
1

SUDAN UNIVERSITY OF SCIENCE & TECHNOLOGY 7

FACULTY OF COMPUTER SCIENCE & INFORMATION TECHNOLOGY

QUALITY ASSURANCE OF

INTEGRATED SYSTEM

MAINTENANCE

OCTOBER 2015

THESIS SUMITTED AS A PARTIAL REQUIREMENTS 0F B.Sc. (HONOR) DEGREE IN

SOFTWARE ENGINEERING

2

 بسم الله الرحمن الرحيم

SUDAN UNIVERSITY OF SCIENCE &

TECHNOLOGY

FACULTY OF COMPUTER SCIENCE &

INFORMATION TECHNOLOGY

QUALITY ASSURANCE OF INTEGRATED SYSTEM

MAINTENANCE

OCTOBER 2015

THESIS SUMITTED AS A PARTIAL REQUIREMENTS 0F B.Sc.

(HONOR) DEGREE IN SOFTWARE ENGINEERING

PREPARED BY:

MWADA AZHARY ABDALRAHEEM

TAYSEER BABIKER HMED

ESRA MOHAMED OMER

SIGNATURE OF SUPERVISOR: DATE

AHMED ABDALAZIZ

 OCTOBER2015

………………………..

i

 يةالآ

عالى
ال ت ﴾﴿ وَفوَْقَ كُل ِّ ذِّي عِّلْمٍ عَلِّيمٌ ق

 صدق الله العظيم

[76] سورة يوسف الاية رقم

ii

 الحمد

، ولك الثناء أ جمله ، ولك القول أ بلغه ، ولك العلم أ حكمه ، ولك السلطان أ قومه ، د أَكملهاللهم لك الحم

 ولك الجلال أ عظمه ، الحمدلله كثيرا مباركا فيه ، الحمدلله الذي لا يرجى الا فضله ، ولا رازق غيره .

 اللهم لك الحمد حتى ترضى ، ولك الحمد اذا رضيت ، ولك الحمد بعد الرضا ،

 د كما ينبغي لجلال وجهك ، وعظيم سلطانك.اللهم لك الحم

iii

DEDICATION

To those who unconditional support with my studies, I am honored to have you as

my parents. Thank you for giving me chance to prove and improve myself through

all my walks of life, please do not ever change. I love you, my parents.

To all those who is inspiring me, and being the pillow, role models, cheerleading

squad and sounding boards I have needed, my brothers and sisters.

To all those who is believing in me; for allowing me to further my studies, please

do not ever doubt my dedication and love for you, my Friends.

To all those who extended their hands to help us,

iv

ACKNOWLEDGEMENT

I would like to express my utmost gratitude and appreciation to God and several

people who have engaged in a tremendous and remarkable role in the course of this

project.

Thank for supervisor (Ahmed Abdul-Aziz) Who supervised the project, he did not

spare his advice, guidance and ideas as well as our university (Sudan University of

Science and Technology) who gave me the golden opportunity to do this project on

the topic (quality assurance of integrated system maintenance), also thanks to our

teacher (Amged Mohamed) and (Omer Alharith) who also helped us in solving a

lot of problems in project, I am really thankful to them.

v

ABSTRACT

The project is control the quality of existing system after changing the requirements

of the integrated system which is consists of two systems (sales - stores) by adding

and modifying requirements for the integrated system.

Making the unit test for each of them, then integration testing, then testing the

whole system taking into account the quality management to modification of the

integrated system based on quality model used on the old system, or modify the

model based on requirements relating to the integrated system after adjustment.

vi

 المستخلص

نظامين هذا المشروع عباره ضبط الجوده لنظام موجود بعد تغيير متطلبات النظام المتكامل الذي يتكون من

 . مخازن(وذلك بإضافة وتعديل متطلبات النظام المتكامل -)مبيعات

اختبار وحدة لكل منهما، ثم اختبار التكامل ، ثم اختبار النظام كلل مع مراعاة إدارة الجودة في تعديل يتم إجراء

النظام المتكامل بناء على نموذج الجودة المستخدمة في النظام القديم، أو تعديل النموذج على أساس

 .الاحتياجات المتعلقة بالنظام المتكامل بعد التعديل

vii

INDEX OF TERMINOLOGIES

Abbreviation Terminology

SMF Software Maintenance Framework

IEEE Institute of Electrical and Electronics Engineers

ESD US Air force Electronic System Division

RADC Rome Air Development Centre

ISO International Organization for Standardization

DIN Deutsche Institute for Numbering

SOA service-oriented architecture

SQA Society of Quality Assurance

UML The Unified Modeling Language

SSL Secure Sockets Layer

IDE an integrated development environment

API application program interface

GUI Graphic user Interface

CGI Common Gateway Interface

CLI Command line Interface

XML Extensible Markup Language

RAD rapid application development

MR Modification Request

QA Quality Assurance

LOC Lines Of Code

CC Cyclamates Complexity

PHP Hypertext Preprocessor

viii

INDEX OF FIGURES

Figure Number Subject Page Number

3.1 Maintenance Process 23

4.1 Use Case Diagram 36

4.2 Activity diagram 37

4.3 Class Diagram 37

4.4 Component Diagram 38

4.5 Deployment diagram 38

5.1 Login Interface 40

5.2 Un authorized user 41

5.3 Sing Up 41

5.4 show product 42

5.5 Sales Operation 42

5.6 Invalid Product code 43

5.7 Bill 43

5.8 Add Balance 44

5.9 Response Add Balance 44

5.10 Customer Send Massage To

Admin

45

5.11 Customer Receive Massage

from Admin

45

ix

5.12 Modify Customer Information 46

5.13 Customer Sale Report 46

5.14 Balance Report 47

5.15 Customer Report 47

5.16 Search By Date 48

5.17 Response Search By Date 48

5.18 49

5.19 Show Product to admin

49

5.20 Create balance 50

5.21 Admin receiving message 50

5.22 Admin send message 51

5.23 Sales report to admin 51

5.24 Customer report to admin 52

5.25 Balance report to admin 52

5.26 Search by date 53

5.27 Response to search 53

5.28 Product about to finishing for

admin

54

x

5.29 Login to stores 55

5.30 Display all product stored

56

5.31 Add delete ,edit the data in stores 56

6.1 locMetrics 61

6.2 Graph of Show alert method 65

6.3 change _quantity method 66

6.4 find_productcode method 67

6.5 find_productquantity 68

xi

INDEX OF TABLES

Table Number Subject Page Number

6.1 sales line of code 60

6.2 Web server line of code 62

6.3 PHP Code Percentage 63

6.4 Fan_in Fan_out 64

6.5 CC on Visual basic

code

69

6.6 metrics for

identification,

authentication and

authorization

requirements

71

6.7 usability metrics 73

xii

INDEX OF CONTENT

CHAPTER

NUMBER

SUBJECT PAGE

NUMBER

 I الآية

 II الحمد

 Dedication II

Acknowledgement

 xii

Abstract xii

 xii البحث مستخلص

Index Of Terminology

xii

Index Of Figures

xii

Index Of Table

xii

CHAPTER ONE GENERAL FRAMEWORK OF THE RESEARCH

1.1

THE INTRODUCTION OF PROJECT

2

1.2

PROJECT PROBLEM

2

1.3

PROJECT OBJECTIVES

2

1.4

PROJECT SCOPE

3

1.5

THE IMPORTANCE OF PROJECT

3

xiii

CHAPTER TOW THE ORETICAL FRAMEWORK AND PREVIOUS

STUDIES

2.1

THEORETICAL FRAMEWORK.

5

2.1.1

Software Maintenance

5-9

2.1.2

Software Quality
10-14

2.1.3

Software Testing
14-18

2.2

PREVIOUS STUDIES

19-20

CHAPTER THREE RESEARCH METHODOLOGY AND TECHNIQUES

USED

3.1

RESEARCH METHODOLOGY

22-23

3.2

TOOLS AND TECHNIQUES

24-27

CHAPTER FOURTH REQUIREMENTS ANALYSIS AND DESING

4.1
REQUIREMENT IDENTIFICATION,

CLASSIFICATION, PRIORITIZATION

29-31

4.2

REQUIREMENTS ANALYSIS

31-35

4.3

SYSTEM DESIGN SCHEMA

36-38

CHAPTER FIFTH THE SYSTEM IPLEMINTATION

5.1

INTERFACE OF SALES SYSTEM

40-54

5.2

INTERFACE OF STORES SYSTEM

55-56

xiv

CHAPTER SIXTH SYSTEM QUALITY

6.1

QUALITY FACTORS

58-59

6.2

QUALITY FACTOR METRICS

60-75

CHAPTER SEVENTH RESULTS AND RECOMMENDATIONS

7.1

RESULTS

77

7.2

RECOMMENDATIONS

77

7.3
CONCLUSION 77

REFERENCES 78-79

APPENDIX

 Appendix I 80-87

xv

1

CHAPTER ONE

GENERAL FRAMEWORK OF PROJECT

1.1 THE INTRODUCTION OF PROJECT

1.2 PROJECT PROBLEM

1.3 PROJECT OBJECTIVES

1.4 THE SCOPE OF PROJECT

1.5 THE IMPORTANCE OF PROJECT

2

INTRODUCTION

This chapter consists of five sections, the first introduction about the project,

the second describes research problem, the third is about project objectives, and the

fourth is about the limits of the project, and the fifth and last is about importance of

project.

1.1 INTRODUCTION TO PROJECT

Need to control the quality when maintaining the integrated system which

consists of two separate systems, to achieve the goals of individuals and

organizations.

To guarantee that the system achieves what is required, there will be a test of

the integrated system after maintenance, taking into account the quality

management to modify the integrated system.

1.2 RESEARCH PROBLEM

Maintenance of the systems effectively is essential and requires certain

skills, this project about to control the quality of integrated system when changing,

modifying or adding new requirements to the integrated system which consists of

two separates systems.

1.3 OBJECTIVES

The project intend to achieve this objectives

o Adding and modifying requirements for the integrated system.

o Control the quality when maintaining system.

o Improve the system quality.

3

1.4SCOPE

There is an integrated system consisting of two separate systems require

maintenance to perform a specific task, we change the requirements with the

addition of new requirements for each separate systems.
Making the unit test for each of them, then integration testing, then test the

whole system taking into account the quality management to modification of the

integrated system based on quality model used on the old system, or modify the

model based on requirements relating to the integrated system after adjustment.

1.5 IMPORTANCE

o The importance of project in that it is based on the change and the addition

of the requirements in an integrated system that component of two separate

systems and tested without affecting the requirements of each system.

o Application of quality on the integrated system concept in stages of

modification and additional requirement until they are conformed to the

specifications of the required.

o Management of quality to modify the integrated system based on the quality

used in the old system model or modify the model based on the requirements

of the integrated system type after modifications.

o The development of applications that have been built and simplify the

process of communication with, and the use of sources of information

technology already existing.

4

CHAPTER TWO

THEORETICAL FRAMEWORK AND PREVIOUS

STUDIES

2.1 THEORETICAL FRAMEWORK

2.2 PREVIOUS STUDIES

5

INTRODUCTION:

This chapter deals with the theoretical framework for the system in the first

section talking about maintenance and testing as well as quality and in the second

section speaks of previous studies similar to this project.

2.1 THEORETICAL FRAMEWOK

2.1.1 MAINTENANCE

MAINTENANCE DEFINITION:

The act of keeping an entity in the existing state of repair, Efficiency, or

validity to preserve from failure or decline.[1]

WHY SOFTWARE MAINTENANCE IS NEEDED

 TO PROVIDE CONTINUITY OF SERVICE

Systems need to keep running, systems cannot be allowed just to stop

if an error occurs, and System cannot be allowed just to stop if an error

occurs. Unexpected failure of software can be life threatening. Many facets

of daily life are now managed by computer. There can be severe

consequences to system failure such as serious inconvenience or significant

financial implications. Maintenance activities aimed at keeping a system

operational include bug-fixing, recovering from failure, and accommodating

changes in the operating system and hardware.

 TO SUPPORT MANDATORY UPGRADES

This type of change would be necessary because of such things as

amendments to government regulations will necessitate modifications in the

software used, the need to maintain a competitive edge over rival products

will trigger this kind of change.

6

 TO SUPPORT USER REQUESTS FOR IMPROVEMENTS

 TO FACILITATE FUTURE MAINTENANCE WORK

It does not take long to learn that shortcuts at the software

development stage are very costly in the long run. It is often financially and

commercially justifiable to initiate change solely to make future

maintenance easier. [1]

SOFTWARE MAINTENANCE FRAMEWORK

Software maintenance is not an activity carried out in a vacuum. It affects,

and interacts with the environment within which it is carried out.

Framework - a set of ideas, conditions, or assumptions that determine how

something will be approached, perceived, or understood.[1]

Understanding the framework and the relationship between the factors

comprising this framework allows prediction of problem areas and the ability to

avoid them.

SOFTWARE MAINTENANCE FRAMEWORK COMPONENTS

Software Maintenance Framework (SMF) will be used to discuss some of

these factors. The elements of this framework are the user requirements,

organizational and operational environments, maintenance process, software

product, and the maintenance personnel.

 To understand the sources of the software maintenance challenge, you

need an understanding of these components, their characteristics and the effect of

their interactions.

 USER

Refer to individuals who use the system, regardless of their involvement

in its development or maintenance.

7

 ENVIRONMENT

The environments affecting software systems are the operating

environment and the organizational environment.

 OPERATING ENVIRONMENT

 All software and hardware systems that influence or act upon a software

product in any way.

 HARDWARE INNOVATIONS

The hardware platform on which a software system runs may be subject

to change during the lifetime of the software.

 SOFTWARE INNOVATIONS

Like hardware, changes in the host software may warrant a

corresponding modification in the software product.

 ORGANIZATIONAL ENVIRONMENT

All non-software or non-hardware related environmental factors. [1]

MAINTENANCE PROCESS

The maintenance process itself is a major player in the software maintenance

framework. Significant factors are the capturing of change requirements,

programming practice, paradigms and error detection. [1]

SOFTWARE PRODUCT

Programs are seldom static and can never be so when they implement

large systems that are in continuous use. Lehman compares this

phenomenon to the evolution of biological organisms and of social

groupings .Remember however, that it is not just the programs themselves

but also the accompanying documentation and operating procedures that are

subject to such changes. [1]

8

Aspects of a software product that contribute to the maintenance challenge

include:

 Maturity and difficulty of the application domain: The requirements

of applications that have been widely used and well understood are

less likely to undergo substantial modification on installation than

those that are still in their infancy. An aspect that may also affect

maintenance is the inherent difficulty of the original problem.

 Quality of the documentation: The lack of up-to-date systems'

documentation is one of the major problems that software maintainers

face.

 Programs are often modified without a corresponding update of the

documents affected. Even in environments where there are automatic

documentation support tools, their contents may be inaccurate. Worse

still, there may be no documentation at all. Inadequate documentation

adversely affects maintenance productivity even for a programmer

maintaining his / her own program, and in the vast majority of cases

people are maintaining programs written by others.

 Malleability of the programs: The malleable or 'soft' nature of

software products makes them more vulnerable to undesirable

modification than hardware items.

 Inherent quality: The nature of the evolution of a software product is

very closely tied to the nature of its associated programs. Based on

the results derived from empirical observations of large industrial

software systems. [1]

SOFTWARE CHANGE

Change the act, process, or result of being made different in some particular. [1]

9

 CLASSIFICATION OF CHANGES

 CORRECTIVE CHANGE

Corrective change refers to modification initiated by defects in the software.

 Design errors occur when, for example, changes made to the software are

incorrect, incomplete, wrongly communicated or the change request is

misunderstood.

 Logic errors result from invalid tests and conclusions, incorrect

implementation of design specifications, faulty logic flow or incomplete

testing of data.

 Coding errors are caused by incorrect implementation of detailed logic

design and incorrect use of the source code logic. Defects are also caused

by data processing errors and system performance errors. [1]

 PERFECTIVE CHANGE

This term is used to describe changes undertaken to expand the existing

requirements of a system. [1]

 PREVENTIVE CHANGE

Preventive change is undertaken to prevent malfunctions or to improve

maintainability of the software. [1]

 ADAPTIVE CHANGE

Adaptive change is a change driven by the need to accommodate modifications

in the environment of the software system. [1]

10

2.1.2 QUALITY:

Researchers differed in unified and comprehensive quality definition, quality from

the perspective of one person to another is different in many citizens, but we can

say that one of the concepts of quality is that the product meets all the desired

requirements.

QUALITY DEFINITIONS

INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS

(IEEE) DEFINITION:

 The composite characteristics of the software that determine the degree to

which the software in use will meet the expectations of the customer.[2]

 (PRESSMAN'S DEFINITION) DEFINITION OF QUALITY:

 Conformance to explicitly stated functional and performance

requirements, explicitly documented development standards, and implicit

characteristics that are expected of all professionally developed software.[3]

QUALITY ASSURANCE (QA):

 A set of activities designed to evaluate the process by which the products

are developed or manufactured. Contrast with quality control.[3]

QUALITY MODELS:

 There are many models that can be applied to the system, including:

MCCALL MODEL:

 Used in the United States for very large projects in the military, space and

public domain. It was developed in 1976-7 by the US Air force Electronic

System Division (ESD), the Rome Air Development Centre (RADC) and

General Electric (GE) with the aim of improving the quality of software

products. One explicit aim was to make quality measurable.

11

 Started with a volume of 55 quality characteristics which have an important

influence on quality, and called them "factors", for the purposes of

simplification trimmed Mack Cole numbering 11 property are: -

1- Efficiency.

2- Reliability.

3- Usability.

4- Maintainability.

5- Testability.

6- Reuse.

7- Portability.

8- Flexibility.

9- Harmonic.

10- Correction.

11- Safety. [2]

BOËHM MODEL:

 Has added a number of new factors to list Mc Cole, even to the number

reached 16 , with the passage of time, the quality of the work of others , some

models of the redefinition of the factors exist and has added some new factors . As

there are a lot of models, including ISO, IEEE, DIN.agv main of these models is to

make quality measurable.

QUALITY FACTORS:

USABILITY:

 Usability is the cost/effort to learn and handle a product, User staffs were

simply required to learn how to operate the system, input data, receive output and

generally keep the system running.

12

ACCURACY:

 Accuracy is the extent to which a program which fulfill its specification, it

is a difficult factor to pin down because of the lack of standard terminology, easy to

use the term interchangeably with other factors like reliability and integrity.

TRANSFERABILITY:

 The cost of transferring the product from its hardware or operational

environment to another one

MAINTAINABILITY:

The cost of localizing and correcting errors:

a. corrective maintenance

b. maintenance harmonic-adaptive maintenance

c. perfective maintenance

REUSABILITY:

 The cost of transferring a module or program to another application,

Reusability addresses the concept of writing code so that it can be used more than

once.

FLEXIBILITY:

 The cost of product modification like being able to change or reconfigure

the user interface to suit users' preferences.

TESTABILITY:

 The cost of program testing for the purpose of safe guarding that the specific

requirements are met.[2]

SPLIT QUALITY FACTORS TO GROUPS:

Quality factors can be divided into two groups:

13

 1. EXTERNAL FACTORS:

It is the final quality of the system, which appear to the outside world, and

the impact on users' (end user), Examples include: usability, reliability,

safety.

2. INTERNAL FACTORS:

Which are in the structuring of the system and takes care of the development

team and the maintenance team, Examples are: portability, maintainability,

reusability. [2]

QUALITY MEASURES:

THE DEFINITION OF QUALITY STANDARDS:

Quantitative measure shows any element has a certain degree of quality property.

[From theory]

TYPES OF METRICS:

Metrics are classified by the development cycle (lifecycle) to:

1- PROCESS METRICS:

Process metrics are known as management metrics and used to measure the

properties of the process which is used to obtain the software. Process

metrics include the cost metrics, efforts metrics, and advancement metrics

and reuse metrics.

 2-PRODUCTS METRICS:

Product metrics are also known as quality metrics and is used to measure the

properties of the software. Product metrics includes product non reliability

metrics, functionality metrics, performance metrics, usability metrics, cost

metrics, size metrics, complexity metrics and style metrics. Products metrics

help in improving the quality of different system component & comparisons

between existing systems.[4]

14

ADVANTAGES OF SOFTWARE METRICS:

 Analysis, comparison and critical study of various programming

language with respect to their characteristics.

 In comparing and evaluating capabilities and productivity of

people involved in software development.

 In getting an idea about the complexity of the code.

 In providing feedback to software managers about the progress

and quality during various phases of software development life

cycle.

 In allocation of testing resources for testing the code.

 In comparison and making design tradeoffs between software

development and maintenance cost. [4]

2.1.3 SOFTWARE TESTING:

TESTING DEFINITION:

Testing is the examination of a software system in the context of a given

specification set. The purpose of testing is to find errors in software systems i.e. to

identify ways in which it does not conform to an agreed specification. [1]

Test techniques include, but are not limited to, the process of executing a

program or application with the intent of finding software bugs (errors or other

defects).It involves the execution of a software component or system component to

evaluate one or more properties of interest.

 In general, these properties indicate the extent to which the component or

system under test, so in this section we want discuss testing of the component of

two systems works together as whole to figure out if the system is agreed the

specification. [1]

REASON TO TEST THE SOFTWARE:

Testing software to see if it works is much the same. Unless you can

comprehensively test every eventuality, every context of every input (which you

15

can't, the possibilities are infinite) the best you can do by testing is to say that it

works in this finite set of circumstances, and gives an indication of how it might

work in others.[1]

TESTINGTYPES:

TESTING CODE:

Code can be tested at many different levels do individual statements execute

according to specification, do procedures provides expected output for given input,

does the program as a whole perform in a particular way? Within this are many

issues to be borne in mind. For example, it is possible to execute each statement

without touching upon certain conditions. However, test cases should try to take

account of all possible conditions and combinations of conditions, with special

emphasis on boundary conditions and values where behavior is often erroneous.[1]

BLACK BOX AND WHITE BOX TESTING:

 In black box testing, the system acts as a black box - we don't see inside it,

we just see what goes in and what comes out. Test cases are derived from

the specification, and take no account of the internal operation of the

program.

 In white box testing we 'see inside the box' and look at the detail of the code.

 A program giving the correct result to a black box test, is not necessarily

executing its code correctly. Similarly, a program statement executing

correctly does not mean that it conforms to its specification.[1]

STRUCTURED TESTING:

 An aim of structured testing is to maximize the number of errors found by

the test cases used and to avoid redundant test cases. Consider the program

that takes two integers as input and outputs their product, 39,600 different

16

combinations could be tested and still miss some of the boundary conditions.

Redundant testing is inefficient.

 Testing should be planned by assuming that the program contains errors. It's

a very safe assumption to make, yet all too often, testing strategies are built

upon the premise that the program works.[1]

 INTEGRATION TESTING:

Testing a program starting with tests of its elements and then combining

them to test larger elements is known as integration testing. A procedure, function

or module may work on its own, but fail to execute correctly when tested together

with other elements. Consider a function that takes two numbers and returns the

result of subtracting one from the other. The order in which the numbers are

supplied to the function is vital to correct operation, but incorrect ordering won't

necessarily show up until the function is tested in conjunction with other elements

of the program that use it.

 Testing program elements requires program stubs to be written. These are

small programs that execute the element under test. Program stubs do not appear in

the final product, but are in themselves a powerful and reusable testing tool. [1]

REGRESSION TESTING:

Testing finds errors and also checks that amended code has fixed the

problem. However, software has a tendency to instability. We have discussed for

example the ripple effect that modifications can produce. Thus an amendment that

fixes one error may introduce or reintroduce others. Regression testing is the

running of tests both to see that the identified bug has been fixed and to check that

other errors have not been introduced. [1]

VERIFICATION AND VALIDATION:

The verification and validation of software is a key in building systems that

can be trusted. Verification, ensuring accuracy against an agreed set of

17

requirements and specifications, is largely what this chapter has been about.

Validation is external certification that a system can demonstrate a level of

compliance, perhaps to a legal requirement such as a specific safety standard.

Carrying out verification and validation activities is not enough. They must be

documented. Without adequate documentation, it will not be possible to

demonstrate compliance. [1]

AIM OF THE VERIFICATION AND VALIDATION:

 Achieve better systems i.e. systems with improved reliability, performance,

quality and cost effectiveness. Ratikin provides guidance on essential

techniques in software verification and validation, showing also how to

reconcile conflicting demands e.g. of quality versus tight deadlines. The impact

on cost and scheduling of verification and validation processes is a legitimate

concern, and it is important to get the balance right. However, undue criticism

on grounds of cost should not be allowed to shortcut necessary verification and

validation work.

 Verification and validation methodologies provide a robust framework for the

creation of quality software system, and are more effective when performed

independently of the team building or maintaining the system.

 A useful guide, as in many areas, is to look at the guidelines and standards

already developed.[1]

 TESTING PLANS:

A test plan can vary from a short informal document to a multi-volume

series, depending upon the purpose for which it is intended.

IEEE PLANS:

"A document describing the scope, approach, resources, and schedule of

intended testing activities. It identifies test items, the features to be

tested, the testing tasks, who will do each task, and any risks requiring

contingency planning."[1]

18

GOOD TEST PLANS FACILITATE TESTING IN MANY WAYS

INCLUDING:

 Providing lists of useful test cases identifying such things as boundary

conditions and classes of test data. This improves efficiency and means

important test cases are less likely to be missed.

 Providing information in what scale of the job is likely to be and what

resources will be needed.

 Providing information to identify and prioritize tasks, thus aiding organization

of the testing team and identifying roles and responsibilities.[1]

19

2.2 PREVIOUS STUDIES:

INTRODUCTION TO THE PREVIOUS STUDIES:

Through search about studies on apply of the concepts and techniques that were

used to link two independent systems were reached to earlier studies for

applying SOA service infrastructure technology.

THE DEFINITION OF PREVIOUS STUDIES:

 SERVICE BASED STUDENTS INFORMATION

MANAGEMENT SYSTEM.

By Marib Mohamed, Salwa Ibrahim and Ahmed Abdul Aziz, at August 2012.

THE AIM OF THE STUDY:

The research aims to implement an integrated system that manages student

at the College of Computer Science and Information Technology Information

and enable it to optimal use of resources within the university and to facilitate

access to those resources, also the target of this system of training on the use of

new technology and its use in solving a problem.

THE RESULT OF THE STUDY:

This previous study has contributed in the development of the student

system for college, where reached for applying a system that works to manage

student’s information in college through applying technology infrastructure

services SOA.

20

 QUALITY ASSURANCE OF INTEGRATED SYSTEM.

By Ibrahim Jafar Mustafa, Ahmed Esam El-Din Ahmed,

Abdurrahman Ali Mohammed Ahmed and

Omar Ahmed Ali at August 2014.

THE AIM OF THE STUDY:

 The research aims to take advantage of the concepts of SOA and SQA in

building an integrated system is on its way to link systems easy to handle,

ensures access to data sources and handled with ease.

THE RESULT OF THE STUDY:

This previous study has contributed in building an integrated system by

linking the two independent systems and applied the concept of the quality

in an integrated system in all phases of the link until it is matched with the

required specifications.

21

CHAPTER THREE

RESEARCH METHODOLOGY AND

TECHNIQUES USED

3.1 RESEARCH METHODOLOGY

3.2 TOOLS AND TECHNIQUES USED

22

INTRODUCTION:

This chapter contains the research methodology and the tools and techniques used

in the system.

3.1 RESEARCH METHODOLOGY:

We have been applied software maintenance standards IEEE 1219 and

ISO/IEC 14764 shown in figure (3.1), the Maintenance Process contains the

activities and tasks necessary to modify an existing software product while

preserving its integrity. The activities which comprise the Maintenance Process are

Process Implementation, Problem and Modification Analysis, Modification

Implementation, Maintenance Review/Acceptance.

 Implementation process establishes the planes and procedures ,Problem and

Modification Analysis activated after the software transition and are called

iteratively when the need for modification arises, in the modification

implementation the maintainer develops and tests the modification of the software

product, in Maintenance Review/Acceptance ensures that the modifications to the

system are correct and that they were accomplished in accordance with the

approved standards using the correct methodology , Migration the maintainer needs

to determine the actions needed to accomplish the migration, and then develop and

document the steps required to effect the migration , and Retirement once a

software product has reached the end of its useful life, it must be retired. An

analysis is should be performed to assist in making the decision to retire a software

product. [5]

23

Form (3.1) illustrates the stages of the establishment of the proposed

system [5]

24

3.2 TOOLS AND TECHNIQUES

3.2.1 ENTERPRISE ARCHITECT

 Is a technical document that described the system status and

applications that are used in the enterprise also described as flows of

information from the other within the same enterprise system, one of the

tools used for engineering subsidized computer software, is used in the

analysis and design of software systems operations, the primary objective of

it improve your UML situation institution, depends on determination to

language, a visual language described the system status, can cover all

activities related to the development of systems of the initial phase of the

analysis to the system delivery .its stage provides the basic framework which

defines and describes the base required by the institution and the process of

translation Strategy of our work in the future, as organization can achieve its

goals effectively and efficiently and to achieve its vision.

PROS OF ENTERPRISE ARCHITECT:

 Activity based management and analysis of large, complex systems.

 Manage and monitor complex systems requirements.

 Design and build systems using (UML) language, and build

independent models of the system to be analyzed and constructive.

 Deals with many programming languages such as (java),(C),(C++).

 Improve decision-making processes and the ability to adapt to

changing demands. [6]

25

UNIFIED MODELING LANGUAGE (UML):

 Is a general-purpose, developmental, modeling language in the field of

software engineering that is intended to provide a standard way to visualize

the design of a system. [11]

OBJECTIVES OFUML:

 Expresses the relationships between a system and its environment

 Clarifies requirements: Specifying goals leads to asking "why",

"how" and "how else".

 Intended to address the current software development issues.

 Include all the concepts that necessary to support a modern iterative

process based on building strong architecture to solve user case-

driven requirements.

 Connects requirements to design.

 Simple and expressive.[11]

3.2.2 WAMP SERVER:

Wamp server refers to a software stack for the Microsoft windows

operating system, created by Romain Bourdon and consisting of the

Apache web server, Open SSL for Secure Sockets Layer (SSL) support,

My SQL database and Hypertext Preprocessor(PHP) programming

language.

Wamp Server includes Ease of handling and use, through the user

interface enables database management. [12]

3.2.3 MICROSOFT VISUAL STUDIO:

 Microsoft Visual Studio is an integrated development

environment (IDE) from Microsoft. It is used to develop computer programs

for Microsoft Windows, as well as web sites, web applications and web

services. Visual Studio uses Microsoft software development platforms such

as Windows API, Windows Forms, Windows Presentation Foundation,

26

Windows Store and Microsoft Silver light. It can produce both native code

and managed code. [12]

3.2.4 MICROSOFT ACCESS:

 It is a graphical program operates under the Environment

GUI. This program contains (Windows) on a variety of objects that can

be used to view and manage information such as tables, forms, reports,

queries and units of macro units module and pages and access to data.

[12]

3.2.5 PHP:

 PHP is a server-side scripting language designed for web development but

also used as a general-purpose programming language, PHP code can be simply

mixed with HTML code, or it can be used in combination with various

tinplating engines and web frameworks. PHP code is usually processed by a

PHP interpreter, which is usually implemented as a web server's native module

or a Common Gateway Interface (CGI) executable. After the PHP code is

interpreted and executed, the web server sends the resulting output to its client,

usually in the form of a part of the generated web page; for example, PHP code

can generate a web page's HTML code, an image, or some other data. PHP has

also evolved to include a command-line interface (CLI) capability and can be

used in standalone graphical applications. [12]

3.2.6 XML:

 Extensible Markup Language (XML) is a markup language that defines a

set of rules for encoding documents in a format which is both human-readable and

machine-readable. It is defined by the W3C's XML 1.0 Specification and by several

other related specifications, all of which are free open standards.

 The design goals of XML emphasize simplicity, generality and usability

across the Internet. It is a textual data format with strong support via Unicode for

different human languages. Although the design of XML focuses on documents, it

27

is widely used for the representation of arbitrary data structures such as those used

in web services.

Several schema systems exist to aid in the definition of XML-based languages,

while many application programming interfaces (APIs) have been developed to aid

the processing of XML data. [12]

3.2.7 VISUAL BASIC

 Visual Basic is a legacy third-generation event-driven programming

language and integrated development environment (IDE) from Microsoft for its

COM programming model first released in 1991. Microsoft intended Visual Basic

to be relatively easy to learn and use, it was derived from BASIC and enables the

rapid application development (RAD) of graphical user interface (GUI)

applications, access to databases using Data Access Objects, Remote Data Objects,

or ActiveX Data Objects, and creation of ActiveX controls and objects.

 Programmer can create an application using the components provided by

the Visual Basic program itself. Over time the community of programmers

developed third party components, Programs written in Visual Basic can also use

the Windows API, which requires external function declarations.

 Since VB defines default attributes and actions for the components, a

programmer can develop a simple program without writing much code. Programs

built with earlier versions suffered performance problems, but faster computers and

native code compilation has made this less of an issue. [12]

28

CHAPTER FOUR

REQUIREMENTS ANALYSIS AND DESIGN

4.1 REQUIREMENT IDENTIFICATION,

CLASSIFICATION, PRIORITIZATION

4.2 REQUIREMENTS ANALYSIS

4.3 SYSTEM DESIGN SCHEMA

29

INTRODUCTION:

This chapter contains problem identification, classification, prioritization, analysis

and design of the integration system.

4.1REQUIREMENT IDENTIFICATION,

CLASSIFICATION, PRIORITIZATION

4.1.1 SALES SYSTEM

 SHOW THE DATE OF PURCHASE TO THE CUSTOMER:

This requirement is considered as MR (1), the customer needs to see product

name, date of purchase, quantity and total price, when total price reach to a

certain number the system will make discount for this customer.

The type of maintenance is perfective to improve the performance.

As preliminary estimate, the modification size of this requirement is small

and doesn’t take more effort and time, and regard as low priority because

when a customer buys some item the bill is already shown but for a certain

day.

 HIDING FINISHED ITEMS FROM SHOW:

This requirement is considered as MR (2), the items that have zero quantity

must not appear to the customer, the type of maintenance that correct the

discovered faults is corrective and have a medium priority.

The modification is simple so the size of modification is small.

30

 MESSAGE BETWEEN ADMIN AND CUSTOMER:

MR (3) is perfective maintenance because it is improve performance of

the system and enhance its reliability, and consider the contact between

admin and customer is important so it has a medium priority.

 As preliminary estimate of modification that takes an effort, so it has a

big modification size.

 MAKE REPORTS TO ADMIN:

MR(4), show the customer date of purchase, customer info, all product

even the finished one, and the balance so the type of maintenance is

perfective, it require an effort for modifying, it has high priority because

the admin must know all about the system information.

 CREATE BALANCE:

 MR (5), allow only the admin to add balance by entering serial

numbers , charging the balance in the previous system was done by

adding the balance directly to the data base and it was traditional

approach which mean the type of maintenance is corrective, the

modification has big size.

4.1.2 WEB SERVICE:

 UPDATE QUANTITY OF PRODUCTS:

MR (6), when a customer buys some item the store must modify the

quantity this item according to this, its regard as corrective maintenance.

 Updating the quantity of all items in the stores system is necessary

which make the priority high.

31

 MAKE ALERT WHEN ITEM QUANTITY REACH TO A

CERTAIN NUMBER:

MR (7), when some item is about to finish from the store its better for the

admin to pay attention so it’s perfective maintenance and has medium

priority, this modification is done by adding some function.

 VALIDATION FOR QUANTITY AND PRODUCT CODE:

MR (8), in case customer require item that doesn’t exist or more than

available quantity the system must aware him.

It’s obvious that type of maintenance is corrective, it’s essentially then it

has high priority and takes effort to modify.

4.2 REQUIREMENTS ANALYSIS:

In this section we will make feasibility analysis and detailed analysis for the

whole validated MR. [6]

 SHOW THE DATE OF PURCHASE TO THE CUSTOMER:

 Feasibility Report:

This modification doesn’t impact in other requirements but effected

by others, doesn’t allow unauthorized users to see other date of

purchase which improve safety and security and also useful for a

customer to see his info, the report review must be clear.

 Detailed Analysis Report:

To make this modification we need getting to know sales code and

it’s involves validation from the customer, according to that,

appearing his information from the database.

This requirement agreed with existing security features, hence it

doesn’t decrease system security and safety, and make unit testing to

insure its meeting our expectations.

32

 HIDING FINISHED ITEMS FROM SHOW:

 Feasibility Report:

This requirement affect in show functions only, as alternate solution

it is possible to show items with zero quantity and when customer

choose it, the system will aware him, it is decrease the process for

user and system, and improve system performance.

 Detailed Analysis Report:

This modification require knowledge with sales and stores code,

that’s involves disappear of the items having zero quantity.

Although it has nothing to do with security issues but the security

remain well. We will make unit and integration testing to vitrify the

integration of the two systems.

 MESSAGE BETWEEN ADMIN AND CUSTOMER:

 Feasibility Report:

Independent requirement, and it’s improve the efficiency and

the reliability of the system, administer information on website helps

customer to contact with him, as alternate solution, it easy to contact

with admin while it’s not allowed for unauthorized users to access

messages.

 Detailed Analysis Report:

To do this modification requires know sales code, to identify

suitable position for message, it involves adding new table in

database; it was compatible with existing security feature and doesn’t

influence on system security.

Make unit testing and whole system testing to insure the connection

between them.

33

 MAKE REPORTS TO ADMIN:

 Feasibility Report:

Adman’s reports make him more aware of system components

and updates which decrease the probability of the system’s

unreliability, this reports is not accessed except by admin which

improve system safety.

Reports review presented in tabular form in an orderly manner

which make easy to the admin to keep track of the system.

 Detailed Analysis Report:

There must be cognizance of sales and stores code, to makes

this modification which include retrieving data from database,

then making unit and integration testing.

 CREATE BALANCE:

 Feasibility Report:

The influence of charging balance by the admin is give the

customer the ability to add balance to his account, letting the

admin do this process improve system security and his interactive

with the system.

 Detailed Analysis Report:

The modification include adding new interface to the system

which featuring the safety and doesn’t effect on security, unit

testing has been used as test strategy.

 UPDATE QUANTITY OF PRODUCTS:

 Feasibility Report:

This procedure impact on making alert and interface of

products show, by this requirement the users will know the

original quantity of products, so it’s important to update the

quantity to avoid conflicts.

34

 Detailed Analysis Report:

To make this modification must be Familiar with sales code,

web service code and store’s database, add new function to web

service code as element of modification which doesn’t effect on

existing safety and security features, need to do unit, integration,

and whole system testing.

 MAKE ALERT WHEN ITEM QUANTITY REACH TO A

CERTAIN NUMBER:

 Feasibility Report:

This requirement affected by update quantity and doesn’t

impacts in another requirements, instead making list of the items

which about to finish in case doing this in stores or web service.

This alert is done only for the admin, which increase the

interactive between the system and admin and decrease the

effort of figuring out the finished items.

 Detailed Analysis Report:

Its need to know the web service and sales code and stores

database, this modification adding new function in the web service

and interface to view the finished items.

It’s also co incise with existence security and safety issues,

and need to do unit, integration, and whole system testing.

 VALIDATION FOR QUANTITY AND PRODUCT CODE:

 Feasibility Report:

This modification influence in all requirements that associate

with purchase operation, in addition to that in the validation

process the interface of system seems clear to the customer who

improve efficiency and performance.

35

 Detailed Analysis Report:

The database of stores, web service, and sales code need to be

known by the developer.

The modification involve adding new function and interface to

review the result , Also unit, integration, and whole system

testing need to be done.

36

4.3 SYSTEM DESIGN SCHEMA

This section contains UML and the schema that require in it.

4.3.1 USE CASE DIAGRAM:

Presents the activities carried out by the customer shown in Figure 4.1

through its use of resources also presents the use cases for each part of the system

components.

Figure 4.1 show use case diagram

37

4.3.2 ACTIVITY DIAGRAM:

Present the system functionality as in real world figure 4.2

Figure 4.2 show activity diagram

4.3.3 CLASS DIAGRAM:

Show the Categories and important functions in the system figure 4.3

Figure 4.3 show class diagram

38

4.3.4 COMPONENT DIAGRAM:

Describe software components and their dependencies to each other figure 4.4.

Figure 1.4 show component diagram

4.3.5 DEPLOYMENT DIAGRAM:

Models the run-time architecture of a system figure 4.5

Figure 4.5 show deployment diagram

39

 CHAPTER FIVE

THE SYSTEM IMPLEMENTATION

40

INTRODUCTION

This chapter consists of two sections which contains of system interfaces

implementation after maintenance process.

5.1 INTERFACES OF SALES SYSTEM

5.1.1 LOGIN

It allows the customer access to products which exists in stores system by

logging into the web page after you enter your user name and password and

request services with ease as shown in Figure 5.1

Figure 5.1 illustrates login

41

The system check the user name and password then it is allow to access the

system, if the user is authorized, if not the system show message to user as

shown in Figure 5.2

Figure 5.2 illustrates unauthorized use

5.1.2 SIGN UP

The customer can create an account by choosing "Sign Up" then entering the

personal data as shown in Figure 5.3

Figure 5.3 illustrates Sign Up

42

5.1.3 SHOW PRODUCTS

View all the products in the stores as shown in the figure 5. 4

Figure 5.4 illustrates show products

5.1.4 DIRECT SALE

The purchase of products by entering the product number and quantity required as

shown in Figure 5.5

Figure 5.5 illustrates Sale operation

43

The system check the product code and quantity required as shown in Figure 5.6

Figure 5.6 illustrates invalid product code

5.1.5BILL

Shown in Figure5.7

Figure 5.7 illustrates the Bill

44

5.1.6 ADD BALANCE

The customer can add money to your account by entering the serial numbers

shown in Figure 5.8 and 5.9

Figure 5.8 illustrates Entering the code Number

Figure 5.9 illustrates Respond

45

5.1.7 ADMIN MESSAGING

The customer can contact with admin by sending message to as shown in

Figure 5.10 and 5.11

5.10 illustrates the contact with Admin

5.11 illustrates receive message from admin

46

5.1.8 MODIFY CUSTOMER

The customer can modify the personnel information as shown in Figure 5.12

and 5.13

5.12 illustrates modifying customer info

5.13 illustrates modifying response

47

5.1.9 CUSTOMER REPORTS

The system show the sale operation reports as shown in Figure 5.14

5.14 illustrates Sale report

The system show the balance reports as shown in Figure 5.15

5.15 illustrates balance report

48

The system show the customers reports as shown in Figure 5.16

5.16 illustrates customers report

The system show search sales reports by date as shown in Figure 5.17 and 5.18

5.17 illustrates entering the date

49

5.18 illustrates sale reports

5.1.10 SHOW PRODUCTS

View all the products in the stores as shown in the figure 5. 19

5.19 illustrates show product in admin account

50

5.1.11 CREATE BALANCE

Enter the code number and balance as shown in the figure 5. 20

5.20 illustrates entering code number and balance

5.1.11 MESSAGING THE CUSTOMER

Admin contacting with customer as shown in the figure 5.21 and 5.22

5.21 illustrates Admin receiving messages

51

5.22 illustrates Admin replay message

5.1.12 ADMIN REPORTS

The system show the sale reports to admin as shown in Figure 5.23

5.23 illustrates sale reports to admin

52

The system show the customer reports to admin as shown in Figure 5.24

5.24 illustrates customer reports to admin

The system show the balance reports to admin as shown in Figure 5.25

5.25 illustrates balance reports to admin

53

The system show the sale reports to admin by search as shown in Figure 5.26 and

5.27

5.26 illustrates entering the date

5.27 illustrates sale reports

54

The system show the product about to finishing for admin as shown in Figure 5.28

5.28 illustrates products about to finishing for admin

55

5.2 INTERFACES OF STORES SYSTEM

Login to the stores system by entering a user name and password as illustrated in

Figure 5.29

Figure 5.29

56

Display all the products stored in stock are illustrated in figure 5.30

 Figure 5.30

Add, delete or edit the data in stock, as illustrated in

Figure 5.31

Figure 5.31

57

CHAPTER SIX

SYSTEM QUALITY

6.1 QUALITY FACTORS

6.2 QUALITY FACTOR METRICS

58

INTRODUCTION

this section addresses the quality factors, quality standards applied to the system,

and the system testing.

6.1QUALITY FACTORS:

This section contain the quality factor that we applied , we are also taking into

account quality management to modify the integrated system based on the model of

quality used in the old system and modify the quality model based on the type of

requirement relating to the integrated system after modifying .

6.1.1 EFFICIENCY:

To make this system an efficient, make send values individually from the database

rather than send (string) complete.

6.1.2 MAINTENANCE:

The application of the standards in the code writing and the names of the function

variables were significant and meaning.

As well as annotations that is facilitate the understanding of the work of

maintenance teams.

6.1.3 INTEROPERABILITY AND PORTABILITY:

So the system is suitable for all environments, (xml) which have compatibility with

most other languages is used.

6.1.4 TESTABILITY:

The adaptation of the code to allow them to apply the tests were writing functions

allow the introduction of test cases and results output which facilitates the testing

process.[10]

59

THE QUALITY FACTORS ADDED AFTER THE MAINTENANCE:

6.1.5 SECURITY:

The integrity of the system is preserved by ensuring that only authorized

personnel have access to the system and only authorized changes are

implemented, MR(3) and MR(4)achieve this factor.[9]

6.1.6 USABILITY:

System interface is designed in which user can interact with it, and the goal

of this interaction is the easy of recognize and understood, and it also aids

the user’s decision for making the process.

Generally the interface design to user in MR (8) provide the suitable input to

achieve the desired output, also MR (3) is correspond to this factor.

60

6.2 QUALITY FACTOR METRICS:

There are many quality metrics that must apply to the systems, but here

we applied some of the quality metrics that measure our quality factors

Such as complexity, and the ability to understand and the maintenance,

as well as measure of size, to make sure that the maintenance process

achieve the quality model before modifying as well enhanced quality

factors.

6.2.1 LINES OF CODE (LOC):

 PHYSICAL LINES OF CODE

The lines of code calculate the total number of executable lines,

including the comment line.[8]

6.2.1.1 SALES CODE:

Table (6.1) shows the sales line of code

Class Name Lines Of Code

Admin_report 300

Admin_message 320

Admin_account 216

Reports 266

Login 100

Customer_message 283

Customer_account 180

Create_balance 120

Bill 140

Add_balance 112

61

 LOGICAL LINES OF CODE

Logical Lines of Code is the number of programming language

statements also called Effective Lines of Code. Logical lines of code

measured by tools called locMetrics it is a software metrics used to

measure the size of the program by counting the number of

executable lines in the text of the program's source code.

Figure show shows sales code locMetrics

 Figure 6.1 locMetrics

62

6.2.1.2 WEB SERVER CODE:

 Table (6.2) show the Web server line of code

Number of method

Method Name

Lines of

method

1 counter_colums 20

2 show_productcode 26

3 find_productcode 15

4 Update 15

5 login_user 24

6 show_stock 34

7 Show_alert 20

6.2.2 COMMENTPERCENTAGE:

The number of lines that have comments divided on the number of lines that is free.

Whenever the percentage increase in this measure, it is increases the permeability

of understanding as well as maintainability.

Comment Percentage= number of comments /number of lines. [8]

6.2.2.1 VISUAL BASIC CODE PERCENTAGE:

 Number of comments=20

 The comment Percentage=10%

63

6.2.2.2 PHP CODE PERCENTAGE:

Table (6.3) present applying of CP on PHP code

Item Name Number of lines Number of

comments

Comment

percentage

Customer_account 216 5 2.3%

Bill 140 12 8.3%

Login 100 5 5%

Reports 266 8 3%

Create balance 120 10 8.3%

Admin_acount 160 12 7.5%

Admin_report 300 20 6.6%

Admin_message 230 18 7.8%

Customer_message 230 18 7.8%

6.2.3 FAN-IN FAN-OUT COMPLEXITY:

Functions with a large Fan-out are more expensive to maintain, Function with high

Fan-in mean that the function is implementing a number of functionalities.

DIFINITIONS

FAN IN:

Fan in for certain function is the number of functions that call this function.

64

FAN OUT:

Fan out for certain function is number of functions, this function calls. [13]

Formula

Complexity = Length . [13]

Table (6.4) applying fan in fan out for visual basic code:

Function name Fan in Fan out Fan-In Fan-Out

Complexity

Counter columns 2 2 (2*2)2*20=320

Show product code 1 1 (1*1)2*26=26

Find product code 1 1 (1*1)2*15=15

Change quant 1 2 (1*2)2*15=60

Login user 1 1 (1*1)2*24=24

Show stock 2 2 (2*2)2*34=544

Show alert 1 1 (1*1)2*20=20

Find product

quantity

1 1 (1*1)2*15=15

6.3 CYCLOMATIC COMPLEXITY (CC):

Used to evaluate complexity of the algorithm in a function, which is calculation of

the required number of test case stoutest fully function.

The formula is: “connections - nodes + 2”.

If the value is small, this is better, because it means reducing testing and increase

understanding. [8]

65

6.3.1 CYCLOMATIC COMPLEXITY FOR PHP CODE

This figure present graph of show_alert method

Yes

 No

Figure 6.2 show alert method

Select

all

produc

t

Put in

stream

Fine

Critica

l

Rt

stream

66

This figure present the graph of change _quantity method

Figure 6.3 change quantity method

Product

code and sell

quantity

Fineprodu

ct

CountingNe

wquantity

Return

Update

67

This figure shows the graph of find product code method

Yes No

Figure 6.4 find product code method

Product-

q,product-

c

Find

q=1

Find p-q

If

pq>prod

uct q

Find

q=2

Re-find q

68

This figure show the graph of find product quantity method

Yes No

 Figure 6.5 find product quantity method

Product-q,

Product-c

Find

product-q

If found

pq

Put

found pq

Re-find

Find

product-

q

69

Table (6.5) illustrates the implementation of (CC) measure on visual basic code

Method

Number

Number of

node

Complexity

show alert()

4

4

4-4+2=2

Change qunt()

4

5

4-5+2=1

Find product

Code()

5 6 5-6+2=1

Find product

Quantity()

4 5 4-4+2=2

6.2.4 LENGTH OF IDENTIFIERS

This is a measure of the average length of identifiers (names of variables and

functions) which is present in the program, by count the number of characters

variables or functions divided by the number of variables or functions, If the

length of identifiers is long then it indicates that the identifier name is

meaningful and meaningful identifiers enhance understandability of the code.

Formula:

Average length of identifier = total number of characters/number of

identifiers.

Average length of functions identifier = 68/6 = 11.1

Average length of variables identifier = 110/21 = 5.2

70

6.2.5 DEPTH OF CONDITIONAL NESTING

This measure represents how deep the nested if-statements in a program, by

count the number of nested if-statements levels divided by number of nested

if-statements, if the nested if-statements are very deep then program becomes

hard to understand and it becomes error-prone.

Formula:

Average depth of conditional nesting = sum of depth levels / number of if-

condition

Average = 24/ 16 = 1.5

.

6.2.5 SECURITY METRICS:

A set of security requirements (SR) identified from risk management is used to

describe the security goals of the software systems. These security requirements are

the basis for measuring security.

Goal-Question-Metrics (GQM) involves a set of goals that generate questions that

define those goals as completely as possible by quantifying them. Specifying

measures answers the questions to identify whether the goal can be achieved or not.

Metrics are given (on basis of full, average, weak compliance) a value to the

question.

Goal= Ensure Identification, authentication and authorization User, organization

(SR).

TABLE 6.6 METRICS FOR IDENTIFICATION, AUTHENTICATION AND

AUTHORIZATION REQUIREMENTS

71

Question (Q)=SR.Q Metrics(M)=SR.M

How are the users identified?

Subjective evaluation by how all level

user uniquely identified for using the

system

How are the users authenticated?

Name, password

How is authentication session managed?

No limited time

No of fail attempt to lock user account?

No such fail login attempt

How grant user authorization?

role based

How many resource and level of use

grant for single user?

only level of use defined

How many layers of authentication /

authorization check?

All layers

Scores from metrics for every question are:

SR.Q1= 1 (Full compliance: because every customer has unique id and user name).

SR.Q2= 1 (Full compliance: because every customer has unique name and

password that protect the system from unauthorized users).

SR.Q3= 0 (weak compliance: because the sessions have no limited time).

SR.Q4= 0 (weak compliance: because the system has no certain number for login

attempt).

SR.Q5= 1 (Full compliance: role based (authorized customer or admin)).

SR.Q6=0.5 (average compliance, only level of use defined).

SR.Q7= 1 (Full compliance, because the authentication/ authorization check per

usage).

Total score =100 * (1+1+0+0+1+0.5+1)/7= 64%.

So identification, authentication and authorization requirements can achieve 64%

from the system. [14]

72

6.2.6 USABILITY METRICS:

Internal usability metrics are used for predicting the extent to which

the software in question can be understood, learned, and operated,

attractive and compliant with usability regulations and guidelines. [7]

73

Table (6.7) show the usability metrics. [7]

 Criteria

Matrices

Description

 Matrices

Measured value

understandability

Function

understandability

understandability =

A/B

A=number of

output data items

which user

successfully get.

B= number of

output data items

available from the

interface.

14/15 =0.9

 Learnability

Easy to learn

Average time taken

to learn to use a

function correctly.

5m

 Operability

Input undo-ability

Operability= A/B

A= number of

input errors which

the successfully

correct.

B=number of

attempts to correct

input errors.

3/15=0.2

 Attractiveness

Interface

appearance

customizability

Attractiveness=A/B

A=number of turns

which user failed to

select input /output

expression

B=number of turns

which user tried to

select input /output

expression

½=0.5

74

6.2.8 FUNCTION POINT

Function Point Analysis is a structured technique for solving system’s problem. It

is a method to divide systems into smaller components, so they can be better

understood and analyzed, its unit measure for software.

The function point method measures the software size on the basis of well-defined

functional characteristics of the software system. Its represent:

1-Data that is entering a system (external input) like logical transaction

output or system feeds.

2-Data that is leaving the system (external output) such as online displays

and report.

3-Data stored within the system like user defined data.

4- External interfaces like interfaces of other systems.

BENEFIT OF FUNCTION POINT ANALYSIS

-Gives the precise size of the software function.

-Can be counted by different people at different times, and get the same

scales of errors.

- It helps to connect the sizing information to the user or client.

- Used to determine whether a tool, a language, an environment, is more

productive when compared with others. [4]

75

FUNCTION POINT EXAMPLES

- Application development with function point such as considering the

cost needed to develop application in some system.

- Comparison of tow systems.

- Implementing of new functionalities with function point such as

knowing how count the cost needed to introduce new functions in

certain system.

76

CHAPTER SEVEN

RESULTS AND RECOMMENDATIONS

7.1 RESULTS

7.2 RECOMMENDATIONS

7.3 CONCLUSION

77

INTRODUCTION:

This section discusses the most important results that we have reached after

implementation of the system.

7.1 RESULTS:

The model was tested based on the existing quality factors, and the results (quality

metrics, testing) met the quality standards after modifying and development of the

system.

7.2 RECOMMENDATIONS:

• Adding another feature for the system security.

• Apply the function point analysis on the system.

• Apply more quality metrics.

• Make the system applicable in multiple platform (mobile).

• Increase the payment ways.

• Create Positioning Service (GPS) to locate the nearest branch of the

customer.

• It will be great if the system is adopted by huge company.

7.3 CONCLUSION:

We have successfully accomplished this research, which helps in the quality control

of the integrated system after the maintenance process and applying the test

strategy, and the quality metrics for the whole system, taking into account that the

quality of the system met our expectation.

78

A LIST OREFERENCES AND

SOURCES

BOOKS

[1] Grubb, Penny, and Armstrong A. Takang. Software maintenance: concepts and

practice. World Scientific, 2003.

 [2] Ronan Fitzpatrick- Software Quality: Definitions and Strategic Issues - 1996

[3] Daniel Galin -Software Quality Assurance (From theory to implementation) -

first publish 2004

[4] A Study of Software Metrics-

1 Assistant Professor, JIET Jind. gurujangra@gmail.com

2 Professor, Dept. of CSE, Ch. Devi Lal University Sirsa

3 Professor, Dept. of CSE, Ch. Devi Lal University Sirsa - January 2011

[5] ISO/IEC 14764 IEEE Std 14764- Software Engineering -Software Life Cycle

Processes Maintenance-2006- IEEE 2006.

[6] IEEE Standard for Software Maintenance- Software Engineering Standards

Committee of the IEEE Computer Society- Approved 25 June 1998.

[7] ISO/IEC 9126-3-Software engineering –Product quality – Part 3: Internal

metrics – 2002.

[8] Mozamil jah -Software Metrics-Usability and Evaluation of Software Quality -

university west-department of technology, mathematics and computer science, S-

46186 Trollhattan, Swedden - June 2008.

[9] -Brian Chess - Metrics That Matter: Quantifying Software Security Risk -

Fortify Software.

[10] Ronan Fitzpatrick- Software Quality: Definitions and Strategic Issues-

Staffordshire University, School of Computing Report- April 1996.

79

WEBSITES

[11]UML-wikipedia-https://en.wikipedia.org/wiki/Unified_Modeling_Language-

Time 8:45pm Date 3-8-2015.

[12] The free encyclopedia - en.wikipedia.org.-

 Time 12:03pm Date 15-8-2015.

[13] http://www.aivosto.com/project/help/pm-sf.html

 Time 4:56pm Date 24-10-2015.

http://www.aivosto.com/project/help/pm-sf.html

80

APPENDIX I:

This appendix shows test cases used to test the system to make sure the system to

objective and anticipation.

LOGIN METHOD TESTING:

Test

cases

Input Expected

result

Actual result Test

result

Test

case(1)

mwada@yahoo.com,1111 Admin page Admin page Accept

Test

case(2)

Teso1573@gmail.com,1234 Customer page Customer page Accept

Test

case(3)

mwada@yahoo.com,1112 Caption error

message

Caption error

message

Accept

Test

case(4)

Teso1573@gmail.com,1233 Caption error

message

Caption error

message

Accept

Test

case(5)

mwda@yahoo.com ,1111 Caption error

message

Caption error

message

Accept

Test

case(6)

Teso1577@gmail.com,1234 Caption error

message

Caption error

message

Accept

mailto:mwada@yahoo.com,1111
mailto:Teso1573@gmail.com,1234
mailto:mwada@yahoo.com,1112
mailto:Teso1573@gmail.com,1233
mailto:mwda@yahoo.com%20,1111
mailto:Teso1577@gmail.com,1234

81

TESTPARTICIPATION IN THESYSTEM FUNCTION:

Test

cases

Input Expected result Actual result Test

result

Test

case(1)

Esra ,099387377,

esra@gmail.com,omdor,female

Subscribed Subscribed Accept

Test

case(2)

Esra ,22hhhh,esra@gmail.com

,omdor,female

Captionerrormessage Captionerrormessage Accept

Test

case(3)

Esra ,099387377,

esra.com,omdor,female

Captionerrormessage Captionerrormessage Accept

Test

case(4)

Esra ,099387377,

esra@gmail.com,female

Captionerrormessage Captionerrormessage Accept

Test

case(5)

1111

,099387377,esra@gmail.com,

omdor,female

Captionerrormessage Captionerrormessage Accept

mailto:esra@gmail.com,omdor,female
mailto:esra@gmail.com,female

82

DIRECT SELL FUNCTION TESTING:

Test cases Input Expected

result

Actual result Test

result

Test

case(1)

Esra ,099387377,p-

1211,7

Added to the

list of

purchases

Added to the

list of

purchases

Accept

Test

case(2)

 p-1211,7 Caption error

message

Caption error

message

Accept

Test

case(3)

099387377,p-1211,7 Caption error

message

Caption error

message

Accept

Test

case(4)

Esra ,099387377,p-

1211,150

Caption error

message

Caption error

message

Accept

Test

case(5)

Esra

,099387377,1211,7

Caption error

message

Caption error

message

Accept

Test

case(6)

Esra ,0998377,1211,7 Caption error

message

Caption error

message

Accept

Test

case(7)

Esra

,099387377,p1211,100

Caption error

message

Caption error

message

Accept

Test

case(8)

Esra ,099387377,p-

1211

Caption error

message

Caption error

message

Accept

83

ADD BALANCE FUNCTION TESTING

Test cases Input Expected

result

Actual result Test

result

Test

case(1)

11223341 Adding

balance to the

customer

account

Adding

balance to the

customer

account

Accept

Test

case(2)

678338 Caption error

message

Caption error

message

Accept

Test

case(3)

empty Caption error

message

Caption error

message

Accept

84

MODIFY CUSTOMER FUNCTION TESTING:

Test

cases

Input Expected

result

Actual

result

Test

result

Test

case(1)

Esra

,0927953022,esra@gmail.com,omdor,female

Customer

modified

Customer

modified

Accept

Test

case(2)

Esra ,22hhhh,esra@gmail.com,omdor,female Caption error

message

Caption error

message

Accept

Test

case(3)

Esra , 0927953022,esra.com,omdor,female Caption error

message

Caption error

message

Accept

Test

case(4)

Esra , 0927953022,esra@gmail.com,female Caption error

message

Caption error

message

Accept

Test

case(5)

1111 ,

0927953022,esra@gmail.com,omdor,female

Caption error

message

Caption error

message

Accept

85

CUSTOMER REPORT FUNCTION TESTIN

Test

cases

Input Expected

result

Actual

result

Test

result

Test

case(1)

Teso1573@gmail.com,1234 Sales

report

Sales

report

Accept

Test

case(2)

Teso1573@gmail.com,1234 Balance

report

Balance

report

Accept

Test

case(3)

Teso1573@gmail.com,1234 Billing

report

Billing

report

Accept

Test

case(4)

Teso1573@gmail.com,1234 Customers

report

Customers

report

Accept

Test

case(5)

Teso1573@gmail.com

,1234, 2-9-2015

Search by

date

reports

Search by

date

reports

Accept

Test

case(5)

Teso1573@gmail.com

,1234, third2015

Caption

error

message

Caption

error

message

Accept

mailto:Teso1573@gmail.com%20,1234
mailto:Teso1573@gmail.com%20,1234
mailto:Teso1573@gmail.com%20,1234
mailto:Teso1573@gmail.com%20,1234

86

ADMIN REPORTS FUNCTION TESTING:

Test

cases

Input Expected result Actual result Test

result

Test

case(1)

mwada,1111 Report about user

information

Report about user

information

Accept

Test

case(2)

mwada,1111 Report about the

daily bill

Report about the

daily bill

Accept

Test

case(3)

mwada,1111 Report about all sell

operation

Report about all sell

operation

Accept

Test

case(4)

mwada,1111,1-3-2015 Report about all sell

operation according

to the date

Report about all sell

operation according

to the date

Accept

Test

case(5)

mwada,1111,third2015 Caption error

message

Caption error

message

Accept

Test

case(6)

mwada,1111,empty

date

Caption error

message

Caption error

message

Accept

87

CREATE BALANCE FUNCTION TESTING

Test

cases

Input Expected result Actual result Test

result

Test

case(1)

mwada,1111,223373699 Balance created

successfully

Balance created

successfully

Accept

Test

case(2)

mwada,1111,22337jhhg Caption error

message

Caption error

message

Accept

Test

case(3)

mwada,1111,empty Caption error

message

Caption error

message

Accept

