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 الآية
 بسم االله الرحمن الرحيم

: قال تعالي   

 

َََْ َ اِ وَامْ إن اَُْْْ أنْ  {

 رْضوَاتِ وَاَا رأ ِْ واَُْ

 نُِ ونَ إَُْ  واُْم * ِءآ يِ

ُ ََر نَ{  

 صدق االله العظيم

 سورة الرحمن

34- 33الايات   
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هداءالإ  

 

رسولنا الكريم... الي معلم البشرية  الاول   

صلي االله عليه وسلمسيدنا محمد   

 من أسكنونا قلوبهم وعلمونا السلام قبل الخصام

 آبائنا الكرام

 من سقيننا من حنانهن شهد المرام وعلمننا الوئام قبل الفطام

أمهاتنا الرحيماتإلى   

 الشموس التي ترسل لنا كل صباح أجمل وأرق كلمة ومن ينتظروننا

بشوق وحنين مع مولود كل يوم  

 إلي أخواننا وأخواتنا
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 الشكر والعرفان

�لي صفائح أ�وراق................ ت��ا�ر الكلمات �براً وح�اً   

بهاومن ٔ�زال غيمة �ل مررت ..............لكل من �لمني   

.وتصحیح �ثراتي ........ولكل من ٔ��اد رسم ملامحي  

عماد ا��ن عبدالله عبدالرحيم الشكر ٔ�جز� ��كتور ٔ�لا�سان   

 ا�ي ٔ�شرف �لي هذا العمل �لنصح و�رشاد والتوج�ه

 ويمتد الشكر الي ٔ�ساتذة قسم الر�ضیات ا��ن ٔ�حس�نوا صنعنا و�سلیحنا �سلاح العلم والمعرفه

.سهم في اخراج هذا العمل بصورته هذهالي كل من ا   

  22الي ٔ�خواني ؤ�خواتي وكل من جمعنا بهم ا�رب ، الي صناع الفرح ا�فعه 

.هكذا هي الحیاة تجمع وتفرق ولكن س�یظل ح�ل الود والوصل بی��ا وس��قي اسرى ا�ترامكم ووفا�كم الي �بد  
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Abstract 

In this research we consider the most useful 

methods to study the flow near bifurcation point, 

that is the center manifolds theorem.  Because of 

this way study the Dynamical Systems and there 

geometrical theory with some examples. Also we 

discuss the basic concepts of studying dynamical 

system with some applications. We discuss the 

stationary and periodic solutions and we illustrate 

how to determine relations between linear or 

nonlinear stability. Also we study the center 

manifolds and their prosperities. We discuss   the 

bifurcations involving a single or several eigenvalues 

with some applications and examples. 
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 الملخص

 

بالقرب من نقطة ) السريان(هذا البحث إعتبرنا الطريقة الاكثر إستخداماٌ لدلراسة الفيض في 

ولأجل هذا درسنا الانظمة الديناميكية .وهي نظرية متعددات السطوح المركزية ، إضطراب 

أيضاٌ ناقشنا المفاهيم الاساسية لدراسة الانظمة الديناميكية .ونظريتها الهندسية مع بعض الأمثلة

ناقشنا الحلول الثابتة والدورية ووضحنا كيفية تحديد العلاقات بين . بعض الطبيقات مع 

ناقشنا .ايضاٌ درسنا متعددات السطوح المركزية وخواصها .الاستقرار الخطي واللاخطي 

الإضطرابات المحتوية على متجه ذاتي وحيد  أو عدة متجهات ذاتية مع بعض التطبيقات 

.   والأمثلة  
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Chapter 1 
Basic concepts of Dynamical systems  

 

Section (1.1):  Dynamical Systems 
The last 30 years have witnessed a renewed interest in dynamical 
systems, partly due to the ʻʻdiscoveryʼʼ of chaotic Behavior,and 
ongoing research has  brought many new insights in their behavior. 
What are dynamical systems, and what is their geometrical theory? 
Dynamical systems can be defined in a fairly abstract way, but we 
prefer to start with a few examples of historical importance before 
giving general definitions. This will allow us to specify the class of 
systems that we want to study, and to explain the differences 
between the geometrical approach and other approaches. 

Example (1.1.1):(The Motion of the Moon) 

The problem of the Moon's motion is a particular case of the N-body 
problem, which gives a nice illustration of the historical evolution 
that led to the development of the theory of dynamical systems .This 
section follows mainly Gutzwillerʼs article [Gu98]. Everyone knows 
that the phases of the Moon follow a cycle of a bit less than 30 days. 
Other regularities in the Moonʼs motion were known to the 
Babylonians as early as 1000 B.C.One can look, for instance, at the 
time interval between Sunset and Moonrise at Full Moon. This 
interval is not constant, but follows a cycle over 19 years, Including 
235 Full Moons  (the Medtronic Cycle). 

����� ��� ����� �������� ���� ������ � ����� ���ℎ ������� �� 18 
years and 11 days , containing 223 Full Moons (the Saros cycle). 
Greek astronomy started in the 5th century A.C.and initiated 
developments culminating in the work of  Ptolemy in the second 
century B.C.In contrast with the Babylonians, who looked for 
regularities in long rows of numbers, the Greeks introduced 
geometrical models for their astronomical observations. 
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To account for the various observed deviations' from periodicity, 
they invented the model of epicycles. 

In modern notation, and assuming a planar motion with Cartesian 
coordinates(x,y)∈  ��, the complex number 

� = � + �� ∈ � evolves as function of time  � according to the law 

� = ���� ��(1+ ���� ��),                                    (1.1) 

Where �, �, �� and �� are parameters which are fitted to 
experimental data. The epicycle model was refined in subsequent 
centuries, with more terms being included into the sum (1.1) to 
explain the various ʻʻinequalitiesʼʼ (periodic deviations from the 
uniform motion of the Moon). Four inequalities were discovered by 
Tycho Brahe alonc in the 16�ℎ centuey. These terms could be partly 
explained when Kepler discovered his three laws in 1609: 

(1)-The trajectory of a planet follows an ellipse admitting the sun as 
a focus. 

(2)- equal areas, measured with respect to the sun, are swept in 
equal time intervals, 

(3)- when several planets orbit the sun, the period of the motion 
squared is proportional to the third power of the semi-major axis of 
the ellipse. 

Expanding the solution into Fourier series produces sums for which 
(1.1) is a �irst approx- Imation. However, while these laws describe 
the motion of the planets quite accurately, they fail to fit the 
observations for the Moon in a satisfactory way. A decisive new 
point of view was introduced by Newton when he postulated his low 
of Universal Gravitation (published in his principia in 1687). 

A system with N planets is described by a set of ordinary differential 
equations . 
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� �
���

���  = ∑
�� �� �(��� ��)

||��� ��||��� �,… �
�� �

,   i= 1,.....,N.          (1.2)  

Here the �� ∈ �� are vectors specifying the position of the planets, 
the � � are positive scalars giving the masses of the particles, and 
G is a universal constant. 

Newton proved that for tow bodies (N=2), the equation (1.2) is 
equivalent to Keplerʼs �irst two laws. 

With three or more bodies, however, there is no simple solution 
to the equations of motion, and Keplerʼs third low is only valid 
approximately, when the interaction between planets is 
neglected. 

The three-body problem initiated a huge amount of research in 
the following two hundred years. 

Newton himself invented several clever tricks allowing him to 
compute corrections to Keplerʼs lows in the motion of the Moon. 

He failed, however, to explain all the anomalies.  

Perturbation theory was subsequently systematized by 
mathematicians such as Laplace, Euler, Lagrange, Poisson and 
Hamilton, who developed the methods of analytical mechanics.  

As a first step, one can introduce the Hamiltonian function 

H : (�� )�   × (��)�     →    � 

(p,q)    →     ∑
��

�

�� �

�
�� � − ∑

�� �� �

||��� ��||
 

�� � ,                              (1.3) 

Where ��� � ��� ∈ �� are the momenta of the planets and 
�� = �� ∈ ���� for i= 1,….N.  

The equation of motion (1.2) is then equivalent to the equation 
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���

��
 = 

��

���
 ,          

���

��
= −

��

���
 .                              (1.4) 

One advantage of this formulation is that all the information on 
the motion is contained in the scalar function H.  

The main advantage, however, is that the structure (1.4) of the 
equations of motion is preserved under special changes of 
variables, called canonical transformations. 

In the case of the two-body problem, a good set of coordinates, is 
given by the Delaunay variables (�, �) ∈ �� × ��(actually, there 
are 6+6 variables, but 6 of them correspond to the tri vial motion 
of the center of mass of the system). 

The action variables ��,��, �� are related to the semi-major axis, 

eccentricity and inclination of the Kepler ellipse, wile the angle 
variables ��, ��, �� describe the position of the planet and the 
spatial orientation of the ellipse. 

The two-body Hamiltonian takes the form 

� (�, �) = −
�

���
� ,                                             (1.5) 

Where 
� �� �

� ��� �
 . The equations of motion are 

���

��
=  

��

���
=  

�

��
� ,                   

���

��
= −

��

���
= 0 

             
�� �

��
=  

��

���
=  0,                     

���

��
= −

��

�� �
= 0                        (1.6)                     

      
�� �

��
=  

��

���
=  0,                   

���

��
= −

��

�� �
= 0 

Describing the fact that the planet moves on an elliptical orbit 
with fixed dimensions and orientation . 

In the case of the three-body problem moon-Earth-sun, 
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One can use two sets of Delaunay variables (�, �) ��� (�, � ) 
describing, respectively, the motion of the system  Moon-Earth, 
and the motion around the Sun of the center of mass of the the 
system Moon-Earth, The  Hamiltonian takes the form 

� (�, �, �, � ) = ��(�, �) + �� + (�, �, �, � ).           (1.7) 

The unperturbed part of the motion is governed by the 
Hamiltonian 

��(�, �) = −
�

2��
� −

��

2��
� ,                                              (1.8) 

Where �� =
(� ��� �)� �

� ��� ��� �
. Due to the special initial conditions of the 

system, the perturbing function ��has a small amplitude. It depends 

several small parameters: the initial eccentricities � ≃ 1
8�  of the 

Moon and �� ≃ 1
60�   of the Earth, their inclinations � and ��, and the 

ratio � ��⁄ ≃ 1 400⁄  of the semi-major axes of the two subsystems. 
All these quantities are functions of the actions of the actions 
� ��� �.The standard approach to expand �� in a trigonometric 
series 

�� = −
�� �� �� �

� � + � �
 
��

���
� ����( ���� + ���� + ���� + ����

�∈��

+ ��ψ � + ��� �)                                                                        (1.9) 

The coefficients �� are in turn expanded into Tyalor series  of small 

parameters, 

              �� = � ���(
�

��)
� �

��� �
 �������������,                  (1.10) 

Where  � = ����/2  ��� �� = �����/2. The solutions can then be 
expanded into similar series, thus yielding a Fouries expansion of 
the form (1.1) (in fact, it is better to simplify the Hamiltonian by 
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successive canonical transformations, but the results are equivalent 
). 

The most impressive achievement in this line of work is due to 
Delaunay, who published in 1860 and 1867 two volumes of over 
900 pages .The contain expansions up to order 10. Which are 
simpli�ied with 505 transformations .The main result for the 
trajectory of the Moon is a series containing 460 terms, �illing 53 
pages. 

At the turn of the century, these perturbative calculations were 
criticized by Poincare , who questioned the convergence of the 
expansions . Indeed , although the magnitude of the first few order 
decreases, he showed that this magnitude may become extremely 
large at sufficiently high order . The phenomenon is related to the 
problem of small divisors appearing in the expansion, which we will 
discuss in simpler example in the next section. Poincare introduced 
a whole set of new methods attack the problem from a geometric 
point of view . Instead of trying to compute the solution for a given 
initial condition ,he wanted to understand the qualitative nature of 
solutions for all initial  conditions ,or, as we would say nowadays, 
the geometric structure of phase space, He there by introduced 
concepts such as invariant points, curves and manifolds. He also 
provided examples where the solution cannot be written as a linear 
combination of periodic  terms , a first encounter with chaotic 
motion. The question of convergence of the perturbation series 
continued nonetheless to be investigated, and was finally solved in a 
series of theorems by Kolmogorov, Arnol's and Moser (the so-called 
KAM theory) in the 1950s. They prove that the series converges for 
(very) small perturbations, for initial conditions living on a Cantor 
set. This did not solve the question of the motion of the Moon 
completely, although fairly accurate ephemerides can be computed 
for relatively short time spans of a few decades. 
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Using a combination of analytical and numerical methods, the 
existence of chaos in the Solar system was demonstrated by Laskar 
in 1989[La89], implying that exact positions of the planets cannot be 
predicted for times more then a few hundred thousand years in the 
future. 

Example(1.1.2):(The standard map) 

The standard map describes the motion of a " rotator" with one 
angular degree of freedom � ∈ ��(��������� �ℎ� ������ �/
2��),which is periodically kicked by a pendulum-like force of 
intensity proportional to- sin q. If ��  denote the position and 
momentum just before the ��� kick, one has 

                             ���� = �� + ����             (���  ��)            (1.11) 

                                                  ���� = �� − �sin ��  

For � = 0, the dynamics is very simple and one explicitly 

       �� = �� + ���                        (���  2�)                      (1.12) 

        �� = �� 

Let us new analyse the iterated map (1.11) according to the 
perturbative method. The idea is to look for a change of variables (q 
, p) → (� , �) transforming the system into a similar one, but without 
the term �sin �� . Let us write 

                 � = � + �(�, �)                                                      (1.13) 

� = �+ �(�, �) 

Where � and � are unknown functions, which are 2π-periodic in � . 
We impose that this change of variables transforms the map (1.11) 
into map 

                                   ���� = �� + ����           (���  2�) 

���� = �� = �                                                            (1.14) 
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This is equivalent to requiring that � ��� � solve the functional 
equations 

�(� + �, �) = �(�, �) + �(� + �, �)                           (1.15) 

�(� + �, �) = �(�, �) − �sin�� + �(�, �)�. 

One can try solve these equations by expanding 
� ��� � ���� ������ ������ �� � and Fourier series in � ∶ 

�(� , �) = � ��

�

�� �

��(�, �)                ��(� , �)  

= � ���(�)����

�

�
�� � �

                                                              (1.16) 

�(� , �) = � ����(�, �)              ��(� , �)   

�

�� �

= � ���(�)����                                                              (1.17)

�

�� � �

 

We will use the expansions 

sin(� + ��) = ���� + ������� + ��(������ − �

�
��

�����)+ �(��).                                   

(1.18) 

At order �, we have to solve the relations 

                     ��(� + �, �) = ��(� , �) + ��(� + �, �)                     (1.19) 

��(� + �, �) = ��(�, �) − ���� , 

Which become , in Fourier components, 

��,����� = ��,� + ��,����� 

              ��,����� = ��,� − ��,�,                                          (1.20) 
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Where ��,�are the Fourier components of sin �, that is, 

 ��,� = − �� �,� = 1/(2�) and all other components vanish. We thus 

get 

��(� , �) =
���

��(�� ��� )
−

�� ��

��(�� �� ��)
=

��� (� � � /�)

�����(� /�)
                 (1.21) 

��(� , �) = − ������

��(�� ���)� +
�� ���� ��

��(�� �� ��)� =
��� (� � � /�)

�����(� /�)
. 

Note that this is only possible for ��� ≠ 1,that ,� ≠ 0 (���  2�). At 
order �� we obtain similar relations as (1.20), but now ��,� denotes 

the Fourier coefficients of ��(� , �) cos �, which are nonzero for 
|�|= 2. Thus  �� ��� �� only exist if  ���� ≠ 1, or w≠ 0, � (mod 2π): 

Similarly, we will find that �� ��� �� only exist if ���� ≠ 1, so the 

equations (1.15) can only be solved for irrational w/(2π) . Even 
then, the expansions of � ��� � will contain 

Small terms of the 1 − ����in the denominators, so that the 
convergence of the series is not clear at all . In fact, the convergence 
has been proved by Moser for certain irrational w called 
Diophantine numbers [Mo73] . 

Now let us turn to the geometric approach. We can consider (q,p) as  
coordinates in the plane (or on the cylinder because of the 
periodicity  of q). For given (��,��),  the set of points{(�� , ��)}��� is 

called the orbit with initial condition (��,��). We would like to know 

what the different orbits look like. The simplest case is the fixed 
point :if 

                                               
 

  �
���

= ��  

                                                  ���� = ��                                              (1.22) 

Then the orbit will consist of a single point . The fixed points of the 
standard map are (0,k) and (π ,k) with  � ∈ �. 
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We can also have periodic orbits, consisting of m points, if 

                                                   
 

  �
���

= ��  

                                                      ���� = ��.                                   (1.23) 
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FIGURE (1.1)Another possible orbit is the invariant curve. For 
instance if the equations (1.15) admit a solution, we can write 

                        �� = �� + �(��,� )        (mod2π) 

                                                 �� = � + �(��,� ),                                  (1.24) 

Where �� = �� + �� . This is the parametric equation of a curve 
winding around the cylinder. Since w is irrational, the points fill the 
curve densely. One can also analyse the dynamics in the vicinity of 
periodic orbits. It turns out that this kind of map, most periodic 
orbits are of one two types: elliptic orbits are surrounded by 
invariant Curves, while hyperbolic orbits attract other orbits from 
one direction and expel them into another one. There are, however, 
much more exotic types of orbits. Some live on invariant Cantor sets, 
others densely fill regions of phase space with a positive surface.   
The aim of the geometrical theory of dynamical systems is to classify 
the possible behaviours and to find ways to determine the most 
important qualitative features of the system. An important 
advantage is that large classes of dynamical systems have a similar 
qualitative behavior. The does not mean that the perturbative 
approach useless. But it is in general preferable to start by analyzing 
the system from a qualitative point of view, and then, if necessary, 
use more sophisticated methods in order to obtain more detailed 
information. Now we study the Lorenz model  convection is an 
important mechanism in the dynamics of the atmosphere: warm air 
has a lower density and therefore rises to higher altitudes, where it 
cools down and falls again, giving rise to patterns in the atmospheric 
currents .This mechanism can be modeled in the laboratory, an 
experiment known as ������ℎ −  �� �́��� ����������. A fluid is 
contained between two horizontal plates, the upper one at 
temperature �� and the lower one at temperature �� = �� + ∆� > ��. 
the temperature difference ∆� �� �ℎ� ������� ��������� , which can 
be modified. 
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For small values of ∆�, the fluid remains at rest, and the  
temperature decreases linearly in the vertical direction, At slightly 
larger  ∆�, convection rolls appear (their shape depends on the 
geometry of the set-up). The flow is still stationary, that is, the fluid 
velocity at any give point does not change in time. For still larger ∆�, 
the spatial arrangement of the rolls remains fixed, but their time 
dependences becomes more complex . Usually, it starts by getting 
periodic. Then different scenarios are observed, depending on the 
set-up. One of the them is the ������ �������� ������ the time-
dependence of the velocity field has period,P, 2P, 4P, … . , 2� �, … . ., where 
the ���  period doubling occurs for a temperature difference ∆��  
satisfying 

                                          lim�→ �
∆�� � �� � �
∆�� � �� ��

= � ⋍ 4.4                           (1.25) 

These ∆�� accumulate at some finite ∆��  for which the behavior is 
no longer periodic, but displays temporal chaos. In this situation, the 
direction of rotation of the rolls changes erratically in time.  For very 
large ∆�, the behaviour  can become ���������:not only is the time 
depen - dence nonperiodic, but the spatial arrangement of the 
velocity filed also changes RB convection has been modeled in the 
following way . For simplicity, one considers the two-dimensional 
case, with an infinite  extension in the horizontal 

�� − ���������,while the vertical   �� − ��������� is bounded 
between -�

�
 and �

�
. Let � = � × [− �

�
 , �

�
 ]. The state 

                �: � × ℝ → ℝ �                  velocity, 

                                           �: � × ℝ → ℝ                    temperature,      (1.26) 

                        �: � × ℝ → ℝ                          Pressure. 

The deviation �(�, �) from the linear temperature profile is by 

                            (�, �) = �� + ∆���

�
− ���+ ���(�, �).                      (1.27) 

The equations of hydrodynamics take the following form: 
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�

�
�
��

��
�(�.∆)��� ∆�� ∇��(�,�)�  

                                         
��

��
+ (�, ∇)� = ∆� + ���                               (1.28) 

∇. � = 0 

Here �, �ℎ� ������� ������ ,is a constant related to physical 
properties of the fluid, while �, �ℎ� �������� ������ ,is 
proportional to ∆�. Furthermore, 

∇� = (
��

���
,

��

���
)� 

∆� =
���

���
+

���

���
� 

∇. � =
���

���
+

���

���
 

(��.∇)� = ��

��

���
+ ��

��

���
. 

The terms containing (�. ∇) introduce the nonlinearity into the 
system. the boundary conditions require that (�, ��) and ��� ���⁄  
should vanish for �� = ± �

�
. We thus have to solve four coupled 

nonlinear partial differential equations for the  four fields ��, ��, �, �. 
The continuity equation ∇. � = 0 can be satisfied by introducing the 
��������� � : � × ℝ → ℝ , such that 

(��, ��) = �−
�ψ

���
,

�ψ

���
�                                        (1.29) 

It is also possible to eliminate the pressure from the two equations 
for �� ��.⁄  we are left with two equations for ψ  and �. The problem 
can be further simplified by assuming a periodic dependence on 
��,of period 2� �⁄ . A possible approach (not the best one by modern 
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standards, but historically important) is to expand the two fields 
into Fourier series (or “modes”): 

                                     � (��, ��) = ∑ ���������
��ℤ� ������� 

                    �(��, ��) = ∑ ���������
�∈ℤ� �������              (1.30) 

Example(1.1.3):(The Lorenz Model) 

 

 

FIGURE (1.2).One trajectory of the Lorenz equations(1.33) for 

� = 10, � =
�

�
��� � = 28, projected (X,Z)-plane. (where the 

boundary conditionsimpose som relations between Fourier 
coefficients of the same |��| ). Note that the terms of this sum are 
eigenfunctions of the linear operators in(1.28). Plugging these 
expansions into the equations, we obtain relation of the from 

�

��
(��(�)

��(�)
) =  ��

�

��
(��(�)

��(�)
) + � (����,���,}��∈ℤ�,              (1.31) 



23 
 

Where ��are 2 × 2 matrices and the � (. ) comes from the nonlinear 
terms in (�. ∇) and may depend on all other �′. Without these 
nonlinear terms the problem would be easy to solve. 

In 1962, Saltzmann considered approximations of the  equations 
(1.31) with �initely many terms, and observed  that the dynamics 
seemed to be dominated by three Fourier modes. In 1963,Lorenz 
decided to truncate the equations to these modes[Lo63], stting 

                                         � ���,��� = ���(�)������������ 

����,��� = ���(�)������������ + ���(�)���2���.         (1.32) 

Here �� = √2(�� + ��) ��⁄ , �� = √2�� ��� �� = (�� + ��)� (���⁄ ) 
are constants introduced only in order to simplify the resulting 
equations. All other Fourier modes in the expansion (1.31) are set to 
Zero, a rather drastic approximation. After scaling time by factor 
(�� + ��) , one gets the equations 

                                                         �� ��⁄ = �(� − �) 

�� �� = �� − � − ��                   (1.33)⁄  

                                                        �� �� = − �� + ��,⁄  

Where 4�� (�� + ��),⁄  and ��� (�� + ��)�⁄ is proportional to the 
control paramter �, and thus to ∇�. These so-called ������ �������� 
are a very cery approximation of the equations (1.28) , nevertheless 
they may exhibit very  complicated dynamics. In fact, for 0 ≤ � ≤ 1, 
all solutions are attracted by the origin � = � = � = 0, 
corresponding to the �luid at rest.For r>1, a pair of equilibria with 
� ≠ 0 attracts the orbits , they correspond to convection rolls with 
the two possible directions of rotation . In-creasing � produces a 
very complicated sequence of bifurcations, including period 
doubling cascades[Sp82]. For certain values of the parameters, 
� ������� ��������� is formed, in which case the convection rolls 
change their diection of rotation very erratically(Fig,1.2), and the 
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dynamics is very sensitive to small changes in the initial 
conditions(the  ��������� ������). The big surprise was that such a 
simple approximation, containing only three modes, could capture 
such complex behaviours. 

Example(1.1.4) :(The Logistic Map) 

Our last example is a famous map inspired by population dynamics . 
Consider a population of animals that repeoduce once ayear. Let 
�� be the number of individuals in year number �. The offspring 
being usually proportional to the number of adults , the simplest 
model for the evolution of the population from one year to the 
population from one year to the next is the linear equation 

                                                                 ���� = ���                                  (1.34) 

Where � is the nataliy rate (minus the mortality rate). This low leads 
to an exponential growth of the form 

                                              �� = λ� �� = �������                                  (1.35) 

�ℎ� ���� ℎ�� ���. This model becomes unealistic when the number 
of individals is so large that the limitation of resources become 
apparent. The simplest possibility to limit the growth is to introduce 
a quadratic term-���

�, leading to the law 

                                                   ���� = ��� − ���
�.                                (1.36) 

The rescaled varible � = �� then obeys the equation 

                                    ���� = ��� (�� ) = ��� (1 − �� )                       (1.37) 

The map �� is called the �������� ��� . Observe that for  

0 ≤ λ ≤ 4, ��maps the interval [0,1] into itself. The dynamics of the 
sequence �� depends  drastically on the value of �. 
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For 0 ≤ � ≤ 1, all orbits converge to 0, which means that population 
becomes extinct. For 1 ≤ � ≤ 3,all orbits stating at �� > 0 converge 
to 1 − 1 �⁄ , and thus the population reaches a stable equilibrinm.    
For 3 < � ≤ 1, the orbits converge to a cycle of period 2, so that the 
population asymptoticlly jumps back and  forth between two values.    

For � > 1 + √6 , the system goes through a whole seqence of period 
doubings. Similarly as in �� convection, the values �� of the 
parameter for which the ��� period doubling occurs obey the low 

                                                               lim�� �
�� � �� � �
�� � �� ��

                                         (1.38) 

Where � is called the ����������  ��������. In 1978, Feigenbaum 
as well as Coullet and Tresser independently outlined  an argument 
showing that such period doubling cascades 

Section(1.2):(Basic Concepts) 

Restar by dis cussing the orbits an Flows let � ⊂ ℝ � be an opan 
domain. One type of dnamical systems we will consider is given by a 
map �: � → � . �  is called the phase space of the system. It is 
possible to consider more general differentiable manifolds as phase 
space, such as the circle, the cyliner or the torus, but we will limit 
the discussion to Euclidean domains. Generalizations to other 
manifolds are usually straightforward. 

De�inition(1.2.1): The (positive)orbit �� � �ℎ����ℎ � ����� �� ∈ �   
�� �ℎ� �������� (��)��� ������� ��  ���� = �(��) 

��� ��� �������� � ≥ 0. ��  ℎ��� �ℎ�� 

�� = ��(�)             �ℎ��� �� = ���� … ��� ��� ���
� �����

         (1.40) 

�� ���� � �� ����������, �� ��� ���� ������ �ℎ� ������� ����� �� �� 

By the relation  



26 
 

�(��) = ���� ��� ��� � < 0, �ℎ��ℎ ��� ���������� ��(1.2.1) 

�� �� ��� �� � = (�� �)� ��� ��� � > 0. �ℎ� ����� ��  ��  �� then 
given by (��)�∈ℤ . 

Note the trivial relation 

    ����(��) = �� ���(��)�                                     (1.41) 

For all positive integers �, � (and all integers if � is invcrtible), which 
will admit an analogue in the case of ODEs.As particular cases of 
maps �,  

we have homeomorphisms, which are continuous maps admitting a 
continuous inverse, and �������� ��ℎ���� , which are continuously 
differen-tiable maps admitting a continuously differentiable inverse 
Similarly, all 
� ≥ 1, �    ������������ ℎ���  �� �� ���������� ���  � ���ℎ that 
both � and �� � admit continuous derivativesv up order �.                                    
The �������� ������������ ��������� we are going to consider are 
of the form 

�̇ = �(�),                                   (1.42) 

Where  �: � → ℝ � , ��� �̇ denotes 
��

��
 . Equivalently, we can 

write(1.42) as a system of equations for the components of �, 

�̇� = ��(�),   �, … … … , �                   (1.43) 

� ⊂ ℝ �  is again called phasc space and � is called a vector field. To 
difine the orbits of �, we have to treat the problem of  existence and 
uniqueness a bit more carefully. 

  The following results are assumed to be known from basic 
analysis(see for instance [Hal69],[Har64],[HS74]). 
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Let� �� ����������. ��� ����� ����, �ℎ��� ������ �� least 
one local solution of (1.42). 

 Through ��, that is, there is an open interval �∋ 0 and a function 

�: �→ �  ���ℎ �ℎ�� �(0) = �� ��� �̇(�) = ���(�)� ��� ��� ���. 

Theorem (1.2.3): Every solution �(�)���ℎ �(0) = ��  ��� �� 
Continued to a maximal in terval of existence (��, ��) ∋ 0. 

�� �� < ∞  �� �� > − ∞ , then for any compact � ⊂ � , there exists a 

time ���,��� ���ℎ �(�) ∉ � (this means that solution will diverge or 

reach ��). 

Theorm( 1.2.4): (Picard-Lindel�̈f) 

Assume � �� ���������� ��� ������� �����ℎ������, �ℎ�� ��, 

For every compact  � ⊂ � , there exists a constant �� such that              

�|�(�) − �(�)|�≤ ���|� − �|���� ��� �, � ∈ �. then there is a unique 

solution �(�) �� (1.42) ���ℎ �(0) = �� for every �� ∈ � . Note in 
particular that if � is continuously differentiable, then it is locally n 
Lipschitzian. We will usually consider vector fields which are at least 
once continuously differentiable. 

Example (1.2.5): It is easy to give counter examples to global 
existence and uniqueness.For instance, 

                                �̇ = ��  ⟹  �(�) =
1

�
��

  �  �
                          (1.44) 

has a solution divrging for t= �

��
. A phsically interesting 

counterexample to uniqueness is the leaky bucket equation 

�̇ = − �|�|.                                                        (1.45) 



28 
 

Here � is proportional to the height of water in a buchet with a hole 
in the bottom, and (1.45) re�lects the fact that the kinetic energy of 
the water inside. For every c, (1.45) the solution 

                 �(�) = �
�

�
(� − �)�         ��� � < �

0                       ��� � ≥ �.
�                               (1.46) 

In particular , for any � ≤ 0, (1.45) such that �(0) = 0. 

This reflects the fact that if the bucket is empty at time 0, we do 
know at what time it was full. 

For simplicity, we will henceforth assume that the ODE(1.42) admits 
a unique global solution for all ����. This allows to introduce the 
follwing definitions:� 

De�inition(1.2.6): ):  let �� ∈ �  ��� ��� �(�) �� �ℎ� ������ �������� 
��(1.42) ���ℎ initial condition �(0) = ��. 

1. The integral curve through �� is the set 
 {(�, �) ∈ � × ℝ : � = �(�)}. 

2. The orbit �ℎ����ℎ ���� �ℎ� ��� 
 {� ∈ � : � = �(�), � ∈ ℝ } 

3. �ℎ� ���� �� �ℎ� �������� (1.42) �� �ℎ� ���  

                                               � ∶� × ℝ  →   �  

                                   ���,�� ↦ ��(� �) = �(�)                             (1.47) 

Gemetrically speaking, the orbit is a curve in phase space containing 
�� such that the vector field �(�) is tangent to the curve at any point 
� of the curve. Uniqueness of the solution means that there is only 
one orbit through any point in phase space . 

By definition, we have ��(��) = �� for all �� ∈ � , uniqueness of 
solutions implies that ��(��(��) = ����(��).These properties can be 
rewritten as 
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�� = ��                  ����� = ����                                   (1.48) 

Which means that the family {��}� forms a group. 

Note  the similarity  between this relation and the relation (1.41) for 
iterated maps. 

Example (1.2.7): In the case �(�) = − �, � ∈ ℝ , �� ℎ��� 

��(��) = ���� �                                           (1.49) 

The system admits three distinct of phase space .We can define its 
volume by a usual Riemann integral: 

                                 ���(�) = ∫
��,

�          
�� = ��� … … ���.           (1.50) 

The set � will evolve under the influence of the dynamics: we can 
define the sets �� = ��(�)�� �(�) = ��(�). How does their 
volume evolve with time? The answer is actually  quite simple. 

Consider first the case of a map �. We assume that � is continuously 
differetible and denote by 

��

��
(�)                                                           (1.51) 

The Jacobian matric of �, which is the � × � ������  � ���ℎ 

���������  ���=
���

���

(�). 1 
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FIGURE(1.3):(a)Evolution of a volume with the flow,(b) evolution 
with an iterated map. 

Proposition (1.2.8): Assume � is a diffeomorphism and let 

�� = ���(��). then 

���� = � ����
��

��
(�)� ��.                               (1.52)

ℳ�

 

Proof: This is a simple application of the formula for a change of  
variables in an integral: 

���� = ∫ �� = ∫ ����
��

��
(�)� �� = ∫ ����

��

��
(�)� ��.  

ℳ�ℳ�ℳ���
 (1.53) 

����������(�. �. �): �ℎ� ���  � �� ����� ����������� �� 

�det �
��

��
(�)�� < 1  ∀���                                    (1.54) 

Proposition (1.2.8)  implies that ���� = �� �� � �� ������������ ��� 

���� < �� �� � �� ����������� .  

More generally ,if ����
��

��
(�)� ≤ � for some constant � and all ���, 

then �� ≤ � ���. 

For differential equations, the result is the following . 

Proposition (1.2.10): Assume � is continuously differentiable and 
��� �(�) = ���(ℳ(�)) then 

�

��
�(�) = � ∇

ℳ(�)

∙�(�)��                               (1.55) 

�ℎ��� ∇ ·� = �
���

���

�

�� �

 �� ����������. 
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Proof : We have 

�(�) = � ��
ℳ(�)

= � ����
�

��
��(�)� ��

�

 

Let  us fix � ∈ ℳ, ��� �(�) = ��(�) ��� ��� 

�(�) =
�

��
��(�),                      �(�) =

�

��
��(�)�. 

Note that by definition of  ��, �(0) = ¶ is the identily matrix . Now 
we can compute 

�

��
�(�) =

�

��
�(�) =

�

��
����(�)� =

��

��
(��(�)

�

��
��(�), 

And thus 

�/�� �(�) = �(�)�(�),   �(0) = Π. 

This is linear, time-dependent differential equation for J(t), which is 
known to admit a unique global solution. This implies in particular 
that ����(�) ≠ 0 ∀t, since otherwise �(�) would not be surjective, 
contradicting uniqueness. Since ��� �(0) = 1, continuity implies that 
����(�) > 0 ∀�. Now let us determine the evolution of ����(�). By 
Taylor′s formula, there exists � ∈ [0,1]���ℎ �ℎ�� 

�(� + �) = �(�) + �
�

��
�(� + ��) = �(�)[¶ + ��(�)� ��(� + ��)]. 

Form linear algebra, we know that for any � × � matrix B, 

det(¶ + ��) = 1 + ���� + �(�) 

With ��� �→ ��(�) �⁄ = 0 (this is a consequence of the definition of the 
determinant as a sum over permutations). 

Using Tr(AB)=Tr(BA), this leads to  

����(� + �) = ����(�)[1 + ���(�(� + ��)�(� + ��)�(�)� � + �(�)], 
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And thus 

�

��
����(�) = lim

�→ �

����(� + �) − ����(�)

�
= ����(�)�����(�). 

Taking the derivative of �(�) we get 

�

��
�(�) = �

�

��
����(�)��

ℳ

= � �� �
��

��
(�)� ����(�) det              

ℳ

= � �� �
��

��
(�)���

ℳ�

 

And the conclusion follows from the fact that ��
��

��
= ∇·�. 

De�inition (1.2.11):  

(1). The vector �ild f is called conservative if 

                                        ∇. �(�) = 0, ∀� ∈ �                    (1.56) 

(2) . �ℎ� ������ � �� ������ ����������� �� 

∇ ·�(�) < 0  ∀���.                     (1.57) 

Proposition(1.2.10) implies that V(t) is constant if � is conservative, 
and monotonously  decreasing when � is dissipative. 

More generally, if ∇ ·�(�) ≤ � ∀� ∈ � , �ℎ�� �(�) ≤ �(0)���. 

Of course, one can easily write down dynamical systems which are 
neither conservatives nor dissipative, but the conservative and 
dissipative situations are very common in applications. 
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Example (1.2.12): Consider a Hamiltonian system, with 
Hamiltonian � ∈ ��(ℝ �� , ℝ ). Then � = (�, �)�ℝ � × ℝ � and the 
equations(1.4) take the from 

 

                     ��(�) = �

��

���
                                     � = 1 … … �   

−
��

���� �
      � = � + 1, … .2�                

�             (1.58) 

This implies that 

                               ∇ ·� = ∑
�

���
�

��

���
�+ ∑

�

���
�−

��

���
� = 0     (1.59)�

�� �
�
�� �  

Thus all (sufficiently smooth) Hamiltonian systems are 
conservative. 
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Chapter 2 
Stationary and periodic solutions 

 

Section (2.1): Stationary solutions 
De�inition (2.1.1): 

(1). A fixed point of the map F is appoint x*∈ D such that  

                           F(x∗) = x∗                                              (2.1) 

(2) . A singular point of the vector field f is point x* ∈D such that  

                           f(x∗) = 0                                                      (2.2) 

    In both cases , x∗ is also called equilibrium point. It is orbit is 
simply { x∗} and it is called stationary orbit . 

Note that a singular point of is also fixed point in the flow ,and there 
for some times abusively called “a fixed point of f” we a are now 
interested in the behavior near an equilibrium point .In this section , 
we with always assume that f and  F are twice continuously 
differentiable .If x* is a singular point of f ,the change of variables 

 x= x*+y leads to the equation  

                      ẏ = f(x∗ + y)  = Ay + g(y)                      (2.3) 

Where we have introduced the jacobian matrix            

                               A =
��

��
(x∗)                                             (2.4) 

Taylor’s formula implies that there exists a neighborhood N of 0 and 
a constant M <  0      such that                                                                                                                    

||g(y)||≤  M||y||�    ∀ y ∈N                                        (2.5) 

Similarly, the change of variables xk = x ∗ + yk transform an 
interated map into 
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y� + 1 = F(x ∗ + y�) − x ∗                                (2.6) 

=B y� + G(y�) 

Where  

B=
��

��
(x ∗ ), ||G(y)||≤  M‖y‖�    ∀ y ∈N                                  (2.7) 

    Now we discussing the linear case , and let us start by analyzing 
the equation (2.3) and (2.6) in the linear case that without the terms 
g(x) and G(x) .consider first  the ODE  

ẏ = Ay                                                   (2.8) 

The solution can be written as  

y(t)= e��y(0),                                                  (2.9) 

Where the exponential of A is defined by the absolutely convergent 
series 

e�� ≡ exp(At) =  �
t�

k!

�

�� �

A�                                   (2.10) 

In order to understand the behavior of  e��, let us recall some facts 
from linear algebra. we can write  the characteristic polynomial of A 
as  

c� (λ) = det(λ ⫿− A) = ∏ (λ − aj)���
�� �                    (2.11) 

Where a�  , … … … … … . . , a� ∈ C are distinct eigenvalues of A, and  m� 

are their algebraic multiplicities .The geometric multiplicity g�  of 

a�   is defined as the number independent eigenvectors associated 

with  a� and satisfies 1 ≤    g�  ≤   m� .  

      The results on decomposition of matrices leading to the Jordan 
canonical from can be formulated as follows [HS74].The matrix A 
can be decomposed as  
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A=S+N,       SN=NS                  (2.12)  

Here S, the semi simple part, can be written as  

S= ∑ a� P� 
�
�� �                                            (2.13) 

Where the P�  are projectors on the eigen spaces of A, satisfying 

 P� P� = δ�� P� , ∑ P� � = 1 and  m� = dim� p� R
��. The nilpotent part N 

can be written as 

N= ∑ N�
�
�� � ,                                 (2.14) 

Where the Nj satisfy the relations 

N�
��

= 0,    N�   N�  = 0   for P �  N� = N�  P �  =  δ��   N�               (2.15) 

In an appropriate basis, each Nj is block-diagonal, with g� blocks of 

the from 

�   

0

0

 

1
⋱

  ⋱
⋱

 

0

1
0

�                                   (2.16) 

In fact  N� = 0  unless g� < ��   

Lemma (2.1.2): With the above notations 

e��= ∑ t�
��

 pj (1 + Nj+ ⋯ … … . +
�

(��� �)!
N�

��� �
t��� �)     �

�� �  (2.17) 

Proof: We use the fact that e��e�� = e(���)�  when ever  

AB = BA,which can be checked by adirectcalculationthene ��= e��e��  
with 

e��= ∏ e����� = ∏ (1 + ( t�
��

− 1)Pj= 1 + ∑ + ( t�
��

− 1)Pj=�
�� �

�
�� �

�
�� �

∑ t�
��

Pj ,�
�� �  e�� = ∏ e����

�� � = 1 + ∑ (e��� − 1)�
�� �  
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The result follows from the facts that Pj (e��� -1)=0 for j≠ k ,and that 
e���  contains only �initely the expression (2.17) shows that the long-
time behavior is determined by the real parts of the eigenvalues a�, 

while the nilpotent terms, when present, influence the short parts 
behaviour. This motivates the following terminology. 

De�inition (2.1.3): The unstable, stable and center subspace of the 
singular point x* are defined, respectively, by 

              E� ∶= p� R�={y:lim�→ � � e��y=0},                
p�:= ∑ Pj,�:����� �   

  E� ∶=  p� R�={ y:lim�→ �� e��y=0},                                                                              
                                     E�: =  ∑ Pj,       �:����� �                                     (2.18) 

           E� ∶=  p�R�,                     p�:=  ∑ Pj,�:����� �   

The subspaces are invariant subspaces of  e��, that is 

e��E� ⊂ E�, e��E� ⊂ E� and e��E� ⊂ E�. 
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FIGURE(2.1):phase port of a linear two _dimensional system 
(a)node,(b)saddle ,(c)focus,(d)center ,(e)degenerate 
node,(f)improper node. 

 a sink if E�= E�={0}, 
 a source   if E� = E�={0}, 
 a hyperbolic point if E�={0}, 
 an elliptic point if E�= E� ={0}, 

Example (2.1.4): Let n=2, and let A be in Jordan canonical from, 
with det A ≠ 0 .Then we can distinguish between the following 
behaviours, depending of the eigenvaluse a�, a� of A (see �ig(2.1)). 

(1). a� ≠ a� 

(a). if a�, a� ∈ R,then A= �
a1 0
0 a2 

� and 

e��= � e��� 0
0  e����  ⇒

y�(t) = e��(�) y�(0)

y�(t) = e��(�) y�(0)
 

The orbits are curves of the from y� = cy1
��

�� � . x∗ is called a node if  
a�a� > 0, and a saddle if a�a� < 0 . 

(b). if a� = a� ����=a+iw ∈ C, then then the real canonical from of A is 

A= �
a − w
w a

�           and 

e��= e��  �
cos wt − sin wt
sin wt cos wt

�

⇒
y1(t) = e��(y1(0) cos

wt +
− y2(0) sin wt)

y2(t) = e��(y1(0) sin wt + y2(0) cos wt)
 

X* is called focus if a ≠ 0, and a center is a=0 . The 0rbits are spirals 
or ellipses. 

(2). a� = a� =  : a  
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(a). If a has geometric multiplicity 2 ,then A= a� and e�� = e��1; X*is 
called a degenerate node . 

(b). If a has geometric multiplicity 1, then A= �
a 1
0 a

� and  

e�� = e��  �
a t
0 a

  � ⇒
y�(t) = e��(�) (y�(0) + y�(0)t)

y�(t) = e��(�) y�(0)
   

X* is called an improper node.  

Let us now turn to the case of the linear iterated map              

y� +1 =B  y�                                   (2.19) 

Which admits the solution 

y� =  B�y0                                   (2.20) 

Using a similar decomposition B = S + N into the semisimple and 
nilpotent part, we arrive at  

Lemma (2.1.5): Let b� be the eigen values of B, and  P�, N� the 

associated projectors and nilpotent – matrixes then                             

B�= ∑ Pi�
�� �  ∑

k
j

���{�,��� �}  
�� �   b�

�� �
  N�

�
                           (2.21) 

Proof: The main point is to observe that 

B� = (� (bi Pi + Ni))

�    

�� �

�     

= � (bi Pi + Ni)

�    

�� �

� 

 

Because all cross –terms vanish .Then one applies the binomial 
formula. 

 For large k, the behavior of  B� is dictated by the terms b�
�� ����   . 

this leads to the following equivalent of de�inition (2.1.3). 
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De�inition (2.1.6): The unstable, stable and center subspaces of the 
fixed point x∗ are defined, respectively, by  
 

E� ≔ p�R� ={y:lim�→ � � B� y=0},         p� = : ∑ pj�:|��|� �   ,      

�:� =  p�R�={ y:lim�→ �� B� y=0},         p� = : ∑ pj�:|��|� �       (2.22) 

  E�:=  p�R�,                        p� = : ∑ pj�:|��|� �      ,       

These subspaces are invariant under B .the remaining terminology 
or sinks, sources, hyperbolic and elliptic points is unchanged. 

De�inition (2.1.7): Let X*   be an equilibrium point of the system  

x.=f(x).  

(1). X* is called stable if for any ∈> 0, one can find a δ = δ(ϵ)0   such 
that whenever ||x��  x

∗||< �, one has ||α(x�)- x∗|| < � for all t ≥ 0.  

(2). x∗ is called asymptotically stable if it is stable, and there is 
a δ�  > 0  such that lim

�→ �
 α�(x�) =  x∗  for all  x� such that 

||x��  x
∗||< δ�. 

(3). The basin of attraction of asymptotically stable equilibrium x∗ is 
the set  

    {x∈ D ∶ lim
�→ �

 α�(x) = x∗}                          (2.23) 

(4). x∗ is called unstable if it is not stable. If x∗ is affixed point of the 
map F, similar definition hold with α�(. ) replaced by F� (. ) . 

The linearization of the system ẋ = f(x) around an equilibrium x∗ is 

the equation ẏ = Ay with A =
��

��
 (x∗).  x∗ is called linearly stable if 

y=0 is stable equilibrium of it is linearization, and similarly in the 
asymptotically stable and unstable cases. Lemma (2.1.2) show that 

(5). x∗ is linearly  asymptotically stable if and only if all eigenvalues 
of A have a strictly negative real part; 
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(6). x∗ is linearly  asymptotically stable if and only no eigenvalues of 
A have has positive real part, and all purely  imaginary eigenvalues  
have equal algebraic and geometric multiplicities. The problem is 
now to determine relations between linear or nonlinear stability. A 
useful method to do this is due to Liapunov. Here we will limit the 
discussion to differential equation, although similar results can be 
obtained for the maps. 

Theorem (2.1.8):(Liapunov) 

Let  x∗ be singular point of f, let U be a neighborhoods continuously 
differentiable on U� , such that  

(1). V(x) > V(x∗) for all x∈ U� ; 

(2). The derivative of V along orbits is negative in U�,that is , 

     V ̇(x): =
�

��
V(α�(x))|�� �= ∇V(x). f(x)  ≤ 0 ∀x ∈ U�.           (2.24)                    

Then  x∗ is s table. If, furthermore, 

(3). The derivative of V along orbits is strictly negative, 

   V ̇(x)=  ∇V(x). f(x) < 0                ∀x ∈ U�     (2.25) 

Then x∗ is asymptotically stable . 

Proof: Pick ε > 0 small enough that the closed ball B � = (x∗, ε) with 
center x∗ and radius ε, is contained in U. Let S= ∂B�(x∗, ε)  be the 
sphere of radius  ε  centered in x∗ . S being compact, V admits a 
minimum on S, that we call β. consider the open set  
W={x∈ B �: V(x) <  �}. 
x∗ ∈ W by condition 1. And thus there exists δ > 0 such that the 
open ball  B(x∗, δ) is centered in W. For any x� ∈ B(x∗, δ) , we have 
V(α�(x�) ) <  � for all t ≥ 0, and thus α�(x�) ∈ W for all t ≥ 0 by 
condition 2.Which proves that x∗ is stable. 
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FIGURE (2.2) , (a) stable fixed point with level curves a Liapunov 
function  . (b)Asymptotically stable fixed point, here the vector field 
must cross all level curves in the same direction.(c) Example of an 
unstable fixed point with the set W of cetaev’s theorem .assume now 
that (2.25) holds . since the positive orbit of x� ∈W is bounded it  
admits a convergent subsequence 

  (x�)n≥ 0 = � αt�(x�)�n ≥ 0 → y∗ ∈ W�  , tn → ∞   . 

 Consider then function t ⟼ V(α�� (x�)) .It is continuously 
differentiable ,monotonously decreasing ,and admits  sub sequence  
converging to  V(  y∗ ) .Thus  V(α�� (x�)) must converge  to V(  y∗ ) as 
t→ ∞  .Let δ > 0  be small constant and define the  compact set  

K={x∈ W� : V(  y∗ ) ≤ V(x) ≤  V(  y∗ )+  δ}. 

If  y∗  ≠  x∗ , then x∗ ∈ k, and thus maximum of V̇ on K is a strictly 
negative constant c. take n large enough that  x� ∈ K .Then α�(x�) 
∈ K for all t≥ 0 .But this implies that V(α�(x�)) ≤ V(x�  )+ct.  

Which becomes smaller than V(  y∗ ) for t large enough . which is 
impossible.thus y∗ =  x∗  , and all orbits starting in W converge to 
x∗ .  

The interpretation of (2.24) is that the vector �ield crosses all level 
sets of V in the same direction (�ig 2.2) .V is called   Liapunov 
function for  x∗  ,and astrict  liapunov function if (2.25) holds . In fact 
,the proof also shows that  if V is a strict  Liapunov  function of U 
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,and W is asset of the from W ={x:V(x) <  �} contained in U ,then W 
is contained in the basin of attraction of x∗ . 

Thus liapunov function can be used to estimate such basins of 
attraction. 

Corollary (2.1.9): Assume x∗  is linearly asymptotically stable 

equilibrium , that is, all eigenvalues of A =
��

��
 (x∗) have a strictly 

negative real parts. Then  x∗  is asymptotically stable . 

Proof: There are many different construction of strict liapunov 
function .We will give one of them .In order to satisfy condition 1.of 
the theorem, we will look for quadratic from  

v(x)=(x -  x∗ ) .Q(x-  x∗ ) 

where Q is asymmetric, positive definite matrix. By assumption, 
there constant 

 a� > 0 such that Rea� ≤ -a� for all eigenvalues a� of A . Thus lemma 
(2.1.2) implies that 

||e �� y ||≤  p(t)e ���  ||y||  ∀y, 

Where P is polynomial of degree less than n. this implies that the 
function 

V(x) = ∫ ||e �� (x −   x∗ )||��

�
 ds 

exists. V(x) is of the above from with 

Q= ∫ e �
�

s 
�

�
 e �� ds . 

 Q is clearly symmetric, positive definite and bounded, thus there is 

a K  > 0 such that  ||Q y||≤ K�|y|� for all y. Now we calculate the 

following expression in tow different ways 
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�
d

ds
( e �

�

s 
�

�

e ��) ds = lim
�→ �

 e �
�

t − ⫾ = − ⫾ 

∫
�

��
( e �

�
s 

�

�
e ��) ds ∫  (

�

�
A �e �

�
s  e �� + e �

�
s e �� A)   ds =

A � Q + Q A . 

We have thus proved that  

A � Q + Q A = − ⫾. 

Now if y(t) = α�(x) –x∗ , we have  

V̇ =
�

��
 V(α�(x) )=  

�

��
�y(t). Qy(t)� = ẏ(t). Qy(t) + y(t). Qẏ(t). 

Inserting ẏ = Ay + g(y) produces tow terms. The first one is  

g(y). Q(y) + y. QAy = y. ( A � Q + Q A)y = − �|y|�, 

And the second one gives  

g(y). Q(y) + Qg(y) = 2g(y). Qy ≤ 2�|g(y)|� �|Qy|� ≤ 2MK�|y|� �. 

Hence V̇ ≤ − �|y|� � + 2MK�|y|� �, which shows that V is strict 

liapunov  function for ||( x-  x∗ )|| <  
�

���
 , and the result is proved. 

There exists acharacterization  of unstable equilibria based on 
similar ideals: 

Theorem (2.1.10): (������) 

Let x∗  be a singular point of f, U  aneighbourhood of x∗  and 

U� = U
{x∗ }�  . Assume there   exists and open W, containing  x∗ in it 

is closure, and containuous function V: U → R, which is 
containuously differentiable on U� and satisfies  

1. V(x) > 0 ��� ��� � ∈ U� ∩ W; 

2. V̇(x)  > 0 ��� ��� � ∈ U� ∩ W; 
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3. V(x) = 0  for all x ∈ U� ∩ W; 

Then  x∗ is unstable. 

�����: �irst observe that the dif�inition of an unstable point can be 
stated of follows.There exists ε > 0 ���ℎ �ℎ�� , ��� ��� � > 0 , 

when can �ind x� with ||( x� -  x∗ )|| <   � and T< 0 ���ℎ �ℎ�� 

‖αt( x�) −   x∗ ‖ ≥  ε. 

Now take ε > 0  ����������� �����  �ℎ�� �(x∗ , ε) ⊂ U . for any  
δ > 0 �(x∗ , δ)  ∩ W ≠ 0 . we can thus take an x�  ∈ U� ∩ W 
such that  ‖αt( x�) −   x∗ ‖ <   � , ��� �� ��������� . v(x�) > 0 

��� ������  �� ������������� �ℎ�� ‖αt( x�) −   x∗ ‖ε for all 
t ≥ 0 . αt( x�) must say in U� ∩ W for all t , be cause it cannot 

reash the boundary of W where V 0 . Thus there exists  asequence    

x� = αt�( x�)convergening some x� ∈ U� ∩ W . But this contradics, 

 the fact that . V̇(x�)  > 0 , �� �� �ℎ� ����� of theorem (2.2.8) and 

thus  ‖αt( x�) −   x∗ ‖   must become larger that ε. 

��������� (2.1.11): Assume  x∗  is an equilibrium such that 

  A =
��

��
 (x∗) has at least one eigenvalue   with positive real  park     . 

then x∗ is unstable . 

Proof: consider �irst the case of A having no purely imaginary 
eigenvalues We can choose  acoordinate system 

 along the unstable  and subspaces of x∗, in which the dynamics is 
describeby the eqution     

                                                 ẏ+=A+y+ +g+(y)  

     ẏ− = A − y − + g − (y), 
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where all eigenvalue of A+ have strictly positive, all eigenvalue 

of  A − have strictly negative real  park  , y =   (y+,y -)  and the tearms 

g�  
�  arebounded in norm by positive constant M times �|y|�

�
 . we  can  

de�ined the matrices  

Q � = � e�� � � 
�

�

 e �� � ds , Q � = � e� �� �� 
�

�

 e –��� ds , 

Which are bounded , symetric , positive de�inite , and satisfy  

 A� − Q� + Q − A− = − ⫿  

              and   

A � + Q� + Q�A� = ⫿. de�ine the quadraticfrom 

 V(y) = y� . Q�y� − y�  . Q �  y�   . 

The cone W = {y: V(y) > 0} is non − empty , because it contains 
an eigenvector of A corresp − onding to an eigenvalue with   positive 

 real park . proceeding similary as in the proof of Corollary (2.1.9), 
we find 

V̇(y) = �|y� |�
�

+ 2g� (y). Q�y� + �|y�  |�
�

− 2g�  (y). Q�  y�  

≥  �|y|�
�

− 2KM�|y|�
�

. 

Thus Cetaev, s theorem can be applied to show that x∗ is unstable .    

If A also has j purely imaginary eigenvalues , we obtainthe  

additional equation  

ẏ0 = A� y�  + g�  (y), 

Where all eigenvalue of A� are purely imaginary . Let S be an invertible 

 complex  matric of the  Same dimension as A�  
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and consider the function   

   V(y)=  y� . Q �y� − y�  . Q�  y�  − �| Sy� |�
�

, 

Where u. v = ∑ u��v� Type equation here. 
for complex vectors u, v . Proceeding as above , weobtain that   

                          V̇(y) ≥ �|y� |�
�

+  �|y�  |�
�

− 2KM �|y|�
�

(||y� |�+ �|y�  |�� 

                  − 2Re(Sy� . A� Sy� ) − 2Re(Sg�(y). Sy�). 

We shall prove below that for any ε > 0, ��� ��� ��������� a matric 

S(ε)  such that   

Re(Sy� . A� Sy� ) ≤ ε �| Sy� |�
�

. 

We now take U =  �y: �|y|�< ��  , where δ > 0 ℎ�� �� �� ����������  

, W = {y: V(y) > 0}. If y ∈ W , we have 

Re(Sy� . A� Sy� ) ≤ ε �| Sy� |�
�

<  ��+ . � + �+ <  � � �|y� |�
�

 

We introduce the constant  

   C(ε) =  
sup

y� ≠ 0 
�| ��� |�

�| �� |�
  ,c(ε)=  

sup
y� ≠ 0

�| �� |�

�|� �� |�
   . 

Then we have   

Re(Sg� (y). Sy� ) ≤ C ‖g�(y)‖ ‖ Sy�‖ ≤ CMC �|y|�
�

�|y� |� 

�|y|�
�

≤ �|y� |�
�

+ �|y�  |�
�

+ c��| Sy� |�
�

< (1 + c�K) ��|y� |�
�

+ �|y�  |�
�

�. 

Putting everything together , we obtain for all y ∈ U ∩ W 

V̇(y) > (1 −  εK) ��|y� |�
�

+ �|y�  |�
�

� − 2KM�|y|�
�
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��1 + CK
� �

�� ��|y� |�+ �|y�  |�� >  

��|y� |�
�

+ �|y�  |�
�

�[1 −  εK − 2KM �1 + c(ε)�K) �2 + C(ε)K
� �

�� �δ� 

Taking ε > 1
K��   and then δ small enough , we can  guarantee that 

this quantity is positive for  all y ∈ U� ∩ W , and the  

corollary  is proved . In the proof we have used the following result.  

L���� (�. �. ��): Assume all the eigenvalues of the m ×  m 

 matric A� are purely imaginary . for every ε > 0 there exists 

   a complex invertible matrix S such that  

|Re(Sz . SA� z)|≤ ε�|Sz|�
�

        ∀z ∈ C�.                               (2.26)   

Proof: 
 Let S� be such thatB = S� A� S�

� � is in complex Jordan canonical 
from , that is , the diagona lelement b�� =  iλ�of B are purely  imaginary .  

 b�� + 1σj is either zero or one , and all  otherelements of B are zero .                                                                                                                            

Let S�be the diagonal  matric  with enteres 1 , ε� � , … … … … … … … . . , ε�� � 

Then     C ∶=  S�B S�
� � = �

iλ� εσ�

⋱ ⋱
⋱

   

0

εσ�� �

iλ�

�  

Let S = S� S� and u = Sz . Then  

| Re 
�� ��� 

�|��|�
�

  
 | =| Re �.��

�|�|�
�=| Re 

∑ ���|� � |��� ∑ ���� ���� ���� 

∑ |�|�  ≤ ε
∑ |�||���|

∑ �|�|�
� ≤  ε, 

where used the fact that the upper sum has  m − 1  terms  

and the lower one m terms . The two corollaries of this section can be 
stated as follows  if x∗ is as ahyperbolic equilibrium , then it has the same 
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type stability as the linearized system. The same properties are 
 valid for maps (see Table 2.1). This is in genaral not ture for non −
hyperbolic equilibria . This situation will be studied in more detail chapter 3.  

 ODE ẋ=f(x)  Map x� + 1 = F(x�) 
Conservative 
Dissipative 

∇. f = 0 
∇. f < 0 

   �det
��

��
� = 1 

       �det
��

��
� < 1 

Equilibrium f(x∗) = 0 F(x∗) = x∗ 
A sympt.stable if  
Unstable if 

        Re a� < 0 ∀� 
∃i: Re a� > 0 

|b�|< 1 ∀� 
∃i: |b�|> 1 

 

����� (�. � ): Comparison of some propties of ordinary differentail 

 equations and iterated maps. Here a� and b� are eigenvalues 
of the matrices 

A =
∂f

∂x
(x∗) and B =

∂F

∂x
 (x∗) . 

Now we discussing the invariant  manifolds for  hyperbolic equilibria 

 points,  the mplicated analogiesbetween non − linear systems can 
bepushed  further. One of them has to do with  invariant   manifolds , 

which  generalize the invariant  subspaces of the  linear case .  

We assume in  this section that f is of classC� with r ≥ 2. 

 ���������� (�. �. ��): Let x∗ be asingular point of the system 

ẋ = f(x), and let U be aneighbourhood of x∗ .the local stable and 
unstable manifolds of x∗ in U are de�ined, respectively, by  

           
W���

� (x∗) ∶= �x ∈ U: lim
�→ �

αt(x) =  x∗ and αt(x) ∈ U ∀t ≥ 0�

W���
� (x∗) ∶= �x ∈ U: lim

�→ �
αt(x) =  x∗ and αt(x) ∈ U ∀t ≤ 0�

    (2.27) 



50 
 

The global stable and unstable manifolds of x∗ are de�ined by  

                                                     

W�(x∗) = � αt�W���
� (x∗)�,

���

 

W�(x∗) = � αt

���

� W���
� (x∗)�.

                  (2.28)               

similar de�inition can be made for maps , Global in variant manifolds  can 
 have a very comp − licated structure , and may return in�initely 
often to neighbourhood of  the equilibrium point . 

This why one prefers to de�ine separately local and global invariant 

 manifolds . The following theorem states that local invariant have 
anice structure. 

�������(�. �. ��): (������ �������� �������)  

Let x∗ be ahyberbolic equilibrium  point of the system  ẋ = f(x), such 

that the matric 
��

��
(x∗) has n� eigenvalues with positive real parts 

and n� eigenvalues with negative real parts, with n� , n�   ≥ 1. 

Then x∗ admits , in aneighbourhood U,     

  A local stable manifold W�(x∗) . which is adifferentable  manifold 

 of class C� and dimension n�   , tanget to the stable  subspace E�   at x∗ , 

and which can be represented as agraph ;  
 A local unstable manifold W�(x∗) , which is a differentable  

manifold   of class C�and dimension n� ,  tanget to the unstable   

subspace E� at x∗, and which can rep − resented as agraph ;    
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������ (�. � ), Orbit near ahyberbolic �ixed point ∶
(a). Orbit of the  linearized system ,  

(b). Orbit of the nonlinear system with local stable 
 and unstable  manifold .  

We will omit the proof of this result , put we will given in chapter 3  
the proof of the center manifold theorem , which relies of similar 
ideals. Let usnow explain abit more precisely what thisresultmeans . 
The geometricinterpretation is shown in Fig(2.3)To explain the  meanig  

of "adifferentable  manifold of class C�  

tanget to E
�
�   and representable as agraph ", let us introduce 

 acoordinate system along the invariant subspace 
of the lineariztion . The vector �ield near x∗ can be written as  

           
 y�̇ = A + y� + g�(y�, y�   )

    y�̇ = A − y�  + g� (y�, y�   ),
                                      (2.29) 

Where A�is n�n�  matric , which has only eigenvalues with positive 
real parts , and A�   is a n� ∗ n�  matric , which has only eigenvalues 
with negative real parts . The terms g�

� are non −  linear and satisfy 

�|g�
�(y�, y�   )|�M�|y|�

�
in U, where M is apositive  constant . The theorem 

implies the existence of function of class C� 

             h�: u� → R�� ,   h�(0) = 0 ,      
���

���
 (0) = 0,        (2.30) 
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Where u� is neighbour hood of the orgin in R�� , such that the local 

 unstable manifold is give by equation  

                                             y� = h�( y�)                                              (2.31)   

Similar, relations hold for the stable manifold in order determine the 

function h�   let as copute  y�̇  in two ways, for given orbit on the 

unstable manifold   

  
y�̇ = A − h�( y�) + g� �y�, h�( y�)�                                      

y�̇ =
���

���
 ( y�)y�̇ =

���

���
 ( y�)[A + y� + g��y�, h�( y�)�]

         (2.32) 

Since both expressions must be equal ,we obtain that h� must be 
satisfy the partial differential equation 

                  y�̇ = A − h�( y�) + g� �y�, h�( y�)� =
���

���
 ( y�)          (2.33) 

This equation is dif�icult to solve in general . since we know by the theorem 

 that h�is of class C�, we can computeh�  perturbatiely , by inserting its 
 taylor expansion  into (2.33) and solving order by order. 

�������(�. �. ��): Consider , for n = 2, the system 

                                           
ẏ� = y�

ẏ� = − y� + y�
�

                                              (2.34) 

Then the equation (2.33)reduces to 

                      − h�(y�) + y�
� =  h��

(y�)y�,                                            (2.35) 

Which adimits the solution  

                                                      h�(y�) =
�

�
y�

�.                                    (2.36) 

This is con�irmed by the explicit solution (2.34), 
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y�(t) = y�(0)e�

y�(t) = (y�(0) −
�

�
y�(0)�)e� � +

�

�
y�(0)�e��                   (2.37) 

 

����������(�. �. ��): Let U and W be open set in  R� let f: U →  R� 

and g: W →  R�  be tow vector �ields of class C�.  These vector �ield 
are called                                              

 Topologically equivalent in there exists a homeomorphism 
h:U→  W taking the orbit of ẋ = f(x) to the orbits of ẏ=g(y) and 
preserving the since of time ; 

  Differentiably equivalent in there exists a diffeomorphism 

 h: U →  W taking the orbit of   ẋ = f(x) to the orbits of ẏ=g(y) and 
preserving the since of time. 

in addition , h preserves parametrization of the orbits  by time , the vector 
 �ield are called conjugate . Equivalence means that if αt  and  Ψ t are 
the flows of the tow systems, then 

                                                      t ° h = h ° α� (t)                             (2.38) 

 On U, where τ is the homeomorphism from R to R. If τ(t) = t for all t, 
the system are conjugate  

�������(�. �. ��): (������� − �������)  

Let  x∗ be ahyberloic equilibirum point of  ẋf(x), that is , the matrix 

 A =
��

��
(x∗)  has no eigen  value with zero real part  . 

Then , in a suf�iciently small neighbourhood ofx∗, f is topologically  

 Conjugate of the linearization ẏ=Ay.  

Note , howevere , that topological equivalence is not avery a strong 

 property since h −  need not be differentaible. 
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In fact , one can show that all linear system with the same number  
ofeigenvalues with positive and negative 

 real part are topolically equivalent (see for instance  [HK 91]) so for 
instance , the node and focus in �ig(2.2)are topolically equivalent . 
one the other hand  , differentable equivalence  is harderto achieve as  

 shows  the  following  example.     

������� (�. �. ��): consider the following vector �ield and its 

   linearization ∶  

                         
y�̇ = 2y� + y�

�                   z�̇ = 2z�

y�̇ = y�                                 z�̇ = 2z� 
                        (2.39) 

The orbit can be found by solving the differential equations  

dy�

dy�
= 2

y�

y�
+ y� ,                  

dz�

dz�
= 2                                    (2.40)  

Which admit the soluations   

y� = [c + log⌊y�⌋   ] y�
�,                            z� = cz�

�             (2.41). 

Because of the logarithm, two �lows are C�
�  but not C�

�  conjugat.
The theory of normal form allows explain these phenomena, and  

the obtain  conditions for the existence of such C�
�  conjugcies. 

consider the system     for y = x − x∗,  

                                                         ẏ = Ay + g(y)                                    (2.42) 

We can try to simplify nonlinear term by change  coordinates 

 y = z + h(z), which leads to  

                   ż +
��

��
(z)ż = Az + Ah(z) + g�z + h(z)�.                      (2.43) 

Assume that h(z)solves the partial differetail equation  
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��

��
(z)Az − Ah(z) = g�z + h(z)�.           (2.44)  

Then we obtain for z the linear equation   

                                                                     ż = Az                                   (2.45) 

Unfortuately , we do not khow how to solve the equation (2.44)is  

genaral. 

One can , however , work  With Taylor series . To this end , we rewrite 
the system (2.42) as  

   ẏ = Ay + g�(y) + g�(y) + ∙∙∙∙∙∙∙∙+ g�� �(y) + ���|y|�
�
�.               (2.46) 

Here  the last term is bounded in norm by constant times �|y|�
�
, and the  

terms g�(y) are homogeneous polynomial  maps  of degree k for m 

   R�  to R�  ( g�(λy) = λ�  g�(y)  ∀λ ∈ R. 

Let us denote by H� the set of all such maps . H� is avector space for the 

usual addition and multiplication  by scalars. For in stance , when 
n = 2, H� admits the bases vectors        

�y�
�

0
�  , �

y�y�

0
�  , �y�

�

0
� , �

0
y�

��  , �
0

y�y�
� , �

0
y�

��.                          (2.47) 

We now de�ine alinear map from H� to itself given by  a d� ∶H� → H�  

                      h(y)⟼  
��

��
(y)Ay − Ah.                                              (2.48) 

The fundamental result of normal from theorey is the following:                              

����������� (�. �. ��): For each k, 2 ≤ k ≤ r, choose 
a complementary space �� of the image of a d� that is , such that  

��⨁ a d� A(H�) = H�. Then there exists , in aneighbourhood of the 

orgin , an analytic (polynomial)change of a variables y = z + h(z) 
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transforming (2.46) into                                             

 ż = Az + g�
���  (z) +  g�

���  (z) +  ∙ ∙∙∙ + g�� �
���   (z) +  �� �|z|�

�
  �  (2.49) 

Where g�
���   ∈   �� , 2 ≤ k ≤ r. 

Proof: The proof proceeds by induction .Assume that for some k , 

2 ≤ k ≤ r ≤ r − 1 , we have obtained an equation of the form 

ẏ = Ay + � g�
���  (y)

�� �

�� �

+ g�(y) + � � �|y|�
���

  �. 

We decompose the term g�(y)  into resonant and a − resonant part 

g�(y)  = g�
��� (y) + g�

� (y),           g�
� (y) ∈  a d� A(H� ),      g�

��� ∈  ��. 

There exists h� ∈  H�satis�ing  

a d� A�h�(z)� ≔
∂h�

∂z
(z)Az − Ah�(z) = g�

� (z). 

Observe  that  g�
����z + h�(z)� = g�

���(z) + � � �|z|�
���

� for all 

j , and asimilar relation holds for g�. Thus the change of the variables 

y = z + h(z)yields the equation                                                      

ẏ = �⫿+
∂h�

∂z
(z)�ż

= Az + Ah�(z) + � g�
���  (z)

�� �

�� �

+ g�(z) + � � �|z|�
���

  � 

= �⫿+
∂h�

∂z
(z)� Az + � g�

���  (z)

�

�� �

+ � � �|z|�
���

  �, 

Where we have used the de�inition of h to get the second line . Now for  
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suf�iciently small z, the matrix ⫿ +
���

��
 admits an inverse    �|z|�

�� �
. 

Multiplying the above identity on the left by this inverse , We have 
proved this induction step. The terms  g�

���  (z) are called 

resonant and (2.49) is called the   normal from (2.46) the equation 

a d� A�h�(z)� = g�
� (z)  

 that has to be satis�ied to eliminate the non − resonant terms Of 
order k is called the homological equation .Whether a terms is 
resonant or not is a problem of linear algebra , which depends 
only of the matric A , While it can be dif�icult to determine  coef�icients 
of the resonant terms 

in aparticular case, it is in genaral quite easy to �ind which terms can be 

 eliminated . In aparticular, the following result holds: 

����� (�. �. ��):Let(a�,∙∙∙∙∙∙∙∙∙∙∙∙∙, a�) be the eigenvalues of A , 
counting multiplicity. Assume  that for each j, 1 ≤ j≤ n, we have  

                                                p�a� + ∙∙∙∙∙∙+ p�a�  ≠ a�                        (2.50) 

for all n − tuples non − negative integer (p�,∙∙∙∙∙∙, p�)  satisfying 

 p� + ∙∙∙∙+ p�  = k.  

Then a d� A is invertible , and  is thus there are noresonant terms of 

  order k.  

Proof: We can assume that A is in Jordan canonical from . Consider 
first the case of a diagonal A .Let (e�, ⋯ ⋯ , e�) be the canonical basis 

of  R�.for H� we choose the basis vectors  z�
�� ⋯ z�

��e� , where  

p� + ∙∙∙∙∙∙∙∙∙∙∙∙∙+ p� =  k .Then an explicit calculation shows that  

a d� A(z�
�� ⋯ z�

��e� ) = � p�a� + ∙∙∙∙∙∙+ p�a� − a��z�
�� ⋯ z�

��e� . 

By a assumption , the term in brackets is different from zero. Thus 
the linear operator a d� A is diagonal in the chosen basis , with 
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nonzero elements on the diagonal  ,which shows that it is invertible . 
Consider now the case of the a matrix A that is not diagonal, but has 
elements of the from a�� +1=1.then a d� A applied to a basis vector 

will contain additional, off- diagonal terms. One of them  is 
proportional to z�

�� ⋯ z�
��e�� � ,While the others are of the from 

z� + 1 ∂��
(z�

�� ⋯ z�
��) e� .One can show that the basis vector of H� can 

be ordered in such a way that a d� A is represented by a triangular 
matrix ,with the same diagonal elements at the case of a diagonal A, 
thus the conclusion is unchanged. The non-resonance condition 
(2.50) is called a Diophantine condition , since it involves integer 
coefficients. Thus resonant terms can exist only when the 
eigenvalues of A satisfy a relation of the from p�a� + ∙∙∙∙∙∙+ p�a� = a� 

,which is called resonance of order p� + ∙∙∙∙∙∙+ p�. In example 
(2.1.18),the relation 2a�= a� induces a resonance of order 2 ,which 
makes it impossible to eliminate the term y�

� by a polynomial  
change of coordinates. In order to solve the question of 
differentiable equivalence, the really difficult problem is to eliminate 

the reminder �� �|z|�
�
  � in the normal from (2.49) .This problem 

was solved by Poincarè for sources and sinks , and by Sternberg and 
Chen for general hyperbolic equilibria  (see for instance [Har64]).we 
state here the main result without proof. 

Theorem (2.1.21):(Poincarè-Sternberg-Chen)  

Let A be a n× n matrix with no eigenvalues on the imaginary axis 
.Consider the two equations 

                                              
ẋ = Ax + b�(X)

ẏ = Ay + b�(y)
                                            (2.51) 

We assume that b� and b� are of class C� , r≥ 2 ,in a neighbourhood 

of the origin ,that b�(x)=  � � �|x|�
�

 � b�(x)=  � � �|x|�
�

 �,  and 
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 b�(x)-b�(x)=  �� �|x|�
�
  �.Then for every k≥ 2,there is an integer 

N=N(k, n, A)  ≥ k such that ,if r≥ N, there exists a map h of class C� 
such that the two systems can be transformation x=y+h(y).  This 
result implies that for the system ẏ=Ay + g(y) to be C�-conjugate to 
it is linearization ż=Az ,it must be sufficiently smooth and satisfy 
non-resonance conditions up to sufficiently high order N, where this 
order and the conditions depend only on k , n and the eigenvalues of 
A .In the special case of all eigenvalues of A having real parts with is 
the same sign (source of sink) , Poincarè showed that N=k .For  
general hyperbolic equilibria ,N can be much larger than k. Another , 
even more important consequence , is that vector fields near 
singular points can be classified by their normal forms ,each normal 
from being a representative of an equivalence class (with respect to 

C� −  conjugacy .This property plays an important role in bifurcation 
theory ,as we shall see in chapter 3. Let us finally remark that in the 
much more difficult case of non-hyperbolic equilibria, certain results 

on C� −  conjugacy have been obtained by Siegel, Moser , Takens and 
other. 

Section 2: Periodic Solutions  

De�inition (2.2.1): Let p≥ 1 be an integer .A periodic orbit of period 
p of the map F is a set points {x�

∗,…  , x�
∗} such that   

                            F(x�
∗)=  x�

∗ , … F( x�� �
∗ ) = x�

∗ ,  F(x�
∗)=  x�

∗                  (2.52) 

Each point of the orbit is called a Periodic point of the period p .Thus 
a Periodic point x∗ of the period p is also a fixed point of F� .p is 
called the least period of x∗ if F�(x∗ )≠ x∗  for 1≤ j≤  p. To find 
Periodic orbits of an iterated  map, it is thus sufficient to find the 
fixed points of F� ,p=1,2,…… . Unfortunately, this becomes usually 
extremely difficult with increasing p. Moreover ,the number of 
Periodic orbits of  period p often grows very  quickly with p 
.Methods that simplify the search for Periodic orbits are known for 
special classes of maps. For instance, for two-dimensional 
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conservative maps, there exists a variation method : Periodic orbits 
of period p correspond to stationary points of some function of R� 
TO R. Once a Periodic orbits has been found, the problem of its 
linear stability is rather easily solved . Indeed, it is sufficient to find 
the eigenvalues of matrix  

 
∂F�

∂x
(x�

∗) =
∂F

∂x
 (F�� � (x�

∗)) 
∂F

∂x
(F�� � (x�

∗)) … .
∂F

∂x
(x�

∗) 

                    =
��

��
(x�

∗) 
��

��
(x�� �

∗ ) … . .
��

��
(x�

∗).                               (2.53) 

Note that the result has to be invariant under cyclic permutations of 
the matrices The dynamics near any point of the Periodic orbit can 
be inferred from the dynamics near one of them, considered as a 
fixed points of  F� .thus Periodic orbit can also be classified into 
sinks, sources ,hyperbolic and elliptic orbits ,and the concepts of 
nonlinear stability ,invariant manifolds and normal forms can be 
carried over from fixed points to the Periodic orbits. 

De�inition (2.2.2): Let f be a vector field, φt its flow and T > 0 a 
constant .A period ic Solutions of period T of f is a function γ(t)  such 
that  

γ̇(t) = f( γ(t) ) and γ(t + T) = γ(t)      ∀t.                    (2.54) 

The corresponding closed curve ɼ = {γ(t)  :0 ≤ t ≤ T} is called a 
Periodic orbit of period T .Thus each point x of this orbit is a fixed 
point of φT .T is called the least period of the orbit if φt(x) ≠ x for 
0< � < �. Finding Periodic orbits of differential equations is even 
more difficult than for maps. there exist method which help to find 
Periodic orbits in a number of particular cases , such as two-
dimensional flows ,or systems admitting constants of the motion 
and small perturbations of them. Let us now assume that we have 
found a Periodic Solutions γ(t) . we would like to discuss its 
stability. The difference y(t) = x(t) - γ(t) between an arbitrary 
solution and the  Periodic Solution satisfies the equation  
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ẏ  = f(γ(t) + y) − f(γ(t) )                                  (2.55) 

If f is twice continuously differentiable and y is small, we may 
expand f into Taylor series, which yields 

ẏ = A(t)y + g(y, t),        A(t) =
��

��
 �γ(t)�,     ||g(y, t)||≤ M‖y‖�                                                         

(2.56) 

Let us examine the linearization of this equation, given by  

                                                            ẏ = A(t)y                                         (2.57) 

Note that a similar equation already appeared in the proof of 
Proposition (2.1.10). This equation admits a unique global solution, 
which can be represented, because of linearity, as  

                                     Y(t) =U(t)y(0),                                            (2.58)  

Where U(t) is an n× n matrix-valued function solving the equation  

                                     U̇(t) =  A(t)U(t),    U(0) = ⫿                     (2.59) 

Then function U(t) is called the principal solution of the equation 
(2.58) .It should be clear that the linear stability of ɼ is related to the 
asymptotic behavior of the eigenvalues of U(t) .Unfortunately, there 
is no general method to determine these c. Note, however, that A(t) 
is periodic in t, and in this case we can say more. 

Theorem (2.2.3): (Floquet) 

Let  A(t) = A(t + T) for all t .Then principal solution of    ẏ = A(t)y 
can be written as  

                                                    U(t) = P(t)e��,                             (2.60) 

Where P(t + T) = P(t) for all t, P(0)=  ⫿, and B is a constant matrix  

Proof: The matrix  V(t) = U(t + T)  satisfies the equation  

V̇(t) = U̇(t + T) = A(t + T)U(t + T) = A(t)V(t), 
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Which in the same as (2.60), except for the initial value V(0) = U(T). 
we already saw in the Proposition (2.1.10 ) the det U(t) ≠ 0 for all t. 
Thus the matrix V(t)U(T)� � exists and satis�ies (2.60), including the 
initial condition .By uniqueness of the solution, it must be equal to 
U(t): 

V(t)U(T)� � =U(t)        ⇒        U(t + T) = U(t)U(T). 

We claim that there exists a matrix B such that U(T) = e�� .To see 
this, let λ� ≠ 0 and m� , i=1,……,m be the eigenvalues of U(T) and 
their algebraic multiplicities. Let U(T) = ∑ (λ�P�

�
�� � +  N�) be the 

decomposition of U(T) into the semi simple and nilpotent parts. 
Then ,using lemma( 2.1.2 )it is easy to check that  

B =
1

T
 � (log (

�

�� �

λ�)P� − �
(− N�)

�

jλ�
�

)

��

�� �

 

Satisfies e�� = U(T). here the some over j is simply the Taylor 
expansion of log(⫿+ N� λ�).⁄  B is unique up to determination of the 
logarithums . we now define  

B = U(t)e� ��. 

 

FIGURE (2.4).Definition of the Poincare map associated with the 
periodic orbit γ(t) .Then we have for all t 

P(t + T) = U(t + T)e� �(���) = U(t)e��e� �(���) = P(t). 
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Finally, P(0)=U(0)= ⫿,which completes the proof. 

Floquet’s theorem shows that the solution of (2.57) can be written 
as  

                                    y(t) = P(t)e��y(0)                                              (2.61) 

Since P(t) is periodic, the long-time behavior depends only on B .the 
eigenvalues of B are called the characteristic exponents of the 
equation . e�� is called the monodrama matrix .and eigenvalues 
,called the characteristic exponents time of T. Computing  the 
characteristic exponents is difficult in general, but the existence of 
the representation (2.61) is already useful to classify the possible 
behaviors’ near a  periodic orbit. One we have determined the linear 
stability of the periodic orbit, we could proceed in a similar way as 
in the case of a stationary point. in order the determine the 
nonlinear stability, the existence of invariant manifolds. and similar 
properties .however, Poincarè invented a remarkable method, 
which allows to shortcut all these steps by reducing the problem to a 
simpler one,  which has already been studied .Appropriately enough, 
this method is called the Poincare section. 

De�inition (2.2.4): Let γ(t) be a periodic solution of period 
T, x�= y� , and let Ʃ be a hyper plane transverse to the orbit at x� 
(see �ig 2.4) .By continuity of the �low, there is a neighbourhood U of 
x� in Ʃ such that for all x = x� + y ∈ U, we can define a continuous 
mapτ(y), τ(0) = T,such that ct(x) retuens for the first time to Ʃ in a 
vicinity of x� at t=  τ(y). The Poincare map П associated with the 
periodic orbit in defined by  

                                                     x� +  П(y) ∶= φτ(y)( x� + y).           (2.62)  

Proposition (2.2.5): The Poincare map is as smooth as the vector 
field in a-neighborhood of the origin. The characteristic multipliers 
of the periodic orbit are given by 1 and the n-1 eigenvalues of the 

Jacobean matrix 
��

��
(0). 
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Proof: The smoothness of П follows directly from the smoothness of 
the follow and the implicit function theorem. Let us now observe 
that  

d

dt
γ̇(t) =

d

dt
f�γ(t)� =

∂f

∂x
�γ(t)�γ̇ = A(t)γ̇(t). 

Thus by Floquet’s theorem, we can write  

γ̇(t) = P(t)e��γ̇(0), 

And, in particular, 

γ̇(0) = γ̇(T) = P(T)e��γ̇(0) = e��γ̇(0). 

This show that γ̇(0) is an eigenvector of e�� with eigenvalue 1 . Let 
(e�, … . , e�� �,γ̇(0)), e�, … . , e�� �, ∈ Ʃ, be a basis of R�. In this basis, 

                                                         e�� = �e�Ʃ� 0
⋯ 1

�, 

Where BƩ is the restriction of B to Ʃ, and the dots denote arbitrary 
entries .Now, if we consider momentarily y as a vector in R� instead 
of Ʃ, linearization of (2.62) gives  

��

��
(0) =

�

��
(φτ(y)( x�+ y))|�� � =

���

��
(x�)

��

��
(0)+  

���

��
 

(x�)=  γ̇(0)
��

��
(0) + e��. 

The first term is a matrix with zero entries except on the last line, so 
that ∂� ∏ (0) has the same representation as e�� , save for the 

entries market by dots.In particular, when y is restricted to Ʃ ,
�П

��
(0) 

has the same eigenvalues as e�Ʃ�. The consequence of this result is 
that, by studying the Poincare map, we obtain a complete 
characterization of the dynamics in a neighborhood of the periodic 
orbit .in particular, if y=0. Considered as a �ixed point of the 
Poincare map, admits invariant manifolds, they can be interpreted 
as the intersection of Ʃ and invariant manifolds of the periodic orbit. 
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Up to now, we have obtained quite a precise picture of the dynamics 
near hyperbolic equilibrium solutions .one might wonder whether it 
is of any interest of examine the case of no hyperbolic  a matrix 
chosen at random will have equilibria, since eigenvaluse on the 
imaginary axis with probability zero. This argument no longer 
works, however, if the dynamical system depends on a parameter: 

                                     ẋ=f(x,) or  x���=F( x�, �)                                 (2.63) 

Where �∈ R (or R�) .by changing �, it is quite possible to encounter 
no hyperbolic equilibria . An important result in this connection is 
the implicit function theorem : 

Theorem (2.2.6): Let N be a neighborhood of (x∗, y∗) in R� × R�. 
Let f:N→ R� be of class C�, r≥ 1, and satisfy  

f(x∗, y∗) =0,                                         (2.64) 

det 
��

��
(x∗, y∗) ≠ 0.                                 (2.65) 

then there exists a neighborhood U of y∗ in R� and unique function 
φ: U → R� of class C� such that  

                                                     φ(y∗) = x∗                                             (2.66) 

                                              f(φ(y), y) = 0, for all y ∈ U.                    (2.67) 

This result tells us under which conditions the equation f(x,y)=0  
“can be solved with respect to x”. assume x∗ is an eguilibrium point 

of f(x,λ�) and let A be the linearization 
��

��
 (x,λ�) . then the following 

situations can occur: 

 If A has no eigenvaluse with zero real number, then f will admit 
equilibrium points x∗(�) for all   in a neighborhood of λ�. By 
continuity of the eigenvaluse of a matrix-valued function, x∗(�) 
will be hyperbolic near λ� . the curve x∗(�) is usually called an 
equilibrium branch of f. 
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 If A has one or several eigenvaluse equal to zero, then the 
implicit function theorem can no longer be applied, and 
various interesting phenomena can occur. for instance, the 
number of equilibrium points of f may change at �= λ� .such a 
situation is called a bifurcation, and (x∗, λ�) is called a 
bifurcation point of f. 
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Chapter 3 
Center manifolds and Bifurcation of Differential 

Equation 
Section(3:1): (center  manifolds) 
One the most useful methods to study the flow near bifurcation 
point is the center manifolds theorem no hyperbolic equilibrium 
points. 

Definition ( 3.1.1):Let u⊂ R� be an open set .let s⊂ R� have the 
structure of differentiable manifold for xϵu, let (t� ,     

� t� 
�  )∋0  be 

maximal interval such that φ�(�) ∈ u for all t ∈ (t� ,     
� t� 

�  ). 

Theorem (3.1.2):let  x∗   be asingular point of f , where f is of class 

c�,r≥ 2 , in a neighbourhood of x∗   let A =
��

��
(x∗   ) have , respectively 

, n�, n� and n� , and such 

 W���
�  is the  unique local invariant manifold tangent to E� at  

x∗   , and φ�(�)  →  x∗   as t→ − ∞  for all x∈ W���
� .                      

 W���
�  is the unique local inuariant manifold tangent to 

E�  at x∗   , and φ�(x) →  x∗   as t →  ∞  

 for all  x∈ W���
� W���

� is tangent to  E� but not necessrily unique. 

 Before giving a (partial) proof this result we shall introduce useful 
lemma from the theorem of differential   inequalities. 

Lemma (3.13) (Gromwell’s inequality)  Let φ, α andβ be continuous 
and real valued 

                            φ(�) ≤ α(�)+ ∫ β(�)φ(�)
�

�
ds  ∀t ∈ [a, b]                      (3.1) 

Then 

                        φ(�) ≤ α(�)+ ∫ β(�)φ(�)
�

�
e∫ �(�)��

�
� ds    ∀t ∈ [a, b]          (3.2) 
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�����:let 

R(t) = ∫ β(�)φ(�)
�

�
ds 

Then, φ(�) ≤ α(�)+R  (t) for all  

t∈ [a, b]  and since β(�) ≥ 0 

��

��
(t)=  β(�)φ(�) ≤ β(�)φ(�)+ β(�)R(t) 

let K(s)=  ∫ β(�)
�

�
du, the. 

��

��
(t)=  β(�)φ(�) ≤ β(�)φ(�)+ β(�)R(t) 

let K(s)=  ∫ β(�)
�

�
du, then 

�

��
e_�(�)R(s)=[R’(s)_ β(�)R(s)] e_�(�) ≤ β(�)α(�) 

And thus, integrating from a to t, 

e_�(�) ≤ ∫ β(�)
�

�
α(�)e_�(�)ds 

We obtain the conclusion by multiplying expression by e�(�) and the 
result into (3.1).There exist various generalizations of this result for 
instance to functions β(�) that are only integrable. Let us now 

proceed to the proof of the center manifold theorem. there exist 
more or less sophisticated proofs. we will given her a rather straight 
for word one take from [ca81]. For simple city we consider the case 
n(�) =0 , and we will only prove the existence of a Lipchitz continues 

center manifold. 

To Proof Theorem(3.1.2),we write the system near the 
equilibrium point as 

y. = B(�)� �� (�,�) 

x. = C(�)��(�) (�,�) 
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Where all eigluseenva of B have strictly negative real parts all 
eigluseenva of C hone zero real parts, and 

||g-(y, z)||,|| g(�) (y, z)||≤ M ��|y|�
�

+ �|z|�
�

� 

In a neighborhood of the oregin.we shall prove the existence of local 
center manifold for a modified equation that agrees with the present 
equation in small neighborhood of the equilibeium. let  

ψ : R�(�) ⟶ [0,1] be C�  function such ψ (x) = 1,When||x||≤1 
and ψ (x) = 0, when ||x||≥2. We introduce the function  

G-(y,z)=g -(y,z ψ  (
�

�
)), Then the system 

y. = B(�)� �� (�,�) 

z. = C(�)��(�) (�,�) 

Agrees with the original system for  

||z||≤ ϵ we look for a center manifold with eqaution y = h(z), where 
h is in a will-chosen function space , in which we went to apply 
Beach’s fixed point theorem .let ρ > 0 ���  � > 0 �� ���������, ���  

let x be set of lipschitz continuous function 

 h: R�(�) ⟶ R�(� ) with lipschitz constat k, �|h(z)|� ≤  ρ for all zϵR�(�) 

and h(0)=0, is complet space with the supremum norm |.|. for 
hϵ X we denote by φt(. , h) the �low of the differnetial equation 

z. = C(�)��(�) (�(�),�). 

For any solution (y(s),z(s))t� ≤ s ≤ t, then relation  

Y (t) = e�(�� ��)y(t�) + ∫ e�(�� �)�

��
G-(y(s),z(s))ds 

Is satisfied, as is easily checked by diferntation.among all possible 
solution, we want to select a class of solutions satisfying  
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Y(t)=  ∫ e�(�� �)�

� �
G-(y(s),z(s))ds 

If we set t=0 and  require that  y(s)=   h(z(s)) for alls, we arrive at 
equality  

h(z(0))=  ∫ e�(�� �)�

� �
G-(y(s),z(s))ds 

Where  z(s) = φt(z(0), h)  thus we conclude that h is a fixed point of 

the operator  T:x ⟶ x, de�ind by 

(Th) =  h(z(0))=  ∫ e���

� �
G-(h(φ(�)(z, h)), φ(�)  (z,h))ds, 

Then h a center manifold of the equation .not that there may be 
center manifold that do not satisfy this equation ,and thus we will 
not be proving uniqueness. Now we wont to show that T is a 
contraction on x for an apposite choice of ε k and p.observe first that 
since all eigenvalues of B have a strictly negative real part  Lemma 
(2.2.2) implies the existence of positive constants β and Ksuth that  

||e� ��y||≤ Ke�� ||y|| ∀z ∈ R�� , ∀s ≤ 0 

Since the eigevaluse of C have zero real parts , the same lemma 

implies that e��z||  is a polynomial in s. hence, for every v > 0, there 

exists a constant   Q(v) such that 

||e��y||≤ Q(v)e�|�|||z||  ∀ z ∈ R�� , ∀s ∈ R 

It is positive that Q(v) ⟶  ∞  asv ⟶ 0 We first need to show that 
TX ⊂ x. Assume from now on that ρ ≤ ε,so  

that ||h(z)|| ≤ ε . the de�inition of G − implies that 

||G-(h(z)),z)|| ≤ M�ε� 

For a constant M� > 0 ��������� �� �  ��������  , 

the derivates of G� are of order ε so that thereis constant 
M�� > 0 ��������� �� �  ���ℎ 
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||G�(h(z�), z� ) −  (h(z�), )|| ≤  M��ε [||h(z�)- (h(z�) ||+||z� -z� ||] 
≤  M��ε (1+k)|| z� -z� ||. 

A similar relation hold for G -.The bound on ||G-|| implies that 

||Th(z)|| ≤  ∫ Ke���

� �
 M� ε� ds≤  ε� 

��� 

�
 , 

And hence||Th(z)|| ≤  ρ proveded ε ≤ (β /KM� ) (ρ / ε ). Next we 
want to es timate the lipschitz    constant of T .let z� ,z� ∈
R�� By de�inition of the �low φt(. , h), 

�

��
(φt(z�, h) − � φt(z�, h)� = c(φt(z�, h) − � φt(z�, h)�+

G�(h(φt((z�, h), (φt�(z�, h)�− G�(h(φt((z�, h), (φt�(z�, h)� 

Taking into account the fact that φ�=z,we get  

φt(z�, h) − � φt(z�, h)�= e��(z� − z�)+ ∫ e�(�� �)[
�

�
G�(h(φs((z�, h), 

(φs�(z�, h)�− G�(h(φs((z�, h), φs�(z�, h)�]ds 

For t≤ 0, we obtain with the properties of G� 

|| φt(z�, h) − �φt(z�, h)�||≤ Q(v) e� ��||z� − z�||+ ∫ Q(v)e� �(�� �)�

�
M��ε 

(1+ κ)|| φs (z�, h) - φs (z�, h) ||ds 

We can now apply gromwell’s inequality to ψ (t)=  e� �||φ -t(z�, h) -
 φ -t(z�, h)||, with the result 

|| φt(z�, h) − �φt(z�, h)� ||≤  Q(v) e� ��||z� − z�|| , 

Where γ = v+Q(v)  M��ε( 1 + κ) .we  can arrange that γ < �,tanking 
for instance v=  β/2 and ε small enough we thus obtin  

||Th(z�)-Th(z�)||≤  

∫ Ke���

� �
M��ε( 1 + κ)|| φs(z�, h) − �φs(z�, h)� ||ds 

≤  
�����( ���)�(�)

�� �
||z� − z�||. 
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For any given κ and ν, we can find ε small enough that ||Th(z�)-
Th(z�)||≤  κ||  � − z�|| . 

This complete s the proof that �� ⊂ �   

Finally, we want to show that � is contraction  for h� , h� ∈  �,   

Using||G�((φs(h�(z�, h),(φs�(z�, h)�− G�(h�(φs((z�, h), 

φs�(z�, h)�||≤ M��ε[( 1 + κ) || φs(z�, h) − �φs(z�, h)� || +|h� − h�|], 

We obtain similar way by Gromwell’s inequality that  

||φt(z, h�) −  φt(z, h�)||≤  2
�(�)

�
 M��ε|h� − h�| 

(this is a rough estimate , way where we have thrown away  some t-
depended terms ). This leads to the bound  

||Th�(z) − Th�(z)||≤  
�

�
M��ε [1+2 M��ε(1+ κ)

�(�)

�
  ]| h� − h�| 

Again , taking ε small enough ,we can achieve that ||h�(z) − Th�(z)|| 
≤  λ|h� − h�| for some λ < 1and for all, z∈ R�(�) .this show that T is a 
contraction , and we have proved the existence of lipschitz contuous  
center manifold by Bench’s fixed point  theorem one can proceed in 
similar way to show T is contraction in space of Lipchitz 
differentiable function . One can also  prove that if f is class C� ,r≥
2,then h is also class C� if f is analytic or C� , however, then h will be 
C� for all r≥  1, but in general it will not be analytic ,and not even 
C� .in fact ,the size of the domain in which h is C� may became 
smallar and smallar as r goes to in�inity ,see [ca81] for examples. As 
pointed out in the proof the theorem the center manifold is not 
necessarily unique it is easy to give example of systems admitting a 
continuous family of center manifolds however , as we shall see 
these manifolds have to approach each other extremely fast near the 
equilibrium point and thus the dynamics will be qualitatively the 
same on all center manifolds. 
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Example (3.1.4):  the system 

                                               y.= -y                                                                 (3.3) 

                                               z.= -z� 

Admits a two parameter family of center manifolds 

                      Y=h(z, c�, c�) = �
c�e� �/���

  for z > 0
0  for z = 0 

c� e� �/���
  for z < 0

�                           (3.4)         

The operator T in the proof of theorem (3.1.2) admits a unique �ixed 
point h(z)≡ 0, but there exist other center manifolds  which are not 
fixed points of T note however, that all function h(z, c�, c�) have 
identically zero Taylor  expansions  at =0.  Now we will discuss the 
properties of center manifolds.  We assume in this discussing that x∗  

is a non- hyperbolic equilibrium point of f such that A=
��

��
(x∗  ) has 

n� ≥ 1 eigenvalues withzero real parts and  n�  ≥ 1 eigenvalues with 
negative real parts in appopriates we can write  

                                 y.=By+g -(y,z)                                                              (3.5) 

                                z.=Cz+ g�(y,z) 

Where all eigevalues  of B have strictly negative real parts all 
eigenvaluse of C have zero real part and g-(y,z), g�(y,z) are nonliear 
termes theorem (3.1.2) show the existence of local center manifolds 
with parametric equation y=h(z).the dynamics on this locally 
invariant manifolds is governed by the elation 

                            u.= c�+ g�(h(u),u)                                               (3.6) 

Equation (3.6) has the advantage to be of lower dimension than 
(3.5) and thus easier to analyses the following reslut show that (3.6) 
is good approximation of (3.5). 
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Theorem (3.1.5): if the origin of (3.6) is stable (asymptotically 
stable, unstable),then origin of (3.1.5) is asymptotically stable 
,unstable). Assume that the origin of (3.1.6) is stable for any 
solution(y(t),z(t)) of (3.1.5) with (y(0),z(0)) suf�iciently small, 
there  exist a solution u(t)of (3.1.6) and a constant γ > 0 such that 

                                Y(t)=h(u(t))+o( e� ��) 

                             Z(t)=u(t)+ o( e� ��)                                                  (3.7) 

Let us now discuss how to compute center manifolds  in the proof 
the theorem  (3.1.2) we used that fact h is a functional operator T 
while beige useful to prove existence  of center manifold T not very 
helpful for the computation of h but there exists another operator 
for this purpose replacing y by h(z) in (3.5) we obtain 

��

��
(z)[Cz+ g�(h(z),z)]=Bh(z)+g -(h(z),z)                                (3.8) 

For functions ∅= R�� ⟶ R��  which are continuously differentiable 
in a neighborhood of the origin let us define 

         (L∅)(z)=  
�∅

��
(z)[ Cz+ g�(∅ (z),z)]-B∅ (z)-g-(∅ (z),z)            (3.9) 

Then (3.8) implies that   (Lh)(z)=0 for any center manifold of (3.5) 
this equation is impossible to solve in general However its solutions 
can be computed pertubatively and the approximation procedure is 
justified by the following  

Theorem (3.1.6):  let u be a neighborhood of origin in R�� and let 

∅ ∈ C�(U, R��  )  satisfy  ∅(0) = 0 and 
�∅

��
(0)=0if there is a q > 1suth 

that (L∅)(z)= Ο||z||� as z⟶ 0 then||h(z)- ∅(z)||=  �||z||� as z⟶ 0 
for any center manifold h An important consequence of the result is 
that if h�and h�are two different center manifold of x∗ , then one 
must have h�(z) − h�(z) =  �||z||� and for all q> 1 i.e,all center 
manifolds have the same Taylor expansion at z=0  
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Example (3.1.7): consider the two-dimensional system 

                                              y.= -y+c z�                                                    (3.10) 

                                                 z.=yz -z� 

Where c is a real parameter we wont to determine the stability of 
the origin Naively, one might think that since the first equation 
suggest that y(t) converges to zero as t⟶ ∞  the dynamics can be 
approximimated by projecting on the line y=0 this would lead to the 
conduction that the origin is asymptotically stable because z. = -z� 
when y=0 we will now  compute the center manifold in or der to find 
the cornet answer to the equation of stability the operator (3.9) has 
the form  

                (L∅)(z)= ∅�(z)[z∅(z)- z�] +  ∅(z) − cz�                            (3.11) 

Theorem (3.1.6): allows us solve the equation (lh)(z)=0 
perturbatively, by   an Ansatz of the from 

                  h(z)= h� z�  + h� z� + h� z�+  � (z�)                                (3.12) 

the equation (Lh)(z)=0 

(Lh)(z)= (h� − c) z�+ h� z� + [h���h�(h� − 1) z�+  � (z�)=0    (3.13)                                                                 

Which requires h� =c,  h�=0and h� = − 2c(c − 1). Hence the center 
manifold has a Taylor expansion of the from  

                     h(z)=c z� -2c(c-1) z�+  � (z�)                                          (3.14) 

and the motion on the center manifold is governed by the equation 

          u. =uh(u) - u�=(c -1) u�-2c(c-1) u�+ �(z�)                            (3.15)              

It is easy show (using for instance, u� as a Lipunov function) 

That the equilibrium point u=0 asymptotically stable if c < 1and 
unstable if c> 1by Theorem (3.1.5) we conclude that the origin of 
system (3.10) asymptotically stable if c < 1  and   unstable if c> 1 
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which contradicts the naïve  approach when c> 1 . The case c=1  is 
special in the case the function h(z)= z� is an exact solution  of the 
equation(Lh)(z)=0 and the curve y= z� is the unique center 
manifold of (3.1.10) which has the particularity to consist only of 
equilibrium points the origin is stable 

Section (3.2) Bifurcation of Differential Equation  

We consider in this section parameter-dependent differential 
equations of the from  

                                             x.=f(x, λ)                                                       (3.16) 

Where xϵD ⊂ R�, λ ϵ Λ ⊂ R� and f is of class c�for some r≥ 2we 
assume that (x∗,0) is a bifurcation point (3.16) which that 

 f(x∗,0)=0  

                                            
��

��
(x∗,0)=A,                                                      (3.17)  

Where the matrix A has n� ≥ 1eigevalues on the imaginary axis 
when λ = 0, the equilibrium point x∗ admits a center manifolds we 
would like however to examine the dynamics of (3.16) for all λ in 
neighbourhood of 0 where the center manifold theorem cannot be 
applied directly there is however ,an elegant trick to solve this 
problem in the enlarged phase space DΧ Λ, consider the system 

x.=f(x, λ) 

                                                 y.=0                                                            (3.18)  

It admits (x∗,0) as a non-hyperbolic equilibrium point the 
linearization of (3.18)around this point is a matrix of the from 

                                               �
�

��

��
(�∗,�)

�             �
�                                                  (3.19) 

Which has n� + p eigenvalues on the imaginary axis including the 
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( possibly multiple) eigenvalues zero this matrix can be made black-
diagonal by a linear change of variables where one of the black 
contains all eigenvalues with zero  part in variables the system 
(3.18) becomes 

y.= By+g -(y,z, λ) 

                                     z.=Cz+D  λ+ g�(y,z, λ)                                         (3.20) 

y.=0  

Here the (n-n�)x(n-n�) matrix B has only eigenvalues with nonzero 
eal parts ,the n�xn� matrix C has all eigenvalues on the 
imaginarynaxis ,D is matrix of size n�xp and 

||g-(y,z, λ)||,|| g�(y,z, λ)||≤ ||y||�+ ||z||�+ ||λ||�                     (3.21) 

In neighborhood  of the origin , for some positive constants M we 
can theorem (3.16) which shows the existence of local inverting 
center manifold of the from y=h(z,  λ) the dynamics on the manifold 
is the dimensional equation 

          u.=cu+D  λ+ g�(h(u, λ), u, λ).                                                     (3.22) 

if  a has no eigenvalues with positive real part Theorem (3.1.5) show 
that this equation gives a good approximation to the dynamics of 
(3.16) for small λ and near x= x∗ the big advantage is that 
generically , the number of eigenvalues on the imaginary axis at the 
bifurcation point is small ,and thus the reduct equation (3.22) is of 
low dimension with these preliminaries it becomes possible to 
investigate bifurcations in a systematic way recall that A is a real 
matrix matrix , and thus its eigenvalues  are either real or appear in 
complex conjugate pairs thus the two simplest  bifurcations in,whith 
we will consider below involve either a single zero eigenvalues  or 
pair of conjugate imaginary more complicated bifurcations  
correspond  to double zero  eigenvalues  a zero eigenvalues   and 
two conjugate imaginary ones and so on these case are however  
less ‘’generic’’, and we will not discuss them there . 
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Now we discussing the one-Dimensional center manifold. We first 
discuss bifurcations involving a single eigenvalues equal to zero i.e. 
n�=1 and c=0 the dynamics on the one –dimensional center 
manifold is governed by equation of the from  

u.=f(x, λ)    uϵR                                           (3.23) 

We will also assume that λ ϵR    the origain (0,0)is a binfurcation 
point of (3.23) meaning  

 F(0,0)=0,   
��

��
(0,0)=0.                                                      (3.24)  

 

Figure(3.1) (a) Definition on the Newton polgn.white circles 
coresspondto points (ρ,q) such that  c�� ≠ 0,black circles to point 

ρ +  q=r the slopes of full lines correspond to possible exponents 
equilibrium branches (b)  the setting of the proof of proposition 
(3.2.2). In order to understand the dynamics for small u and λ ,we 
need in particular to determine the singular points of f ,that is we 
have the equation  F(u, λ)=0 in a neigh bourhood of the origin. Note 
the second condition in (3.24) implies that we cannot apply the 
implicit function theorem. Let us start by expanding F in Taylor 
series, 

        F(u, λ)= ∑ c��u�λ�
�� ���
�,���

+ ∑ u�λ�
�� ���
�,���

R��(u, λ),                 (3.25) 

Where the functions R�� are continuous near the origin, R��(0,0) = 0   
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                                               c�� =
���  �

�!�!��� ��� (0,0)                                (3.26) 

The bifurcation conditions (3.2.9) amount to c�� = c��=0 . An  elegan 
way to describe the solution of F(u, λ)=0 is based on Newton’s 
polygon. 

De�inition (3.2.1): consider the set  

               A={( ρ, q) ∈ N�: ρ +  q ≤ r,and c�� ≠ 0}                            (3.27) 

(incase F is analytic , we simple drop  the condition c�� ≠ 0 ≤ r) for 

each ( ρ, q) ∈A ,we construct the sector {(x,y) ∈ R�:x≥ p and y≤  q}. 
the Newton polygon pof (3.2.10) is the bracken line inR� defined  by 
the convex envelope of union of all these sector’s see Fig(3.1) 

Proposition (3.2.2): Assume for simplicity that  c�� ≠ 0 whenever 

ρ +  q = r.Assume further that the equation F(u, λ)=0 admits a 
solution of from u=C |λ|�(1+ ρ(λ)) for small λwhere C≠ 0 and 
ρ(λ) → 0 continuously → 0 then Newton’s polygon must have a 
segment of slope – μ.  

Proof :it is sufficient to consider a function F of the from  

F(u, λ)= ∑ c�u
��λ���

�� �  

Indeed, if the expansion (3.25)contains only two terms, the result is 
immediate , and if it has more then three terms, one can proceed by 
induction the hypothesis implies  

∑ σ�c�C
��|λ|�������

�� � (1 + ρ(λ))��=0  

Where σ�= ± 1 Assume for de�initeness that 

 p�μ+ q� ≤ p�μ+ q� ≤ p�μ+ q� consider  

σ�c�C��(1 + ρ(λ))��+ ∑ σ�c�C
��|λ|������� ���� ��

�� � (1 + ρ(λ))��=0  
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The exponent of |λ| is strictly positive thus tanking the limit λ → o 
we obtain C�� = 0 a contradiction we conclude that we must have 
p�μ+ q� = p�μ+ q�. Graohically, the relation p�μ+ q� = p�μ+ q� ≤

p�μ+ q� means that μ=
��� ��

��� ��
 is minus the slop of the segment from 

(p�, q�) to (p�, q�)and that (p�, q�) lies above ,see Fig(3.1).This 
result does not prove the existence of equilibrium branches 
u= u∗(λ), but it tells us where to look by drawing  Newton’s polygon  
,we obtain the possible values of μ By inserting the 

 u∗(λ) =C |λ|�(1 + ρ) into the equation F(u, λ) = 0 we can determine 
whether of not such a branch exists this is mainly a matter no 
solution other then (0,0), while the equation u� + λ�=0  admits no 
solution other then(0,0), while the equation u� − λ�=0  does admits 
solutions u= ±  λ . 

Example (3.2.3): (Saddle-Node Bifurcation) 

We now illustrate the procedure of equilibrium branches in generic 
case r=2 , c�� ≠ 0, c�� ≠ 0 then  

        F(u, λ)=   c��λ + c��u� + c��uλ+ c��λ�+ ∑ u�λ�
���� � R��(u, λ),          (3.28) 

And Newton’s polygon has two vertices (0,1),connected by a 
segment with slope -1/2. Proposition (3.2.2) tells us that if there is 
an equilibrium branch, then it must be of the from 

u =  |λ|�/�(1+ ρ(λ)),where lim�→ �ρ(λ) = 0 

in fact ,it turns out to be easier to express λ as a function of uIn 
neighborhood of origin ,there exists a continuous function ρ� (u) 
with ρ� (0)=0such that F(u, λ)=0 if and only if  

                                                λ =
���

���
u�(1+ ρ� (u) )                                (3.29) 

Proof: proposition (3.2.2) indicates that any equilibrium branch 
must be of the from λ= c� u�(1+ ρ� (u) ) .define the function  
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G(ρ� ,u)=
�

��F(u, c� u�(1+ ρ� )) using the expansion(3.28) of F,it is 

easy to see that 

lim�→ �G(0,u)=  c��C� + c�� 

 

FIGURE(3.2) 

 saddle-node bifurcation, (a) in the case c�� > 0, c�� < 0(direct 
bifurcation ) and (b) in case c�� > 0, c�� > 0(�������� ����������� ) 
.the other case are similar with stable and unstable branches 
interchanged. full curves indicate stable equilibrium branches ,while 
dashed curves indicate stable equilibrium branches. And thus 
G(0,0)=0 if and only if C� = -c��/c��.moreover ,using a Taylor 
expansion to  

lim�→ �
��

��� (0,u)=  c��C� ≠ 0 

Thus, by the implicit function theorem there exists, for small u,a 
unique function ρ� (u) suth that ρ� (0)=0 and G( ρ� (u),u)=0 
Expressing u as a function of λ,we find the existence of two 
equilibrium branches  

                         u= u∗ ± (λ) = ± �−
���

���
λ[1+ ρ(λ)],                             (3.30) 
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which exist only for sing λ= -sing(c��/c��) their stability can be 
determined by using the Taylor expansion  

          
��

��
(u, λ)=2 c��u+ c��λ+ ∑ u�λ�

���� � R��(u, λ),                       (3.31) 

Where R��
�  are some continuous functions vanishing at the origin. 

Inserting (3.30) we get  

          
��

��
(u∗ ± (λ), λ)= 2 c���−

���

���
λ+ �(�|λ| )                               (3.32) 

We thus obtain following cases, depending on the sings of the 
coefficients: 

1. If c�� > 0and c�� < 0,the barnches exist for λ>0, u∗
�is stable 

and u∗
� is unstable ; 

2. If c�� < 0and c�� > 0,the barnches exist for λ>0, u∗
�is unstable 

and u∗
� is stable ; 

3. If c�� < 0and c�� < 0,the barnches exist for λ>0, u∗
�isun stable 

and u∗
� is unstable ; 

4. If c�� > 0and c�� > 0,the barnches exist for λ>0, u∗
�is unstable 

and u∗
� is stable ; 

These bifurcations are called saddle –node bifurcation, because 
when considering the full system instead of its restriction to the 
center manifold, they involve a saddle and node .if the branches 
exist for λ>0. The bifurcation is called direct, and if they  exist for 
λ<0 it is called indirect Fig(3.2)  
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FIGURE(3.3): Tran critical bifurcation, in the case of equation 
(3.2.21) with c��<0 and c��>0  

It is important to observe that the qualitative depends only on those 
co-efficient in the Taylor series which correspond to vertices of 
Newton’s polygon thus we could have thrown away all other terms 
,to consider only the truncated  equation , or normal from, 

                               u.= c��u�+ c��λ                                                (3.33) 

FIGURE (3.3) Trancitical bifurcation, in the case of equation (3.36) 
with c�� < 0 and c�� > 0 

�������(3.2.4) :(Transcritical bifurcation)  

let us consider next the slightly less generic case where 
c��=0,but c�� ≠ 0,  c�� ≠ 0 , c�� ≠ 0 then the taylor expansion of F 
takes th from 

      F(u, λ)=  c��u�+ c��uλ+ c��λ�+ ∑ u�λ�

���� �
R��(u, λ)        (3.34) 

and Newton’s polygonthethere vertices (0,2),(1,1)and (2,0) 
connected by segments of slope-1 proposion3.2.2 tells us to look for 
equilibrium branches of the from u=c  λ(1 + p(λ)) proceeding in 
similar way as lemma (3.2.3) we obtain the conditions 

c��C�+ c��C=0  



84 
 

                                         2 c��C�+ c��C≠ 0                                       (3.35) 

For the existence of unique equilibrium branches of this from .we 
thus conclude that if c��

�-4c��c��>0there are two intersecting 
equilibrium branches .it is easy to see that the linearization of f 
around such a branches is (2 c�� + c��)λ + �(λ),and thus one of the 
barnches is stable ,the other is unstable ,and they exchange stability 
at the bifurcation point this bifurcation is called transcritical . 

ifc��
�-4c��c�� < 0there are no equilibrium barnches near the origin 

,finally ,if c��
�-4c��c�� = 0there may be several barnches with the 

same slop through the origin  let us point out that the condition 
c�� ≠ 0is not essential in fact one often carries out a change of 
variables taking one of the  equilibrium branches to the λ − axis the 
resulting normal from is  

                                       u.= c��u�+ c��uλ                                           (3.36) 

One of the equilibrium branches is u≡ 0thus slope other barnch and 
the stability depend on the signs c��and c��Fig(3.3). 

 

FIGURE(3.4):pitchfork bifurcation,(a) in the case c�� > 0, c�� <
0(supercritical binfurcation) 
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Example (3.2.5):(pitchfork Bifurcation ) 

One can go on that forever, considering case with more coefficients 
the Taylor series equal to zero, which is especially interesting unless 
one has to do with a concrete problem However ,sometimes 
symmetries of the differential equation may cause many terms in 
the Taylor expansion to vanish consider the case F∈ C� satisfying  

                     F(-u, λ)= -F(-u, λ)  (-u, λ)                                           (3.37) 

Then c��=0 for even p in fact , F( -u, λ)/u is C�nearthe origin and 

thus we can write  

    F(-u, λ)=u[ c��λ+ c��u�+ c��λ�+ ∑ u�λ�R��
�

���� �
(u, λ)  ]     (3.38) 

Then term in brackets is similar to the expansion for the sadle-
nodebinfurcation, and thus we obtain similar equilibrium branches  
in addition ,there is the  equilibrium branches  u≡ 0 . 

Depending on the sigs of the confidents, we have the following case: 

(1). If c�� > 0and c��<0 the branch u=0 is  stable for λ <0 and 
unstable for λ>0 and two additional stable branches exist for 
λ>0; 

(2). If c�� < 0and c��>0 the branch u=0 is  stable for λ <0 and 
unstable for λ>0 and two additional stable branches exist for 
λ>0; 

(3). If c�� > 0and c��>0 the branch u=0 is  stable for λ <0 and 
unstable for λ>0 and two additional stable branches exist for 
λ<0; 

(4). If c�� < 0and c��<0 the branch u=0 is  stable for λ <0 and 
unstable for λ>0 and two additional stable branches exist for 
λ>0; 
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This situation in called a pitchfork binfurication, which is said to be 
supercritical if stable equilibrium are created, and subcritical is 
unstable equilibrium branches are destroyed (Fig .3.4) the normal 
for of the pitchfork bifurcation is  

                                u.= c��λ+ c��u�.                                                          (3.39) 

In physic ,this equation is written  in the form                                                   

                     u. =
��

��
(u, λ),           V(u, λ)      = -

���

�
λu�-

���

�
u�              (3.40) 

If c��<0,the function V(u,  λ) has one ro two minima and in the latter 
case it is called a double –well potential. Now we study the two-
dimensional center manifold hopf bifurcation and now we will 
discussing we consider the case n�=0,with c having 
eigenvaluse± iw�, where w� ≠ 0the dynamics on the center 
manifold is governed by a two –dimensional of the form 

                                                   u. = F(u, λ),                                        (3.41) 

Where we shall assume that λ ∈ Rand F∈ C�.since
��

��
(0,0)=C is 

invertible,the implicit function theorem(theorem3.0.1) show the 
existence near λ=0,of a unique equilibrium branch u∗(λ) with u(0) 
and f(u∗(λ), λ)=0.by continuity of the eigenvalues of matrix -valued 
function ,the linearization of F around this branch has eigenvalues 
a (λ) ± iw(λ),where w(0)= w� and a(0) =0,A translation of -u∗(λ)  
followed by linear change of variables ,puts the system (3.41) into 
form  

              ���
∗

��
∗�= � �(�)         � �(�)

�(�)         �(�)        
����

��
�+ �

��(��,��,�

��(��,��,�
�,                             (3.42) 

Where the g� are nonlinear terms satisfying 

||g�g�(��
, u�, λ )||≤ M(u�

�+ u�
�) 
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 for shall u�and u�and some constant M>0.  Our strategy is now 
going to be simplify the nonlinear terms as much as possible 
following the theory of normal forms devolved in subsection (2.4) it  
turns out to be useful to introduce the complex variable z= u�+i u� 
(an idea going back to Poincare ),which satisfies an equation of the 
form . 

                                  z.=[a( λ)+iw( λ)]z+g(z, z�  λ),                              (3.43) 

Where z�   is the complex conjugate of z .this should actually be 
considered as a two-dimensional system for the independent 
varibles z and z� : 

z.=[ a( λ)+iw( λ)]z+g(z, z�  λ), 

                                   z� =[ a( λ)-iw(λ)] z� + g�  (z,z�  λ),                     (3.44) 

Lemma(2.1.20) shows that monomials of the form c�z��z� �� in the 

nonlinear term g can be eliminated by a nonlinear change of 
variables, provided the non-resonance condition (2.50) is satis�ied 
.in the present case , this condition has the form 

                         (p��p�-1)a(λ)+ ( p�� p� ∓1)iw(λ)≠ 0                      (3.45) 

Where the signs ∓respectively, to the first and second equation in 
(3.44) this condition can also be checked directly by carrying out the 
transformation z= ξ+ h�ξ��ξ� �� in (3.44) condition (3.45) hardest to 

satisfy for λ=0 where it becomes  

                                                   (p�� p� ∓1)iw� ≠ 0                             (3.46) 

Since w� ≠ 0 by assumption ,this relation always holds for p��p�=2 
so quadratic terms can always be eliminated the only resonant term 
of order 3 in g is z� z� = |z|�z, corresponding to (p�,p�)=(2,1) 

(Likewise ,the term z� z� = |z|�z is resonant in g� .)we  conclude 
from proposition (2.2.19) that there exist a polynomial change of 
variable z=  ξ+h( ξ, ξ� ),transforming (3.43) into 
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      ξ.=[a()+iw( λ)]ξ  +c( λ)|ξ|� ξ+R( ξ, ξ� , λ)                (3.47) 

 

FIGURE (3.5): supercritical Hopf bifurcation .The stationary 
solution (u�, , u�)=(0,0) is stable for λ<0 and unstable for λ> 0 for 

positive λ,a stable periodic orbit close to a circle  of radius √λ 
appears. Where c(λ) ∈ Cand R(ξ, ξ� , λ)= �(|ξ|�) (meaning that |ξ|� � 
R(ξ, ξ� , λ)= � Equation (3.47) is this normal form of our 
binfurcation. T� analyse it further ,we introducte polar coordinates 
ξ= re��,in which the system becomes 

r.=a( λ)r+Rec( λ)r�+ R�(r, φ, λ) 

          φ.=w( λ)+Imc( λ)r�+ R�(r, φ, λ)                                           (3.48) 

Where R�=  �(r�) and R�=  �(r�)we henceforth assume thst 
a�(0)≠ 0 and changing λ into- λif necessary we may assume that 
a�(0)>0 if we discard the remainder R�,the �irst eqaution in (3.48) 
describes a pitchfork bifurcation for r which is superitical if 
Rec(0)<0 and subcritical Rec(0)>0 the �irst case corresponds to the 

appearance of a stable periodic orbit ,of amplitude �–a(λ)/Rec(λ) 

Fig(3.5)the second to the destruction of an unstable periodic orbit  
the rotation frquenncy on this orbit is w�+  �(λ). It remains to show 
that this picture is not destroyed by the remainders R�and R�not 
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that in the present case we cannot apply the Poincare-Chen theorem 
(theorem (2.1.21)because the linear part is not hyperbolic. 

Theorem (3.2.6):(Andronov-Hop) 

Assume that the system x.=f(x,  λ) admits  an equilibrium branch 
x∗(λ)such that the linearization of at x∗(λ) has two eigenvaluse 
a(λ) ± iw(λ) with a(0)=0,  a�>0and w(0) ≠ 0.and all other 
eigenvalues have strictly  negative real parts if the coefficient c(λ) in 
the normal form (2.47) staist�ies Re c(0) ≠ 0 then 

(1). If Re c(0)< 0,the system admits a stable isolated periodic 
orbits for small positive λ close to a circle with radius 

proportional to √λ(supercritical case) 

(2). If Re c(0)>0,the system admits a unstable isolated periodic 
orbits for small positive λ close to a circle with radius 

proportional to √− λ(subercritical case) 

Proof: There exist various proofs of this result. One of them is based 
on the method of averaging another one of the Poincare – Benison 
theorem since we did not introduce these methods we will give a 
straightforward geometrical proof .the main idea is to consider the 
set {(r,φ): φ = 0, r > 0} as a Poincare section, and to examine the 
associated Poincare map. consider the case Re c(0)<0.if we assume 

that o<  λ if we assume that o< λ<<1 ,set r= √λp  

This bifurcation is called Poincare-Andropov-Hopf one should note 
that it is the first time we prove the existence of periodic orbits in 
any generality. Bifurcation tions with eigenvalues   crossing axis are 
common. The nature of the bifurcation depends crucially one the 
sign of Re c(0) can be determined by a straightforward though 
rather tedious computation and is given for instance in 
[GH83,p.152].  
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Section (3.3) :(Bifurcations of Maps) 

We turn now to parameter-dependent iterated maps of the form 

                                 x���=F( x�,λ),                                                     (3.49) 

With xϵD ⊂ R�, λϵR�and F ϵ C� for some r≥ 2. we assume  again that  
( x∗,0) 

F( x∗,0)=   x∗ 

                                              
��

��
( x∗,0)=A,                                                   (3.50) 

Where A has n� ≥ 0 eigenvalues of module 1 .for simplicity, we 
assume that all other eigenvalues of A have a module strictly smaller 
than 1 in appropriate Coordinates we can thus write this system as 

u���=B u�+g -(u�, z�, λ�) 

                             z���=C u�+D λ� + g�(y�, z�, λ�)                             (3.51) 

λ���= λ� 

Where all eigenvalues of B are inside the unit circle, all eigenvalues 
of C are on the unit circle, and g-and go are nonlinear terms. One can 
prove, in much the same way we used for differential equations, the 
existence of a local invariant center manifold  y=h(z,  λ)This 
manifold has similar properties as in the ODE case; it is Locally 
attractive, and can be computed solving approximately the equation 

h(C�+ D  λ+ g�(h(z, λ), z, λ))= Bh( (z, λ)+ g� (h(z, λ), z, λ))        (3.52) 

The dynamics on this manifold is governed by the n�-dimensional 
map 

u���= C u�+D λ + g�(u�, λ), u�, λ)                                       (3.53) 
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Since C is a real matrix with all eigenvalues on the unit circle the 
most generic case are the following: 

(1). One eigenvalues equal t� 1: n� = 1 and C=1  

(2). One eigenvalues equal t� -1: n� = 1 and C= -1 

(3). Tow complex conjugate eigenvalues of module 1n� = 2 and C 

having eigenvalue e± ���� with 2θ� ∋z . 

The fixed point are obtained by the equation G(u, λ)=0,with behaves 
exactly as the equation F(u, λ)=0  

For the saddle-node bifurcation we have  

                        u���= u�+ c�� λ+ c��u�
�                                              (3.54) 

For the transcitical bifurcation one can reduce the equation to 

                     u���= u�+ c�� λu�+ c��u�
�                                           (3.55) 

And for the pitchfork bifurcation the normal form is given by 

                       u���= u�+ c�� λu�+ c��u�
�                                            (3.56) 

Example (3.3.1):(Period-Doubling Bifurcation) 

We turn now to the case n�=1,C= -1 and assume that the map is of 
class C�the map restricted to the center manifold has the form  

u��� = u�+G( u�, λ) 

          G(u, λ)=  c�� λ + c��λ�  + c��u λ + c��u�  + c��u�  +…       (3.57)  

We first note that the implication theorem can be applied to the 
equation u��� = u� and yields the existence of a unique equilibrium 
branch through the origin it has from 

                         u= u∗(λ)=
���

�
+o( λ)                                                          (3.58) 
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And changes stability as λ passes though 0 if c�� + c��c�� ≠ 0 the 
something must happen to nearby orbits to understand what is 
going on it is useful to determine the second iterates A 
straightforward computation gives 

u���= -u��� + G(u���, λ) 

= u�-G (u�, λ)_G(− u�+ G( u�, λ), λ) 

                        = u�+ c��(c�� + c��c��)λ� -2(c�� + c��c��) u�λ-…   (3.59)  

Now let us consider the equation u���= u�the solutions of which 
yield orbit of period 2 we �ind that in addition to the solution 
u= u∗(λ)there exist solution of the from 

                          u�=
����������

�������
� +o( λ)                                                        (3.60) 

Theorem (3.3.2) let F (.,λ):R→ R be a one –parameter family of 
maps of the form (3.57),I.e. such that F(.,0) admits 0 as a �ixed point 
with linearization -1 assume  

c�� + c��c�� ≠ 0 

                                c�� + c��
� ≠ 0                                                        (3.61) 

This bifurcations  called a period doubling flip or sub harmonic it 
called supercritical if stable cycle of period 2 is created and 
subcritical if an unstable orbit of period is destroyed. We end this 
section by discussing Hop Bifurcation and Invariant Tore we finally 
consider what happens when two eigenvalues cross the unit circle in 
complex plane then we have to study  the map  

                   u���=C u�+G( u�, λ)                                                         (3.62) 

Where u∈ R�and C has eigenvalues e± ����with 2θ ∉ zwe shall 
assume that λ ∈ R and G∈ C� As in the case of differential equation 
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the implicit function theorem show the existence of an equilibrium 
u∗ (λ) through the origin. 
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