Chapter Two
Lie algebras

2.1 Introduction
The tangent vectors form Lie algebra on any manifold.
Definition 2.1.1.
A real Lie algebrag’is a vector space over R with a bilinear map (called the Lie bracket)
[,.lilgxg—g
(x,y) — [x,y] , Suchthatforall,y,z€g,
L [xyl = =[xyl
2. [x, [y, z]] = [[x, y],z] + [y, [x, Z]]
A homomorphism of Lie algebras? is a k-linear map a:g — g’ such that

a([x,y]) = [a(x), a(y)] forallx,y € g

Condition (2) is called Jacobi identity .and condition (1) applied to [x + y, x + y] shows that

the Lie bracket is skew-symmetric.
Remark 2.1.1.
Let the commutator [.,.]:g X g — g be defined by :

(exp(x) exp(y) = exp (x +y +%[x, yl+ )) it's Taylor series bilinear skew-

symmetry .Then it satisfies the following identity ,called Jacobi identity :
[x, [y, 2] = [[x, ¥], 2] + [y, [x, 2]
This identity can also be written in any of the following equivalent forms:

[x.[y.2]] + [[x.¥].2] + [y, [x, 2] = 0

ad x.[y,z] = [ad x.y,z] + [y, ad x.z]

'Notes on Lie Groups — Eugene Lerman — Februaury 15,2012.
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ad[x,y] =ad xad y —ad y ad x
Definition 2.1.2. (Sub algebras)

Let g be a Lie algebra . a subspace h c g is called a Lie subalgebra if it is closed under
commutator ,for any x,y € b, we have [x,y] € b. A subspace b c g is called an ideal if for

any x € g,y € h,we have [x,y] €.

If b is an ideal , then g/b has a canonical structure of a Lie algebra .

Definition 2.1.3.

A Lie algebra g is said to be commutative (or abelian)® if [x,y] = 0 for all x,y € g. Thus, to

give a commutative Lie algebra amounts to giving a finite-dimensional vector space .

An injective homomorphism is sometimes called an embedding , and a surjective

homomaorphism is sometimes called a Quotient map .

We shall be mainly concerned with finite-dimensional Lie algebras. Suppose that g has a

basis {e;, ey, ... ...., €, } , and write
leg] =%iiale, afek, 1<i,j<n.

The af-j ,1<1i,j,l<n, are called the structure constants of g relative to the given basis .

they determine the bracket on g .
Definition 2.1.4.

An ideal in a Lie algebra g is a subspace a such that [x,a] € a for all x € gand a € a ('such
that [g,a] c a).

Notice that ; because of the skew-symmetry of the bracket
[g,a] cae=[a,glca=[galcaand [gg]Cca
All left (or right ) ideals are two-sided ideals .
Example 2.1.1
Here we have some type of Lie subalgebras of gl,, :

sl, = {A € M, (k)|trace (A) = 0}

? Lie Algebras, Algebraic Groups, and Lie Groups J.S. Milne — may 5, 2013.
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o, = {A € M, (k)|A is skew symmetry, A+ A* = 0}

.= {aem@l(5, gJara(l) g)=0

b = {(cyj)|cy = 0if i > j} (upper triangle matrices )
n, = {(c;j)|c;y =0if i = j} (strictly upper triangular matrices)
by = {(cj)|cy = 0if i #j} (diagonal matrices)

Definition 2.1.5.
Take a fixed element h. Multiplication by h defines the left translation

L_G—>G
Mg Lyg=hg

In coordinates, this is expressed as follows:

Assume that (g) = a® . Then left translation induces a motion L;: a® — B?(a) , such that
¢(hg) = B. Of course there is also the right translation, but that doesnot give different results

up to some ordering switches.

Left translation is a bijection of G to itself . it also acts on functions on the manifold : to a
function f it associates a new function L, f which is simply the old function moved along the

manifold, i.e.
(Lrf)(hg) = f(9)
Also induces a map on tangent vectors, the differential map dLj,:T,G — Ty 4G

Which similarly maps the vector X at point g to the vector dL;, . X at point hg defined by
(dLy - X)If (hg)] = X[f (9] (2.1)

Remark 2.1.2.

This is sometimes written with a * subscript as dL;, = Ly, . for maps from K¢ to K™, this is

a
the familiar Jacobian ( the matrix of derivatives of /c’)xb ) . the differential map allows us to

single out a particular kind fields, namely those that are invariant under the differential maps

of all left translations.
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Definition 2.1.6.

A vector field is called left-invariant if X|,, = dLj - X|, for all g,h € G ,such that X|,
notation means "the vector field X at point g" in coordinates the components of the vector are

evaluated at that point , and it acts on functions defined at g .

also the left hand side of (Eq 2.1) is again at the same field at the point hg .

Hence this is a restriction of the g- dependence of the vector field X — it does not apply to a

vector at a given point. In coordinates this is written as

d dx? (hg) d

dLy - X|, = X?*(hg) =X3(9) x5 () = X%(g) 9x% @ axa(gh)

9
ox®(gh)

0
=X*(g)(dLy)} 9% (gh)

Definition 2.1.7.

The Lie algebra g of a group G is the space of left-invariant vector fields with the Lie bracket

as product.

The Lie algebra is generically denoted by the name of the group in lower case fracture letters,
e.g. the Lie algebra of SU(n) is (n) .

If one in particular choose = e, left-invariant implies that : X|, = dL;, X]|. .
2.2 One parameter and Local One-Parameter Groups Action on Manifold :
Definition 2.2.1.

Let G be a group and X a set *. Then G is said to act on X ( on the left) if there is a mapping
0: G x X — X satisfying two conditions:

If e is the identity element of , Then :
1.6(e,x) =x forallx e X

2.1f g1,9, € G ,then: 0(gy,(g2,%x)) =0(g1,92,%) forall x € X

* An introduction to Differentiable Manifols & Riemannian Geometry- William M.Boothby —~Washington
University- ST. Louis Missouri- 2003
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Definition 2.2.2.

If we let 8: R x M — M specializied to an action 8 of R on , and 8 be a mapping which

satisfies the two conditions:

1.6,(P)=P forallP e M
2.0, 00,(P) = 0,,5(P)=6,00,(P) forall P € M andforall s,t € R
Example 2.2.1.

Suppose that M = R3 and a = (al,a? a®) is fixed and assumed different from 0. Then
0,(x) = (x! + a't,x? + a’t,x3 + a3t) defines a C* action of R on M .To each t € R we
have thus assigned the translation 6,: R® — R3 . taking the point x to the point x + ta . This
is a free action and the orbits consist of straight lines parallel to the vector a . A particulary

simple special case is given by a = (1,0,0) so that 8,(x) = (x! +t,x2,x3).

Suppose that 6: R X M — M is any such C* action . Then it defines on M a C*-vector field
X, which we shall call infinitesimal generator of 6 . according to the following prescripition ;
for each P € M we define Xp: C*(P) — R by

Xpf =limpeo5- [(fOe (P)) = F(P)]  (22)

Directly from Eq(2.2) that X is a vector at P in the sence of definition and then verify that
P — Xp defines a vector field, or we may proceed as follows . Let U, be a coordinate
neighborhood of P € M and let I X V be an open subset of (0, P) in x M , where I5 = {t €
R|—6<t<é},andV , 8 > 0 aresochosenthat 8(Is x V) c U . In particular, V = 64(V)
is contained in U and contains . Restricted to the open set Is x V , we may write 6 in local

coordinates

y1 = hl(t,xl, TR 4 |
Yyt = h”(t,xl, v ,x™)
Or y = h(t,x), where ,x=(x',........ ,x™) are the coordinates of g€V and y =
[CTAT— ,y™) of 8,(q),It's image . The h' are defined and C® on I5 x ¢(V) and the range

of h(t,x) isin ¢(U). The fact that 6, is the identity and 9t1+t2 = 0, © 6y, is reflected in the

conditions :
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hi(O, X) =x' and hi(tl + tz,x) = hi(tl + h(tz,X))
For 1,......,n.Now if f = (x',..............,x™) is the local expression for f € C*(P) .

Then

1 1 .. o
At [F(65:(P)) — f(P)] = At [f(h(at,x)) — F(x)]

And

PN

1 . PN}
Xpf = lim — [f(h(at,2)) = f(0)] = Zl R(0,) < axi>¢(m

Where we have used a dot to indicate differentiation with respect to t . This formula is valid
for every P € V and implies that on V, Xp = ¥ h'(0,x) E;p with E; = ;1 (8/0x") and
x = @(P), which shows that X is a C*-vector field over V. Since every point of M lies in
such a neighborhood . X isa C* on M .Note that definition of X at P € M involves only the
values of 6 on Is x V. That is, like derivatives in general, it is defined locally and involves

only values of t near 6 = 0.
Definition 2.2.3

If 6: G x M — M is the action of a group G on a manifold M . then a vector field X on M is
said to be invariant under the action of G or G -invariant if X is invariant under each of the

diffeomorphisms 6, of M to itself .
In brief if 6,.(X) =X (asinDef2.2.2).
Theorem 2.2.1.

If 0:G XM — M is a C*™ action of R on . then the infinitesimal generator X is invariant

under this action. That is 0, (Xp) = X0,y forall teR.

Proof:

Let f € C* (6, (P)) forsome (t,P) € R x M and compute 6., (Xp)f :

0. (Xp)f = Xp(f © 0,) = limarso 5 [f ©0:(8ac (P)) = f o 6,(P)] .

However, R is Abelian and we have 6, o 6y, = 6;,p; = Op; © 0; , SO

00 (Xp)f = limpeg 5= [f © Oae (6 (P)) = f © 0,(P)] = Xo, (»yf -
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Since this holds for all , the result follows .
Corollary 2.2.1.

If Xp =0, then for each q in the orbit of P we have X, = 0 . that is , at the points of an orbit

the associated vector field vanishes identically or is never zero .
Proof:

The orbit of P consists of all g = 6,(P) for some € R ; thus by the theorem X, = ;. Xp.
Since 6, is an isomorphism of Tp (M) onto T, (M) so that X, = 0 ifand only if X» = 0.

Definition 2.2.4.

A local one-parameter group action or flow on a manifold M isa C* map 8: W — M which

satisfies the following two conditions:
6y (P)=P forallP e M

If (s,P) €W, then (6,(P)) = a(P) —s,8(6,(P)) = B(p) —s , and moreover for any ¢
suchthat a(p) —s<t<B(p)—s ,0,_s(P)isdefinedand 0, o ,(P) = 0,,(P).

Remark 2.2.1.
For local one-parameter actions we may show as in the global case that :

0. (Xp) = X, (py if €V, . As before , F(t) = 0, (P) defined for a(p) <t < p(p) isa C*-
integral curve of X , which is an immersion of I(P) in M provided that X, # 0 and is a single
point if Xp = 0 . We shall continue to refer to these curves as orbits of the local one-
parameter group. Just as in the global case. It is a consequence of our definitions curves (and
points) partition M into a union of mutually disjoint sets . The proof is a same , essentially ,

as in the globle case .
Definition 2.2.5.

A vector field X on M is said to be complete if it generates a (global) action of R on M, that
is,if W=RXM.

Theorem 2.2.2.

Let X be a C™ -vector field on a manifold M and F: M — M a diffeomorphism . Let (¢, P)
dente the C* map 6:W — M defined by X. Then X is invariant under F if and only if
F (8(t, P)) = 6(t, F(P)) whenever both sides are defined .
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Proof:

Suppose that X is invariant under a F . if 8p:1(P) — M is the integral curve of X with
6(0) = P, then the diffeomorphism F takes it to an integral curve F(6p(t)) of the vector
field F.(X). Since F.(X) = X and F(6,(0)) = F(p), from uniqueness of integral curves we
conclude that F(8,(t)) = 6(t, F(P)) . this proves the "only I" part of theorem .

Now suppose that F (6(t,P)) = 6(t, F(P)) and prove that F.(X) = Xp(py . This could be
done directly from expression for the infinitesimal generator . but we shall proceed in a

slightly different way .Let 6,(t) = 6(t,P) and let d/ d4¢ be the natural basis of Ty (R). The
tangent space to R at t = 0 ,then by definition . Xp = 6,(0) = BP*(d/dt) and applying the
isomorphism F: Tp(M) — Tg(py(M) to this definition we have

F.(Xp) =F. o 9P*(d/dt) = 9F(P)*(d/dt) = Xp(p)-

The second equality is the chain rule for the composition of mappings applied to 6p:R — M
and : M — M . the third equality uses the hypothesis that F o 8p(t) = 0 (p)(t).

Definition 2.2.6.

Let R be the additive group of real numbers , considered as a Lie group , and let G be an
arbitrary Lie group . A one —parameter subgroup H of G is the hoemomorphic image H =

F(R) of ahomomorphism:R — G . Itis called trivial if H = {e} .
Example 2.2.2.

Let G be the group GL(3,R). We consider two one —parameter subgroups . that is , two

homomaorphisms F;, F, into G defined as follows (a, b, c € R are constants):

e® 0 0 1 at bt+ % act?
Fy (t) ={ 0 et 0 and F, (t) =lo 1 ct
0 0 e* 0 0 1

Answer.
Now GI(3, R) acts naturally on R3 and hence each F; defines an action on R3 . In the case of

F; we have 6(t,x',x%,x3) = (e® x!,e x%,e% x3) . Therefore the infinitesimal

is gi 3hy : X, =0 —axl 2 9 3 9
generator X isgivenatx € R° by : X, =6(0,x) = ax o1 T ax oo+ ax® o

And the integral curves ,or orbits are the lines through the origin (see Fig 2.1) .
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T

Fig (2.1)

The group Gl(n,R) also acts on P""!(R), since it preserves the equivalence relation
(proportionality ) of n-tuples which defines P™~1(R) . In particular GI(3,R) acts on two-

dimensional projective space P?(R) . In this case F; defines a trivial action (t,P) = P .

cosat sinat 0
Fi(t) =| —sinat cosat 0
0 0 1
The SO(3) is homomorphism and acts on the unit sphere S? in a standard manner . the action

is just the usual rotation of the sphere . and F defines a one —parameter group of rotations

holding the x3 axis fixed :

1

o(t,x',x%,x3) = (x' cosat + x?*sinat ,—x' sinat + x% cosat ,x3)

The orbits are the lines of latitude and the generator X is tangent to them and orthogonal to
the x3-axis , X = 0 at the north and south poles (0,0, +1). (See Fig 2.2)

Fig (2.2)

Example 2.2.3.

We recall also that a Lie group G acts on itself (on the right) by right translations . Thus if we

are given a homomorphism : R — G , we may define an action 6 of R on M = G by

0



0(t,g9) = gr)(g) = gF (t) . we have used R, to denote right translation : g, (g) = ga . this
is a composition of C* maps , F and right translation . it is an action since F is a

homomorphism and multiplication is associative :
6(0,9) = gF(0) =g

0(t+s,9)=gF(t+s)= g(F(t)F(s))

=(9(FOF())) = 0(s,6(t, 9))

Thus the examples above furnish further examples of one —parameter group action . namely
onM = GI(3,R)and M = 0(3) , respectively .

A left —invariant vector field on G is uniquely determined by it's value at the identity , we

may use these ideas to characterized one-parameter subgroups of a Lie group .
Theorem 2.2.3.

Let F:R— G be a one-parameter subgroup of the Lie group G and X the left —invariant vector
field on G defined by X = F(0). Then 6(t, g) = Rp()g defines on action 8: R X G — G of R
on G (as a manifold) having X as infinitesimal generator .Conversely, let X be a left-invariant
vector field and 6:R X G — G the corresponding action . then F(t) = 6(t,e) ia a one —

parameter subgroup of G and 6(t,g) = Rpg -
Proof:

Given the F:R — G .then 6:R X G — G .defined by 0(t,g) = Rp)g = gF (t) is, as we

have just seen, an actionof Ron G. If a € G ,then :

L,6(t,g) = a(gF (t)) = (ag)F(t) = 6(t, L, (9)) -

By (Theorem 2.2.2) it follows that the generator X of 6 is L, -invariant .for any € G .
however 6(t,e) = F(t), and so X, = 6(0,e) = F(0) , which proves the first half of the

theorem .

For the converse X, being left-invariant , is both C* and complete and it generates an action 6
of RonG. By (Theorem 2.2.2) for any left translation L, we have L,6(t,g) = 6(¢t,L(g))
or equivalently, h8(t,g) = 0(t,hg) . let F(t) = 6(t,e) and h = F(s) . then this relation

implies .

F(s)F(t) = F(s)8(t,e) = 9(t,9(s,e)) =0(t+s,e)=F(s+t)
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Thus t — F(t) is a C® homomorphism . But F(0) = 6(0,e) = X, and since X is left-

invariant , we see by uniqueness of the action generated by X that 6(t, g) = Rp)(9g) .
Corollary 2.2.2.

There is a one-to-one correspondence between the elements of T,(G) and one-parameter
subgroups of t . For Z € T,(G) ,let t — F(t,Z) denote the ( unique ) corresponding one-
parameter subgroup . Then F: R X T, (G) — G is C™ and sarisfies F(t,sZ) = F(st, Z) .

Proof:

According to (Theorem 2.2.3) each Z € T,(G) determines a unique homomorphism t —
F(t,Z) of R onto G such that F(0,Z) = Z . By extension of the existence theorem , we see
that F is C* simultaneously in t and Z [ identifying T,(G) with R™ by some choice of basis ].

Using the rule of change of parameter in a curve on a manifold , we have

|5 Fasz)| =s[LFen| =sz.

t=0 t=0
One the other hand t — F(ts, Z) is a homomorphism . therefore , by uniqueness ,
t > F(st,Z) =t > F(t,sZ).

2.3 The Lie Algebra of Vector Fields On a Manifold :

Definition 2.3.1.

A vector space £ over R is a (real) °Lie algebra if in addition to it's vector space structure it
possesses a product , that is, amap £ X L — L taking the pair (X,Y) to the element [X, Y] of
L , which has the following properties :

1. It is bilinear over :
[a1 Xz + a2 X3, Y] = oy [X1, Y] + a3 [X; , Y]
[X,a1Y1 + @Yo ] = a1 [X, V1] + az[X, 17 ]
2. It is skew commutative :  [X,Y] = —[X,Y]

3. It satisfies the Jacobi identity :  [X,[Y,Z]] +[Y,[Z,X]] + [Z,[X, Y]] = 0

> An introduction to Differentiable Manifols & Riemannian Geometry- William M.Boothby —
Washington University- ST. Louis Missouri- 2003
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Example 2.3.1.

A vector space V3 of dimension 3 over R with the usual vector product of vector calculus is a
Lie algebra .

Example 2.3.2.

Let M, (R) denote the algebra of n X n matrices over R with X,Y € X(M). Then in general
the operator f — Xp(Yf) defined on C* (p) — f being a C* function on a neighborhood of

P — does not define a vector at P . Determine a C* - vector field ,however ,oddly enough .
XY — YX does it define a vector field Z € X(M) according to the prescription
Zpf = (XY =YX )p f = Xp(Yf) — Yp(Xf) .

For if f,g € C*(p), then Xf and Yf are C* on a neighborhood of P ,and this prescription
determines a linear map of C* (p) — R .Therefore, if the Leibniz rule holds for Zp . then Zp
is an element of Tp (M) at each P € M .Consider f,g € C*(p). Then f,g € C* (U) for some
open set U containing P. Using the notation (Xf)p for Xpf , the value of Xf at P .we have

relations :
XY -YX)p (f9) =Xp(Yfg) — Yp(Xfg)
=Xp(Yfg + gYf) = Yp(Xfg + gXf)
=XpHYPp + fF(PIXp(Yg) + Xpg)(Y)p + g(P)Xp(Y)
~Yp)Xgp = fFP)Yp(Xg) — Ypg)(Xf)p — g(P)(YpXf)
So that
Zp(fg) = XY —YX)p (fg) = F(PYXY =YX )p g + g(P)(XY =YX )p f
=f(P)Zpg + g(P)Zpf .

Finally, if f is C* onany openset U c M, thensois (XY —YX )f, and therefore Z isa C*-
vector field on M as claimed .We may define a product on X(M) using this fact; namely
define the product of X and Y by [X,Y] = XY —YX .

Theorem 2.3.1.

X(M) with the product [X, Y] is a Lie algebra .
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Proof:
If a, B € R %and X;, X,, Y are C*-vector fields, then it is straight-forward to verify that
[Ole + ,8X2: Y]f = a[XlJ Y]f + ﬁ[Xz, Y]f

Thus [X,Y] is linear in the first variable .Since the skew commutativity [X,Y] = —[Y, X] is
immediate from the definition, we see that linearity in the first variable implies linearity in the
second . Therefore, [X,Y] is bilinear and skew commutativite . There remains the Jacobi
identity which follows immediately if we evaluate [X,[Y,Z]]+ [Y,[Z X]] + [Z [X, Y]]
appliedtoa C*-function f .

Using the definition , we obtain

[x.1v, Z1]f = x((Y.ZDf) - [, Z1(X[)
=x(y@ZN)-xzwN)-v(zExnN)

Permuting cyclically and adding establishes the identity.

Theorem 2.3.2. (T.G = L(G) as Vector Spaces)

We have two Lie algebra associated with ’: the tangent space at the identity, T, G , with the
bracket induced by ad , and the left invariant vector fields ,mathcal L(G) , with the Lie

bracket .In this section we will demonstrate that they are isomorphic as vector spaces .
Defineamap v:T,G — X(G) by v:(g) = T Ly(§)

Forall £ € T,G and g € G .Because tangent maps are linear, soisv . Forall ¢ € T,G and

g, h € G we have
(Taly) (ve () = (TiLg)(Te Ln(®) = Tu(Lg © L) (§) = T, Lyn(§) = v (gh)

= (vg Lg)(h) -
Therefore vy is left invariant ,so v really isa map .G — L(G) . It's inverse (immediately)

Given by themap : £(G) — TG, X— X(e)eT,G.

® An introduction to Differentiable Manifols & Riemannian Geometry- William M.Boothby —~Washington
University- ST. Louis Missouri- 2003
7 About Lie Groups — timothy e. Goldberg —October 6,2005

<



Theorem 2.33. (T.G = L(G) as Lie algebras)

To show that T, G and L(G) ®are isomorphic as Lie algebras as well vector fields , we must

show thatthe map : v:T,G — L(G) , Preserves the brackets , i.e. g5y, = [ve, 1]

For all ,n € T,G . Since the Lie bracket of vector fields can be described easily in terms of

flows , it might be helpful to know what the flows of these vector fields look like .

Claim 2.3.1.

Let¢ € T,G .and g € G . Then the flows of v; through g is the curve c: R — G given by
c(t) = Lg o expifks)

Proof:

Note that c(0) = L, o exp(0 ) = L,(e) = g. Let t € R. Then

d

¢(0) = ;—SL:t c(t) = EL:o (s +t)

" dslszg Ly ° exp((s + 1)¢) = ;_S . Ly o exp((t + s)¢)

Ss=

Lg ° Lexp (&) (exp(sf))

=l Lo(exp(t®) - expils) = 5|

=%l Loew ) (exp(sd))

= (TeLg exp (t{))(f) = 175(9 exp(t§)) = Uf(C(t)) .
Theorem 2.3.4.
Let,n € T,G, Then : Vad (), = [vf ,v,]]
Proof:

Recall that the flow of v; attime t € Risthe map G — G given by Rey,(6) - Let g € G

Then using the definition of W9, Ad, and , the linearity of tangent maps, we calculate

® About Lie Groups — timothy e. Goldberg —October 6,2005
° It is a conguagation map
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[vf ’ vn](g) = ;i_s =0 ((Rexp (tf))veta) (g)

- ;_s r—o TRexp () ° Veta © Ry ) (9)
- ;_S s TRexp ) © Veta (9 exp(~t8))
=4 o TRexp 66 ° Ty exp (—e) (1)

= ;—S —o T(Rexp (t6) °Lgexp (—tf))(n)
=4 s T(Rexp c6) Ly © Lxp (=e6)) (1)
=4 o (TLg) e (T%exp i)

=(TL,) ( ;—SL:O Ad(exp tf)r))

=(TLy)[¢, 7]
= Vign1(9) -
2.4 Lie Derivative

Unlike Euclidean spaces *°,the manifold notion doesn't let us simply introduce the derivative
notion. Indeed , how shall we compare, for example vectors at various points and how shall
we define the derivative of a vector field at a point? A first answer is supplied with the notion

of orbits of a one-parameter group .
i. Lie derivative of a Function

Let g be a differentiable function on M .and the tangent vector at point x, ,to the orbit of

diffeomomrphisms ¢, is

d d
X0=Ex(t) =a¢tx0

t=0 t=0

We recall that the derivative of (germ) g in X tangency direction, at x, , is the real

d
Xog = i (gode) (x0)|t=0

19 Differential Geometry with Applications to Mechanics and Physics
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In a chart , if the n x*(t) designate local coordinates of ¢, x, = x and x§ the ones of x; , then

we know that :

dxt

< Ot

d
X09=Xtﬁg

_J9g
x4  oxt

0

Definition 2.4.1.

The Lie derivative of a function g with respect to X ,at point x; , is the derivative of g in the

direction X :

9(exo) — g(xp)
t

Lx,g = Xog = lim

More precisely, we compare at x, ,the value g* (xy) = g(¢,xy) of g obtained at point
¢+ (x) with the value g(x,) . next we divide by the variation of parameter t and take the

limit ¢t — 0 .we go back to x, along the orbit .
The Lie derivative of a function g with respect to X is the function Lyg = M +— Lyg(x)
Suchthat: Lyg(x) =X,g(x)
In short omitting the bracket : Lyg = Xg = ;T (g o) = :7 (}rg).
In local coordinates , the Lie derivative of g with respect to X is expressed by

Lyg = X'09; g = 9; gdx* (Xfc')j) =dg(X)
Denoted in short form: Lyg = dg X (2.3)
Remark 2.4.1.
The gradient of g denoted dg and such that :

(dg,X) = Lxg

Proposition 2.4.1.

Let f: M — N be a diffeomorphism , X be a vector field on M , Ly be a differentiable Lie

operator on C* (M) . then the Lie operator Ly is:

i. Natural with respect to pull-back by f ,that is the following diagram is commutative
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ey I e
Lagy b VL,
CON) o €M)

ii. Natural with respect to restrictions ;that is the following diagram is commutative (for any
open U of M) .

™ (M) c” ()
Ly { VL
[ee) - [e0)
oMy W)
Proof:
i. The image of X under f is the vector field dfX on N such that vh € C*(N) :
dfX(h) = X(f*R) o f~
Thatimplies : Ly(f*h) = X(f*h) = dfX(h) o f = f*Lysx h
ii. The second assertion Ly (h|U) = Lyh|U
Is obvious because d(h|U) = (dh)|U
ii. Lie derivative of vector field :

Let ¢,: M — M be "diffeomorphisms, and Let X be the (generating) field of tangent vectors

to the ormit of a group of diffeomorphisms ¢, passing through x .

Let Y be a vector field associated to a diffeomorphism 1, and Y; ., be the tangent vector at
point x, = ¢ x; -

We use the image of this vector under the diffeomorphism ¢; ! = ¢_, is dqb;le,txO
Where dp;: Ty, M — Ty M .

"Going backwards " to x, along an orbit and comparing the previous image with vector T, ,

We define : The Lie derivative of vector field Y with respect to X ,at x; , is

" "Differential Geometry With Applications to Mechanics and Physics"- Yves Tapaert- Ouagadougou University
- Burkina Faso .
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. 1 —
Ty = lime—o ¢ (i Yy 0y — Toy)

_d -1
=qdety|
Remark 2.4.2. (Zero Lie derivative)

From the previous definition , if d¢;1Y¢txO = T, then the Lie derivative is zero .

This particular case is illustrated as follows:

In general way, there is no reason for such an equality apart from when the image of orbit (
with tangent vector X) passing through x, under 1, is the orbit corresponding to X passing

through ¥, x, .

Proposition 2.4.2.

The Lie derivative of vector field Y with respect to X is the Lie bracket of X and .

Proof:

First : Let us point out the following remark .

Let g: I X U — R be a function defined on X U € R x M . there is a function h: I X U — R
Of class C* such that : g(t,x) = g(0,x) + th(t,x) and 9,9(0,x) = h(0,x)

The function h such that : h(t,x) = fot 9, g(tu, x)du

fits the requirements

Indeed , from the change of variable v = tu , we deduce :
h(t, ) =7 fy %9, x)dv = ¢ (g(t,x) = 9(0,2)

g, x) =g(0,x) + th(t,x)

Andalso  h(0,x) = [ 0,g(0, x)du =0,g(0,x).
Second : let us prove the proposition

The following comparison between vectors d¢;'Y — Y

Leads to
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Ly = lime—o ; (7Y = ¥)(g) = lime—o ; d (¥ — dpY) ()
=lim,—g 1 (¥ — d,Y)(g)
= lim,—o7 (Y(9) = ¥(g° $) ° 6 )(9) .

It is from the definition of the image of vector field under ¢, ,namely :

(d¢.Y)(g) = g(x) + th(t, x)

Where

h(0,x) = X2 (0,x) = Xg,

the last equality following from the definition of the directional derivation of g along X ,

then , by using the expression of LyY(g), we have :
LyY(g) =lime_o 3 (Y(9) = Y(g) © ;" — tY(R) o ;")
=lim,—o (; G/(9) o e = Y()) 0 b =Y (h) o ;")
= :—t (Y(9) ° ¢)(0) — lim,— Y (h) , because lim,_o ¢; ' = id
From the directional derivative of a function Y(g) along :
X(Y(9)) = (Y(g) ° p) ()=
Andsince h(0,x) = Xg
we deduce : LyY(g) = X(Y(9)) - Y(X(9)) = [X,Y]g .
Properties ......
1. R- bilinearity: vV X,Y,Z € X(M),Va,b €ER :
LyiyZ = LyZ + LyZ
Ly(Y +2) = LyY + LyZ
Loy bY = abLyY

2. Anticommutative property , VX,Y € X(M) : LyY = —LyX .
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Jacobi identity , V X,Y,Z € X(M) :
[x,1v,Z]] + [v,[Z,X]] = —[Z, X, Y]]
(=4 L[X-I—Y]Z = LXLyZ + LyLXz

& LylY,Z] = [LyY,Z] + [V, Ly Z]

So the properties (2) and (3) show the algebra is a Lie algebra . The equality proves Ly is a

Lie bracket derivation .

Definition 2.4.2.  (Lie derivative of differential form)

The Lie derivative of differential form w with respect to X ,at x; ,is
. 1/ .,
(Lyw)y, = lim;—o - ((thgb;‘xo - wxo) (2.4)
d s
=7 ¢tw|t=0

Remark 2.4.3.

Lgto=Lgio| = Lono| =¢i L] =g
dt ¢tw - dt ¢t+$w SZO_ ds ¢t+$w $=0 - ¢t dt ¢Sw t=0 - ¢t(LX (1))

Remark 2.4.4.

The definition (2.4.2) leads again to the formula (2.3) in the context of real-valued functions :

. 1/ s : 1
(Lx 9)x, = lime—o 7 (prg(pexo) — g(x)) = lim,—g z (9(dex0) — g(xp)) -
Proposition 2.4.3.
The operator d is natural with respect to Ly ; that is the following diagram is commutative :
o M aron
ﬁ

dl ld

P P+l
Q") e

In other words , V w € QP (M):dLy w = Ly dw .

2 "Differential Geometry With Applications to Mechanics and Physics - Yves Tapaert- Ouagadougou
University - Burkina Faso .
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Proof:

d d d
dLy w =d— ¢piw = — d/w = —dop;w = Lydw .
X i Peo| _ =g o, o dbcw| = Lx

=0
Example 2.4.1.

With the help of diffeomorphisms give an interpretation of the Lie derivative of a vector field
X with respect to vector field Y on a manifold .

Given one-parameter groups of diffeomorphisms ¢, and iy, of which X and Y are the

respective generating fields, show that the curve : t — ((;b_ﬁ oY_god e wﬁ)x
Is differentiable at t = 0 and admits [X,Y] = LyY as a corresponding tangent vector .
Answer:

Let x, be a point of M (t = 0)

2.5 Matrix groups

i. The Lie algebra of matrix Groups

Let us consider (n, K) *°, as a coordinates we choose the entries of the matrices, so that a
matrix g is parameterized by g = g; . in particular, the identity is e = &/ . then the left

translation, as multiplication actsas : L,g = hg = h}cg]’-‘

_(hg);

Its differential is (dLy)!} { = = hi. &}
l

]

The left-invariant vector fields can be obtained from the tangent vectors at the identity .

denoted such a vector by V = V! %
ilg=e

The vector field X, corresponding to V is given by acting on V with differential ,

i1k O i slyk O K
Xylp = dLyV = (dLp)j Vi ﬁ=hk5j i (hV);

J J 0 h]'l

The component of Xy, at the point V is just hV, interpretend as a matrix product.

This gives us a very important formula for the Lie bracket:

B Group Theory ( for Physicists ) - Christoph L udeling - August, 16, 2010
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Let X, and X, be two vector fields obtained from tangent vectors ¥V and W as a

bove . the Lie bracket is a new vector field, which at point h is given by
;0 9
v, Xl = (G100} i Gl la) | = o)} 5 vl ) i

a

(hl ym 2 pk wr — i Wm—thl) s

J 6h‘ 7 ahn!

0

— hfn (%mwf Wmv]) —

5 = hIV.WIg

Remark 2.5.1.

In the last line the square brackets indicate not the Lie bracket of vector fields, but the matrix
commutator, (it means that we can identify the Lie algebra of GL(n,C) with the components
V]-i of tangent vectors and use the usual matrix commutator as the product which is huge

simplification).
Definition 2.5.1. ( The Exponential Map )
We define a diffeomorphism of G onto itself as follows :

The points on an integral curve of a left-invariant vector field X (through ,att=0) are

defined by : gx(t): x — exp(tX)x
Definition 2.5.2.

The mapping gy (t) = exp(tX) is called exponential mapping generated by the vector “field
X. This mapping has the property of a one-parameter subgroup of :

gx(s+1t) = exp((s + t)X) = exp(sX)exp(tX)

= 9gx(s)gx (0) .
Therefore, for every X € T, G, the integral curve of X passing through e att = 0 is
gx:R — G:t — expli(tX)

this mapping gy exists for any real t (the flow is complete) . This smooth (i.e C*)

homomaorphism is a one-parameter subgroup of G.

* Mechanics in Differential Geometry - Yves Tapaert — copy right 2006 , koninklije Brill NV,Leiden — the
Netherland .
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Definition 2.5.3.

The exponential mapping of the Lie algebra of G into G is
expg:T,G — G: X — gx(1) = expX.

Example 2.5.1.

The group of (n x n) real nonsingular matrices is called general linear group and denoted
L(n,R) .

If the space of (n x n) real matrices is identified with R™, then the general linear group is

identified with the open submanifold of R"* defined by a nonzero determinant .
Let A = (a]) be some element of GL(n, R) with det(a’) # 0.
There is an open subset of R™ , GL(n, R) is provided with a differentiable manifold structure

A neighborhood of 4 is composed of matrices B = det(b!) such that |b/ — a/| < & where
the real ¢ is chosen small enough so that det(b]) # 0. In this neighborhood, the coordinates

are defined by the n? reals x/ = b/ —a/ .

GL(n, R) is a group with the multiplication law of class C* :

GL(n,R) X GL(n,R) — GL(n,R): (A,B) — AB

Where AB = (a/b}) .

Besides , GL(n,R) — GL(n,R):A+— A lisof class C* , so G is a lie group .

Since R™’ is identical to the tangent space at any of it's points, the tangent space at identity

point e of GL(n,R) is naturally identified with R™ : any tangent vector is a (n x n) real

matrix .

Consider a one-parameter subgroup generated by any matrix A € L(R™, R™) that is an integral

curve of left-invariant vector field passing through e (at t = 0) and represented by the matrix

94(®) = ((ga)}) withA = (%ﬂ)o _

Since  ga(t+At) = ga(t)ga(At),

We easily obtain :
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B4 (1) = ga(t)A

= ga(t) = expiftA)

tmA"

n!

S0,94:R — GL(n,R):t — Y0
Is a one-parameter subgroup with g,(0) = I. The exponential mapping is
exp: L(R",R") — GL(n, R): A — g(1) = £ |
Finally ,we find the Lie algebra of GL(n, R) as follows .
For every € GL(n, R) , the left-invariant vector fields on GL(n, R) are defined by
X,:GL(n,R) — L(R",R™):Y +— YA
Here, the Lie bracket is defined by : [A, B] = [X4, Xg](I)

If we consider the one-parameter subgroups or integral curves of left-invariant vector fields
g4 and ggp , and if we refer to the ( Example 2.5.1) giving an interpretation of Lie bracket

with the help of diffeomorphisms , we immediately have :
[X4,Xp] = limt=0ti2 (94 g5 () — gp(®) ga(@®))
=lim,_g 7 (1 + A+ )A+tB+-) = (L+tB+-)(1+tA+-))

So, at point e we obtain: [A,B] = AB — BA

And the Lie bracket of any two left-invariant vector fields at e is usual commutator of the two
matrices "generating” the fields . the left-invariant vector field generated by this commutator
belongs to the Lie algebra of GL(n, R) .

L(R™,R™), is the lie algebra of L(n,R) , the Lie bracket being the matrix commutator . we

remark that , given C € GL(n, R) , the mapping

CgaC 1:R — GL(n,R):t — Cg,(t)C!
Is an integral curve of vector field X -,.-1 passing through I. Indeed, we have :
Cga(0)Ct=1

and
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£ (CgaC™H() = €2 (1)C! = Cgu(HACT
=(CgsC~H(t)CACTT .
In addition, we see that :  gosc-1 = CgaC™t Or exp(CAC™1) = CexpAC™t.
Proposition 2.5.1.
If h: G — H isa C* homomorphism of Lie group G into Lie group H, then
dh,:L(G) — L(H) is a Lie algebra homomorphism .
Proof:
We have V¢, n € T,G :
dh,[&,n] = dh,([Xs, X, ])(€) = [dh.Xe, dh.X¢](en)
= [Xan,e» Xan,n|Cen) (homomorphism)
= [dh.§, dhen] .
Proposition 2.5.2.
If h: G — H is a C* homomorphism of Lie groups , then V¢ € L(G):
h(expg$) = expy(dh.$) .
proof:

The mapping g: R — H:t +— h(exp;té)

is a one-parameter subgroup of H. Thus, we have dh, ¢ = :—t g 0= n
t=

And (t) = expytn .
That implies : h(expsé) = g(1) = expy n = expy(dh,&)
ii. The adjoint transformation:

For example, the matrix group GL(n,R) has been considered through a faithfull
representation of a matrix transformation of n-dimensional vector space (a representation is
termed faithful if it is one-to-one). Besides such a type of representation there is the adjoint

representation that we are going to introduce .
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First let us consider the inner automophism of G associated with € G , that is
Ig:G — G:hv—> ghg™ =R -1 Lyh.

This mapping of G into itself is C* and is a homomorphism because Vh,l € G :
I;(hl) = ghlg™ = ghg~'glg™ = I,(WI; (D)

In parcitcular , the identity e is mapping by any I, into e . So, each I, induces a mapping of

T,G into it self.
Definition 2.5.4.
The adjoint transformation associated with g € G is the mapping T,G — T,G defined by
Adg = (dly), = d(Rg-1Lg)(e)
Remark 2.5.2.

From (Prop 2.5.2) lets write Vg € G, V¢ € T,G :

exp(Ady€) = exp ((dlg)e f) = I, (expé) = gexp§g" .
Remark 2.5.3.

Considering a one-parameter subgroup of G defined by t +— expiiftX), let h and [ be any two

points of this integral curve of X passing througheatt =0.

The respective images under I, of the previous points ,that are h' = ghg™ ,I' = glg~" and
e = geg~!,define another curve passing through e such that the tangent vector field is AdgX
(this I;(h 1) = I, ()1, (D) .

Thus we denote : I (exp(tX)) = exp(t AdyX)
2.6 Representations of Lie algebras :

We will study representations of the simplest possible Lie algebra, sI(2, C) *°. Recall that this

Lie algebra has a basis e, f, h with commutation relations:

[e}f]:h, [h,€]=2€ ' [h,f]:—Zf

As we proved earlier This Lie algebra is simple .

* Introduction to Lie Groups and Lie Algebras — Alexander Kirillov,Jr. — Departement of mathematics,
Suny At stony Brook,NY 11794, USA.
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The main idea of the study of representation of sI(2,C). Is to start by diagonalizing the

operator h .
Definition 2.6.1.

Let V be a representation of of sI(2,C) . A vector v € V is called vector of weight A, 1 € C if

it is an eigenvector for h with eigenvalue 1 : hv = Av

we denoted by V[A] c V the subspace of vectors of weight A . The following Lemma play a

key role in the study of representations of sl(2,C) .
Lemma 2.6.1.

eV[Al c V[A+ 2]

fV[Al cV[A-2]

Proof:

Let v € V[A]. Then : hev = [h,e]v + ehv = 2ev + Adev = (A + 2)ev, So ev E V[A + 2] .

the proof for f is similar .

Theorem 2.6.1.

Every finite-dimensional representation V of sI(2, C) can be written in the form V =@, V[ 1]
Where V[A] is defined in (Def 2.6.1).This decomposition is called weight decomposition of V.
Proof:

Since every representation of sI(2,C) is completely reducible, it suffices to prove this for
irreducible V. So assume that V' is irreducible . Let V = Y,; V[A] be the subspace spanned by
eigenvectors of h. By well-known result of linear algebra, eigenvectors with different
eigenvalues are linearly independent , so V' =@V|[ A]. By (Lemma 2.6.1), V' is stable under
action of e, f and h. Thus, V' is a subrepresentation. Since we assumed that V is irreducible,

and V' # 0 ( h has at least one eigenvector ), we see that V' = V.

Our main goal will be classification of irreducible finite-dimensional representations. So let V
be an irreducible representation of sI(2,C) . Let A be a weight of V (i.e, V[1] # 0) which is

maximal in the following sense :

Red > Rel for every weight ' of V.
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Such a weight will be called "highest weight of (V") " ,a nd vectors v € V[A] - highest
weight vectors . It is obvious that every finite-dimensional representation has at least one-
zero highest weight vector .
Lemma 2.6.2.

1

Let A € C. Define M, to be the infinite-dimensional vector space with basis v°, v, .....

Irreducible representations 17, can also be described more explicitly, as symmetric powers of

the usual two-dimnsional representation .
Theorem 2.6.2.

1. For any n > 0, let V/, be the finite-dimensional vector space basis v, ... ...., v™. Define the
action of sI(2,C) by

hvk = (n = 2k)v*
fvk = (k+ v, k>n; fr"=0 (2.5)
evk =(m+1-kwk1, k>0; ev? =0.

Then V, is an irreducible representation of sI(2,C); we will call it the irreducible

representation with highest weight n.
2. For n # m, representation V,, V,, are non-isomorphic .

3. Every finite-dimensional irreducible representation of sI(2,C) is isomorphic to one of

representations V, .
Proof:

Consider the finite-dimensional representation M,. If A =n is a non-negative integer,
consider the subspace M c M, spanned by vectors v™*1,pn+2 Then this subspace is
actually a subrepresentation. Indeed, it is obviously stable under action of h and f; the only

non-trivial relation to check that v**! c M'. Butev"™ = (n+1—-(n+1))v" =0.

Thus the quotient space M,, /M is a finite-dimensional representation of sI(2, C). It is obvious
that it has basis v°,......,v" and that the action of v°,......,v" is given by (2.5) .
irreducibility of this representation is also easy to prove: any subrepresentation must be
spanned by some subset of v, vl ... ...,v", butitis easy to see that each of them generates

( under the action of sI(2,C)) the whole representation V,, . therefore , Vy is an irreducible




finite-dimensional representation of sI(2, C) . Since dimV,, = n+ 1, itis obvious that Vy are

pairwise non-isomorphic .

To prove that every irreducible representation is of this form, let V be an irreducible
representation of sI(2,C) and let v € V[A] be a highest weight vector. By (Lemma 2.6.2.) , V

k
is a quotient of M;; in other words , it is spanned by vectors v* = % V.

Since v* have different weights , if they are non-zero, then they must be linearly independent.
On the other hand, V is finite-dimensional ; thus, only finitely many of v are non-zero . Let
n be maximal such that v™ # 0, so that v™*! = 0. Obviously, in this case v°,.......,v™ are
all non-zero and since they have different weight, they are linearly independent, so they form

abasisinV.
Since v**1 = 0, we must have ev™*! = 0. On the pther hand ,by (2.5) ,we have
ev™ = (1 —n)v".
Since v™ # 0, this implies that A = n is a non-negative integer . Thus, V is a representation.
2.7 Nilpotent Lie algebras :
Definition 2.7.1.
A Lie algebra g is said to be nilpotent™ if it admits a filtration
g=aqDa; D-Da =0 (2.6)

By ideals such that [g,a;] € a;;¢ for 0 <i <r —1. Such a filtration is called a nilpotent
series . The condition (2.6) to be a nilpotent series is that a; /a;, 1 be in the centre of g/a;;4
for 0 < i < r — 1. Thus the nilpotent Lie algebras are exactly those that can be obtained from

commutative Lie algebras by successive centeral extensions
0—a;/a; = g/az — g/ag — 0

0 —ay/a3 — g/az3 — g/a; — 0

In another words, the nilpotent Lie algebras from the smallest class containing the

commutative Lie algebras and closed under central extensions .

16 Lie Algebras, Algebraic Groups and Lie Groups (chapter one ) - J.S. Milne — may 5, 2013.




The lower central series of g is

gogl o ogitl o

with g* = [g,6], 6> = [3,8'], ... ..., T = [g,6'], ... oo

Proposition 2.7.1.

A Lie algebra g is nilpotent if and only if it's lower central series terminates with zero .
Proof:

If the lower central series terminates with zero, then it is a nilpotent series. Conversely , if
gDa; Da,>d-->Da, =0 is nilpotent series, then a; o g' because g/a; is commutative ,

ay O [g,0;] O [g,a'] = g%, and so on, until we arriveat 0 = a,, D g” .
Let V be a vector space of dimension, and let, F:V =V, o2 V; 2 -- 2V, =0,dimV;, =n—1i

Be a maximal flag in . let n(F) be the Lie subalgebra of gl;, consisting of the elements x such

that x(V;) c V; 4 for all i . the lower central series for n(F) has

n(Fy ={x € gly|x(V;) € Vij14;}

Forj =1,....,n.Inparticular , n(F) is nilpotent . For example ,

0 * = 0 0 =
A A
0 0O 0 0 O

Is nilpotent series for ns .

An extension of nilpotent algebra is solvable , but not necessarily nilpotent . for example, ns

is nilpotent and b3 /n3 is commutative , but b3 is not nilpotent whenn > 3.
Proposition 2.7.2.

1. Subalgebras and quotient algebras of nilpotent Lie algebras are nilpotent.

2. A Lie algebra g is nilpotent if g/a is nilpotent for some ideal a contained in z(g).
3. A nonzero nilpotent Lie algebra has nonzero centre .

Proof:

1.The intersection of a nilpotent series for g with a Lie subalgebra § is nilpotent series for p ,

and the image of a nilpotent series for g in a quotient algebra g is a nilpotent series for g .




2. For any ideal a c z(g), the inverse image of a nilpotent series for g/a becomes a nilpotent

series for g when extended by O .

3. If g is nilpotent , then the last nonzero term a in a nilpotent series for g is contained in z(g).
Proposition 2.7.3.

Let b be a proper Lie subalgebra of a nilpotent Lie algebra g; then b # n, (b) .

Proof:

We use induction on the dimension of g. Because g is nilpotent and nonzero , it's centre z(g)

is nonzero . if z(g) ¢ b ,then n, (h) # b because z(g) normalizes b . if z(g) = b, then we
can apply induction to the Lie subalgebra I7/Z(g) of g/z(g) :

2.8 Solvable Lie algebras :

Definition 2.8.1.

A Lie algebra g is said to be solvable'’ if it admits a filtration

By ideals such that [a;, ;] € a;4¢ for 0 < i <r —1. Such a filtration is called a solvable

series.

The condition (2.6) to be a solvable series is that the quotients a;/a;;; commutative for
0 <i <r—1. Thus the solvable Lie algebras are exactly those that can be obtained from

commutative Lie algebras by successive extensions
0—a;/a; = g/a; = g/a; — 0

0 —ay/a3 — g/az3 — g/a; — 0

In another words, the solvable Lie algebras from the smallest class containing the

commutative Lie algebras and closed under extensions.

The characteristic ideal [g, g] is called the derived algebra of , and is denoted Dg .Clearly Dg
is contained in every ideal a such that g/a is commutative , and so g/Dg is the largest

commutative quotient of g . Write D?g for the second derived algebra D(Dg), D3g for the

e Algebras, Algebraic Groups and Lie Groups ( chapter one ) - J.S. Milne — may 5, 2013.
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third derived algebra D(D?g) , and so on. These are characteristic ideals, and the derived

series of g is the sequence

g D Dg>DD?gD -

We sometimes write g’ for Dg and g™ for D"g .

Proposition 2.8.1.

A Lie algebra g is solvable if and only if it's derived series terminates with zero .
Proof:

If the derived series terminates with zero, then it is a solvable series. Conversely , if g >
a; Da, D Da, =0 is a solvable series, then a; D g because g/a; is commutative |,

a, D a'l > g’ because a;/a, is commutative , and so on, until 0 = a, > g .
Let V be a vector space of dimension , and let
F-V=VoV;2-2V, =0 ,dimV,=n—-1i,

Be a maximal flag in . Let b(F) be the Lie subalgebra of gl consisting of the elements x
such that x(V;) c V; for all i . then D(b(F)) = n(F) and so b(F) is solvable .

For example ,

* *x ok 0 =x *
53={<0 x )}:{(0 0 *)}:{0}
0 0 = 0 0 O

Is nilpotent series for b3 .
Proposition 2.8.2.

Let k' be a field containing k.A Lie algebra g over k is solvable if and only if gk’ & k' @, g

is solvable .
Proof:

Obviously, for any subalgebras h and b’ of g, [ §, '], = [bk’,b}a] , and so, under extension

of the base field, the derived series of g maps to that of g;' .

Note : we say that an ideal is solvable if it is solvable as a Lie algebra .
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Proposition 2.8.3.
1. Subalgebras and quotient algebras of solvable Lie algebras are solvable .
2. A Lie algebra g is solvable if it contains an ideal n such that both n and g/n are solvable

3. Letn be an ideal in a Lie algebra g, and let h be a subalgebra of g . if nand b are solvable,

then n + b is solvable .
Proof:

1.The intersection of a solvable series for g with a Lie subalgebra § is a solvable series for b ,

and the image of a solvable series for g in a quotient algebra g is a solvable series for q .

2. Because g/n is solvable, g™ c n for some m. Now , g™+ < n™ which is zero for

somen .
3. This follows from (2) because h + n/n = §/Hh N n which is solvable by (1) .
Corollary 2.8.1.

Every Lie algebra contains a largest solvable ideal .

Proof:

Let n be a maximal solvable ideal. If b is also a solvable ideal, then § + n is solvable by (3) ,

and so equals n; therefore h c n.
Definition 2.8.2.

The radical r = r(g) of g is the largest solvable ideals in, The radical of g is a characteristic

ideal .
Definition 2.8.3. ( The Cartan’s criterion for solvability )

For any n x n matrices A = (a;; ) and B = (b;; ) , where Tr(4) =¥, a; b; = Tr(BA)

i
Hence, Try (x o y) = Try(y o x) for any rndomorphisms x, y of a vector space V/, and so
Try([x,ylez) =Tr(xeyez) —=Tr(yexez)

=Tr(xoyoz)—Tr(xozoy) (2.7)

=Tr(xe[y,z])
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Theorem 2.8.2 ( Cartan's Criterion)

Let g be a subalgebra of gl, , where V is a finite — dimensional vector space over a field k of

characteristic zero. Then g is solvable if Try(xoy) =0forallx,y €g.
Proof:

We first observe that, if k" is a field containing k, then the theorem is true for g c gl if and
only if it is true for g, < gly,, ( because g is solvable if and only if g is solvable from

(prop 2.8.2) . therefore, we may assume that the field k is finitely generated over @ hence
embeddable in C, and thenthat k = C .

We shall show that the condition implies that each x € [g,g] defines a nilpotent
endomorphism of V. Then Engle's theorem will show that [g, g] is nilpotent , in particular,

solvable ,and it follows that g is solvable because g™ = (Dg)™~ D .

Let x € [g,g] , and choose a basis of VV for which the matrix of x is upper triangular . Then the
matrix of x, is diagonal, say , diag (a4, ....,a,), and the matrix of x, is strictly upper

triangular . We have to show that x; = 0, and for this it suffices to show that
C_llal + -+ C_lnan =0
Where @ is the complex conjugate of a . Note that : Try (&; o x) = a;aq + -+ @, a, ,

Because x; has matrix diag (ay, ....,a,) . By assumption , x is a sum of commutators [y, z],
and so it suffices to show that : Try (x5 o [y,z]) =0, all y,z € g . From the trivial identity

(2.7) , we see that it suffices to show that :

Try([x5,y]0oz) =0, all y,zeg.
This will follow from the hypothisis once we have shown that [X;, y] € g . According to
Xy = c1x + cy3x? + -+ c,x” , forsome c; € k , and so [x;,g] < g, Because [x,g] cg.
Corollary 2.8.2.

Let VV be a finite-dimensional vector space over a field k of characteristic zero , and let g be a
subalgebra of gl, . if g is solvable, then Try(xoy)=0for all xeg and y € [g,g] .

conversely, if Try,(x e y) = 0 forall x,y € [g,g], then g is solvable .
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Proof:

If g is solvable, then Tr,(x o y) = 0 forx € gand y € [g,g ] . for the converse , note that the
condition implies that [g,g] is solvable by ( Theorem 2.8.2 ). but this implies that g is

solvable , because g™ = (Dg)™— 1 .

2.9 Simesimple Lie algebra:

Definitions and basic properties 2.9.1.

1. A Lie algebra is called semisimple if it's only commutative ideal is {0}.

Thus, the Lie algebra {0} is semisimple ,but no Lie algebra of dimension 1 or 2 is semisimple.

There exists a semisimple Lie algebra of dimension 3, namely, sl,.
from (Def 2.8.2).
2. A Lie algebra g is semisimple if and only if it's radical is zero .

If r(g) = 0, then every commutative ideal is zero because it is contained in r(g). Conversely,
if r(g) # 0, then the nonzero term of the derived series of r(g) is a commutative ideal in g

(itisanideal in g because it is characteristic ideal in r(g)) .

3. A Lie algebra g is semisimple if and only if every solvable ideal is zero .

Since r(g) is the largest solvable ideal, it is zero if and only if every solvable ideal is zero .
4. The quotient g/r(g) of a Lie algebra by it's radical is semisimple .

A non zero commutative ideal in g/r(g) would correspond to a solvable ideal in g properly

containing r(g).

5. Aproduct g = g1 X .......X g, of semisimple Lie algebras is semisimple .

Let a be a commutative ideal in g; the projection of a in g; is zero for each i, and so a is zero
Theorem 2.9.1.

If g is a semisimple complex Lie algebra'®, then any x € g can be uniquely written in the form

X =x5 + x,

'8 Introduction to Lie Groups and Lie Algebras — alexander Kirillov, Jr. department of Mathematics,
SUNY at Stony Brook, Stony Brook, NY11794. USA
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Where x, is semisimple, x,, is nilpotent, and [x,,x,] = 0. Moreover, adx, = P(adx) for some

polynomial P € tC|[t] depending on x.
Proof:-
Uniqueness immediately follows from uniqueness of Jacobi decomposition for ad x

If x =x, 4+ x,= x; + x,, , then (ad x) = ad x,= ad x, , 50 ad(x; — x,)= 0. But by definition,
a semisimple Lie algebra has zero center, so this implies x; — x; = 0. To prove existence, let
us write g as direct sum of generalized eigenspaces forad x: g = @ g, , (adx — 4 id )"|;,=0

forA>0.
Lemma 2.9.1.
[g1, 8.]C gass
Proof

By Jacobi identity,(ad x — 1 — w)[y,z]=[(ad x — ) y,z] + [y, (ad x — w)z]. Thus, if y € g,

, Z € gy, then:

(adx—2A—p)" [y, z] = Z(Z) [(ad x — ¥y, (adx — )" * z] =0, forn > 0

Definition 2.9.2.

A Lie algebra g is called simple if it is not abelian and contains no ideals other than 0 and g.

The condition that g should not be abelian is included rule out one-dimensional Lie algebra :
there are many reasons not to include it in the class of simple Lie algebras. One of these

reasons is the following lemma .
Lemma 2.9.2.

Any simple Lie algebra is semisimple .
Proof:

If g is simple, then it contains no ideals other than 0 and g. Thus, if g contains a nonzero
solvable ideal, then it must coincide with g, so g must be solvable . But then [g, g] is an ideal
which is strictly smaller than g ( because g is solvable ) and nonzero (because g is not

abelian). This gives a contradiction .
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Definition 2.9.3. (Trace form)

Let g be a Lie algebra. A symmetric k-bilinear form §:g x g — k on g is said to be invariant

(or associative) if : B([x,v],z) = B(x, [y, z]) forallx,y,z€g
Thatis, if B([x,y],z) + B(y,[x,z]) =0 forallx,y,z€g
In other words, g is invariant if 8(Dy,z) + B(y,Dz) =0 (2.8)

For all inner derivations D of g . if (2.8) holds for all derivations, then g is said to be

completely invariant .
Lemma 2.9.3.

Let 8 be an invariant form of g. and let a be an ideal in g. the orthogonal complement a* of

a with respect f3 is again an ideal . If 8 is nondegenerate , then a N a' is commutative .
Proof:
Leta € a,a’ € at,and x € g, and consider, B([x,al,a’) + B(a,[x,a']) =0

As [x,a] € a, B([x,a],a") = 0. Therefore B(a,[x,a’]) = 0. As this holds for all a € a, we

see that [x,a’] € at, and so at is an ideal .

Now assume that 8 is nondegenerate. Then d & a N a* is an ideal in g such that 8> x d = 0.
Forb,b' € band x € g, B([b,b'],x) = B(b, [b’, x]), which is zero because [b’,x] € b .

As this holds for all x € g, we see that [b,b’] = 0, and so b is commutative . The trace form

of representation (V, p) of gis (x,y) +— TrV(p(x) ° p(y)): gXxg— k.

In other words, the trace form S,:g X g — k of a g-module V is (x,y) — Try(xy o yy),

XEg

Lemma 2.9.4.

The trace form is a symmetric bilinear form on g, and it is invariant :
Bv([x,y1,2) = By (x, [y, z]) allx,y,z € g.

Proof:

It is k-bilinear because p is linear, composition of maps is bilinear, and traces are linear . it is

symmetry because traces are symmetric . it is invariant because

<



.BV([X'Y]:Z) = TT([X'Y] OZ) (3:22 TT'(X ° [y;Z]) = ﬁV(x! [YIZD for all X, Y,z € g

Therefore (Lemma 2.9.3), the orthogonal complement ot of an ideal a of g with respect to a

trace form is again an ideal .
Proposition 2.9.1.

If g — g — gly is faithful and g is semisimple, then By, is nondegenerate .
Proof:

We have to show that g* = 0. For this, it suffices to show that g* is solvable ( from 3 def of

semisimple) but the pairing

(x,y) = Try(xy o yy) & By (x,y)

Is zero on g+, and so Cartan's criterion shows that it is solvable .
Definition 2.9.4. ( The Cartan’s criterion for semisimplicity )

The trace form for the adjoint representation ad: g — gl is called the killing form™ ksong.

thus ,
ky(x,y) = Try(ad(x)  ad(y)), allx,y €g
In orther words , k4 (x, y) is the trace of the k-linear map : z — [x, [y, z]]:g — g..
Example 2.9.1.
The Lie algebra sl, consists of the 2 x 2 matrices with trace zero . It has as basis the elements
=00 -0 =05
And
[h,x] =2x | [hyl = -2y , [x,y] =h

Relative to the basis {x,y, h},

0 -2 0 2 0 0 0 0 O
adx=<0 0 1), adh=(0 0 0), ady=(—1 0 O)
0 0 O 0 0 -2 0 2 0

19 Also called the Cartan-killing form . According to Bourbaki (Note Historical to 1,11,111), Cartan
introduced the "Killing form" in his thesis and proved the two fundamental criteria: a Lie algebra is
solvable if its Killing form is trivial; a Lie algebra is semisimple if its Killing form is nondegenerate .
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And so the top row (k(x, x), k(x, h), (k(x, y))) of the matrix of k consists of the traces of

0O 0 -2 0 0 O 2 0 0
0o 0 0], 0o 0 =21, 0 2 0
0 0 O 0 0 O 0 0 O
0 0 4
In fact, k has matrix {0 8 0 |, which has determinant -128 .

4 0 0

Lemma 2.9.5.

Let a be an ideal in g . The Killing form on g restricts to Killing formon a . i,e.

ko(x,y) = ko(x,y) all x,y€a.
Proof:

If an endomorphism of a vector space V maps V into a subspace W of V, then Try(a) =
Try (a|W), because , when we choose a basis for W and extend it to a basis for V, the matrix

A B
0 0

endomorphism of g mapping g into a, and so its trace (on g) , k4(x,y), equals

for a takes the form ( ) with A the matrix of a|W . If x,y € q, then ad x o ad y is an

Try(ad xcad y|,) = Tr(ad, x o ad, y) = k,(x,y).
Example 2.9.2

For matrices X,Y € sl, , ky (X,Y) = 2nTr(XY)

To prove this, it suffices to show that : kg (X,Y) = 2n Tr(XY)

For X,Y € sl,, . By definition , kg (X,Y) is the trace of the map M, (k) — M, (k) sending
TeM,(k)to XYT —XTY —YTX + TYX

For any matrix A, the trace of each of the maps [;:T +— AT and r,: T +— TA is nTr(A4),
because , as a left or right M,, (k)-module , M,, (k) is isomorphic to a direct sum of n-copies
of the standard M,, (k)-module k™. Therefore , the traces of the maps T +— XYT and T —
TXY are both nTr(XY), while the traces of the maps T +— XTY and T +— YTX are both equal
to Tr(ly ery) = n?Tr(X)Tr(Y) =0

Proposition 2.9.2.

If k4(g,[a,0]) = 0, then g is solvable; in particular, g is solvable if its Killing form is zero .
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Proof:

Cartan's criterion for solvability applied to the adjoint representation ad: g — gl shows that

ad(D,) is solvable. Hence D, is solvable, and so g is solvable.

Theorem 2.9.2 (Cartan's criterion)

A non zero Lie algebra g is semisimple if and only if its Killing form is nondegenerate .
Proof:

Because g is semisimple , the adjoint representation ad: g — gl is faithful ,and so this

follows from (Prop 2.9.1) . Let a be a commutative ideal of g — we have to show thata =0 .

adg ada adg ad a
Foranya € aand g € g, we havethat : g— g—a— a —0,

And so (ad a ° ad g)? = 0. But an endomorphism of a vector space whose square is zero has

trace zero ( because its minimum polynomial divides X?2) . Therefore
ky(a,9) € Try(adacadg) =0 and acg=0.

We say that an ideal a Lie algebra is semisimple if it is semisimple as a Lie algebra .
Corollary 2.9.1.

For any semisimple ideal a in a Lie algebra g and its orthogonal complement a* with respect

to the Killing form : g = a®a*
Proof:

Because k, is invariant , o' is an ideal . Now k,la =k, ( Lemma 2.9.3),which is

nondegenerate . Hence, a®at = 0.
Corollary 2.9.2.

Let g be a Lie algebra over a field k, and let k' be a field containing k . The Lie algebra g is

semisimple if and only if g, is semisimple . The radical r(g;’ ) = k' ®; r(g).
Proof:
The Killing form of g,/ is obtained from that of g by extension of scalars. The exact sequence

0 — r(g) — g — g/r(g) — 0 Gives rise to an exact sequence

0 — 7@k — o — (@/r(@) —0
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As r(g), is solvable and (g/r(g)), is semisimple , the sequence shows that r(g);’ is the

largest solvable ideal in g, , i.e ., that r(g), = r(g;’) -
Definition 2.9.5.  (Cartan Subalgebras)

A Cartan sub-algebra b of a Lie algebra g is nilpotent Lie sub-algebra that is equal to its
centralizer, such that {X € g:[X,b] c b} = b. For semi-simple Lie algebra g, a subalgebra
b < g being Cartan is equivalent to b being a maximal abelian sub-algebra.

Corollary 2.9.3.
In every complex semisimple Lie algebra g, there exists a Cartan subalgebra.

And any two Cartansubalgebras in g have the same dimension. This dimention is called rank
of g : Rank(g) =dimb.

2.10 Root decomposition and root systems:-
Definition 2.10.1.
A root system is finite set of non-zero vectors AC E satisfies the following :
i.Ifa €A thenia € Aifandonly if A =+1
ii. If a,p €A, theno, .B € Awhere g,: E — E is reflection
Each element of A is called a root.
Theorem 2.10.1.
1. We have the following decomposition for g, called the root decomposition
g=b® Bser 9.  Where
g, ={x|[h,x] ={a,h)x forallh € H}
R={a€ b -{0}|g, #0}
The set is called the root system of g, and sub spaces g, are called the root sub spaces.
2.[8q,88] © gq4p (hereand below, we let gg =)

3.If a+p #0,then g, ,gp are orthogonal with respect to the Killing form K.
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4. For anya, the Killing form gives a non-degenerate pairing g, ® g_,— C . in particular,

restriction of K to § is non-degenerate.
Example 2.10.1.

Let g =sl(n,C), h = diagonal matrices with trace 0. Denote by e;: b— C the functional

which computes i*" diagonal entry ofh :
hy 0 ...
e;. [0 hz ] — hi
0 - h,

Then one easily seesthat . e; =0,S0 h* =P Ce; / Cleg+ -+ -+ -+ + e,). It is easy to see that
matrix units E; are eigen vectors for adh, h € b : [k, E;] = (h; -hy)E;; = (e; -¢)( h)Ej;.

Thus, the root decompstion is given by
R={e; -¢|i #j}cD Ce; / Cleg+ =+ ten). Ge—e; = CE
The Killing form on § is given by,

(hh) =%z (hy =) Ry —h)) =203 bk’ = 2ntr (hh).

From this, it is easy to show that if A=Y A;e; , u =X u;e; € ", and 4; , y; are chosen so that

Y A= X u; =0 (which is always possible), then the corresponding form on H* is given by
(a,p) = ﬁZi At -

Lemma 2.10.1.

Lete€g,, f€g_,. .then:[e,f]1=(e f)H,

Proof:-

Let us compute the inner product ([e, f], h) for some h € . Since Killing form is invariant,

we have

(e, f1. h) = (e, [f h]) = - (e, [h, f]) = (h, a)(e, ) = (e, f) (h, Hy)

Since (, ) is a non-degenerate form on b, this implies that [e, ] = (e, f) H,.
Lemma 2.10.2.

1. Lete € R, then (a,a)=(H, ,H,) # 0.

2 Hy,
(a )

2.Lete€g,,f €g_, besuchthat (e, f) =ﬁ .andlet h, =
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Then (h,,a) = 2 and the elemente € g, s.t e, f, h, satisfy the relations of Lie algebra
sl(2, C). We will denote such a sub algebra by sI(2, C),,  g.

Proof:-
Assume that (a,a) =0; then (H,, a) =0. Choose , f € g_, suchthat(e,f)#0i.e,.

Let h = [e, f] = (e, f) H, and consider the algebra a generated by , f,h . then we see that
[e,h] =(h,a)e =0, [h, f]=-(h,a)f =0, so ais solvable Lie algebra . from Lie theorem, we

can choose a basis in g such that operators ad e, adf, adh are upper triangular.

Since . h = [e, f] ,adh will be strictly upper-triangular and thus nilpotent. But since h € b, it
is also semisimple. Thus A = 0. On the other hand, h = (e, f)H, # 0. This contradiction
proves the first part of the theorem.

The second part is immediate from definitions and (Lemma 2.10.1).
Lemma 2.10.3.

Let a be a root , and let sI(2,C), be the Lie sub algebra generated by e € g,, , f € g_, and
h, as in the (Lemma 2.10.2), consider the sub space V= C h, @ @Drez k=0 Gka € G -

Then V is an irreducible representation of sl(2,C), .
Proof:-

Since ad . x¢ € G(k+1)e » and (Lemma 2.10.2) ,ad e.g_, < C h, and similarly for £,V is a
representation of sI(2, C),. Since ( h,, @) = 2, we see that weight decomposition of V is given
by V[k] = 0 for odd k and V[2k] = g, , V[0] = C h, . in particular, zero weight space V[0]

is one-dimensional. Then V is irreducible.

Now we can prove the main theorem about the structure of semi simple Lie algebras.
Theorem 2.10.2.

Let be a complex semi simple Lie algebra with Cartan sub algebra ) and root decomposition
a=b® Dger 9q -

1. R spans b* as a vector space, and elements h,,a € R, span b as a vector space

2. For each € R, the root sub space g, is one-dimensional.

3. For any two roots a, B the number ( h,, a) = % is integer .
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4. For € R, define the reflection operator s,:h* = h* by, s,(1) =1 — (hy, A)a =1 —2&Dqg

(a,a)

Then for any roots a, 8, s,(B) is also a root. In particular, if « € R, then —a = s, (a) € R.
5. For any root « , the only multiples of a which are also roots +« .

6. Forroots a, B # *a,thesubspace V= @yez 9p+kq IS an irreducible representation

of s1(2,C),.
7. If @, B are roots such that a + g is also a root, then [g,, az] = 8p+kq -
Proof:-

1. Assume that R does not generate h*; then there exists a non-zero h € b such that (h,a) =0
for all « € R. But then root decomposition (1) implies that adh = 0. However, by definition in

a semi simple Lie algebra, the center is trivial: 3(g) = 0.

The fact that h, span h now immediately follows: using identification of § with h* given by

the Killing form, elements h, are identified with non-zero multiples of «a.

2. Immediate from ( Lemma 2.10.3) and the fact that in any irreducible representation of

sI(2, €), weight sub spaces are one-dimensional.

3. Consider g as a representation of sI(2,C),. Then elements of g; have weight equal to
( h,,a). But from the fact that ( V admits a weight decomposition with integer weights: V =

®..cz V[n]) weights of any finite-dimensional representation of sI(2, C) are integer.

4. Assume that ( h,, @)= n = 0. Then elements of gz have weight n with respect to action of
sl(2,C),. By the same fact above , operator f;* is an isomorphism of the space of vectors of
weight n with the space of vectors of weight -n. In particular, it means that if v € gz is non-

zero vector, thenf;' v € gg_, is also non-zero. Thus § — na = s,(B) € R.

5. Assume that « and 8 = ca, ¢ € C are both roots. By part (3) Z(Ejf)) = 2c is integer, so c is a

half-integer . same argument shows that 1/c is also a half-integer. It is easy to see that this

implies that ¢ = +1, £2, + 1/2. Interchanging the roots if necessary and possibly replacing

aby -a,wehave c=1orc=2.
Now let us consider the sub space V = Ch,® ©yez k=0 Ska < 9-

From (Lemma 2.10.3) V is an irreducible representation of sI(2,C), , and by part (2) , V[2]

= g, = Ce,. Thus, the map ad e,: g, = g2, IS zero. But the results of representation of
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sl(2,C) show that in an irreducible representation, kernel of e is exactly the highest weight
sub space. Thus, we see that V has highest weight 2: VV[4] = V[6] = --- = 0. This means that
V=g_,® Ch,Dg, , s0 the only integer multiples of a which are roots are +a. In particular,
2a is not a root , Combining these two results, we see that if a,ca are both roots, then
c==1.

6. Proof is immediate from dim gz, = 1.

7. We already know that [g, ,83] C 8p4ke - SiNCE dimgg i, = 1, we need to show that for
non-zero , e, € g,, €z € gp , we have [e, ,ez] # 0. This follows from the previous part and

the fact that in an irreducible representation of sI(2, C), if v €V[k] is non-zero and V[k +
2] # 0, thene.v # 0.

Theorem 2.10.3.

i. Let br © b be the real vector space generate by h,,a € R. Then h= hr® ihr , and the
restriction of Killing form to hy is positive definite.

ii. Let bg" < b* be the real vector space generated by a € R. Then b* = hr*@ihr* also, hr" =
{2 € b (A, h)y € Rforall h € hr} = (hr)".

Proof:-
Let us first prove that the restriction of the Killing form to by, is real and positive definite.
Indeed, (h, ,hg) =tr (adh, adhg) =¥, ephe ,¥){hs , V)

But by (Theorem 2.10.2), (hy ,yXhg ,¥) €Z ,s0 (h, ,hz) € Z .Now let h = ¥ c,h, € by .
then(h,y ) =Y c, (hy ,¥) € Rforanyrooty, so (h,h) =tr (ad h)2 =Y, (h,y)*> =0

Which proves that the Killing form is positive definite. This shows that dimgbr < %dimsz

r, where r = dimc} is the rank of g . On the other hand, since h, generate hoverC, we see

that dimRbR >T. ThUS, dime)R =r,S0 b = b]R{@ lb]R
Definition 2.10.2. (Abstract root systems)

An abstract root system is a finite set of elements R c E /{0} , where E is a real vector space

with a positive definite inner product , such that the following properities hold :
(R1) R generates E as a vector space .

(R2) For any two roots «, 8, the number
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_2(ap) ..
Nap =5y is integer (2.9)
_ 2(a,r)

(a,a)

(R3) Lets,: E — E be definite by s, (1) =1

Then for any roots a, 8,s,(8) € R . The number r = dim E is called the rank of R .
If ,in addition R satisfies the following property

(R4) If a, car are both roots , then ¢ = +1. Then R is called a reduced root system .
Remark 2.10.1.

From proof of (theorem 2.10.2) it easy to deduce from (R1) — (R3) that if a, ca are both
roots , then ¢ = il,iz,i% . However , there are indeed examples of non- reduced root
systems, which contain « and 2« as roots . Thus, condition (R4) does not follow from (R1) —

(R3) .

Note that conditions (R2) ,(R3) have a very simple geometric meaning. Namely, s, is

reflection around the hyperplane , L, = {1 € E|(a, 1) = 0}
It can be defined by s, (1) = 4 if (a,4) =0and s, (a) = —«.
Similarly, the number n,; also has a simple geometric meaning : if we denote by p, the

nl;a
2

operator of orthogonal projection onto the line containing « , then p,(B) = a . Thus,

(R2) says that the projection of § onto « is a half — integer multiple of « .
Theorem 2.10.4.

Let g be a semisimple complex Lie algebra , with root decomposition . then the set of roots

R c hr/{0} is a reduced root system .
It's proof coming from (theorem 2.10.3).
Remark 2.10.2.

We will use it's convenient to introduce, for every root @ € R , the corresponding coroot

(a¥)

_ 2(ad)

T (a@)

Note that for the root systems of a semisimple Lie algebra, this coincides with the definition
of h, € hdefinedby:a¥ =h, .

Then one easily sees that (a¥, a) = 2 and that :
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naﬁ = (O{, .8V>
s;M)=1—-AXa")a

If we assume that we have B is non — degenerate on h , so there is an induced isomorphism
B:h — h* . by definition, < s(h),h’ >= B(h,h)

Let's calculate
< sHg,H, >= B(Hg, H,) = B(H,, Hg) (B Symmetric)
=B(H,.,[Xs,Ys] ) = B([Ho X1, Ys) (B invariant)
= B(Xp, Yp)B(Hy)
=3B([Hp, Xp), Y3)B (He) (2Xp = [Hp, Xg])
=2B(Hg,Hg)B(Hy) (B invariant)

(Hg ,Hp)

> B, also compute

Thus, we have that s(Hg) =

— -1 — ZHﬁ ) — Za(H/;) 2 1

(,B) =<a,s ' B>=a <B(HB»HB) By (2.10)

Inparticular, letting @ = 8, we get s(Hg) = _(ﬁz/;) . this is sometimes called the co-root of g ,
and denoted £ . then we can use (1) to rewrite this fact

Fora,B €A, MEZanda—Mﬁ EA = Ach” (set of roots)

(8.8) B.8)

Now we can define 75:h* — h* by 3 (r) = x — % B . this is the reflection through the

plane orthogonal to 8 in h*. The group generated by the r; for § € A is a coxeter group .
Definition 2.10.3.

A root system is irreducible if it cannot be decomposed into the union of two root systems of

smaller rank.
Example 2.10.1.

Let us classify all systems of rank 2 which observe that

2(a, ) 2(a, B) _

@a) B.p) s
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Where 6 is the angle between « and , this must be an integer , thus there are not many

choices for 0 .

cos@ 0 1 1 V3
2 7 7

0 T T 2T T 31 T 5T
2 3’3 4’ 4 6’6

Choose two vectors with minimal angle between them. If the minimum angle is % , the system

is reducible. (notice that a and £ can be scaled independently). If the minimal angle is

smaller than % , then 13 (a) # a, so the difference a — 73 (a) is non-zero integer multiple of

B. (in fact, a positive multiple of 8 since 8 < %).

If we assume [|a|| < I8l we get that |la — 15 (a)|| < 2llall < 21181l .
Example 2.10.2.

Let™ e; be the standard basis of R™ , with usual inner product : (e;, ¢;) = &;; . Let

E={,....0,) ER* XA, =0}, and R={e; —¢|1 <i,j<ni#j}cE ThenRisa
reduced root system . indeed, one easily see that for « = ¢; — ¢; , the corresponding reflection

s,+ E — E istransposition of i,j enteries :
sei_ej(.....,/li, ...... 2 Ajs D G PR yAjs )

Clearly, R is stable under such transposition ( and, more generally, under all permutations) .

thus , condition (R3) is satisfied .

Since (a, @) = 2 for any a € R, condition (R2) is equivalent to (a,8) € Z forany a,8 € R
which is immediate .

Finally , condition (R1) is obvious. Thus, R is a root system of rank n — 1 . for historical
reasons, this root system is usually referred to as "root system of type 4,,_1 "

Alternatively, one can also define E as a quotient of R™: E = R"/R(1, ....,1)

In this description we see that this root system is exactly the root system of Lie algebra
sl(n, €).

20 Introduction to Lie Groups and Lie Algebras — Alexander Kirillov, Jr. —departement of Mathematics, Suny
Brooke, Stony Brooke, NY 11794, USA




Example 2.10.3.

Let us consider an example su(3) contains the traceless Hermitean matrices

n 0 a’
B2

0 90° Arbitrary

1 60°,120° 1

2 45°,135° 1 5
2 )

3 30°,150° 1 3
3 )

The possible angle and relative lengths of roots
(in physicist's convention), which is an eight — dimensional space. The customary basis is

T, = ’1‘1/2 , Where the Gell-Mann matrices A, are :

0 1 0 0 —i O 1 0 O 0 0 1
A=(1 0 0), A,=(i 0 0], /13=<0 -1 0], /14=<0 0 0
0 0 O 0 0 O 0 0 O 1 0 0

0 0 —i 0 0 O 0 0 O L 1 0 0
As=(0 0 0], 2,=1|0 1], 4=(0 0 —i] , 13=T§ 0 1 O
i 0 0 01 0 0 ¢ O 0 0 -2

The first three are an obvious embedding of the Pauli matrices of su(2) . they are normalized

(e}

To tr T, T, = % &4, - this is chosen such that [T;,T,] = iT; . to make it consistent with

(T;, T;) = &;; , we choose the normalization to be k = 2 . then the Killing matric is g;; = §;; ,
and we do not have care about upper and lower indices on the structure constants , i.e ,

fave = f5 - the independent nonvanishing structure constants are
2 2
F123 = 9147 = 246 = 9257 = 156 = _p£367 = = £458 = = F678 =1,

This algebra has rank two . As Cartan generators one usually chooses H; = T; and H, = Tg,
which are already diagonal, so they commute . to find the roots , we have to diagonalise the

adjoint action of the Cartan elements . A straight forward calculation gives

1 , 1 , 1 ,
Ervqo =7 (TH£iT%), E+( =7 (T*+iT>), Ei( =7 (T® +iT7).

1 1
+(%, -1 2

Sotherootsare :al = (},2), a?=(L-5) , a®=(1,0)

And their negatives. we will use a notation where superscripts label the roots, while subscripts

label the vector components . ( So the subscripts are actually lower indices, while the
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superscripts are not proper indices, and they do not take part in the summation convention.

This is even more confusing because both sub — and superscripts have the same range ).

Of course the T, not only give the adjoint representation by acting on themselves, but they
naturally act on €3 . For any matrix algebra , this is called the defining or vector
representation , and it is denoted by it's dimension as 3 . Since they are already diagonal, the
eigenvalues of H; and H, are simply the diagonal elements ,and the eigenvectors are the

standard basis of €3 . Hence , the weights are

1 0 0
o) = (8) =|Gza)) loh= (é) = (=3 7)) - 10" = (2) =|(0.-%)

Note that indeed the differences of weights are roots .

There is even a third representation we can construct from the T,'s , which is called
thecomplex conjugate representation : Clearly, if the generators —T, . This is of course true
for any representation. Since, the Cartan generators are diagonal and real, the weights just
receive an overall minus sign, in particular, they are different. ( This is in contrast to the
adjoint representation, which is isomorphic to it's complex conjugate representation ). So we

have a representation, again three-dimensional ,called 3 , with states

Lo— (2 L ) (=L L 3 — 1
=G5z @=C3m3)|.  @1=(op)
The weights of the vector representation.

2.11 Automorphisms and Weyl group :

Most important information about the root system is contained in the number n,; rather than

in inner product themselves . this motivates the following definition :
Definition 2.11.1.

Let R; € E; , R, c E; be two root systems . An isomorphism ¢: Ry — R, is a vector space

isomorphism ¢:E; — E; which also gives a bijection R; simeq R, and such that

Ny ()pB) = Nap for any (,Zﬂ € R1 .

Note that : the condition n, ), 5) = Nap Will be automatically satisfied if ¢ preserves inner
product . However, not every isomorphism of root systems preserves inner products . for
example : for any ¢ € R, , the root systems R and cR = {ca,a € R} are isomorphic . The

isomorphism is given by v — cv, which doesnot preserve the inner product .
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A special class of automorphisms of a root system R are those generated by reflections s, .
Definition 2.11.2.

The Weyl group W of a root system R is the subgroup of GL(E) generated by reflections

Se @ ER .
Lemma 2.11.1.

1. The Weyl group W is a finite subgroup in the orthogonal group O(E), and the root system

R is invariant under the action of W .
2.Forany w € W, we have s,y = ws,w™".
Proof:

Since every reflection s, is an orthogonal transformation, W < O(E) . Since s, (R) = R (by
axioms of a root system ) , we have w(R) = R for any w € W . Moreover, if some w e W
leaves every root invariant, then w = id ( because R generates E). Thus, W is a subgroup of
the group Aut(R) of all automorphisms of R . Since R is a finite set, Aut(R) is finite; thus W
is also finite . The second identity is obvious : indeed , ws,w™! acts as identity on the
hyperplane wlL, =L, . and  ws,w ' (w(a)) = —w(a) , so it is a reflection

corresponding to root w(a) .
Example 2.11.1.

Let R be the root system of type A,_; ( from Example 2.10.2) . Then W is the group
generated by transfositions s;; . it is easy to see that these transpositions generate the

symmetric group s,, ; thus, for this root system W =s,, .

In particular, for root system A; ( i.e., root system of sl(2,C)) ,we have W =35, =17, =

{1,0}wheregactson E ~ Rby A +— —1.

It should be noted, however, that not all automorphisms of a root system are given by
elements of Weyl group . for example, for A4, , n > 2, the automorphism a — —a is not in

the Weyl group .
Pair of roots and rank two root systems:

We take R is reduce root system . and also from condition (R2),(R3) impose very strong

restrictions on relative position of two roots .
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Theorem 2.11.1.

Let a, B € R roots which are not multiples of one another , with |a| = |B] ,and let ¢ be the

angle between them. Then we must have one of the following possibilities :
1o =mn/2(ie., a,p are orthogonal ), n,z = ng, =0

2. 9 =271/3, |a| = |B] , ngg =gy = —1

3. o=n/3, la| =Bl ,ngp =nge =1

4.9 =3m/4, |a| =V2|B| Mg = —2,Mge = —1

5. 9 =1/4, |la| =V2|Bl ,ngg =2,np, =1

6. 9 =571/6, |lal =V3|Bl ngg =3,n, =1

7. 9 =1/6, |la| =V3|B| , ngg = —3,n5, =—1

Proof:

_ @
Nl

thus , ngpng, = 4 cos? ¢ . Since NgpNpe € Z, this means that n,gng, must be one of

Recall n,; defined by (2.9) . Since (a, B) = |al||B] cos ¢ , we see that n,g Cos ¢ .

0,1,2,3. Analyzing each of these possibilities and using :LB = :Z—: if cosgp # 0, we get the
Ba

statement of the theorem .
Theorem 2.11.2.

1. Let A, x Ay , A, , B, , G, be the sets of vectors in R? shown in (FIG 2.3) then each of

them is a rank two root system .

2. Any rank two reduced root system is isomorphic to one of root systems A; X A1 , 4, , B,
] GZ
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Ay x Ay

e

Fig(2.3)
Proof:

Proof of part (1) is given by explicit analysis . Since for any pair of vectors in these systems,
the angle and ratio of lengths is among one of the possibilities listed in (Theorem 2.11.1) ,
condition (R2) is satisfied . It is also to see that condition (R3) is satisfied .

To prove the second part, assume that R is a reduced rank 2 root system . Let us choose «,
to be two roots such that the angle ¢ between them is as large as possible and |a| = |B] .
Then ¢ = /2 ( otherwise , we could take the pair a, s, (8) and get a larger angle ). Thus,
we must be in one of situations (1) ,(2) ,(3) ,(6) of (Theorem 2.11.1).

Consider the example , case (2) : |a| = ||, = 2r/3 . by definition of root system , R is
stable under reflections s, , sg . But successively applying these two reflections to a, f we

get exactly the root system of type A, generated by a, 5 .

To show that in this case R = A, , note that if we have another root y which is not in A, ,
then y must be between some of the roots of A, ( since R is reduced ) . Thus, the angle
between y and some root § is less than /3 , and the angle between y and - § is greater than

2m/3 , which is impossible because angle between «a,f is the maximal possible . Thus,
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R = A, . Similar analysis shows that in cases (1) , (3) , (6) of ( Theorem 2.11.1) , we will get
R =A; XA, By, G, respectively .

Result 2.11.1.
Let (a, B) € R be two roots such that (a,8) < 0, a # cf .thena, B ER .
Definition 2.11.3. ( Positive roots and simple roots )

In order to proceed with classification of root systems , we would like to find for each root
system some small set of "generating roots" , similar to what was done in the previous

section of rank 2 root systems . in general it can be done as follows ;

Let t € E be such that for any root «, (t, @) # 0 ( such elements t are called regular ) .Then

we can write
R=R,UR_
R, ={a €R|(a,t) >0}, R_={a €R|(at) <0}

Such a decomposition will be called a polarization of R. Note that polarization depends on the
choice of t . the roots @ € R, will be called positive, and the roots a € R_ will be called

negative .

Definition 2.11.4.

Aroot @ € R, is called simple if it cannot be written as a sum of two positive roots .
We will denote the set of simple roots by [] c R, .

Lemma 2.11.2.

Every positive root can be written as a sum of simple roots .

Proof:

If a positive root « is not simple , it can be written in the forma = a' + @' , witha' + a’' €
R, and (o,t) < (a,t), (@, t) < (a,t) . if &', are not simple, we can apply the same
argument to them to write them as a sum of positive roots . Since («, t) can only take finitely

many values, the process will terminate after finitely many steps .

Example 2.11.2.
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Let us consider the root system A, and let t be as shown in Figure below . Then there are

three positive roots : two of them are denoted by a4, a, and the third one is a; + a; .

Thus,one easily sees that a4, a, are simple roots, and a; + a, is not simple .

Positive and simple roots for A,, Fig (2.4)
Lemma 2.11.3.
If a, B € R, are simple, then (a, ) < 0.
Proof:

Assume that (a, 8) > 0. Then , applying (Result 2.11.1) to —a, B, we see that 8 = a — 8 €
R.If B €R, ,then B =B + a can not be simple . if B € R_ , then =B €R, , 50 a =
—B' + jB cannot be simple . this contradiction shows that (a, ) > 0 is impossible .

™|
]l

Second we can apply the master formula, == = —% p—q)

=
a

l

q measures how often we can substract a from S without leaving root space . But we saw that

already 8 — a isnotaroot, so g = 0 and

f.G=—-pd.da<0

N| =

By the same argument

p'B.f<0

N| —

ap=-

Hence the angle between simple roots and the relative lengths are
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N

1

cosf = __,z;p ,

[
p

‘%lQ
N

In particular, the angle is constrained to be 90° < 8 < 180° . the first constraint comes
because the cosine is nonpositive, the second because the roots are positive , so they lie in a
half-space .

Theorem 2.11.3.

Let R = R, R_ c E be aroot system . then the simple roots form a basis of the vector space
E.

Proof:

By (Lemma 2.11.2) every positive root can be written as linear combination of simple roots .

Since R spans E , this implies that the set of simple roots spans E .

Simple roots are linearly independent. To see this, consider a linear combination

)/ZEC“(X
a

We can find coefficients c, such that y = 0. Since all a are positive, the ¢, cannot all have

the same sign. Hence we can split y into strictly positive and negative pieces,
y:zcaa— —ana =u—-v
cq>0 cq>0
Now consider the norm of y :
yi=w-v)=p+vi-2uv

Clearly, u and v cannot vanish, so their norm is positive. However, since u and v are both
positive linear combinations of simple roots, their scalar product is negative. Hence, the norm

y never vanishes, so no linear combination of simple roots can be zero.

Additionally, the simple roots form a basis : if this was not the case , there would be a vector

fwhich is orthogonal to all simple roots . but it is easy to see that any positive root can be

written as a linear combination of simple roots with non-negative integer coefficients,

Yy = Za simple ka a
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This follows by induction: It is obviously true for simple roots themselves. Any other positive
root can be written as a sum of positive roots, hence the statement follows. Since the roots are
linearly independent, the decomposition is unique , and we can associate to any positive root
itslevel k=3, k, .

Then we have 5 .a@ = 0 for all roots a , so we see that the operator 5 . H commutes with all

elements of the algebra : [¢.H, H;] = [.H, E,] = 0

But this means that 5 H is in the center of the algebra, which is trivial for a semisimple algbra

Hence, there is no such & ,and the simple roots form a basis of R”. Hence, in particular the

number of simple roots is equal to the rank of the algebra .

We can find all positive roots . that is , given the simple roots , we can determine whether a
linear combination y;, = Y k,« is a root or not .by induction over the level and using the
master formula again . the key points is that for the simple roots, i.e. those at level one all
q" = 0 since the difference of simple roots is never a root . Hence, from the master formula
we can find the p‘ , and thus the allowed roots on level two . Now for these roots, we by
construction know the q° , hence we again can find the p* , and continue this process until we

found all the roots, i.e. until at some level all roots have all p* = 0 .
Lemma 2.11.4.

Let vy, ... .. , U be a collection of non-zero vectors in a Euclidean space E such that for i # j,

(vi, vj) < 0.Then {vq, ...... , Vi } are linear independent .
Corollary 2.11.1.

Every a € R can be uniquely written as linearly combination of simple roots with integer

coefficients : @ = Y)j_; n;q; , mn EL

Where {a4, ... ... ,a,} =[] is the set of simple roots .if « € R, , thenalln; >0 ;ifa € R_,

then all n; < 0. For positive root & € R, , we define its height by ht 3 n;a;) =Y n; € Z,

so that ht(a;) =1 . im many cases, statements about positive roots can be proved by

induction in height .
Example 2.11.3.

Let R be the root system of type A,_; or equivalent, the root system of sl(n, C).( from

Example 2.10.1 and Example 2.10.2 ) Choose the polarization as follows :
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Ry ={e; —¢li <}

( The corresponding root subspaces E;; ,i < j ,generate the Lie algebra n of strictly upper-

i
triangle matrices in sl(n, C) ) . Then it is easy to show that the simple roots are

And indeed, any positive root can be written as a sum of simple roots with non-negative
integer coefficients . for example , e, — e, = (e; — e3) + (e3 — e4) = ay + a3 . the height

isgivenby :ht(e; —¢) =j—1i.
Definition 2.11.5 ( Weight and root lattices)

In study of root systems of simple Lie algebras , we will frequently use the following lattices.
(‘recall that a lattice in real vector space E is an abelian group generated by a basis in E) . by

suitable change of basis any lattice L < E can be identified with Z" < R" .
Every root system R c E gives rise to the following lattices :

Q = { abelian group generatedby « ER} C E

QV = { abelian group generated by aV,a € R } c E*

Lattice Q is called the root lattice of R, and Q" is the coroot lattice .

To justify the use of the word lattice , we need to show that Q, Q" are indeed generated by a

basis in E( respectively E*) . This can be done as follows:

Fix a polarization of R and let [T = {aq, ... ... ... , a,} be the corresponding system of simple
roots . Since every root can be written as a linear combination of simple roots with integer
coefficients ( Corollary 2.11.1) , one has Q =& Z,, Which shows that @ indeed a lattice,

Q" =@, .

Even more important in the applications to representation theory of semisimple Lie algebras

is the weight lattice P c E defined as follows :
P={1€E|{(Adav)yeZforalla e R}={1 € E|(},a") € Zforall a¥ € QV}.

In other words, P c E is exactly the dual lattice of QY c E*. Elements of P are frequently

called integral weights .

Since QV is generated by a;’ , the weight lattice can also be defined by
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P ={1€E|A, ) € Zfor all simple roots «; }

One can easily defined a basis in P. Namely, defined fundamental weights w; € E by:

(wi,a) )= 8;; , Then one can easily sees that so defined «; form a basis in E and that :

P=@®,; (Z,,).

Finally note that by the axioms of a root system, we have n,s; = (a, 8") € Z for any roots

a,f . Thus, R c P which impliesthat Q c P .

However, in general P # Q, as the examples below show. Since both P, Q are free abelian
groups of rank r, general theory of finitely generated abelian groups implies that the quotient
group P/Q is a finite abelian group. It is also possible to describe the order |P/Q| in terms of

the matrix a;; = (a}’,aj) . (from Example 2.10.2)
Example (2.11.4) :

Consider the root system Aj. It has the unique positive root @ , s0 Q = Z,, , Q¥ = Z,v . if we
define the inner product (,) by (@, a) = 2, and use this product to identify E* =~ E, then
under this identification aV +— a,Q"V = Q . Since {(a, a¥) = 2, we see that the fundamental

weight is w = % ,and P = Z% Thus, in this case P/Q = Z, .
Example (2.11.5):

For the root system A, , the root and weight lattices are shown in Fig (2.5) . this figure also

shows simple roots a;, a, and fundamental weights w4, w, .

L L
o

Q Q
L

L= =]
L]

] L]
o

o o
L

Q o
L)

L L ] L L

Fig (2.5)

It is easy to see from the figure (‘and also easy to prove algebraically) that one can take a4, w,

as a basis of P, and that @1, 3w, = @, + 2a, isabasis of Q . Thus, P/Q = Z3 .
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2.12  Weyl chambers

We recall that a polarization is defined by an element t € E which does not lie on any of the

hyperplanes orthogonal to roots :

teE/U L,

a€ER
Ly ={2€E|(a, 1) =0}

Moreover, the polarization actually depends not on t itself but only on the signs of (t, a);
thus, polarization is unchanged if we change t as long as we do not cross any of the

hyperplanes . This justifies the following definition .

Definition 2.12.1

A Weyl chamber is a connected component of the complement to the hyperplanes :
C = connected component of (E/Uger Ly )

For example , for root system A, there are 6 Weyl chambers ; one of them is shaded in the
Fig(2.5)

Clearly, to specify a Weyl chamber we need to specify, for each hyperplane L, , on which
side of the hyperplane the Weyl chamber lies . Thus, a Weyl chamber is defined by a system
of inequalities of the form, +(a, ) > 0. (one inequality for each pair of roots a, — a). Any

such system of inequalities defines either an empty set or a Weyl chamber.
Lemma 2.12.1.

The closure C of a Weyl chamber C is unbounded convex cone . The boundary dC is a union
of finite number of codimension one faces : dC = UF; . Each F; is a closed convex
unbounded subset in one of the hyperplanes L,, given by a system of inqualities. The

hyperplanes containing F; are called walls of C .

Theorem 2.12.1.

The Weyl group acts transitively on the set of Weyl chambers .
Proof:

Let us say that two Weyl chambers C, C' are adjacent if they have a common codimension one

face F ( obviousely, they have to be on different sides of F ). If L, is the hyperplane




containing this common face F, then we will say that C,C’ are adjacent chambers separated
by L, .

Corollary 2.12.1

Every weyl chamber has exactly » = rank (R) walls . Walls of positive Weyl chamber C, are
L(li , S H .

Proof:

For positive Weyl chamber C, , this follows ( Lemma 2.11.4) . Since every Weyl chamber
can be written in the form ¢ = w(C,) for some w € W, all Weyl chambers have the same

number of walls .
2.13 Simple reflections

Is it possible to recover R from the set of simple roots [] ? the answer is based on the use of

Weyl group .
Theorem 2.13.1.

Let R be a reduced root system , with fixed polarization R =R, UR_ , Let [[=
{aq, ..., .} be the set of simple roots . Consider reflections corresponding to simple roots

S; = Sq, (they are called simple reflections ).

1. The simple reflections s; generates .

2. W([D = R: every a € R can be written in the form w(a;) forsome w € Wand a; € [] .
Proof:

We start by proving the following result

Lemma 2.13.2.

Any Weyl chamber can be writtenas : € = s;, .....s;, (Cy)

For some sequence of indices iy, .......,i; €{1,.....,7}

Proof:

By the construction given in the proof ( Theorem 2.12.1) , we can connect C, ,C by a chain

of adjacent Weyl chambers Cy = C4, Cy, ... ... ,Cp=C .then C = sp, .....sp, (C;) , Where Lg,
is the hyperplane separating C;_; and C; .




Since B; separates C, = C, from C; , it means that Lg, is one of the walls of C, . Since the
walls of C, are exactly hyperplanes L, corresponding to simple roots ( Colloray 2.12.1) we

see that §; = ta;, for someindex i; € {1, ...... , T}, 80sp, =s; and C; = s, (Cy) .

Consider now the hyperplane Lg, = s; (L) for some hyperplane L which is a wall of C, .
Thus, we get that B, = ts;, (a;,) for some index i,. By (Lemma 2.11.1), we therefore have
Sg, = Si, Si, Si, and thus , sp_ s, = s; 5;, S, -5

1 = Silsiz and Cz = Silsiz(C+)

Repeating the same argument , we finally get that C =s;, .....s;, (C;) and the indices i, are

computed inductively, by : B, = s;, ... sy, _, (@) which completes the proof of the lemma

Now the theorem easily follow. Indeed , every hyperplane L, is a wall of some Weyl
chamber C. Using the lemma, we can write C = w(C,) for some w =s; .....s; . Thus,

Ly =w(Le,) for some index j, so a = tw(q;) and s, = ws; w~! , which proves both

statements of the theorem .

Corollary 2.13.1.

The root system R can be recovered from the set of simple roots [] .

Proof:

Given [] ,we can recover W as the group generated by s; and then recover R = W (J]) .

Let us say that a root hyperplane L, separates two Weyl chambers C, C' if these two chambers

are on different sides of H, , i.e. a(C), a(C") have different signs .
Definition 2.13.1.

Let R be a reduced root system, with set of simple roots [] . Then we define , for an element
w € W. Its length by I[(w) = number of root hyperplanes hyperplanes separating C, and
w(C,) = |{a € Ry |w(a) € R_}| . it should be denoted that [(w) depends not only on w
itself but also on the choice of polarization R = R U R_ or equivalently, the set of simple

roots .
Example 2.13.1.

Let w = s; be a simple reflection. Then the Weyl chambers C,. and s;(C,) are separated by

exactly one hyperplane, namely L, . Therefore, I(s;) = 1, and {a € R, |w(a) € R_} = {a;}

In other words, s;(a;) = —a; € R_ and s; permutes elements of R, \{«;} .
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This example is very useful in many arguments involving Weyl group, such as the following

lemma.
Lemma 2.13.2

1 ) 2(p ,a;)
Let p =3 Xger, @ Then: {p,ai) = (aioi) =1

Proof:

Writing p = (ai + Zaeh\{ai} a) /2 and using results of (Example 2.13.1) , we see that

s;(p) = p — a; . On the other hand, by definition s;(1) = 1 —(a}, 1) «a; .
2.14 Dynkin diagrams and classification of root systems :

There is an obvious construction which allows one to construct larger root systems from
smaller ones . Namely, if R; c E; and R, c E, are two root systems, then we can define
R =Ry UR, C E; @ E, , with the inner product on E; @ E, defined so that E; L E, . soO

define that R is again root system .
Definition 2.14.1

A root system R is called reducible if it can be written in the form R = R; U R, , with

R{ L R, . Otherwise, R is called reducible .
Lemma 2.14.1.
Let R be a reduced root system, with given polarization, and let [ be the set of simple roots .

If Risreducible : R = R; U Ry, then [T =[]1 U [] , where []; =[] n R; is the set of simple
roots for R; . Conversely, if [[ =[], U [lz , with [Ty L [Iz ,then R = R; U R, , where R; is
the root system generated by []; -

Proof:

The first part is obvious . to prove the second part notice that if ¢« € [[; , S €[], , then
s¢(B) = P and s, , sz commute . Thus, if we denote by W; the group generated by simple
reflections s, ,a € []; , then W = W; x W, , and W; acts trivially on [], , W, acts trivially
on []; .Thus, R = W([I; U IT2) = Wi (TT) U W, (I12) -

It can be shown that every reducible root system can be uniquely written in the form R; U
Ry ... ... U R, , where R; are mutually orthogonal irreducible root systems . Thus, in order to

classify all root systems, it suffices to classify all reducible root systems , R is an irreducible
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root system and ] is corresponding set of simple roots . We assume that we have chosen an

order on the set of simple roots : [ = {ay, ....., @, }.

The compact way of describing relative position of roots «; € [] is by writing all inner
products between these roots . However, this is not invariant under isomorphisms of root

systems . A better way of describing relative position of simple roots is given by cartan matrix
Definition 2.14.2.
The Cartan matrix A of a set of simple roots [] R is the r X r matrix with entries

Z(ai,aj)
(ailai)

— — \% —
aj =ng;, = {a;, @)=

The following properties of Cartan mtrix immediately follow from definitions and from
known properties of simple roots.

Lemma 2.14.2
i. Foranyi,a; = 2.

ii. Foranyi # j, a; isanon-positive integer : a;; €Z, a;; <0.
ii. Forany i#j, aja; = 4 cos? ¢ , where ¢ is angle between «; v ifg # % , then

la;|? _ %
loy|” @y

Example 2.14.1.

For the root system A4,, , the Cartan matrix is

2 -1 0
-1 2 -1
A= —.1 2
' -1 2 -1
| 5 |
(ei—ei+1.€i+1—€i12) : .
Because 2 =—1 , ( Entries which are not shown zeroes ).

ej—ej+1,8;—ei+1)
Definition 2.14.3.

Let [T be a set of simple roots of a root system R. The Dynkin diagram of [] is the graph
constructed as follows :
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For each simple root «;, we construct a vertex v; of the Dynkin diagram ( traditionally,

vertices are drawn as small circles rather than as dots ) .

For each pair of simple roots a; # a; , we connect the corresponding vertices by n edges,

when n depends on the angle ¢ between a;, a; :
For ¢ = m/2,n = 0 (vertices are not connected )
For o = 2m/3,n =1 (case of 4, system)

For ¢ = 3m/4 ,n = 2 (case of B, system)

For ¢ = 5m/6 ,n = 3 ( case of G, system)

Finally, for every pair of distinct simple roots a; # a;, if |a;| # |aj| and they are not
orthogonal , we orient the corresponding ( multiple ) edge by putting on it an arrow pointing

towards the shorter root .

Example 2.14.2.

The Dynkin diagrams for rank two root systems are shown in (Fig 2.6)

Ayx A © O Ay O—0O By O——0 G o—0
Fig (2.6)

Theorem 2.14.1.

Let [] be a set of simple roots of a reduced root system R .

1. The Dynkin diagrams is connected if and only if R is irreducible .

2. The Dynkin diagram determines the Cartan matrix A .

3. R is determined by the Dynkin diagram uniquely up to an isomorphism : if R, R’ are two

reduced root systems with the same Dynkin diagram, then they are isomorphic .
Proof:

1. Assume that R is reducible; by (Lemma 2.14.1) we have [[ =P, U], , with []; L[] .
thus ,by construction of Dynkin diagram, it will be a disjoint union of the Dynkin diagram of

11 and the Dynkin diagram of [], . proof in the opposite direction is similar .
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2. Dynkin diagram determines, for each pair of simple roots «;, a; , the angle between them
and shows which of them is longer . Since all possible configurations of two roots are listed in
(Theorem 2.11.1) , one easily sees that this information, together with (ai,aj) < 0, uniquely

determines Naa; » Naja; -

3. By part (2) the Dynkin diagram determines [] uniquely up to an isomorphism. []

determines R uniquely up to an isomorphism .
Theorem 2.14.2.

Let R be a reduced irreducible root system . Then its dynkin diagram is isomorphic to one of
the diagrams below ( in each diagram, the number of vertices is equal to the subscript, so 4,

has exactly n vertices ) :

Fig (2.7)

Conversely, each of these diagrams does appear as a Dynkin diagram of a reduced irreducible

root system .
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