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Chapter 3 

Conservation Laws of Physics 

3.1  Introduction   

  The conservation laws allow us to treat physical objects as point particles, when we are 

concerned about their kinematics properties. They assist us in solving, in full generality, 

complicated problems that would otherwise be unattainable. Perhaps more importantly, they 

give us a first glance into the fundamental properties of our Universe and the symmetries that 

govern the laws of physics with it.  

 It was considered natural to obtain ' conservation principles' from ' laws of nature '. 

Subsequently, with the work of Emmily Noether, emphasis shifted to a reversal of this 

process, by first examining the symmetry considerations that have conservation principles 

associated with them , and then deduction of the "laws of nature" from the underlying 

connections between symmetry and conservation laws. This latter approach has now assumed 

a fundamental role in the scientific method aimed at examining ' laws of nature', to both test 

them and / or to discover new laws.  

3.2  Concept of  a conservation Law   

 Let us consider an ordinary differential equation
1
  

𝐹 𝑡, 𝑞, 𝑞 , 𝑞  = 0                                            (3.1) 

Describing a motion of a dynamical system. Here 𝑡 is time , 𝑞 =  𝑞1 , … . . , 𝑞𝑠  are the position 

coordinates, 𝑞 = 𝑞(𝑡), and 𝑣 = 𝑞 ≡
𝑑𝑞

𝑑𝑡
 is the velocity, 𝑞 =

𝑑2𝑞

𝑑𝑡 2  .  

Definition 3.2.1.  

 A function 𝐶 = 𝐶 𝑡, 𝑞, 𝑣  is called a conserved quantity for eq (3.1) if  

𝑑𝐶

𝑑𝑡
= 0                                                          (3.2) 

On every solution of Eq(3.1)  

In other words, the conserved quantity 𝐶 = 𝐶 𝑡, 𝑞, 𝑣  is constant on each trajectory 𝑞 = 𝑞(𝑡) 

and therefore is called a constant of motion.  

                                                           
1
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 In classical mechanics Eq(3.1) has the form  

𝑚𝑥 = 0                                                        (3.2) 

And describes a free motion of a particle with the mass 𝑚 and a position vector  

 𝐱 =  𝑥1 , 𝑥2 , 𝑥3 . The equation has several conserved quantities, e.g. the energy 𝐸 =
1

2
𝑚𝐯2 

and the linear momentum = 𝑚v .  

Let us now consider a partial differential equation of  𝑝- th order  

𝐹 =  𝑥, 𝑢, 𝑢(1), 𝑢(2), …… , 𝑢(𝑝) = 0                             (3.4) 

Where the function 𝐹 depends on 𝑛 independent variables 𝑥 , 𝑥 =  𝑥1 , …… , 𝑥𝑛 , 

𝑚 dependent variables 𝑢, 𝑢 =  𝑢1 , …… , 𝑢𝑚  , and the first , second ,….., 𝑝- th order  

derivatives of 𝑢 with respect to 𝑥 denoted as  

 𝑢(1) =  𝑢𝑖
𝛼 ,  𝑢(2) =  𝑢𝑖𝑗

𝛼  , …… , 𝑢(𝑝) =  𝑢𝑖1𝑖2…𝑖𝑝
𝛼   respectively, 𝛼 = 1, …… , 𝑚 and other 

indices change from 1 to  .  

Definition  3.2.2.   

 A vector 𝐶 =  𝐶1 , …… , 𝐶𝑛  where  𝐶𝑖 = 𝐶𝑖 𝑥, 𝑢, 𝑢(1), 𝑢(2), …… , 𝑢(𝑝)   , 𝑖 = 1, … . , 𝑛   

Is called a conserved vector for Eq (3.4) if  

div 𝐶 = 0                                                                 (3.5) 

on every solution of Eq (3.4). We can also say that Eq (3.5) is a conservation law of Eq(3.4) .  

a conservation law for a system of partial differential equations can be defined similarly .  

instead of dealing with functions 𝑢𝛼 = 𝑢𝛼 (𝑥) and their derivatives, which are also functions 

of 𝑥, one can treat all variables, 𝑥, 𝑢 and derivatives of 𝑢, as independent variables, called 

differential variables. Variables with the same set of subscripts will be symmetric, for 

example 𝑢𝑖𝑗 = 𝑢𝑗𝑖  and so on. Using the idea of differential variables one can reformulate the 

definition of a conservation law by introducing the operator of total differentiation with 

respect to 𝑥𝑖  :  

𝐷𝑖 =
𝜕

𝜕𝑥 𝑖 + 𝑢𝑖
𝛼 𝜕

𝜕𝑢𝛼 + 𝑢𝑖𝑗
𝛼 𝜕

𝜕𝑢𝑗
𝛼 + ⋯ + 𝑢𝑖𝑗1….𝑗𝑘

𝛼 𝜕

𝜕𝑢𝑗1….𝑗𝑘

𝛼 + ⋯                           (3.6) 
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Where the usual convention of summation over repeated upper and lower indices is used. 

Hence  

  div 𝐶 (2.4) ≡  𝐷𝑖 𝐶
𝑖  

(2.4)
= 0                                                            (3.7)  

Where the notation   (2.4) means that the relation holds on any solution of Eq (3.4). if one of 

the variables, for example 𝑥1 , is time 𝑡 then the component  𝐶1 is called the density of the 

conservation law.  

Remark  3.2.1.   

 In practical calculations the conservation law (3.7) can be rewritten to an equivalent form. If  

 𝐶1 (2.4) = 𝐶 1 + 𝐷2 𝑕2 + ⋯ + 𝐷𝑛 𝑕𝑛  

Then one obtains the following conservation law:  𝐷𝑡 𝐶 
1 + 𝐷2 𝐶 2 + ⋯ + 𝐷𝑛 𝐶 𝑛 = 0  

Where  𝐶 2 = 𝐶2 + 𝐷𝑡 𝑕
2 , …… . , 𝐶 𝑛 = 𝐶𝑛 + 𝐷𝑡 𝑕

𝑛  , Because   𝐷𝑡𝐷𝑖 𝑕
𝑖 = 𝐷𝑖𝐷𝑡 𝑕

𝑖  .  

We can rewrite Eq(3.2) in the following form :  

 𝑑𝐶

𝑑𝑡
 
(2.1)

≡ 𝐷𝑡
 (𝐶) (2.1) = 0                                               (3.8) 

3.3   Hamilton's principle and the Euler-Lagrange equations  

 Consider again a motion of a dynamical system with a kinetic energy 𝑇 𝑡, 𝑞, 𝑞   and a 

potential energy 𝑈(𝑡, 𝑞). The function  

ℒ 𝑡, 𝑞, 𝑣 = 𝑇 𝑡, 𝑞, 𝑞  − 𝑈(𝑡, 𝑞) 

is called the Lagrangian of the system.  

Hamilton's principle or the principle of least action, states that the true motion of the system 

between two chosen times 𝑡1 and 𝑡2 is described by the fact that the trajectories of the 

particles provide an extremum of the action functional  

 ℒ 𝑡, 𝑞, 𝑣  𝑑𝑡
𝑡2

 𝑡1
                                                                  (3.9) 

This requirement is equivalent to the statement that the Euler-Lagrange equations :  

𝜕ℒ

𝜕𝑞𝛼 − 𝐷𝑡   
𝜕ℒ

𝜕𝑣𝛼 = 0 ,               𝛼 = 1, …… , 𝑠                     (3.10) 
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In the case of several independent variables 𝑥 =  𝑥1 , …… , 𝑥𝑛  and dependent variables  

𝑢 =  𝑢1 , …… , 𝑢𝑚   an action integral has the form  

 ℒ 𝑥, 𝑢, 𝑢(1), 𝑢(2), …… , 𝑢(𝑝) 𝑉
 𝑑𝑥                                 (3.11) 

Where 𝑉 is an arbitrary 𝑛-dimensional volume in the space of the variables 𝑥 and the 

Lagrangian ℒ is a function depending on a finite number of differential variables. The 

corresponding Euler-Lagrange equations have the form :  

𝜕ℒ

𝜕𝑢𝛼
= 0 ,                  𝛼 = 1, …… , 𝑠                                (3.12) 

Where  

𝛿

𝛿𝑢𝛼
=

𝜕

𝜕𝑢𝛼
− 𝐷𝑖

𝜕

𝜕𝑢 𝑖
𝛼 + ⋯ +  −1 𝑠𝐷𝑖1

𝐷𝑖2
… . . 𝐷𝑖𝑠   

𝜕

𝜕𝑢𝑗1….𝑗𝑘
𝛼 + ⋯  

Is the variational derivative.  

3.4  The Action Principle and Derivation of the Euler – Lagrange Equation  

 To find the equations of motion of a system with 𝑛 degree of freedom, stated in terms of 

first-order differential equations rather than the second-order differential equations Newton's 

laws yield. We define 𝑛 generalized coordinates 𝑞1 , … . . 𝑞𝑛  . Let the Lagrange, 𝐿 be defined as  

𝐿 𝑞𝑖 , 𝑞 𝑖 , 𝑡 = 𝑇 𝑞𝑖 , 𝑞 𝑖 , 𝑡 − 𝑉 𝑞𝑖 , 𝑞 𝑖 , 𝑡                 (3.13) 

Where 𝑇 is the kinetic energy of the system and 𝑉 is the potential energy of the system. 

Define the action, 𝑆 of the system to be  

𝑆 =  𝐿 𝑞𝑖 , 𝑞 𝑖 , 𝑡  𝑑𝑡                                             (3.14) 

In order to find the path which nature would "choose" for the system, it turns out that we need 

to find the local extreme of the action. We therefore need to solve for the stationary points of 

𝑆, where 
𝛿𝑆

𝛿𝑡
= 0, which means that 𝛿𝑆 = 0. So we need to solve for 𝐿 where  

𝛿𝑆 = 0 =  𝑑𝑡  𝐿 𝑞𝑖 + 𝛿𝑞𝑖 , 𝑞 𝑖 + 𝛿𝑞 𝑖 − 𝐿(𝑞𝑖 , 𝑞 𝑖) 
∞

−∞
                         (3.15) 

But Taylor expansions tell us that for small changes  𝑥 + 𝛿𝑥 , 𝑦 + 𝛿𝑦 − 𝑓 𝑥, 𝑦 = 𝑓𝑥𝛿𝑥 +

𝑓𝑦𝛿𝑦  . So  expression (3.15) is equivalent to  

 𝑑𝑡   
𝜕𝐿

𝜕𝑞𝑖
 𝛿𝑞𝑖 +

𝜕𝐿

𝜕𝑞 𝑖
 𝛿𝑞 𝑖 𝑖

∞

−∞
                                                    (3.16) 
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Since  𝛿𝑞 𝑖 =
𝑑

𝑑𝑡
𝛿𝑞 𝑖   , expression (3.16) is equivalent to  

 𝑑𝑡   
𝜕𝐿

𝜕𝑞𝑖
 𝛿𝑞𝑖 +

𝜕𝐿

𝜕𝑞 𝑖
  

𝑑

𝑑𝑡
 𝛿𝑞 𝑖  𝑖

∞

−∞
                                         (3.17) 

Notice that    𝑑𝑡  
𝑑

𝑑𝑡
(𝑓𝑔) 

∞

−∞
=  𝑓𝑔  ∞

−∞
= 0  if  ±∞ = 0 . this implies that, for such 

functions 𝑓 and 𝑔,  𝑑𝑡  𝑓 𝑔 + 𝑔𝑓  = 0
∞

−∞
 by the chain rule, and so 

 𝑑𝑡  𝑓 𝑔 = −
∞

−∞  𝑑𝑡 𝑔𝑓  
∞

−∞
. 

 Therefore, assuming that  𝛿𝑞𝑖 = 0 at  ±∞ , expression (3.17) is equivalent to  

 𝑑𝑡   
𝜕𝐿

𝜕𝑞𝑖
 𝛿𝑞𝑖 −  

𝑑

𝑑𝑡
 
𝜕𝐿

𝜕𝑞 𝑖
 𝛿𝑞𝑖 𝑖

∞

−∞
                                         (3.18) 

 𝑑𝑡   
𝜕𝐿

𝜕𝑞𝑖
 −

𝑑

𝑑𝑡
 
𝜕𝐿

𝜕𝑞 𝑖
 𝛿𝑞𝑖 =𝑖

∞

−∞
𝛿𝑆 = 0                                  (3.19) 

Each coordinate 𝑞𝑖  is independent of the others, and so is each variation 𝛿𝑞𝑖 , so each 𝛿𝑞𝑖  can 

have any value. Therefore, the only way to make this integral always equal to 0 is to demand 

that the bracketed part be equal to 0 for all 𝑖.  

𝜕𝐿

𝜕𝑞𝑖
 −

𝑑

𝑑𝑡
 
𝜕𝐿

𝜕𝑞 𝑖
= 0                                                                     (3.20) 

It turns out, that nature would always "choose" the motion of a system to be such that the 

Lagrangian 𝐿 obeys this equation .  

3.5   Hamilton's Equations   

 There is yet another way of formulating the equations of motion of a system, equivalent to 

the Lagrange formulation.  

Define 𝑝𝑖 ≡
𝜕𝐿

𝜕𝑞 𝑖
 and the Hamiltonian = 𝐻 ≡  𝑝𝑖𝑞 𝑖 − 𝐿𝑖 . This means that  

𝑑𝐻 =   𝑝𝑖𝑑𝑞 𝑖 + 𝑞 𝑖𝑑𝑝𝑖 −
𝜕𝐿

𝜕𝑞𝑖
𝑑𝑞𝑖 −

𝜕𝐿

𝜕𝑞 𝑖
𝑑𝑞 𝑖 −

𝜕𝐿

𝜕𝑡𝑖  𝑑𝑡                     (3.21) 

But 
𝜕𝐿

𝜕𝑞 𝑖
= 𝑝𝑖  , so  

𝑑𝐻 =   𝑝𝑖𝑑𝑞 𝑖 + 𝑞 𝑖𝑑𝑝𝑖 −
𝜕𝐿

𝜕𝑞𝑖
𝑑𝑞𝑖 − 𝑝𝑖𝑑𝑞 𝑖 −

𝜕𝐿

𝜕𝑡
𝑖

 𝑑𝑡 

                                   =   𝑞 𝑖𝑑𝑝𝑖 −
𝜕𝐿

𝜕𝑞𝑖
𝑑𝑞𝑖 −

𝜕𝐿

𝜕𝑡
𝑑𝑡𝑖                                                      (3.22) 
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Since 𝐻 is a Legendre transformation,  

𝑑𝐻 =   
𝜕𝐻

𝜕𝑝𝑖
 𝑑𝑝𝑖 +

𝜕𝐻

𝜕𝑞𝑖
 𝑑𝑞𝑖 𝑖 +

𝜕𝐻

𝜕𝑡
 𝑑𝑡                                               (3.23) 

By comparing equations (3.20) and (3.21), we get :  

𝜕𝐻

𝜕𝑝𝑖
= 𝑞 𝑖  ,   

𝜕𝐻

𝜕𝑞𝑖
= −

𝜕𝐿

𝜕𝑞 𝑖
                                                                          (3.24) 

This last expression is equal to −
𝑑

𝑑𝑡

𝜕𝐿

𝜕𝑞 𝑖
 by Euler-Lagrange, which equals −𝑝 𝑖  . So we have :  

𝜕𝐻

𝜕𝑝𝑖
= 𝑞 𝑖   ,   

𝜕𝐻

𝜕𝑞𝑖
= −𝑝 𝑖                                                                             (3.25) 

Put together, these are Hamilton's equations, another formulation of mechanics equivalent to 

the Euler-Lagrange equation.  

3.5.1  Alternative Derivation   

We can also derive Hamilton's equations directly from the action principle. To do this note 

that 𝐻 =  𝑝𝑖𝑖 𝑞 𝑖 − 𝐿 implies that 𝐿 =  𝑝𝑖𝑖 𝑞 𝑖 − 𝐻. So 𝑆 =  𝑑𝑡   𝑝𝑖𝑖 𝑞 𝑖 − 𝐻 
∞

−∞
 and we 

want to make 𝛿𝑆 = 0 under independent variations of   𝑞 𝑖  and 𝑝 𝑖  variables. So we have 

𝛿𝑆 =  𝑑𝑡   𝑞 𝑖𝛿𝑝𝑖 + 𝑝𝑖
𝜕

𝜕𝑡
𝛿𝑞𝑖 −

𝜕𝐻

𝜕𝑝𝑖
 𝛿𝑝𝑖 −

𝜕𝐻

𝜕𝑞𝑖
 𝛿𝑞𝑖 𝑖

∞

−∞
 

                                 =  𝑑𝑡   𝛿𝑝𝑖  𝑞 𝑖 −
𝜕𝐻

𝜕𝑝𝑖
 − 𝛿𝑞𝑖  𝑝 𝑖 −

𝜕𝐻

𝜕𝑞𝑖
  𝑖

∞

−∞
= 0                      (3.26) 

So 
𝜕𝐻

𝜕𝑝𝑖
= 𝑞 𝑖   ,   −

𝜕𝐻

𝜕𝑞𝑖
= 𝑝 𝑖   

3.5.2   Significance of the Hamiltonian:  

We see the significance of the Hamiltonian most clearly by looking at its time derivative.  

𝑑𝐻

𝑑𝑡
=   

𝜕𝐻

𝜕𝑝𝑖
𝑝 𝑖 +

𝜕𝐻

𝜕𝑞𝑖
𝑞 𝑖 +

𝜕𝐻

𝜕𝑡𝑖 =   𝑞 𝑖𝑝 𝑖 − 𝑝 𝑖𝑞 𝑖 𝑖 𝑖 +
𝜕𝐻

𝜕𝑡
= 

𝜕𝐻

𝜕𝑡
                 (3.27) 

So 
𝑑𝐻

𝑑𝑡
=  

𝜕𝐻

𝜕𝑡
= −

𝜕𝐿

𝜕𝑡
 , from the definition of 𝐻.  

So we see that if 𝐿 is not an explicit function of 𝑡, then 
𝑑𝐻

𝑑𝑡
= 0, and 𝐻 is a constant of the 

motion. Therefore, 𝐻 can give us a first-order differential equation for the motion, which we 

can solve with relative case.  
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Definition 3.5.1.   

 A conservation law is called a trivial conservation law if , 𝐷𝑖 𝐶
𝑖 ≡ 0. Or 𝐶𝑖  are smooth 

functions of  
𝛿

𝛿𝑢𝛼  , 𝐷𝑖  
𝛿

𝛿𝑢𝛼  , … … two conservation laws which only differ by a trivial 

conservation law are regarded as equivalent.  

3.6  Symmetry and Conservation Law  

 Conservation laws and symmetries have always been of considerable interest in science. 

They are important in the formulation and investigation of many mathematical models. There 

are several ideas for constructing conservation laws, one of them is conservation laws for 

differential equations obtained from a variational principle could appear from their 

symmetries, from works of Jacobi, Klein and Noether. Her we will considered about the work 

of Noether .   

 Symmetry in Physics generally means the system must be invariance under any kind of 

transformation, it become one of the most powerful tools of theoretical Physics. We will see 

that in Noether's Theorem below that will led to group theory being one of the areas of 

mathematics most studied by physicists.  

3.6.1 Noether's Theorem  

 Consider a Lagrangian 𝐿 𝑞𝑖 , 𝑞 𝑖 , 𝑡 , with equation of motion  
𝜕𝐿

𝜕𝑞𝑖
=

𝑑

𝑑𝑡
 
𝜕𝐿

𝜕𝑞 𝑖
 .  

Let  𝑞𝑖 𝑡 ⟼ 𝑞𝑖
′ 𝑡 = 𝑞𝑖 𝑡 + 𝜀𝛿𝑞𝑖 𝑡  be a (continuous) transformation of the generalized 

coordinates  𝑞𝑖  that leaves the equation of motion unchanged or we can say we whatever have 

a continuous symmetry of Lagrange, there is an associated conservation law. by continuous 

symmetry we mean a symmetry with continuous constant parameter, typically infinitesimal  

"𝜀"  that we can dial, and that measures how far from the identity the transformation is 

bringing us. In a sense 𝜀 measures the size of the transformation.  

 The condition that the equation of motions are unchanged is equivalent to requiring  that the 

action 𝑆 =  𝐿 𝑑𝑡 be invariant, or more generally be unchanged by no more than additive 

constant term ( as the equations of motion are derived from  𝛿𝑆 = 0 such a term will vanish ).  

 This means we can allow the Lagrangian to vary by no more than an overall total time 

derivative,  𝐿 ⟼ 𝐿′ = 𝐿 + 𝛼
𝑑

𝑑𝑡
 𝐽. This is because the overall time derivative will integrate out 

immediately in the action, leaving just an additive constant, and so does not affect the 

equations of motion :  
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𝑆 =  𝐿′ 𝑑𝑡 = 𝑆 =   𝐿 + 𝛼
𝑑

𝑑𝑡
 𝐽  𝑑𝑡 =  𝐿  𝑑𝑡 + 𝛼𝐽 𝑡2 − 𝛼𝐽 𝑡1 ⇒ 𝛿𝑆 = 𝛿  𝐿 𝑑𝑡  

We could then formally state the theorem as follows:  

Theorem  ( Noether)  

 Let 𝑞𝑖 𝑡 ⟼ 𝑞𝑖
′ 𝑡 = 𝑞𝑖 𝑡 + 𝜀𝛼𝛿𝑞𝑖 𝑡  be an infinitesimal transformation of the generalized 

coordinates, parameterized by the (infinitesimal) quantities  𝜀𝛼  such that under this 

transformation 𝐿 ⟼ 𝐿′ = 𝐿 + 𝜀𝛼
𝑑

𝑑𝑡
 𝐽, then the quantities  𝑗𝛼  given by  

𝑗𝛼𝜀𝛼 =
𝜕𝐿

𝜕𝑞 𝑖
 𝛿𝑞𝑖𝜀𝛼 − 𝐽𝜀𝛼   ,   Are conserved .  

Proof:  

 Consider the variation in the lagrangian caused by the change in the coordinates and their 

velocities:  

𝛿𝐿 =
𝜕𝐿

𝜕𝑞𝑖
 𝛿𝑞𝑖 +

𝜕𝐿

𝜕𝑞 𝑖
 𝛿𝑞𝑖   

      = 
𝜕𝐿

𝜕𝑞𝑖
 𝛿𝑞𝑖 +

𝜕𝐿

𝜕𝑞 𝑖
 
𝑑

𝑑𝑡
𝛿𝑞𝑖   

      = 
𝜕𝐿

𝜕𝑞𝑖
 𝛿𝑞𝑖 +

𝑑

𝑑𝑡
 

𝜕𝐿

𝜕𝑞 𝑖
 𝛿𝑞𝑖 −  

𝑑

𝑑𝑡
 
𝜕𝐿

𝜕𝑞 𝑖
 𝛿𝑞𝑖                                   (3.28) 

      = 
𝑑

𝑑𝑡
 

𝜕𝐿

𝜕𝑞 𝑖
 𝛿𝑞𝑖  

Where we have used the equations of motion to eliminate two of the terms. Now for each 𝛼, 

this variation multiplied by 𝜀𝛼  must be equal to the corresponding change 𝜀𝛼
𝑑

𝑑𝑡
 𝐽 in the 

Lagrangian, so  

𝜀𝛼
𝑑

𝑑𝑡
 

𝜕𝐿

𝜕𝑞 𝑖
 𝛿𝑞𝑖  = 𝜀𝛼

𝑑

𝑑𝑡
 𝐽                                                 (3.29) 

And this implies    ,    
𝑑

𝑑𝑡
 

𝜕𝐿

𝜕𝑞 𝑖
 𝛿𝑞𝑖 − 𝐽 = 0 ,   

 Hence  

𝑗𝛼 =
𝜕𝐿

𝜕𝑞 𝑖
 𝛿𝑞𝑖 − 𝐽                                                            (3.30)  
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Is conserved, or taking into account that the index 𝛼 refers to numerous transformations we 

should write 
2
  

𝑗𝛼𝜀𝛼 =
𝜕𝐿

𝜕𝑞 𝑖
 𝛿𝑞𝑖𝜀𝛼 − 𝐽𝜀𝛼  

3.6.2  Continuous Symmetries and Conservation Laws  

 Consider a simple mechanical system
3
 with a generic action  

𝒜 =  𝑑𝑡
𝑡𝑏

𝑡𝑎
 𝐿 𝑞 𝑡 , 𝑞  𝑡 , 𝑡                                                (3.31) 

Suppose 𝒜 is invariant under a continuous set of transformations of the dynamical variables :  

𝑞 𝑡 ⟶ 𝑞′ 𝑡 = 𝑓 𝑞 𝑡 , 𝑞  𝑡                                            (3.32) 

Where 𝑓 𝑞 𝑡 , 𝑞  𝑡   is some functional of 𝑞 𝑡 . Such transformations are called symmetry 

transformation. Thereby it is important that the equations of motion are not used when 

establishing the invariance of the action under (3.32).  

If the action is subjected successively to two symmetry transformations, the result is again a 

symmetry transformation. Thus, symmetry transformations form a group called the symmetry 

group of the system which we will talk about it in the next chapter. For infinitesimal 

symmetry transformations (3.32), the difference  

𝛿𝑠𝑞 𝑡 ≡ 𝑞′ 𝑡 − 𝑞(𝑡)                                                         (3.33) 

Which will be a symmetry variation. It has the general form  

𝛿𝑠𝑞 𝑡 = 𝜖∆ 𝑞 𝑡 , 𝑞  𝑡                                                        (3.32) 

Symmetry variations must not be confused with ordinary variations 𝛿𝑞(𝑡) that used to derive 

the Euler-Lagrange equations (3.20). while the ordinary variations 𝛿𝑞(𝑡) vanish at initial and 

final times, 𝛿𝑞 𝑡𝑏 = 𝛿𝑞 𝑡𝑎 = 0 , the symmetry variations 𝛿𝑠𝑞 𝑡  are usually nonzero at the 

ends.  

                                                           
2
 Note the important thing to note is that there is a separate conserved quantity for each 𝜀𝛼  – where 𝛼  is 

used to index the different transformations. Note also that this formulation of the theorem does not 

really take into account transforming time, though we can sort handle this – see the example after it. 

Note also what the theorem essentially means is that for every continuous symmetry there corresponds 

a conserved quantity, which is a really cool result.  

 
3
  http://users.physik.fu-berlin.de/~kleinert/b6/psfiles/Chapter-7-conslaw.pdf 
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Let us calculate the change of the action under a symmetry variation (3.32). using the chain 

rule of differentiation and a an integration by parts, we obtain  

𝛿𝑠𝒜 =  𝑑𝑡
𝑡𝑏

𝑡𝑎
 

𝜕𝐿

𝜕𝑞(𝑡)
− 𝜕𝑡

𝜕𝐿

𝜕𝑞 (𝑡)
 𝛿𝑠𝑞 𝑡 +

𝜕𝐿

𝜕𝑞 (𝑡)
𝛿𝑠𝑞 𝑡   𝑡𝑏

𝑡𝑎

                        (3.33) 

For orbits 𝑞(𝑡) that satisfy the Euler-Lagrange equations (3.20), only boundary terms survive 

, and we are left with  

𝛿𝑠𝒜 = 𝜖
𝜕𝐿

𝜕𝑞 
 ∆ 𝑞, 𝑞 , 𝑡  𝑡𝑏

𝑡𝑎

                                                                  (3.34) 

Under the symmetry assumption, 𝛿𝑠𝒜 vanishes for any orbit  𝑞(𝑡), implying that the quantity  

𝑄 𝑡 ≡
𝜕𝐿

𝜕𝑞 
 ∆ 𝑞, 𝑞 , 𝑡                                                                     (3.35) 

Is the same at times 𝑡 = 𝑡𝑎  and 𝑡 = 𝑡𝑏 . Since 𝑡𝑏  is arbitrary,  𝑄 𝑡  is independent of the time 

𝑡, i.e., it satisfies  

𝑄 𝑡 ≡ 𝑄                                                                                   (3.36) 

It is a conserved quantity, a constant of motion. The expression on the right-hand side of 

(3.35) is called Noether charge.  

The statement can be generalized to transformations 𝛿𝑠𝑞 𝑡  for which the action is not 

directly invariant but its symmetry variation is equal to an arbitrary boundary term :  

𝛿𝑠𝒜 = 𝜖 Λ 𝑞, 𝑞 , 𝑡  𝑡𝑏
𝑡𝑎

                                                               (3.37) 

In this case,  

𝑄 𝑡 ≡
𝜕𝐿

𝜕𝑞 
 ∆ 𝑞, 𝑞 , 𝑡 − Λ 𝑞, 𝑞 , 𝑡                                               (3.38) 

Is a conserved Noether charge .  

 It is also possible to derive the constant of motion (3.38) without invoking the action, but 

starting from the Lagrange . for it we evaluate the symmetry variation as follows :  

𝛿𝑠𝐿 ≡ 𝐿 𝑞 + 𝛿𝑠  , 𝑞 + 𝛿𝑠𝑞  − 𝐿 𝑞, 𝑞  =  
𝜕𝐿

𝜕𝑞(𝑡)
− 𝜕𝑡

𝜕𝐿

𝜕𝑞 (𝑡)
 𝛿𝑠𝑞 𝑡 +

𝑑

𝑑𝑡
 

𝜕𝐿

𝜕𝑞 (𝑡)
𝛿𝑠𝑞 𝑡     (3.39)  

On account of Euler-Lagrange equations (3.20), the first term on the right-hand side vanishes 

as before, and only the last term survives. The assumption of invariance of the action up to a 
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possible surface term in Eq.(3.37) is equivalent to assuming that the symmetry variation of 

the Lagrangian is a total time derivative of some function Λ 𝑞, 𝑞 , 𝑡 :  

𝛿𝑠𝐿 𝑞, 𝑞 , 𝑡 = 𝜖 
𝑑

𝑑𝑡
Λ 𝑞, 𝑞 , 𝑡                                                             (3.40) 

Inserting this into the left-hand side of (3.39), we find  

𝜖 
𝑑

𝑑𝑡
 
𝜕𝐿

𝜕𝑞 
∆ 𝑞, 𝑞 , 𝑡 − Λ 𝑞, 𝑞 , 𝑡  = 0                                                    (3.41) 

Thus recovering again the conserved Noether charge (3.36).  The existence of a conserved 

quantity for every continuous symmetry is the content of Noether's theorem.  

3.7 Alternative Derivation  

 Let us do the substantial variation in Eq(3.33) explicitly, and change a classical orbit 𝑞𝑐(𝑡), 

that extremizes the action, by an arbitrary variation  𝛿𝑎𝑞(𝑡). If this does not vanish at the 

boundaries, the action changes by a pure boundary term that follows directly from Eq(3.33) :  

𝛿𝑠𝒜 =
𝜕𝐿

𝜕𝑞 
𝛿𝑠𝑞  𝑡𝑏

𝑡𝑎

                                                                         (3.42) 

From this equation we can derive Noether's theorem in yet another way. Suppose we subject a 

classical orbit to a new type of symmetry variation, to be called local symmetry 

transformations, which generalizes the previous symmetry variations Eq(3.32) by making the 

parameter 𝜖 time- dependent :  

𝛿𝑠
𝑡𝑞 𝑡 = 𝜖(𝑡)∆ 𝑞(𝑡), 𝑞 (𝑡), 𝑡                                                          (3.43) 

The superscript 𝑡 of   𝛿𝑠
𝑡𝑞 𝑡  indicates the new time dependence in the parameter 𝜖(𝑡). These 

variations may be considered as a special set of the general variations 𝛿𝑎𝑞(𝑡) introduced 

above. Thus also 𝛿𝑠
𝑡𝒜  must be a pure boundary term of the type Eq(3.42). For the subsequent 

discussion it is to introduce the infinitesimally transformed orbit  

𝑞𝜖 𝑡 ≡ 𝑞 𝑡 + 𝛿𝑠
𝑡𝑞 𝑡 = 𝑞 𝑡 + 𝜖(𝑡)∆ 𝑞(𝑡), 𝑞 (𝑡), 𝑡                                     (3.44) 

           𝐿𝜖 ≡ 𝐿 𝑞𝜖 𝑡 , 𝑞 𝜖(𝑡)                                                                                (3.45) 

Using the time-dependent parameter 𝜖(𝑡),the local symmetry variation of the action can be 

written as  

𝛿𝑠
𝑡𝒜 =  𝑑𝑡 

𝑡𝑏

𝑡𝑎
 

𝜕𝐿𝜖

𝜕𝜖 (𝑡)
−

𝑑

𝑑𝑡
 

𝜕𝐿𝜖

𝜕𝜖 (𝑡)
  𝜖 𝑡 +

𝑑

𝑑𝑡
  

𝜕𝐿𝜖

𝜕𝜖 (𝑡)
  𝜖 𝑡   𝑡𝑏

𝑡𝑎

                               (3.46) 

Along the classical orbits, the action and satisfies the equation  
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𝛿𝒜

𝛿𝜖 𝑡 
= 0                                                                                                       (3.47) 

Which translates for a local action to an Euler-Lagrange type of equation :  

𝜕𝐿𝜖

𝜕𝜖 (𝑡)
−

𝑑

𝑑𝑡
 

𝜕𝐿𝜖

𝜕𝜖 (𝑡)
= 0                                                                             (3.48) 

This can also be checked explicitly by differentiating (3.45) according to the chain rule of 

differentiation :  

𝜕𝐿𝜖

𝜕𝜖 (𝑡)
=

𝜕𝐿𝜖

𝜕𝑞 (𝑡)
 ∆ 𝑞, 𝑞 , 𝑡 +

𝜕𝐿𝜖

𝜕𝜖 (𝑡)
∆  𝑞, 𝑞 , 𝑡                                                           (3.49) 

𝜕𝐿𝜖

𝜕𝜖 (𝑡)
=

𝜕𝐿𝜖

𝜕𝑞 (𝑡)
∆ 𝑞, 𝑞 , 𝑡                                                                                        (3.50) 

And inserting on the right-hand side the ordinary Euler-Lagrange equations .  

We now invoke the symmetry assumption that the action is a pure surface term under the 

time-independent transformations (3.43). this implies that  

𝜕𝐿𝜖

𝜕𝜖
=

𝑑

𝑑𝑡
 Λ                                                                                                       (3.51) 

Combining this with (3.48), we find that this is the same charge as that derived by the 

previous method.  

3.8  Displacement and Energy Conservation  

 As a simple but physically important example consider the case that the Lagrangian does not 

depend exiplicity on time, i.e,that 𝐿 𝑞, 𝑞 , 𝑡 ≡ 𝐿(𝑞, 𝑞 ). Let us perform a time translation on 

the coordinate frame :  

𝑡′ = 𝑡 − 𝜖                                                                                  (3.52) 

In the new coordinate frame , the same orbit has the new description  

𝑞  𝑡 = 𝑞(𝑡)                                                                             (3.53) 

i.e, the orbit 𝑞 (𝑡) at the translated time 𝑡′ is precisely the same as the orbit 𝑞(𝑡) at the original 

time 𝑡. If we replace the argument of  𝑞  𝑡  in (3.53) by 𝑡′, we describe a time-translated orbit 

in terms of the original coordinates. This implies the symmetry variation of the form (3.32) :  

𝛿𝑠𝑞 𝑡 = 𝑞′ 𝑡 − 𝑞 𝑡 = 𝑞 𝑡′ + 𝜖 − 𝑞(𝑡)   
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            = 𝑞 𝑡′ + 𝜖𝑞  𝑡 − 𝑞 𝑡 = 𝜖𝑞  𝑡                                                                     (3.54)  

The symmetry variation of the Lagrangian is in general  

𝛿𝑠𝐿 = 𝐿(𝑞′ 𝑡 , 𝑞 ′ 𝑡 − 𝐿 𝑞 𝑡 , 𝑞  𝑡  =
𝜕𝐿

𝜕𝑞
𝛿𝑠𝑞 𝑡 +

𝜕𝐿

𝜕𝑞 
𝛿𝑠𝑞  𝑡                         (3.55) 

Inserting 𝛿𝑠𝑞 𝑡  from Eq(3.45) we find, without using Euler-Lagrange equation,  

𝛿𝑠𝐿 = 𝜖  
𝜕𝐿

𝜕𝑞 
𝑞 +

𝜕𝐿

𝜕𝑞 
𝑞  = 𝜖

𝑑

𝑑𝑡
𝐿                                                                          (3.56) 

This has precisely the form of Eq.(3.39), with Λ = 𝐿 as expected, since time translations are 

symmetry transformations. Here the function Λ in Eq (3.39) happens to coincide with the 

Lagrangian. According to Eq.(3.37), we find the Noether charge  

𝑄 =
𝜕𝐿

𝜕𝑞 
𝑞 − 𝐿(𝑞, 𝑞 )                                                                                          (3.57) 

To be a constant of motion. This is recognized as the Legendre transform of the Lagrangian 

which is, of course, the Hamiltonian of the system.  

Let us briefly check how this Noether charge is obtained from the alternative formula 

Eq(3.37). The time-dependent symmetry variation is here  

𝛿𝑠
𝑡𝑞 𝑡 = 𝜖 𝑡  𝑞  𝑡                                                                                            (3.58) 

Under which the Lagrangian is changed by  

𝛿𝑠
𝑡𝐿 =

𝜕𝐿

𝜕𝑞
𝜖𝑞 +

𝜕𝐿

𝜕𝑞 
 𝜖 𝑞 + 𝜖𝑞  =

𝜕𝐿𝜖

𝜕𝜖 
𝜖 +

𝜕𝐿𝜖

𝜕𝜖 
𝜖                                                    (3.59) 

With          
𝜕𝐿𝜖

𝜕𝜖 
=

𝜕𝐿

𝜕𝑞 
𝑞                                                                                                    (3.60)  

And          
𝜕𝐿𝜖

𝜕𝜖
=

𝜕𝐿

𝜕𝑞
𝑞 +

𝜕𝐿

𝜕𝑞 
𝜖𝑞 =

𝑑

𝑑𝑡
𝐿                                                                          (3.61)  

This shows that time translations fulfill the symmetry condition Eq(3.51), and that the 

Noether charge Eq(3.53) coincides with the Hamiltonian found in Eq.(3.37).   

3.9 Continuous Symmetry Implies Conserved Charges 

 Consider a particle moving in two dimensions under the influence of an external potential 

𝑈(𝑟). The potential is a function only of the magnitude of the vector 𝑟. The Lagrangian is 

then  
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𝐿 = 𝑇 − 𝑈 =
1

2
𝑚 𝑟 2 + 𝑟2𝜙 2 − 𝑈(𝑟)                                                     (3.62) 

Where we have chosen generalized coordinates  𝑟, 𝜙 . The momentum conjugate to 𝜙 is 

𝑝𝜙 = 𝑚𝑟2𝜙 . The generalized force 𝐹𝜙  clearly vanishes
4
, since 𝐿 doesnot depend on the 

coordinate 𝜙. ( one says that 𝐿 is 'cyclic'  in 𝜙 ) Thus , although 𝑟 = 𝑟(𝑡) and  𝜙 = 𝜙(𝑡) will 

in general be time-dependent, the combination 𝑝𝜙 = 𝑚𝑟2𝜙  is constant. This is the conserved 

angular momentum about the 𝓏  axis .  

If instead the particle moved in a potential 𝑈(𝑦), independent of 𝑥, then writing  

𝐿 =
1

2
𝑚 𝑥 2 + 𝑦 2 − 𝑈(𝑦)                                                                   (3.63) 

We have that the momentum 𝑝𝑥 = 𝜕𝐿 𝜕𝑥 = 𝑚𝑥   is conserved, because the generalized force 

𝐹𝑥 = 𝜕𝐿 𝜕𝑥 = 0  vanishes. This situation pertains in a uniform gravitational field, with 

𝑈 𝑥, 𝑦 = 𝑚𝑔𝑦, independent of 𝑥. The horizontal component of momentum is conserved.  

In general, whenever the system exihibits a continuous symmetry, there is an associated 

conserved charge. ( The terminology 'charge' is from field theory ). Indeed, this is a rigorous 

result, known as Noether's Theorem. Consider a one-parameter family of transformations,  

𝑞𝜍 ⟶ 𝑞 𝜍 𝑞, 𝜁                                                                                        (3.64) 

Where 𝜁 is the continuous parameter. Suppose further ( without loss of generality) that at 

𝜁 = 0 this transformation is the identity, i.e,  𝑞 𝜍 𝑞, 𝜁 = 𝑞𝜍 . The transformation may be 

nonlinear in the generalized coordinates. Suppose further that the Lagrangian 𝐿 is invariant 

under the replacement 𝑞 ⟶ 𝑞 . Then we must have  

0 =  𝑑
𝑑𝜁

 
𝜁=0

𝐿 𝑞 , 𝑞  , 𝑡 =
𝜕𝐿

𝜕𝑞𝜍
  
𝑑𝑞 𝜍

𝑑𝜁
 
𝜁=0

+
𝜕𝐿

𝜕𝑞 𝜍
  
𝑑𝑞  𝜍

𝑑𝜁
 
𝜁=0

  

                                   = 
𝑑

𝑑𝑡
 

𝜕𝐿

𝜕𝑞 𝜍
   

𝑑𝑞 𝜍

𝑑𝜁
 
𝜁=0

+
𝜕𝐿

𝜕𝑞 𝜍

𝑑

𝑑𝑡
 

𝑑𝑞 𝜍

𝑑𝜁
 

𝜁=0
   

                                    = 
𝑑

𝑑𝑡
 

𝜕𝐿

𝜕𝑞 𝜍
 
𝑑𝑞 𝜍

𝑑𝜁
 

𝜁=0
                                                                  (3.65)  

Thus, there is an associated conserved charge  

Λ =
𝜕𝐿

𝜕𝑞 𝜍
  
𝑑𝑞  𝜍

𝑑𝜁
 
𝜁=0

                                                                                                      (3.63) 

 

                                                           
4
 Chapter 7- Noether Theorem - http://users.physik.fu-berlin.de/~kleinert/b6/psfiles/Chapter-7-conslaw.pdf 

http://users.physik.fu-berlin.de/~kleinert/b6/psfiles/Chapter-7-conslaw.pdf
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Example 3.9.1  ( one –parameter families of transformations)  

Consider the Lagrangian  

𝐿 =
1

2
𝑚 𝑥 2 + 𝑦 2 − 𝑈  𝑥2 + 𝑦2                                                               (3.64) 

In two-dimensional polar coordinates, we have : 𝐿 =
1

2
𝑚 𝑟 2 + 𝑟2𝜙 2 − 𝑈(𝑟)  

And we may now ,   𝑟  𝜁 = 𝑟  

𝜙  𝜁 = 𝜙 + 𝜁                                                                                            (3.65) 

Note that 𝑟  𝜁 = 𝑟 and 𝜙  𝜁 = 𝜙, i.e. the transformation is the identity when 𝜁 = 0. We now 

have     Λ =  
𝜕𝐿

𝜕𝑞 𝜍
  
𝑑𝑞  𝜍

𝑑𝜁
 
𝜁=0

=𝜍
𝜕𝐿

𝜕𝑟 
  
𝑑𝑟 

𝑑𝜁
 
𝜁=0

+
𝜕𝐿

𝜕𝜙  
 𝑑𝜙 

𝑑𝜁
 
𝜁=0

= 𝑚𝑟2𝜙   

Another way to derive the same result which is somewhat instructive is to work out the 

transformation in Cartesian coordinates. We then have  

𝑥  𝜁 = 𝑥 cos 𝜁 − 𝑦 sin 𝜁 

𝑦  𝜁 = 𝑥 sin ζ +𝑦 cos 𝜁 

Thus,  

𝜕𝑥 

𝜕𝜁
= −𝑦  ,  

𝜕𝑦 

𝜕𝜁
= 𝑥                                                                                                (3.66) 

And  

Λ =
𝜕𝐿

𝜕𝑥 
  
𝑑𝑥 

𝑑𝜁
 
𝜁=0

+
𝜕𝐿

𝜕𝑦 
  
𝑑𝑦 

𝑑𝜁
 
𝜁=0

= 𝑚 𝑥𝑦 − 𝑦𝑥                                                     (3.67) 

But  

𝑚 𝑥𝑦 − 𝑦𝑥  = 𝑚𝓏  ⋅ 𝒓 × 𝒓 = 𝑚𝑟2𝜙                                                               (3.68) 

As another example, consider the potential  

𝑈 𝜌, 𝜙, 𝓏 = 𝑉 𝜌, 𝑎𝜙 + 𝓏                                                                                (3.69) 

Where  𝜌, 𝜙, 𝓏  are cylindrical coordinates for a particle of mass 𝑚, and where 𝑎 is a constant 

with dimensions of length. The Lagrangian is  

1

2
 𝜌 2 + 𝜌2𝜙 2 + 𝓏 2 − 𝑉 𝜌, 𝑎𝜙 + 𝓏                                                                 (3.70) 
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This model possesses a helical symmetry, with a one-parameter family  

𝜌  𝜁 = 𝜌 

𝜙  𝜁 = 𝜙 + 𝜁 

𝓏  𝜁 = 𝓏 − 𝜁𝑎 

Note that : 𝑎𝜙 + 𝓏 = 𝑎𝜙 + 𝓏  

So the potential energy, and the Lagrangian as well, is invariant under this one-parameter 

family of transformations. The conserved charge for this symmetry is  

Λ =
𝜕𝐿

𝜕𝜌 
  
𝑑𝜌 

𝑑𝜁
 
𝜁=0

+
𝜕𝐿

𝜕𝜙  
 𝑑𝜙 

𝑑𝜁
 
𝜁=0

+
𝜕𝐿

𝜕𝓏 
  
𝑑𝓏 

𝑑𝜁
 
𝜁=0

= 𝑚𝜌2𝜙 − 𝑚𝑎𝓏                                (3.71) 

We can check explicitly that  Λ is conserved, using the equations of motion  

𝑑

𝑑𝑡
 

𝜕𝐿

𝜕𝜙 
 =

𝑑

𝑑𝑡
 𝑚𝜌2𝜙  =

𝜕𝐿

𝜕𝜙
= −𝑎

𝜕𝑉

𝜕𝓏
 

𝑑

𝑑𝑡
 
𝜕𝐿

𝜕𝓏 
 =

𝑑

𝑑𝑡
 𝑚𝓏  =

𝜕𝐿

𝜕𝓏
= −

𝜕𝑉

𝜕𝓏
 

Thus,  Λ =
𝑑

𝑑𝑡
 𝑚𝜌2𝜙  − 𝑎

𝑑

𝑑𝑡
 𝑚𝓏  = 0                                                                   (3.72)  

3.10  Conservation of Linear Angular Momentum  

 Suppose that the Lagrangian of a mechanical system is invariant under a uniform translation 

of all particles in the 𝒏  direction. Then our one-parameter family of transformations is given 

by  

𝔁 𝑎 = 𝔁𝑎 + 𝜁𝒏                                                                                                              (3.73) 

And the associated conserved Noether charge is  

Λ =  
𝜕𝐿

𝜕𝔁𝑎 
𝑎  ⋅  𝒏 = 𝒏 ⋅ 𝑷                                                                                             (3.74) 

Where   𝑷 =  𝑷𝑎𝑎  is the total momentum of the system.  

If the Lagrangian of a mechanical system is invariant under rotations about an axis 𝒏  , then  

  𝔁 𝑎 = 𝑅 𝜁, 𝒏  𝔁𝑎   

        = 𝔁𝑎 + 𝜁𝒏 × 𝔁𝑎 + 𝒪 𝜁2                                                                                   (3.75)  
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Where we have expanded the rotation matrix 𝑅 𝜁, 𝒏   in powers of 𝜁. The conserved Noether 

charge associated with this symmetry is  

Λ =  
𝜕𝐿

𝜕𝔁𝑎 
𝑎  ⋅  𝒏 × 𝔁𝑎 = 𝒏 ⋅  𝔁𝑎 ×𝑎 𝑷𝑎 = 𝒏 ∙ 𝐿                                                     (3.76) 

Where 𝐿 is the total angular momentum of the system.  

3.10.1  Invariance of  𝐿 vs Invariance of  𝑆 :   

 Observant readers might object that demanding invariance of  𝐿 is too strict. We should 

instead be demanding invariance of the action 5 . Suppose 𝑆 is invariant under  

𝑡 ⟶ 𝑡  𝑞, 𝑡, 𝜁                                                                                                      (3.77) 

𝑞𝜍 𝑡 ⟶ 𝑞 𝜍 𝑞, 𝑡, 𝜁   

Then invariance of  𝑆 means  

𝑆 =  𝑑𝑡
𝑡𝑏

𝑡𝑎
 𝐿 𝑞, 𝑞 , 𝑡 =  𝑑𝑡

𝑡 𝑏
𝑡 𝑎

 𝐿 𝑞 , 𝑞  , 𝑡                                                               (3.78) 

Note that 𝑡 is a dummy variable of integration, so it doesn't matter whether we call it 𝑡 or 𝑡 . 

The endpoints of the integral, however, do change under the transformation, for which 

𝛿𝑡 = 𝑡 − 𝑡 and  𝛿𝑡 = 𝑞   𝑡   − 𝑞(𝑡) are both small. Thus,  

𝑆 =  𝑑𝑡
𝑡𝑏

𝑡𝑎
 𝐿 𝑞, 𝑞 , 𝑡 =  𝑑𝑡

𝑡 𝑏+𝛿𝑡𝑏

𝑡 𝑎 +𝛿𝑡𝑎
  𝐿 𝑞, 𝑞 , 𝑡 +

𝜕𝐿

𝜕𝑞𝜍
 𝛿 𝑞𝜍 +

𝜕𝐿

𝜕𝑞 𝜍
 𝛿 𝑞 𝜍 + ⋯       (3.79) 

Where  

 𝛿 𝑞𝜍 𝑡 ≡ 𝑞 𝜍 𝑡 − 𝑞𝜍 𝑡   

              = 𝑞 𝜍 𝑡  − 𝑞 𝜍 𝑡  + 𝑞 𝜍 𝑡 − 𝑞𝜍 𝑡   

               = 𝛿𝑞𝜍 − 𝑞 𝜍𝛿𝑡 + 𝒪 𝛿𝑞𝛿𝑡                                                                    (3.80) 

Substracting Eq.(3.79) from Eq(3.80), we obtain  

0 = 𝐿𝑏𝛿𝑡𝑏 − 𝐿𝑎𝛿𝑡𝑎 +  𝜕𝐿

𝜕𝑞 𝜍
 
𝑏

𝛿 𝑞 𝜍,𝑏 −  𝜕𝐿

𝜕𝑞 𝜍
 
𝑎

𝛿 𝑞 𝜍,𝑎 +  𝑑𝑡
𝑡 𝑏+𝛿𝑡𝑏

𝑡 𝑎 +𝛿𝑡𝑎

 
𝜕𝐿

𝜕𝑞𝜍
−

𝑑

𝑑𝑡
  

𝜕𝐿

𝜕𝑞 𝜍
  𝛿 𝑞𝜍(𝑡) 

      =  𝑑𝑡 
𝑑

𝑑𝑡
   𝐿 −

𝜕𝐿

𝜕𝑞 𝜍
𝑞 𝜍 𝛿𝑡 +

𝜕𝐿

𝜕𝑞 𝜍
𝛿𝑞𝜍 

𝑡𝑏

𝑡𝑎
                                                      (3.81)  

                                                           
5
 Indeed, we should be demanding that 𝑆 only change by a function of the endpoint values.   
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Where 𝐿𝑎,𝑏  is 𝐿 𝑞, 𝑞 , 𝑡  evaluated at 𝑡 = 𝑡𝑎,𝑏 . Thus, if 𝜁 ≡ 𝛿𝜁 is infinitesimal ,and  

𝛿𝑡 = 𝐴 𝑞, 𝑡 𝛿𝜁      

𝛿𝑞𝜍 = 𝐵𝜍 (𝑞, 𝑡)𝛿𝜁                                                                                         (3.82) 

Then the conserved charge is  

Λ =  𝐿 −
𝜕𝐿

𝜕𝑞 𝜍
𝑞 𝜍 𝐴 𝑞, 𝑡 +

𝜕𝐿

𝜕𝑞 𝜍
𝐵𝜍 (𝑞, 𝑡)  

                                             = −𝐻 𝑞, 𝑝, 𝑡 𝐴 𝑞, 𝑡 + 𝑝𝜍𝐵𝜍 (𝑞, 𝑡)                    (3.83) 

Thus, when 𝐴 = 0,we recover our earlier results, obtained by assuming invariance of 𝐿. Note 

that conservation of 𝐻 follows from time translation invariance : 𝑡 ⟶ 𝑡 + 𝜁, for which 𝐴 = 1 

and 𝐵𝜍 = 0. Here we have written  

𝐻 = 𝑝𝜍𝑞 𝜍 − 𝐿                                                                                                 (3.84) 

And expressed it in terms of the momenta 𝑝𝜍 , the coordinates 𝑞𝜍 , and time 𝑡. 𝐻 is called 

Hamiltonian.  

3.11  The Hamiltonian  

 The Lgrangian is a function of generalized coordinates, velocities and time. The canonical 

momentum conjugate to the generalized coordinate 𝑞𝜍  is  

𝑝𝜍 =
𝜕𝐿

𝜕𝑞 𝜍
                                                                                                      (3.85) 

The Hamiltonian is a function of coordinates, momenta, and time. It is defined as the 

Legendre transform of  :  

𝐻 𝑞, 𝑝, 𝑡 =  𝑝𝜍𝑞 𝜍 − 𝐿𝜍                                                                                (3.86) 

Let's examine the differential of  :  

𝑑𝐻 =   𝑞 𝜍  𝑑𝑝𝜍 + 𝑝𝜍  𝑑𝑞 𝜍 −
𝜕𝐿

𝜕𝑞𝜍
 𝑑𝑞𝜍 −

𝜕𝐿

𝜕𝑞 𝜍
𝑑𝑞 𝜍 −

𝜍

𝜕𝐿

𝜕𝑡
 𝑑𝑡 

=   𝑞 𝜍  𝑑𝑝𝜍 −
𝜕𝐿

𝜕𝑞𝜍
 𝑑𝑞𝜍 −

𝜍

𝜕𝐿

𝜕𝑡
 𝑑𝑡 

Where we have invoked the definition of  𝑝𝜍  to cancel the coefficients of 𝑑𝑞 𝜍 . Since  
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𝑝 𝜍 = 𝜕𝐿 𝜕𝑞𝜍  , we have Hamilton's equations of motion,  

𝑞 𝜍 =
𝜕𝐻

𝜕𝑝𝜍
 ,          𝑝 𝜍 = −

𝜕𝐻

𝜕𝑞𝜍
                                                                          (3.87) 

Thus, we can write    𝑑𝐻 =   𝑞 𝜍  𝑑𝑝𝜍 + 𝑝 𝜍  𝑑𝑞𝜍 −𝜍
𝜕𝐿

𝜕𝑡
 𝑑𝑡 

Dividing by  𝑑𝑡, we obtain  

𝜕𝐻

𝜕𝑝𝜍
= −

𝜕𝐿

𝜕𝑡
                                                                                                             (3.88) 

Which says that the Hamiltonian is conserved (i.e. it doesn't change with time) whenever 

there is no explicit time dependence to 𝐿.  

Example  3.11.1.   

 For a simple 𝑑 = 1 system with 𝐿 =
1

2
𝑚𝑥 2 − 𝑈(𝑥), we have 𝑝 = 𝑚𝑥  and  

𝐻 = 𝑝𝑥 − 𝐿 =
1

2
𝑚𝑥 2 + 𝑈 𝑥 =

𝑝2

2𝑚
+ 𝑈(𝑥) 

Example 3.11.2.   

Consider the mass point – wedge system analyzed above, with  

𝐿 =
1

2
 𝑀 + 𝑚 𝑋 2 + 𝑚𝑋 𝑥 +

1

2
𝑚 1 + tan2 𝛼 𝑥 2 − 𝑚𝑔𝑥 tan 𝛼 

The canonical momenta are  

𝑃 =
𝜕𝐿

𝜕𝑋 
=  𝑀 + 𝑚 𝑋 + 𝑚𝑥                                                                                  (3.89)  

𝑝 =
𝜕𝐿

𝜕𝑥 
= 𝑚𝑋 + 𝑚 1 + tan2 𝛼 𝑥  

The Hamiltonian is given by  : 𝐻 = 𝑃𝑋 + 𝑝𝑥 − 𝐿 

                                    𝐻 = 
1

2
 𝑀 + 𝑚 𝑋 2 + 𝑚𝑋 𝑥 +

1

2
𝑚 1 + tan2 𝛼 𝑥 2 − 𝑚𝑔𝑥 tan 𝛼    (3.90) 

However, this is not quite 𝐻 since 𝐻 = 𝐻 𝑋, 𝑥, 𝑃, 𝑝, 𝑡  must be expressed in terms of the 

coordinates and the momenta and not the coordinates and velocities. So we must eliminate 𝑋  

and 𝑥  in favor of 𝑃 and 𝑝. We do this by inverting the relations  
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𝑃

𝑝
 =  

𝑀 + 𝑚 𝑚
𝑚 𝑚 1 + tan2 𝛼 

  
𝑋 

𝑥 
  

To obtain  

 𝑋 

𝑥 
 =

1

𝑚 𝑀+ 𝑀+𝑚 tan 2 𝛼 
  𝑚

 1 + tan2 𝛼 −𝑚
𝑚 𝑀 + 𝑚

  𝑃
𝑝
                                (3.91) 

Substituting into Eq(3.90), we obtain  

𝐻 =
𝑀 + 𝑚

2𝑚

𝑝2  cos2 𝛼

𝑀 + 𝑚 sin2 𝛼 
− 

𝑃𝑝 cos2 𝛼

𝑀 + sin2 𝛼 
+

𝑝2

2 𝑀 + sin2 𝛼 
+ 𝑚𝑔𝑥 tan 𝛼 

Notice that 𝑃 = 0 since 
𝜕𝐿

𝜕𝑋
= 0. 𝑃 is the total horizontal momentum of the system (wedge 

plus particle) and it is conserved.  

Example 3.11.3.   

Is = 𝑇 + 𝑈 ?  

The most general form of the kinetic energy is  

𝑇 = 𝑇2 + 𝑇1 + 𝑇0                                                                                                     (3.92)  

   =
1

2
 𝑇𝜍𝜍 ′

(2)
  𝑞, 𝑡 𝑞 𝜍  𝑞 𝜍′ + 𝑇𝜍

(1)
  𝑞, 𝑡 𝑞 𝜍 + 𝑇(0) 𝑞, 𝑡   

Where 𝑇(𝑛) 𝑞, 𝑞 , 𝑡  is homogeneous of degree 𝑛 in the velocities 
6
. We assume a potential 

energy of the form  

𝑈 = 𝑈1 + 𝑈0                                                                                                         (3.93)  

= 𝑈𝜍
(1) 𝑞, 𝑡 𝑞 𝜍 + 𝑈𝜍

(0) 𝑞, 𝑡   

Which allows for velocity-dependent forces, as we have with charged particles moving in an 

electromagnetic field. The Lagrangian is then  

𝐿 = 𝑇 − 𝑈 ==
1

2
 𝑇𝜍𝜍 ′

(2)
  𝑞, 𝑡 𝑞 𝜍  𝑞 𝜍′ + 𝑇𝜍

(1)
  𝑞, 𝑡 𝑞 𝜍 + 𝑇(0) 𝑞, 𝑡 − 𝑈𝜍

(1) 𝑞, 𝑡 𝑞 𝜍 + 𝑈𝜍
(0) 𝑞, 𝑡   

The canonical momentum conjugate to 𝑞𝜍  is  

𝑝𝜍 =
𝜕𝐿

𝜕𝑞 𝜍
= 𝑇𝜍𝜍 ′

(2)
  𝑞, 𝑡 𝑞 𝜍′ + 𝑇𝜍

(1)
  𝑞, 𝑡 − 𝑈𝜍

(1) 𝑞, 𝑡                                         (3.94)  

                                                           
6
 A homogeneous function of degree 𝑘 satisfies 𝑓 𝜆𝑥1 , … . , 𝜆𝑥𝑛 = 𝜆𝑘𝑓 𝑥1 , … . , 𝑥𝑛 . It is then easy to prove Euler's 

theorem,  𝑥𝑖
𝜕𝑓

𝜕𝑥𝑖
= 𝑘𝑓𝑛

𝑖=1 .   
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Which is inverted to give  

𝑞 𝜍 = 𝑇𝜍𝜍 ′
(2)−1

  𝑝𝜍′ − 𝑇𝜍′
(1)

+ 𝑈𝜍′
(1)

                                                                      (3.95)  

The Hamiltonian is then  

𝐻 = 𝑝𝜍𝑞 𝜍 − 𝐿  

     = 𝑇𝜍𝜍 ′
(2)−1

  𝑝𝜍′ − 𝑇𝜍
(1)

+ 𝑈𝜍
(1)

  𝑇𝜍𝜍 ′
(2)−1

  𝑝𝜍′ − 𝑇𝜍′
(1)

+ 𝑈𝜍′
(1)

  − 𝑇0 + 𝑈0 

     = 𝑇2 − 𝑇0 + 𝑈0                                                                                        (3.96)  

If 𝑇0 , 𝑇1 and 𝑈1 vanish, i.e. if 𝑇 𝑞, 𝑞 , 𝑡  is a homogeneous function of degree two in the 

generalized velocities, and 𝑈(𝑞, 𝑡) is velocity-independent, then 𝐻 = 𝑇 + 𝑈. But if 𝑇0 or 𝑇1 is 

nonzero, or the potential is velocity-dependent then  𝐻 ≠ 𝑇 + 𝑈.  

Example  3.11.4  

 Consider a bead of mass 𝑚 constrained to move along a hoop of radius 𝑎. The hoop is further 

constrained to rotate with angular velocity 𝜙 = 𝜔 about the 𝓏 -axis, as shown in Fig 3.1  

 

Fig (3.1) : A bead of mass 𝑚 on a rotating hoop of radius 𝑎. 

The most convenient set of generalized coordinates is spherical polar  𝑟, 𝜃, 𝜙 , in which case  

𝑇 =
1

2
𝑚 𝑟 2 + 𝑟2𝜃 2 + 𝑟2 sin2 𝜃 𝜙 2   

     =
1

2
𝑚𝑎2 𝜃 2 + 𝜔2 sin2 𝜃  

Thus, 𝑇2 =
1

2
𝑚𝑎2 𝜃 2 and 𝑇2 =

1

2
𝑚𝑎2𝜔2 sin2 𝜃. The potential energy is  

𝑈 𝜃 = 𝑚𝑔𝑎(1 − cos 𝜃)                                                                       (3.97) 

 The momentum conjugate to 𝜃 is 𝑝𝜃 = 𝑚𝑎2 𝜃  , and thus  
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𝐻 𝜃, 𝑝 = 𝑇2 − 𝑇0 + 𝑈  

              = 
1

2
𝑚𝑎2 𝜃 2 −

1

2
𝑚𝑎2𝜔2 sin2 𝜃 + 𝑚𝑔𝑎(1 − cos 𝜃)  

               = 
𝑝𝜃

2

2𝑚𝑎2 −
1

2
𝑚𝑎2𝜔2 sin2 𝜃 + 𝑚𝑔𝑎(1 − cos 𝜃)                                                 (3.98)  

For this problem, we can define the effective potential  

𝑈𝑒𝑓𝑓  𝜃 ≡ 𝑈 − 𝑇0 = 𝑚𝑔𝑎(1 − cos 𝜃) −
1

2
𝑚𝑎2𝜔2 sin2 𝜃  

                                = 𝑚𝑔𝑎(1 − cos 𝜃 −
𝜔2

2𝜔0
2 sin2 𝜃)                                                    (3.99)  

Where 𝜔0
2 ≡

𝑔
𝑎  . The Lagrangian may then be written  

𝐿 =
1

2
𝑚𝑎2 𝜃 2 − 𝑈𝑒𝑓𝑓  𝜃                                                                                                (3.100) 

And thus the equations of motion are  

𝑚𝑎2 𝜃 = −
𝜕𝑈𝑒𝑓𝑓

𝜕𝜃
                                                                                                           (3.101) 

Equilibrium is achieved when 𝑈′𝑒𝑓𝑓  𝜃 = 0, which gives  

𝜕𝑈𝑒𝑓𝑓

𝜕𝜃
= 𝑚𝑔𝑎 sin 𝜃  1 −

𝜔2

𝜔0
2 cos 𝜃 = 0                                                             (3.102) 

i.e, 𝜃∗ = 0, 𝜃∗ = 𝜋, or 𝜃∗ = ± cos−1  
𝜔0

2

𝜔2   , where the last pair of equilibria are present only 

for 𝜔2 > 𝜔0
2. The stability of these equilibia is assessed by examining the sign of 𝑈′′𝑒𝑓𝑓  𝜃∗ . 

We have  

𝑈′′𝑒𝑓𝑓  𝜃 = 𝑚𝑔𝑎  cos 𝜃 −
𝜔2

𝜔0
2  2cos2θ − 1                                                            (3.103)  

Thus,  

𝑈′′𝑒𝑓𝑓  𝜃∗ =

 
 
 

 
 𝑚𝑔𝑎  1 −

𝜔2

𝜔0
2                                   𝑎𝑡 𝜃∗ = 0       

−𝑚𝑔𝑎  1 +
𝜔2

𝜔0
2                                     𝑎𝑡𝜃∗ = 0           

𝑚𝑔𝑎  
𝜔2

𝜔0
2 −

𝜔0
2

𝜔2       𝑎𝑡𝜃∗ = ± cos−1  
𝜔0

2

𝜔2                  

                       (3.104)  

Thus, 𝜃∗ = 0 is stable for 𝜔2 < 𝜔0
2 but becomes unstable when the rotation frequency 𝜔 is 

sufficiently large, i.e. when 𝜔2 > 𝜔0
2. In this regime, there are two new equilibria, 
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at 𝜃∗ = ± cos−1  
𝜔0

2

𝜔2    , which are both stable. The equilibrium at 𝜃∗ = 𝜋 is always unstable, 

independent of the value of 𝜔. The situation is depicted in Fig.3.2 . 

 

Fig 3.2 : The effective potential 𝑈𝑒𝑓𝑓  𝜃 = 𝑚𝑔𝑎  1 − cos 𝜃 −
𝜔2

2𝜔0
2 sin2 𝜃 . (The dimensionless 

potential 𝑈 𝑒𝑓𝑓 =
𝑈𝑒𝑓𝑓

𝑚𝑔𝑎  is shown, where 𝑥 =
𝜃

𝜋
). Left panels : 𝜔 =

1

2
 3𝜔0 right panel : 𝜔 =  3𝜔0      

3.12  Charged particle in a Magnetic Field  

Consider next the case of a charged particle moving in the presence of an electromagnetic 

field. The particle's potential energy is  

𝑈 𝒓, 𝒓  = 𝑞𝜙 𝒓, 𝑡 −
𝑞

𝑐
 𝑨 𝒓, 𝑡 ⋅ 𝒓                                                                            (3.105) 

Which is velocity-dependent. The kinetic energy is 𝑇 =
1

2
𝑚𝒓 2, as usual. Hence 𝜙 𝒓  is the 

scalar potential and 𝑨 𝒓  the vector potential. The electric and magnetic fields are given by  

𝑬 = −𝛁𝜙 −
1

𝑐

𝜕𝑨

𝜕𝑡
        ,       𝑩 = 𝛁 × 𝑨 The canonical momentum is  

𝒑 =
𝜕𝑳

𝜕𝒓 
= 𝑚𝒓 +

𝑞

𝑐
 𝑨                                                                                                (3.106)  

And hence the Hamiltonian is  
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𝐻 𝒓, 𝒑, 𝑡 = 𝒑 ⋅ 𝒓 − 𝐿  

                 = 𝑚𝒓 𝟐 +
𝑞

𝑐
 𝑨 ⋅ 𝒓 −

1

2
 𝑚𝒓 𝟐 −

𝑞

𝑐
 𝑨 ⋅ 𝒓 + 𝑞𝜙  

                  = 
1

2
 𝑚𝒓 𝟐 + 𝑞𝜙 

                   = 
1

2𝑚
  𝒑 −

𝑞

𝑐
𝑨 𝒓, 𝑡  

2

+ 𝑞𝜙 𝒓, 𝑡                                                         (3.107)  

If 𝑨 and 𝜙 are time-independent, then 𝐻 𝒓, 𝒑  is conserved.  

Let's work out the equations of motion. We have  

𝑑

𝑑𝑡
  

𝜕𝐿

𝜕𝒓 
 =

𝜕𝐿

𝜕𝒓
                                                                                                            (3.108) 

Which gives  

𝑚𝒓 +
𝑞

𝑐

𝑑𝑨

𝑑𝑡
= −𝑞𝛁𝜙 +

𝑞

𝑐
 𝛁 𝑨 ⋅ 𝒓                                                                              (3.109) 

Or in component notation  

𝑚𝑥𝑖 +
𝑞

𝑐

𝜕𝐴𝑖

𝜕𝑥𝑗
𝑥 𝑗 +

𝑞

𝑐

𝜕𝐴𝑖

𝜕𝑡
= −𝑞

𝜕𝜙

𝜕𝑥𝑖
+

𝑞

𝑐

𝜕𝐴𝑗

𝜕𝑥𝑖
𝑥 𝑗                                                      (3.110) 

Which is to say  

𝑚𝑥𝑖 = −𝑞
𝜕𝜙

𝜕𝑥𝑖
−

𝑞

𝑐

𝜕𝐴𝑖

𝜕𝑡
+

𝑞

𝑐
 

𝜕𝐴𝑗

𝜕𝑥𝑖
−

𝜕𝐴𝑖

𝜕𝑥𝑗
 𝑥 𝑗                                                        (3.111) 

It is convenient to express the cross product in terms of the completely antisymmetric tensor 

of rank three, 𝜖𝑖𝑗 𝑘  :  

𝐵𝑖 = 𝜖𝑖𝑗𝑘  
𝜕𝐴𝑘

𝜕𝑥𝑗
                                                            (3.112) 

And using the result  

𝜖𝑖𝑗𝑘 𝜖𝑖𝑚𝑛 = 𝛿𝑗𝑚 𝛿𝑘𝑛 − 𝛿𝑗𝑛 𝛿𝑘𝑚                                                                          (3.113) 

We have  𝜖𝑖𝑗𝑘 𝐵𝑖 = 𝜕𝑗 𝐴𝑘 − 𝜕𝑘𝐴𝑗  and  

𝑚𝑥𝑖 = −𝑞
𝜕𝜙

𝜕𝑥𝑖
−

𝑞

𝑐

𝜕𝐴𝑖

𝜕𝑡
+

𝑞

𝑐
 𝜖𝑖𝑗𝑘  𝑥 𝑗  𝐵𝑘                                                     (3.114) 
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Or in vector notation,      𝑚𝒓 = −𝑞𝛁𝜙 −
𝑞

𝑐

𝜕𝑨

𝜕𝑡
+

𝑞

𝑐
𝒓 ×   𝛁 × 𝑨  

= 𝑞𝑬 +
𝑞

𝑐
𝒓 ×   𝐁                                                               (3.115) 

Which is of course the Lorentz force law.  

3.13  Fast Perturbations: Rapidly Oscillating Fields  

Consider a free particle moving under the influence of an oscillating force,  

𝑚𝑞 = 𝐹 sin 𝜔𝑡 

The motion of the system is then  

𝑞 𝑡 = 𝑞𝑕 𝑡 =
𝐹 sin 𝜔𝑡

𝑚𝜔2
                                                                                        (3.116) 

Where 𝑞𝑕 𝑡 = 𝐴 + 𝐵𝑡 is the solution to the homogeneous (unforced) equation of motion. 

Note that the amplitude of the response 𝑞 − 𝑞𝑕  goes as  𝜔−2 and is therefore small when 𝜔 is 

large.  

Now consider a general 𝑛 = 1 system, with  

𝐻 𝑞, 𝑝, 𝑡 = 𝐻0 𝑞, 𝑝 + 𝑉(𝑞) sin 𝜔𝑡 + 𝛿                                                         (3.117) 

We assume that 𝜔 is much greater than any natural oscillation frequency associated with 𝐻0. 

We separate the motion 𝑞(𝑡) and 𝑝(𝑡) into slow and fast components:  

𝑞 𝑡 = 𝑞  𝑡 + 𝜁(𝑡) 

𝑝 𝑡 = 𝑝  𝑡 + 𝜋(𝑡) 

Where 𝜁(𝑡) and 𝜋(𝑡) oscillate with the driving frequency 𝜔. Since 𝜁 and 𝜋 will be small , we 

expand Hamilton's equations in these quantities :  

𝑞  + 𝜁 =
𝜕𝐻0

𝜕𝑝 
+

𝜕2𝐻0

𝜕𝑝 2
𝜋 +

𝜕2𝐻0

𝜕𝑞 𝜕𝑝 
 𝜁 +

1

2
 
𝜕3𝐻0

𝜕𝑞 2𝜕𝑝 
 𝜁2 +

𝜕3𝐻0

𝜕𝑞 𝜕𝑝 2
 𝜁𝜋 +

1

2
 
𝜕3𝐻0

𝜕𝑝 3
 𝜋2 + ⋯ 

𝑝  + 𝜋 = −
𝜕𝐻0

𝜕𝑞 
−

𝜕2𝐻0

𝜕𝑞 2
𝜁 −

𝜕2𝐻0

𝜕𝑞 𝜕𝑝 
 𝜋 −

1

2
 
𝜕3𝐻0

𝜕𝑞 3
 𝜁2 −

𝜕3𝐻0

𝜕𝑞 2𝜕𝑝 
 𝜁𝜋 −

1

2
 
𝜕3𝐻0

𝜕𝑞 𝜕𝑝 2
 𝜋2

−
𝜕𝑉

𝜕𝑞 
sin 𝜔𝑡 + 𝛿 −

𝜕2𝑉

𝜕𝑞 2
𝜁 sin 𝜔𝑡 + 𝛿 − …                        (3.118) 
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We now average over the fast degrees of freedom to obtain an equation of motion for the slow 

variables 𝑞  and 𝑝  which we here carry to lowest nontrivial order in averages of fluctuating 

quantities :  

𝑞  =
𝜕𝐻0

𝜕𝑝 
+

1

2
 

𝜕3𝐻0

𝜕𝑞 2𝜕𝑝 
  𝜁2 +

𝜕3𝐻0

𝜕𝑞 𝜕𝑝 2
  𝜁𝜋 +

1

2
 
𝜕3𝐻0

𝜕𝑝 3
  𝜋2                                      

(3.119) 

𝑝  = −
𝜕𝐻0

𝜕𝑞 
−

1

2
 
𝜕3𝐻0

𝜕𝑞 3
  𝜁2 −

𝜕3𝐻0

𝜕𝑞 2𝜕𝑝 
  𝜁𝜋 −

1

2
 

𝜕3𝐻0

𝜕𝑞 𝜕𝑝 2
  𝜋2 −

𝜕2𝑉

𝜕𝑞 2
 𝜁 sin 𝜔𝑡 +

               𝛿                                                                                                      (3.120) 

The fast degrees of freedom obey  

𝜁 =
𝜕2𝐻0

𝜕𝑞 𝜕𝑝 
 𝜁 +

𝜕2𝐻0

𝜕𝑝 2
𝜋                                                                                                 (3.121) 

𝜋 = −
𝜕2𝐻0

𝜕𝑞 2
𝜁 −

𝜕2𝐻0

𝜕𝑞 𝜕𝑝 
 𝜋 −

𝜕𝑉

𝜕𝑞 
sin 𝜔𝑡 + 𝛿                                                        (3.122) 

Let us analyze the coupled equations  

𝜁 = 𝐴𝜁 + 𝐵𝜋 

𝜋 = −𝐶𝜁 − 𝐴𝜋 + 𝐹𝑒−𝑖𝜔𝑡  

The solution is of the form  

 𝜁
𝜋
 =  𝛼

𝛽
 𝑒−𝑖𝜔𝑡

                                                                                                      (3.123) 

Plugging in, we find  

𝛼 =
𝐵𝐹

𝐵𝐶 − 𝐴2 − 𝜔2
= −

𝐵𝐹

𝜔2
+ 𝒪 𝜔−4  

𝛽 =
 𝐴 + 𝑖𝜔 𝐹

𝐵𝐶 − 𝐴2 − 𝜔2
=

𝑖𝐹

𝜔
+ 𝒪 𝜔−3  

Taking the real part, and restoring the phase shift 𝛿, we have  

𝜁 𝑡 =
−𝐵𝐹

𝜔2
 sin 𝜔𝑡 + 𝛿 =

1

𝜔2
 
𝜕𝑉

𝜕𝑞 

𝜕2𝐻0

𝜕𝑝 2
 sin 𝜔𝑡 + 𝛿  
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𝜋 𝑡 = −
𝐹

𝜔
 cos 𝜔𝑡 + 𝛿 =

1

𝜔
 
𝜕𝑉

𝜕𝑞 
 cos 𝜔𝑡 + 𝛿  

The desired average, to lowest order are thus  

 𝜁2 =
1

2𝜔2
  

𝜕𝑉

𝜕𝑞 
 

2

 
𝜕2𝐻0

𝜕𝑝 2
 

2

 

 𝜋2 =
1

2𝜔2
  

𝜕𝑉

𝜕𝑞 
 

2

 

 sin 𝜔𝑡 + 𝛿  =
1

2𝜔2
 
𝜕𝑉

𝜕𝑞 

𝜕2𝐻0

𝜕𝑝 2
 

Along with  𝜁𝜋 = 0.  

Finally, we substitute the averages into the equations of motion for the slow variables 𝑞  and 

𝑝 , resulting in the time-independent effective Hamiltonian  

𝐾 𝑞 , 𝑝  = 𝐻0 𝑞 , 𝑝  +
1

4𝜔2
 
𝜕2𝐻0 

𝜕𝑝 2
  

𝜕𝑉

𝜕𝑞 
 

2

                               124  

and the equations of motion     𝑞  =
𝜕𝐾

𝜕𝑝 
            ,         𝑝  = −

𝜕𝐾

𝜕𝑞 
 

Example  3.13.1  

 Consider a pendulum with a vertically oscillating point of support. The coordinates of the 

pendulum bob are    𝑥 = ℓ sin 𝜃      ,      𝑥 = 𝑎 𝑡 − ℓ cos 𝜃 

The Lagrangian is easily obtained  𝐿 =
1

2
 𝑚ℓ2𝜃 2 + 𝑚ℓ𝜃 sin 𝜃 + 𝑚𝑔ℓ cos 𝜃 +

1

2
 𝑚𝑎 2 − 𝑚𝑔 

             = 
1

2
 𝑚ℓ2𝜃 2 + 𝑚 𝑔 + 𝑎  ℓ cos 𝜃 +

1

2
 𝑚𝑎 2 − 𝑚𝑔𝑎 −

𝑑

𝑑𝑡
 𝑚ℓ𝑎 sin 𝜃 

                     
𝑡𝑕𝑒𝑠𝑒  𝑚𝑎𝑦  𝑏𝑒  𝑑𝑟𝑜𝑝𝑝𝑒𝑑  

              (3.125) 

Thus we may take the Lagrangian to be  

𝐿 =
1

2
 𝑚ℓ2𝜃 2 + 𝑚(𝑔 + 𝑎 )ℓ cos 𝜃 

From which we derive the Hamiltonian  

𝐻 𝜃, 𝑝𝜃 , 𝑡 =
𝑝𝜃

2

2𝑚ℓ
− 𝑚𝑔ℓ cos 𝜃 − 𝑚ℓ𝑎 cos 𝜃 
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                                                   = 𝐻0 𝜃, 𝑝𝜃 , 𝑡 + 𝑉1 𝜃  sin 𝜔𝑡                             (3.126) 

We have assumed 𝑎 𝑡 = 𝑎0 sin 𝜔𝑡, so  

𝑉1 𝜃 = 𝑚ℓ𝑎0𝜔2 cos 𝜃 

The effective Hamiltonian, per Eq (3.124)  is 

𝐾 𝜃 , 𝑝 𝜃 =
𝑝 𝜃

2𝑚ℓ2
− 𝑚𝑔ℓ cos 𝜃 +

1

4
𝑚 𝑎0

2 𝜔2 sin2 𝜃                              3.127  

Let's define the dimensionless parameter  𝜖 ≡
2𝑔ℓ

𝜔2  𝑎0
2  

 

The slow variable 𝜃  executes motion in the effective potential 𝑉𝑒𝑓𝑓  𝜃  = 𝑚𝑔ℓ𝑣 𝜃    

𝑣 𝜃  = − cos 𝜃 +
1

2𝜖
 sin2 𝜃                                                                         (3.128) 

Differentiating, and dropping the bar on 𝜃, we find that  𝑉𝑒𝑓𝑓  𝜃  is stationary when  

𝑣 ′ 𝜃 = 0 ⟹ sin 𝜃 cos 𝜃 = − sin 𝜃 

Thus, 𝜃 = 0 and 𝜃 = 𝜋, where sin 𝜃 = 0, are equilibria. When 𝜖 < 1 ( note  𝜖 < 0 always ). 

There are two new solutions, given by the roots of cos 𝜃 = −𝜖.  

To assess stability of these equilibria, we compute the second derivative  

𝑣 ′′  cos−1 −𝜖  = 𝜖 −
1

𝜖
                                                      3.129  

Which is always negative since 𝜖 < 1 in order for these equilibria to exist. The situation is 

sketched in Fig 3.3 , showing 𝑣 𝜃  for two representative values of the parameter 𝜖. For 

𝜖 > 1, the equilibrium at  𝜃 = 𝜋 is unstable, but as 𝜖 decreases, a subcritical pitchfork 

bifurcation is encountered at 𝜖 = 1, and 𝜃 = 𝜋 becomes stable, while the outlying  𝜃 =

cos−1 −𝜖  solutions are unstable.  
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Fig 3.3: Dimensionless potential 𝑣(𝜃) for 𝜖 = 1.5 (black curve) and 𝜖 = 0.5 (blue curve) 

3.14  Field Theory 

 i. Systems with Several Independent Variables   

Suppose 𝜙𝑎 𝒙  depends on several independent variables:  𝑥1 , 𝑥2 , … . . , 𝑥𝑛 .Furthermore, 

suppose  

𝑆  𝜙𝑎 𝒙   =  ℒ 𝜙𝑎𝜕𝜇𝜙𝑎 , 𝒙 
Ω

                                                   (3.130) 

i.e. the Lagrangian density  ℒ is a function of the fields 𝜙𝑎  and their partial derivatives 

𝜕𝜙𝑎 𝜕𝑥𝜇 . Here Ω is a region in 𝑅𝐾. Then the first derivation of  𝑆 is   

𝛿𝑆 =  𝑑𝑥
Ω

  
𝜕ℒ

𝜕𝜙𝑎
 𝛿𝜙𝑎 +

𝜕ℒ

𝜕 𝜕𝜇𝜙𝑎 
 
𝜕𝛿𝜙𝑎

𝜕𝑥𝜇   

 𝑑  𝑛𝜇
𝜕ℒ

𝜕 𝜕𝜇𝜙𝑎 
 

𝜕Ω

𝛿𝜙𝑎 +  𝑑𝑥
Ω

  
𝜕ℒ

𝜕𝜙𝑎
 −  

𝜕ℒ

𝜕𝑥𝜇  
𝜕ℒ

𝜕 𝜕𝜇𝜙𝑎 
   𝛿𝜙𝑎          3.131  

Where 𝜕Ω is the  𝑛 − 1 -dimensional boundary of Ω, 𝑑   is the differential surface area, 

and 𝑛𝜇  is the unit normal. If we demand  𝜕ℒ 𝜕 𝜕𝜇𝜙𝑎   
𝜕Ω

= 0 of  𝛿𝜙𝑎  𝜕Ω = 0, the surface 

term vanishes, and we conclude  

𝛿𝑆

𝛿𝜙𝑎 𝒙 
=

𝜕ℒ

𝜕𝜙𝑎
 −  

𝜕ℒ

𝜕𝑥𝜇  
𝜕ℒ

𝜕 𝜕𝜇𝜙𝑎 
                                   3.132  
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 As an example, consider the case of a stretched string of linear mass density 𝜇 and tension 𝜏. 

The action is a functional of the height 𝑦(𝑥, 𝑡), where the coordinate along the string, 𝑥, and 

time 𝑡, are the two independent variables. The Lagrangian density is  

ℒ =
1

2
 𝜇  

𝜕𝑦

𝜕𝑡
 

2
−

1

2
𝜏  

𝜕𝑦

𝜕𝑥
 

2
                                                      (3.133) 

Whence the Euler-Lagrange equations are  

0 =
𝛿𝑆

𝛿𝑦 𝑥, 𝑡 
= − 

𝜕

𝜕𝑥
 
𝜕ℒ

𝜕𝑦′
 −

𝜕

𝜕𝑡
 
𝜕ℒ

𝜕𝑦 
  

= 𝜏
𝜕2𝑦

𝜕𝑥2
− 𝜇

𝜕2𝑦

𝜕𝑡2
 

Where 𝑦′ =
𝜕𝑦

𝜕𝑥
 and 𝑦 =

𝜕𝑦

𝜕𝑡
 . Thus, 𝜇𝑦 = 𝜏𝑦′′, which is the Helmholtz equation. We've 

assumed boundary conditions where 𝛿𝑦 𝑥𝑎 , 𝑡 = 𝛿𝑦 𝑥𝑏 , 𝑡 = 𝛿𝑦 𝑡, 𝑥𝑎 = 𝛿𝑦 𝑡, 𝑥𝑏 = 0. The 

Lagrangian density for an electromagnetic field with sources is  

ℒ =
1

16𝜋
 𝐹𝜇𝜈  𝐹𝜇𝜈 −

1

𝑐
 𝑗𝜇𝐴𝜇                                                    (3.134) 

The equations of motion are then  

𝜕ℒ

𝜕𝑥𝜇
 − 

𝜕

𝜕𝑥𝜈
 

𝜕ℒ

𝜕 𝜕𝜇𝐴𝜈 
 = 0 ⟹ 𝜕𝜇𝐹𝜇𝜈 =

4𝜋

𝑐
 𝑗𝜈                         3.135  

Which are Maxwell's equations.  

Recall the result of Noether's theorem for mechanical systems :  

𝑑

𝑑𝑡
  

𝜕𝐿

𝜕𝑞 𝜍
 
𝜕𝑞 𝜍

𝜕𝜁
 

𝜁=0

= 0 

Where 𝑞 𝜍 = 𝑞 𝜍 𝑞, 𝜁  is a one-parameter  𝜁  family of transformations of the generalized 

coordinates which leaves 𝐿 invariant. We generalize of field theory by replacing  

𝑞𝜍 (𝑡) ⟶ 𝜙𝑎 (𝑡, 𝒙) 

Where  𝜙𝜍 (𝑡, 𝒙)  are a set of fields, which are functions of the independent variables 

 𝑥, 𝑦, 𝓏, 𝑡 . we will adopt covariant relativistic notation and write for four-vector                

𝑥𝜇 =  𝑐𝑡, 𝑥, 𝑦, 𝓏 . The generalization of  𝑑Λ 𝑑𝑡 = 0 is  

𝜕

𝜕𝑥𝜇  
𝜕ℒ

𝜕 𝜕𝜇𝜙𝑎 
 
𝜕𝜙 𝑎

𝜕𝜁
 

𝜁=0

= 0 
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Where there is an implied sum on both 𝜇 and 𝑎. We can write this as 𝜕𝜇  𝐽𝜇 = 0, where  

𝐽𝜇 ≡  𝜕ℒ

𝜕 𝜕𝜇𝜙𝑎 
 
𝜕𝜙 𝑎

𝜕𝜁
 

𝜁=0

 

We call Λ = 𝐽0 𝑐  the total charge. If we assume 𝑱 = 0 at the spatial boundaries of our system, 

then integrating the conservation law 𝜕𝜇  𝐽𝜇  over the spatial region Ω fives  

𝑑Λ

𝑑𝑡
=  𝑑3

Ω

 𝑥𝜕0  𝐽0 = −  𝑑3

Ω

 𝑥 𝜵 ⋅ 𝑱 = −  𝑑  𝒏 ∙ 𝑱 = 0

𝜕Ω

                     3.136  

Assuming  𝑱 = 0 at the boundary Ω .  

As an example, consider the case of a complex scalar field, with Lagrangian density
7
  

ℒ 𝜓, 𝜓∗, 𝜕𝜇𝜓, 𝜕𝜇𝜓∗ =
1

2
 𝐾 𝜕𝜇𝜓∗  𝜕𝜇𝜓 − 𝑈 𝜓, 𝜓∗  

This is invariant under the transformation ⟶ 𝑒𝑖𝜁𝜓 , 𝜓∗ ⟶ 𝑒𝑖𝜁𝜓∗ . Thus,   

𝜕𝜓 

𝜕𝜁
= 𝑖𝑒𝑖𝜁𝜓          ,        

𝜕𝜓 ∗

𝜕𝜁
= 𝑖𝑒𝑖𝜁𝜓∗                  

And, summing over both 𝜓 and  𝜓∗ fields, we have  

𝐽𝜇 =
𝜕ℒ

𝜕 𝜕𝜇𝜓 
 ∙   𝑖𝜓 +

𝜕ℒ

𝜕 𝜕𝜇𝜓∗ 
 ∙   −𝑖𝜓∗  

=
𝐾

2𝑖
  𝜓∗𝜕𝜇  𝜓 − 𝜓 𝜕𝜇  𝜓∗                                    (3.137) 

The potential, which depends on  𝜓 2, is independent of 𝜁. Hence, this form of conserved 4-

current is valid for an entire class of potentials.  

ii. Continuous Symmetry and conserved Currents :  

 A similar relation between continuous symmetries and constants of motion holds in field 

theory .     

Let 𝒜 be the action of an arbitrary field 𝜑(𝑥),  

𝒜 =  𝑑4  𝑥 ℒ 𝜑, 𝜕𝜑 , 𝑥  

                                                           
7
 We raise and lower indices using the Minkowski metric 𝑔𝜇𝜈 = 𝑑𝑖𝑎𝑔  +, −, −, −   
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and suppose that a transformation of the field   

𝛿𝑠𝜑 𝑥 = 𝜖∆ 𝜑, 𝜕𝜑 , 𝑥  

Changes the Lagrangian density ℒ merely by a total derivative  

𝛿𝑠ℒ = 𝜖𝜕𝜑  Λ𝜇                          (3.138) 

Or equivalently, that it changes the action 𝒜 by a surface term  

𝛿𝑠𝒜 = 𝜖  𝑑4  𝑥𝜕𝜇  Λ𝜇                   (3.139) 

Then 𝛿𝑠ℒ is called a symmetry transformation.  

Given such a symmetry transformation, we can file a current four-vector  

𝑗𝜇 =
𝜕𝐿

𝜕𝜕𝜇𝜑
∆ −  Λ𝜇           (3.140) 

That has no four-divergence  

𝜕𝜇 𝑗𝜇  𝑥 = 0             (3.141) 

The expression on the right-hand side of (3.139)  it is a local conservation law.  

The proof of Eq(3.140)  is just as easy as it was for the mathematical action in section (3.6). 

We calculate the symmetry variation of  ℒ under the symmetry transformation in a similar 

way as in Eq.(3.38), and find  

𝛿𝑠ℒ =  
𝜕ℒ

𝜕𝜑
− 𝜕𝜇

𝜕ℒ

𝜕𝜕𝜇𝜑
 𝛿𝑠𝜑 + 𝜕𝜇  

𝜕ℒ

𝜕𝜕𝜇𝜑
 𝛿𝑠𝜑  

= 𝜖  
𝜕ℒ

𝜕𝜑
− 𝜕𝜇

𝜕ℒ

𝜕𝜕𝜇𝜑
 ∆ + 𝜕𝜇  

𝜕ℒ

𝜕𝜕𝜇𝜑
 ∆  

Then we invoke the Euler-Lagrange equation to remove the first term. Equating the second 

term with Eq(3.138) we obtain  

𝜕𝜇 𝑗𝜇 ≡ 𝜕𝜇  
𝜕ℒ

𝜕𝜕𝜇𝜑
 ∆ −  Λ𝜇 = 0                  (3.142) 

The relation between continuous symmetries and conservation is called Noether's Theorem.  



 

150 

Assuming all fields to vanish at spatial infinitely, we can derive from the local law Eq(3.142) 

a global conservation law for the charge that is obtained from the spatial integral over the 

charge density 𝐽0 :  

𝑄 𝑡 =  𝑑3 𝑥 𝐽0(𝑥, 𝑡) 

And add on the right-hand side a spatial integral over a total three-divergence, which vanishes 

because of the boundary conditions, we find  

𝑑

𝑑𝑡
𝑄 𝑡 =  𝑑3 𝑥𝜕0 𝐽0 𝑥, 𝑡 =  𝑑3 𝑥 𝜕0 𝐽0 𝑥, 𝑡 + 𝜕𝑖  𝐽

𝑖 𝑥, 𝑡  = 0 

Thus, the charge is conserved:  

𝑑

𝑑𝑡
𝑄 𝑡 = 0                                                                                 (3.143) 

3.15  Gross-Pitaevskii model  

 As one final example of a field theory, consider the Gross-Pitaevskii model, with  

ℒ = 𝑖ℏ𝜓∗
𝜕𝜓

𝜕𝑡
−

ℏ2

2𝑚
𝛁𝜓∗ ∙ 𝛁𝜓 − 𝑔  𝜓 2 − 𝑛0 2 

This describes a Bose fluid with repulsive short-ranged interactions. Here 𝜓 𝒙, 𝑡  is again a 

complex scalar field, and 𝜓∗ is its complex conjugate. Using the Leibniz rule, we have  

𝛿𝑆 𝜓∗, 𝜓 = 𝑆 𝜓∗ + 𝛿 𝜓∗, 𝜓 + 𝛿𝜓    

         =  𝑑𝑡   𝑑𝑑𝑥  𝑖ℏ𝜓∗ 𝜕𝛿𝜓

𝜕𝑡
+ 𝑖ℏ𝛿𝜓∗  

𝜕𝜓

𝜕𝑡
−

ℏ2

2𝑚
𝛁𝜓∗ ∙ 𝛁𝛿𝜓 −

ℏ2

2𝑚
𝛁𝛿𝜓∗ ∙ 𝛁𝜓 −

                    2𝑔  𝜓 2 − 𝑛0  𝜓∗𝛿𝜓 + 𝜓𝛿 𝜓∗                                                               (3.144)  

        =  𝑑𝑡   𝑑𝑑𝑥   −𝑖ℏ
𝜕𝜓∗

𝜕𝑡
+

ℏ2

2𝑚
∇𝟐𝜓∗ − 2𝑔  𝜓 2 − 𝑛0 𝜓∗ 𝛿𝜓

+  𝑖ℏ
𝜕𝜓

𝜕𝑡
+

ℏ2

2𝑚
∇𝟐𝜓 − 2𝑔  𝜓 2 − 𝑛0 𝜓 𝛿𝜓∗  

Where we have integrated by parts where necessary and discarded the boundary terms. 

Extremizing 𝑆 𝜓∗, 𝜓  therefore results in the nonlinear Schrodinger equation (NLSE),  

𝑖ℏ
𝜕𝜓

𝜕𝑡
=

ℏ2

2𝑚
∇𝟐𝜓 − 2𝑔  𝜓 2 − 𝑛0 𝜓                             (3.145) 

As well as its complex conjugate,  
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−𝑖ℏ
𝜕𝜓∗

𝜕𝑡
+

ℏ2

2𝑚
∇𝟐𝜓∗ − 2𝑔  𝜓 2 − 𝑛0 𝜓∗                         (3.146) 

Note that these equations are indeed the Euler-Lagrange equations :  

𝛿𝑆

𝛿𝜓
=

𝜕ℒ

𝜕𝜓
−

𝜕ℒ

𝜕𝑥𝜇
  

𝜕ℒ

𝜕 𝜕𝜇𝜓
  

𝛿𝑆

𝛿𝜓∗
=

𝜕ℒ

𝜕𝜓∗
−

𝜕ℒ

𝜕𝑥𝜇
  

𝜕ℒ

𝜕 𝜕𝜇𝜓∗  

With 𝑥𝜇 =  𝑡, 𝒙  
8
 Plugging in  

𝜕ℒ

𝜕𝜓
= −2𝑔  𝜓 2 − 𝑛0 𝜓∗      ,   

𝜕ℒ

𝜕 𝜕𝑡𝜓
= 𝑖ℏ𝜓∗         ,     

𝜕ℒ

𝜕𝛁𝜓
= −

ℏ2

2𝑚
 𝛁𝜓∗       (3.147) 

And  

𝜕ℒ

𝜕𝜓∗     
= 𝑖ℏ𝜓 − 2𝑔  𝜓 2 − 𝑛0 𝜓     ,   

𝜕ℒ

𝜕 𝜕𝑡𝜓
∗

= 0        ,     
𝜕ℒ

𝜕𝛁𝜓∗
= −

ℏ2

2𝑚
 𝛁𝜓        (3.148) 

We recover the NLSE and its conjugate.  

The Gross-Pitaevskii model also possesses a 𝑈(1) invariance, under  

𝜓 𝒙, 𝑡 ⟶ 𝜓  𝒙, 𝑡 = 𝑒𝑖𝜁𝜓 𝒙, 𝑡   ,    𝜓∗ 𝒙, 𝑡 ⟶ 𝜓 ∗ 𝒙, 𝑡 = 𝑒𝑖𝜁𝜓 ∗ 𝒙, 𝑡  

Thus, the conserved Noether current is then  

𝐽𝜇 =
𝜕ℒ

𝜕 𝜕𝜇𝜓
 𝜕𝜓 

𝜕𝜁
 
𝜁=0

+
𝜕ℒ

𝜕 𝜕𝜇𝜓 ∗
 𝜕𝜓 ∗

𝜕𝜁
 
𝜁=0

 

𝐽0 = −ℏ 𝜓 2 

𝑱 = −
ℏ2

2𝑖𝑚
  𝜓∗𝛁𝜓 − 𝜓𝛁𝜓∗                            (3.149) 

Dividing out by ℏ, taking  𝐽0 = −ℏ𝜌 and 𝑱 = −ℏ𝒋, we obtain the continuity equation,  

𝜕𝜌

𝜕𝑡
+ 𝛁 ∙ 𝒋 = 0 

Where  

𝜌 =  𝜓 2 ,      𝒋 =
ℏ

2𝑖𝑚
  𝜓∗𝛁𝜓 − 𝜓𝛁𝜓∗    

                                                           
8
 In the nonrelativistic case, there is utility in defining 𝑥0 = 𝑐𝑡, so we simply define 𝑥0 = 𝑡.  
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Are the particle density and the particle current, respectively.  

Example 3.15.1.    

 Consider the Lagrangian which gives rise to Schoedinger's equation.  

ℒ =
−ℏ2

2𝑚
 ∇𝜓∗∇𝜓 +

𝑖ℏ

2
 𝜓∗ 𝜓 − 𝜓 ∗ 𝜓                                                      (3.150) 

In this Lagrangian density, 𝜓 and 𝜓∗ are consider independent functions.  The action of this 

Lagrangian density is symmetric under the transformation  𝜓 ⟶ 𝜓′ = 𝜓 + 𝜖 where :  

𝜖 = 𝜖𝑅 + 𝑖𝜖𝐼 . because this is still a one dimensional symmetry, there is only conserved 

current. Also, Λ is zero for this system.  

Using Noether's theorem,  

𝜌𝜇 =   
𝜕ℒ

𝜕  
𝑑𝜓𝑘

𝑑𝑥𝜇  
  

𝜕𝜖

𝜕𝑥𝜇
 

𝑘

 

𝜌𝜇 =  
𝜕ℒ

𝜕 
𝑑𝜓

𝑑𝑥𝜇  
  

𝜕𝜖

𝜕𝑥𝜇  +  
𝜕ℒ

𝜕 
𝑑𝜓∗

𝑑𝑥𝜇  
  

𝜕𝜖

𝜕𝑥𝜇   

   𝜌 =   𝑖ℏ𝜓∗,
ℏ2

2𝑚
 ∇𝜓∗ +  𝑖ℏ𝜓,

ℏ2

2𝑚
 ∇𝜓                            (3.151) 

The continuity equation of this gives  

𝑑𝜌0

𝑑𝑡
+ ∇. 𝜌 =  𝑖ℏ 𝜓 ∗ +

ℏ2

2𝑚
 ∇2 𝜓∗ + 𝑖ℏ𝜓 +

ℏ2

2𝑚
 ∇2 𝜓 = 0              (3.152) 

This gives the Schoedinger equation of a free particle. Using Gauss's Law, we can find that  

𝑄 =  
ℏ2

2𝑚
  ∇𝜓 + ∇𝜓∗  𝑑𝑥                             (3.153) 

3.16  Momentum and Angular Momentum  

 While the conservation law of energy follows from the symmetry of the action under time 

translations, conservation laws of momentum and angular momentum are found if the action 

is invariant under translations and rotations.  

Consider a Lagrangian of a point particle in  a Euclidean space  
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𝐿 = 𝐿 𝑥𝑖 𝑡 , 𝑥 𝑖 𝑡 , 𝑡                                                           (3.154) 

In contrast to previous discussion of time translation invariance, which was applicable to 

systems with arbitrary Lagrange coordinates 𝑞(𝑡), we denote the coordinates here by 𝑥𝑖  to 

emphasize that we now consider Cartesian coordinates. If the Lagrangian does depend only 

on the velocities 𝑥 𝑖  and not on the coordinates 𝑥𝑖  themselves, the system is translationally 

invariant. If it depends, in addition, only on  𝐱 2  = 𝑥 𝑖  𝑥 𝑖  , it is also rotationally invariant.  

The simplest example is the Lagrangian of a point particle of mass 𝑚 in Euclidean space :  

𝐿 =
𝑚

2
𝐱 2                                                                                   (3.155) 

It exhibits both invariances, leading to conserved Noether charges of momentum and angular 

momentum, as we now demonstrate.  

3.17  Translation Invariance in Space  

  Under a spatial translation, the coordinates  𝑥𝑖  change 
9
to  

𝑥′ 𝑖 = 𝑥𝑖 + 𝜖𝑖                                                                           (3.156) 

Where 𝜖𝑖  are small numbers. The infinitesimal translations of a particle path are [compare 

Eq(3.132)]   

𝛿𝑠𝑥
𝑖 𝑡 = 𝜖𝑖                                                                            (3.157) 

Under these, the Lagrnagian changes by  

𝛿𝑠𝐿 = 𝐿 𝑥′𝑖 𝑡 , 𝑥 ′𝑖 𝑡 , 𝑡 − 𝐿 𝑥𝑖 𝑡 , 𝑥 𝑖 𝑡 , 𝑡   

        =
𝜕𝐿

𝜕𝑥 𝑖 𝛿𝑠𝑥
𝑖 =

𝜕𝐿

𝜕𝑥 𝑖 𝜖
𝑖 = 0                                                                        (3.158)  

By assumption, the Lagrangian is independent of 𝑥𝑖 , so that the right-hand side vanishes. This 

is to be compared with the symmetry variation of the Lagrangian around the classical orbit, 

calculated via the chain rule, and using the Euler-Lagrange equation:  

𝛿𝑠𝐿 =  
𝜕𝐿

𝜕𝑥𝑖
−

𝑑

𝑑𝑡
 
𝜕𝐿

𝜕𝑥 𝑖
 𝛿𝑠𝑥

𝑖 +
𝑑

𝑑𝑡
  

𝜕𝐿

𝜕𝑥 𝑖
𝛿𝑠𝑥

𝑖  

                                               =
𝑑

𝑑𝑡
  

𝜕𝐿

𝜕𝑥 𝑖
 𝜖𝑖                                                               (3.159)  

                                                           
9
 http://users.physik.fu-berlin.de/~kleinert/kleiner_reb9/psfiles/conslaw.pdf 
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This has the form Eq(3.134), from which we extract a conserved Noether charge Eq(3.135) 

for each coordinate 𝑥𝑖  :  

𝑝𝑖 =
𝜕𝐿

𝜕𝑥 𝑖
                                                                                       (3.160) 

These are simply the canonical momenta of the system.  

3.18  Rotational Invariance  

Under rotations, the coordinates 𝑥𝑖  change to  

𝑥 ′𝑖 = 𝑅𝑗
𝑖  𝑥 𝑗                                                                                   (3.161) 

Where 𝑅𝑗
𝑖  is an orthogonal 3 × 3-matrix. Infinitesimally, this can be written as  

𝑅𝑗
𝑖 = 𝛿𝑗

𝑖 − 𝜔𝑘𝜖𝑘𝑖𝑗                                                                         (3.162) 

Where 𝝎 is an infinitesimal rotation vector. The corresponding rotation of a particle path is  

𝛿𝑠𝑥
𝑖 𝑡 = 𝑥 ′ 𝑖 𝑡 − 𝑥𝑖 𝑡 = −𝜔𝑘𝜖𝑘𝑖𝑗 𝑥

𝑗  (𝜏)                                 (3.163) 

It is useful to introduce the antisymmetric infinitesimal rotation tensor  

𝜔𝑖𝑗 ≡ 𝜔𝑘𝜖𝑘𝑖𝑗                                                           (3.164) 

In terms of which  

𝛿𝑠𝑥
𝑖 = 𝜔𝑖𝑗 𝑥

𝑗                                                                (3.165) 

Then we can write the change of the Lagrangian under 𝛿𝑠𝑥
𝑖 ,  

𝛿𝑠𝐿 = 𝐿 𝑥′ 𝑖 𝑡 , 𝑥 ′ 𝑖 𝑡 , 𝑡 − 𝐿 𝑥𝑖 𝑡 , 𝑥 𝑖 𝑡 , 𝑡  

                                       =
𝜕𝐿

𝜕𝑥 𝑖 𝛿𝑠𝑥
𝑖 +

𝜕𝐿

𝜕𝑥 𝑖
𝛿𝑠𝑥 

𝑖                                                        (3.166) 

As  

𝛿𝑠𝐿 = −  
𝜕𝐿

𝜕𝑥𝑖
𝛿𝑠𝑥

𝑗 +
𝜕𝐿

𝜕𝑥 𝑖
𝑥 𝑗  𝜔𝑖𝑗 = 0                                 (3.167) 

If the Lagrangian depends only on the rotational invariants 𝐱𝟐, 𝐱 𝟐, 𝐱 ⋅ 𝐱 , and on powers thereof 

the right-hand side vanishes on account of the antisymmetry of 𝜔𝑖𝑗 . This ensures the 

rotational symmetry.  
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We now calculate once more the symmetry variation of the Lagrangian via the chain rule and 

find, using the Euler-Lagrange equations,  

𝛿𝑠𝐿 = −  
𝜕𝐿

𝜕𝑥𝑖
−

𝑑

𝑑𝑡

𝜕𝐿

𝜕𝑥 𝑖
 𝛿𝑠𝑥

𝑖 +
𝑑

𝑑𝑡
  

𝜕𝐿

𝜕𝑥 𝑖
𝛿𝑠𝑥

𝑖  

= −
𝑑

𝑑𝑡
  

𝜕𝐿

𝜕𝑥 𝑖
 𝑥 𝑗  𝜔𝑖𝑗 =

1

2
 
𝑑

𝑑𝑡
  𝑥𝑖  

𝜕𝐿

𝜕𝑥 𝑖
−  𝑖 ⟷ 𝑗  𝜔𝑖𝑗                               (3.168) 

 The right-hand side yields the conserved Noether charges of type Eq(3.135), one for each 

antisymmetric pair , 𝑗 :  

𝐿𝑖𝑗 = 𝑥𝑖 𝜕𝐿

𝜕𝑥 𝑗
− 𝑥𝑗 𝜕𝐿

𝜕𝑥 𝑖
≡ 𝑥𝑖𝑝𝑗 − 𝑥𝑗 𝑝𝑖                                        (3.169) 

These are the antisymmetric components of angular momentum.  

Had we work with original vector form of the rotation angles 𝜔𝑘 ,we would have found the 

angular momentum in the more commom form:  

𝐿𝑘 =
1

2
 𝜖𝑘𝑖𝑗 𝐿

𝑖𝑗 =  𝐱 × 𝐏 𝑘                                                               (3.170) 

The quantum-mechanical operators associated with these, after replacing 𝑝𝑖 ⟶ − 𝜕 𝜕𝑥𝑖 , 

have the well-known commutation rules  

 𝐿 𝑖 , 𝐿 𝑗  = 𝑖𝜖𝑘𝑖𝑗 𝐿 𝑘                                                                                    (3.171) 

In the tensor notation Eq(3.169), these become  

 𝐿 𝑖𝑗 , 𝐿 𝑘𝑙  = −𝑖 𝛿𝑖𝑘𝐿 𝑗𝑙 − 𝛿𝑖𝑙𝐿 𝑗𝑘 + 𝛿𝑗𝑙 𝐿 𝑖𝑘 − 𝛿𝑗𝑘 𝐿 𝑖𝑙                                  (3.172) 

3.19  Center of Mass Theorem  

 Consider the transformations corresponding to a uniform motion of the coordinate system. 

We shall study the behavior of a set of free massive point particles in Euclidean space 

described by the Lagrangian  

𝐿 𝑥 𝑖 =  
𝑚𝑛

2
𝑛

 𝐱 𝑛
2                      (3.173) 

Under Galilei transformations, the spatial coordinates and the time are changed to  

𝑥 𝑖 𝑡 = 𝑥𝑖 𝑡 − 𝑣𝑖𝑡 

                                                                 𝑡′ = 𝑡                                                          (3.174)  
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Where 𝑣𝑖  is the relative velocity along the 𝑖th axis. The infinitesimal symmetry variations are  

𝛿𝑠𝑥
𝑖 𝑡 = 𝑥 𝑖 𝑡 − 𝑥𝑖 𝑡 = −𝑣𝑖𝑡                                               (3.175) 

Which change the Lagrangian by  

𝛿𝑠𝐿 = 𝐿 𝑥𝑖 − 𝑣𝑖𝑡, 𝑥 𝑖 − 𝑣𝑖 − 𝐿 𝑥𝑖 , 𝑥 𝑖                                           (3.176) 

Inserting the explicit form Eq(3.173), we find  

𝛿𝑠𝐿 =  
𝑚𝑛

2
𝑛

  𝑥 𝑛
𝑖 − 𝑣𝑖 

2
−  𝑥 𝑛

𝑖  
2
                          (3.177) 

This can be written as a total time derivative :  

𝛿𝑠𝐿 =
𝑑

𝑑𝑡
Λ =

𝑑

𝑑𝑡
 𝑚𝑛  −𝑥 𝑛

𝑖  𝑣𝑖 +
𝑣2

2
 𝑡 

𝑛

            (3.178) 

Proving that Galilei transformations are symmetry transformations in the Noether sense. By 

assumption, the velocities  𝑣𝑖  in Eq(3.174) are infinitesimal, so that the second term can be 

ignored.  

By calculating 𝛿𝑠𝐿 once more via the chain rule with the help of the Euler-Lagrange 

equations, and by equating the result with Eq(3.178). we find the conserved Noether charge  

𝑄 =  
𝜕𝐿

𝜕𝑥 𝑖
 

𝑛

𝛿𝑠𝑥
𝑖 − Λ  

                                                    =  − 𝑚𝑛  𝑥 𝑛
𝑖  𝑡

𝑛

+  𝑚𝑛  𝑥𝑛
𝑖

𝑛

  𝑣𝑖                 (3.179) 

Since the direction of the velocity  𝑣𝑖  is arbitrary, each component is separately a constant of 

motion:  

𝑁𝑖 = − 𝑚𝑛  𝑥 𝑛
𝑖  𝑡

𝑛

+  𝑚𝑛  𝑥𝑛
𝑖 = 𝑐𝑜𝑛𝑠𝑡                 (3.180)

𝑛

 

This is the well-known center of mass theorem. Indeed, introducing the center of mass 

coordinates  

𝑥𝐶𝑀
𝑖 ≡

 𝑚𝑛𝑥𝑛
𝑖

𝑛

 𝑚𝑛𝑛
                    (3.181) 

And the associated velocities  
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𝑣𝐶𝑀
𝑖 ≡

 𝑚𝑛𝑥 𝑛
𝑖

𝑛

 𝑚𝑛𝑛
                    (3.182) 

The conserved charge Eq(3.180) can be written as  

𝑁𝑖 =  𝑚𝑛 −𝑣𝐶𝑀
𝑖 𝑡 + 𝑥𝐶𝑀

𝑖  

𝑛

                       (3.183) 

The time-independence of 𝑁𝑖  implies that the center of mass moves with uniform velocity 

according to the law  

𝑥𝐶𝑀
𝑖  𝑡 = 𝑥0𝐶𝑀

𝑖 + 𝑣𝐶𝑀
𝑖  𝑡                                         (3.184) 

Where  

𝑥0𝐶𝑀
𝑖 =

𝑁𝑖

 𝑚𝑛𝑛
                              (3.185) 

Is the position of the center of mass at 𝑡 = 0.  

Note that in non-relativistic physics, the center of mass theorem is consequence of momentum 

conservation since momentum ≡ mass × velocity . In relativistic physics, this is no longer 

true.  

3.20  Conservation Laws resulting from Lorentz Invariance  

 In relativistic physics, particle orbits are described by functions in space time  

𝑥𝜇 (𝜏)                                     (3.185) 

Where 𝜏 is an arbitrary Lorentz-invariant parameter. The action is an integral over some 

Lagrangian:  

𝒜 =  𝑑𝜏  𝐿 𝑥𝜇  𝜏 , 𝑥 𝜇  𝜏 , 𝜏                                (3.186) 

Where 𝑥 𝜇  𝜏  denotes the derivative with respect to the parameter 𝜏. If the Lagrangian 

depends only on invariant scalar products 𝑥𝜇𝑥𝜇  , 𝑥𝜇𝑥 𝜇  , 𝑥 𝜇𝑥 𝜇  , then it is invariant under 

Lorentz transformations  

𝑥𝜇 ⟶ 𝑥 𝜇 = Λ  𝑣
𝜇

 𝑥𝑣                                                            (3.187) 

Where Λ  𝑣
𝜇

 is a 4 × 4 matrix satisfying  

Λ𝑔Λ𝑇 = 𝑔                                                            (3.188) 
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With the Minkowski metric  

𝑔𝜇𝑣 =   
1

−1
−1

                                                          (3.189) 

For a free massive point particle in spacetime, the Lagrangian is              

𝐿 𝑥 (𝜏) = −𝑀𝑐 𝑔𝜇𝜈  𝑥 𝜇  𝑥 𝜈                                               (3.190) 

It is reparametrization invariant under 𝜏 ⟶ 𝑓(𝜏), wuth an arbitrary function 𝑓(𝜏). Under 

translations  

𝛿𝜇  𝑥𝜇  𝜏 =   𝑥𝜇  𝜏 −  𝜖𝜇  𝜏                                                            (3.200) 

The Lagrangian is obviously invariant, satisfying 𝛿𝜇 ℒ = 0. Calculating this variation once 

more via the chain rule with the help of the Euler-Lagrange equations, we find  

0 =  𝑑𝜏

𝑇𝑣

𝑇𝜇

  
𝜕𝐿

𝜕𝑥𝜇
 𝛿𝑠𝑥

𝜇 +
𝜕𝐿

𝜕𝑥 𝜇
 𝛿𝑠𝑥 

𝜇            

                         = − 𝜖𝜇  𝑑𝜏

𝑇𝑣

𝑇𝜇

𝑑

𝑑𝜏
  

𝜕𝐿

𝜕𝑥 𝜇
                                         (3.200) 

From this we obtain the Noether charges   

𝑝𝜇 ≡ −
𝜕𝐿

𝜕𝑥 𝜇
= 𝑀𝑐 

𝑥 𝜇  𝜏 

 𝑔𝜇𝜈  𝑥 𝜇  𝑥 𝜈
= 𝑀𝑐𝑢𝜇                              (3.201) 

Which satisfy the conservation law  

𝑑

𝑑𝜏
𝑝𝜇  𝑡 = 0                                           (3.202) 

They are the conserved four-momenta of a free relativistic particle. The quantity  

𝑢𝜇 ≡
𝑥 𝜇  𝜏 

 𝑔𝜇𝜈  𝑥 𝜇  𝑥 𝜈
                      (3.203) 

is the dimensionless relativistic four-velocity of the particle. It has the property 𝑢𝜇𝑢𝜇 = 1, 

and it is reparametrization-invariant. By choosing for 𝜏 the physical time 𝑡 = 𝑥0 𝑐 , we can 

express 𝑢𝜇  in terms of the physical velocities 𝑣𝑖 = 𝑑𝑥𝑖 𝑑𝑡  as  



 

159 

𝑢𝜇 = 𝛾 1, 𝑣𝑖 𝑐   ,     with        𝛾 ≡  1 − 𝑣2 𝑐2                                    (3.204) 

Note the minus sign in the definition of Eq(3.201) of the canonical momentum with respect to 

the nonrelativistic case. It is necessary to write Eq(3.201) covariantly. The derivative with 

respect to 𝑥 𝜇  transforms like a covariant vector with subscript 𝜇, where as the physical 

momenta are 𝑝𝜇 .  

Λ  𝑣
𝜇

= δ  𝑣
𝜇

+ ω  𝑣
𝜇

                                                     (3.205) 

Where  

ω  𝑣
𝜇

= 𝑢𝜇𝜆  𝜔𝜆𝜈                                                         (3.206) 

is an arbitrary infinitesimal antisymmetric matrix. An infinitesimal Lorentz transformation of 

the particle path is  

𝛿𝑠  𝑥𝜇  𝜏 = 𝑥 𝜇  𝜏 − 𝑥𝜇  𝜏  

                                                                   = ω  𝑣
𝜇

 𝑥𝜇 𝜏                                                 (3.207) 

Under it the symmetry variation of a Lorentz-invariant Lagrangian vanishes :  

𝛿𝑠𝐿 =  
𝜕𝐿

𝜕𝑥𝜇
𝑥𝑣 +   

𝜕𝐿

𝜕𝑥 𝜇
𝑥 𝑣 ω  𝑣

𝜇
= 0                           (3.208) 

This is to be compared with the symmetry variation of the Lagrangian calculated via the chain 

rule with the help of the Euler-Lagrange equation  

𝛿𝑠𝐿 =  
𝜕𝐿

𝜕𝑥𝜇
+

𝑑

𝑑𝑡
  

𝜕𝐿

𝜕𝑥 𝜇
 𝛿𝑠  𝑥𝜇 +

𝑑

𝑑𝜏
   

𝜕𝐿

𝜕𝑥 𝜇
 𝛿𝑠  𝑥𝜇   

=
𝑑

𝑑𝜏
   

𝜕𝐿

𝜕𝑥 𝜇
  𝑥 𝜇  ω  𝑣

𝜇
        

                    =
1

2
 ω  𝑣

𝜇
  

𝑑

𝑑𝜏
   𝑥𝜇  

𝜕𝐿

𝜕𝑥 𝑣
− 𝑥𝑣

𝜕𝐿

𝜕𝑥 𝜇
                                           3.209    

By equating this with Eq(3.208) we obtain the conserved rotational Noether charges [ 

containing again a minus sign as in Eq(3.201)]:  

𝐿𝜇𝜈 = −𝑥𝜇
𝜕𝐿

𝜕𝑥 𝑣
+ 𝑥𝑣

𝜕𝐿

𝜕𝑥 𝜇
= 𝑥𝜇𝑝𝑣 − 𝑥𝑣𝑝𝜇                    (3.210) 

They are four-dimensional generalizations of the angular momenta Eq(3.169). the quantum-

mechanical operators  
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𝐿 𝜇𝜈 ≡ 𝑖 𝑥𝜇𝜕𝑣 − 𝑥𝑣𝜕𝜇                                                   (3.211) 

 Obtained after the replacement 𝑝𝜇 ⟶ 𝑖 𝜕 𝜕𝑥𝜇  satisfy the four-dimensional spacetime 

generalization of the commutation relations Eq(3.209):  

 𝐿 𝜇𝜈 , 𝐿 𝜅𝜆  = 𝑖 𝑔𝜇𝜅 𝐿 𝜈𝜆 − 𝑔𝜇𝜆 𝐿 𝜈𝜅 + 𝑔𝑣𝜆𝐿 𝜇𝜅 − 𝑔𝑣𝜅𝐿 𝜇𝜆                  (3.212) 

The quantities 𝐿𝑖𝑗  coincide with the earlier-introduced angular momenta Eq(3.169).  

The conserved components  

𝐿0𝑖 = 𝑥0𝑝𝑖 − 𝑥𝑖𝑝0 ≡ 𝑀𝑖                                (3.213) 

Yield the relativistic generalization of the center-mass theorem Eq(3.180):  

𝑀𝑖 = const.                                              (3.214) 

3.21  Generating the Symmetries   

 The relation between invariances and conservation law has a second aspect. With the help of 

Poisson brackets, the charges associated with continuous symmetry transformation can be 

used to generate the symmetry transformation from which they were derived. Explicitly,  

𝛿𝑠𝑥 = −𝑖𝜖 𝑄 , 𝑥 (𝑡)                                               (3.215) 

The charge Eq (3.179) is by definition the Hamiltonian ,    𝑄 ≡ 𝐻 

Whose operator version generates infinitesimal time displacements by the Heisenberg 

equation of motion :  

𝛿𝑠𝑥 = −𝑖𝜖 𝐻 , 𝑥 (𝑡)                                               (3.216) 

This equation is obviously the same as Eq(3.215). 

To quantize the system canonically, we may assume the Lagrangian to have the standard form  

𝐿 𝑥, 𝑥  =
𝑀

2
 𝑥 2 − 𝑉 𝑥                                               (3.217) 

So that the Hamiltonian operator becomes, with the canonical momentum  𝑝 ≡ 𝑥 :  

𝐻 =
𝑝 2

2𝑀
+ 𝑉(𝑥 )                                                 (3.218) 
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Equation Eq(3.218) is then a direct consequence of the canonical equal-time commutation 

rules  

 𝑝 (𝑡), 𝑥 (𝑡) = −𝑖 ,       𝑝 (𝑡), 𝑝 (𝑡) = 0     ,           𝑥 (𝑡), 𝑥 (𝑡) = 0                  (3.219) 

After quantization, the commutation rule Eq(3.215) becomes, with Eq(3.157),  

𝜖𝑗 = 𝑖 𝜖𝑖 𝑝 𝑖(𝑡), 𝑥 𝑗 (𝑡)                                  (3.220) 

This coincides with one of the canonical commutation relations (here it appears only for time-

independent momenta, since the system is translationally invariant). The relativistic charges 

Eq(3.201) of spacetime generate translations via 

𝛿𝑠𝑥 
𝜇 = 𝜖𝜇 = −𝑖𝜖𝑣 𝑝 𝑣(𝑡), 𝑥 𝜇 (𝜏)                                                (3.221) 

Similarly we find that the quantized versions of the conserved charges 𝐿𝑖  in Eq(3.170) 

generate infinitesimal rotations :  

𝛿𝑠𝑥 
𝑗 = −𝜔𝑖𝜖𝑖𝑗𝑘  𝑥 𝑘 𝑡 = 𝑖𝜔𝑖 𝐿 𝑖 , 𝑥 

𝑗 (𝑡)  ,                                                 (3.222) 

Whereas the quantized conserved charges 𝑁𝑖  of Eq.(3.179) generate infinitesimal Galilei 

transformations and that the charges 𝑀𝑖  of Eq.(3.213) generate pure rotational 

transformations: 

𝛿𝑠𝑥 
𝑗 = 𝜖𝑖𝑥 

0 = 𝑖𝜖𝑖 𝑀𝑖 , 𝑥 
𝑗   

                                     𝛿𝑠𝑥 
0 = 𝜖𝑖𝑥 

𝑖 = 𝑖𝜖𝑖 𝑀𝑖 , 𝑥 
0                                (3.223) 

Since the quantized charges generate the rotational symmetry transformations, they form a 

representation of the generators of the symmetry group.  They have the same commutation 

rules with each other as the generator of the symmetry group. The charges Eq(3.170) 

associated with rotations, for example, have the commutation rules  

 𝐿 𝑖 , 𝐿 𝑗  = 𝑖𝜖𝑖𝑗𝑘 𝐿 𝑗                                                                       (3.224) 

Which are the same as those between the 3 × 3 generators of the three-dimensional rotations 

 𝐿𝑖 𝑗𝑘 = −𝑖𝜖𝑖𝑗𝑘  .  

The quantized charges of the generators Eq(3.210) of the Lorentz group satisfy the 

commutation rules Eq(3.112) of the 4 × 4 generators Eq(3.211)  

 𝐿 𝜇𝑣 , 𝐿 𝜇𝜆   = −𝑖𝑔𝜇𝜇  𝐿 𝑣𝜆                                                                (3.225) 
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This follows directly from the canonical commutation rules Eq(3.221)  

3.22  Canonical Energy Momentum Tensor  

As an important example for the field theoretic version of the theorem consider the usual case 

that the Lagrangian density does not depend explicitly on the space time coordinates  :  

ℒ = ℒ 𝜑, 𝜕𝜑                                                                     (3.226) 

We then perform a translation along an arbitrary direction 𝑣 = 0,1,2,3 of space time  

𝑥′𝜇 = 𝑥𝜇 − 𝜖𝜇                                                                     (3.227) 

Under which field 𝜑(𝑥) transforms as   

𝜑′ 𝑥′ = 𝜑(𝑥)                                                                     (3.228) 

This equation expresses the fact that the field has the same absolute point in space and time, 

which in one coordinate system is labeled by the coordinates 𝑥𝜇  and in the other by  𝑥′𝜇  .  

Under an infinitesimal translation of the field configuration coordinate the Lagrangian density 

undergoes the following symmetry variation  

𝛿𝑠ℒ ≡ ℒ 𝜑′ 𝑥 , 𝜕𝜑′ 𝑥  − ℒ 𝜑 𝑥 , 𝜕𝜑(𝑥)  

                                                    =
𝜕ℒ

𝜕𝜑(𝑥)
 𝛿𝑠𝜑 𝑥 +

𝜕ℒ

𝜕𝜕𝜇 𝜑
𝜕𝜇  𝛿𝑠𝜑 𝑥                       (3.229) 

Where  

𝛿𝑠𝜑 𝑥 = 𝜑′ 𝑥 − 𝜑(𝑥)                                                                                    (3.230) 

Is the symmetry variation of the fields. For the particular transformation Eq(3.228), the 

symmetry variation becomes simply  

𝛿𝑠𝜑 𝑥 = 𝜖𝑣  𝜕𝑣𝜑 𝑥                                                                                    (3.231) 

The Lagrangian density Eq(3.226) changes by  

𝛿𝑠ℒ 𝑥 = 𝜖𝑣  𝜕𝑣ℒ 𝑥                                                                                     (3.232) 

Hence the requirement Eq(3.139) is satisfy and  𝛿𝑠𝜑 𝑥  is a symmetry transformation. The 

function Λ happens to coincide with the Lagrangian density  

Λ = ℒ                                                                                                            (3.233) 
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We Can now define a set of currents 𝑗 𝑣
  𝜇

, one for each 𝜖𝑣. In the particular case at hand, the 

currents 𝑗 𝑣
  𝜇

 are denoted by Θ 𝑣
  𝜇

, and read :  

Θ 𝑣
  𝜇

=
𝜕ℒ

𝜕𝜕𝜇 𝜑
 𝜕𝑣𝜑 − δ 𝑣

  𝜇
ℒ                                                                           (3.234) 

They have no four divergence  

𝜕𝜇Θ 𝑣
  𝜇  𝑥 = 0                                                                                             (3.235) 

As a consequence, the total four momentum of the system, defined by  

𝑃𝜇 =  𝑑3 𝑥Θ𝜇0 𝑥                                  3.236  

is independent of time . 

3.23  Electromagnetism  

As an important physical application of the field theoratic Noether theorem, consider the free 

electromagnetic field with the action  

ℒ = −
1

4𝑐
 𝐹𝜆𝜅  𝐹𝜆𝜅                                       (3.237) 

Where 𝐹𝜆𝜅  are the components of the field strength 𝐹𝜆𝜅 ≡ 𝜕𝜆𝐴𝜅 − 𝜕𝜅𝐴𝜆  . Under a translation 

in space and time from 𝑥𝜇  to 𝑥𝜇 − 𝜖𝛿𝑣
𝜇

, the vector potential undergoes a similar change as in 

Eq(3.128) :  

𝐴′𝜇 = Λ𝜇 (𝑥)                                                             (3.237) 

 As before, this equation expresses the fact that at the same absolute space time point, which 

in the two coordinate frames is labeled once by 𝑥′ and once by 𝑥, the field components have 

the same numerical values. The equation transformation law Eq(3.138) can be rewritten in an 

infinitesimal form as  

𝛿𝑠  A𝜆 𝑥𝜇  ≡ 𝐴′𝜆 𝑥𝜇  − 𝐴𝜆 𝑥𝜇    

                  = 𝐴′𝜆 𝑥′𝜇 + 𝜖𝛿𝑣
𝜇
 − 𝐴𝜆 𝑥𝜇                                                (3.238) 

                  = 𝜖𝜕𝑣𝐴𝜆 𝑥𝜇                                                                        (3.239)  

Under it, the field tensor changes as follows   

𝛿𝑠𝐹
𝜆𝜅 = 𝜖𝜕𝑣𝐹

𝜆𝜅                                                                                     (3.240) 
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So that the Lagrangian density is a total four divergence :  

𝛿𝑠  ℒ = −𝜖
1

2𝑐
 𝐹𝜆𝜅 𝜕𝑣  𝐹𝜆𝜅 = 𝜖𝜕𝑣ℒ                                                          (3.241) 

Thus, the spacetime translations Eq(3.140) are symmetry transformations, and the currents  

Θ𝑣
𝜇

=
𝜕ℒ

𝜕𝜕𝜇  𝐴𝜆  𝜕𝑣  𝐴𝜆 − δ𝑣
𝜇

  ℒ                                                         (3.242) 

Are conserved :  

𝜕𝜇Θ𝑣
𝜇  𝑥 = 0                                                                                                   (3.243) 

Using 𝜕ℒ 𝜕𝜕𝜇  𝐴𝜆 = −𝐹𝜆
𝜇

, the corrents Eq(3.242) become more explicitly  

Θ𝑣
𝜇

= −
1

𝑐
  𝐹  𝜆

𝜇
𝜕𝑣𝐴

𝜆 −
1

4
 δ𝑣

𝜇
𝐹𝜆𝜅 𝐹𝜆𝜅                                                                 (3.244) 

They form the canonical energy-momentum tensor of the electromagnetic field.   

3.24  Dirac Field  

We now turn to the Dirac field which has the well-known action  

𝒜 =  𝑑4 𝑥 ℒ 𝑥 =  𝑑4 𝑥𝜓  𝑥  𝑖𝛾𝜇𝜕 𝜇 − 𝑀 𝜓 𝑥                     (3.245) 

Where 𝛾𝜇  are the Dirac matrices  

𝛾𝜇 =  
0 𝜍𝜇

𝜍 𝜇 0
                                                                                              (3.246) 

Here 𝜍𝜇  , 𝜍 𝜇  are four 2 × 2 matrices  

𝜍𝜇 ≡  𝜍0 , 𝜍𝑖 ∙ 𝜍 𝜇 ≡  𝜍0, −𝜍𝑖                                                                      (3.247) 

Whose zeroth component is the unit matrix  

𝜍0 =  
1 0
0 1

  ,                                                                                                (3.248) 

And whose spatial components consist of the Pauli spin matrices  

𝜍1 =  
0 1
1 0

  ,   𝜍2 =  
1 −𝑖
𝑖 1

      ,    𝜍3 =  
1 0
0 −1

                                              (3.249) 

On behalf of the algebraic properties of the Pauli matrices  
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𝜍𝑖𝜍𝑗 = 𝛿𝑖𝑗 + 𝑖𝜖𝑖𝑗𝑘  𝜍𝑘 ,                                                                                              (3.250) 

The Dirac matrices Eq(3.246) satisfy the anticommutation rules  

 𝛾𝜇 , 𝛾𝑣 = 2𝑔𝜇𝜈                                                                                                               (3.251) 

Under spacetime translations  

𝑥′𝜇 = 𝑥𝜇 − 𝜖𝜇 ,                                                                                                               (3.252) 

The Dirac field transforms in the same way as the previous scalar and vector fields :  

𝜓′  𝑥′ = 𝜓(𝑥)                                                                                          (3.253) 

Or infinitesimally :  

𝛿𝑠𝜓 𝑥 = 𝜖𝜇𝜕𝜇𝜓(𝑥)                                                                                     (3.254) 

The same is true for the Lagrangian density, where  

ℒ′ 𝑥′ = ℒ(𝑥)                                                                                                (3.255) 

and  

𝛿𝑠ℒ 𝑥 = 𝜖𝜇𝜕𝜇ℒ(𝑥)                                                                                     (3.256) 

Thus we obtain the Noether current  

Θ𝑣
  𝜇

=
𝜕ℒ

𝜕𝜕𝜇 𝜓𝜆
 𝜕𝑣𝜓

𝜆 + 𝑐. 𝑐. −δ𝑣
  𝜇

ℒ                                                                 (3.257) 

With the local conservation law  

𝜕𝜇Θ𝑣
  𝜇  𝑥 = 0                                                                                             (3.258) 

From Eq(3.146) we see that  

𝜕ℒ

𝜕𝜕𝜇𝜓𝜆
=

1

2
 𝜓  𝛾𝜇                                                                  (3.259) 

So that we obtain the canonical energy-momentum tensor of the Dirac field :  

Θ𝑣
  𝜇

=
1

2
 𝜓  𝛾𝜇𝜕𝑣𝜓

𝜆 + 𝑐. 𝑐. −δ𝑣
  𝜇

ℒ                                3.260  
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3.25  Angular Momentum  

 Let us now turn to angular momentum in field theory. Consider first the case of a scalar field 

𝜑(𝑥 ). Under a rotation of the coordinates,  

𝑥′ 𝑖 = 𝑅  𝑗
𝑖  𝑥𝑗                                                                                                (3.261) 

The field does not change, if considered at the same space point, i.e.  

𝜑′ 𝑥′ 𝑖 = 𝜑 𝑥𝑖                                                                                          (3.262) 

The infinitesimal symmetry variation is :  

𝛿𝑠𝜑 𝑥 = 𝜑′ 𝑥 = 𝜑 𝑥                                                                               (3.263) 

Using the infinitesimal form Eq(3.138) of Eq(3.161),  

𝛿𝑥𝑖 = −𝜔𝑖𝑗  𝑥𝑗                                                                                                (3.264) 

We see that  

𝛿𝑠𝜑 𝑥 = 𝜑′ 𝑥0 , 𝑥′ 𝑖 − 𝛿𝑥𝑖   − 𝜑 𝑥  

                                                         = 𝜕𝑖𝜑 𝑥  𝑥𝑗 𝜔𝑖𝑗                                       (3.265) 

Suppose we are dealing with a Lorentz-invariant Lagrangian density that has no explicit 𝑥-

dependence :  

ℒ = ℒ 𝜑 𝑥 , 𝜕𝜑(𝑥)                                                                                        (3.266) 

Then the symmetry variation is  

𝛿𝑠ℒ = ℒ 𝜑′ 𝑥 , 𝜕𝜑′(𝑥) − 𝜑 𝜑 𝑥 , 𝜕𝜑(𝑥)  

                                         =
𝜕ℒ

𝜕𝜑 𝑥 
𝛿𝑠𝜑 𝑥 +

𝜕ℒ

𝜕𝜕𝜑  𝑥 
𝜕𝜇𝛿𝑠𝜑 𝑥                       (3.267) 

For a Lorentz-invariant ℒ, the derivative 𝜕ℒ 𝜕𝜕𝜇𝜑  is a vector proportional to 𝜕𝜇𝜑. For the 

Lagrangian density, the rotational symmetry variation Eq.(3.166) becomes  

𝛿𝑠ℒ =  
𝜕ℒ

𝜕𝜑
𝛿𝑖𝜑𝑥𝑗 +

𝜕ℒ

𝜕𝜇𝜑
𝜕𝜇 𝜕𝑖ℒ𝑥𝑗    𝜔𝑖𝑗  

                                              =    𝜕𝑖ℒ 𝑥𝑗 +
𝜕ℒ

𝜕𝜕𝑗𝜑
 𝜕𝑖𝜑  𝜔𝑖𝑗 = 𝜕𝑖 ℒ𝑥𝑗𝜔𝑖𝑗                        (3.268) 
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The right-hand side is a total derivative. In arriving at this result, the antisymmetry of 𝜑𝑖𝑗  has 

been used twice: one in order to drop the second term in the brackets, which is possible since 

𝜕ℒ 𝜕𝜕𝑖𝜑  is proportional to  𝜕𝑖𝜑, as consequence of the assumed rotational invariance of ℒ, 

and once, in order to pull 𝑥𝑗  inside the last parentheses.  

Calculating  𝛿𝑠ℒ once more with the help of Euler-Lagrange equations gives  

𝛿𝑠ℒ =
𝜕ℒ

𝜕ℒ
𝛿𝑠𝜑 +

𝜕ℒ

𝜕𝜕𝜇𝜑
 𝜕𝜇𝛿𝑠𝜑                                   (3.269) 

=  
𝜕ℒ

𝜕𝜑
− 𝜕𝜇

𝜕ℒ

𝜕𝜕𝜇𝜑
 𝛿𝑠𝜑 + 𝜕𝜇  

𝜕ℒ

𝜕𝜕𝜇𝜑
𝛿𝑠𝜑  

                                        = 𝜕𝜇  
𝜕ℒ

𝜕𝜕𝜇 𝜑
𝜕𝑖𝜑𝑥𝑗   𝜔𝑖𝑗  

Thus the Noether charges  

𝐿𝑖𝑗 ,𝜇 =  
𝜕ℒ

𝜕𝜕𝜇𝜑
𝜕𝑖𝜑𝑥𝑗 − 𝛿𝑖

 𝜇
ℒ 𝑥𝑗  −  𝑖 ⟷ 𝑗                       3.270  

have no four-divergence  

𝜕𝜇𝐿𝑖𝑗 ,𝜇 = 0                                                                                                (3.271) 

The associated charges  

𝐿𝑖𝑗 =  𝑑3 𝑥 𝐿𝑖𝑗 ,𝜇                                      (3.272) 

Are called the total angular momenta of the field system. In terms of the canonical energy-

momentum tensor  

Θ𝑣
   𝜇

=
𝜕ℒ

𝜕𝜕𝜇𝜑
𝜕𝑣𝜑 − δ𝑣

   𝜇
ℒ                             (3.273) 

The current density 𝐿𝑖𝑗 ,𝜇  can also be written as  

𝐿𝑖𝑗 ,𝜇 = 𝑥𝑖Θ𝑗𝜇 − 𝑥𝑗 Θ𝑖𝜇                                                                         (3.274) 

3.25.1  Four-Dimensional Angular Momentum  

 A similar procedure can be applied to pure Lorentz transformation. An infinitesimal boost to 

rapidity 𝜁𝑖  produces a coordinate change  
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𝑥′𝜇 = Λ  𝑣
𝜇

 𝑥𝑣 = 𝑥𝜇 + 𝛿  𝑖
𝜇
𝜁𝑖𝑥𝑣 + 𝛿  0

𝜇
𝜁𝑖𝑥𝑖                                              (3.275) 

This can be written as  

𝛿𝑥𝜇 = 𝜔    𝑣
𝜇

 𝑥𝑣                                                                                     (3.276) 

𝜔𝑖𝑗 = 0  

                                       𝜔0𝑖 = −𝜔𝑖0 = 𝜁𝑖                                          (3.277)  

With the tensor 𝜔    𝑣
𝜇

 , the restricted Lorentz transformations and the infinitesimal rotations 

can be treated on the same footing. The rotations have the form Eq(3.276) for the particular 

choice    𝜔𝑖𝑗 = 𝜖𝑖𝑗𝑘 𝜔𝑘  

𝜔0𝑖 = 𝜔𝑖0 = 0                                   (3.278) 

We can now identify the symmetry variations of the field as being  

𝛿𝑠𝜑 𝑥 = 𝜑′ 𝑥′𝜇 − 𝛿𝑥𝜇  − 𝜑(𝑥) 

                                                             = −𝜕𝜇𝜑(𝑥)𝑥𝑣𝜔    𝑣
𝜇

                                       (3.279)  

Just as in Eq(3.268), the Lagrnagian density transforms as the total derivative  

𝛿𝑠𝜑 𝑥 = −𝜕𝜇  ℒ𝑥𝑣 𝜔    𝑣
𝜇

                                                                             (3.280) 

And we obtain the Noether currents  

𝐿𝜇𝑣 ,𝜆 = −  
𝜕ℒ

𝜕𝜕𝜆𝜑
𝑥𝜆𝜑 𝑥𝑣 − 𝛿𝜇𝜆 ℒ 𝑥𝑣 +  𝜇 ⟷ 𝑣  

        = 𝑥𝜇  Θ𝑣𝜆 − 𝑥𝑣  Θ𝜇𝜆                                  (3.281) 

These currents have no four-divergence  

𝜕𝜆𝐿𝜇𝑣 ,𝜆 = 0                                                       (3.282) 

The associated charges  

𝐿𝜇𝑣 ≡  𝑑3 𝑥 𝐿𝜇𝑣 ,0                                                    3.283  

are independent of time.  
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For the particular form of 𝜔𝜇𝑣  in Eq(3.277), we find time independent components 𝐿𝑖0. The 

components 𝐿𝑖𝑗  coincide with the previously-derived angular momenta.  

The constancy of  𝐿𝑖0 is the relativistic version of the center of mass theorem (3.52). indeed, 

since  

𝐿𝑖0 =  𝑑3 𝑥  𝑥𝑖Θ00 − 𝑥0Θ𝑖0                                3.284  

we can define the relativistic center of mass  

𝑥𝐶𝑀
𝑖 =

 𝑑3 𝑥 Θ00  𝑥𝑖

 𝑑3 𝑥 Θ00
                                      3.285  

and the average velocity  

𝑣𝐶𝑀
𝑖 = 𝑐 

 𝑑3 𝑥 Θ𝑖0  

 𝑑3 𝑥 Θ00
= 𝑐

𝑃𝑖

𝑃0
                                       (3.286) 

Since  𝑑3 𝑥 Θ𝑖0 = 𝑃𝑖  is the constant momentum of the system, also 𝑣𝐶𝑀
𝑖  is a constant. Thus, 

the constancy of 𝐿0𝑖 implies the center of mass to move with the constant velocity  

𝑥𝐶𝑀
𝑖  𝑡 = 𝑥0𝐶𝑀

𝑖 + 𝑣0𝐶𝑀
𝑖 𝑡                                                                      (3.287) 

with 𝑥0𝐶𝑀
𝑖 = 𝐿0𝑖 𝑃0 . The quantities 𝐿𝜇𝑣  are referred to as four-dimensional orbital angular 

momenta.  

It is important to point out that the vanishing divergence of 𝐿𝜇𝑣 ,𝜆  makes Θ𝑣𝜇  symmetric :  

𝜕𝜆𝐿𝜇𝑣 ,𝜆 = 𝜕𝜆 𝑥𝜇Θ𝑣𝜆 − 𝑥𝑣Θ𝜇𝜆   

                                                         = Θ𝑣𝜇 − Θ𝑣𝜇 = 0                                         (3.288) 

Thus, translationally invariant field theories whose orbital momentum is conserved have 

always a symmetric canonical energy-momentum tensor.  

Θ𝜇𝑣 = Θ𝑣𝜇                                                                                            (3.289) 

3.25.2  Spin Current  

 If the field 𝜑(𝑥) is no longer a scalar but carries spin degrees of freedom, the derivation of 

the four-dimensional angular momentum becomes slightly more involved.  
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3.26  Electromagnetic Fields  

 Consider first the case of electromagnetism where the relevant field is the four-vector 

potential 𝐴𝜇 (𝑥). When going to a new coordinate frame  

𝑥′𝜇 = Λ    𝑣
μ

 𝑥𝑣                                                                                (3.290) 

the vector field at the same point remains unchanged in absolute space-time. However, since 

the components 𝐴𝜇  refer to two different basic vectors in the different frames, they must be 

transformed accordingly. Indeed, since  𝐴𝜇  is a vector and transforms like 𝑥𝜇 , it must satisfy 

the relation characterizing a vector filed:  

𝐴′𝜇 (𝑥′ ) = Λ    𝑣
μ

 𝐴𝑣(𝑥)                                                                 (3.291) 

For an infinitesimal transformation  

𝛿𝑠𝑥
𝜇 = ω    𝑣

μ
 𝑥𝑣                                                                                  (3.292) 

This implies a symmetry variation  

𝛿𝑠𝐴
𝜇  𝑥 = 𝐴′𝜇  𝑥 −  𝐴𝜇  𝑥 = 𝐴′𝜇  𝑥 − 𝛿𝑥 −  𝐴𝜇  𝑥  

                                           = ω    𝑣
μ

 𝐴𝑣 𝑥 − ω    𝑣
λ  𝑥𝑣𝜕𝜆  𝐴𝜇                                          (3.293) 

The first term is a spin transformation, the other an orbital transformation. The orbital 

transformation can also be written in terms of the generators 𝐿 𝜇𝜈  of the Lorentz group defined 

as  

𝛿𝑠
𝑜𝑟𝑏   𝐴𝜇  𝑥 = −𝑖𝜔𝜇𝜈  𝐿 𝜇𝜈  𝐴(𝑥)                                                                       (3.294) 

It is convenient to introduce 4 × 4 spin transformation matrices 𝐿𝜇𝜈  with the matrix elements:  

 𝐿𝜇𝜈  
𝜆𝜅

≡ 𝑖 𝑔𝜇𝜆  𝑔𝑣𝜅 − 𝑔𝜇𝜅  𝑔𝑣𝜆                                                                       (3.295) 

They satisfy the same commutation relations Eq(3.212) as the differential operators  𝐿 𝜇𝜈  

defined in Eq.(3.211). By adding  together the two generators 𝐿 𝜇𝜈  and 𝐿𝜇𝜈 , we form the 

operator of total four-dimensional angular momentum  

𝐽 𝜇𝜈 ≡ 𝐿 𝜇𝜈 + 𝐿𝜇𝜈                                                                                                       (3.296) 

and can write the symmetry variation Eq(3.293) as  
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𝛿𝑠
𝑜𝑟𝑏   𝐴𝜇  𝑥 = −𝑖𝜔𝜇𝜈  𝐽 𝜇𝜈  𝐴(𝑥)                                                                                  (3.297) 

If the Lagrangian density involves only scalar combinations of four-vectors  𝐴𝜇 , and if it has 

no explicit 𝑥-dependence, it changes under Lorentz transformations like a scalar filed : 

ℒ′ 𝑥′ ≡ ℒ 𝐴′ 𝑥′ , 𝜕 ′𝐴′ 𝑥′  = ℒ 𝐴 𝑥 , 𝜕𝐴(𝑥) ≡ ℒ(𝑥)                                     (3.298) 

Infinitesimally, this makes the symmetry variation a pure gradient term:  

𝛿𝑠ℒ = − 𝜕𝜇ℒ 𝑥𝑣                                                  (3.299) 

Thus, Lorentz transformations in the Noether sense. Following Noether's construction 

Eq(3.270), we calculate the current of total four-dimensional angular momentum :  

𝐽𝜇𝑣 ,𝜆 =
𝜕ℒ

𝜕𝜕𝜆𝐴𝜇
 𝐴𝑣 −  

𝜕ℒ

𝜕𝜕𝜆  𝐴𝜅  𝜕𝜇𝐴𝜅𝑥𝑣 − 𝛿𝜇𝜆 ℒ 𝑥𝑣 −  𝜇 ⟷ 𝜈                           (3.300) 

The last two terms have the same form as the current 𝐿𝜇𝑣 ,𝜆  of the four-dimensional angular 

momentum of the scalar field. Here they are the currents of the four-dimensional orbital 

angular momentum :  

𝐿𝜇𝑣 ,𝜆 = −  
𝜕ℒ

𝜕𝜕𝜆  𝐴𝜅
 𝜕𝜇𝐴𝜅𝑥𝑣 − 𝛿𝜇𝜆 ℒ 𝑥𝑣 +  𝜇 ⟷ 𝜈                    (3.301) 

Note that this current has the form  

𝐿𝜇𝑣 ,𝜆 = −𝑖
𝜕ℒ

𝜕𝜕𝜆  𝐴𝜅
 𝐿 𝜇𝑣 𝐴𝜅 +  𝛿𝜇𝜆 ℒ 𝑥𝑣 −  𝜇 ⟷ 𝜈                       (3.302) 

where 𝐿 𝜇𝑣  are the differential operators of four-dimensional angular momentum in the 

commutation rules (3.12).  

just as the scalar case Eq(3.298), the currents Eq(3.302) can be expressed in terms of the 

canonical energy-momentum tensor as  

𝐿𝜇𝑣 ,𝜆 = 𝑥𝜇 Θ𝑣𝜆 − 𝑥𝑣Θ𝜇𝜆                                                                                  (3.303) 

The first term in Eq(3.300),  

Σ𝜇𝑣 ,𝜆 =  
𝜕ℒ

𝜕𝜕𝜆  𝐴𝑣
 𝐴𝑣 −  𝜇 ⟷ 𝜈                       (3.304) 

Is referred to as the spin current. It can be written in terms of the 4 × 4 generators Eq(3.295) 

of the Lorentz group as  
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Σ𝜇𝑣 ,𝜆 = −𝑖
𝜕ℒ

𝜕𝜕𝜆  𝐴𝜅
 𝐿𝜇𝑣  𝜅𝜍 𝐴𝜍                            (3.305) 

The two currents together,  

𝐽𝜇𝑣 ,𝜆 𝑥 ≡ 𝐿𝜇𝑣 ,𝜆 𝑥 + Σ𝜇𝑣 ,𝜆(𝑥)                                                                (3.306) 

Are conserved, satisfying 𝜕𝜆𝐽𝜇𝑣 ,𝜆 𝑥 = 0. Individually, they are not conserved. Thre total 

angular momentum is given by the charge  

𝐽𝜇𝑣 =  𝑑3  𝑥 𝐽𝜇𝑣 ,0  𝑥                          (3.307) 

It is a constant of motion. Using the conservation law of the energy-momentum tensor we 

find, just as in Eq(3.288), that the orbital angular momentum satisfies  

𝜕𝜆  𝐿𝜇𝑣 ,𝜆 𝑥 = − Θ𝜇𝑣 (𝑥) − Θ𝑣𝜇 (𝑥)                                                       (3.308) 

From this we find the divergence of the spin current  

𝜕𝜆  Σ𝜇𝑣 ,𝜆 𝑥 = − Θ𝜇𝑣 (𝑥) − Θ𝑣𝜇 (𝑥)                                                          (3.309) 

For the charges associated with orbital and spin currents  

𝐿𝜇𝑣  𝑡 ≡  𝑑3  𝑥 𝐿𝜇𝑣 ,0  𝑥  ,              Σ𝜇𝑣 ≡  𝑑3  𝑥 Σ𝜇𝑣 ,0  𝑥                        3.310  

this implies the following time dependence :  

𝐿 𝜇𝑣  𝑡 = − 𝑑3  𝑥  Θ𝜇𝑣   𝑥 − Θ𝑣𝜇 (𝑥)  

                                   Σ 𝜇𝑣  𝑡 = − 𝑑3  𝑥  Θ𝜇𝑣   𝑥 − Θ𝑣𝜇 (𝑥)                            (3.311) 

Thus fields with a nonzero spin density have always a non-symmetric energy momentum 

tensor.  

In general, the current density 𝐽𝜇𝑣 ,𝜆  of total angular momentum reads  

𝐽𝜇𝑣 ,𝜆 =  
𝜕𝛿𝑠

𝑥ℒ

𝜕𝜕𝜆  𝜔𝜇𝑣
 − 𝛿𝜇𝜆 ℒ 𝑥𝑣 −  𝜇 ⟷ 𝜈                      (3.312) 

By the chain rule of differentiation, the derivative with respect to  𝜕𝜆  𝜔𝜇𝑣 (𝑥) can come only 

from field derivatives, for a scalar field  
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𝜕𝛿𝑠
𝑥ℒ

𝜕𝜕𝜆  𝜔𝜇𝑣 (𝑥)
=

𝜕ℒ

𝜕𝜕𝜆𝜑
 

𝜕𝛿𝑠
𝑥𝜑

𝜕𝜔𝜇𝑣 (𝑥)
                                 (3.314) 

and for a vector field  

𝜕𝛿𝑠
𝑥ℒ

𝜕𝜕𝜆  𝜔𝜇𝑣 (𝑥)
=

𝜕ℒ

𝜕𝜕𝜆𝐴𝜅
 

𝜕𝛿𝑠
𝑥𝐴𝜅

𝜕𝜔𝜇𝑣 (𝑥)
                                 (3.315) 

The alternative rule of calculating angular momenta is to introduce spacetime-dependent 

transformations  

𝛿𝑥𝑥 = 𝜔     𝜈
𝜇  𝑥 𝑥𝑣                                                                   (3.316) 

under which the scalar fields transform as  

𝛿𝑠𝜑 = −𝜕𝜆𝜑𝜔     𝜈
𝜇  𝑥 𝑥𝑣                                                         (3.317) 

and the Lagrangian density as  

𝛿𝑠
𝑥𝜑 = −𝜕𝜆ℒ𝜔     𝜈

𝜇  𝑥 𝑥𝑣 = −𝜕𝜆 𝑥
𝑣  ℒ 𝜔     𝜈

𝜇
(𝑥)                                                    (3.318) 

By separating spin and orbital transformations of  𝛿𝑠
𝑥𝐴𝜅  we find the two contributions 𝜍𝜇𝑣 ,𝜆  

and 𝐿𝜇𝑣 ,𝜆  to the current 𝐽𝜇𝑣 ,𝜆  of the total angular momentum, the latter receiving a 

contribution from the second term in Eq(3.312).  

3.27  Dirac Field  

We now turn to the Dirac field. Under a Lorentz transformation Eq(3.290), this transforms 

according to the law  

𝜓 𝑥′ 
𝐴
  𝜓Λ

′  𝑥 = 𝐷 Λ 𝜓(𝑥)                                                                (3.319) 

where 𝐷 Λ  are the 4 × 4 spinor representation matrices of the Lorentz group. Their matrix 

elements can most easily be spacified for infinitesimal transformations. For an infinitesimal 

Lorentz transformation  

Λμ
   𝑣 = δμ

   𝑣 + ωμ
   𝑣                                                                                      (3.320) 

under which the coordinates are changed by  

𝛿𝑠𝑥
𝜇 = ω   μ

 𝑣  𝑥𝑣                                                                                         (3.321) 

The spin components transform under the representation matrix  
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𝐷 δμ
   𝑣 + ωμ

   𝑣 =  1 − 𝑖
1

2
 𝜔𝜇𝑣 𝜍𝜇𝑣                                                            (3.322) 

Where 𝜍𝜇𝑣  are the 4 × 4 matrices acting on the spinor space  

𝜍𝜇𝑣 =
𝑖

2
 𝛾𝜇 , 𝛾𝑣                                                                                             (3.323) 

From the anticommutation rules Eq(3.251) it is easy to verify that the spin matrices 𝑆𝜇𝑣 ≡

𝜍𝜇𝑣 2  satisfy the same commutation rules Eq(3.212) as the previous orbital and spin-1 

generators 𝐿 𝜇𝑣𝜇  and 𝐿𝜇𝑣  of Lorentz transformations.  

The field has the symmetry variation . 

𝛿𝑠𝜓 𝑥 = 𝜓′ 𝑥 − 𝜓 𝑥 = 𝐷 δμ
   𝑣 + ωμ

   𝑣 𝜓 𝑥 − 𝛿𝑥 − 𝜓(𝑥) 

                                      = −𝑖
1

2
 𝜔𝜇𝑣 𝜍𝜇𝑣𝜓(𝑥) − ω   ν

 𝜆 𝑥𝑣𝜕𝜆𝜓(𝑥) 

                       = −𝑖
1

2
 𝜔𝜇𝑣  𝑆𝜇𝜈 + 𝐿 𝜇𝜈  𝜓 𝑥 ≡ −𝑖

1

2
 𝜔𝜇𝑣  𝐽 𝜇𝜈 𝜓 𝑥                              (3.324) 

The last line showing the separation into spin and orbital transformation for a Dirac particle.  

Since the Dirac Lagrangian is Lorentz-invariant, it changes under Lorentz transformations 

like a scalar field:  

ℒ′ 𝑥′ = ℒ(𝑥)                                                                                     (3.325) 

Infinitesimally, this amounts to  

𝛿𝑠ℒ = − 𝜕𝜇ℒ 𝑥𝑣 ω  ν
𝜇

                                                                         (3.326) 

With the Lorentz transformations being symmetry transformations in Noether sense, we 

calculate the current of total four-dimensional angular momentum extending the formulas 

Eq(3.281) and Eq(3.299) for scalar field and vector potential. The result is  

𝐽𝜇𝜈 ,𝜆 =  −𝑖
𝜕ℒ

𝜕𝜕𝜇 𝜓
 𝜍𝜇𝑣 𝜓 − 𝑖

𝜕ℒ

𝜕𝜕𝜇 𝜓
 𝐿 𝜇𝑣 𝜓 + 𝑐. 𝑐.  + [𝜍𝜇𝜆 ℒ𝑥𝑣 −  𝜇 ⟷ 𝜈 ]            (3.327) 

As before in Eq(3.300) and Eq(3.281), the orbital part of Eq(3.327) can be expressed in terms 

of the canonical energy-momentum tensor as  

𝐿𝜇𝜈 ,𝜆 = 𝑥𝜇 Θ𝑣𝜆 − 𝑥𝑣Θ𝜇𝜆                                                                    (3.338) 

The first term in Eq(3.236) is the spin current  
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Σ𝜇𝜈 ,𝜆 =
1

2
  – 𝑖

𝜕ℒ

𝜕𝜕𝜇𝜓
 𝜍𝜇𝑣 𝜓 + 𝑐. 𝑐.                                                3.339  

Inserting Eq(3.285), this becomes explicitly  

Σ𝜇𝜈 ,𝜆 = −
𝑖

2
 𝜓 𝛾𝜆𝜍𝜇𝑣 𝜓 =

𝑖

2
 𝜓 𝛾[𝜇   𝑣   𝜆]𝜓 =

1

2
 ϵ𝜇𝜈𝜆𝜅 𝜓 𝛾𝜅𝜓                    (3.340) 

The spin density is completely antisymmetric in the three indices.  

The conservation properties of the three currents are the same as in Eqs.(3.307-3.311).  

3.28  Internal Symmetries  

In quantum field theory, an important role is played by internal symmetries. They do not 

involve any change in the space time coordinate of the fields, whose symmetry 

transformations have the simple form  

𝜙′ 𝑥 = 𝑒−𝑖𝛼𝐺 𝜙(𝑥)                                                                           (3.341) 

Where 𝐺 are the generators of some Lie group and 𝛼 the associated transformation 

parameters. The filed 𝜙 may have several indices on which the generators 𝐺 act as a matrix. 

The symmetry variation associated with Eq(3.341) is obviously  

𝛿𝑠𝜙
′ 𝑥 = −𝑖𝛼𝐺𝜙(𝑥)                                                                      (3.342) 

The most important example is that of a complex field 𝜙 and a generator 𝐺 = 1, where 

Eq(3.341) is simply a multiplication by a constant phase factor. One also speaks of 𝑈(1)-

symmetry.  

Other important examples are those of a triple or an octet of fields 𝜙𝑖  with 𝐺 being the 

generatore of an 𝑆𝑈(2) vector representation or an 𝑆𝑈(3) octet representation ( the adjoint 

representations of these groups). The first case is associated with charge conservation in 

electromagnetic interactions, the other two with isospin and 𝑆𝑈(3) invariance in strong 

interactions. The latter symmetries are however, not exact.  

3.28.1.  𝑼(𝟏)- Symmetry and Charge Conservation  

Given a Lagrangian density ℒ 𝑥 = ℒ 𝜙 𝑥 , 𝜕𝜙 𝑥 , 𝑥  depending only on the absolute 

squares  𝜙 2 ,  𝜕𝜙 2 ,  𝜙𝜕𝜙 . Then ℒ 𝑥  is invariant under 𝑈(1)-transformations  

𝛿𝑠𝜙 𝑥 = −𝑖𝜙(𝑥)                                                                                         (3.342) 
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Indeed:  

𝛿𝑠ℒ = 0                                                                                                          (3.343) 

On the other hand, we find by the chain rule of differentiation :  

𝛿𝑠ℒ =  
𝜕ℒ

𝜕𝜙
− 𝜕𝜇

𝜕ℒ

𝜕𝜇𝜙
 𝛿𝑠𝜙 +  𝜕𝜇

𝜕ℒ

𝜕𝜕𝜇𝜙
 𝛿𝑠𝜙 = 0                            (3.344) 

The Euler-Lagrange equation removes the first part of this, and inserting Eq(3.342) we find 

by comparison with Eq(3.343) that  

𝑗𝜇 = −
𝜕ℒ

𝜕𝜕𝜇𝜙
𝜙                                     (3.345) 

is a conserved current . 

For a free relativistic complex scalar field with a Lagrangian density  

ℒ 𝑥 = 𝜕𝜇𝜑∗𝜕𝜇𝜑 − 𝑚2𝜑∗𝜑                                                  (3.346) 

We have to add the contributions of real and imaginary parts of the field 𝜙 in formula 

Eq(3.345). then we obtain the conserved current  

𝑗𝜇 = −𝜑∗𝜕 𝜇𝜑                                                                                                (3.347) 

Where 𝜑∗𝜕 𝜇𝜑 denotes the left-minus-right derivative:  

𝜑∗𝜕 𝜇𝜑 ≡ 𝜑∗𝜕𝜇𝜑 −  𝜕𝜇𝜑∗ 𝜑                                                                       (3.348) 

For a free Dirac field, we find from Eq(3.345) the conserved current  

𝑗𝜇  𝑥 = 𝜓  𝑥 𝛾𝜇𝜓(𝑥)                                                                                  (3.349) 

3.28.2.    𝑺𝑼(𝑵) -Symmetry  

 For more general internal symmetry groups, the symmetry variations have the form  

𝛿𝑠𝜑 = −𝑖𝛼𝑖𝐺𝑖𝜑                                                                                            (3.350) 

And the conserved currents are  

𝑗𝑖
𝜇

= −𝑖
𝜕ℒ

𝜕𝜕𝜇𝜑
𝐺𝑖𝜑                                                                                      (3.351) 
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3.28.3   Broken Internal Symmetries  

The physically important symmetries 𝑆𝑈(2) of isospin and 𝑆𝑈(3) are not exact. The 

Lagrnage density is not strictly zero. In this case we remember the alternative derivation of 

the conservation law. we introduce the space time-dependent parameters 𝛼 𝑥  conclude from 

the extremality property of the action that  

𝜕𝜇  
𝜕ℒ𝜖

𝜕𝜕𝜇𝛼𝑖(𝑥)
=

𝜕ℒ𝜖

𝜕𝛼𝑖(𝑥)
                                             (3.352) 

This implies the divergence law for the above derived current  

𝜕𝜇 𝑗𝑖
𝜇  𝑥 =

𝜕ℒ𝜖

𝜕𝛼𝑖
                                                (3.353) 

3.30  Generating the Symmetry Transformations on Quantum Fields  

As in quantum mechanical systems, the charges associated with the conserved currents of the 

previous section can be used to generate the transformations of the fields from which they 

were derived. One merely has to invoke the canonical field commutation rules.  

As an important example, consider the currents Eq(3.351) of an iternal 𝑈(𝑁)-symmetry. 

Their charges  

𝑄𝑖 = −𝑖  𝑑3 𝑥
𝜕ℒ

𝜕𝜕𝜇𝜑
𝐺𝑖𝜑                                                      (3.354) 

can be written as  

𝑄𝑖 = −𝑖  𝑑3 𝑥𝜋𝐺𝑖𝜑                                                      (3.355) 

where 𝜋 𝑥 ≡ 𝜕ℒ 𝜕𝜕𝜇𝜑 𝑥   is the canonical momentum of the field 𝜑 𝑥 . After quantization, 

these fields satisfy the canonical commutation rules:  

 𝜋 𝐱, 𝑡 , 𝜑(𝐱′ , 𝑡) = −𝑖𝛿 3 (𝐱 − 𝐱′ )  

 𝜑 𝐱, 𝑡 , 𝜑(𝐱′ , 𝑡) = 0  

 𝜋 𝐱, 𝑡 , 𝜋(𝐱′ , 𝑡) = 0                                                                                       (3.356) 

From this we derive directly the commutation rule between the quantized charges Eq(3.355) 

and the field 𝜑 𝑥 :  
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 𝑄𝑖 , 𝜑 (𝑥) = −𝛼𝑖𝐺𝑖𝜑(𝑥)                                                                                  (3.357) 

We also find that the commutation rules among the quantized charges are  

 𝑄 𝑖 , 𝑄 𝑗  =  𝐺𝑖 , 𝐺𝑗                                                                                              (3.358) 

Since these coincide with those of the matrices 𝐺𝑖 , the operators 𝑄𝑖  are seen to form a 

representation of the generators of the symmetry group in the Fock space .  

It is important to realize that the commutation relations Eq(3.357) and Eq(3.358) remain also 

valid in the presence of symmetry breaking terms, as long as these do not contribute to the 

canonical momentum of the theory. Such terms are called soft symmetry breaking terms. The 

charges are no longer conserved, so that we must attach a time argument to the commutation 

relations Eq(3.357) and Eq(3.358). All times in these relations must be the same, in order to 

invoke the equal-time canonical commutation rules.  

The most important example is the canonical commutation relation Eq(3.221) itself, which 

holds also in the presence of any potential 𝑉(𝑞) in the Hamiltonian. This breakes translation 

symmetry, but does not contribute to the canonical momentum 𝑝 = 𝜕𝐿 𝜕𝑞  . In this case, the 

relation generalizes to  

𝜖𝑖 = 𝑖𝜖𝑖 𝑝 𝑖 𝑡 , 𝑥 𝑗  𝑡                                                                                     (3.359) 

Which is correct thanks to the validity of the canonical commutation relations Eq(3.219) at 

arbitrary equal times, also in the presence of  a potential.  

Another important example are the commutation rules of the conserved charges associated 

with the Lorentz generators Eq(3.338):  

𝐽𝜇𝑣 ≡  𝑑3𝑥 𝐽𝜇𝑣 ,0(𝑥)                                3.360  

Which are the same as those of the 4 × 4-matrices Eq(3.294), and those of the quantum 

mechanical generators to be:  

 𝐽 𝜇𝑣 , 𝐽 𝜇𝜆  = −𝑖𝑔𝜇𝜇 𝐽 𝑣𝜆                                                               (3.361) 

The generators  𝐽𝜇𝑣 ≡  𝑑3𝑥 𝐽𝜇𝑣 ,0(𝑥) are sums 𝐽𝜇𝑣 = 𝐿𝜇𝑣 (𝑡) + Σ𝜇𝑣 (𝑡) of charges Eq(3.309) 

associated with orbital and spin rotations. According to Eq(3.310), the individual charges are 

time-dependent. Only their sum is conserved. Nevertheless, they both generate Lorentz 

transformations : 𝐿𝜇𝑣 (𝑡) on the spacetime argument of the fields, and  Σ𝜇𝑣 (𝑡)   on the spin 

indices. As a consequence, they both satisfy the commutation relations Eq(3.361) :  
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 𝐿 𝜇𝑣 , 𝐿 𝜇𝜆  = −𝑖𝑔𝜇𝜇 𝐿 𝑣𝜆  

                             Σ 𝜇𝑣 , Σ 𝜇𝜆  = −𝑖𝑔𝜇𝜇 Σ 𝑣𝜆                     (3.362) 

The commuatators Eq(3.358) have played an important role in developing a theory of strong 

interactions, where they first appeared in the form of a charge algebra of the broken  

symmetry 𝑆𝑈(3) × 𝑆𝑈(3) of weak and electromagnetic charges. This symmetry will be 

discuss in the next chapter .   


