

V

DEDICATION

We would love to thank everyone who encouraged us to achieve this tremendous

task

Especially our parents who believed in us, and that we could actually achieve such

a thing

All our friends and colleagues for always being there for us in time of need it has

truly been an honor to have colleagues of such caliber

Our families, thank you for believing in us, please do not ever doubt our dedication

and love for you.

We would love to dedicate a second special thanks to our parents as we could never

express our gratitude towards them no words can give them justice

VI

ACKNOWLEDGEMENT

We thank Almighty Allah, for giving us the courage and determination, as well as

guidance to conduct this research.

We would like to acknowledge our supervisor Ms. Hanaa for all her effort and

guidance and her assistance.

VII

ABSTRACT:

 In the past couple of years Agile development has gotten very famous because

of its characteristics and ability to frequently deliver satisfactory software. Making it

take its place on top of other methods, making companies want a slice of that cake

so there have been attempts to distribute agile development, although agile methods

prefer direct interaction rather than tools, it has been proved to have the capability to

be distributed.

 Scrum is one of the most commonly used Agile Development Methods used

in the industry, it revolves around frequent delivery and the ability to effectively

respond to change this ability is called “requirements churn”. It has a set of defined

roles each with its own responsibility and corresponding tasks, the Product Owner,

Scrum Master and Development Team. It’s well known for its simplicity and easy

implementation making it a wide spread method.

 International Companies wish to use their resources which are located across

the globe in a successful agile manner to utilize its skilled manpower in the most

efficient way.The project aims to create a platform to enable and enhance

development for agile projects, it attempts to provide everything that an agile project

will require throughout its development.

 The platform targets both remote and local teams as it enables plenty of

communication features and high project visibility, the high project visibility is

established through various platform components whose coherent work will allow

that level of visibility. It provides methods for communication in manners like video

conferencing and chatting, also the task assignment and task creation all coupled with

a coding environment and version control, when all of these work together they

provide full project visibility from one place as to what tasks are left, what are the

bugs, what are the missing features and the current source code.

VIII

 المستخلص:

ضية رعلى اصدار برمجيات م تهاوقدر المرن جدا بسبب مميزاتهالتطوير في الأعوام الماضية اشتهر

لي ا الكبرى الدولية شركات البرمجيات لاخرى. لذا سعتاعلى رأس الطرق للعملاء، مما ساعد في تصدره

ل للاستفادة من المبرمجين المهرة حو المرن تطوير حاء العالم بطريقة الاستخدام مواردها التي تقع في جميع أن

 . العالم بطريقة أكثر فعالية

الاسكرم من اكثر طرق التطوير المرن استخداما في المجال ، فهو يتمحور حول التسليم المتكرر

والقدرة على الاستجابة للتغيرات . لديه العديد من الادوار كل بمسؤوليته ومهامه ،) صاحب المصلحة ، منظم

 الفريق ، فريق التطوير (. ويعرف بالبساطة وسهولة التطبيق مما جعله الاكثر انتشارا .

لمباشر بدلا فضل التفاعل ايالا انه المتباعدة جغرافيا البيئات في المرن التطويربرغم اثبات فعالية

لتطوير االتي تستخدم المشروع إلى إنشاء منصة لتمكين وتعزيز تطوير المشاريعهذا من الأدوات، لذا يهدف

 .، محاولا تقديم كل ما تحتاجه المشاريع على مدى فترة تطويرها المرن وخصوصا الاسكرم

يعملون بالتطوير عن بعد او كان الفريق متمركز في االمنصة تحاول مساعدة فرق التطوير ان كانو

م مما يقدم وضوح عال لوضع مميزات النظامكان واحد، تسهل المنصة عملية تواصل المعلومات من خلال

 . المشروع

 المشاريع، يريضها لتقديم الصورة الكاملة لمدهذا الوضوح يتم بسبب اجزاء النظام التي تتكامل مع بع

 المطورين انفسهم.و اصحابها و

ضا بين اعضاء المشروع، ايمثل اجتماعات الفيديو و الدردشة هدم النظام وسائل للتواصل بطرق عديق

 دارة المهمات مع بيئة التطوير بالاضافة الي التحكم باصدارات المشروع.اانشاء و

عندما تلتقي كل هذه المميزات معا تقدم وضوح عال للمشروع و كل هذا من خلال المنصة نفسها،

و ذلك يضمن معرفة ما المهمات المتبقية، و ما المشاكل التي تواجه تقدم المشروع، كل ذلك بالاضافة الى

 المصدرية للمشروع. الشفرة

IX

TABLE OF TERMS:

Term Description

1 ASD Agile Software Development

2 TTM Time To Market

3 ADM Agile Development Methods

4 DSDM Dynamic System Development Method/Driving Strategy

Developing More

5 FDD Feature Driven Development

6 DSD Distributed Software Development

7 DAD Distributed Agile Development

8 GSD Global Software Development

9 XP Extreme Programming

10 HTML Hyper Text Markup Language

11 CSS Cascading Style Sheets

12 SIL OFL Sil Open Font License

13 MIT Massachusetts Institute of Technology

14 Ajax Asynchronous Java Script and XML

15 IDE Integrated Development environment

16 HTTP Hyper Text Transfer Protocol

17 MVC Model View Controller

18 WSGI Web Server Gateway Interface

19 API Application Programming Interface

20 SHA Secure Hash Algorithm

21 AES Advanced Encryption Standard

22 DVCS distributed version control system

23 VCS Version Control System

24 SQL Structured Query Language

25 ORDBMS Object-relational Database Management System

26 SIAB Shell In A Box

27 WebRTC Web Real Time Communication

X

TABLE OF FIGURES:

Figure 1 Scrum Practices .. 10

Figure 2: benefits of distributed development using cloud-base infrastructure 15

Figure 3 Iterative Incremental Model .. 28

Figure 4 System Use Case Model .. 51

Figure 5 System Activity Diagram .. 55

Figure 6 System Package Diagram .. 56

Figure 7 Project Handlers Class Diagram ... 57

Figure 8 Authentication Class Diagram ... 58

Figure 9 Util Class Model.. 59

Figure 10 Docker Server Class Model .. 59

Figure 11 git2 Class Model ... 60

Figure 12 Util Class Model ... 61

Figure 13 Login Page... 63

Figure 14 Sign up... 64

Figure 15 invite .. 65

Figure 16 user logged in .. 65

Figure 17 add a new project .. 66

Figure 18 project page ... 66

Figure 19 home page ... 67

Figure 20 project home page ... 67

Figure 21 product backlog view .. 68

Figure 22 view sprints ... 68

Figure 23 sprint added ... 69

Figure 24 sprint loaded .. 69

Figure 25 task created .. 70

Figure 26 view tasks .. 70

Figure 27 update task ... 71

Figure 28 source tree is loading ... 71

Figure 29 project source tree ... 72

Figure 30 view project commits .. 72

Figure 31 view code differences between commits .. 73

Figure 32 view branches .. 73

Figure 33 view tags .. 74

Figure 34 edit and run code ... 74

Figure 35 view project calendar .. 75

Figure 36 drag to add event ... 75

Figure 37 add event ... 76

Figure 38 event added .. 76

Figure 39 event details ... 77

Figure 40 update event... 77

Figure 41 remove event ... 78

XI

TABLE OF FIGURES:

Figure 42 event removed ... 78

Figure 43 video meeting .. 79

Figure 44 Task Addition Test .. 80

Figure 45 Task Drag Test .. 81

Figure 46 Task Edit Test.. 81

Figure 47 Task Deletion Test .. 82

XII

TABLE OF TABLES:

Table 1 Summary of previous studies ... 21

Table 2 System Use Case Description ... 52

Table 3 System deployment Description ... 61

XIII

TABLE OF CONTENTS:

1.1 INTRODUCTION: .. 2

1.2 PROBLEM STATEMENT: .. 4

1.3 AIM: .. 4

1.4 OBJECTIVES: .. 4

1.5 SCOPE: .. 5

1.6 KEY RESEARCH QUESTIONS: ... 5

1.7 STRUCTURE: ... 6

2.1 INTRODUCTION: .. 8

2.2 AGILE METHODOLOGIES: ... 8

2.2.1 TYPE OF AGILE METHOD: .. 9

2.2.1.1 SCRUM: ... 9

2.3 SCRUM PRACTICES: ... 9

Product Backlog: ... 10

Sprints: ... 10

Sprint Planning: ... 10

Sprint Execution: ... 11

Daily Scrum: .. 11

Sprint Review: ... 11

Sprint Retrospective: ... 11

2.4 SCRUM ROLES:... 12

2.4.1 PRODUCT OWNER: ... 12

2.4.2 SCRUM MASTER: .. 13

2.4.3 DEVELOPMENT TEAM: ... 13

2.5 LITERATURE REVIEW: ... 14

2.5.1 DISTRIBUTED DEVELOPMENT: ... 15

2.5.2 DISTRIBUTED AGILE SOFTWARE DEVELOPMENT: 15

2.5.3 SUGGESTIONS FOR LATER STUDIES: .. 19

2.6 CHAPTER SUMMARY: .. 25

3.1 INTRODUCTION: .. 27

3.2 PROCESS MODEL: ... 27

3.2.1 ITERATIVE INCREMENTAL .. 28

3.3 TECHNIQUES: ... 29

3.3.1 HYPER TEXT MARKUP LANGUAGE (HTML): 29

XIV

3.3.2 CASCADING STYLE SHEET (CSS): .. 30

3.3.3 FONT AWESOME: .. 30

3.3.4 JAVASCRIPT: ... 31

3.3.5 JQUERY: .. 31

3.3.6 TWITTER BOOTSTRAP: ... 32

3.3.7 ACE EDITOR: .. 33

3.3.8 CHARTJS: .. 34

3.3.9 AWESOMPLETE: ... 34

3.3.10 TORNADO: .. 34

3.3.11 PYCRYPTO: ... 35

3.3.12 SELENIUM: .. 36

3.3.13 GIT: ... 36

3.3.14 LIBGIT2 AND PYGIT2: .. 37

3.3.15 REDIS: .. 37

3.3.16 REDIS-PY: .. 38

3.3.17 POSTGRESQL:... 38

3.3.18 PEEWEE: .. 39

3.3.19 NGINX: ... 39

3.3.20 DOCKER: ... 40

3.3.21 SHELL IN A BOX: ... 41

3.3.22 DATATABLES: .. 42

3.3.23 TOASTR: .. 42

3.3.24 UML: ... 42

3.3.25 WEBRTC: ... 43

3.3.26 UBUNTU: ... 44

3.4 SUMMARY: ... 44

4.1 INTRODUCTION: .. 46

4.2 ANALYSIS: .. 46

4.3 REQUIREMENT GATHERING TECHNIQUES: 48

4.4 REQUIREMENTS: ... 49

4.4.1 FUNCTIONAL REQUIREMENTS: .. 49

4.4.2 NON-FUNCTIONAL REQUIREMENTS: .. 50

4.5 SYSTEM MODELS: ... 51

4.5.1 USE CASE .. 51

4.5.2 ACTIVITY DIAGRAM ... 53

XV

4.5.3 CLASS DIAGRAM .. 56

4.5.4 DEPLOYMENT DIAGRAM ... 61

5.1 INTRODUCTION: .. 63

5.2 IMPLEMENTATION STEPS: .. 63

5.3 HOW SYSTEM WORK: .. 63

5.4 TESTING: ... 80

6.1 INTRODUCTION: .. 84

6.2 RESULTS: ... 84

6.3 OBSTACLES: ... 85

6.4 RECOMMENDATIONS: ... 86

6.5 CONCLUSION ... 87

REFERENCES: ... 89

6.6 APPENDIX I: .. 96

CHAPTER ONE

INTRODUCTION

2

1.1 INTRODUCTION:

 There have been many early attempts to improve software quality focused on

better methods of defining, detailing and dealing with Software Requirements. Most

of these methods were iterative and incremental, these methods were able to change,

bend and adapt to requirement changes which gave them an agile form and resilience

to modification. These methods were called agile methods.

 These methods trace back to 1975 and were introduced as Adaptive Software

Development Process, and has evolved through time to achieve the flexibility that

Agile Methodologies have achieved these methodologies focused on a different

aspect of development than the usual water-fall heavy methods; such as Individuals

and Interactions over process and tools, a working software rather than a

Comprehensive documentation, heavy customer collaboration over contract

negotiation and most importantly the ability to respond to change rather than

following a strict plan [1].

Agile Software Development (ASD) has become a very popular stand for a

lot of the software industry. In a lot of cases it causes more productivity and increases

quality which results in higher stakeholder satisfaction also it heavily decreases Time

to Market (TTM) [1] [2] [3].

ASD achieves all of the above by changing the principles of the conventional

software requirement making it a lot more tolerant to change. The principles in Agile

are more close & personal than formal & strict such as daily cooperation between

clients and developers and focusing on face to face communication. All the other

principles have the same idea in mind when it comes to team management and

software delivery

 ASD has gained much attention in the past couple of years, specially in the

Software Engineering community, this is due to its resilience and ability to main

software quality, Some of the most famous Agile Development Methods (ADM)

are: Extreme Programming (XP), Scrum, Dynamic System Development Method

(DSDM), all of the Crystal Family methods and Feature Driven Development

(FDD). These methodologies all differ in their implementation of the ASD concepts

but at the heart of them all the core values still remain.

3

 Scrum is one of the most popular ADM as it holds true to the core values of

ASD, it also adds it's own flavor to them by introducing things such as Product

Backlog and Sprint Backlog and one of it's most important features is it's burn down

chart which aids in calculating TTM, also it separates roles into 3 mains roles which

are the Product Owner, The Scrum Master and The Developer. Also it has the ability

to support distribution because of it's characteristics.

Distributed Software Development (DSD) enables teams to be in various

locations operating remotely from each other, making up a network of sub teams, the

teams could be from the same organization or a part of an outsource collaboration.

This leads to problems in communication such as the in-ability to meet face to face

relying on technology to facilitate coordination and communication.

Distributed Agile Development (DAD) has become a focus point for both

industry and academia as Global Software Development (GSD) is becoming more

mainstream than ever. However, agile development methodologies have always been

designed for collocated teams making them harder to apply in DAD.

In the recent years, geographic distribution of development teams has been

very common, enterprises tend to take advantage of skilled developer all of the world,

and the main objective is to optimize resources to develop high quality software.

Software Factories are therefore organizational structures which automate parts of

software development by imitating those industrial processes that were originally

linked to more traditional sectors such as those of the automobile and aviation

industries, promoting re-usability of knowledge, architecture and components.

Scrum is commonly co-located teams working together to achieve their

assigned tasks, so why is it capable of distribution?

Scrum has very adequate management in its practice and it's has a high level

of co-ordination throughout team members, its ability to manage complexity excels

it also it's scalability factor from single processes to entire projects make it a great

candidate.

4

1.2 PROBLEM STATEMENT:

Enterprises have a lot of resources available and multiple teams available for

the development of the software, the utilization of these resources is a big benefit for

the company, having developers work round the clock to deliver software faster, but

the Scrum methodology requires heavy synchronization and high project visibility

for it to be accomplished and to achieve its task, problems arise when a bigger team

needs to achieve those requirements and those problems become more significant

when Scrum is attempted to be applied to distributed teams. The realization of the

above requirements become a lot harder and difficulty faces the process completion.

Some of the many hardships form in communication between teams where

they aren't following the same timezone and have problems co-ordinating, such as its

night in one country and day in the other. Another problem is being able to view the

code and having high visibility of the project's progress.

1.3 AIM:

Applying Agile practices to achieve higher customer satisfaction while

utilizing enterprise’s global resource in the process via a platform that enables

dispersed teams to function at a higher. The platform will aim to improve

communication between teams and allow them to retain the core values of agile

development even with distributed teams, also it will enable them to share the code

for rapid development, while providing tools to easily develop applications, task

management is also one of the many important features that scrum development

requires and the platform provides as one of its services.

1.4 OBJECTIVES:

The major objectives for this research are:

 Management system.

 Version control system.

 Integrated development environment.

 Communication system.

5

 Effective control.

 Increase overall productivity.

 Cost savings.

 Access to large multi skilled workforces.

 Reduced time to market.

 Proximity to market and customer.

 Innovation and shared best practice.

 Resource allocation.

 Improved task modularization.

 Reduced coordination cost.

 Increased team autonomy.

 Formal record of communication.

 Improved documentation.

 Continuous integration

 Clearly defined processes.

 Code sharing.

1.5 SCOPE:

A management system for organizing and managing projects from things as

simple as task assignment reaching up to sprint scope and entire project visibility,

also including an interface with a popular version control system to make sure no

piece of code is lost and regression in the project is easily done in addition to shared

code and an IDE to develop with a specialized server running the code to take stress

of developers machines, not to forget means of communication between team

members, all these facilities are to offer any assistance a single platform could help

a development team.

1.6 KEY RESEARCH QUESTIONS:

How can manage all tasks in Distributed team?

How can integrated development environment?

How can manage Communication in Distributed team?

6

1.7 STRUCTURE:

This is research is divided into six chapters include:

 Chapter 2: describes agile methods (specifically scrum) and distributed agile

development.

 Chapter 3: describes tools that used during analysis and implementation

 Chapter 4: describes the analysis and design.

 Chapter 5: describes the implementation and testing of the platform.

 Chapter 6: Conclusions and Recommendations.

CHAPTER TWO

LITERATURE REVIEW

8

2.1 INTRODUCTION:

Interest in Agile Development Methodologies (ADM) has increased over the

past few years, for numerous reasons such as higher customer satisfaction which has

made it a leading methodology recently. Agile methodologies have been developed

to overcome the limits and problems with the traditional software developments

approaches, this for it to be adopted as standard in many leading companies.

Agile software development has gained acceptance in the mainstream

software development community. Many surveys has shown that agile teams often

are more successful than traditional ones [1] [4] [3].

Several other studies demonstrated 60% increase in productivity, quality and

improved stakeholder satisfaction [3] [2], 40% faster time-to-market and 60% and

40% reduction in pre/post-release defect rates compared to the industry average [2].

2.2 AGILE METHODOLOGIES:

There are a large number of software development methods that have been

introduced to become a part of the ADM umbrella. These methodologies include,

Extreme Programming (XP) [5], Scrum software development [6], Driving Strategy

Delivering More (DSDM) [7], Fetch Driven Development (FDD) [8], Crystal Family

[8] and many other well-known methods.

 A survey [2]has been conducted, its information was collected from 91

countries it shows that the most popular methods are Scrum (58%), XP (4%), and

Scrum/XP Hybrid (17%). The 37% of respondents worked in distributed agile

environments [2].

 Here we will discuss the most commonly used agile methodology (scrum)

because there are many papers and studies show that the team can be distributed; also

we show that it's more popular than the other agile methods.

9

There are numerous agile development methods introduced and actually used in

software in the industry, these methods include [8]:

 Adaptive Software Development.

 Agile Modeling.

 Crystal Family of Methodologies.

 Dynamic System Development Method.

 Extreme Programming [2] [5].

 Feature driven Development.

 Pragmatic Programming.

 Scrum [2] [6].

2.2.1 TYPE OF AGILE METHOD:

In this section, the researchers attempts to discuss agile methodology available

and used in software industry. The most popular agile methods is: Scrum [6] [9] [10]

[11] [12] [6] [13] [14].

2.2.1.1 SCRUM:

The most popular of agile methodologies Scrum, it is a frame work for

organizing and managing work. The Scrum framework is based on a set of values,

principles, and practices that provide the foundation to which your organization will

add its unique implementation of relevant engineering practices and your specific

approaches for realizing the Scrum practices [10].Scrum Roles: Scrum development

efforts consist of one or more Scrum teams, each made up of three Scrum roles:

product owner, Scrum Master, and the development team [6] [9] [10] [12] [9] [13].

2.3 SCRUM PRACTICES:

Scrum defines three main practices to be followed in the development process.

Figure 1.illustrates Scrum Practices.

10

Product Backlog:

 It's an order list came from product owner with integration of input from

scrum team and the other stakeholder, it contains features required to satisfy the

product owner requirements and it use to manage and control the team work. And it

also can contains new features, changes to existing features, defects needing repair,

technical improvements, and so on [9] [10] [11] [12] [13].

Figure 1 Scrum Practices [10]

Sprints:

 Scrum team are working in an iterative manner for up to a month per iteration

the iteration called Sprint , every sprint is done a function or component of product

should be completed and my deliver [15]. Every sprint has a fixed start and end date

and should have the same duration [6] [9] [10] [12] [13] [14].

Sprint Planning:

 There is meeting held with the development team, management, and the

Product Owner. To determine which the most important feature or items to produce

in the next sprint is called sprint planning Meeting [10] [12] [15] [6] [14] [13].

11

Sprint Execution:

 Once the Scrum team finishes sprint planning and select the next features to

implements the development team Under the leadership of scrum master Prepare all

the necessary requirements to get the selected feature done, where “done” means

there is a high degree of confidence that all of the work necessary for producing

good-quality features has been completed [10] [12] [6] [13] [14].

Daily Scrum:

 This meeting is also called stand up meeting , and it hold every day for 15

minutes , and every team member should answer the underline three questions:

 What have you done since the last meeting?

 What will you do between now and the next meeting?

 What got in the way of doing your work?

To achieve the progress of the project and the points that have been accessed [10]

[11] [9] [15].

Sprint Review:

 when completing sprint, a sprint review takes place to review progress,

display features to the customer, management, users and the Product Owner and

review the project from a technical perspective [10] [6] [14] [15].

Sprint Retrospective:

 After sprint review and before the next sprint planning the focus is on the

continuous process improvement necessary to help a good Scrum team become great.

At the end of a sprint retrospective the Scrum team should have identified and

committed to a practical number of process improvement actions that will be

undertaken by the Scrum team in the next sprint [10] [15].

let's go to the diagram and summarize it by starting on the left side Through a

clockwise direction ,on the first the product owner has a clear vision of what he want

to create, then group the stakeholder needs and break down into a set of features and

collect , prioritized them in a list called product backlog.

12

 the first sprint start by selecting the most important feature by the product

owner then holding the sprint planning meeting, after that the sprint execution is start

(the development during the work), and the sprint ends with sprint review and sprint

retrospective [10] [15] [12] [6] [13].

To acquire confidence that the development team has made a reasonable

commitment, the team members create a second backlog during sprint planning,

called the sprint backlog. The sprint backlog describes, through a set of detailed

tasks, how the team plans to design, build, integrate, and test the selected subset of

features from the product backlog during that particular sprint [10] [12] [6] [13].

Next is sprint execution, where the development team performs the tasks

necessary to realize the selected features. Each day during sprint execution, the team

members help manage the flow of work by conducting a synchronization, inspection,

and adaptive planning activity known as the daily scrum. At the end of sprint

execution the team has produced a potentially shippable product increment that

represents some, but not all, of the product owner’s vision [10] [12] [9] [13].

2.4 SCRUM ROLES:

2.4.1 PRODUCT OWNER:

The product owner is an stakeholder who is responsible for deciding which

features and functionality to build and the order to build them [10] [12] [9] [13].

he/she must give a clear view of all the participants in the team for the goal

that the team wants to reach , so he/she is responsible from the team's success in

reaching the target, which is the designated product or solution appointed [11] [10].

The team rapidly builds what the product owner wants , the product owner

actively collaborates with the Scrum Master and development team and must be

available to answer the development team questions [10] [11] [12].

13

2.4.2 SCRUM MASTER:

 It serves as a coach he is helping everyone to understand and participate in the

values, principles and practices of Scrum and provide a leadership process for the

team [10] [12] [9] [13] [10] [11] [6] [12] [6] [13].

The Scrum Master [9] helps everyone involved understand and embrace the

Scrum values, principles, and practices. She acts as a coach, providing process

leadership and helping the Scrum team and the rest of the organization develop their

own high performance [10] [11] [12].

As a facilitator, Scrum Master is helping the team by solving the problems

and remove impediments that facing the team and all that stands between the good

productivity of the team he/she is also responsible for protecting the team from

outside interference and takes a leadership role in removing impediments that inhibit

team productivity (when the individuals themselves cannot reasonably resolve them).

 However scrum Master does not have the authority to extend its control over

the team, so his role is not the same as role of traditional team manager or

development manager, scrum Master is not a manager, but he/she is a leader [10]

[11] [12] [6].

2.4.3 DEVELOPMENT TEAM:

There are many different job titles when using traditional development

approach, such as architect, programmer, tester, database administrator, UI designer,

and so on. Scrum defines, cross-functional collection of these types of people who

are responsible for designing, building, and testing the desired product [6] [10] [11]

[12] [6] [13].

The best way to reach the goal is to make each team member doing what

he/she loves so scrum team is self- organizes. The development team is typically five

to nine people in size; its members must collectively have all of the skills needed to

produce good quality, working software [6] [9] [10] [11] [12] [6] [13].

14

Of course ,you can use scrum in large projects that require more than 9 people

in the development team, so you can use more than scrum called scrum of scrum

each with e development team of nine or fewer people [10] [11] [12].

In traditional development approach the complete of phase or component by

testing and delivery but scrum completes the sprint by performing two activities

“inspect and adapt ". The first is called sprint review that means the stakeholder and

scrum team inspect the solution has been built, the second is sprint retrospective

which it related by continuous integration and improve the team skills. The outcome

of these activities may include as part of the team's development process [10] [11]

[12].

By the last two activities we complete scrum cycle and then scrum life cycle

is repeats by beginning by determining the next most important feature by the product

owner and do the same steps for it , after the completion of many sprints the product

owner's vision will be realized and the solution can be released [10].

2.5 LITERATURE REVIEW:

With the increasing use of distributed software development, there has been

growing interest in the application of different methods of software development.

The software development industry is investigating the use of Agile software

development methods with the distributed development instead of the traditional

heavyweight methods in order to improve the development efficiency and

quality [16].

Implementing agile in a distributed environment has been frowned upon

because of the assumption that agile is not suited for co-located teams, mainly the

problem arises from the fact that co-located teams have low level of communications

but on the field another fact is the reality show by a study In the 2010 State of Agile

survey conducted by, more than half the survey respondents said they are currently

using Agile with both co-located and distributed teams, or planning to do so in the

future.

15

2.5.1 DISTRIBUTED DEVELOPMENT:

The term Distributed Development was defined by Katiuscia Mannaro as “co-

operation between several teams located at different sites. This includes large

software companies developing a single product out of many parts where each part

could be built at a separate location” [8].

Distributed development methodology became very popular, as it is results in

cost saving, hiring highly qualified professionals at low costs [17] [18].

The increasingly adopted distributed development approach is cloud-base

infrastructure.

2.5.2 DISTRIBUTED AGILE SOFTWARE DEVELOPMENT:

Venkatesh defined Distributed Agile Development as: “Distributed Agile, as

the name implies, is a model in which projects execute an Agile Methodology with

teams that are distributed across multiple geographies” [19].

2.5.2.1 BENEFITS:

Distributed development produces many benefits to both development team,

and software organization. Here we describe the general benefits that can be

accomplished using distributed approach.

Figure 2: benefits of distributed development using cloud-base infrastructure [14]

16

 Rapid development:

A benefit that the teams gained while in the project was the ability to share

cloud based tools over the distributed teams. Immediately after gaining access

into the cloud, the teams were ready to contribute. A participant said “As we did

not have to replicate the technical environment, we were able to start development

right after the required access was available to the remote infrastructure.”

 Continuous integration:

The centrality of cloud based software development has added the benefit

of continuous integration. Cloud based software development has a unique ability

which allows the developers to commit deliveries more frequently, even if other

teams or units are not in control of the environment, a participant commended

“We were directly accessing the remote server where the product code integration

happened. We just committed all codes to the main repository.”

 Cost savings:

Because of the high access speed to development resources and it requiring

no installation pre-configured tools on local machines, major hardware and

software costs have been shaved.

 Code sharing:

 The cloud-based platform allowed code sharing across multiple teams.

Although concurrent distributed programming tools were not used, the Spanish

team was able to share the codebase with the Helsinki team, which had the

necessary access controls.

 Faster ramp-up:

 According to the team although several issues were encountered in the

coordination and organization at the initial stages of the project, progress

occurred in a more rapid pace after that. Once the environment was completely

understood, the cloud based resources became very accessible and useful in

manners of speeding up the software development. A participant stated said “It

took two weeks to really settle on a shared understanding, but then work started,

17

and they (Spanish team) started to see that we could contribute quite a lot…We

started to get more work then.”

2.5.2.2 POTENTIAL RISKS:

Nilay Oza, and others [14] identified the potential risks of using cloud

base distributed software development:

 Dependencies:

 In terms of both technical and operational issues, created several challenges

for the teams to work together. Our analysis indicated dependencies on at least

two levels: operational and technical. For example, at times, one team had to wait

for the other to catch up, provide feedback, or take specific actions before the

development could move to the next stage.

One participant said “We had to depend quite a lot on the Spanish team to

get lot of things done—sometimes we went into waiting mode or were just not

able to implement things, as we had to get something done by the other team.”

The Spanish team member had a contradicting comment, however, “I saw them

more like – ‘give me work, I do my work, just my own work’.

They were depending on us for one output, one use case.” One reason

behind this dependency was indicated in the resource imbalance between the

Spanish and Helsinki teams, as described above.

The Helsinki team worked full time for a seven week period, whereas the

Spanish team worked part time for three or four hours a day.

 One participant commented “We simply had more people with a full-time

work commitment at our end. This meant we could do much more than the other

teams thought we could. Probably, some information mismatch happened on how

much work capacity was available at our end.” [17]

Our results also revealed technical dependencies on the codebase as well

as the overall complexity of the product’s technical environment. This was

reflected in the following comment: “There were many applications in the central

codebase with linkages to components, etc.

18

 It was difficult for us to determine the dependencies of these inter-

connected modules, mainly because of the lack of interaction between teams.”

[17]

 Unavailability:

 The new team, which did not have direct control of the cloud-based

platform, were challenged by the lack of accessibility to necessary resources. The

results indicated that the new team had to rely completely on the Spanish team to

gain access to the cloud-specific resources if they were not previously allocated.

The general challenge that we observed was also reflected in some of the

team members’ comments at the Helsinki site: “The remote server is not

controlled by us. If and when we lose access to it (for whatever reason), we have

to contact the Spanish team, and only they can re-establish access for us.”

 Another comment revealed a similar challenge: “It is quite difficult to

continue working when the team loses access to the cloud. Because of the

common codebase and central integration, we have to wait until we are able to

get access.” The teams also experienced increase in uncertainties when the

common cloud-based software was inaccessible.

 One of the Spanish members commented “infrastructures, when fail, they

generate uncertainty. Also, they have created dependency; within these limits,

there was a certain dependency. [17]

For example, one day, Redmine crashed – and it becomes difficult to keep

track on the user histories with the acceptation criteria.” [17]

 Code commitment and integration:

 The study showed that committing code to the proper code repository could

be challenging, particularly if the cloud-based platform was not fully known to

the team. Similarly, integrating code with the overall product required additional

testing on the cloud platform. [17]

19

 Technical debt:

 The study revealed that as multiple teams started to commit changes to the

cloud-based platform, the consequent changes in other linked parts of the

codebase were not visible.

More specifically, it was difficult for the new team to see the evolving

impact of the changes and additions to the codebase on the cloud-based platform.

One of the participants said “We did not have to worry about the platform, as it

was shared by all teams, but because of frequent releases and our lack of

understanding of the overall product (at least initially), we had to leave certain

changes undone although we thought they would be worth implementing.”

He further commented “We got specific errors in the build, and we could

see that there were errors, but when we told them, they said the errors did not

occur at their end”. [17]

 Additional support costs:

 The study also showed that a cloud-based platform in DSD requires

additional managerial and operational support. Although the cloud-based

platform has several benefits, additional overhead should be considered. [17]

2.5.3 SUGGESTIONS FOR LATER STUDIES:

 Mannaro and Katiuscia [8] proposed a collection of solutions that can be

used to reduce communications problems like:

 Teleconference or daily chat:

 The team should have a tool (i.e. webcam) that can be used to make

daily standup meeting.

 Headset and microphone:

 All team members must have a headset and microphone to enable

them to use computer while they are in meeting.

 Use of synchronous meeting tools:

20

 Team can use any tool that provides synchronous communication

feature, for example Microsoft NetMeeting, Skype.

 Daily report:

 They can have a feedback by reporting the work progress daily via

email, either for customer or another team members.

 Use of asynchronous tools:

 It’s essential to have one or more wiki editor in order to manage the

cooperative working.

 Two/Three-monthly meeting:

 If possible, the team must have a meeting every 2-3 months in one

place.

 Agile documentation:

 For reason of disambiguation, all team should receive a copy of

documentation.

 Number of developers:

 It’s recommended that number of developers should range of 10 to 15

members.

 Using of code repositories:

 There are many good version control like Git, CVS, which can manage

code repositories, and provide useful features. Using of these tool can make

development process very easy and maintainable.

 On 13 November 2013, Microsoft announced the release of Visual

Studio Online, a software as a service offering of Visual Studio on Microsoft

Azure platform (known as "Windows Azure" at the time). It includes online

Team Foundation Server (TFS) and build-in rolling release model [1] [4]

[20].

21

Visual Studio Customer’s receives a hosted Git-compatible version

control system, a load-testing service, a telemetry service and an in-browser

code editor codenamed "Monaco" [3] [20]

Visual Studio online provides tools for agile teams such as [2]:

 Drag-and-drop backlog prioritization

 Kanban and task boards

 Sprint planning

 Bug management

 Charting & dashboards

Table 1 Summary of previous studies

STUDY CHALLENGES SUGGESTED SOLUTIONS

A Feature Partitioning

Method For Distributed

Agile

 Communication

efficiency

 Time zone differences

 Lack of trust

 Lack of control

 Formal documentation

 Personal communication

Adopting Agile

Methodologies In

Distributed Software

Development

 Communication

efficiency

 Common vision of the

project

 Time zone differences

 Teleconference or daily chat

 Auricular and microphone:

 Tools for the

asynchronous/synchronous

cooperative work in the long

run

 Daily Report via mails

 Two/Three-Monthly

Meeting

22

STUDY CHALLENGES SUGGESTED SOLUTIONS

 Agile Documentation

 Least possible Number of

Developers

 Project Schedules

 Use of Code Repositories

Benefits Of Global

Software Development

Exploring The

Unexplored

 Communication

efficiency

 Coordination and

control

 Formal documentation

Scrum Practice Mitigation

Of Global Software

Development

Coordination Challenges:

A Distinctive Advantage?

 Time zone differences

 Socio-cultural

distances

 Inconsistent work

practices

 Synchronizing work hours

 Synchronous

communication tool-based

meetings

 Personal communication

Scrum Practices In Global

Software Development: A

Research Framework

 Communication

efficiency

 Coordination and

control

 Time zone differences

 Difficult to convey

vision and strategy

 Socio-cultural

distances

23

STUDY CHALLENGES SUGGESTED SOLUTIONS

Challenges And

Improvements In

Distributed Software

Development: A

Systematic Review

 Group awareness.

 Communication.

 Software

configuration

management.

 Knowledge

management.

 Coordination.

 Project and process

management.

 Process support.

 Risk management.

 Quality and

measurement.

 Establishment of an

efficient communication

mechanism

 Using a version control tool

in order to control

conflictive situations

 Application of maturity

models and agile

methodologies

 Application of MDD

approaches to automate

development tasks

 Systematic use of metrics

tailored to the organization

Identifying Potential

Risks And Benefits Of

Using Cloud In Global

Software Development

 Dependencies.

 Unavailability of

access to the cloud.

 Code commitment

and integration.

 Technical debt.

 Additional support

costs.

Practical Guide To

Distributed Scrum

 Communicating with

distributed team

members

 Time zones and

working hours

differences

 Cultural differences

 Schedule differences

 Keeping language simple

 Giving everyone a chance to

speak

 Using group chat during

meetings

 Providing a translator

 Working with telephones in

a meeting room

24

STUDY CHALLENGES SUGGESTED SOLUTIONS

 Use of reminders

Distributed Scrum: Agile

Project Management With

Outsourced Development

Teams

 Difficult leveraging

available resources,

 Project and process

management:

 Lack of effective

communication

mechanisms.

 Cultural differences

 Incompatible data

formats, schemas, and

standards.

 Team formation

 Scrum meetings

 Product specifications

 Configuration management

 Measuring progress

The Challenges Of

Applying Distributed

Agile

Software Development :

A Systematic Review

 Lack of

communication and

collaboration.

 Lack of management

and control.

 Cultural differences.

 Time zone

differences.

 Lack of agile skills

Successful Distributed

Agile Team Working

Patterns

 Cultural differences

 Sharing context and

priorities.

 Managing customers

new to agile.

 Tooling for

communication.

25

2.6 CHAPTER SUMMARY:

Agile development is one of the most promising methods of software

developments and is assured to remain in the future because of its high quality

product, it’s implementation in co-located/distributed teams has become a must for

all huge industries requires a method to retain the high quality of their products but

also have to utilize their resources which are most commonly distributed globally.

CHAPTER THREE

TOOL AND TECHNIQUE

27

3.1 INTRODUCTION:

Every software product in development requires a methodology, tools and

techniques to secure the success of a project, different projects have different

requirements for development making you choose a set of tools and techniques each

with its own pros and cons, and it’s up to the development team to pick the best

suiting tools, techniques and methodologies, this chapter will discuss the ones used

in for the completion of this research.

As stated the selection of the wrong/bad tools, techniques and methodologies

could cause project failure so the team should carefully choose the methodology that

they are going to use and follow.

3.2 PROCESS MODEL:

In software engineering models and methodologies are used to

orchestrate the development process of a project/product, some of these models

are:

 Agile methodologies [12] [15]

 Waterfall development [12] [18]

 Prototyping [12]

 Incremental development [12] [18]

 Iterative incremental development [12]

 Spiral development [12] [7]

 Rapid application development (RAD) [12] [21]

 For this project an iterative incremental model has been used to make it

more agile and receptive to errors and changes, which is the most suitable

model. Each model has its own advantages and disadvantages, selecting an

appropriate model is critical to the development life cycle as it dictates the work

flow and how you progress.

28

3.2.1 ITERATIVE INCREMENTAL

An iterative and incremental method is a perfect methodology for this project

regarding the development team size and the project size itself, it also very easy to

implement for beginners in agile and supporting the requirements of iterative and

incremental development allowing developers to build the components on different

increments while fine tuning each component in even iteration thus reducing the

chances of error and failure with each revision assuring that all the components are

ready without any hitch.

 The steps of the iterative incremental model is as follows:

 Planning and requirement Gathering.

 Analysis & design.

 Implementation.

 Testing.

 Evaluation.

Figure 3 Iterative Incremental Model

After the basic design was finished each component of the system was taken

and implemented it individually while bearing in mind that it will interface with

multiple systems and that functionality could change at any moment which led

to the creation of very loosely coupled components and elements, there was a

29

focus on providing the main functionality of each component at first then

providing all the additional functions and features while enhancing all the

previous work bit by bit. The tasks were distributed in the following manner,

each team members chose the tasks he would like to accomplish from the

agreed list of features and implemented it, and then other team member(s)

would test the end result of the selected task. Once a component’s main

functionality is ready and usable it gets integrated into the main code. The

project was incrementally built and accomplished in that manner.

3.3 TECHNIQUES:

These techniques were used to develop this research and project, there is an

emphasis on selecting the techniques as their selection dictates the quality of the

project. Selecting wrong or incompatible tools could increase the length of

development, delay the project or even halt the progress. The techniques that are used

in this project are mentioned below.

3.3.1 HYPER TEXT MARKUP LANGUAGE (HTML):

HTML stand for Hyper Text Markup Language, it’s a markup language for

describing web documents (web pages) structure.

Advantages:

 Highly flexible

 It supported on almost every browser

 User friendly

 Open technology

 Consistent efficient

 Easily understandable

 Designed with a feature of interaction between the web pages

 Effective.

 Provides search engine compatible pages

 Easier to maintain and update any site [22].

30

HTML is a must in web design, utilizing HTML to its maximum allows the

creation a friendly well-constructed web page, and also HTML is mixed with other

technologies such as CSS and JS to present the best looking and most fluid web page

possible.

3.3.2 CASCADING STYLE SHEET (CSS):

CSS stands for Cascading Style Sheets, it’s a style sheet language used to

describe the look and feel for HTML documents, and it can also applied to XML

documents.

HTML makes user interface for web document friendly, also it can add some

animation to HTML documents [22].

Advantages:

 it separate the design form the content

 simplifies design changes

 enables you to create different style for different device

 Bandwidth Reduction [23]

 Browser Compatibility [23]

 Viewing Options [23]

CSS allows the design of more elegant web pages for users, making the site

attractive towards visitors, also it helps with the separation of the document and

design enabling quick changes to the design with a lot less lookup time not forgetting

all the additional features it enables for a web page.

3.3.3 FONT AWESOME:

Font Awesome is a CSS/LESS icon toolkit and font created by Dave Grandy

for use with the Twitter Bootstrap framework. It provide scalable, and customizable

(using CSS) vector icons [24] [23]

31

Features

 Large icons collection in one font (more than 585 icons).

 No need for JavaScript.

 Open source under SIL OFL 1.1 license.

 Font Awesome icons are vectors, which mean they're gorgeous on high-

resolution displays.

 Infinite scalability of icons.

3.3.4 JAVASCRIPT:

JavaScript is a dynamic, object-oriented, general purpose open source

scripting language. It was developed at Netscape and used to make web pages

interactive with the end user, it also used for validating the inputs from the user.

Advantages

 it supported on almost every browsers

 it can use for non-web based software

 it execute on the client side

 easy for learn and implements

 fast and extends functionality to web begs

JavaScript is a must for any web developer who wants an easy to use site which

is a main goal, it enables many features such as auto-complete and AJAX requests

such that less load time is required by the user while also increasing the dynamisms

of a web page, utilizing JavaScript enables high dynamic and fluid web pages that

are easy to use.

3.3.5 JQUERY:

jQuery is an open source JavaScript library, it simplifies the interaction

between HTML and JavaScript, which purpose is to make it much easier to use

JavaScript on your web document by writing less JavaScript code [25] [26].

32

Advantages:

 Fast.

 Small.

 Use CSS syntax for selection.

 Well-designed.

 Ease of use.

 Easy to extends with plug-ins.

 Great documentation.

 Cross browsers.

 It has Ajax support.

jQuery enables a lot of extra functionality with less code, enabling the

development of a friendlier and more familiar environment on the platform for easier

use, such as enabling the drag & drop feature with as little effort as possible, giving

more time for work on other features [25] [26].

3.3.6 TWITTER BOOTSTRAP:

Twitter Bootstrap is an open source collection of tools for creating websites

and web applications. It provides HTML and CSS based design templates for

typography, forms, buttons, navigation, grid system, and other interface components

and responsive web design, as well as optional JavaScript extensions. It is licensed

under MIT License (Apache License 2.0 prior to 3.1.0) [27].

Bootstrap is compatible with all major modern browsers including Google

Chrome, Firefox, Internet Explorer, Opera, and Safari browsers. Since version 3.0,

Bootstrap adopted a mobile first design philosophy, emphasizing responsive design

by default [28].

Using Bootstrap gird system developers can easily make a responsive web

page that adjusts its layout dynamically, taking into account the characteristics of the

device used (desktop, tablet, mobile phone) [28].

33

Advantages:

 Easy to use, just needs basic knowledge of HTML and CSS.

 Responsive CSS adjusts to phones, tablets, and desktops.

 In Bootstrap 3, mobile-first styles are part of the core framework.

 Works all modern browsers (Chrome, Firefox, Internet Explorer, Safari,

and Opera) [28]

3.3.7 ACE EDITOR:

Ace is a standalone, high performance web-based code editor written in

Javascript. It can be easily embedded in any web page and JavaScript application.

Ace is developed as the primary editor for Cloud9 IDE and as the successor of the

Mozilla Skywriter project [29].

Ace Editor boasts plenty of features which are represented in the following

points:

 Syntax highlighting.

 Auto indentation.

 An optional command line.

 Work with large documents (Handles hundreds of thousands of lines without

issue).

 Fully customizable key bindings including Vim and Emacs modes.

 Themes (TextMate themes can be imported).

 Search and replace with regular expressions.

 Highlight matching [30]parentheses.

 Toggle between soft tabs and real tabs.

 Displays hidden characters.

 Highlight selected word.

 Multiple cursor selection

34

3.3.8 CHARTJS:

Chartjs is a an easy to use customizable JavaScript library that is used to create

HTML5 charts dynamically it provides multiple type of charts for the user to choose

many chart options such as the shape, size , color, etc.. [31] [32]

Features:

 Easy to use.

 Dynamic.

A display of the user’s burn down chart was required to increase project

visibility, implementing Chartjs gives higher control over the drawn chart.

3.3.9 AWESOMPLETE:

Awesomplete is a very lightweight JavaScript library, it’s used to

autocomplete fields and is high customizable, it also requires no dependencies

reducing the required size and lightening the load on the client side [24].

Features:

 Super lightweight

 No dependencies

 Easy to use

Auto-completion is one of the main facilities that a user might require, this is

introduced in many parts of the software to increase the ease of use of the product.

3.3.10 TORNADO:

Is an open source, python, web framework, developed by FriendFeed in 2009.

Tornado also has a build-in asynchronous non-blocking web server, which result of

the ability to handle tens of thousands of open connections [33].

Features: [30]

 High performance web server.

 Asynchronous request handling

 Lightweight and easy to use.

 Support HTTP/s, Websocket.

 Open source under Apache license 2.0.

35

There are many others common used web frameworks in python such as Django

and flask.

 Flask:

Is based on Werkzeug toolkit and Jinja2 template engine. It was developed in

2010 by Armin Ronacher. Flask intended to be micro and lightweight, so it has

no components for the common functions that already exists in a third-party

libraries. This results in freedom of developers to choose the libraries that fit their

goals [34].

Unlike Tornado, Flask doesn’t support asynchronous non-blocking requests,

which result in a performance variation between the two frameworks, Andrei

Fokau’s comparison [35] clarify this performance variation.

 Django:

It follows the Model-View-Controller (MVC) architecture pattern. Django’s

main goal is to make it easy to build complex database driven websites, so it

provides a large built-in components such as a form validation system, an internal

dispatcher, serialization … etc.

Like Flask, Django is based on WSGI, an API standard for connecting

Python Web frameworks to Web servers. Which is great. However, WSGI is a

synchronous and blocking API.

3.3.11 PYCRYPTO:

Is a Python library that implements most of the cryptographic methods for use

inside your python scripts, it includes most of the standard secure hashing functions

such as SHA and RIPEMD also it includes most of the standard Encryption

Algorithms such as RSA and AES.

Hashing is used in a lot of functions in the server to authenticate the integrity

of requests example, an invite request should not be altered to give users the right to

use join a different project than that which was assigned to it, also using

cryptographic methods assures the privacy of transmitted client data [36].

36

3.3.12 SELENIUM:

Selenium is Software Testing Framework that is used for testing web

application mostly on the client side, it provides many features such as the ability to

record or playback actions on a browser, it also enables users to write testing scripts

in many languages such as java and python. [37] [38]

Features:

 Multi-browser support

 Multi-language support (python, c#, etc...)

 Client side recorder

 Open source [Apache License 2.0]

Selenium has many uses it could be used for regression testing or any type of

test, it has the ability to automate the web browser to act like a user without injecting

any scripts, such as click or send keys to an element, this gives it the ability to provide

accurate tests towards the client.

Selenium is one of the best open source testing tools maintained online it’s easy

to learn & use, it is used to create basic and advance tests that might encounter end

users, the ability to write the testing script once and running it numerous times

dramatically reduces the time and effort that is used to test out the client side [37]

[38].

3.3.13 GIT:

Is an open source distributed version control system (DVCS) designed to

handle everything from small to very large projects with speed and efficiency. Git

was initially designed and developed by Linus Torvalds for Linux kernel

development in 2005, and has since become one of the most widely adopted version

control system for software development [30] [30].

Git gained a good popularity between version control systems, Eclipse

Community Survey in 2014 shows that Git has gained total of 33.3% popularity

between developers which means it has surpassed other leading VCS such as

Subversion, the previous top VCS and Mercurial another popular VSC [37] [38].

37

Features:

 Open source under both GNU GPL v2, and GNU LGPL 2.1.

 Distributed, with centralized pattern support.

 Strong support for non-linear development.

 Compatibility with existing systems/protocols.

 Efficient handling of large projects.

 Cryptographic authentication of history.

3.3.14 LIBGIT2 AND PYGIT2:

Libgit2 Is a portable, pure C implementation of the Git core methods provided

as a re-entrant linkable library with a solid API, allowing you to write custom Git

applications in any language with bindings while maintaining the speed of the native

library [39].

Pygit2 is a python binding for libgit2 to enable developers who use python to

use libgit2 easily. [25]

3.3.15 REDIS:

Redis is a NoSQL open source key-value storage software that is used to store

and cache key-values with optional durability, it is also referred as a data structure

server because it can store multiple types of keys it supports many languages ranging

from C to Perl and JavaScript [25]

Features:

 Speed.

 Persistence Toggle.

 Support for data structure.

 Hot Backup.

 Various Language Support.

What makes it special is its ability to perform thousands of request in seconds

making it faster than normal SQL queries in returning requested values, adding to

Redis’s speed is its ability to skip writing changes to disk using volatile memory if

38

opted to heavily decreasing the read and write speed per request, also a main factor

in its widespread is the easiness of its scalability [25].

Redis was chosen because there is a requirement for large space of non-

persistent data that can be turned into persistent data when required to be facilitated

for storing notifications and also the status of running virtual machine, a need to keep

taps on what virtual machine is running and its options is required to give higher

visibility and increase control over them [25].

3.3.16 REDIS-PY:

Redis-py is a library which enables python to communicate with a Redis

Server, this tool provides python the ability to use the server without reducing the

speed that is provided by implementing Redis by using a special parser developed by

the creators of Redis [40] [34]. [25][26]

3.3.17 POSTGRESQL:

PostgreSQL is an object-relational database management system (ORDBMS)

based on POSTGRES developed at the University of California at Berkeley

Computer Science Department.

Advantages:

 Most of SQL standards supported by Postgres.

 It offers many of the advanced features like complex queries , foreign

keys, triggers, updatable views, transactional integrity, multi-version

concurrency control

 Users can add new data-types , functions and operators to PostgreSQL

 It available for multiple platforms [39].

PostgreSQL is supported by a large community enabling software developers

to easily handle any faults and errors, also it supports concurrency also while

maintaining good performance. Also it’s widely supported by community based APIs

for programming languages.

39

3.3.18 PEEWEE:

Peewee is a simple open source ORM (Object Relational Mapping) written in

python with built-in support for SQLite, MySQL and PostgreSQL [33] , it focuses

on minimalism where the API is simple and the library is easy to use and understand

[33].

Advantages:

 A lightweight implementation; making it easy to integrate with any web

framework.

 A Django like API; making it easy-to-use.

There is another python ORM called SQLAlchemy it is an open source SQL

toolkit and ORM for Python, it’s characterized by flexible design that make it simple

to write complex queries and use Enterprise-level APIs which in turn make code

more adaptable, But it has heavyweight API leading to a long learning curve which

made the choice for peewee obvious instead of it.

3.3.19 NGINX:

Nginx (pronounced "engine x") is a web server and a reverse proxy server for

HTTP, HTTPS, SMTP, POP3, and IMAP protocols, as well as a load balancer and

an HTTP cache. It provides high concurrency, performance and low memory usage.

It was created by Igor Sysoev in 2002 and released under the terms of a BSD-like

license [41].

It can ran on UNIX, Linux, BSD variants, Mac OS X, Solaris, AIX, HP-UX,

and Microsoft Windows. It can be deployed to serve dynamic HTTP content on the

network using FastCGI, SCGI handlers for scripts, WSGI application servers or

Phusion Passenger module, and it can serve as a software load balancer [26].

It uses an asynchronous event-driven approach to handling requests, instead

of the Apache HTTP Server model that defaults to a threaded or process-oriented

approach, where the Event MPM is required for asynchronous processing. Nginx's

40

modular event-driven architecture can provide more predictable performance under

high loads [26].

Features:

 Ability to handle more than 10,000 simultaneous connections with a low

memory footprint (~2.5 MB per 10k inactive HTTP keep-alive connections).

 Handling of static files, index files, and auto-indexing.

 Reverse proxy with caching.

 Load balancing with in-band health checks.

 Fault tolerance.

 TLS/SSL with SNI and OCSP stapling support, via OpenSSL.

 FastCGI, SCGI, uWSGI support with caching.

 Name- and IP address-based virtual servers.

 IPv6 compatible.

 WebSockets and HTTP/1.1 Upgrade (101 Switching Protocols).

 Web page access authentication.

 Gzip compression and decompression.

 URL rewriting.

 Custom logging with on-the-fly gzip compression.

 Concurrent connection limiting.

 Request processing rate limiting.

 Bandwidth throttling.

 Server Side Includes.

 IP address-based geolocation.

 User tracking.

 WebDAV.

 XSLT data processing.

3.3.20 DOCKER:

Docker is an open source platform that allows building and running

applications inside of what is called a software container, it uses resource isolation

that is provided by the Linux Kernel to enable each container to run independently

41

but with the added overhead of starting and maintaining separate virtual machines

[42] [43].

Features:

 Easy application deployment.

 Less resource usage.

 Improved performance compared to running in a hypervisor-based VM.

 Open Source [Apache License 2.0].

Docker is used to deploy apps without worrying about the environment,

dependencies or conflict. It allows containers to be maintained and run in a

virtualized environment to meet its every needs. Docker is required to build and run

Client apps in dedicated servers in a customized sandbox that provides all the

requirements of the applications while also aiding in security such as no client has

more access than it’s supposed to, this includes stealing other running app’s

data/records or infecting the host server.

3.3.21 SHELL IN A BOX:

SIAB is a free open source Ajax web terminal emulator that implements a web

server that can export arbitrary command line tools to a web based terminal emulator.

This emulator is accessible to any JavaScript and CSS enabled web browser and does

not require any additional browser plug-ins [44].

Shell in a box is an open source web terminal emulator that uses Ajax to

implement a web server that enables the export of arbitrary command lines to a web

based terminal emulator. This emulator just requires JavaScript and CSS to be

enabled for it to work, no additional requirements exist [44].

It was developed by Markus Gutschke, it uses Ajax to provide a look and feel

of natively run shell but on a web browser [44].

Features:

 Simple.

 Useful tool to emulate a remote system’s shell from anywhere in your

network.

 Just needs JavaScript and CSS enabled browser.

42

 Shell in A Box was embedded on the IDE to provide direct access to the

running VMs and give full control to users [44].

3.3.22 DATATABLES:

DataTables is a free open source JQuery plugin which is highly flexible built

on the bases of progressive enhancement and give the ability for advanced interaction

and control over html tables [45].

Features:

 Supports almost any data source.

 Easily theme-able.

 Wide variety of extensions i.e. editor, table tools, fixed columns and more.

 Extensive options and a beautiful, expressive API.

 Fully internationalization support.

 Professional quality: backed by a suite of 2900+ unit tests.

It enables the software to provide a very easy to use product backlog for the

product owner [45].

3.3.23 TOASTR:

Taostr is a JavaScript library for non-blocking notifications. It includes a

JQuery Dependency with the goal of create a simple library that can be customized

to the developers preference [46]

Features:

 Small.

 Easy to use.

 Expendable.

Gives a fast way to notify users of system interactions [46]

3.3.24 UML:

UML stands for Unified Modeling language it’s a general purpose modeling

language for software development that intends to provide a standard to visualizing

system design.

UML is used to clarify the system for the development team and as a source

to return to when there any problems in understanding the overall system design. [47]

43

3.3.25 WEBRTC:

WebRTC is a an API definition drafted by the World Wide Web Consortium

(W3C) that supports browser-to-browser applications for voice calling, video chat,

and P2P file sharing without the need of either internal or external plugins. The

project's goal is to enable rich, high quality, RTC applications to be developed for

the browser, mobile platforms, and IoT device, and allow them all to communicate

via a common set of protocols. [48]

Features:

 Ease of use:

 Real-time communication is supported without the need for

additional applications or plug-ins.

 Security:

 WebRTC enforces the usage of encryption for both the media and the

signaling.

 Cost savings.

 Rich communication:

 Enhance the communication to users and between employers with

video and messaging without the need for special applications and servers.

 Un-interrupted communication.

 Mobile Telephony:

 By relying on WebRTC technology, service providers can enable

users to access their VoIP service while on the go without specialized

applications.

 Compatibility:

 WebRTC is supported in all major modern browsers, including

Microsoft Edge, Google Chrome, Mozilla Firefox, and Opera. However as of

September 2015 Internet Explorer and Safari still lack the native support of

WebRTC.

44

 The protocol is used to enable rich high quality video meeting between

project members, with the lowest possible latency, because it has Peer-to-Peer

architecture.

3.3.26 UBUNTU:

 Is a Linux operating and distribution that is widely spread between developers

and users, it’s very well known for its stability and has made a name for itself in

between all the other Linux distribution for what it offers. [49]

Features:

 Easy to use

 High control over OS

 Includes a lot of software packages

 High Community Support

 Tight Security

3.4 SUMMARY:

The methodology tools and techniques are an important factor in a project’s

success there has been an emphasis to try and handpick the best tools and

methodologies that both suite the developers and the project at the same time, a lot

of consideration has went into selecting everything such as Nginx’s ability to

increase Tornado’s request handling and speed by folds rather than Tornado alone

running as a server attempting to do such by its own, not to forget choosing and

configuring Git because of its ability as an outstanding VCS while also paying

attention to its increased popularity over other VCS.

There has been a massive to improve the software by not only going for

functionality, a lot of code has been written and JavaScript libraries were searched

for thoroughly to make the project a lot friendlier and less error prone, such as

including auto-complete features, charts and draggable UI all in hopes of enhancing

user experience.

All the tools and methodologies were carefully selected to increase the

productivity of the system and improving the user experience in the platform.

CHAPTER FOUR

ANALYSIS & DESIGN

 46

4.1 INTRODUCTION:

 The Analysis phase is a crucial phase of the project any minor mistake in this

part will have massive ramifications over the project, delaying or halting progress or

in some extreme cases the project could be scrapped. This phase should be completed

with maximum care as possible as it introduces the problems, requirements and goals

of this project, its outputs are used in the product’s design. The design is also very

important as good design could reduce development time, resource usage and

increase the overall performance of the end product and the team.

4.2 ANALYSIS:

 The platform is supposed to tackle the issues described by the developers, the

system has been divided into separate modules each serving a certain functionality

that was required.

The system was divided into five main modules which are: IDE, Task and

Project Manager, Communication and event, each to achieve its own goals and

requirements.

 The IDE component includes the version control, the code editor and the

virtual environment which the code will be executed on. The developers provided

with a method to interact with the environment to install whatever dependencies their

project requires specially if they need to run their code in a specific way, The DevBox

will allow them to do so.

 Our version control will enable developers to have full view of their

repository this also includes viewing all the branches and list of commits not to forget

the team’s progress in this project. It’s basically a one stop shop for everything that’s

required code wise.

 The Task and Project manager is the component that provides full visibility

on all the work that is done or will be done, it includes handling all the assigned

projects, the product backlog and the tasks that are included in the project. The tasks

will increase the visibility of the overall project by displaying the type of tasks

 47

whether it being a certain feature or a bug fix and showing the completion of each

tasks.

The backlog will also allow the product owner to control the product backlog

to support agile development.

 Finally the project management segment will allow handling of the users and

their roles.

 The Communication is mainly the method that team members will

communicate with each other, the focus is video meetings because it’s the best

method to convey information and also a normal chat is enabled to maximize the

communication.

The software provides a video meeting to a total of 9 users which is the

maximum number of a scrum team.

 Our communication is based upon the light weight protocol known as

“WebRTC” providing peer to peer connection with the minimum latency as possible

with direct video feed from each user regardless of their location worldwide.

 Event management, grants project visibility and all the upcoming dates and

events that should be held, it’s a must to assist in project management.

 There are many problems that encounter events such as the difference in time

zones, this is solved by providing event dates and time with the user’s local time zone

to lessen conflict and misestimating the dates.

 There are multiple types of events such as meetings, “To-do” and other. They

are all self-explanatory except for others as it’s a place holder for an uncategorized

type of events, each event will include the data of who created it, when it was created,

when does it start and end and a provided description to familiarize the users with

the event and what its target/goal.

 48

4.3 REQUIREMENT GATHERING

TECHNIQUES:

 Requirement Gathering is a critical phase of the project, it mainly is the

practice of collecting the requirements of the system from its stakeholders, and this

could also be referred as requirement elicitation.

Requirements isn’t just collected from stake holders, merely asking

stakeholders what the requirements are rarely result in complete requirements, a

professional should be able to extract all of the needed requirements from the

possible sources such as stakeholders and domain experts through various methods

such as interviews, observation, etc. This phase is a precursor to The Analysis phase.

 A mix of structured/unstructured Interviews were used to collect requirements

for our project, a team has went and met with individual from several companies that

implemented agile methodologies in some of its projects.

The developers mentioned many of the problems that encountered them in an

agile development environment such as code sharing, frequent build and integration

that required a shared code base and frequent installation of new system

dependencies due to new/changes in stakeholder requirements which caused major

synchronization problems.

The interviews were very fruitful because of the experience of the

stakeholders.

 There were numerous meetings with Developers from Al Zarqaa, EBS and

Banan-IT who gave all the information require to start working on a project of this

nature and introduced all the problems and requirements as mentioned above. The

questions that have been asked are appended to the end of this research.

 49

4.4 REQUIREMENTS:

4.4.1 FUNCTIONAL REQUIREMENTS:

 Project Management:

 The users can create projects and users and have a privileged control

over them.

 Task Management:

 The users shall be able to view, add and edit all the tasks that belong

to a certain project and this component should project enhance project

visibility.

 Better Communication:

 Team members should be able to have a video meetings and chat

using our platform.

 Code Editing:

 The users should be able to view and edit the project code from the

platform.

 VCS:

 The users will have access to all versions of their code via a deployed

VCS on the platform.

 Code Execution:

The users can run their code anywhere anytime they like regardless of their

machine specification.

 Event Management:

 Users should be able to view, add, edit and delete project related

events.

 50

4.4.2 NON-FUNCTIONAL REQUIREMENTS:

 Portability:

The users shall be able to use the platform from anywhere.

 Security:

 Many levels of security were put into mind when designing the

software such as running code will be ran in an isolated sandbox environment

so that the server will not be effected by any malicious code, and no

application will be able to embezzle data and information from another. In the

other hand, the system must has an excellent access management to

company’s projects and customers, which protect user privacy.

 Usability:

 Users should have no trouble using the platform with maximum ease

of use as possible also a very fast learning curve.

 Availability:

 The service is to be available to all users at any time.

 51

4.5 SYSTEM MODELS:

4.5.1 USE CASE

 The Following diagram describes the main functionality of our system

Figure 4 System Use Case Model

 52

Table 2 System Use Case Description

Use Case

Name

Use Case Description

Edit Task The user will be able to add and remove project tasks and

also change the information of existing tasks.

Edit Sprint The user will be able to introduce new sprints into the project

and remove them and change the details of existing sprints.

Edit Events The user will be able to add and remove events and make

changes to their details.

Edit Project

Member

The user will be able to add new project members, remove

old ones and change the roles of existing members.

Edit Project The user will be able to add new projects, delete old ones and

edit most of the project info.

View Project The user will have the ability to view some of the project

information such as the Backlog.

Edit Product

Backlog

The Product owner will be able add, edit and delete the

desired project features

Chat The user will be able to have a text conversation with a

specific set of members (project members).

Attend Meeting The user will have access to a video meeting with other

project members.

Edit Code The Developer will be able to view project files, add new

ones, remove undesired files and edit the files of the project.

Push/Pull Code The Developer can remotely pull/push code into the server

without using the platform via a dedicated Git server.

Run Code

Instance

The Developer will be able to execute the project on a

dedicated remote server

 53

4.5.2 ACTIVITY DIAGRAM

 The following diagram displays all of the activities of the project that are

deduced from the analysis phase and how they will be executed if a user has access

to the components and features, noting that the system will validate if a user has the

right access level to a certain string of activities or not.

 54

 55

Figure 5 System Activity Diagram

 56

4.5.3 CLASS DIAGRAM

 This Diagram describes the entire system and the interaction between

classes.

Figure 6 System Package Diagram

 57

The Handle Class is responsible for receiving, interpreting and handling all

the user requests whether it being a page that is supposed to be rendered or a

functional user requests ex(update task).

Figure 7 Project Handlers Class Diagram

 58

The Auth class’s main focus is to authenticate users and authenticate

unregistered user’s project invites, also an additional functionality is to register new

uninvited users as the code already exists in it.

Figure 8 Authentication Class Diagram

 59

The Utillity class are commonly used functions between classes and some

communication methods.

Figure 9 Util Class Model

The DockerServer class is responsible for instantiating virtual machines

correctly upon request by parsing requests and turning them into linux shell scripts.

Figure 10 Docker Server Class Model

 60

The Git2 class is the class that deals with handling git request such as creating user

repositories, checking them, pulling and pushing them out, all through the use of

python methods for simple usage.

Figure 11 git2 Class Model

 61

4.5.4 DEPLOYMENT DIAGRAM

The following figure describes the physical deployment of the system and it

communicates.

Figure 12 Util Class Model

Table 3 System deployment Description

Artifact Description

app-server.py This is the main application which will run and handle off the

user request

docker-

server.py

This server will facilitate the use of docker throughout TCP

requests

com-server.py Allow users to communicate with each other

user-auth.py Authenticate all requests that are received to git through https

and validates them

git-http-

backend

Runs the Git backend server

CHAPTER FIVE

IMPLEMENTATION

63

5.1 INTRODUCTION:

 This chapter shows the implementation steps of this software and some of

the testing that has been done.

5.2 IMPLEMENTATION STEPS:

There are multiple servers at work for the software to be completely

functional. For the IDE to function.

5.3 HOW SYSTEM WORK:

This is the login screen which is used to login to software

Figure 13 Login Page

64

The sign up Page where the users registers his account in the service

Figure 14 Sign up

65

When a user is invited to a project and he’s not registered in a site, an email

will be sent to him where he can register with a lock on his email and he’ll be directly

in the project group when he logs in.

Figure 15 invite

The home page is the project page, where the user can view all of his project, if the

users wants to logout at any time the button is located above.

Figure 16 user logged in

66

A user can create a project from the project tab by pressing the [+] button in projects,

after that the user will be prompted to enter project details.

Figure 17 add a new project

A user can click on a project to view it and its details, on the right side are the

members of the project, also the user can invite another project member if he has

the right access level by press the [+] in invite Team Member.

 Figure 18 project page

67

These are the recent projects that the user has used, if users don’t want to go and

browse all of their projects, in this tab he can view his most recent projects which

are ordered by last access and have entry to them.

Figure 19 home page

This is a project page when you press on a project, this page will open and

show everything that a user could view such as the backlog, the code and the work

progress.

Figure 20 project home page

68

This is the product backlog tab, the product owner here can create new, delete and

edit backlog items.

Figure 21 product backlog view

The sprint tab is the place where all the task management happens, a user can create

new sprints here if he has the correct access level.

 Figure 22 view sprints

69

When the green [+] is pressed a new sprint will be created for that project.

Figure 23 sprint added

The sprint data appears when a user clicks on a certain sprint, this will display all

the tasks in a sprint and the phases they are in, the user can create a new task by

pressing the [+] button which is placed in the New column.

 Figure 24 sprint loaded

70

Here when a user clicks on new task a new tasks is created with minimal data for

quick addition of tasks which can be edited later

Figure 25 task created

The user can move tasks between windows by just a small drag and drop

action, such as if the user would like to change Task1 from being newly created to

being approved or committed he just needs to drag them into the required columns

Figure 26 view tasks

71

The user can change task details by pressing the edit button, which is located

on the task itself, a prompt will appear to fill in the new data of the edited task then

the user can save the changes or exit without saving.

Figure 27 update task

The Repository tab is the place where you can view the source code from anywhere.

Figure 28 source tree is loading

72

This is a created project tree, where the user can view all the files and folders from

this tab for a quick revision or inspection if needed.

Figure 29 project source tree

This is the commit page, it shows who committed what and when with a certain ID

for referencing or regression if needed and with the message left by the developers.

Figure 30 view project commits

73

This shows the difference between commits when a users clicks on a commit.

Figure 31 view code differences between commits

These are the version control branches you view them from the repo tab.

Figure 32 view branches

74

These are the created repository tags for advanced version control.

Figure 33 view tags

The user can edit and run code from our IDE by prompting us to run a virtual

machine for him.

Figure 34 edit and run code

75

The events tab, here users can create meetings, todos and milestone reminders and

events.

Figure 35 view project calendar

This is the create event modal, here a user can create an event by dragging the type

of event into the date he wants the date created on and assign all the details that are

needed to create an event.

Figure 36 drag to add event

76

Figure 37 add event

After an event is a created the user will get a notification of the operation status.

Figure 38 event added

77

The user can have quick access to the event details by just hovering over a certain

event.

Figure 39 event details

If a user wishes to change event data he’ll be prompted to enter the new event data

in this screen.

Figure 40 update event

78

When the user wants to delete an event all he needs to do is to drag it to the

trashbin.

 Figure 41 remove event

Figure 42 event removed

After a meeting is scheduel, users can enter the chat room and have a video

conversation.

79

Figure 43 video meeting

80

5.4 TESTING:

Testing is a main part of Quality Aussrance of any software, the best method

of testing is automated testing specially with an incremental model such that

regresive tests are easier and no functionality is lost between increments.

There have been plans of a System wide automated test suite, such that all the

functionality of the system will be easliy tested at every change, due to time

constraints only a small section of the system had an actuall automated test.

We have created the four basic tests for the Task management to be automated.

 The first test is used to add tasks and insure that they are inserted correctly.

Figure 44 Task Addition Test

81

The second tests move tasks between columns

Figure 45 Task Drag Test

The third tests edits from of the tasks details

Figure 46 Task Edit Test

82

The Fourth tests is to delete tasks

Figure 47 Task Deletion Test

CHAPTER SIX

RESULTS & RECOMMENDATION

84

6.1 INTRODUCTION:

This chapter discusses the results of the system, recommendations and

obstacles that faced the project.

6.2 RESULTS:
 Ease of project management.

 Higher task management and better task assignment.

 Easier code access and sharing.

 Ability to develop software anywhere.

 Enhanced communication.

 Increased overall visibility.

 Improved resource allocation.

 Increased team autonomy.

 Control over product features.

 Decrease of development cost and required resources.

 Decrease in required effort for project setup.

 Increase in team efficiency.

85

6.3 OBSTACLES:
There were many obstacles in the creation of this project which are listed

below:

 The large scope of the project.

 The amount of required background information and analysis.

 Major delay in providing required resources.

 Difficulty in configuring servers.

86

6.4 RECOMMENDATIONS:

All that we have accomplished is not but a small part of the whole picture, we hope

that developers will continue where we stopped and perfect this project. The project

needs improvement in many aspects, some of the most required features are:

 Wiki page for documentation

 Screen Sharing

 Full Automated tests

 UML design tools

 VC access level to who can push code

 Turning the project into an easy to deploy cloud arch

 The ability to view other members unfinished code

87

6.5 CONCLUSION
 Software isn’t perfect, perfection isn’t something humans can accomplish but

we as developers did our best to provide all the features we could that is required in

a software of this scale, there has been a lot of effort to correctly complete this

project.

The project aimed to ease and increase development of software, full

implementation and perfection of this project would technically make that possible

and our wishes is for this platform to prosper and develop.

REFERENCES

89

REFERENCES:

[1] Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward

Cunningham, Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt,

Ron Jeffries, Jon Kern, Brian Marick, Robert C. Martin, Steve Mellor, Ken

Schwaber, Jeff Sutherland and Dave Thomas, "Manifesto for Agile Software

Development," 8 10 2015. [Online]. Available:

http://www.agilemanifesto.org/. [Accessed 8 10 2015].

[2] A. k. Szo˝ke, "A Feature Partitioning Method for Distributed Agile," in Agile

Processes in Software Engineering and Extreme Programming, Madrid,

Spain, Springer-Verlag Berlin Heidelberg, 2011, pp. 27-42.

[3] S. Ambler, "Survey Says: Agile Works in Practice," Dr. Dobb's Journal ,

2006.

[4] Tore Dybå and Torgeir Dingsøyr, "Empirical studies of agile software

development: A systematic review," Information and Software Technology,

vol. 50 , no. 9-10, pp. 833-859 , 2008.

[5] Kent Beck and Cynthia Andres, Extreme Programming Explained: Embrace

Change, 2 ed., Addison-Wesley Professional, 2004.

[6] Ken Schwaber and Mike Beedle, Agile Software Development with Scrum, 1

ed., Upper Saddle River, NJ, USA: Prentice Hall PTR, 2001.

[7] "Front Page | DSDM CONSORTiUM," [Online]. Available:

http://www.dsdm.org/. [Accessed 7 2015].

[8] Michele Marchesi and Katiuscia Mannaro, Adopting Agile Methodologies in

Distributed Software Development, 2008.

[9] Thomas Stober and Uwe Hansmann, Agile Software Development, Springer-

Verlag Berlin Heidelberg, 2010.

[10] K. S. Rubin, Essential Scrum: A Practical Guide to the Most Popular Agile

Process.

[11] C. G. Cobb, The Project Manager's Guide to Mastering Agile: Principles and

Practices for an Adaptive Approach.

[12] M. Cohn, succeeding with agile software development using scrum.

[13] P. L. Bannerman, E. Hossain and R. Jeffery, "Scrum Practice Mitigation of

Global Software Development Coordination Challenges: A Distinctive

90

Advantage?," HICSS '12 Proceedings of the 45th Hawaii International

Conference on System Sciences, pp. 5309-5318, 2012.

[14] Emam Hossain, Paul L. Bannerman and D. Ross Jeffery, "Scrum Practices in

Global Software Development: A Research Framework," 12th International

Conference, PROFES, pp. 88-102, 2011.

[15] L. Williams, A Surrvey of Agile Development Methodologies.

[16] Miguel Jiménez, Mario Piattini and Aurora Vizcaíno, "Challenges and

improvements in distributed software development: a systematic review,"

Advances in Software Engineering, 2009.

[17] Nilay Oza, Jürgen Münch, Juan Garbajosa, Agustin Yague and Eloy Gonzalez

Ortega, "Identifying Potential Risks and Benefits of Using Cloud in

Distributed Software Development," in Product-Focused Software Process

Improvement, Springer-Verlag Berlin Heidelberg, 2013, pp. 229-239.

[18] *. H. H. O. P. J. Å. a. F. Eoin Ó Conchúir1, "Benefits of Global Software

Development : Exploring the unexplored".

[19] U. Venkatesh, Distributed Agile: DH2A - The Proven Agile Software

Development Approach and Toolkit for Geographically Dispersed Teams,

echnics Publications, LLC, 2011.

[20] R. Jeffries, A. Anderson and C. Hendrickson, Extreme Programming

Installed, Upper Saddle River, NJ: Addison Wesley, 2001.

[21] A. V. B. P. Jeff Sutherland, "Distributed Scrum: Agile Project Management

with Outsourced Development Teams," p. 274a.

[22] wikipedia, "(HTML)-wikipedia," [Online]. Available:

https://en.wikipedia.org/wiki/Bootstrap_%28front-end_framework%29.

[Accessed 25 6 2015].

[23] D. Gandy, "fontawesome.io," [Online]. Available: http://fontawesome.io/.

[24] "Awesomplete: Ultra lightweight, highly customizable, simple autocomplete,

by Lea Verou," [Online]. Available: https://leaverou.github.io/awesomplete/.

[Accessed 6 2015].

[25] "pygit2’s documentation!," [Online]. Available: http://www.pygit2.org/.

[Accessed 6 2015].

[26] "Nginx - Wikipeida," [Online]. Available:

https://en.wikipedia.org/wiki/Nginx. [Accessed 6 2015].

91

[27] "Bootstrap (font-end framework) - Wikipedia," [Online]. Available:

https://en.wikipedia.org/wiki/Bootstrap_%28front-end_framework%29.

[Accessed 6 2015].

[28] "bootstrap-W3S," [Online]. Available:

www.w3schools.com/bootstrap/bootstrap_get_started.asp.

[29] "Ace - The High Performance Code Editor for the Web," [Online]. Available:

http://ace.c9.io. [Accessed 6 2015].

[30] "About - Git," [Online]. Available: http://git-scm.com/about. [Accessed 6

2015].

[31] "Chart.js | Open source HTML5 Charts for your website," [Online].

Available: http://www.chartjs.org/. [Accessed 6 2015].

[32] "nnnick/Chart.js · GitHub," [Online]. Available:

https://github.com/nnnick/Chart.js. [Accessed 6 2015].

[33] "Tornado (web server) - Wikipedia," [Online]. Available:

https://en.wikipedia.org/wiki/Tornado_%28web_server%29. [Accessed 6

2015].

[34] "redis 2.10.3 : Python Package Index," [Online]. Available:

https://pypi.python.org/pypi/redis. [Accessed 6 2015].

[35] "Redis - Wikipedia," [Online]. Available: https://en.wikipedia.org/wiki/Redis.

[Accessed 6 2015].

[36] "pycrypto 2.6.1 : Python Package Index," [Online]. Available:

https://pypi.python.org/pypi/pycrypto. [Accessed 6 2015].

[37] S. -. W. B. Automatio. [Online]. Available: http://www.seleniumhq.org/.

[Accessed 6 2015].

[38] "SeleniumHQ/selenium - GitHub," [Online]. Available:

https://github.com/SeleniumHQ/selenium. [Accessed 6 2015].

[39] "libgit2," [Online]. Available: https://libgit2.github.com/. [Accessed 6 2015].

[40] "Redis," [Online]. Available: http://redis.io. [Accessed 7 2015].

[41] "(Nginx)wikipedia.org," [Online]. Available:

https://en.wikipedia.org/wiki/Nginx.

[42] "What is Docker," [Online]. Available:

https://www.docker.com/whatisdocker. [Accessed 6 2015].

[43] "Docker (software) - Wikipedia," [Online]. Available:

https://en.wikipedia.org/wiki/Docker_(software). [Accessed 6 2015].

92

[44] "google code shellinabox," [Online]. Available:

http://code.google.com/p/shellinabox/ . [Accessed 12 7 2015].

[45] "DataTables | Table plug-in for jQuery," [Online]. Available:

https://www.datatables.net/. [Accessed 6 2015].

[46] "CodeSeven/toastr · GitHub," [Online]. Available:

https://github.com/CodeSeven/toastr. [Accessed 6 2015].

[47] "Unified Modeling Language (UML)," [Online]. Available:

http://www.uml.org/. [Accessed 6 2015].

[48] "web RTC," [Online]. Available: https://en.wikipedia.org/wiki/WebRTC.

[Accessed 2 9 2015].

[49] "Ubuntu Wiki," Canonical, [Online]. Available:

https://en.wikipedia.org/wiki/Ubuntu_(operating_system). [Accessed 10

2015].

[50] D. Wells, "Extreme Programming: A gentle introduction," 10 8 2013.

[Online]. Available: http://www.extremeprogramming.org. [Accessed 12 4

2015].

[51] Giancarlo Succi and Michele Marchesi, "The costs and benefits of pair

programming," in Extreme programming examined , Boston, MA, USA,

Addison-Wesley Longman Publishing Co., Inc., 2001, pp. 223-243 .

[52] Ilenia Fronza, Alberto Sillitti, Giancarlo Succi and Jelena Vlasenko,

"Analysing the Usage of Tools in Pair Programming Sessions," in Agile

Processes in Software Engineering and Extreme Programming, Madrid,

Spain, Springer-Verlag Berlin Heidelberg, 2011, pp. 1-11.

[53] E. Hossain, M. A. Babar and H.-y. Paik, "Using Scrum in Global Software

Development: A Systematic Literature Review," ICGSE '09 Proceedings of

the Fourth IEEE International Conference on Global Software Engineering ,

pp. 175-184, 2009.

[54] T. Dingsøyr, S. Nerur, V. Balijepally and N. B. Moe, "A decade of agile

methodologies," Journal of Systems and Software, vol. 85, no. 6, pp. 1213-

1221 , 2012 .

[55] P Deemer, NKV Hazrati and GBR Benefield, The Distributed Scrum Primer,

2013.

[56] Maria Paasivaara, Sandra Durasiewicz and Casper Lassenius, "Using Scrum

in Distributed Agile Development: A Multiple Case Study," IEEE

International Conference on Global Software Engineering , pp. 195-204,

2009 .

93

[57] Keith Braithwaite and Tim Joyce, "XP expanded: distributed extreme

programming," International conference on Extreme Programming and Agile

Processes in Software Engineering, pp. 180-188, 2005.

[58] Monica Yap, "Implementing Distributed Extreme Programming: A Case

Study," 2010.

[59] Elizabeth Woodward, Steffan Surdek and Matthew Ganis, A Practical Guide

to Distributed Scrum, IBM Press, 2010.

[60] "Git (software) - Wikipedia," [Online]. Available:

https://en.wikipedia.org/wiki/Git_%28software%29. [Accessed 6 2015].

[61] "Bootstrap Get Started," [Online]. Available:

www.w3schools.com/bootstrap/bootstrap_get_started.asp. [Accessed 6 2015].

[62] "Font Awesome - Wikipedia," [Online]. Available:

https://en.wikipedia.org/wiki/Font_Awesome. [Accessed 6 2015].

[63] "Font Awesome The iconic font and CSS toolkit," [Online]. Available:

http://fontawesome.io/. [Accessed 6 2015].

[64] "Ace (editor)," [Online]. Available:

https://en.wikipedia.org/wiki/ACE_%28editor%29. [Accessed 6 2015].

[65] "Flask (web framework)," [Online]. Available:

https://en.wikipedia.org/wiki/Flask_%28web_framework%29. [Accessed 6

2015].

[66] "Performance of Flask, Tornado, GEvent, and their combinations.md ·

GitHub," [Online]. Available: https://gist.github.com/andreif/6088558.

[Accessed 6 2015].

[67] "Django (web framework)," [Online]. Available:

https://en.wikipedia.org/wiki/Django_%28web_framework%29. [Accessed 6

2015].

[68] "Eclipse Community Survey," 2014. [Online]. Available:

https://www.eclipse.org/org/community_survey/SurveySummary_2014-

public.xls. [Accessed 6 2015].

[69] "Selenium (software) - Wikipeida," [Online]. Available:

https://en.wikipedia.org/wiki/Selenium_(software). [Accessed 6 2015].

[70] "LeaVerou/awesomplete · GitHub," [Online]. Available:

https://github.com/LeaVerou/awesomplete. [Accessed 6 2015].

[71] "Welcome to redis-py’s documentation!," [Online]. Available: https://redis-

py.readthedocs.org/en/latest/. [Accessed 6 2015].

94

[72] "peewee — peewee 2.6.3 documentation," [Online]. Available:

https://peewee.readthedocs.org. [Accessed 6 2015].

[73] M. F. SANNER, "PYTHON: A PROGRAMMING LANGUAGE FOR

SOFTWARE," The Scripps Research Institute.

[74] "jQuery," [Online]. Available: http://jquery.com/. [Accessed 6 2015].

[75] "JScripters.com: developing a site with Javascript," [Online]. Available:

http://www.jscripters.com/. [Accessed 6 2015].

[76] "W3Schools Online Web Tutorials," [Online]. Available:

http://www.w3schools.com . [Accessed 6 2015].

[77] "PostgreSQL: About," [Online]. Available: http://www.postgresql.org/about/.

[Accessed 6 2015].

[78] "PostgreSQL - Wikipedia," [Online]. Available:

https://en.wikipedia.org/wiki/PostgreSQL. [Accessed 6 2015].

[79] "shellinabox - Web based AJAX terminal emulator - Google Project

Hosting," [Online]. Available: http://code.google.com/p/shellinabox/.

[Accessed 6 2015].

[80] "Unified Modeling Language - Wikipedia," [Online]. Available:

https://en.wikipedia.org/wiki/Unified_Modeling_Language. [Accessed 6

2015].

[81] l. williams, a survey of agile development methodologies.

[82] "www.pygit2.org," [Online]. Available: http://www.pygit2.org/. [Accessed 23

8 2015].

[83] "Font Awesome eikipedia.org," [Online]. Available:

https://en.wikipedia.org/wiki/Font_Awesome.

[84] "datatables," [Online]. Available: https://www.datatables.net/. [Accessed 3 10

2015].

APPENDICES

96

6.6 APPENDIX I:

Questions:

1. How does the team divide the tasks between them?

2. How the do they assign each the task?

3. Do you prefer to work remotely or not locally? Why?

4. Can the current communication systems i.e. text/video chatting replace the need

for face-to-face meetings?

5. Do you have any problem facing you in the current way?

6. Do you have any improvement you are willing to see in near future?

7. How does the code get shared between the team members?

8. How do you integrate you codes?

9. How do you test the project and many times do you do that per project life cycle?

10. How do you trace and manage the bugs in the project?

11. What IDE do you prefer? Why?

12. Have you ever used a project management tool? if yes then:

a. Do you think it did the required job?

b. How do you evaluate it?

c. What are its pitfalls?

