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Chapter 5 

Applications of Lie algebras 

5.1  Symmetry of differential equation  

Introduction  

  Several real – world models are formulated in terms of differential equations (PDE's). quite 

often these models involve parameters, arbitrary elements or functions which may not be 

straightforwardly determined through experiment. The symmetry principle which presumes 

that nature prefers maximally symmetric models has proven to be a powerful tool in 

determining these unknown parameters appearing in physical models. For instance Newton's 

inverse square law can be obtained solely from the symmetry principle. Once the unknown 

parameters of a model are determined the next logical step is to find its solutions given a set 

of initial or boundary condition.  

In this chapter we will use Lie algebraic techniques to solve the PDE, by answering these 

questions:   

How do we find the symmetry Lie algebras ?  

How do we use the symmetry Lie algebras to find the solution to the D.E's ?  

 Definition  5.1.1.    (Symmetry of a System of Differential Equations ) 

A 𝑘th-order  𝑘 ≥ 1  system 𝐸 of 𝑠 differential equations is defined by 
1
 

𝐸𝜎 𝑥, 𝑢, 𝑢 1 , … . . , 𝑢(𝑘) = 0  ,       𝜎 = 1,… . , 𝑠                            (5.1) 

where 𝑢 ≡  𝑢1 , 𝑢2 , …… , 𝑢𝑚   is dependent vector, 𝑥 ≡  𝑥1 , 𝑥2 , …… , 𝑥𝑛  is the independent 

vector and 𝑢 1 , … . . , 𝑢(𝑘) are respectively the collection of all first, second, up to  𝑘th-order  

partial derivatives. In expanded form  

𝑢 1 =  𝑢𝑖
𝛼 , 𝑢 2 =  𝑢𝑖𝑗

𝛼  , …… . ,  𝑢𝑖1 ,…..𝑖𝑘
𝛼   

Where 𝛼 = 1, … . . , 𝑚;    𝑖, 𝑗, 𝑖1 , … . . , 𝑖𝑘 = 1, … . . , 𝑛.  
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The equations appearing in Eq(5.1) are of maximal order 𝑘. In many applications 𝑠 = 𝑚, i.e., 

the number of equations is equal to the number of unknowns.  

Note that the system Eq(5.1) becomes a system of ODE's if 𝑛 = 1. Otherwise it is a system of  

PDF’s 

Definition 5.1.2.   

A symmetry transformation of the system Eq(5.1) is an invertible transformation of the 

variables 𝑥 and 𝑢, namely  

𝑥 𝑖 = 𝑓 𝑖 𝑥, 𝑢 , 𝑢 𝛼 = 𝜙𝛼 𝑥, 𝑢 ,  𝑖 = 1, … . , 𝑛;  𝛼 = 1, … . , 𝑚                     (5.2) 

That leaves (1.1) form-invariant in the new variables 𝑥  and 𝑢 , i.e.,  

𝐸𝜎 𝑥 , 𝑢 , 𝑢  1 , … . . , 𝑢 (𝑘) = 0  ,       𝜎 = 1,… . , 𝑠                                        (5.3) 

Whenever Eq(5.1) is satisfied.  

Example 5.1.1.  

The heat equation  𝑢𝑡 − 𝑢𝑥𝑥 = 0 . is invariant under the transformations 𝑡 = 𝑡, 𝑥 = 𝑥, 

𝑢 = 𝑎𝑢 for 𝑎 ∈ ℝ+.  

 The examples of transformations illustrated above are easy to deduce from the corresponding 

equations, but in general the calculation of symmetry transformations Eq(5.2) admitted by the 

system Eq(5.1) leads to non linear equations which are not easy to solve.  

However, if we consider symmetries that depend on a small parameter and that form a one – 

parameter group of transformations, we can 'linearize' these equations and easily solve them : 

this is an important discovery made by Sophus Lie . The transformation groups can be either 

local or global, they can be of continuous, discontinuous and mixed  type.  

5.1.3.  Canonical Coordinates  

If we take simplest first order differential equation to deal with has the form 
2
 

𝑑𝑦

𝑑𝑥
= 𝑔 𝑥         ………… . (5.4) 

The solution of this equation is trivial  

                                                           
2
 Lie Groups and Differential Equations -  



 

232 

𝑦 = 𝐺 𝑥 =  𝑔 𝑥 𝑑𝑥 +additive constant  = 𝐺 𝑥 + 𝑐       ……… (5.5) 

If we can write the solution on form 𝑦 − 𝐺 𝑥 = 0,the surface 𝑦 + 𝑐 − 𝐺 𝑥 = 0 is 

also solution of Eq.(5.4).There is a one-parameter group of displacements that maps 

one solution into another. These displacements can be represented by the Taylor 

series displacement operator 𝑒
𝑐

𝜕

𝜕𝑦  , for  

𝑒
𝑐

𝜕
𝜕𝑦 =  𝑦 − 𝐺 𝑥 = 0 = 𝑦 + 𝑐 − 𝐺 𝑥 = 0  …… . (5.6) 

We can express the derivative 
𝑑𝑦

𝑑𝑥
 as a coordinate 𝑝. The first O.D.E can be written as 

form 𝐹 𝑥, 𝑦, 𝑝 = 0, where 𝐹 𝑥, 𝑦, 𝑝 = 𝑝 − 𝑔(𝑥).  There are two relations among 

the three variables 𝑥, 𝑦, 𝑝. They are given by the surface equation and the constraint 

equation : 

i. Surface equation : 𝐹 𝑥, 𝑦, 𝑝 = 0 

ii. Constraint equation :  𝑝 = 𝑑𝑦 𝑑𝑥  when 𝐹 𝑥, 𝑦, 𝑝 = 0 .  

These two relations are summarized as follows: 

 

𝜕 𝜕𝑥 

𝜕 𝜕𝑦 

𝜕 𝜕𝑝 
 =  𝑝 − 𝑔(𝑥) =  

∗
0
∗
         ,       𝜕 𝜕𝑦  

𝑥
𝑦
𝑝
 =  

0
1
0
           …… . . (5.7) 

These two equations will be generalized to determining equation  of infinitesimal 

generator of invariance group  and the determining equations for the canonical 

coordinates.  

5.1.4.   Determining equation  

The surface equation must be unchanged under the one-parameter group of 

transformations, so that  

𝐹 𝑥, 𝑦, 𝑝 = 0 → 𝐹 𝑥  𝜖 ,  𝑦  𝜖 , 𝑝  𝜖  
𝜖 small
      𝐹 𝑥 + 𝜖𝜉 + 𝑦 + 𝜖𝜂 + 𝑝 + 𝜖𝜁 =

𝐹 𝑥, 𝑦, 𝑝 + 𝜖  𝜉
𝜕

𝜕𝑥
+ 𝜂

𝜕

𝜕𝑦
+ 𝜁

𝜕

𝜕𝑝
 𝐹 𝑥, 𝑦, 𝑝 + 𝑕. 𝑜. 𝑡          (5.8)  

These are leading two term of Taylor series expansion  

𝐹 𝑥  𝜖 ,  𝑦  𝜖 , 𝑝  𝜖  = 𝑒𝜖𝑋𝐹 𝑥, 𝑦, 𝑝 ……… (5.9) 

Where the generator of infinitesimal displacements for the one parameter group that 

leaves the surface equation invariant is  

𝑋 =  𝜉
𝜕

𝜕𝑥
+ 𝜂

𝜕

𝜕𝑦
+ 𝜁

𝜕

𝜕𝑝
         (5.10) 

The first two terms in Eq.(5.8) and Eq(5.9) are  
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𝐹 𝑥, 𝑦, 𝑝 = 0     , 𝑋𝐹 𝑥, 𝑦, 𝑝 = 0                                    (5.11) 

There are called the determining equations which generalized from Eq.(5.7)  

Specifically, these equations are used to determine the functions 𝜉 𝑥, 𝑦 , 𝜂 𝑥, 𝑦 and  

𝜁 𝑥, 𝑦, 𝑝  that defined the infinitesimal generator 𝑋.  

If an infinitesimal generator 𝑋 can be constructed from the determining equations, 

then it is possible to determine a new system of coordinates 𝑅, 𝑆, 𝑇 which "straightens 

out" the surface equation. This is done by solving the determining equations for 

canonical coordinates. These are a set of P.D.E's that are analogues to the equations to 

the  right hand side of the Eq(5.7). for convenience, we summarize the determining 

equation for the infinitesimal generator and for the canonical coordinates, analogs of 

the two equations on Eq.(5.7), as follows :  

𝑋𝐹 = 0 ,         𝑋  

𝑅 𝑥, 𝑦 

𝑆 𝑥, 𝑦 

𝑇 𝑥, 𝑦, 𝑝 
 =  

0
1
0
                                      (5.12) 

The three linear partial differential equations on the right determine the new canonical 

coordinates: the independent variable 𝑅(𝑥, 𝑦), the dependent variable 𝑆(𝑥, 𝑦), and the 

new constraint 𝑇(𝑥, 𝑦, 𝑝) between 𝑅 and 𝑆.  

5.1.5.   Dependent Coordinate  

The dependent coordinate 𝑆 is determined from the differential equation 

𝑋(𝑥, 𝑦, 𝑝)𝑆(𝑥, 𝑦)  =  1. We require 𝑆 to be independent of 𝑝, so the condition 

defining 𝑆 reduces to   

 𝜉 𝑥, 𝑦 
𝜕

𝜕𝑥
+ 𝜂 𝑥, 𝑦 

𝜕

𝜕𝑦
 𝑆 𝑥, 𝑦 = 1           (5.13) 

The solution is not unique: Any function of 𝑥 and 𝑦 that is annihilated by 𝑋 can be 

added to the solution. Further, it is not important that 𝑋𝑆 =  +1: we could just as well 

choose a solution satisfying 𝑋𝑆 =  −1 or, for that matter, 𝑋𝑆 = 𝑘 ≠ 0, where 𝑘 is 

some constant. 

5.1.6   Invariant Coordinates  

i. Independent Variable 

The two invariant coordinates 𝑅 and 𝑇 are unchanged under the one- parameter 

transformation group. These functions obey 𝑋𝑅 = 0 and 𝑋𝑇 = 0, which are explicitly 

 𝜉 𝑥, 𝑦 
𝜕

𝜕𝑥
+ 𝜂 𝑥, 𝑦 

𝜕

𝜕𝑦
 𝑅 𝑥, 𝑦 = 0           (5.14) 



 

234 

 𝜉 𝑥, 𝑦 
𝜕

𝜕𝑥
+ 𝜂 𝑥, 𝑦 

𝜕

𝜕𝑦
+ 𝜁 𝑥, 𝑦 

𝜕

𝜕𝑝
 𝑇 𝑥, 𝑦, 𝑝 = 0           (5.15) 

The solutions are most simply found by the method of characteristics. They obey the 

differential relations 

𝑑𝑥

𝜉 𝑥, 𝑦 
=

𝑑𝑦

𝜂 𝑥, 𝑦 
=

𝑑𝑝

𝜁 𝑥, 𝑦, 𝑝 
                   (5.16) 

The first equation is used to construct 𝑅(𝑥, 𝑦). 

ii. Constraint Variable 

The second equation in Eq(5.16) is used to construct  𝑇(𝑥, 𝑦, 𝑝). It is often possible to 

construct 𝑇 so that it is a function of p to the first power. When this is possible, it is 

the preferred form of the non unique expression for the invariant coordinate 𝑇.  

 

Definition    5.1.7.     ( Invariants)  

A point  𝑥, 𝑢 ∈ ℝ𝑛+𝑚  
3
is an invariant point if it remains unchanged by every transformation 

of a group 𝐺, i.e.,   𝑥 , 𝑢  =  𝑥, 𝑢  ,      ∀𝑎 ∈ 𝒟′ ⊂ 𝒟 . 

Theorem  5.1.1.  

A point  𝑥, 𝑢 ∈ ℝ𝑛+𝑚  is an invariant point of a group 𝐺 with generator  

𝑋 = 𝜉𝑖 𝑥, 𝑢 
𝜕

𝜕𝑥𝑖
+ 𝜂𝛼 𝑥, 𝑢 

𝜕

𝜕𝑢𝛼
 

if and only if   𝜉𝑖 𝑥, 𝑢 = 𝜂𝛼 𝑥, 𝑢 = 0.  

i. Invariant Function  

Definition  5.1.8.   

A function 𝐹 𝑥, 𝑢  is an invariant of a group 𝐺 if and only if :𝐹 𝑥 , 𝑢  = 𝐹 𝑥, 𝑢        

∀𝑥, 𝑢, 𝑎 ∈ 𝒟′ ⊂ 𝒟 . 

Theorem  5.1.2.  

A function 𝐹 𝑥, 𝑢  is an invariant of a group 𝐺 with the generator 𝑋 if and only if  

𝑋 𝐹 = 0                                                            (5.17) 
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The characteristic system for Eq.(5.17) is given by  

𝑑𝑥1

𝜉1 𝑥,𝑢 
= ⋯ =

𝑑𝑥𝑛

𝜉𝑛  𝑥,𝑢 
=

𝑑𝑢1

𝜂1 𝑥,𝑢 
= ⋯ =

𝑑𝑢𝑚

𝜂𝑚  𝑥,𝑢 
  . 

Thus an arbitrary invariant 𝐹 𝑥, 𝑢  of the group 𝐺 is  𝐹 = Λ 𝐼1 𝑥, 𝑢 , … . , 𝐼𝑚+𝑛−1 𝑥, 𝑢   ,  

Where 𝐼1 𝑥, 𝑢 , … . , 𝐼𝑚+𝑛−1 𝑥, 𝑢  is called a basis of invariants of 𝐺 (i.e., group 𝐺 has exactly 

𝑚 + 𝑛 − 1 functionally independent invariants). The basis is not unique. One can take, as 

basic invariants, the left hand side of  𝑚 + 𝑛 − 1 first integrals 𝐼1 𝑥, 𝑢 , … . , 𝐼𝑚+𝑛−1 𝑥, 𝑢 =

𝑐𝑚+𝑛−1 . .  

Example  5.1.2.   

 Consider the rotation group with generator 𝑋 in the   𝑥, 𝑦  plane given by  

𝑋 = −𝑦
𝜕

𝜕𝑥
+ 𝑥

𝜕

𝜕𝑦
 . 

Canonical variables fot rotation along the 𝑣 axis are obtained from the system  𝑢 = 0 ,  

𝑋 𝑣 = 1 ,  i.e.,  −𝑦
𝜕𝑢

𝜕𝑥
+ 𝑥

𝜕𝑢

𝜕𝑦
= 0 ,    −𝑦

𝜕𝑣

𝜕𝑥
+ 𝑥

𝜕𝑣

𝜕𝑦
= 1 . 

Solving the first system, we write the corresponding characteristic system :  

𝑑𝑥

−𝑦
=

𝑑𝑦

𝑥
=

𝑑𝑢

0
  . 

Therefore the basis invariant is  𝑥2 + 𝑦2 = 𝑐1 , the arbitrary invariant is 𝑢 = 𝑐2 and the 

general invariant is = 𝑓 𝑥2 + 𝑦2  .  

ii.  Prolongation of infinitesimal generator ( vector field)  

As with the group of transformation themselves, we can also define the prolongation of the 

corresponding of infinitesimal generator. Indeed, these will just be the infinitesimal 

generators of prolonged group action. 
4
 

Definition  5.1.9.   

Let 𝑀 ⊂ 𝑋 × 𝑈 be an open and suppose 𝑣 is a vector field on 𝑀, with corresponding (local) 

one-parameter group exp 𝜖𝑣 . Then 𝑛-th prolongation of 𝑣, denoted Pr(𝑛)𝑣, will be a vector 
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filed on the 𝑛-th jet space 𝑀(𝑛), and it's defined to be infinitesimal generator of the 

corresponding prolonged one-parameter group Pr(𝑛) exp 𝜖𝑣  . In other word,      

Pr(𝑛)  𝑣  𝑥,𝑢(𝑛) =  𝑑
𝑑𝜖

 
𝜖=0

 Pr(𝑛) exp 𝜖𝑣   𝑥, 𝑢(𝑛)  , For any   𝑥, 𝑢(𝑛) ∈ 𝑀(𝑛). 

Note that since the coordinates   𝑥, 𝑢(𝑛)  on 𝑀(𝑛) consist of the independent variables 

 𝑥1 , … . , 𝑥𝑝  and all derivatives 𝑢𝐽
𝛼  of dependent variables up to order 𝑛, a vector space on 

𝑀(𝑛) will in general take the form  

𝑣∗ =  𝜉𝑖
𝜕

𝜕𝑥𝑖
+   𝜙𝛼

𝐽

𝐽

𝑝

𝛼=1

𝜕

𝜕𝑢𝐽
𝛼

𝑝

𝑖=1

 

Where Jet space are :  

𝑥 =   𝑥1 , … . , 𝑥𝑝  ــ independent variables 

 𝑢 =   𝑢1 , … . , 𝑢𝑞  ــ dependent variables 

𝑢𝐽
𝛼 =

𝜕𝑘𝑢𝛼

𝜕𝑥 𝑗1……𝜕𝑥𝑘 − partial derivatives  

 𝑥, 𝑢(𝑛) =  … . 𝑥𝑖 … . 𝑢𝛼 …𝑢𝐽
𝛼 ∈ 𝐽𝑛 − jet coordinates  

𝐽𝑛 = 𝑝 + 𝑞(𝑛) = 𝑝 + 𝑞  
𝑝 + 𝑛

𝑛
   

iii.  Invariant differential  

Definition   5.1.10.  

A differential function, 𝐹 𝑥, 𝑢, 𝑢(1), … . . , 𝑢(𝑝)  for 𝑝 ≥ 05, is a 𝑝th-order differential invariant 

of a group 𝐺 if : 𝐹 𝑥, 𝑢, 𝑢(1), … . . , 𝑢(𝑝) =  𝐹 𝑥 , 𝑢 , 𝑢 (1), … . . , 𝑢 (𝑝)   

i.e, 𝐹 is invariant under the prolonged group 𝐺[𝑝], where for 𝑝 = 0, 𝑢(0) ≡ 𝑢 and  𝐺[𝑝] ≡ 𝐺.  

Theorem 5.1.3.   

A differential function, 𝐹 𝑥, 𝑢, 𝑢(1), … . . , 𝑢(𝑝)  for 𝑝 ≥ 0, is a 𝑝th-order differential invariant 

of a group 𝐺 if  
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𝑋[𝑝] = 0                             (5.18) 

Where 𝑋[𝑝] is the 𝑝th prolongation of 𝑋 and for 𝑝 = 0, 𝑋[0] ≡ 𝑋.  

The differential invariants can be obtained by solving the charactrestic equations for Eq.(5.18) 

Example  5.1.3.   

 The prolongation of the operator  

𝑋 = 𝜉 𝑥, 𝑦 
𝜕

𝜕𝑥
+ 𝜂 𝑥, 𝑦 

𝜕

𝜕𝑦
 

For a second-order ODE with 𝑦 depending on 𝑥 is given by  

𝑋[0] = 𝑋 + 𝜁1

𝜕

𝜕𝑦′
+ 𝜁2

𝜕

𝜕𝑦′′
 

The variables 𝜁1, defined are  

𝜁1 = 𝐷𝑥 𝜂 − 𝑦′𝐷𝑥 𝜉   

     = 𝜂𝑥 +  𝜂𝑦 − 𝜉𝑥 𝑦
′ − 𝑦′2

𝜉𝑦                                                                                        (5.19)  

𝜁2 = 𝐷𝑥 𝜁1 − 𝑦′′ 𝐷𝑥 𝜉   

     = 𝜂𝑥𝑥 +  2𝜂𝑥𝑦 − 𝜉𝑥𝑥  𝑦
′ + 𝑦′2

 𝜂𝑦𝑦 − 2𝜉𝑥𝑦  − 𝑦′3
𝜉𝑦𝑦 + 𝑦′′  𝜂𝑦 − 2𝜉𝑥 − 3𝑦′𝜉𝑦       (5.20)  

Definition  5.1.11.        Criterion for a Symmetry of D.E  

An invertible transformation acting on the space  𝑥, 𝑢  of 𝐸 is a point symmetry of 𝐸 

provided every solution 𝑕 of 𝐸 is mapped onto another solution 𝑕  of 𝐸.  

Theorem  5.1.4.   

Let 𝐺 be a group of transformations Eq(5.4), admitted by the system 𝐸. Performing the first-

order Taylor expansions of  Eq(5.3) around 𝑎 = 0, we arrive at the fact that  

𝑋[𝑘]  𝐸𝜎 𝑥, 𝑢, 𝑢(1), … . . , 𝑢(𝑘)  = 0,     𝜎 = 1, … . , 𝑠.              (5.21) 

whenever Eq(5.1) is satisfied for every group operator 𝑋 of 𝐺. Then 𝐺 consists of symmetries 

of the system 𝐸. It can be shown that the converse is also true. 

The symmetry condition Eq(5.21) can be written compactly as  



 

238 

 𝑋[𝑘]  𝐸𝜎 𝑥, 𝑢, 𝑢(1), … . . , 𝑢(𝑘)   
(1.1)

= 0 , 𝜎 = 1, … . , 𝑠.              (5.22 ) 

  where (1.1) means evaluated on the surface.  

Equations Eq(5.22) are the so-called determining equations. In general the determining 

equations comprise an over-determined system of linear homogeneous PDE's for the 

unknown coordinates 𝜉𝑖  and  𝜂𝛼  of the symmetry generator 𝑋. The solution of the 

determining system form a vector space, that is , any finite linear combination of symmetries 

is again a symmetry. This steam from the fact the determining equations are linear.    

5.1.12.  Lie's algorithm :  

Below we give a layout of the steps involved in the execution of the procedure for calculating 

symmetries of  : 

1. Write 𝐸 such that all the terms are on the left hand side . 

2.Write the generator of symmetry  

𝑋 = 𝜉𝑖 𝑥, 𝑢 
𝜕

𝜕𝑥𝑖
+ 𝜂𝛼 𝑥, 𝑢 

𝜕

𝜕𝑢𝛼
 

3.Prolong the symmetry generator 𝑋 to the order which is the same as that of 𝐸, i.e.,  

𝑋 𝑘 = 𝑋 + 𝜁𝑖
𝛼 𝑥, 𝑢, 𝑢 1  

𝜕

𝜕𝑢𝑗
𝛼 + ⋯+ 𝜁𝑖1….𝑖𝑘

𝛼  𝑥, 𝑢, … . , 𝑢 𝑘  
𝜕

𝜕𝑢𝑖1….𝑖𝑘
𝛼  

where the variables 𝜁𝑖1….𝑖𝑘
𝛼 = 𝐷𝑖𝑘 𝜁𝑖1….𝑖𝑘−1

𝛼  − 𝑢𝑖1….𝑖𝑘−1

𝛼 𝐷𝑖𝑘 𝜉
𝑙 6.   

4.Apply the prolonged generator 𝑋 𝑘  on 𝐸 evaluated on the surface Eq(5.1) yielding the 

symmetry conditions  

𝑋 𝑘  𝐸𝜎 𝑥, 𝑢, 𝑢 1 , . . … . , 𝑢 𝑘   (1.1)
= 0    ,   𝛼 = 1, … . . , 𝑠 . 

5.Substitute the 𝜁𝑖
𝛼    upon expansion of the symmetry conditions and replace the derivatives 

which are to be eliminated.  

6.Separate the expanded expression with respect to the derivatives of the dependent variables 

and their powers resulting in an over-determined system of linear homogeneous PDE's  in 

terms of 𝜉𝑖  and 𝜂𝛼 .  

                                                           
6 Refere to same previous reference – Chapetr One (Lie-Point Symmetries of Differential Equations) – 

sec [1.3]- page 19.  
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7.Solve the over-determined system for the infinitesimals 𝜉𝑖  and 𝜂𝛼  . 

8.Construct one-parameter groups using (Theorem 5.1.4).   

5.1.13.  Symmetry calculations and Use of Symmetry :  

i. Symmetry Calculation : 

The following examples illustrate Lie's algorithm for calculating symmetries of DE's. 

Example  5.1.4.   

Consider the equation  

𝑦′′ =
𝛼

𝑦3  ,     𝛼 ≠ 0                                       (5.23) 

which is a special case of the Ermakov-Pinney equation.  

According to Lie's algorithm the vector field  

𝑋 = 𝜉 𝑥, 𝑦 𝜕𝑥 + 𝜂 𝑥, 𝑦 𝜕𝑦                               (5.24) 

is a symmetry generator of Eq(5.23) if and only if we have the symmetry condition  

𝑋[2]   𝑦′′ −
𝛼

𝑦3
  

(1.32)

= 0 

where 

𝑋[2] = 𝑋 + 𝜁1𝜕𝑦 ′ + 𝜁2𝜕𝑦 " 

The variables  𝜁1 and 𝜁2 are given by Eq(5.19) and Eq(5.20) respectively. However, the turn 

involving 𝜁1 does not contribute in calculations because there is no 𝑦′  appearing in the 

equation under consideration.  

Thus we have the determining equation  

  
3𝛼

𝑦4
𝜂 + 𝜁2  

(1.32)

= 0                             (5.25) 

Upon expansion of Eq(4.25) we have  

3𝛼

𝑦4
𝜂 + 𝜂𝑥𝑥 + 𝑦′ 2𝜂𝑥𝑦 − 𝜉𝑥𝑥  +  𝑦′ 2 𝜂𝑦𝑦 − 2𝜉𝑥𝑦  −  𝑦′ 3𝜉𝑦𝑦 +

𝛼

𝑦3  𝜂𝑦 − 2𝜉𝑥 −
3𝛼

𝑦3
𝑦′𝜉𝑥

= 0 



 

240 

The separation of the above expression with respect to powers of 𝑦′  yields the equations  

 𝑦′ 3 ∶   𝜉𝑦𝑦 = 0 

 𝑦′ 2  ∶ 𝜂𝑦𝑦 − 2𝜉𝑥𝑦 = 0 

𝑦′ = 2𝜂𝑥𝑦 − 𝜉𝑥𝑥 −
3𝛼

𝑦3
𝜉𝑦 = 0 

 𝑦′ 0  ∶   
3𝛼

𝑦4
𝜂 + 𝜂𝑥𝑥 +

𝛼

𝑦3  𝜂𝑦 − 2𝜉𝑥 = 0 

The general solution of the above system is  

𝜉 = 𝑐0𝑥
2 + 2𝑥𝑐1 + 𝑐2  ,     𝜂 =  𝑐0𝑥 + 𝑐1 𝑦. 

Thus, the symmetry Lie algebra of Eq(5.23) is generated by the operators  

𝑋1 = 𝜕𝑥     ,     𝑋2 = 2𝑥𝜕𝑥 + 𝑦𝜕𝑦     ,        𝑋3 = 𝑥2𝜕𝑥 + 𝑥𝑦𝜕𝑦   

Hence the symmetry Lie algebra is three-dimensional. The Lie Bracket of  the symmetry 

generators is  

 𝑋1 , 𝑋2 = 2𝑋1  ,    𝑋1 , 𝑋3 = 𝑋2   ,     𝑋2 , 𝑋3 = 2𝑋3  

ii.  Use of Symmetry :    

Symmetries can be used to reduce the order of a DE. In fact when the equation admits 

solvable Lie algebra, the ideals of the algebra can be used to perform the reduction.  

Knowing the symmetry of the reduced equation provides further reduction until in some cases 

the solution is obtained by quadratures.  

Example  5.1.5.        (Reduction of order)  

Consider the equation  

𝑦" + 𝑏𝑦′ +
2𝑏2

9
𝑦 + 𝑐𝑦3 = 0                                        (5.26) 

For arbitrary constants 𝑏 and 𝑐. The symmetry Lie algebra admitted by the equation is two-

dimensional and generated by the operators  

𝑋1 = 𝜕𝑥    , 𝑋2 = −
3

𝑏
 𝑒𝑥𝑝  

𝑏

3
𝑥 𝜕𝑥 + 𝑦 exp 

𝑏

3
𝑥 𝜕𝑦   

The Lie Bracket of the operators is  
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 𝑋1 , 𝑋2  =
3

𝑏
 𝑋2 

Rewriting  𝐿2 in solvable form we use the skew-symmetry property that  

 𝑋1 , 𝑋2  = − 𝑋2 , 𝑋1   

Thus, we let 𝑌1 = 𝑋2 and 𝑌2 = 𝑋1 to obtain  

 𝑌1 , 𝑌2  = −
3

𝑏
 𝑌1 

The ideal is spanned by  

𝑌1 = −
3

𝑏
 𝑒𝑥𝑝  

𝑏

3
𝑥 𝜕𝑥 + 𝑦 exp 

𝑏

3
𝑥 𝜕𝑦  

Therefore we start the reduction with 𝑌1. For a second-order equation we require the 

invariants of the first prolongation of the operator to reduce the equation. In reducing a third-

order equation the second prolongation of the operator is needed and so on……  

The first prolongation of 𝑌1 is  

𝑌1
[1]

= exp 
𝑏

3
𝑥  −

3

𝑏
 𝜕𝑥 + 𝑦𝜕𝑦 +  2𝑦′ +

𝑏

3
𝑦 𝜕𝑦 ′   

The invariants of the group generated by 𝑌1
[1]

 are  

𝑢 = 𝑦 exp 
𝑏

3
𝑥    ,     𝑣 =

𝑦′

𝑦2
+

𝑏

3𝑦
 

The second-order equation (5.26) becomes the first-order equation in the new variables, 𝑢 and 

𝑣, i.e., 

𝑑𝑣

𝑑𝑢
= −

2𝑣2 + 𝑐

𝑢𝑣
                     (5.27) 

The reduced equation Eq(5.27) is variables separable and there is no need for consecutive 

reduction using 𝑌1. However, Eq. (5.26) admits  

𝑌 2 =  
𝑏

3
 𝑢𝜕𝑢  

Written in the new coordinates. The solution of Eq. (5.27) can be easily found and then 

written in original coordinates  𝑥, 𝑦 . 
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Example   5.1.6            (Generating solutions ) 

The one-parameter group of transformations can be used to generate new solutions from the 

known ones. The new solutions can comprise nontrivial solutions compared to the known 

(trivial) solutions from which they were generated.  

If 𝑢 = 𝑕  𝑡 , 𝑥   is solution of the heat equation, then so is  

𝜙 𝑡, 𝑥, 𝑢, 𝑎 = 𝑕 𝑓1 𝑡, 𝑥, 𝑢, 𝑎 , 𝑓1 𝑡, 𝑥, 𝑢, 𝑎    

Where the 𝑓 𝑖 are differentiable functions.  

Equivalently in solved form with respect to 𝑢: 𝑢 = 𝐻𝑎 𝑡, 𝑥  is a one-parameter family of 

solutions. For instance, if 𝑢 = 𝑕  𝑡 , 𝑥   is a solution of the heat equation corresponding to the 

transformations  

𝑇𝑎1
: 𝑡 = 𝑡 + 𝑎1  ,  𝑥 = 𝑥      ,   𝑢 = 𝑢 , Then so is 𝑢 = 𝑕 𝑡 − 𝑎1 , 𝑥 . 

Also consider the transformations,  

𝑇𝑎6
: 𝑡 =

𝑡

1 − 4𝑎6𝑡
   ,   𝑥 =

𝑥

1 − 4𝑎6𝑡
  ,   𝑢 = 𝑢 1 − 4𝑎6𝑡 exp  

−𝑎6𝑥
2

1 − 4𝑎6𝑡
 ;       𝑎6 ≠ 0 

Given the constant solution of the heat equation 𝑢 = 𝑢0 = consatant and expressing 𝑢  in 

terms of  𝑡  and 𝑥 , a new solution (dropping the bars),  

𝑢 =
𝑢0

 1 + 4𝑎6𝑡
   exp  

−𝑎6𝑥
2

1 − 4𝑎6𝑡
  

Is generated.  

5.2       Some applications  

Here we use Lie algebraic methods to obtain explicit expressions that approximate the 

solution of the Cauchy problem defined by 
7
 

𝜕

𝜕𝑡
 𝑓 𝑡; 𝑥 = 𝐴 𝑡; 𝑥 𝑓 𝑡; 𝑥   ,    𝑓 0; 𝑥 = 𝑔(𝑥)             ………… (5.28) 

Where 𝑥 ≡  𝑥1 , 𝑥2 , … . . , 𝑥𝑚  ∈ ℝ𝑚 , 𝑔 is an arbitaray bounded analytic function defined in 

some open domain in ℝ𝑚  and  

                                                           
7
 Solution of linear partial differential equations by Lie algebraic methods – Fernando Cases – 

Departement of Matematiques, Universitat Jaume I, 12071- Castellon, Spain – 10 February 1996.  
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𝐴 𝑡; 𝑥 =  𝑎𝑖𝑗

𝑚

𝑖,𝑗=1

 𝑡 
𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗  
+  𝑏𝑖𝑗

𝑚

𝑖,𝑗=1

 𝑡 𝑥𝑖

𝜕

𝜕𝑥𝑗  
+  𝑐𝑖𝑗

𝑚

𝑖,𝑗=1

 𝑡 𝑥𝑖𝑥𝑗 +  𝑑𝑗

𝑚

𝑗=1

 𝑡 
𝜕

𝜕𝑥𝑗  

+  𝑒𝑗

𝑚

𝑗=1

 𝑡 𝑥𝑗 + 𝑕 𝑡 ………… . . (5.29) 

The coefficients 𝑎𝑖𝑗 (𝑡),etc. of the differential operator 𝐴 𝑡; 𝑥  are defined in an open interval 

of the t-axis containing the origin and are complex-valued bounded analytic functions.  

Problem of this type appear frequently in the mathematical physics literature. They include 

particular cases of the time –dependent linear Fokker-Planck equation, the Schrodinger 

equation with time-dependent potentials and the Helmholtz equation in the approximation of 

paraxial wave beams, just to quote a few examples.   

One should note that 𝐴 𝑡; 𝑥  is an element of a Lie algebra ℒ of finite dimension 𝑛 under the 

bracket operation  𝐵1 , 𝐵2 = 𝐵1 ∘ 𝐵2 − 𝐵2 ∘ 𝐵1, where 𝐵1 , 𝐵2 ∈ ℒ and ∘ denotes the operator 

composition.  

If 𝐴 doesn't depend explicitly of time 𝑡, then we can write the solution of Eq.(5.28) as   

𝑓 𝑡; 𝑥 ≡ 𝑈 𝑡 𝑓 0; 𝑥 = 𝑒𝑡𝐴𝑔(𝑥)  ……………….. (5.30) 

Where exp 𝑡𝐴  should be interpreted as an element in the simply connected Lie group 

associated with  ℒ. Thus one can use the properties of the Lie algebra ℒ to study the operator  

exp 𝑡𝐴 . More specifically, a suitable basis for ℒ, with constant generators 𝐴𝑖 , 𝑖 = 1, … , 𝑛, is 

chosen and then the elements exp 𝑡𝐴𝑖  are computed. Next, ordering formulas of Baker, 

Campbell, Hausdorff and Zassenhaus type are used to write the evolution operator 𝑈(𝑇) in 

the factord form  

𝑈(𝑇) = exp 𝑓1 𝑡 𝐴1  exp 𝑓2 𝑡 𝐴2  ……… exp 𝑓𝑛 𝑡 𝐴𝑛  ………….. (5.31) 

Where 𝑓𝑖 𝑡  are 𝑡- dependent analytic functions ( with the exception of certain isolated 

points) linked to the constant coefficients of the operator 𝐴(𝑥).  

Here we present a modified version of the above algorithm, based entirely on Lie algebraic 

methods, for solving approximately the Cauchy problem Eq(5.28) when the coefficients of 𝐴 

are arbitrary functions of time. The method consists of finding a law-dimensional faithful 

matrix representation 𝑄  of the Lie algebra ℒ and then applying Lie algebraic techniques to 

obtain the solution of the corresponding image of our partial differential equation in 𝑄 . If the 

associated Lie groups are also isomorphic, one can get in a straightway explicit expressions 

for the functions 𝑓𝑖 𝑡  appearing in Eq (5.31), and thus a closed – form solution for the 
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Cauchy problem Eq(5.2). This algorithm can easily be implemented for computational 

purposes for any particular example considered.  

Conventionally, the solution of Eq (5.28) is formally written in the applications as a time – 

ordered exponential operator .  

𝑈 𝑇 𝑃 =  exp  𝐴 𝑠 𝑑𝑠
𝑡

0
  ≡ 𝐼 +   𝑑𝑡1

𝑡

0
∞
𝑛=1  𝑑𝑡2 … . .  𝑑𝑡𝑛  𝐴 𝑡1 ……𝐴 𝑡𝑛 

𝑡𝑛−1

0

𝑡

0
  (5.32)  

But this approach presents two main drawbacks in relation to the previous scheme. First, the 

treatment depends on whether the coefficients in Eq(5.28) are constant or not; in the first case 

the time – ordered exponential reduces to an ordinary one Eq (5.29), whereas in the latter one 

has to construct the formal series Eq(5.32) explicitly. Secondly, it si not easy to evaluate the 

action of the operator 𝑈(𝑇) on 𝑓 0; 𝑥  and to study the influence of the single factors  𝐴𝑖  on 

the time evolution of  𝑓 𝑡; 𝑥 . On the other hand, from Eq(5.31) we may gain insight into the 

properties of  𝑈(𝑇) through a knowledge of the spectral properties of the individual operators 

𝐴𝑖 . We can also consider physical situations where this kind of parameterization is of 

particular value.  

Here, we assume that the solution to the Cauchy problem defined by Eq (5.28) is uniquely 

determined at least for 𝑡 sufficiently small, provided the initial data 𝑔 𝑥  is chosen in some 

appropriate space of functions 𝒳. The resulting flow  𝑓 𝑡; 𝑥 =  𝑈 𝑡 𝑔 (𝑥) will then be on 

the given function space  𝒳. The verification of this hypothesis leads to very difficult 

problems on existence and uniqueness of solutions that we shall not consider in this work. 

Here we will obtain results which are of a formal nature, but nevertheless will have direct 

practical applications.  

5.2.1    The algebraic Method   

Suppose the linear operator  𝐴 𝑡; 𝑥  can be expressed in the form  

𝐴 𝑡; 𝑥 =  𝑎𝑖 𝑡 
𝑛
𝑖=1 𝐴𝑖 𝑥  ,            𝑛 finite                                     (5.33)  

Where the  𝑎𝑖 𝑡    𝑖 = 1, … . , 𝑛  are scalar functions of time, and 𝐴1 , … . , 𝐴𝑛  are time – 

independent operators that form a basis of the Lie algebra  ℒ under the bracket operation.  

Let us suppose we have found a low – dimensional faithful matrix representation 𝑄  of ℒ. 

Using this isomorphism we can consider the associated equation  

𝑑𝑓 

𝑑𝑡
= 𝐴 (𝑡)𝑓                                             (5.34) 
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which will be referred as the image equation of Eq(5.28) in the matrix representation. Here 

𝐴 (𝑡) is the 𝑠 × 𝑠 matrix in 𝑄 , image of 𝐴 𝑡; 𝑥 ∈ ℒ, and  𝑓 (𝑡) ∈ ℓ𝑠 . Equivalently, we can 

consider the linear equation  

𝑑𝑈 (𝑡)

𝑑𝑡
= 𝐴 (𝑡)𝑈 (𝑡),         𝑈  0 = 𝐼 ,                                               (5.35) 

where  𝐼  is the 𝑠 × 𝑠 identity matrix, 𝑓  𝑡 = 𝑈 (𝑡)𝑓  0  and the matrix  𝐴 (𝑡) can be written as  

𝐴  𝑡 =  𝑎𝑖
𝑛
𝑖=1  𝑡 𝐴 𝑖                                                                 (5.36) 

With 𝐴 𝑖  the element of the basis of 𝑄  associated with the operator 𝐴𝑖(𝑥).  

Wei and Norman
8
 have shown that if  𝑈 (𝑡) is a solution of Eq (5.35), then there exists a 

neighborhood of 𝑡 = 0 where it can be represented in the form  

𝑈  𝑡 = exp 𝑓1 𝑡 𝐴 1  exp 𝑓2 𝑡 𝐴 2  ………  exp 𝑓𝑛 𝑡 𝐴 𝑛                             (5.37) 

The  𝑓𝑖 𝑡  being scalar functions of time. Moreover, the  𝑓𝑖 𝑡  satisfy a set of differential 

equations which depend only on the Lie algebra ℒ and the coefficients 𝑎𝑖 𝑡 's. This 

representation is global for all solvable Lie algebras, and for any real 2 × 2 system of 

equations.  

Now if the Lie groups associated with the Lie algebras  𝑄  and ℒ are also isomorphic, it is 

possible to express the solution of Eq (5.27) locally as 𝑓 𝑡; 𝑥 ≡ 𝑈 𝑡 𝑓(0; 𝑥), with  

𝑈(𝑇) = exp 𝑓1 𝑡 𝐴1  exp 𝑓2 𝑡 𝐴2  ……… exp 𝑓𝑛 𝑡 𝐴𝑛                        (5.38) 

Finally, by computing explicitly the flows  

exp 𝑓𝑖𝐴𝑖 𝑔(𝑥),        𝑖 = 1, … . , 𝑛                                              (5.39) 

we obtain a formal expression for the solution of the Eq (5.28) in a neighborhood of 𝑡 = 0 in 

terms of the unknown functions  𝑓𝑖 𝑡 .  

In general case of a time- dependent operator 𝐴(𝑡; 𝑥) ∈ ℒ, the set of differential equations that 

determine the scalar functions 𝑓𝑖 𝑡 , or equivalently the system Eq(5.35), cannot be solved by 

quadaratures. Instead, approximate methods of resolution are required.  

The approximation scheme we adopt here is to apply the so-called Fer factorization to the 

matrix equation Eq(5.35). Where its properties as a symplectic integration  algorithm have 

                                                           
8
J.Wei and E. Norman, on global representations of the solutions of linear differential equations as a 

product of exponentials, proc, Amer. Math, soc, 15 (1964) 327-334.    
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also been established for Hamiltonian systems of ordinary differential equations. In particular, 

it allows to construct explicit convergent approximations to the slution of the initial value 

problem Eq(5.35) in a neighborhood of 𝑡 = 0, so that, once this solution has been obtained, 

comparison with Eq (5.37) leads to the corresponding expressions for the functions 𝑓𝑖 𝑡 .  

The general characteristics of the Fer factorization are included in following result :  

Theorem   5.2.1.    

Let 𝐴 (𝑡) and 𝑈 (𝑡) be two bounded linear operators acting on a Euclidean space, with  𝐴 (𝑡)   

a continuous function. Then :  

(a) The solution of the initial value problem  

𝑑𝑈 (𝑡)

𝑑𝑡
= 𝐴 (𝑡)𝑈 (𝑡),         𝑈  0 = 𝐼                                                      (5.40) 

May be expressed in the form  

𝑈  𝑡 = 𝑒𝐹1 …… . 𝑒𝐹𝑛  𝑈 𝑛  ,                                                                 (5.41) 

With  

𝑑𝑈 (𝑡)

𝑑𝑡
= 𝐻𝑖 𝑡 𝑈 𝑖   , 𝑈 𝑖 0 = 𝐼   , 

𝐹𝑖+1 =  𝐻𝑖
𝑡

0
 𝑡′  𝑑𝑡′  ,      𝐻0 ≡ 𝐴 (𝑡)              …………………….. (5.42)  

𝐻𝑖+1 =  
 −1 𝑗+1   𝑗

 𝑗+1 !
∞
𝑗=1   𝐹𝑖+1 ,  𝐹𝑖+1 , …  𝐹𝑖+1 , 𝐻𝑖 ……                        

𝑗   𝑡𝑖𝑚𝑒𝑠  

   

 𝑗 > 0  and therefore it can be written as an infinite product of exponentials   

𝑈  𝑡 = 𝑒𝐹1 …… . 𝑒𝐹𝑛 …….                                                   (5.43) 

(b) This infinite product is convergent if the operators 𝐻𝑖(𝑡) are bounded and  𝐻𝑖(𝑡)   𝑖 > 0  

are continuous functions, only for times 𝑡 such that  

  𝐴 (𝑡′)  
𝑡

0
𝑑𝑡′ < 𝜉                                                            (5.44) 

Where 𝜉 is the nonzero solution of the equation  

𝜉 =  
1−𝑒2𝑥 1−2𝑥 

2𝑥
 𝑑𝑥

𝜉

0
         𝜉 ≃ 0.861                                                (5.45) 

Here convergence has to be understood as  
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lim𝑛→∞   𝐻𝑛(𝑠)  
𝑡

0
 𝑑𝑠 = 0        

When the functions involved in Eq (5.40) belong to a solvable Lie algebra, then a finite 

product of exponentials is attained for the linear operator 𝑈  𝑡  in the term, 𝑛 = 1,2,… by 

doing 𝑈 𝑛 = 𝐼 . Thus, we obtain an approximate expression for the evolution operator in the 

form  

𝑈  𝑡 ≃ 𝑉 𝑛 𝑡 = 𝑒𝐹1 …… . 𝑒𝐹𝑛                ………………………. (5.46)  

In that case we have the following result concerning the error bounds of the approximation :  

Theorem  5.2.2.   

Let 𝐸𝑛(𝑡) be the difference between the exact and the approximate solution of Eq (5.40),  

𝐸𝑛 𝑡 = 𝑈  𝑡 − 𝑉 𝑛 𝑡                                       (5.47) 

Then  

 𝐸𝑛 𝑡  ≤ 𝐾𝑛 𝑡 exp  𝐾𝑖 𝑡 
𝑛
𝑖=0  ,                                 𝑛 ≥ 1                        (5.48) 

With  

𝐾0 ≡   𝐴  𝑡′  
𝑡

0

𝑑𝑡′  

𝐾𝑛+1 ≡  
1 − 𝑒2𝑥 1 − 2𝑥 

2𝑥
 𝑑𝑥

𝐾𝑛

0

 

If we denote 𝐾0 = 𝛼𝜉, with 0 < 𝛼 < 1, then it can be shown that  

 𝐸𝑛 𝑡  ≤ 𝛼2𝑛
𝑔𝑛   𝛼 𝜉                                                 (5.49) 

Where 𝑔𝑛  is a function that tends to a constant as 𝑛 increases. Therefore the rate of 

convergence of the procedure is very fast.  

Therefore, Fer's factorization provides a reliable and computationally well adapted Lie 

algebraic method to obtain approximate solutions to the linear equation Eq(5.40), and 

consequently, convergent expressions for the characteristic ordering functions 𝑓𝑖 𝑡  of Eq 

(5.42). These expression are valid in a neighborhood of 𝑡 = 0 and involve only quadratures. 

The method also allows to compute explicitly the region of convergence and the error bound 

of the approximation.  
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We can summarise the proposed algebraic method for solving the Cauchy problem Eq(5.28) 

as the following computational algorithm :  

Step (1) : Identify the algebra involved in the problem and a low – dimensional faithful 

matrix representation.  

Step (2) : Apply the Fer factorization to the image equation Eq(5.37) in that matrix 

representation.  

Step (3) : Obtain the ordering functions 𝑓𝑖 𝑡  by comparison with the corresponding Wei-

Norman representation Eq (5.37).  

Step (4) : Compute explicity the flows Eq(5.38) and finally the action of the operator 𝑈 𝑡  

Eq(5.37) on the function 𝑔(𝑥).  

Example  5.2.1.   

As a first application we take  

𝐴 𝑡; 𝑥 = 𝑎 𝑡 𝜕2 +  𝑏 𝑡 𝑥𝜕 + 𝑎 𝑡 𝜕 + 𝑕(𝑡)                                  (5.50) 

Where the notation 𝜕 ≡ 𝜕 𝜕𝑥  has been used. This corresponding to a one – dimensional 

Fokker-Planck ( or forward Kolmogorov ) equation 
9
whose diffusion and drift coefficients are 

both arbitrary functions of time. It is used in a stochastic treatement of a given macroscopic 

system. More specifically, the Fokker-Planck equation is an equation of motion for the 

distribution function 𝑓 𝑡; 𝑥  of the fluctuating macroscopic variables that describe the system.  

If we identify the operators 𝐴1 = 𝐼,   𝐴2 = 𝑥𝜕, 𝐴3 = 𝜕, 𝐴4 = 𝜕2 as the basis of the Lie 

algebra ℒ in this case, then the basic bracket operators are given by  

 𝐴2 , 𝐴3 = −𝐴3 ,      𝐴2 , 𝐴4 = −2𝐴4 ,      𝐴3 , 𝐴4 = 0                                    (5.51) 

And therefore the sub-algebra 𝐿 ≡  𝐴2 , 𝐴3 , 𝐴4  is solvable. It is easy to realize that a matrix 

representation for these operators is provided by  

𝐴 2 =  
0 0 0
0 1 0
0 0 2

  ,       𝐴 3 =  
0 1 0
0 0 1
0 0 0

   ,           𝐴 4 =  
0 0 1
0 0 0
0 0 0

  ,                 (5.52) 

Thus specifying the matrix image of our partial differential equation in the form of Eq (5.34), 

or equaivalently,  

                                                           
9
 H.Risken, the Fokker-Planck equation (springer, Berlin, 2

nd
 ed, 1989 )    
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𝑑𝑈 

𝑑𝑡
= 𝐴 (𝑡)𝑈 (𝑡)                                                        (5.53) 

With  𝐴  𝑡 =  𝑎𝑖
4
𝑖=1  𝑡 𝐴 𝑖  and   𝑎1 𝑡 = 𝑕(𝑡), 𝑎2 𝑡 = 𝑏(𝑡), 𝑎3 𝑡 = 𝑑(𝑡), 𝑎4 𝑡 = 𝑎(𝑡) .  

Now the Wei-Norman factorization Eq(5.38), when applied to the matrix equation Eq(5.53), 

leads to the expression  

𝑈  𝑡 = 𝑒𝑓1  

1 𝑓3 𝑓4 +
1

2
 𝑓3

2

0 𝑒𝑓2 𝑒𝑓2  𝑓3

0 0 𝑒2𝑓2

                                                   (5.54) 

With the functions  𝑓𝑖(𝑡),  𝑖 = 1, … ,4 to be determined.  

In this case, by applying Fer's factorization ( Theorem 5.2.1) to Eq (5.53) we obtain the exact 

solution as  

𝑈  𝑡 = 𝑒𝐹1𝑒𝐹2  ,                                                                                        (5.55) 

Where  

𝐹1 =  𝛼𝑖
4
𝑖=1  𝑡 𝐴 𝑖  ,      𝛼𝑖 𝑡 =  𝑎𝑖

𝑡

0
 𝑠 𝑑𝑠                                             (5.56 ) 

And  

𝐹2 = 𝛼3
 2  𝑡 𝐴 3 + 𝛼4

 2  𝑡 𝐴 4 ,      𝛼𝑖
 2 

=  𝑕𝑖
 1 𝑡

0
 𝑠 𝑑𝑠  

𝑕3
 1 

 𝑡 =
1

𝛼2
2   −𝛼2𝑒

𝛼2 + 𝑒𝛼2 − 1  𝛼3𝛼2 − 𝛼2𝛼3  ,                                               (5.57)  

𝑕4
 1  𝑡 =

1

2𝛼2
2   −2𝛼2𝑒

2𝛼2 + 𝑒2𝛼2 − 1  𝛼4𝛼2 − 𝛼2𝛼4  .  

If we evaluate explicitly the exponentials of Eq (5.55) and compare the matrix thus obtained 

with the expression Eq(5.54), after some algebra we obtain the exact expressions for the 

ordering functions  𝑓𝑖(𝑡) in terms of quadratures  

 

𝑓1 𝑡 =  𝑕 𝑠 𝑑𝑠
𝑡

0

𝑓2 𝑡 =  𝑏 𝑠 𝑑𝑠
𝑡

0

𝑓3 𝑡 =  𝑑 𝑠 𝑒𝑓2(𝑠)𝑑𝑠
𝑡

0

𝑓4 𝑡 =  𝑎 𝑠 𝑒𝑓2(𝑠)𝑑𝑠
𝑡

0  
 
 
 
 

 
 
 
 

………………… (5.58) 
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The same expressions can be obtained, of course, by writing down and solving the differential 

equations satisfied by the functions  𝑓𝑖(𝑡). This is possible here because the Lie algebra 

involved is solvable.  

Finally, by using the easily derivable expressions [5.38, 5.41]  

𝑒𝑥𝑝  𝑎 𝑡 𝑥
𝜕

𝜕𝑥
  𝑔 𝑥 = 𝑔 𝑒𝑎(𝑡)𝑥   ,                                                                          (5.59) 

𝑒𝑥𝑝  𝑎 𝑡 
𝜕

𝜕𝑥
  𝑔 𝑥 = 𝑔 𝑥 + 𝑎(𝑡)  ,                                                                          (5.60) 

 𝑒𝑥𝑝  𝑎 𝑡 
𝜕2

𝜕𝑥 2  𝑔 𝑥 =
1

 4𝜋𝑎(𝑡)
  exp  −

 𝑦−𝑥 2

4𝑎 𝑡 
 𝑔 𝑦 𝑑𝑦

+∞

−∞
 ,                                   (5.61) 

we find for 𝑓 𝑡; 𝑥 ,  

𝑓 𝑡; 𝑥 =
𝑒𝑓1(𝑡)

 4𝜋𝑓4(𝑡)
  𝑑𝑦 𝑔(𝑦) exp  −

 𝑦 −  𝑥𝑒𝑓2(𝑡) + 𝑓3(𝑡)  
2

4𝑓4 𝑡 
 

+∞

−∞

, 𝑡 > 0          (5.62) 

A result previously obtained in [5.38,5.41] with different algebraic techniques.  

Example  5.2.2.   

Next we consider the operator 𝐴 𝑡; 𝑥  given by  

𝐴 𝑡; 𝑥 = 𝑎 𝑡 𝜕2 +  𝑏 𝑡 𝑥𝜕 + 𝑐 𝑡 𝑥2 ,                                                                  (5.63) 

Where 𝑎 𝑡 , 𝑏 𝑡 , 𝑐 𝑡  are complex valued bounded analytic functions. This constitutes a 

generalization of a linear Fokker-Planck equation. If we denote  

𝐴1 = 𝐼,       𝐴2 =
1

4
  1 + 2𝑥𝜕 ,     𝐴3 =

1

2
 𝑥2,     𝐴4 =

1

4
 𝜕2,                                    (5.64)  

Then these operators form a basis of the Lie algebra ℒ, the basic bracket relations are  

 𝐴2 , 𝐴3 = 𝐴3 ,     𝐴2 , 𝐴4 = −𝐴4 ,     𝐴3 , 𝐴4 = −𝐴2                                              (5.65)  

And the sub-algebra   𝐴2 , 𝐴3 , 𝐴4  can be identified with 𝑆𝑈(1,1), which is not solvable. A 

matrix representation of the  𝑆𝑈(1,1) generators is provided by  

𝐴 2 =
1

2
  

1 0
0 −1

  ,    𝐴 3 =   
0 −1
0 0

  ,          𝐴 4 =
1

2
  

0 0
1 0

                                    (5.66)  

And the image of the operator 𝐴(𝑡; 𝑥) under this representation can be written as Eq (5.36) 

with   𝑎1 𝑡 = −
1

2
𝑏(𝑡),     𝑎2 𝑡 = 2𝑏(𝑡),       𝑎3 𝑡 = 2𝑐(𝑡),     𝑎4 𝑡 = 4𝑎(𝑡).  
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If we apply the Wei-Norman factorization to the linear Eq (5.35), the corresponding solution 

can be now represented as  

𝑈  𝑡 = 𝑒𝑓1  
𝑒𝑓2 2  1 −

1

2
𝑓3𝑓4 −𝑓3𝑒

𝑓2 2  

1

2
𝑓4 𝑒−𝑓2 2 𝑒−𝑓2 2 

                                                   (5.67) 

In a neighborhood of 𝑡 = 0. In this case the system of differential equations that determine 

the functions 𝑓𝑖  cannot be solved by quadratures for arbitrary coefficients 𝑎𝑖 𝑡 . Nevertheless, 

Fer's factorization provides an iterative procedure for obtaining convergent approximations to 

the matrix 𝑈  𝑡  in terms of quadratures. More specifically, by applying (Theorem 5.2.1) we 

get up to order 𝑛  

𝑈  𝑡 ≃ 𝑉 𝑛 𝑡 = 𝑒𝐹1𝑒𝐹2 …… . 𝑒𝐹𝑛 ,                                          (5.68) 

with  

𝐹1 =  𝛼𝑗
 1 

4

𝑗=1

 𝑡 𝛼𝐴 𝑗  ,           𝛼𝑗
 1  𝑡 =  𝑎𝑗  𝑠 𝑑𝑠

𝑡

0

 

𝐹𝑖+1 =  𝛼𝑗
 𝑖+1 

4

𝑗=2

 𝑡 𝐴 𝑗  ,           𝛼𝑗
 𝑖+1 

 𝑡 =  𝑕𝑗
 1 

 𝑠 𝑑𝑠
𝑡

0

 ,     𝑖 = 1, … . . , 𝑛 − 1,         (5.69) 

where 𝑕𝑗
 1 

(𝑡), 𝑗 = 2,3,4, are the coordinates of the matrix  𝐻𝑖+1 with respect to the basis  𝐴𝑖  

Eq (5.42), which depend both on the coefficients 𝑕𝑗
 𝑖−1 

 and 𝛼𝑗
 1 

. A simple calculation shows 

that  

𝑒𝐹𝑖 =  cosh 𝜔𝑖 𝐼2 +
sinh 𝜔 𝑖

𝜔 𝑖
 𝐵(𝑖) ,                                        (5.70) 

where  

𝜔𝑖 ≡
1

2
  𝛼2

 𝑖 2
− 2𝛼3

 𝑖 𝛼4
 𝑖 

,     𝐵(𝑖) =
1

2
  
𝛼2

 𝑖 −2𝛼3
 𝑖 

𝛼4
 𝑖 −𝛼2

 𝑖 
  ,                            (5.71)  

and  𝐼2 denotes the 2 × 2 identity matrix.  

In this way we can write an approximation to the 𝑈 (𝑡) as  

𝑉 𝑛 𝑡 = 𝑒𝛼1
(1)

  
𝑢11 𝑢12

𝑢21 𝑢22
  ,                                                  (5.72) 

whence, by comparing with Eq (5.67), we get  
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𝑓1 𝑡 = 𝛼1
(1)

= −
1

2
  𝑏 𝑠 𝑑𝑠

𝑡

0
 ,           𝑓2 𝑡 = −2 log 𝑢22  

𝑓3 𝑡 = − 𝑢12𝑢22   ,                   𝑓4 𝑡 = 2𝑢21  𝑢22
−1                                           (5.73)  

i.e., approximate explicit expressions for the ordering functions  𝑓𝑖 𝑡  in terms of quadratures. 

This procedure converges to the true solution  𝑈 (𝑡) as 𝑛 → ∞, and therefore to the functions 

𝑓𝑖  , in time intervals  0, 𝑡  such that  

  𝐻  𝑠  𝑑𝑠
𝑡

0
< 𝜉 ,                                                             (5.74) 

with  

𝐻  𝑡 =  
𝑏(𝑡) −2𝑐(𝑡)

2𝑎(𝑡) −𝑏(𝑡)
       ,                                           (5.75) 

Finally, the solution of Eq (5.28), with 𝐴(𝑡; 𝑥) given by Eq(5.53), can be found, by applying 

Step 4 , as in the preceding example, thus obtaining the expression  

𝑓 𝑡; 𝑥 =
1

 𝜋𝑓4 𝑡  
exp  𝑓1 𝑡 +

1

4
𝑓2 𝑡 +

1

2
 𝑓3 𝑡  𝑥2 𝑒𝑓2 ×  𝑑𝑦 𝑔 𝑦 exp  

− 𝑦−𝑥𝑒𝑓2(𝑡) 
2

𝑓4 𝑡 
 

+∞

−∞
                  

(5.76) 

for 𝑡 > 0.  

Example  5.2.3.    

We consider the equation [5.40,5.42]  

 
𝜕2

𝜕𝑥𝜕𝑦 
+ 𝑏 𝑡 𝑦

𝜕

𝜕𝑦 
+ 𝑐 𝑡 𝑥𝑦 +

𝜕

𝜕𝑡 
 𝑓 𝑡; 𝑥, 𝑦 = 0            (5.77)  

Subject to the initial condition  𝑓 0; 𝑥, 𝑦 = 𝜙 𝑥, 𝑦 . This two-dimensional parabolic PDE is 

a particular case of an equation introduced and solved by Lambropoulos
10

 when the 

coefficients 𝑏 and 𝑐 are constants. Later Wilcox
11

 obtained a closed-form solution by normal-

ordering exponential operators techniques. In the following we apply the method outlined in 

the previous section to solve the general case of arbitrary time-dependent coefficients. In  

Lambropoulos one instance of a physical problem in which a special form of this equation 

arises is presented.  

                                                           
10

 P.Lambropoulos, Solution of the differential equation  
𝜕2

𝜕𝑥𝜕𝑦  
+ 𝑏 𝑡 𝑦

𝜕

𝜕𝑦  
+ 𝑐 𝑡 𝑥𝑦 +

𝜕

𝜕𝑡  
 𝑃 = 0, J.Math.Phys. 

8(1967) 2167-2169.   
11

 R.Wilcox, Closed –form solutionof differential equation 
𝜕2

𝜕𝑥𝜕𝑦  
+ 𝑏 𝑡 𝑦

𝜕

𝜕𝑦  
+ 𝑐 𝑡 𝑥𝑦 +

𝜕

𝜕𝑡  
 𝑃 = 0, by normal –

ordering exponential operators ,J.Math. Phys. 11(1970) 1235-1237.  
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As in the previous examples, if we introduce the operators  

𝐴1 = 𝐼,     𝐴2 =
1

2
  1 + 𝑥𝜕𝑥 + 𝑦𝜕𝑦 ,       𝐴3 =

1

2
𝑥𝑦,         𝐴4 = 𝜕𝑥𝑦

2   ,                    (5.78)  

Then Eq (5.76) can be written as Eq (5.27) with 𝐴 𝑡; 𝑥, 𝑦 =  𝑎𝑖
4
𝑖=1  𝑡 𝐴𝑖   and 𝑎1 𝑡 = 𝑏(𝑡),  

𝑎2 𝑡 = −2𝑏(𝑡), 𝑎3 𝑡 = −2𝑐(𝑡), 𝑎4 𝑡 = −1. Moreover, we have the basic bracket 

operations (5.64) of the algebra 𝑆𝑈(1,1), so the same steps of the (Example 5.2.2). , when 

applied to this case, leads to ordering functions  

𝑓1 𝑡 =  𝑏(𝑠)𝑑𝑠
𝑡

0

  ,        𝜑 𝑡 ≡ 𝑒−𝑓2 𝑡 2 = 𝑢22(𝑡) 

𝑓3 𝑡 = −𝑢12  𝑢22  ,           𝑓4 𝑡 = 2𝑢21  𝑢22
−1 ,               (5.79) 

where the coefficients 𝑢𝑖𝑗 (𝑡) are evaluated by means of Fer's factorization. If we denote  

𝛿 𝑡 = −𝑓1 𝑡 −
1

2
𝑓2 𝑡 = log 𝜑 𝑡 −  𝑏 𝑠 𝑑𝑠

𝑡

0

  

Ω 𝑡 =
1

𝜑(𝑡)
 𝑢12 𝑡                               (5.80) 

β 𝑡 = −2𝑢21(𝑡)
1

𝜑(𝑡)
  

then the solution of Eq (5.77) is given by  

𝑓 𝑡; 𝑥, 𝑦 = 𝑒𝑥𝑝 −𝛿 𝑡 − Ω 𝑡 𝑥𝑦 𝑅  𝑡;
𝑥

𝜑(𝑡)
,

𝑦

𝜑(𝑡)
             (5.81) 

Under the assumption that  

𝑅 𝑡; 𝑥, 𝑦 = 𝑒𝑥𝑝 −𝛽 𝑡 𝜕𝑥𝑦
2   𝜙 𝑥, 𝑦                                                                     (5.82) 

exists. In particular case of constant coefficients, Fer's expansion leads to the exact solution 

𝑈  𝑡 = 𝑒𝐹1 , or equivalently,  

𝜑 𝑡 = cosh𝜔𝑡 +
𝑏

𝜔
 sinh 𝜔𝑡  

𝛿 𝑡 = log 𝜑 𝑡 − 𝑏𝑡,                                                                                                  (5.83)  

𝛽 𝑡 =
𝛾

𝑐𝜑
 ,  
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 Ω 𝑡 =
𝛾

𝜑
  

with  

𝜔 ≡  𝑏2 − 𝑐 ,      𝛾 ≡
𝑐

𝜔
 sinh𝜔𝑡                                                                                  (5.84) 

This is just the solution obtained by Wilcox for Eq (5.77) in the time-independent case.  
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Conclusion  

  It’s very imazing beautiful thing that we are interesting in groups, because we are 

interesting is symmetries and also because We are living in locally Minkoviski space, 

it where we live.  

  Groups can be powerful tools that we can use it to anderstand what happening 

around us, We made a glance on ' conservation principles' , Subsequently, with the work of  

Emily Noether .   

  We employed the symmetries to construct the invariant solutions wherever 

applicable. The solution of the optimal system problem allows the classification of all 

the invariant solutions, i.e. solutions that are left unchanged by sub-algebras of the 

symmetry Lie algebra. The invariant solutions of a given equation satisfy an equation 

with a reduced number of the independent variables. 
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