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Chapter Two 

Lie algebras 

2.1  Introduction 

 The tangent vectors form Lie algebra on any manifold.  

Definition  2.1.1.   

 A real Lie algebra𝔤1
is a vector space over ℝ with a bilinear map (called the Lie bracket)  

 . , .  : 𝔤 × 𝔤 ⟶ 𝔤       ,       

 𝑥, 𝑦 ⟼  𝑥, 𝑦   ,     Such that for all , 𝑦, 𝑧 ∈ 𝔤 ,  

1.  𝑥, 𝑦 = − 𝑥, 𝑦   

2.  𝑥,  𝑦, 𝑧  =   𝑥, 𝑦 , 𝑧 +  𝑦,  𝑥, 𝑧    

 A homomorphism of Lie algebras
2
 is a 𝑘-linear map  𝛼: 𝔤 ⟶ 𝔤′ such that  

𝛼  𝑥, 𝑦  =  𝛼 𝑥 , 𝛼 𝑦                    for all 𝑥, 𝑦 ∈ 𝔤  

Condition (2) is called Jacobi identity .and condition (1) applied to  𝑥 + 𝑦, 𝑥 + 𝑦  shows that 

the Lie bracket is skew-symmetric.   

Remark  2.1.1.  

 Let the commutator   . , .  : 𝔤 × 𝔤 ⟶ 𝔤  be defined by :  

 exp 𝑥 exp 𝑦 = 𝑒𝑥𝑝  𝑥 + 𝑦 +
1

2
 𝑥, 𝑦 +  …… . .    it's Taylor series bilinear skew-

symmetry .Then it satisfies the following identity ,called Jacobi identity :  

 𝑥,  𝑦, 𝑧  =   𝑥, 𝑦 , 𝑧 +  𝑦,  𝑥, 𝑧   

This identity can also be written in any of the following equivalent forms:  

 𝑥,  𝑦, 𝑧  +   𝑥, 𝑦 , 𝑧 +  𝑦,  𝑥, 𝑧  = 0 

𝑎𝑑 𝑥.  𝑦, 𝑧 =  𝑎𝑑 𝑥. 𝑦, 𝑧 +  𝑦, 𝑎𝑑 𝑥. 𝑧  

                                                           
1
Notes  on Lie Groups – Eugene Lerman – Februaury 15,2012.  

  
2
 Introduction to Lie Groups and Lie algebras – Alexander Kirillov, Jr- department of Math, Suny at Stony Brook, 

NY 11794, USA. 
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𝑎𝑑 𝑥, 𝑦 = 𝑎𝑑 𝑥 𝑎𝑑 𝑦 − 𝑎𝑑 𝑦 𝑎𝑑 𝑥 

Definition  2.1.2.   (Sub algebras)   

 Let 𝔤 be a Lie algebra . a subspace 𝔥 ⊂ 𝔤 is called a Lie subalgebra if it is closed under 

commutator ,for any  𝑥, 𝑦 ∈ 𝔥, we have  𝑥, 𝑦 ∈ 𝔥. A subspace  𝔥 ⊂ 𝔤 is called an ideal if for 

any  𝑥 ∈ 𝔤 , 𝑦 ∈ 𝔥, we have  𝑥, 𝑦 ∈ 𝔥 .  

If 𝔥 is an ideal , then 
𝔤

𝔥  has a canonical structure of a Lie algebra .   

Definition  2.1.3.  

 A Lie algebra 𝔤 is said to be commutative (or abelian)
3
 if  𝑥, 𝑦 = 0 for all 𝑥, 𝑦 ∈ 𝔤. Thus, to 

give a commutative Lie algebra amounts to giving a finite-dimensional vector space .  

An injective homomorphism is sometimes called an embedding , and a surjective 

homomorphism is sometimes called a Quotient map . 

We shall be mainly concerned with finite-dimensional Lie algebras. Suppose that 𝔤 has a 

basis  𝑒1 , 𝑒2 , …… . , 𝑒𝑛  , and write  

 𝑒𝑖 , 𝑒𝑗  =  𝑎𝑖𝑗
𝑙  𝑒𝑙

𝑛
𝑙=1  ,      𝑎𝑖𝑗

𝑙 ∈ 𝑘  ,                1 ≤ 𝑖 , 𝑗 ≤ 𝑛 . 

The 𝑎𝑖𝑗
𝑙  , 1 ≤ 𝑖 , 𝑗, 𝑙 ≤ 𝑛 , are called the structure constants of 𝔤 relative to the given basis . 

they determine the bracket on 𝔤 . 

Definition  2.1.4.  

 An ideal in a Lie algebra 𝔤 is a subspace 𝔞 such that  𝑥, 𝑎 ∈ 𝔞 for all 𝑥 ∈ 𝔤 and 𝑎 ∈ 𝔞 ( such 

that  𝔤, 𝔞 ⊂ 𝔞 ) .  

Notice that ; because of the skew-symmetry of the bracket  

 𝔤, 𝔞 ⊂ 𝔞 ⟺  𝔞, 𝔤 ⊂ 𝔞 ⟺  𝔤, 𝔞 ⊂ 𝔞  and    𝔞, 𝔤 ⊂ 𝔞 

All left (or right ) ideals are two-sided ideals .  

Example   2.1.1 

 Here we have some type of Lie subalgebras of  𝔤𝔩𝑛  :  

𝔰𝔩𝑛 =   𝐴 ∈ 𝑀𝑛(𝑘) 𝑡𝑟𝑎𝑐𝑒  𝐴 = 0   

                                                           
3
 Lie Algebras, Algebraic Groups, and Lie Groups J.S. Milne – may 5, 2013.    
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𝔬𝑛 =   𝐴 ∈ 𝑀𝑛(𝑘) 𝐴 𝑖𝑠 𝑠𝑘𝑒𝑤 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦, 𝐴 + 𝐴𝑡 = 0   

𝔰𝔭𝑛 =   𝐴 ∈ 𝑀𝑛(𝑘)  
0 𝐼
−𝐼 0

 𝐴 + 𝐴𝑡  
0 𝐼
−𝐼 0

 = 0   

𝔟𝑛 =    𝑐𝑖𝑗   𝑐𝑖𝑗 = 0 𝑖𝑓 𝑖 > 𝑗               ( upper triangle matrices )   

𝔫𝑛 =    𝑐𝑖𝑗   𝑐𝑖𝑗 = 0 𝑖𝑓 𝑖 ≥ 𝑗               (strictly upper triangular matrices) 

𝔡𝑛 =    𝑐𝑖𝑗   𝑐𝑖𝑗 = 0 𝑖𝑓 𝑖 ≠ 𝑗               (diagonal matrices)  

Definition   2.1.5.  

 Take a fixed element . Multiplication by  defines the left translation  

𝐿 :
𝐺 ⟶  𝐺            

𝑔 ⟼ 𝐿𝑔 = 𝑔
 

In coordinates, this is expressed as follows:  

Assume that  𝑔 = 𝛼𝑎  . Then left translation induces a motion 𝐿 : 𝛼𝑎 ⟼ βa(𝛼) , such that 

𝜙 𝑔 = 𝛽. Of course there is also the right translation, but that doesnot give different results 

up to some ordering switches.   

Left translation is a bijection of 𝐺 to itself . it also acts on functions on the manifold : to a 

function 𝑓 it associates a new function 𝐿𝑓  which is simply the old function moved along the 

manifold, i.e. 

(𝐿𝑓) 𝑔 = 𝑓(𝑔)  

Also induces a map on tangent vectors, the differential map   𝑑𝐿 : 𝑇𝑔𝐺 ⟶ 𝑇𝑔𝐺   

Which similarly maps the vector 𝑋 at point 𝑔 to the vector 𝑑𝐿  . 𝑋 at point 𝑔 defined by 

(𝑑𝐿 ∙ 𝑋) 𝑓 𝑔  = 𝑋[𝑓 𝑔 ]                                                       (2.1) 

Remark   2.1.2.  

 This is sometimes written with a ∗ subscript as 𝑑𝐿 = 𝐿∗ . for maps from 𝕂𝑑  to 𝕂𝑚 , this is 

the familiar Jacobian ( the matrix of derivatives 
𝜕𝑓𝑎

𝜕𝑥𝑏  ) . the differential map allows us to 

single out a particular kind fields, namely those that are invariant under the differential maps 

of all left translations.   
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Definition   2.1.6.  

 A vector field is called left-invariant if   𝑋 𝑔 =  𝑑𝐿 ∙ 𝑋 𝑔  for all 𝑔,  ∈ 𝐺 ,such that  𝑋 𝑔  

notation means "the vector field 𝑋 at point 𝑔" in coordinates the components of the vector are 

evaluated at that point , and it acts on functions defined at 𝑔 .  

also the left hand side of (Eq 2.1) is again at the same field at the point 𝑔 . 

 𝑋 𝑔 𝑓 𝑔  =  𝑋 𝑔[𝑓 𝑔 ] 

Hence this is a restriction of the 𝑔- dependence of the vector field 𝑋 – it does not apply to a 

vector at a given point. In coordinates this is written as  

 𝑑𝐿 ∙ 𝑋 𝑔 = Xa 𝑔 
𝜕

𝜕𝑥𝑎 𝑔 
= Xa 𝑔 

𝜕

𝜕𝑥𝑎 𝑔 
=  Xa 𝑔 

𝜕𝑥𝑏 𝑔   

𝜕𝑥𝑎  (𝑔)

𝜕

𝜕𝑥𝑎 𝑔 

= Xa 𝑔 (𝑑𝐿 )𝑎
𝑏

𝜕

𝜕𝑥𝑏 𝑔 
 

Definition  2.1.7.   

 The Lie algebra 𝔤 of a group 𝐺 is the space of left-invariant vector fields with the Lie bracket 

as product.  

 The Lie algebra is generically denoted by the name of the group in lower case fracture letters, 

e.g. the Lie algebra of  𝑆𝑈(𝑛) is (𝑛) .  

If one in particular choose = 𝑒 , left-invariant implies that :  𝑋  = 𝑑L   𝑋 e   .  

2.2   One parameter and Local One-Parameter Groups Action on Manifold : 

Definition  2.2.1.   

 Let 𝐺 be a group and 𝑋 a set 
4
. Then 𝐺 is said to act on 𝑋 ( on the left) if there is a mapping 

𝜃: 𝐺 × 𝑋 ⟶ 𝑋 satisfying two conditions:  

If 𝑒 is the identity element of  , Then :  

1. 𝜃 𝑒, 𝑥 = 𝑥                             for all 𝑥 ∈ 𝑋  

2. If 𝑔1 , 𝑔2 ∈ 𝐺 , then:    𝜃 𝑔1 , (𝑔2 , 𝑥) = 𝜃 𝑔1 , 𝑔2 , 𝑥                       for all 𝑥 ∈ 𝑋  

 

                                                           
4
 An introduction to Differentiable Manifols & Riemannian Geometry- William M.Boothby –Washington 

University- ST. Louis Missouri- 2003 
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Definition  2.2.2.   

 If we let 𝜃: 𝑅 × 𝑀 ⟶ 𝑀 specializied to an action 𝜃 of 𝑅 on  , and 𝜃 be a mapping which 

satisfies the two conditions:  

1. 𝜃0 𝑃 = 𝑃                                                                     for all 𝑃 ∈ 𝑀  

2. 𝜃𝑡 ∘ 𝜃𝑠 𝑃 =  𝜃𝑡+𝑠 𝑃 = 𝜃𝑠 ∘ 𝜃𝑡 𝑃                             for all 𝑃 ∈ 𝑀  and for all 𝑠, 𝑡 ∈ 𝑅  

Example   2.2.1.   

 Suppose that 𝑀 = 𝑅3 and 𝑎 =  𝑎1 , 𝑎2 , 𝑎3  is fixed and assumed different from 0. Then 

𝜃𝑡 𝑥 =  𝑥1 + 𝑎1𝑡 , 𝑥2 + 𝑎2𝑡, 𝑥3 + 𝑎3𝑡  defines a 𝐶∞  action of 𝑅 on 𝑀 .To each  𝑡 ∈ 𝑅 we 

have thus assigned the translation 𝜃𝑡 : 𝑅3 ⟶ 𝑅3 . taking the point 𝑥 to the point 𝑥 + 𝑡𝑎 . This 

is a free action and the orbits consist of straight lines  parallel to the vector a . A particulary 

simple special case is given by 𝑎 = (1,0,0) so that  𝜃𝑡 𝑥 = (𝑥1  + 𝑡, 𝑥2 , 𝑥3) .  

Suppose that 𝜃: 𝑅 × 𝑀 ⟶ 𝑀 is any such 𝐶∞  action . Then it defines on 𝑀 a 𝐶∞-vector field 

𝑋, which we shall call infinitesimal generator of 𝜃 . according to the following prescripition ; 

for each 𝑃 ∈ 𝑀 we define 𝑋𝑃 : 𝐶∞(𝑃) ⟶ 𝑅 by  

𝑋𝑃𝑓 = lim∆𝑡→0
1

∆𝑡
   𝑓𝜃∆𝑡   𝑃  − 𝑓(𝑃)           (2.2) 

Directly from Eq(2.2) that 𝑋𝑃  is a vector at 𝑃 in the sence of definition and then verify that 

𝑃 ⟶ 𝑋𝑃  defines a vector field, or we may proceed as follows . Let 𝑈, 𝜑 be a coordinate 

neighborhood of  𝑃 ∈ 𝑀 and let 𝐼𝛿 × 𝑉 be an open subset of  0, 𝑃  in × 𝑀 , where 𝐼𝛿 = {𝑡 ∈

 𝑅 − 𝛿 < 𝑡 < 𝛿} , and 𝑉 , 𝛿 > 0 are so chosen that 𝜃(𝐼𝛿 × 𝑉) ⊂ 𝑈 . In particular, 𝑉 = 𝜃0(𝑉) 

is contained in 𝑈 and contains  . Restricted to the open set  𝐼𝛿 × 𝑉 , we may write 𝜃 in local 

coordinates  

𝑦1 = 1(𝑡, 𝑥1 , …… ……… . , 𝑥𝑛)  

. 

. 

𝑦𝑛 = 𝑛(𝑡, 𝑥1 , ……… …… . , 𝑥𝑛)  

Or 𝑦 = (𝑡, 𝑥), where  , 𝑥 = (𝑥1 , … …… , 𝑥𝑛) are the  coordinates of 𝑞 ∈ 𝑉 and 𝑦 =

(𝑦1 , … …… , 𝑦𝑛) of  𝜃𝑡(𝑞),It's image . The 𝑖  are defined and 𝐶∞  on 𝐼𝛿 × 𝜑(𝑉) and the range 

of (𝑡, 𝑥) is in 𝜑(𝑈). The fact that 𝜃0 is the identity and 𝜃𝑡1+𝑡2
= 𝜃𝑡1

∘ 𝜃𝑡2
 is reflected in the 

conditions :  
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𝑖 0, 𝑥 = 𝑥𝑖     and              𝑖 𝑡1 + 𝑡2 , 𝑥 = 𝑖 𝑡1 + (𝑡2 , 𝑥)  

For  1, …… . , 𝑛 . Now  if  𝑓 = (𝑥1 , …… ……… . , 𝑥𝑛) is the local expression for 𝑓 ∈ 𝐶∞(𝑃) . 

Then  

1

∆𝑡
  𝑓 𝜃∆𝑡 𝑃  − 𝑓 𝑃  =

1

∆𝑡
  𝑓   ∆𝑡, 𝑥  − 𝑓 (𝑥)  

And  

𝑋𝑃𝑓 = lim
∆𝑡→0

1

∆𝑡
  𝑓   ∆𝑡, 𝑥  − 𝑓 (𝑥) =  𝑖 0, 𝑥  

𝜕𝑓 

𝜕𝑥𝑖
 

𝜑(𝑃)

𝑛

𝑖=1

 

Where we have used  a dot to indicate differentiation with respect to 𝑡 . This formula is valid 

for every 𝑃 ∈ 𝑉 and implies that on 𝑉, 𝑋𝑃 =   𝑖 0, 𝑥 𝐸𝑖𝑃  with 𝐸𝑖 = 𝜑∗
−1  𝜕 𝜕𝑥𝑖    and 

𝑥 = 𝜑(𝑃), which shows that 𝑋 is a 𝐶∞-vector field over 𝑉. Since every point of 𝑀 lies in 

such a neighborhood .   𝑋 is a 𝐶∞  on 𝑀 .Note that definition of 𝑋 at 𝑃 ∈ 𝑀 involves only the 

values of   𝜃 on 𝐼𝛿 × 𝑉. That is, like derivatives in general, it is defined locally and involves 

only values of 𝑡 near  𝜃 = 0 . 

Definition  2.2.3  

  If 𝜃: 𝐺 × 𝑀 ⟶ 𝑀 is the action of a group 𝐺 on a manifold 𝑀 . then a vector field 𝑋 on 𝑀 is 

said to be invariant under the action of 𝐺 or  𝐺 -invariant if 𝑋 is invariant under each of the 

diffeomorphisms  𝜃𝑔  of 𝑀 to itself .  

In brief   if  𝜃𝑔∗ 𝑋 = 𝑋  ( as in Def 2.2.2 ) .  

Theorem  2.2.1.  

 If 𝜃: 𝐺 × 𝑀 ⟶ 𝑀 is a 𝐶∞  action of 𝑅 on  . then the infinitesimal generator 𝑋 is invariant 

under this action. That is 𝜃𝑡∗ 𝑋𝑃 = 𝑋𝜃𝑡(𝑃)
 for all  𝑡 ∈ 𝑅 .  

Proof:  

 Let  𝑓 ∈ 𝐶∞ 𝜃𝑡  (𝑃)  for some  𝑡, 𝑃 ∈ 𝑅 × 𝑀 and compute 𝜃𝑡∗ 𝑋𝑃 𝑓 :  

𝜃𝑡∗ 𝑋𝑃 𝑓 = 𝑋𝑃 𝑓 ∘ 𝜃𝑡 =  lim∆𝑡→0
1

∆𝑡
  𝑓 ∘ 𝜃𝑡 𝜃∆𝑡   𝑃  − 𝑓 ∘ 𝜃𝑡(𝑃)  .  

However, 𝑅 is Abelian and we have  𝜃𝑡 ∘ 𝜃∆𝑡 = 𝜃𝑡+∆𝑡 = 𝜃∆𝑡 ∘ 𝜃𝑡  , So  

𝜃𝑡∗ 𝑋𝑃 𝑓 = lim∆𝑡→0
1

∆𝑡
  𝑓 ∘ 𝜃∆𝑡 𝜃𝑡   𝑃  − 𝑓 ∘ 𝜃𝑡(𝑃) = 𝑋𝜃𝑡  (𝑃)𝑓 .  
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Since this holds for all  , the result follows . 

Corollary   2.2.1.  

 If  𝑋𝑃 = 0, then for each 𝑞 in the orbit of 𝑃 we have 𝑋𝑞 = 0 . that is , at the points of an orbit 

the associated vector field vanishes identically or is never zero .  

Proof:  

The orbit of 𝑃 consists of all 𝑞 = 𝜃𝑡(𝑃) for some ∈ 𝑅 ; thus by the theorem 𝑋𝑞 = 𝜃𝑡∗ 𝑋𝑃. 

Since 𝜃𝑡  is an isomorphism of 𝑇𝑃(𝑀) onto 𝑇𝑞(𝑀) so that 𝑋𝑞 = 0 if and only if  𝑋𝑃 = 0 . 

Definition  2.2.4.  

 A local one-parameter group action or flow on a manifold 𝑀 is a 𝐶∞  map 𝜃: 𝑊 ⟶ 𝑀 which 

satisfies the following two conditions:  

𝜃0  𝑃 = 𝑃                                     for all 𝑃 ∈ 𝑀 

If  (𝑠, 𝑃) ∈ 𝑊 , then  𝜃𝑡 𝑃  = 𝛼 𝑃 − 𝑠, 𝛽 𝜃𝑡 𝑃  = 𝛽 𝑝 − 𝑠 , and moreover for any 𝑡 

such that  𝛼 𝑝 − 𝑠 < 𝑡 < 𝛽 𝑝 − 𝑠   , 𝜃𝑡−𝑠 𝑃  is defined and 𝜃𝑡 ∘ 𝜃𝑠 𝑃 = 𝜃𝑡+𝑠 𝑃 .  

Remark  2.2.1.  

 For local one-parameter actions we may show as in the global case that :  

𝜃𝑡∗ 𝑋𝑃 = 𝑋𝜃𝑡  (𝑃) if ∈ 𝑉𝑡  . As before , 𝐹 𝑡 = 𝜃𝑡  (𝑃) defined for 𝛼 𝑝 < 𝑡 < 𝛽 𝑝  is a 𝐶∞-

integral curve of 𝑋 , which is an immersion of 𝐼(𝑃) in 𝑀 provided that 𝑋𝑃 ≠ 0 and is a single 

point if  𝑋𝑃 = 0 . We shall continue to refer to these curves as orbits of the local one-

parameter group. Just as in the global case. It is a consequence of our definitions curves (and 

points)  partition 𝑀 into a union of mutually disjoint sets . The proof is a same , essentially , 

as in the globle case .  

Definition  2.2.5.  

 A vector field 𝑋 on 𝑀 is said to be complete if it generates a (global) action of 𝑅 on 𝑀, that 

is , if  𝑊 = 𝑅 × 𝑀 . 

Theorem  2.2.2.  

 Let 𝑋 be a 𝐶∞  -vector field on a manifold 𝑀 and 𝐹: 𝑀 ⟶ 𝑀 a diffeomorphism . Let 𝜃(𝑡, 𝑃) 

dente the 𝐶∞  map 𝜃: 𝑊 ⟶ 𝑀 defined by 𝑋. Then 𝑋 is invariant under 𝐹 if and only if 

𝐹  𝜃(𝑡, 𝑃) = 𝜃 𝑡, 𝐹 𝑃   whenever both sides are defined . 
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Proof:  

 Suppose that 𝑋 is invariant under a  𝐹 . if 𝜃𝑃 : 𝐼(𝑃) ⟶ 𝑀 is the integral curve of 𝑋 with 

𝜃𝑃 0 = 𝑃, then the diffeomorphism 𝐹 takes it to an integral curve  𝐹 𝜃𝑃 𝑡   of the vector 

field 𝐹∗(𝑋). Since 𝐹∗ 𝑋 = 𝑋 and 𝐹 𝜃𝑃 0  = 𝐹(𝑝), from uniqueness of integral curves we 

conclude that 𝐹 𝜃𝑃 𝑡  = 𝜃 𝑡, 𝐹 𝑃   . this proves the "only I" part of theorem . 

Now suppose that  𝐹  𝜃(𝑡, 𝑃) = 𝜃 𝑡, 𝐹 𝑃   and prove that 𝐹∗ 𝑋 = 𝑋𝐹(𝑃) . This could be 

done directly from expression for the infinitesimal generator  . but we shall proceed in a 

slightly different way .Let 𝜃𝑡 𝑡 = 𝜃(𝑡, 𝑃) and let 𝑑 𝑑𝑡  be the natural basis of 𝑇0(𝑅). The 

tangent space to 𝑅 at 𝑡 = 0 ,then by definition . 𝑋𝑃 = 𝜃𝑃 0 = 𝜃𝑃∗ 
𝑑

𝑑𝑡   and applying the 

isomorphism  𝐹∗: 𝑇𝑃(𝑀) ⟶ 𝑇𝐹 𝑃 (𝑀) to this definition we have   

𝐹∗ 𝑋𝑃 = 𝐹∗ ∘ 𝜃𝑃∗ 
𝑑

𝑑𝑡  = 𝜃𝐹(𝑃)∗ 
𝑑

𝑑𝑡  = 𝑋𝐹(𝑃).  

The second equality is the chain rule for the composition of mappings applied to 𝜃𝑃 : 𝑅 ⟶ 𝑀 

and : 𝑀 ⟶ 𝑀 . the third equality uses the hypothesis that 𝐹 ∘ 𝜃𝑃 𝑡 = 𝜃𝐹 𝑃 (𝑡).  

Definition  2.2.6.  

 Let 𝑅 be the additive group of real numbers , considered as a Lie group , and let 𝐺 be an 

arbitrary Lie group . A one –parameter subgroup 𝐻 of 𝐺 is the hoemomorphic image 𝐻 =

𝐹(𝑅) of a homomorphism : 𝑅 ⟶ 𝐺 . It is  called trivial if 𝐻 = {𝑒} . 

Example   2.2.2. 

 Let 𝐺 be the group 𝐺𝑙(3, 𝑅). We consider two one –parameter  subgroups . that is , two 

homomorphisms 𝐹1 , 𝐹2 into 𝐺 defined as follows (𝑎, 𝑏, 𝑐 ∈ 𝑅 are constants):  

𝐹1 𝑡 =  
𝑒𝑎𝑡 0 0
0 𝑒𝑎𝑡 0
0 0 𝑒𝑎𝑡

      and                𝐹2 𝑡 =  
1 𝑎𝑡 𝑏𝑡 +

1

2
 𝑎𝑐𝑡2

0 1 𝑐𝑡
0 0 1

     

Answer.  

 Now 𝐺𝑙(3, 𝑅) acts naturally on 𝑅3 and hence each 𝐹1 defines an action on 𝑅3 . In the case of   

𝐹1 we have 𝜃 𝑡 , 𝑥1 , 𝑥2 , 𝑥3 =  𝑒𝑎𝑡  𝑥1 , 𝑒𝑎𝑡  𝑥2 , 𝑒𝑎𝑡  𝑥3  . Therefore the infinitesimal 

generator 𝑋 is given at 𝑥 ∈ 𝑅3 by  :   𝑋𝑥 = 𝜃  0, 𝑥 = 𝑎𝑥1 𝜕

𝜕𝑥1 + 𝑎𝑥2 𝜕

𝜕𝑥2 +  𝑎𝑥3 𝜕

𝜕𝑥3  

And the integral curves ,or orbits are the lines through the origin (see Fig 2.1) . 
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Fig (2.1) 

The group 𝐺𝑙(𝑛, 𝑅) also acts on 𝑃𝑛−1(𝑅), since it preserves the equivalence relation 

(proportionality ) of 𝑛-tuples which defines  𝑃𝑛−1(𝑅) . In particular 𝐺𝑙(3, 𝑅) acts on two-

dimensional projective space 𝑃2(𝑅) . In this case 𝐹1 defines a trivial action (𝑡, 𝑃) ≡ 𝑃 . 

𝐹1 𝑡 =  
cos 𝑎𝑡 sin 𝑎𝑡 0

− sin 𝑎𝑡 cos 𝑎𝑡 0
0 0 1

  

The 𝑆𝑂(3) is homomorphism and acts on the unit sphere 𝑆2 in a standard manner . the action 

is just the usual rotation of the sphere . and 𝐹 defines a one –parameter group of rotations 

holding the 𝑥3 axis fixed :  

𝜃 𝑡 , 𝑥1 , 𝑥2 , 𝑥3 =   𝑥1 cos 𝑎𝑡 + 𝑥2 sin 𝑎𝑡 , −𝑥1 sin 𝑎𝑡 + 𝑥2 cos 𝑎𝑡  , 𝑥3   

The orbits are the lines of latitude and the generator 𝑋 is tangent to them and orthogonal to 

the 𝑥3-axis , 𝑋 = 0 at the north and south poles  0,0, ±1 . (See Fig 2.2)  

 

Fig (2.2) 

Example  2.2.3.  

 We recall also that a Lie group 𝐺 acts on itself (on the right) by right translations . Thus if we 

are given a homomorphism : 𝑅 ⟶ 𝐺 , we may define an action  𝜃 of 𝑅 on 𝑀 = 𝐺 by  
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𝜃 𝑡, 𝑔 = 𝑔𝐹 𝑡  𝑔 = 𝑔𝐹(𝑡) . we have used 𝑅𝑎  to denote right translation : 𝑔𝑎 𝑔 = 𝑔𝑎 . this 

is a composition of 𝐶∞  maps , 𝐹 and right translation . it is an action since 𝐹 is a 

homomorphism and multiplication is associative : 

𝜃 0, 𝑔 = 𝑔𝐹 0 = 𝑔 

𝜃 𝑡 + 𝑠, 𝑔 = 𝑔𝐹 𝑡 + 𝑠 = 𝑔 𝐹 𝑡 𝐹 𝑠   

                         =  𝑔 𝐹 𝑡 𝐹 𝑠   = 𝜃 𝑠, 𝜃 𝑡, 𝑔   

Thus the examples above furnish further examples of one –parameter group action . namely 

on 𝑀 = 𝐺𝑙(3, 𝑅) and 𝑀 = 𝑂(3) , respectively .  

A left –invariant vector field on 𝐺 is uniquely determined by it's value at the identity  , we 

may use these ideas to characterized one-parameter subgroups of a Lie group .  

Theorem  2.2.3. 

 Let F:R⟶ 𝐺 be a one-parameter subgroup of the Lie group 𝐺 and 𝑋 the left –invariant vector 

field on 𝐺 defined by 𝑋 = 𝐹(0). Then 𝜃 𝑡, 𝑔 = 𝑅𝐹(𝑡)𝑔 defines on action 𝜃: 𝑅 × 𝐺 ⟶ 𝐺 of 𝑅 

on 𝐺 (as a manifold) having 𝑋 as infinitesimal generator .Conversely, let 𝑋 be a left-invariant 

vector field and  𝜃: 𝑅 × 𝐺 ⟶ 𝐺 the corresponding action . then 𝐹 𝑡 = 𝜃(𝑡, 𝑒) ia a one –

parameter subgroup of   𝐺 and  𝜃 𝑡, 𝑔 =  𝑅𝐹(𝑡)𝑔  .  

Proof:  

Given the 𝐹: 𝑅 ⟶ 𝐺 .then 𝜃: 𝑅 × 𝐺 ⟶ 𝐺 .defined by 𝜃 𝑡, 𝑔 =  𝑅𝐹(𝑡)𝑔 = 𝑔𝐹(𝑡) is, as we 

have just seen, an action of 𝑅 on 𝐺. If 𝑎 ∈ 𝐺 ,then :  

 𝐿𝑎𝜃 𝑡, 𝑔 = 𝑎 𝑔𝐹 𝑡  =  𝑎𝑔 𝐹 𝑡 = 𝜃 𝑡, 𝐿𝑎 (𝑔)  .  

   By (Theorem 2.2.2) it follows that the generator 𝑋 of 𝜃 is 𝐿𝑎  -invariant .for any ∈ 𝐺 . 

however 𝜃 𝑡, 𝑒 = 𝐹(𝑡), and so 𝑋𝑒 = 𝜃 0, 𝑒 = 𝐹(0) , which proves the first half of the 

theorem . 

For the converse 𝑋, being left-invariant , is both 𝐶∞  and complete and it generates an action 𝜃 

of   𝑅 on 𝐺. By (Theorem 2.2.2)  for any left translation 𝐿  we have  𝐿𝜃 𝑡, 𝑔 = 𝜃 𝑡, 𝐿 𝑔   

or equivalently, 𝜃 𝑡, 𝑔 = 𝜃 𝑡, 𝑔  . let 𝐹 𝑡 = 𝜃 𝑡, 𝑒  and  = 𝐹(𝑠) . then this relation 

implies . 

𝐹 𝑠 𝐹 𝑡 = 𝐹 𝑠 𝜃 𝑡, 𝑒 =  𝜃 𝑡, 𝜃 𝑠, 𝑒  =  𝜃 𝑡 + 𝑠, 𝑒 = 𝐹(𝑠 + 𝑡) 
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Thus   𝑡 ⟶ 𝐹(𝑡) is a 𝐶∞  homomorphism . But 𝐹  0 = 𝜃  0, 𝑒 = 𝑋𝑃 and since 𝑋 is left-

invariant , we see by uniqueness of the action generated by 𝑋 that   𝜃 𝑡, 𝑔 = 𝑅𝐹 𝑡 (𝑔) .  

Corollary  2.2.2.  

 There is a one-to-one correspondence between the elements of 𝑇𝑒(𝐺) and one-parameter 

subgroups of 𝑡 . For 𝑍 ∈ 𝑇𝑒(𝐺) ,let  𝑡 ⟶ 𝐹(𝑡, 𝑍) denote the ( unique ) corresponding one-

parameter subgroup . Then 𝐹: 𝑅 × 𝑇𝑒(𝐺) ⟶ 𝐺 is 𝐶∞  and sarisfies 𝐹 𝑡, 𝑠𝑍 = 𝐹(𝑠𝑡, 𝑍) .  

Proof:  

 According to (Theorem 2.2.3) each 𝑍 ∈ 𝑇𝑒(𝐺) determines a unique homomorphism 𝑡 ⟶

𝐹(𝑡, 𝑍) of 𝑅 onto 𝐺 such that 𝐹  0, 𝑍 = 𝑍 . By extension of the existence theorem , we see 

that 𝐹 is 𝐶∞  simultaneously in 𝑡 and 𝑍 [ identifying  𝑇𝑒(𝐺) with 𝑅𝑛  by some choice of basis ]. 

Using the rule of change of parameter in a curve on a manifold , we have  

 
𝑑

𝑑𝑡
 𝐹(𝑡𝑠, 𝑍) 

𝑡=0
= 𝑠  

𝑑

𝑑𝑡
 𝐹(𝑡, 𝑍) 

𝑡=0
= 𝑠𝑍 . 

One the other hand 𝑡 ⟶ 𝐹(𝑡𝑠, 𝑍) is a homomorphism . therefore , by uniqueness , 

𝑡 ⟶ 𝐹 𝑠𝑡, 𝑍 = 𝑡 ⟶ 𝐹(𝑡, 𝑠𝑍) . 

2.3    The Lie Algebra of Vector Fields On a Manifold :  

  Definition  2.3.1.   

 A vector space ℒ over 𝑅 is a (real) 
5
Lie algebra if in addition to it's vector space structure it 

possesses a product , that is , a map ℒ × ℒ ⟶  ℒ taking the pair  𝑋, 𝑌  to the element  𝑋, 𝑌  of  

ℒ , which has the following properties : 

1. It is bilinear over  : 

 𝛼1𝑋2 + 𝛼2𝑋2 , 𝑌 = 𝛼1 𝑋1 , 𝑌 + 𝛼2 𝑋2 , 𝑌  

 𝑋, 𝛼1𝑌1 + 𝛼2𝑌2  = 𝛼1 𝑋, 𝑌1 + 𝛼2 𝑋 , 𝑌2  

2. It is skew commutative :      𝑋, 𝑌 = − 𝑋, 𝑌  

3. It satisfies the Jacobi identity :      𝑋,  𝑌, 𝑍  +  𝑌,  𝑍, 𝑋  +  𝑍,  𝑋, 𝑌  = 0 

 

                                                           
5
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Example  2.3.1. 

 A vector space 𝑉3 of dimension 3 over 𝑅 with the usual vector product of vector calculus is a 

Lie algebra .  

Example   2.3.2.  

 Let ℳ𝑛(𝑅) denote the algebra of 𝑛 × 𝑛 matrices over 𝑅 with 𝑋, 𝑌 ∈ 𝔛(𝑀). Then in general 

the operator 𝑓 ⟶ 𝑋𝑃(𝑌𝑓) defined on 𝐶∞(𝑝) ⟶ 𝑓 being a 𝐶∞  function on a neighborhood of 

𝑃  ــــ does not define a vector at 𝑃 . Determine a 𝐶∞  - vector field ,however ,oddly enough .  

𝑋𝑌 − 𝑌𝑋 does it define a vector field 𝑍 ∈ 𝔛(𝑀) according to the prescription  

𝑍𝑃𝑓 =  𝑋𝑌 − 𝑌𝑋  𝑃  𝑓 = 𝑋𝑃 𝑌𝑓 − 𝑌𝑃(𝑋𝑓) . 

For if 𝑓, 𝑔 ∈ 𝐶∞(𝑝), then 𝑋𝑓 and 𝑌𝑓 are 𝐶∞  on a neighborhood of 𝑃 ,and this prescription 

determines a linear map of  𝐶∞(𝑝) ⟶ 𝑅 .Therefore, if the Leibniz rule holds for  𝑍𝑃  . then 𝑍𝑃  

is an element of 𝑇𝑃(𝑀) at each 𝑃 ∈ 𝑀 .Consider  𝑓, 𝑔 ∈ 𝐶∞(𝑝). Then 𝑓, 𝑔 ∈ 𝐶∞(𝑈) for some 

open set 𝑈 containing   𝑃. Using the notation  𝑋𝑓 𝑃 for  𝑋𝑃𝑓 , the value of 𝑋 𝑓 at 𝑃 .we  have  

relations :  

 𝑋𝑌 − 𝑌𝑋  𝑃   𝑓𝑔 = 𝑋𝑃 𝑌𝑓𝑔 − 𝑌𝑃 𝑋𝑓𝑔   

                                = 𝑋𝑃 𝑌𝑓𝑔 + 𝑔𝑌𝑓 − 𝑌𝑃 𝑋𝑓𝑔 + 𝑔𝑋𝑓   

                                = (𝑋𝑃𝑓) 𝑌𝑔 𝑃 + 𝑓 𝑃 𝑋𝑃 𝑌𝑔 +  𝑋𝑃𝑔  𝑌𝑓 𝑃 + 𝑔 𝑃 𝑋𝑃 𝑌𝑓   

                                    −(𝑌𝑃𝑓) 𝑋𝑔 𝑃 − 𝑓 𝑃 𝑌𝑃 𝑋𝑔 − (𝑌𝑃𝑔) 𝑋𝑓 𝑃 − 𝑔 𝑃 (𝑌𝑃𝑋𝑓)  

So that  

𝑍𝑃 𝑓𝑔 =  𝑋𝑌 − 𝑌𝑋  𝑃   𝑓𝑔 = 𝑓 𝑃  𝑋𝑌 − 𝑌𝑋  𝑃  𝑔 + 𝑔(𝑃) 𝑋𝑌 − 𝑌𝑋  𝑃  𝑓  

              = 𝑓 𝑃 𝑍𝑃𝑔 + 𝑔(𝑃)𝑍𝑃𝑓 . 

Finally, if 𝑓 is  𝐶∞  on any open set 𝑈 ⊂ 𝑀, then so is   𝑋𝑌 − 𝑌𝑋  𝑓, and therefore 𝑍 is a 𝐶∞-

vector field on 𝑀 as claimed .We may define a product on 𝔛(𝑀) using this fact; namely 

define the product of 𝑋 and 𝑌 by  𝑋, 𝑌 = 𝑋𝑌 − 𝑌𝑋 . 

Theorem   2.3.1.  

 𝔛 𝑀  with the product  𝑋, 𝑌  is a Lie algebra . 
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Proof: 

 If 𝛼, 𝛽 ∈ 𝑅 
6
and 𝑋1 , 𝑋2 , 𝑌 are 𝐶∞-vector fields, then it is straight-forward to verify that  

 𝛼𝑋1 + 𝛽𝑋2 , 𝑌 𝑓 = 𝛼 𝑋1 , 𝑌 𝑓 + 𝛽 𝑋2 , 𝑌 𝑓  

Thus  𝑋, 𝑌  is linear in the first variable .Since the skew commutativity  𝑋, 𝑌 = − 𝑌, 𝑋  is 

immediate from the definition, we see that linearity in the first variable implies linearity in the 

second . Therefore,   𝑋, 𝑌  is bilinear and skew commutativite . There remains the Jacobi 

identity which follows immediately if we evaluate  𝑋,  𝑌, 𝑍  +  𝑌,  𝑍, 𝑋  +  𝑍,  𝑋, 𝑌   

applied to a  𝐶∞-function 𝑓 .  

Using the definition , we obtain  

 𝑋,  𝑌, 𝑍  𝑓 = 𝑋   𝑌, 𝑍  𝑓 −  𝑌, 𝑍 (𝑋𝑓)  

                    = 𝑋 𝑌 𝑍𝑓  − 𝑋 𝑍 𝑌𝑓  − 𝑌 𝑍 𝑋𝑓    

Permuting cyclically and adding establishes the identity.   

Theorem   2.3.2.   (𝑻𝒆𝑮 ≅ 𝓛(𝑮) as Vector Spaces)  

 We have two Lie algebra associated with  
7
: the tangent space at the identity, 𝑇𝑒𝐺 , with the 

bracket induced by 𝑎𝑑 , and the left invariant vector fields ,mathcal 𝐿(𝐺) , with the Lie 

bracket .In this section we will demonstrate that they are isomorphic as vector spaces . 

Define a map 𝑣: 𝑇𝑒𝐺 ⟶ 𝔛(𝐺) by   𝑣𝜉 𝑔 = 𝑇𝑒𝐿𝑔(𝜉)  

For all  𝜉 ∈ 𝑇𝑒𝐺  and 𝑔 ∈ 𝐺 .Because  tangent maps are linear, so is 𝑣 . For all  𝜉 ∈ 𝑇𝑒𝐺  and 

𝑔,  ∈ 𝐺 we have  

 𝑇𝐿𝑔  𝑣𝜉   =  𝑇𝐿𝑔  𝑇𝑒  𝐿 𝜉  = 𝑇𝑒 𝐿𝑔 ∘ 𝐿  𝜉 = 𝑇𝑒  𝐿𝑔 𝜉 = 𝑣𝜉 𝑔  

                                       =  𝑣𝜉 ∘ 𝐿𝑔    .   

Therefore 𝑣𝜉  is left invariant ,so 𝑣 really is a map 𝑇𝑒𝐺 ⟶ ℒ(𝐺)  . It's inverse (immediately)  

Given by the map  :  ℒ(𝐺) ⟶ 𝑇𝑒𝐺 ,               𝑋 ⟼ 𝑋(𝑒) ∈ 𝑇𝑒𝐺 . 

 

                                                           
6
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Theorem  2.3.3.      ( 𝑻𝒆𝑮 ≅ 𝓛(𝑮) as Lie algebras )  

 To show that 𝑇𝑒𝐺 and ℒ(𝐺) 
8
are isomorphic as Lie algebras as well vector fields , we must 

show that the map :   𝑣: 𝑇𝑒𝐺 ⟶ ℒ(𝐺) , Preserves the brackets , i.e.   𝑣𝑎𝑑 (𝜉)𝜂 =  𝑣𝜉 , 𝑣𝜂    

For all , 𝜂 ∈ 𝑇𝑒𝐺 . Since the Lie bracket of vector fields can be described easily in terms of 

flows , it might be helpful to know what the flows of these vector fields look like . 

Claim  2.3.1.   

 Let 𝜉 ∈ 𝑇𝑒𝐺 . and 𝑔 ∈ 𝐺 . Then the flows of  𝑣𝜉  through 𝑔 is the curve 𝑐: ℝ ⟶ 𝐺  given by  

𝑐 𝑡 = 𝐿𝑔 ∘ exp(𝑡𝜉)  

Proof:  

 Note that 𝑐 0 = 𝐿𝑔 ∘ exp 0    =  𝐿𝑔 𝑒 = 𝑔. Let  𝑡 ∈ ℝ . Then  

𝑐  0 =  𝑑
𝑑𝑠

 
𝑠=𝑡

𝑐 𝑡 =  𝑑
𝑑𝑠

 
𝑠=0

𝑐 𝑠 + 𝑡   

         =  
𝑑

𝑑𝑠
 
𝑠=0

 𝐿𝑔 ∘ exp  𝑠 + 𝑡 𝜉 =  
𝑑

𝑑𝑠
 
𝑠=0

 𝐿𝑔 ∘ exp  𝑡 + 𝑠 𝜉   

         =  
𝑑

𝑑𝑠
 
𝑠=0

 𝐿𝑔 exp 𝑡𝜉 ∙ exp(𝑠𝜉) =   
𝑑

𝑑𝑠
 
𝑠=0

 𝐿𝑔 ∘ 𝐿exp  𝑡𝜉    exp 𝑠𝜉    

         =  
𝑑

𝑑𝑠
 
𝑠=0

 𝐿𝑔 exp  𝑡𝜉     exp 𝑠𝜉   

         =  𝑇𝑒𝐿𝑔 exp  𝑡𝜉    𝜉 =  𝑣𝜉 𝑔 exp 𝑡𝜉  = 𝑣𝜉 𝑐 𝑡    . 

Theorem   2.3.4. 

  Let , 𝜂 ∈ 𝑇𝑒𝐺 , Then :    𝑣𝑎𝑑 (𝜉)𝜂
=  𝑣𝜉  , 𝑣𝜂    

Proof:  

Recall that the flow of 𝑣𝜉  at time 𝑡 ∈ ℝ is the map 𝐺 ⟶ 𝐺 given by   𝑅exp  𝑡𝜉   . Let 𝑔 ∈ 𝐺 

Then using the definition of  Ψ 9, 𝐴𝑑, and  , the linearity of tangent maps, we calculate  

                                                           
8
 About Lie Groups – timothy e. Goldberg –October 6,2005  

9
  It is a conguagation map  
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 𝑣𝜉  , 𝑣𝜂   𝑔 =   
𝑑

𝑑𝑠
 
𝑡=0

  𝑅exp  𝑡𝜉   𝑣𝑒𝑡𝑎  (𝑔)  

                 =   
𝑑

𝑑𝑠
 
𝑡=0

 𝑇𝑅exp   𝑡𝜉  ∘ 𝑣𝑒𝑡𝑎 ∘ 𝑅−1
exp   𝑡𝜉    𝑔   

                 =    
𝑑

𝑑𝑠
 
𝑡=0

 𝑇𝑅exp   𝑡𝜉  ∘ 𝑣𝑒𝑡𝑎   𝑔 𝑒𝑥𝑝 −𝑡𝜉    

                 =   
𝑑

𝑑𝑠
 
𝑡=0

 𝑇𝑅exp   𝑡𝜉   ∘ 𝑇𝐿𝑔 exp   −𝑡𝜉   𝜂  

                 =    
𝑑

𝑑𝑠
 
𝑡=0

 𝑇 𝑅exp   𝑡𝜉   ∘ 𝐿𝑔 exp   −𝑡𝜉    𝜂  

                 =   
𝑑

𝑑𝑠
 
𝑡=0

 𝑇 𝑅exp   𝑡𝜉   ∘ 𝐿𝑔 ∘ 𝐿 exp   −𝑡𝜉    𝜂   

                 =    
𝑑

𝑑𝑠
 
𝑡=0

 𝑇𝐿𝑔 ∘  𝑇Ψexp  𝑡𝜉     

                 =  𝑇𝐿𝑔    
𝑑

𝑑𝑠
 
𝑡=0

𝐴𝑑 exp 𝑡𝜉 𝜂   

                 =  𝑇𝐿𝑔  𝜉, 𝜂   

                 = 𝑣 𝜉 ,𝜂 (𝑔) . 

2.4     Lie Derivative  

 Unlike Euclidean spaces 
10

,the manifold notion doesn't let us simply introduce the derivative 

notion. Indeed , how shall we compare, for example vectors at various points and how shall 

we define the derivative of a vector field at a point? A first answer is supplied with the notion 

of orbits of a one-parameter group . 

i. Lie derivative of a Function  

 Let 𝑔 be a differentiable function on 𝑀 .and the tangent vector at point 𝑥0 ,to the orbit of 

diffeomomrphisms 𝜙𝑡  is  

𝑋0 =  𝑑

𝑑𝑡
 𝑥(𝑡) 

𝑡=0
=  𝑑

𝑑𝑡
 𝜙𝑡  𝑥0 

𝑡=0
 

We recall that the derivative of (germ) 𝑔 in 𝑋 tangency direction, at 𝑥0 , is the real  

𝑋0𝑔 =  𝑑

𝑑𝑡
  𝑔 ∘ 𝜙𝑡  (𝑥0) 

𝑡=0
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In a chart , if the 𝑛 𝑥𝑡(𝑡) designate local coordinates of 𝜙𝑡  𝑥0 = 𝑥 and 𝑥0
𝑡  the ones of 𝑥0 , then 

we know that :  

𝑋0𝑔 = 𝑋𝑡  𝜕

𝜕𝑥𝑡
 𝑔 

𝑥0
𝑡

=  𝜕𝑔

𝜕𝑥𝑡
  

𝑥0
𝑡

 𝜕𝑥𝑡

𝜕𝑡
  

0

 

Definition  2.4.1.  

 The Lie derivative of a function 𝑔 with respect to 𝑋 ,at point 𝑥0 , is the derivative of 𝑔 in the 

direction 𝑋 :  

𝐿𝑋0
𝑔 = 𝑋0𝑔 = lim

𝑡=0
 
𝑔 𝜙𝑡𝑥0 − 𝑔(𝑥0)

𝑡
 

More precisely, we compare  at 𝑥0 ,the value 𝑔∗  𝑥0 = 𝑔 𝜙𝑡𝑥0  of 𝑔 obtained at point  

𝜙𝑡(𝑥0) with the value 𝑔(𝑥0) . next we divide by the variation of parameter 𝑡 and take the 

limit 𝑡 ⟶ 0 .we go back to 𝑥0 along the orbit . 

The Lie derivative of a function 𝑔 with respect to 𝑋 is the function  𝐿𝑋𝑔 = 𝑀 ⟼ 𝐿𝑋𝑔(𝑥)  

Such that :   𝐿𝑋𝑔 𝑥 = 𝑋𝑥𝑔(𝑥)  

In short omitting the bracket :   𝐿𝑋𝑔 = 𝑋𝑔 =
𝑑

𝑑𝑡
  𝑔 ∘ 𝜙𝑡 =

𝑑

𝑑𝑡
  𝜙𝑡

∗𝑔 .  

In local coordinates , the Lie derivative of 𝑔 with respect to 𝑋 is expressed by  

𝐿𝑋𝑔 = 𝑋𝑖𝜕𝑖  𝑔 = 𝜕𝑖  𝑔𝑑𝑥𝑖   𝑋𝑗 𝜕𝑗  = 𝑑𝑔(𝑋) 

Denoted in short form :  𝐿𝑋𝑔 = 𝑑𝑔 𝑋                                                                       (2.3)  

Remark  2.4.1.  

 The gradient of  𝑔 denoted d𝑔 and such that :  

 𝑑𝑔, 𝑋 = 𝐿𝑋𝑔 

Proposition  2.4.1.  

 Let 𝑓: 𝑀 ⟶ 𝑁 be a diffeomorphism  , 𝑋 be a vector field on 𝑀 , 𝐿𝑋  be a differentiable Lie 

operator on 𝐶∞(𝑀) . then the Lie operator  𝐿𝑋  is :  

i. Natural with respect to pull-back by 𝑓 ,that is the following diagram is commutative  
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𝐶∞(𝑁)
𝑓∗

⟶
𝐶∞(𝑀)

𝐿𝑑𝑓𝑋 ↓ ↓ 𝐿𝑥

𝐶∞(𝑁)
⟶
𝑓∗ 𝐶∞(𝑀)

 

ii. Natural with respect to restrictions ;that is the following diagram is commutative (for any 

open 𝑈 of 𝑀) . 

𝐶∞(𝑀)
 𝑈 

⟶
𝐶∞(𝑈)

𝐿𝑋 ↓ ↓ 𝐿𝑥 𝑈 

𝐶∞(𝑀)
⟶
 𝑈 𝐶∞(𝑈)

 

Proof:  

i. The image of 𝑋 under 𝑓 is the vector field 𝑑𝑓𝑋 on 𝑁 such that ∀ ∈ 𝐶∞(𝑁) :  

𝑑𝑓𝑋  = 𝑋(𝑓∗) ∘ 𝑓−1  

That implies  :  𝐿𝑋 𝑓∗ = 𝑋 𝑓∗ = 𝑑𝑓𝑋  ∘ 𝑓 = 𝑓∗𝐿𝑑𝑓𝑋    

ii. The second assertion     𝐿𝑋 𝑈    𝑈 =  𝐿𝑋 𝑈  

Is obvious because           𝑑   𝑈 =  𝑑  𝑈   

ii. Lie derivative of vector field :  

 Let 𝜙𝑡 : 𝑀 ⟶ 𝑀 be 
11

diffeomorphisms, and  Let 𝑋 be the (generating) field of tangent vectors 

to the ormit of a group of diffeomorphisms 𝜙𝑡  passing through 𝑥0 .  

Let 𝑌 be a vector field associated to a diffeomorphism 𝜓𝑡  and 𝑌𝜙𝑡𝑥0
 be the tangent vector at 

point 𝑥𝑡 = 𝜙𝑡𝑥0 . 

We use the image of this vector under the diffeomorphism  𝜙𝑡
−1 = 𝜙−𝑡  is  𝑑𝜙𝑡

−1𝑌𝜙𝑡𝑥0
  

Where  𝑑𝜙𝑡
−1: 𝑇𝜙𝑡𝑥0

𝑀 ⟶ 𝑇𝑥0
𝑀 . 

"Going backwards " to 𝑥0 along an orbit and comparing the previous image with vector  𝑇𝑥0
 ,  

We define : The Lie derivative of  vector field 𝑌 with respect to 𝑋 ,at 𝑥0 , is  

                                                           
11

 "Differential Geometry With Applications to Mechanics and Physics"- Yves Tapaert- Ouagadougou University 

- Burkina Faso . 
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 𝑇𝑥0
𝑌 = lim𝑡=0

1

𝑡
  𝑑𝜙𝑡

−1𝑌𝜙𝑡𝑥0
−  𝑇𝑥0

   

          =  
𝑑

𝑑𝑡
𝑑𝜙𝑡

−1𝑌  
𝑡=0

  

Remark  2.4.2.    (Zero Lie derivative ) 

 From the previous definition , if 𝑑𝜙𝑡
−1𝑌𝜙𝑡𝑥0

= 𝑇𝑥0
 then the Lie derivative is zero . 

This particular case is illustrated as follows:  

 In general way, there is no reason for such an equality apart from when the image of orbit ( 

with tangent vector 𝑋) passing through 𝑥0 under 𝜓𝑡  is the orbit corresponding to 𝑋 passing 

through 𝜓𝑡𝑥0  .  

Proposition  2.4.2.  

 The Lie derivative of vector field 𝑌 with respect to 𝑋 is the Lie bracket of 𝑋 and  .  

Proof:  

First : Let us point out the following remark . 

Let 𝑔: 𝐼 × 𝑈 ⟶ 𝑅 be a function defined on × 𝑈 ⊂ 𝑅 × 𝑀 . there is a function : 𝐼 × 𝑈 ⟶ 𝑅  

Of class 𝐶𝑡  such that :  𝑔 𝑡, 𝑥 = 𝑔 0, 𝑥 + 𝑡(𝑡, 𝑥)  and   𝜕𝑡𝑔 0, 𝑥 = (0, 𝑥)  

The function  such that :   𝑡, 𝑥 =  𝜕𝑡𝑔 𝑡𝑢, 𝑥 𝑑𝑢
𝑡

0
  

fits the requirements  

Indeed , from the change of variable 𝑣 = 𝑡𝑢 , we deduce :  

 𝑡, 𝑥 =
1

𝑡
  𝜕𝑣𝑔 𝑣, 𝑥 𝑑𝑣 =

1

𝑡
  𝑔 𝑡, 𝑥 − 𝑔 0, 𝑥  

𝑡

0
  

𝑔 𝑡, 𝑥 = 𝑔 0, 𝑥 + 𝑡(𝑡, 𝑥)    

And also     0, 𝑥 =
1

𝑡
  𝜕𝑡𝑔 0, 𝑥 𝑑𝑢 =

𝑡

0
𝜕𝑡𝑔 0, 𝑥 .  

Second : let us prove the proposition  

The following comparison between vectors   𝑑𝜙𝑡
−1𝑌 −  𝑌  

Leads to  



 

70 

𝐿𝑋 = lim𝑡=0
1

𝑡
  𝑑𝜙𝑡

−1𝑌 −  𝑌  𝑔 = lim𝑡=0
1

𝑡
 𝑑𝜙𝑡

−1 𝑌 − 𝑑𝜙𝑡𝑌  𝑔   

      = lim𝑡=0
1

𝑡
  𝑌 − 𝑑𝜙𝑡𝑌  𝑔   

      =  lim𝑡=0
1

𝑡
  𝑌(𝑔) − 𝑌 𝑔 ∘ 𝜙𝑡 ∘ 𝜙𝑡

−1  𝑔  . 

It is from the definition of the image of vector field under 𝜙𝑡  ,namely :  

 𝑑𝜙𝑡𝑌  𝑔 = 𝑔 𝑥 + 𝑡(𝑡, 𝑥)   

Where  

 0, 𝑥 =
𝜕 𝑔∘𝜙𝑡 

𝜕𝑡
  0, 𝑥 = 𝑋𝑔 , 

the last equality following from the definition of the directional derivation of 𝑔 along 𝑋 ,  

then , by using the expression of  𝐿𝑋𝑌(𝑔), we have :  

𝐿𝑋𝑌(𝑔) = lim𝑡=0
1

𝑡
  𝑌 𝑔 − 𝑌 𝑔 ∘ 𝜙𝑡

−1 − 𝑡𝑌() ∘ 𝜙𝑡
−1   

             = lim𝑡=0  
1

𝑡
  𝑦 𝑔 ∘ 𝜙𝑡 − 𝑌(𝑔) ∘ 𝜙𝑡

−1 − 𝑌() ∘ 𝜙𝑡
−1   

              = 
𝑑

𝑑𝑡
  𝑌 𝑔 ∘ 𝜙𝑡  0 − lim𝑡=0 𝑌()                  , because lim𝑡=0 𝜙𝑡

−1 = 𝑖𝑑  

From the directional derivative of a function 𝑌 𝑔  along  :  

𝑋 𝑌(𝑔) =
𝑑

𝑑𝑡
   𝑌 𝑔 ∘ 𝜙𝑡  𝑥  𝑡=0  

And since    0, 𝑥 = 𝑋𝑔  

we deduce : 𝐿𝑋𝑌 𝑔 = 𝑋 𝑌 𝑔  − 𝑌 𝑋 𝑔  =  𝑋, 𝑌 𝑔 . 

Properties …… 

1. 𝑹- bilinearity: ∀ 𝑋, 𝑌, 𝑍 ∈ 𝔛(𝑀), ∀𝑎, 𝑏 ∈ 𝑹 :  

𝐿𝑋+𝑌𝑍 = 𝐿𝑋𝑍 + 𝐿𝑌𝑍 

𝐿𝑋 𝑌 + 𝑍 =  𝐿𝑋𝑌 + 𝐿𝑋𝑍 

𝐿𝑎𝑋𝑏𝑌 = 𝑎𝑏𝐿𝑋𝑌 

2. Anticommutative property , ∀ 𝑋, 𝑌 ∈ 𝔛(𝑀) :  𝐿𝑋𝑌 = −𝐿𝑌𝑋 . 
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Jacobi identity , ∀ 𝑋, 𝑌, 𝑍 ∈ 𝔛(𝑀) :  

                  𝑋,  𝑌, 𝑍  +  𝑌,  𝑍, 𝑋  = − 𝑍,  𝑋, 𝑌    

    ⇔        𝐿 𝑋+𝑌 𝑍 = 𝐿𝑋𝐿𝑌𝑍 + 𝐿𝑌𝐿𝑋𝑍  

     ⇔      𝐿𝑋 𝑌, 𝑍 =  𝐿𝑋𝑌, 𝑍 +  𝑌, 𝐿𝑋𝑍   

So the properties (2) and (3) show the algebra is a Lie algebra . The equality proves 𝐿𝑋  is a 

Lie bracket derivation .   

Definition  2.4.2.      (Lie derivative of differential form) 

 The Lie derivative
12

 of differential form 𝜔 with respect to 𝑋 ,at 𝑥0 ,is  

 𝐿𝑋𝜔 𝑥0
= lim𝑡=0

1

𝑡
  𝜙𝑡

∗𝜔𝜙𝑡  𝑥0
∗ − 𝜔𝑥0

                                               (2.4) 

                                =  𝑑
𝑑𝑡

 𝜙𝑡
∗𝜔 

𝑡=0
 

Remark  2.4.3.  

𝑑

𝑑𝑡
 𝜙𝑡

∗𝜔 =  𝑑
𝑑𝑡

 𝜙𝑡+𝑠
∗ 𝜔 

𝑠 =0

 =  
𝑑

𝑑𝑠
 𝜙𝑡+𝑠

∗ 𝜔 
𝑠 =0

= 𝜙𝑡
∗   

𝑑

𝑑𝑡
 𝜙𝑠

∗𝜔 
𝑡=0

 = 𝜙𝑡
∗ 𝐿𝑋  𝜔    

Remark  2.4.4.  

 The definition (2.4.2) leads again to the formula (2.3) in the context of real-valued functions :  

 𝐿𝑋  𝑔 𝑥0
= lim𝑡=0

1

𝑡
  𝜙𝑡

∗𝑔 𝜙𝑡𝑥0 − 𝑔 𝑥0  = lim𝑡=0
1

𝑡
  𝑔 𝜙𝑡𝑥0 − 𝑔 𝑥0   .  

Proposition  2.4.3.  

 The operator 𝑑 is natural with respect to 𝐿𝑋  ; that is the following diagram is commutative :  

Ω𝑃(𝑀)
𝐿𝑋

⟶
Ω𝑃(𝑀)

𝑑 ↓ ↓ 𝑑

Ω𝑃(𝑀)
⟶
𝐿𝑋

Ω𝑃+1(𝑀)

 

In other words , ∀ 𝜔 ∈ Ω𝑃 𝑀 : 𝑑𝐿𝑋  𝜔 = 𝐿𝑋  𝑑𝜔 . 
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Proof:  

𝑑𝐿𝑋  𝜔 = 𝑑  𝑑
𝑑𝑡

 𝜙𝑡
∗𝜔 

𝑡=0
=   

𝑑

𝑑𝑡
 𝜙𝑡

∗𝜔 
𝑡=0

=   
𝑑

𝑑𝑡
 𝑑𝜙𝑡

∗𝜔 
𝑡=0

=  𝐿𝑋  𝑑𝜔  . 

Example  2.4.1. 

 With the help of diffeomorphisms give an interpretation of the Lie derivative of a vector field 

𝑋 with respect to vector field 𝑌 on a manifold  . 

Given one-parameter groups of diffeomorphisms 𝜙𝑡  and 𝜓𝑡  of which 𝑋 and 𝑌 are the 

respective generating fields, show that the curve : 𝑡 ⟼  𝜙− 𝑡 ∘ 𝜓− 𝑡 ∘ 𝜙 𝑡 ∘ 𝜓 𝑡 𝑥  

Is differentiable at 𝑡 = 0 and admits  𝑋, 𝑌 = 𝐿𝑋𝑌 as a corresponding tangent vector .  

Answer:  

 Let 𝑥0 be a point of 𝑀  𝑡 = 0   

2.5    Matrix groups  

i. The Lie algebra of matrix Groups  

 Let us consider (𝑛, 𝕂) 
13

, as a coordinates we choose the entries of the matrices, so that a 

matrix 𝑔 is parameterized by 𝑔 = 𝑔𝑗
𝑖  . in particular, the identity is  𝑒 = 𝛿𝑗

𝑖  . then the left 

translation, as multiplication acts as : 𝐿𝑔 = 𝑔 = 𝑘
𝑖 𝑔𝑗

𝑘   

Its differential is  (𝑑𝐿)𝑗   𝑘
𝑖   𝑙 =

𝜕(𝑔)𝑗
𝑖

𝜕𝑔𝑙
𝑘 =  𝑘

𝑖 𝛿𝑗
𝑙   

The left-invariant vector fields can be obtained from the tangent vectors at the identity . 

denoted such a vector by  𝑉 =  𝑉𝑗
𝑖   

𝜕

𝜕𝑔𝑗
𝑖  

𝑔=𝑒

  

The vector field 𝑋𝑉  corresponding to 𝑉 is given by acting on 𝑉 with differential , 

 𝑋𝑉  = 𝑑𝐿𝑉 = (𝑑𝐿 )𝑗   𝑘
𝑖   𝑙  𝑉𝑙

𝑘  
𝜕

𝜕𝑗
𝑖

= 𝑘
𝑖 𝛿𝑗  

 𝑙  𝑉𝑙
𝑘  

𝜕

𝜕𝑗
𝑖

=  (𝑉)𝑙
𝑘  

𝜕

𝜕𝑗
𝑖
 

The component of 𝑋𝑉  at the point 𝑉 is just 𝑉, interpretend as a matrix product . 

This gives us a very important formula for the Lie bracket:  
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Let  𝑋𝑉  and 𝑋𝑤  be two vector fields obtained from tangent vectors 𝑉 and 𝑊 as a 

bove . the Lie bracket is a new vector field, which at point  is given by  

 [𝑋𝑉 , 𝑋𝑊]  =    𝑋𝑉  𝑗
𝑖 𝜕

𝜕𝑗
𝑖  ( 𝑋𝑊  ) 𝑙

𝑘 −   𝑋𝑊  𝑗
𝑖 𝜕

𝜕𝑗
𝑖  ( 𝑋𝑉  ) 𝑙

𝑘  
𝜕

𝜕𝑙
𝑘   

                   =  𝑚
𝑖 𝑉𝑗

𝑚 𝜕

𝜕𝑗
𝑖  𝑛

𝑘  𝑊𝑙
𝑛 − 𝑚

𝑖 𝑊𝑗
𝑚 𝜕

𝜕𝑗
𝑖  𝑛

𝑘  𝑉𝑙
𝑛    

𝜕

𝜕𝑙
𝑘   

                   = 𝑚
𝑘  𝑉𝑗

𝑚𝑊𝑙
𝑗
− 𝑊𝑗

𝑚𝑉𝑙
𝑗
   

𝜕

𝜕𝑙
𝑘   =    [𝑉, 𝑊]

𝜕

𝜕
   

 Remark  2.5.1.  

 In the last line the square brackets indicate not the Lie bracket of vector fields, but the matrix 

commutator, (it means that we can identify the Lie algebra of  𝐺𝐿(𝑛, ℂ) with the components 

Vj
i of tangent vectors and use the usual matrix commutator as the product which is huge 

simplification).  

Definition  2.5.1.  ( The Exponential Map ) 

 We define a diffeomorphism of  𝐺 onto itself as follows : 

The points on an integral curve of a left-invariant vector field 𝑋 (through  , at 𝑡 = 0 )  are 

defined by : 𝑔𝑋 𝑡 : 𝑥 ⟼ exp 𝑡𝑋 𝑥  

Definition  2.5.2.   

 The mapping 𝑔𝑋 𝑡 = exp 𝑡𝑋  is called exponential mapping generated by the vector 
14

field 

𝑋. This mapping has the property of a one-parameter subgroup of  :  

𝑔𝑋 𝑠 + 𝑡 = 𝑒𝑥𝑝  𝑠 + 𝑡 𝑋 = 𝑒𝑥𝑝 𝑠𝑋 𝑒𝑥𝑝 𝑡𝑋   

                  = 𝑔𝑋 𝑠 𝑔𝑋 𝑡  . 

Therefore, for every 𝑋 ∈ 𝑇𝑒𝐺, the integral curve of 𝑋 passing through 𝑒 at 𝑡 = 0 is  

 𝑔𝑋 : 𝑅 ⟶ 𝐺: 𝑡 ⟼ exp(𝑡𝑋)  

this mapping 𝑔𝑋  exists for any real 𝑡 (the flow is complete) . This smooth  𝑖. 𝑒 𝐶∞  

homomorphism is a one-parameter subgroup of 𝐺.  

 

                                                           
14

 Mechanics in Differential Geometry - Yves Tapaert – copy right 2006 , koninklije Brill NV,Leiden – the 

Netherland . 
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Definition  2.5.3.  

 The exponential mapping of the Lie algebra of  𝐺 into 𝐺 is  

 𝑒𝑥𝑝𝐺 : 𝑇𝑒𝐺 ⟶ 𝐺: 𝑋 ⟼ 𝑔𝑋 1 = exp 𝑋 .  

Example  2.5.1.  

 The group of  𝑛 × 𝑛  real nonsingular matrices is called general linear group and denoted 

𝐿(𝑛, 𝑅) .  

If the space of   𝑛 × 𝑛  real matrices is identified with 𝑅𝑛2
, then the general linear group is 

identified with the open submanifold of 𝑅𝑛2
 defined by a nonzero determinant .  

Let 𝐴 =  𝑎𝑖
𝑗
  be some element of 𝐺𝐿(𝑛, 𝑅) with 𝑑𝑒𝑡 𝑎𝑖

𝑗
 ≠ 0.  

There is an open subset of  𝑅𝑛2
 , 𝐺𝐿(𝑛, 𝑅) is provided with a differentiable manifold structure 

A neighborhood of 𝐴 is composed of matrices 𝐵 = 𝑑𝑒𝑡 𝑏𝑖
𝑗
  such that  𝑏𝑖

𝑗
− 𝑎𝑖

𝑗
 < 𝜀 where 

the real 𝜀 is chosen small enough so that 𝑑𝑒𝑡 𝑏𝑖
𝑗
 ≠ 0. In this neighborhood, the coordinates 

are defined by the 𝑛2 reals 𝑥𝑖
𝑗

= 𝑏𝑖
𝑗
− 𝑎𝑖

𝑗
 . 

𝐺𝐿(𝑛, 𝑅) is a group with the multiplication law of class 𝐶∞  :  

𝐺𝐿 𝑛, 𝑅 × 𝐺𝐿 𝑛, 𝑅 ⟶ 𝐺𝐿 𝑛, 𝑅 :  𝐴, 𝐵 ⟼ 𝐴𝐵  

Where   𝐴𝐵 =  𝑎𝑖
𝑗
𝑏𝑘

𝑙   . 

Besides , 𝐺𝐿 𝑛, 𝑅 ⟶ 𝐺𝐿 𝑛, 𝑅 : 𝐴 ⟼ 𝐴−1 is of class 𝐶∞  , so 𝐺 is a lie group .  

Since 𝑅𝑛2
 is identical to the tangent space at any of it's points, the tangent space at identity 

point 𝑒 of  𝐺𝐿 𝑛, 𝑅  is naturally identified with 𝑅𝑛2
 : any tangent vector is a  𝑛 × 𝑛  real 

matrix . 

Consider a one-parameter subgroup generated by any matrix 𝐴 ∈ 𝐿 𝑅𝑛 , 𝑅𝑛  that is an integral 

curve of left-invariant vector field passing through 𝑒 ( at 𝑡 = 0) and represented by the matrix  

𝑔𝐴 𝑡 =   𝑔𝐴 𝑖
𝑗
    with 𝐴 =  

𝑑 𝑔𝐴  
𝑖
𝑗

𝑑𝑡
 

0
 .  

Since        𝑔𝐴 𝑡 + ∆𝑡 = 𝑔𝐴 𝑡 𝑔𝐴 ∆𝑡  ,  

We easily obtain :  
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𝑑𝑔𝐴

𝑑𝑡
  𝑡 =  𝑔𝐴 𝑡 𝐴  

⟹ 𝑔𝐴 𝑡 = exp(𝑡𝐴)  

So, 𝑔𝐴: 𝑅 ⟶ 𝐺𝐿 𝑛, 𝑅 : 𝑡 ⟼  
𝑡𝑛 𝐴𝑛

𝑛!
∞
𝑛=0   

Is a one-parameter subgroup with 𝑔𝐴 0 = 𝐼. The exponential mapping is  

𝑒𝑥𝑝: 𝐿 𝑅𝑛 , 𝑅𝑛 ⟶ 𝐺𝐿 𝑛, 𝑅 : 𝐴 ⟼ 𝑔𝐴 1 =  
𝐴𝑛

𝑛!
∞
𝑛=0   . 

Finally ,we find the Lie algebra of 𝐺𝐿 𝑛, 𝑅  as follows .  

For every ∈ 𝐺𝐿 𝑛, 𝑅  , the left-invariant vector fields on 𝐺𝐿 𝑛, 𝑅  are defined by  

𝑋𝐴: 𝐺𝐿 𝑛, 𝑅 ⟶ 𝐿 𝑅𝑛 , 𝑅𝑛 : 𝑌 ⟼ 𝑌𝐴 

Here, the Lie bracket is defined by :  𝐴, 𝐵 =  𝑋𝐴 , 𝑋𝐵  𝐼   

If we consider the one-parameter subgroups or integral curves of left-invariant vector fields 

𝑔𝐴 and 𝑔𝐵  , and if we refer to the ( Example 2.5.1) giving an interpretation of  Lie bracket 

with the help of diffeomorphisms , we immediately have :  

  𝑋𝐴 , 𝑋𝐵 = lim𝑡=0
1

𝑡2   𝑔𝐴 𝑡  𝑔𝐵 𝑡 − 𝑔𝐵 𝑡  𝑔𝐴 𝑡    

                 = lim𝑡=0
1

𝑡2    1 + 𝑡𝐴 + ⋯   1 + 𝑡𝐵 + ⋯  −  1 + 𝑡𝐵 + ⋯   1 + 𝑡𝐴 + ⋯     

So, at point 𝑒 we obtain :    𝐴, 𝐵 = 𝐴𝐵 − 𝐵𝐴  

And the Lie bracket of any two left-invariant vector fields at 𝑒 is usual commutator of the two 

matrices "generating" the fields . the left-invariant vector field generated by this commutator 

belongs to the Lie algebra of 𝐺𝐿(𝑛, 𝑅) . 

𝐿 𝑅𝑛 , 𝑅𝑛 , is the lie algebra of 𝐿(𝑛, 𝑅) , the Lie bracket being the matrix commutator . we 

remark that , given 𝐶 ∈ 𝐺𝐿(𝑛, 𝑅) , the mapping  

𝐶𝑔𝐴𝐶−1: 𝑅 ⟶ 𝐺𝐿 𝑛, 𝑅 : 𝑡 ⟼ 𝐶𝑔𝐴(𝑡)𝐶−1 

 Is an integral curve of vector field 𝑋𝐶𝐴𝐶−1  passing through 𝐼. Indeed, we have :  

𝐶𝑔𝐴(0)𝐶−1 = 𝐼  

and  



 

76 

𝑑

𝑑𝑡
  𝐶𝑔𝐴𝐶−1  𝑡 = 𝐶

𝑑𝑔𝐴

𝑑𝑡
  𝑡 𝐶−1 = 𝐶𝑔𝐴 𝑡 𝐴𝐶−1  

                            =  𝐶𝑔𝐴𝐶−1  𝑡 𝐶𝐴𝐶−1 . 

In addition, we see that :   𝑔𝐶𝐴𝐶−1 = 𝐶𝑔𝐴𝐶−1  Or   𝑒𝑥𝑝 𝐶𝐴𝐶−1 = 𝐶𝑒𝑥𝑝𝐴𝐶−1.  

Proposition  2.5.1. 

If : 𝐺 ⟶ 𝐻 is a 𝐶∞  homomorphism of Lie group 𝐺 into Lie group 𝐻, then  

𝑑𝑒 : 𝐿(𝐺) ⟶ 𝐿(𝐻) is a Lie algebra homomorphism . 

Proof:  

We have ∀𝜉, 𝜂 ∈ 𝑇𝑒𝐺 :  

𝑑𝑒 𝜉, 𝜂 = 𝑑𝑒  𝑋𝜉 , 𝑋𝜂    𝑒 =  𝑑𝑒𝑋𝜉 , 𝑑𝑒𝑋𝜉   𝑒𝐻   

                =  𝑋𝑑𝑒𝜉 , 𝑋𝑑𝑒𝜂   𝑒𝐻                                              (homomorphism)  

                =  𝑑𝑒𝜉, 𝑑𝑒𝜂  . 

Proposition  2.5.2. 

 If : 𝐺 ⟶ 𝐻 is a 𝐶∞  homomorphism of Lie groups , then ∀𝜉 ∈ 𝐿(𝐺):  

 𝑒𝑥𝑝𝐺𝜉 = 𝑒𝑥𝑝𝐻 𝑑𝑒𝜉  . 

proof:  

The mapping 𝑔: 𝑅 ⟶ 𝐻: 𝑡 ⟼  𝑒𝑥𝑝𝐺𝑡𝜉   

is a one-parameter subgroup of 𝐻. Thus, we have  𝑑𝑒𝜉 =  𝑑
𝑑𝑡

 𝑔(𝑡) 
𝑡=0

= 𝜂  

And  𝑡 = 𝑒𝑥𝑝𝐻𝑡𝜂 .   

That implies :   𝑒𝑥𝑝𝐺𝜉 = 𝑔 1 = 𝑒𝑥𝑝𝐻  𝜂 =  𝑒𝑥𝑝𝐻 𝑑𝑒𝜉   

ii.  The adjoint transformation:  

For example, the matrix group 𝐺𝐿(𝑛, 𝑅) has been considered through a faithfull 

representation of a matrix transformation of 𝑛-dimensional vector space (a representation is 

termed faithful if it is one-to-one). Besides such a type of representation there is the adjoint 

representation that we are going to introduce . 
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First let us consider the inner automophism of 𝐺 associated with ∈ 𝐺 , that is  

𝐼𝑔 : 𝐺 ⟶ 𝐺:  ⟼ 𝑔𝑔−1 = 𝑅𝑔−1  𝐿𝑔 . 

This mapping of 𝐺 into itself is 𝐶∞  and is a homomorphism because ∀, 𝑙 ∈ 𝐺 :  

𝐼𝑔 𝑙 = 𝑔𝑙𝑔−1 = 𝑔𝑔−1𝑔𝑙𝑔−1 = 𝐼𝑔  𝐼𝑔(𝑙)  

In parcitcular , the identity 𝑒 is mapping by any 𝐼𝑔  into 𝑒 . So, each 𝐼𝑔   induces a mapping of  

𝑇𝑒𝐺 into it self.   

Definition  2.5.4.   

  The adjoint transformation associated with  𝑔 ∈ 𝐺 is the mapping  𝑇𝑒𝐺 ⟶ 𝑇𝑒𝐺 defined by  

𝐴𝑑𝑔 =  𝑑𝐼𝑔 
𝑒

= 𝑑 𝑅𝑔−1𝐿𝑔  𝑒   

Remark  2.5.2.  

 From ( Prop 2.5.2 ) lets write ∀𝑔 ∈ 𝐺, ∀𝜉 ∈ 𝑇𝑒𝐺 :  

𝑒𝑥𝑝 𝐴𝑑𝑔𝜉 = 𝑒𝑥𝑝   𝑑𝐼𝑔 
𝑒

 𝜉 = 𝐼𝑔 𝑒𝑥𝑝𝜉 = 𝑔𝑒𝑥𝑝 𝜉𝑔−1 . 

Remark  2.5.3. 

 Considering a one-parameter subgroup of 𝐺 defined by 𝑡 ⟼ exp(𝑡𝑋), let  and 𝑙 be any two 

points of this integral curve of  𝑋 passing through 𝑒 at 𝑡 = 0 .  

The respective images under 𝐼𝑔  of the previous points ,that are 1 = 𝑔𝑔−1 , 𝑙1 = 𝑔𝑙𝑔−1 and 

𝑒 = 𝑔𝑒𝑔−1,define another curve passing through 𝑒 such that the tangent vector field is 𝐴𝑑𝑔𝑋 

(this 𝐼𝑔  𝑙 = 𝐼𝑔  𝐼𝑔(𝑙) . 

Thus we denote :  𝐼𝑔 𝑒𝑥𝑝 𝑡𝑋  = 𝑒𝑥𝑝 𝑡 𝐴𝑑𝑔𝑋    

2.6  Representations of  Lie algebras : 

We will study representations of the simplest possible Lie algebra, 𝔰𝔩 2, ℂ  
15

. Recall that this 

Lie algebra has a basis 𝑒, 𝑓,  with commutation relations:  

 𝑒, 𝑓 =  ,            , 𝑒 = 2𝑒  ,                   , 𝑓 = −2𝑓 

As we proved earlier This Lie algebra is simple .  

                                                           
15

 Introduction to Lie Groups and Lie Algebras – Alexander Kirillov,Jr. – Departement of mathematics, 

Suny At stony Brook,NY 11794, USA. 
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The main idea of the study of representation of  𝔰𝔩 2, ℂ . Is to start by diagonalizing the 

operator  . 

Definition   2.6.1.   

Let 𝑉  be a representation of of 𝔰𝔩 2, ℂ  . A vector 𝑣 ∈ 𝑉 is called vector of weight 𝜆, 𝜆 ∈ ℂ if 

it is an eigenvector for  with eigenvalue 𝜆 :   𝑣 = 𝜆𝑣  

we denoted by 𝑉 𝜆 ⊂ 𝑉 the subspace of vectors of weight 𝜆 . The following Lemma play a 

key role in the study of representations of  𝔰𝔩 2, ℂ  . 

Lemma  2.6.1. 

𝑒𝑉 𝜆 ⊂ 𝑉[𝜆 + 2]  

𝑓𝑉 𝜆 ⊂ 𝑉[𝜆 − 2]  

Proof:  

 Let 𝑣 ∈ 𝑉 𝜆 . Then :  𝑒𝑣 =  , 𝑒 𝑣 + 𝑒𝑣 = 2𝑒𝑣 + 𝜆𝑒𝑣 =  𝜆 + 2 𝑒𝑣, So 𝑒𝑣 ∈ 𝑉[𝜆 + 2] . 

the proof for 𝑓 is similar . 

Theorem  2.6.1.  

 Every finite-dimensional representation 𝑉 of 𝔰𝔩 2, ℂ  can be written in the form 𝑉 =⨁𝜆𝑉[ 𝜆]  

Where 𝑉 𝜆  is defined in (Def 2.6.1).This decomposition is called weight decomposition of 𝑉.  

Proof: 

Since every representation of 𝔰𝔩 2, ℂ  is completely reducible, it suffices to prove this for 

irreducible 𝑉. So assume that 𝑉 is irreducible . Let  𝑉 =  𝑉 𝜆 𝜆  be the subspace spanned by 

eigenvectors of . By well-known result of linear algebra, eigenvectors with different 

eigenvalues are linearly independent , so  𝑉′ =⨁𝑉[ 𝜆]. By ( Lemma 2.6.1) ,  𝑉′ is stable under 

action of 𝑒, 𝑓 and . Thus,  𝑉′ is a subrepresentation. Since we assumed that 𝑉 is irreducible, 

and  𝑉′ ≠ 0 (  has at least one eigenvector ), we see that 𝑉 ′ = 𝑉.  

Our main goal will be classification of irreducible finite-dimensional representations. So let 𝑉 

be an irreducible representation of  𝔰𝔩 2, ℂ  . Let 𝜆 be a weight of 𝑉 (i.e, 𝑉 𝜆 ≠ 0) which is 

maximal in the following sense :  

𝑅𝑒 𝜆 ≥ 𝑅𝑒 𝜆′            for every weight 𝜆′ of 𝑉 . 
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Such a weight will be called "highest weight of (𝑉 ′′ ) " ,a nd vectors  𝑣 ∈ 𝑉 𝜆  - highest 

weight vectors .  It is obvious that every finite-dimensional representation has at least one-

zero highest weight vector .  

Lemma  2.6.2.  

 Let 𝜆 ∈ ℂ. Define 𝑀𝜆  to be the infinite-dimensional vector space with basis  𝑣0, 𝑣1 , … ..  

Irreducible representations 𝑉𝑛  can also be described more explicitly, as symmetric powers of 

the usual two-dimnsional representation .   

Theorem  2.6.2. 

1. For any 𝑛 ≥ 0, let 𝑉𝑛  be the finite-dimensional vector space basis 𝑣0 , …… . , 𝑣𝑛 . Define the 

action of  𝔰𝔩 2, ℂ  by  

𝑣𝑘 =  𝑛 − 2𝑘 𝑣𝑘   

𝑓𝑣𝑘 =  𝑘 + 1 𝑣𝑘+1  ,                       𝑘 > 𝑛 ;        𝑓𝑣𝑛 = 0                                    (2.5) 

 𝑒𝑣𝑘 =  𝑛 + 1 − 𝑘 𝑣𝑘−1  ,                       𝑘 > 0 ;       𝑒𝑣0 = 0 .  

Then 𝑉𝑛  is an irreducible representation of 𝔰𝔩 2, ℂ ; we will call it the irreducible 

representation with highest weight 𝑛.  

2. For 𝑛 ≠ 𝑚, representation 𝑉𝑛 , 𝑉𝑚  are non-isomorphic . 

3. Every finite-dimensional irreducible representation of  𝔰𝔩 2, ℂ  is isomorphic to one of 

representations 𝑉𝑛  . 

Proof:  

Consider the finite-dimensional representation 𝑀𝜆 . If 𝜆 = 𝑛 is a non-negative integer, 

consider the subspace 𝑀′ ⊂ 𝑀𝑛  spanned by vectors 𝑣𝑛+1 , 𝑣𝑛+2 , ……. Then this subspace is 

actually a subrepresentation. Indeed, it is obviously stable under action of  and 𝑓; the only 

non-trivial relation to check that  𝑣𝑛+1 ⊂ 𝑀′. But 𝑒𝑣𝑛+1 =  𝑛 + 1 −  𝑛 + 1  𝑣𝑛 = 0 . 

Thus the quotient space 𝑀𝑛 𝑀′  is a finite-dimensional representation of 𝔰𝔩 2, ℂ . It is obvious 

that it has basis 𝑣0, …… . , 𝑣𝑛  and that the action of 𝑣0 , …… . , 𝑣𝑛  is given by (2.5) . 

irreducibility of this representation is also easy to prove: any subrepresentation must be 

spanned by some subset of   𝑣, 𝑣1 , …… . , 𝑣𝑛  ,  but it is easy to see that each of them generates 

( under the action of 𝔰𝔩 2, ℂ ) the whole representation 𝑉𝑛  . therefore , 𝑉𝑁 is an irreducible 
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finite-dimensional representation of 𝔰𝔩 2, ℂ  . Since  𝑑𝑖𝑚𝑉𝑛 = 𝑛 + 1 , it is obvious that 𝑉𝑁 are 

pairwise non-isomorphic .  

To prove that every irreducible representation is of this form, let 𝑉 be an irreducible 

representation of 𝔰𝔩 2, ℂ  and let 𝑣 ∈ 𝑉 𝜆  be a highest weight vector. By ( Lemma 2.6.2.) , 𝑉 

is a quotient of 𝑀𝜆 ; in other words , it is spanned by vectors 𝑣𝑘 =
𝑓𝑘

𝑘!
 𝑣 . 

Since 𝑣𝑘  have different weights , if they are non-zero, then they must be linearly independent. 

On the other hand, 𝑉 is finite-dimensional ; thus, only finitely many of  𝑣𝑖  are non-zero . Let 

𝑛 be maximal such that 𝑣𝑛 ≠ 0, so that  𝑣𝑛+1 = 0. Obviously, in this case  𝑣0 , …… . , 𝑣𝑛  are 

all non-zero and since they have different weight, they are linearly independent, so they form 

a basis in 𝑉.  

Since 𝑣𝑛+1 = 0, we must have   𝑒𝑣𝑛+1 = 0. On the pther hand ,by (2.5) ,we have 

𝑒𝑣𝑛+1 =  𝜆 − 𝑛 𝑣𝑛 . 

Since 𝑣𝑛 ≠ 0, this implies that 𝜆 = 𝑛 is a non-negative integer . Thus, 𝑉 is a representation.   

2.7  Nilpotent Lie algebras : 

Definition  2.7.1.   

 A Lie algebra 𝔤 is said to be nilpotent
16

 if it admits a filtration  

𝔤 = 𝔞0 ⊃ 𝔞1 ⊃ ⋯ ⊃ 𝔞𝑟 = 0                                                                      (2.6) 

By ideals such that  𝔤, 𝔞𝑖 ⊂ 𝔞𝑖+1 for 0 ≤ 𝑖 ≤ 𝑟 − 1. Such a filtration is called a nilpotent 

series . The condition (2.6)  to be a nilpotent series is that 𝔞𝑖 𝔞𝑖+1  be in the centre of 𝔤 𝔞𝑖+1  

for 0 ≤ 𝑖 ≤ 𝑟 − 1. Thus the nilpotent Lie algebras are exactly those that can be obtained from 

commutative Lie algebras by successive centeral extensions  

0 ⟶ 𝔞1 𝔞2 ⟶ 𝔤 𝔞2 ⟶ 𝔤 𝔞1 ⟶ 0   

0 ⟶ 𝔞2 𝔞3 ⟶ 𝔤 𝔞3 ⟶ 𝔤 𝔞2 ⟶ 0   

⋯  

In another words, the nilpotent Lie algebras from the smallest class containing the 

commutative Lie algebras and closed under central extensions . 

                                                           
16 Lie Algebras, Algebraic Groups and Lie Groups (chapter one ) - J.S. Milne – may 5, 2013.   
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The lower central series of  𝔤 is  

 𝔤 ⊃ 𝔤1 ⊃ ⋯ ⊃ 𝔤𝑖+1 ⊃ ⋯  

With 𝔤1 =  𝔤, 𝔤 , 𝔤2 =  𝔤, 𝔤1 , …… . , 𝔤𝑖+1 =  𝔤, 𝔤𝑖  , ……. 

Proposition  2.7.1.  

 A Lie algebra 𝔤 is nilpotent if and only if it's lower central series terminates with zero . 

Proof:  

 If the lower central series terminates with zero, then it is a nilpotent series. Conversely , if  

𝔤 ⊃ 𝔞1 ⊃ 𝔞2 ⊃ ⋯ ⊃ 𝔞𝑟 = 0 is nilpotent series, then 𝔞1 ⊃ 𝔤1 because 𝔤 𝔞1  is commutative , 

𝔞2 ⊃  𝔤, 𝔞1 ⊃  𝔤, 𝔤1 = 𝔤2 , and so on, until we arrive at 0 = 𝔞𝑟 ⊃ 𝔤𝑟  . 

Let 𝑉 be a vector space of dimension, and let, 𝐹: 𝑉 = 𝑉0 ⊃ 𝑉1 ⊃ ⋯ ⊃ 𝑉𝑛 = 0, dim 𝑉𝑖 = 𝑛 − 𝑖  

Be a maximal flag in  . let 𝑛(𝐹) be the Lie subalgebra of 𝔤𝔩𝑉  consisting of the elements 𝑥 such 

that 𝑥(𝑉𝑖) ⊂ 𝑉𝑖+1 for all 𝑖 . the lower central series for 𝑛(𝐹) has  

𝑛(𝐹)𝑗 =   𝑥 ∈ 𝔤𝔩𝑉 𝑥(𝑉𝑖) ⊂ 𝑉𝑖+1+𝑗   

For 𝑗 = 1, … . . , 𝑛 .In particular , 𝑛(𝐹) is nilpotent . For example ,  

𝑛3 =   
0 ∗ ∗
0 0 ∗
0 0 0

  ⊃   
0 0 ∗
0 0 0
0 0 0

  ⊃  0  

Is nilpotent series for 𝑛3 . 

An extension of nilpotent algebra is solvable , but not necessarily nilpotent . for example, 𝑛3 

is nilpotent and 𝔟3 𝑛3  is commutative , but 𝔟3 is not nilpotent when 𝑛 ≥ 3 .  

Proposition  2.7.2.  

1. Subalgebras and quotient algebras of nilpotent Lie algebras are nilpotent.  

2. A Lie algebra 𝔤 is nilpotent if 𝔤 𝔞  is nilpotent for some ideal 𝔞 contained in 𝑧(𝔤).  

3. A nonzero nilpotent Lie algebra has nonzero centre . 

Proof:  

1.The intersection of a nilpotent series for 𝔤 with a Lie subalgebra 𝔥 is nilpotent series for 𝔥 , 

and the image of a nilpotent series for 𝔤 in a quotient algebra 𝔮 is a nilpotent series for 𝔮 .  
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2. For any ideal 𝔞 ⊂ 𝑧(𝔤), the inverse image of a nilpotent series for 𝔤 𝔞  becomes a nilpotent 

series for 𝔤 when extended by 0 . 

3. If 𝔤 is nilpotent , then the last nonzero term 𝔞 in a nilpotent series for 𝔤 is contained in 𝑧(𝔤).  

Proposition  2.7.3.  

 Let 𝔥 be a proper Lie subalgebra of a nilpotent Lie algebra 𝔤; then  𝔥 ≠ 𝑛𝔤  𝔥  .  

Proof:  

 We use induction on the dimension of 𝔤. Because 𝔤 is nilpotent and nonzero , it's centre 𝑧(𝔤) 

is nonzero . if  𝑧(𝔤) ⊄ 𝔥 ,then 𝑛𝔤  𝔥 ≠ 𝔥 because 𝑧(𝔤) normalizes 𝔥 . if 𝑧(𝔤) ⊂ 𝔥, then we 

can apply induction to the Lie subalgebra 
𝔥

𝑧(𝔤)  of    
𝔤

𝑧(𝔤)  .  

2.8  Solvable Lie algebras :  

Definition  2.8.1.   

 A Lie algebra 𝔤 is said to be solvable
17

 if it admits a filtration  

By ideals such that  𝔞𝑖 , 𝔞𝑖 ⊂ 𝔞𝑖+1 for  0 ≤ 𝑖 ≤ 𝑟 − 1. Such a filtration is called a solvable 

series.  

The condition (2.6) to be a solvable series is that the quotients  𝔞𝑖 𝔞𝑖+1  commutative  for 

0 ≤ 𝑖 ≤ 𝑟 − 1. Thus the solvable Lie algebras are exactly those that can be obtained from 

commutative Lie algebras by successive extensions  

0 ⟶ 𝔞1 𝔞2 ⟶ 𝔤 𝔞2 ⟶ 𝔤 𝔞1 ⟶ 0   

0 ⟶ 𝔞2 𝔞3 ⟶ 𝔤 𝔞3 ⟶ 𝔤 𝔞2 ⟶ 0   

⋯  

In another words, the solvable Lie algebras from the smallest class containing the 

commutative Lie algebras and closed under extensions. 

The characteristic ideal  𝔤, 𝔤  is called the derived algebra of  , and is denoted 𝒟𝔤 .Clearly  𝒟𝔤 

is contained in every ideal  𝔞 such that  𝔤 𝔞  is commutative , and so 𝔤 𝒟𝔤  is the largest 

commutative quotient of 𝔤 . Write  𝒟2𝔤 for the second derived algebra 𝒟 𝒟𝔤 , 𝒟3𝔤 for the 

                                                           
17

 Lie Algebras, Algebraic Groups and Lie Groups ( chapter one ) - J.S. Milne – may 5, 2013.   
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third derived algebra 𝒟 𝒟2𝔤  , and so on. These are characteristic ideals, and the derived 

series of 𝔤 is the sequence   

 𝔤 ⊃ 𝒟𝔤 ⊃ 𝒟2𝔤 ⊃ ⋯  

We sometimes write 𝔤′ for 𝒟𝔤 and 𝔤 𝑛  for 𝒟𝑛𝔤 . 

Proposition  2.8.1.  

 A Lie algebra 𝔤 is solvable if and only if it's derived series terminates with zero . 

Proof:  

If the derived  series terminates with zero, then it is a solvable series. Conversely , if  𝔤 ⊃

𝔞1 ⊃ 𝔞2 ⊃ ⋯ ⊃ 𝔞𝑟 = 0 is a solvable series, then 𝔞1 ⊃ 𝔤′  because 𝔤 𝔞1  is commutative , 

𝔞2 ⊃ 𝔞1
′ ⊃ 𝔤′ ′ because 𝔞1 𝔞2  is commutative , and so on, until 0 = 𝔞𝑟 ⊃ 𝔤(𝑟) . 

Let 𝑉 be a vector space of dimension  , and let  

𝐹: 𝑉 = 𝑉0 ⊃ 𝑉1 ⊃ ⋯ ⊃ 𝑉𝑛 = 0  , dim 𝑉𝑖 = 𝑛 − 𝑖 , 

Be a maximal flag in  . Let 𝔟(𝐹) be the Lie subalgebra of 𝔤𝔩𝑉  consisting of the elements 𝑥 

such that 𝑥(𝑉𝑖) ⊂ 𝑉𝑖 for all 𝑖 . then  𝒟 𝔟(𝐹) = 𝑛(𝐹) and so  𝔟(𝐹) is solvable .  

For example ,  

𝔟3 =   
∗ ∗ ∗
0 ∗ ∗
0 0 ∗

  ⊃   
0 ∗ ∗
0 0 ∗
0 0 0

  ⊃  0   

Is nilpotent series for 𝔟3 . 

Proposition  2.8.2.  

Let  𝑘′ be a field containing 𝑘.A Lie algebra  𝔤 over 𝑘 is solvable if and only if 𝔤𝑘′ ≝ 𝑘′ ⊗𝑘 𝔤 

is solvable .  

Proof:  

Obviously, for any subalgebras 𝔥 and 𝔥′ of 𝔤,   𝔥, 𝔥′ 𝑘′ =  𝔥𝑘 ′ , 𝔥𝑘′
′   , and so, under extension 

of the base field, the derived series of  𝔤 maps to that of  𝔤𝑘 ′  . 

Note : we say that an ideal is solvable if it is solvable as a Lie algebra . 
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Proposition  2.8.3.  

1. Subalgebras and quotient algebras of solvable  Lie algebras are solvable .  

2. A Lie algebra 𝔤 is solvable if it contains an ideal  𝔫 such that both 𝔫 and 𝔤 𝔫  are solvable  

3. Let 𝔫 be an ideal in a Lie algebra 𝔤, and let 𝔥 be a subalgebra of  𝔤 . if 𝔫 and  𝔥 are solvable, 

then 𝔫 + 𝔥 is solvable .  

Proof:  

1.The intersection of a solvable series for 𝔤 with a Lie subalgebra 𝔥 is a solvable series for 𝔥 , 

and the image of a solvable series for 𝔤 in a quotient algebra 𝔮 is a solvable series for 𝔮 .  

2. Because  𝔤 𝔫  is solvable, 𝔤 𝑚 ⊂ 𝔫 for some 𝑚. Now   , 𝔤 𝑚+𝑛 ⊂ 𝔫 𝑛 , which is zero for 

some 𝑛 .  

3. This follows from (2) because 𝔥 + 𝔫 𝔫 ≃ 𝔥 𝔥 ∩ 𝔫 which is solvable by (1) . 

Corollary  2.8.1.    

 Every Lie algebra contains a largest solvable ideal . 

Proof:  

 Let 𝔫 be a maximal solvable ideal. If  𝔥 is also a solvable ideal, then 𝔥 + 𝔫 is solvable by (3) , 

and so equals 𝔫; therefore  𝔥 ⊂ 𝔫 .  

Definition  2.8.2.   

 The radical 𝔯 = 𝑟(𝔤) of 𝔤 is the largest solvable ideals in, The radical of 𝔤 is a characteristic 

ideal .  

Definition  2.8.3.          ( The Cartan's criterion for solvability )   

For any 𝑛 × 𝑛 matrices 𝐴 =  𝑎𝑖𝑗   and 𝐵 =  𝑏𝑖𝑗   , where  𝑇𝑟 𝐴 =  𝑎𝑖𝑗𝑖,𝑗  𝑏𝑖𝑗 = 𝑇𝑟(𝐵𝐴)  

Hence, 𝑇𝑟𝑉 𝑥 ∘ 𝑦 = 𝑇𝑟𝑉 𝑦 ∘ 𝑥  for any rndomorphisms 𝑥, 𝑦 of a vector space 𝑉, and so  

𝑇𝑟𝑉  𝑥, 𝑦 ∘ 𝑧 = 𝑇𝑟 𝑥 ∘ 𝑦 ∘ 𝑧 − 𝑇𝑟(𝑦 ∘ 𝑥 ∘ 𝑧)  

                         = 𝑇𝑟 𝑥 ∘ 𝑦 ∘ 𝑧 − 𝑇𝑟(𝑥 ∘ 𝑧 ∘ 𝑦)                                          (2.7)  

                          = 𝑇𝑟 𝑥 ∘  𝑦, 𝑧    
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Theorem   2.8.2            ( Cartan's Criterion )  

 Let 𝔤 be a subalgebra of 𝔤𝔩𝑉  , where 𝑉 is a finite – dimensional vector space over a field 𝑘 of 

characteristic zero. Then 𝔤 is solvable if  𝑇𝑟𝑉 𝑥 ∘ 𝑦 = 0 for all 𝑥, 𝑦 ∈ 𝔤 . 

Proof:  

We first observe that, if 𝑘 ′  is a field containing 𝑘, then the theorem is true for 𝔤 ⊂ 𝔤𝔩𝑉  if and 

only if it is true for 𝔤𝑘′ ⊂ 𝔤𝔩𝑉𝑘′
 ( because 𝔤 is solvable if and only if 𝔤𝑘′  is solvable from  

(prop 2.8.2) . therefore, we may assume that the field 𝑘 is finitely generated over ℚ hence 

embeddable in ℂ , and then that 𝑘 = ℂ .  

We shall show that the condition implies that each 𝑥 ∈  𝔤, 𝔤  defines a nilpotent 

endomorphism of 𝑉. Then Engle's theorem will show that  𝔤, 𝔤  is nilpotent , in particular, 

solvable ,and it follows that 𝔤 is solvable because 𝔤(𝑛) =  𝒟𝔤  𝑛−1  .  

Let 𝑥 ∈  𝔤, 𝔤  , and choose a basis of 𝑉 for which the matrix of 𝑥 is upper triangular . Then the 

matrix of 𝑥𝑠 is diagonal, say , diag  𝑎1 , … . , 𝑎𝑛 , and the matrix of 𝑥𝑛  is strictly upper 

triangular . We have to show that 𝑥𝑠 = 0, and for this it suffices to show that  

𝑎 1𝑎1 + ⋯ + 𝑎 𝑛𝑎𝑛 = 0 

Where  𝑎  is the complex conjugate of 𝑎 . Note that  : 𝑇𝑟𝑉 𝑥𝑠 ∘ 𝑥 = 𝑎 1𝑎1 + ⋯ + 𝑎 𝑛𝑎𝑛  , 

Because 𝑥𝑠  has matrix diag  𝑎 1 , … . , 𝑎 𝑛  . By assumption , 𝑥 is a sum of commutators  𝑦, 𝑧 , 

and so it suffices to show that : 𝑇𝑟𝑉 𝑥𝑠 ∘  𝑦, 𝑧  = 0 , all  𝑦, 𝑧 ∈ 𝔤 . From the trivial identity 

(2.7)  , we see that it suffices to show that : 

𝑇𝑟𝑉  𝑥𝑠 , 𝑦 ∘ 𝑧 = 0 ,                   all  𝑦, 𝑧 ∈ 𝔤 . 

This will follow from the hypothisis once we have shown that  𝑥𝑠 , 𝑦 ∈ 𝔤 . According to  

 𝑥𝑠 = 𝑐1𝑥 + 𝑐2𝑥2 + ⋯ + 𝑐𝑟𝑥
𝑟  , for some 𝑐𝑖 ∈ 𝑘 , and so   𝑥𝑠 , 𝔤 ⊂ 𝔤 , Because   𝑥, 𝔤 ⊂ 𝔤 .  

Corollary  2.8.2.   

Let 𝑉 be a finite-dimensional vector space over a field 𝑘 of characteristic zero , and let 𝔤 be a 

subalgebra of  𝔤𝔩𝑉  . if 𝔤 is solvable, then 𝑇𝑟𝑉 𝑥 ∘ 𝑦 = 0 for all 𝑥 ∈ 𝔤 and 𝑦 ∈  𝔤, 𝔤   . 

conversely, if 𝑇𝑟𝑉 𝑥 ∘ 𝑦 = 0 for all 𝑥, 𝑦 ∈  𝔤, 𝔤   , then 𝔤 is solvable .  
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Proof:  

If 𝔤 is solvable, then 𝑇𝑟𝑉 𝑥 ∘ 𝑦 = 0 for 𝑥 ∈ 𝔤 and 𝑦 ∈  𝔤, 𝔤   . for the converse , note that the 

condition implies that  𝔤, 𝔤   is solvable by ( Theorem 2.8.2 ). but this implies that 𝔤 is 

solvable , because 𝔤 𝑛 =  𝒟𝔤  𝑛−1  . 

2.9  Simesimple Lie algebra:  

Definitions and basic properties   2.9.1.   

1. A Lie algebra is called semisimple if it's only commutative ideal is {0}.  

Thus, the Lie algebra {0} is semisimple ,but no Lie algebra of dimension 1 or 2 is semisimple. 

There exists a semisimple Lie algebra of dimension 3, namely, 𝔰𝔩2. 

from ( Def 2.8.2 ) . 

2. A Lie algebra  𝔤 is semisimple if and only if it's radical is zero . 

If  𝑟 𝔤 = 0, then every commutative ideal is zero because it is contained in 𝑟(𝔤). Conversely, 

if  𝑟 𝔤 ≠ 0 , then the nonzero term of the derived series of 𝑟(𝔤)  is a commutative ideal in  𝔤 

(it is an ideal in  𝔤 because it is characteristic ideal in 𝑟(𝔤)) . 

3. A Lie algebra 𝔤 is semisimple if and only if every solvable ideal is zero .  

Since  𝑟(𝔤) is the largest solvable ideal, it is zero if and only if every solvable ideal is zero . 

4. The quotient  𝔤 𝑟(𝔤)  of a Lie algebra by it's radical is semisimple . 

A non zero commutative ideal in   𝔤 𝑟(𝔤)  would correspond to a solvable ideal in 𝔤 properly 

containing 𝑟(𝔤).  

5. A product 𝔤 = 𝔤1 × …… .× 𝔤𝑛  of semisimple Lie algebras is semisimple . 

Let 𝔞 be a commutative ideal in  𝔤; the projection of 𝔞 in 𝔤𝑖  is zero for each 𝑖, and so  𝔞 is zero   

Theorem  2.9.1.  

If 𝔤 is a semisimple complex Lie algebra
18

, then any 𝑥 ∈ 𝔤 can be uniquely written in the form  

𝑥 =𝑥𝑠 + 𝑥𝑛  

                                                           
18

 Introduction to Lie Groups and Lie Algebras – alexander Kirillov, Jr. department of Mathematics, 

SUNY at Stony Brook, Stony Brook, NY11794. USA  
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Where 𝑥𝑠 is semisimple, 𝑥𝑛  is nilpotent, and [𝑥𝑠,𝑥𝑛 ] = 0. Moreover, ad𝑥𝑠 = P(ad𝑥) for some 

polynomial 𝑃 ∈ 𝑡ℂ[𝑡] depending on 𝑥.  

Proof:-  

Uniqueness immediately follows from uniqueness of Jacobi decomposition for ad 𝑥 

If 𝑥 =𝑥𝑠 + 𝑥𝑛= 𝑥𝑠
′ + 𝑥𝑛

′  , then  𝑎𝑑 𝑥 𝑠 = 𝑎𝑑 𝑥𝑠= 𝑎𝑑 𝑥𝑠
′  , so 𝑎𝑑(𝑥𝑠 − 𝑥𝑠

′ )= 0. But by definition, 

a semisimple Lie algebra has zero center, so this implies 𝑥𝑠 − 𝑥𝑠
′  = 0. To prove existence, let 

us write 𝔤 as direct sum of generalized eigenspaces for ad 𝑥: 𝔤 = ⨁ 𝔤𝜆  , (ad 𝑥 − 𝜆 𝑖𝑑 )𝑛 |𝔤𝜆
= 0         

for 𝜆 ≫ 0 .   

Lemma  2.9.1.  

[ 𝔤𝜆  ,  𝔤𝜇 ]⊂  𝔤𝜆+𝜇  

Proof  

By Jacobi identity,(ad 𝑥 − 𝜆 − 𝜇)[𝑦, 𝑧]= [(ad 𝑥 − 𝜆) 𝑦, 𝑧] + [𝑦, (ad 𝑥 − 𝜇)𝑧]. Thus, if 𝑦 ∈  𝔤𝜆  

,  𝑧 ∈  𝔤𝜇  , then: 

 (ad 𝑥 − 𝜆 − 𝜇 )𝑛  [𝑦, 𝑧] =   𝑛
𝑘
 [(ad 𝑥 − 𝜆)𝑘𝑦, (ad 𝑥 − 𝜇)𝑛−𝑘  𝑧] = 0, for 𝑛 ≫ 0 

Definition  2.9.2.  

A Lie algebra 𝔤 is called simple if it is not abelian and contains no ideals other than 0 and 𝔤.  

The condition that  𝔤 should not be abelian is included rule out one-dimensional Lie algebra : 

there are many reasons not to include it in the class of simple Lie algebras. One of these 

reasons is the following lemma .  

Lemma  2.9.2.  

Any simple Lie algebra is semisimple .  

Proof:  

If 𝔤 is simple, then it contains no ideals other than 0 and 𝔤. Thus, if 𝔤 contains a nonzero 

solvable ideal, then it must coincide with 𝔤, so  𝔤 must be solvable . But then  𝔤, 𝔤  is an ideal 

which is strictly smaller than 𝔤 ( because  𝔤 is solvable ) and nonzero (because 𝔤 is not 

abelian). This gives a contradiction . 
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Definition  2.9.3.         (Trace form)  

Let 𝔤 be a Lie algebra. A symmetric 𝑘-bilinear form 𝛽: 𝔤 × 𝔤 ⟶ 𝑘 on 𝔤 is said to be invariant 

( or associative) if  : 𝛽  𝑥, 𝑦 , 𝑧 = 𝛽 𝑥,  𝑦, 𝑧                  for all 𝑥, 𝑦, 𝑧 ∈ 𝔤 

That is , if  𝛽  𝑥, 𝑦 , 𝑧 + 𝛽 𝑦,  𝑥, 𝑧  = 0                for all 𝑥, 𝑦, 𝑧 ∈ 𝔤 

In other words, 𝛽 is invariant if  𝛽 𝐷𝑦, 𝑧 + 𝛽 𝑦, 𝐷𝑧 = 0                                                (2.8)  

 For all inner derivations 𝐷 of 𝔤 . if (2.8) holds for all derivations, then 𝛽 is said to be 

completely invariant .  

Lemma  2.9.3.  

 Let 𝛽 be an invariant form of 𝔤. and let 𝔞 be an ideal in  𝔤. the orthogonal complement 𝔞⊥ of 

𝔞 with respect 𝛽 is again an ideal . If 𝛽 is nondegenerate , then 𝔞 ∩ 𝔞⊥ is commutative . 

Proof:  

Let 𝑎 ∈ 𝔞 , 𝑎′ ∈ 𝔞⊥ , and 𝑥 ∈ 𝔤, and consider ,  𝛽  𝑥, 𝑎 , 𝑎′ + 𝛽 𝑎,  𝑥, 𝑎′  = 0  

As  𝑥, 𝑎 ∈ 𝔞, 𝛽  𝑥, 𝑎 , 𝑎′ = 0. Therefore 𝛽 𝑎,  𝑥, 𝑎′  = 0. As this holds for all 𝑎 ∈ 𝔞, we 

see that   𝑥, 𝑎′ ∈ 𝔞⊥ , and so 𝔞⊥ is an ideal . 

Now assume that 𝛽 is nondegenerate. Then 𝔡 ≝ 𝔞 ∩ 𝔞⊥ is an ideal in  𝔤 such that  𝛽 𝔡 × 𝔡 = 0. 

For 𝑏, 𝑏′ ∈ 𝔡 and 𝑥 ∈ 𝔤, 𝛽  𝑏, 𝑏′ , 𝑥 = 𝛽 𝑏,  𝑏′, 𝑥  , which is zero because  𝑏′, 𝑥 ∈ 𝔡 . 

As this holds for all 𝑥 ∈ 𝔤, we see that  𝑏, 𝑏′ = 0, and so 𝔡 is commutative . The trace form 

of representation  𝑉, 𝜌  of  𝔤 is   𝑥, 𝑦 ⟼ 𝑇𝑟𝑉 𝜌 𝑥 ∘ 𝜌 𝑦  : 𝔤 × 𝔤 ⟶ 𝑘.  

In other words, the trace form 𝛽𝑉 : 𝔤 × 𝔤 ⟶ 𝑘 of a 𝔤-module 𝑉 is  𝑥, 𝑦 ⟼ 𝑇𝑟𝑉 𝑥𝑉 ∘ 𝑦𝑉 ,          

𝑥 ∈ 𝔤  

Lemma  2.9.4. 

The trace form is a symmetric bilinear form on 𝔤 , and it is invariant :  

𝛽𝑉  𝑥, 𝑦 , 𝑧 = 𝛽𝑉 𝑥,  𝑦, 𝑧   ,                    all 𝑥, 𝑦, 𝑧 ∈ 𝔤. 

Proof:  

It is 𝑘-bilinear because 𝜌 is linear, composition of maps is bilinear, and traces are linear . it is 

symmetry because traces are symmetric . it is invariant because   
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𝛽𝑉  𝑥, 𝑦 , 𝑧 = 𝑇𝑟  𝑥, 𝑦 ∘ 𝑧 
 32 
   𝑇𝑟 𝑥 ∘  𝑦, 𝑧  = 𝛽𝑉 𝑥,  𝑦, 𝑧                 for all 𝑥, 𝑦, 𝑧 ∈ 𝔤  

Therefore (Lemma 2.9.3), the orthogonal complement  𝔞⊥ of an ideal 𝔞 of  𝔤 with respect to a 

trace form is again an ideal .  

Proposition  2.9.1.  

  If 𝔤 ⟶ 𝔤 ⟶ 𝔤𝔩𝑉  is faithful and 𝔤 is semisimple, then 𝛽𝑉  is nondegenerate .  

Proof:  

We have to show that 𝔤⊥ = 0. For this, it suffices to show that 𝔤⊥ is solvable ( from 3 def of 

semisimple) but the pairing  

 𝑥, 𝑦 ⟼ 𝑇𝑟𝑉 𝑥𝑉 ∘ 𝑦𝑉 ≝ 𝛽𝑉 𝑥, 𝑦   

Is zero on 𝔤⊥, and so Cartan's criterion shows that it is solvable . 

Definition   2.9.4.         ( The Cartan's criterion for semisimplicity )  

The trace form for the adjoint representation 𝑎𝑑: 𝔤 ⟶ 𝔤𝔩𝔤 is called the killing form
19

 𝑘𝔤 on 𝔤 . 

thus ,  

𝑘𝔤 𝑥, 𝑦 = 𝑇𝑟𝔤 𝑎𝑑(𝑥) ∘ 𝑎𝑑(𝑦) ,          all 𝑥, 𝑦 ∈ 𝔤  

In orther words , 𝑘𝔤 𝑥, 𝑦  is the trace of the 𝑘-linear map : 𝑧 ⟼  𝑥,  𝑦, 𝑧  : 𝔤 ⟶ 𝔤 .  

Example  2.9.1.  

The Lie algebra 𝔰𝔩2 consists of the 2 × 2 matrices with trace zero . It has as basis the elements  

𝑥 =  
0 1
0 0

  ,              𝑦 =  
0 0
1 0

  ,                          =  
1 0
0 −1

       ,  

And  

 , 𝑥 = 2𝑥   ,                 , 𝑦 = −2𝑦  ,                       𝑥, 𝑦 =  

Relative to the basis  𝑥, 𝑦,   ,  

𝑎𝑑 𝑥 =  
0 −2 0
0 0 1
0 0 0

  ,      𝑎𝑑  =  
2 0 0
0 0 0
0 0 −2

  ,          𝑎𝑑 𝑦 =  
0 0 0

−1 0 0
0 2 0

     

                                                           
19

 Also called the Cartan-killing form . According to Bourbaki (Note Historical to I,II,III), Cartan 

introduced the "Killing form" in his thesis and proved the two fundamental criteria: a Lie algebra is 

solvable if its Killing form is trivial; a Lie algebra is semisimple if its Killing form is nondegenerate .  
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And so the top row  𝑘 𝑥, 𝑥 , 𝑘 𝑥,  ,  𝑘 𝑥, 𝑦    of the matrix of 𝑘 consists of the traces of  

 
0 0 −2
0 0 0
0 0 0

  ,       
0 0 0
0 0 −2
0 0 0

  ,           
2 0 0
0 2 0
0 0 0

  

In fact, 𝑘 has matrix    
0 0 4
0 8 0
4 0 0

  , which has determinant -128 . 

Lemma  2.9.5. 

 Let 𝔞 be an ideal in 𝔤 . The Killing form on 𝔤 restricts to Killing form on 𝔞 . i,e. 

𝑘𝔤 𝑥, 𝑦 = 𝑘𝔞 𝑥, 𝑦         all  𝑥, 𝑦 ∈ 𝔞 .  

Proof:  

If an endomorphism of a vector space 𝑉 maps 𝑉 into a subspace 𝑊 of 𝑉, then 𝑇𝑟𝑉 𝛼 =

𝑇𝑟𝑊  𝛼 𝑊 , because , when we choose a basis for 𝑊 and extend it to a basis for 𝑉, the matrix 

for 𝛼 takes the form  
𝐴 𝐵
0 0

  with  𝐴 the matrix of  𝛼 𝑊 . If 𝑥, 𝑦 ∈ 𝔞, then 𝑎𝑑 𝑥 ∘ 𝑎𝑑 𝑦 is an 

endomorphism of 𝔤 mapping 𝔤 into  𝔞 , and so its trace (on 𝔤) , 𝑘𝔤 𝑥, 𝑦 , equals  

𝑇𝑟 𝔞  𝑎𝑑 𝑥 ∘ 𝑎𝑑 𝑦  𝔞 = 𝑇𝑟 𝔞 𝑎𝑑𝔞 𝑥 ∘ 𝑎𝑑𝔞 𝑦 = 𝑘𝔞 𝑥, 𝑦 .  

Example  2.9.2  

For matrices 𝑋, 𝑌 ∈ 𝔰𝔩𝑛  ,  𝑘𝔰𝔩𝑛
 𝑋, 𝑌 = 2𝑛 𝑇𝑟 𝑋𝑌   

To prove this, it suffices to show that :  𝑘𝔤𝔩𝑛
 𝑋, 𝑌 = 2𝑛 𝑇𝑟 𝑋𝑌   

For 𝑋, 𝑌 ∈ 𝔰𝔩𝑛  . By definition , 𝑘𝔤𝔩𝑛
 𝑋, 𝑌  is the trace of the map 𝑀𝑛 𝑘 ⟶ 𝑀𝑛 𝑘  sending 

𝑇 ∈ 𝑀𝑛 𝑘  to  𝑋𝑌𝑇 − 𝑋𝑇𝑌 − 𝑌𝑇𝑋 + 𝑇𝑌𝑋  

For any matrix 𝐴, the trace of each of the maps 𝑙𝐴: 𝑇 ⟼ 𝐴𝑇 and 𝑟𝐴: 𝑇 ⟼ 𝑇𝐴 is 𝑛𝑇𝑟(𝐴), 

because , as a left or right 𝑀𝑛 𝑘 -module , 𝑀𝑛 𝑘  is isomorphic to a direct sum of 𝑛-copies 

of the standard 𝑀𝑛 𝑘 -module 𝑘𝑛 . Therefore , the traces of the maps 𝑇 ⟼ 𝑋𝑌𝑇 and 𝑇 ⟼

𝑇𝑋𝑌 are both 𝑛𝑇𝑟(𝑋𝑌), while the traces of the maps 𝑇 ⟼ 𝑋𝑇𝑌 and 𝑇 ⟼ 𝑌𝑇𝑋 are both equal 

to  𝑇𝑟 𝑙𝑋 ∘ 𝑟𝑌 = 𝑛2𝑇𝑟 𝑋 𝑇𝑟 𝑌 = 0  

Proposition  2.9.2. 

If 𝑘𝔤 𝔤,  𝔤, 𝔤  = 0, then 𝔤 is solvable; in particular, 𝔤 is solvable if its Killing form is zero .  
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Proof:  

Cartan's criterion for solvability applied to the adjoint representation 𝑎𝑑: 𝔤 ⟶ 𝔤𝔩𝔤 shows that 

𝑎𝑑(𝒟𝔤) is solvable. Hence 𝒟𝔤 is solvable, and so 𝔤 is solvable.  

Theorem  2.9.2     (Cartan's criterion ) 

A non zero Lie algebra 𝔤 is semisimple if and only if its Killing form is nondegenerate .  

Proof:   

Because 𝔤 is semisimple , the adjoint representation 𝑎𝑑: 𝔤 ⟶ 𝔤𝔩𝔤 is faithful ,and so this 

follows from (Prop 2.9.1) . Let 𝔞 be a commutative ideal of 𝔤 ـــــ we have to show that 𝔞 = 0 . 

For any 𝑎 ∈ 𝔞 and 𝑔 ∈ 𝔤, we have that  : 𝔤
𝑎𝑑  𝑔
    𝔤

𝑎𝑑  𝑎
   𝔞

𝑎𝑑  𝑔
    𝔞 

𝑎𝑑  𝑎
   0 ,  

And so  𝑎𝑑 𝑎 ∘ 𝑎𝑑 𝑔 2 = 0. But an endomorphism of a vector space whose square is zero has 

trace zero ( because its minimum polynomial divides 𝑋2) . Therefore  

𝑘𝔤  𝑎, 𝑔 ≝ 𝑇𝑟𝔤  𝑎𝑑 𝑎 ∘ 𝑎𝑑 𝑔 = 0  and   𝔞 ⊂ 𝔤⊥ = 0 .  

We say that an ideal a Lie algebra is semisimple if it is semisimple as a Lie algebra . 

Corollary  2.9.1.  

For any semisimple ideal 𝔞 in a Lie algebra 𝔤 and its orthogonal complement 𝔞⊥ with respect 

to the Killing form :  𝔤 = 𝔞⨁𝔞⊥  

Proof:  

 Because 𝑘𝔤 is invariant , 𝔞⊥ is an ideal . Now 𝑘𝔤 𝔞 =  𝑘𝔤 ( Lemma 2.9.3),which is 

nondegenerate . Hence,  𝔞⨁𝔞⊥ = 0 . 

Corollary   2.9.2.  

 Let  𝔤 be a Lie algebra over a field 𝑘, and let 𝑘′ be a field containing 𝑘 . The Lie algebra 𝔤 is 

semisimple if and only if 𝔤𝑘′   is semisimple  . The radical 𝑟 𝔤𝑘′   ≃ 𝑘′ ⊗𝑘 𝑟 𝔤 .  

Proof:  

The Killing form of 𝔤𝑘′   is obtained from that of 𝔤 by extension of scalars. The exact sequence  

0 ⟶ 𝑟(𝔤) ⟶ 𝔤 ⟶ 𝔤 𝑟(𝔤) ⟶ 0  Gives rise to an exact sequence  

0 ⟶ 𝑟(𝔤)𝑘′ ⟶ 𝔤𝑘′ ⟶  𝔤 𝑟(𝔤)  𝑘′ ⟶ 0  
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As 𝑟(𝔤)𝑘′  is solvable and  𝔤 𝑟(𝔤)  𝑘′  is semisimple , the sequence shows that 𝑟(𝔤)𝑘′  is the 

largest solvable ideal in 𝔤𝑘′  , i.e ., that 𝑟(𝔤)𝑘′ = 𝑟(𝔤𝑘 ′ ) .  

Definition  2.9.5.       (Cartan Subalgebras )  

 A Cartan sub-algebra 𝔥 of a Lie algebra 𝔤 is nilpotent Lie sub-algebra that is equal to its 

centralizer, such that  𝑋 ∈ 𝔤:  𝑋, 𝔥 ⊂ 𝔥 = 𝔥. For semi-simple Lie algebra 𝔤, a subalgebra 

𝔥 ⊂ 𝔤 being Cartan is equivalent to 𝔥 being a maximal abelian sub-algebra.    

Corollary  2.9.3.  

 In every complex semisimple Lie algebra 𝔤, there exists a Cartan subalgebra.  

And any two Cartansubalgebras in 𝔤 have the same dimension. This dimention is called rank 

of 𝔤 :  Rank(𝔤) = dim 𝔥.  

2.10    Root decomposition and root systems:- 

Definition   2.10.1.  

  A root system is finite set of non-zero vectors ∆⊆ 𝔼 satisfies the following :  

i. If 𝛼 ∈ ∆, then 𝜆𝛼 ∈ ∆ if and only if  𝜆 = ±1  

ii. If  𝛼, 𝛽 ∈ ∆ , then 𝜍𝛼  . 𝛽 ∈ ∆ where 𝜍𝛼 : 𝔼 → 𝔼  is reflection 

Each element of ∆ is called a root.  

Theorem  2.10.1.   

1. We have the following decomposition for 𝔤, called the root decomposition  

𝔤 = 𝔥⨁ ⊕𝛼∈𝑅 𝔤𝛼       where  

𝔤𝛼  = {𝑥 | [, 𝑥] =  𝛼,    𝑥 for all  ∈  𝔥 }  

R = { 𝛼 ∈  𝔥∗ - {0} | 𝔤𝛼 ≠ 0}  

The set is called the root system of 𝔤, and sub spaces 𝔤𝛼  are called the root sub spaces.  

2. [𝔤𝛼  , 𝔤𝛽 ] ⊂  𝔤𝛼+𝛽   (here and below, we let 𝔤0 = 𝔥)   

3. If  𝛼 + 𝛽 ≠ 0, then 𝔤𝛼  , 𝔤𝛽  are orthogonal with respect to the Killing form K.  
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4. For any𝛼, the Killing form gives a non-degenerate pairing 𝔤𝛼⨂ 𝔤−𝛼→ ℂ . in particular, 

restriction of  K to 𝔥 is non-degenerate.  

Example  2.10.1.   

Let  𝔤 = 𝔰𝔩(𝑛, ℂ), 𝔥 = diagonal matrices with trace 0. Denote by 𝑒𝑖 : 𝔥→ ℂ the functional 

which computes 𝑖𝑡  diagonal entry of :  

𝑒𝑖 :  

1 0 … .
0 2 … .
0 ⋯ 𝑛

 ⟼ 𝑖  

Then one easily sees that  𝑒𝑖  = 0, So  𝔥∗ = ⊕ ℂ 𝑒𝑖 ∕ ℂ(𝑒1+ ⋯ ⋯ ⋯ + 𝑒𝑛 ). It is easy to see that 

matrix units 𝐸𝑖𝑗  are eigen vectors for  ad,  ∈  𝔥 : [, 𝐸𝑖𝑗 ] = (𝑖  -𝑗 )𝐸𝑖𝑗  = (𝑒𝑖  -𝑒𝑗 )( )𝐸𝑖𝑗 . 

Thus, the root decompstion is given by  

R = {𝑒𝑖  -𝑒𝑗 | 𝑖 ≠ 𝑗}⊂⊕ ℂ 𝑒𝑖 ∕ ℂ(𝑒1+ ⋯ ⋯ ⋯ + 𝑒𝑛 ).  𝔤𝑒𝑖− 𝑒𝑗
 = ℂ𝐸𝑖𝑗  .  

The Killing form on 𝔥 is given by, 

(, ′ ) =  (𝑖  − 𝑗 )𝑖  ≠𝑗 (′𝑖  − ′𝑗 ) = 2 𝑛  𝑖′𝑖𝑖  = 2 𝑛tr (′). 

From this, it is easy to show that if 𝜆=  𝜆𝑖𝑒𝑖  , 𝜇 =  𝜇𝑖𝑒𝑖 ∈ 𝔥∗, and 𝜆𝑖  , 𝜇𝑖  are chosen so that 

 𝜆𝑖=   𝜇𝑖  = 0 ( which is always possible), then the corresponding form on 𝔥∗ is given by  

(𝛼, 𝜇) = 1

2 𝑛
 𝜆𝑖𝜇𝑖𝑖  . 

Lemma  2.10.1.  

Let 𝑒 ∈ 𝔤𝛼  ,  𝑓 ∈ 𝔤−𝛼  , then : [𝑒, 𝑓] = (𝑒, 𝑓) 𝐻𝛼  

Proof:-  

Let us compute the inner product ([𝑒, 𝑓], ) for some  ∈  𝔥. Since Killing form is invariant, 

we have  

([𝑒, 𝑓], ) = (𝑒, [𝑓, ]) = - (𝑒, [, 𝑓]) =  , 𝛼 (𝑒, 𝑓) = (𝑒, 𝑓) (, 𝐻𝛼 ) 

Since ( , ) is a non-degenerate form on 𝔥, this implies that [𝑒, 𝑓] = (𝑒, 𝑓) 𝐻𝛼 .  

Lemma 2.10.2.   

1. Let𝛼 ∈  𝑅, then (𝛼 , 𝛼) = (𝐻𝛼  , 𝐻𝛼) ≠ 0.  

2. Let 𝑒 ∈ 𝔤𝛼  , 𝑓 ∈ 𝔤−𝛼   be such that (𝑒, 𝑓) = 2

(𝛼  ,𝛼)
 ,and let   𝛼  = 

2 𝐻𝛼

(𝛼  ,𝛼)
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Then  𝛼 , 𝛼  = 2 and the element 𝑒 ∈ 𝔤𝛼  s.t 𝑒, 𝑓, 𝛼  satisfy the relations of Lie algebra 

𝔰𝔩(2, ℂ). We will denote such a sub algebra by 𝔰𝔩(2, ℂ)𝛼 ⊂ 𝔤.  

Proof:-  

Assume that  (𝛼 , 𝛼) = 0; then  𝐻𝛼 , 𝛼  = 0. Choose  , 𝑓 ∈ 𝔤−𝛼    such that (𝑒, 𝑓) ≠ 0 i.e,. 

 Let  = [𝑒, 𝑓] = (𝑒, 𝑓) 𝐻𝛼  and consider the algebra 𝔞 generated by , 𝑓,  . then we see that 

[𝑒, ] =  , 𝛼  𝑒 = 0, [, 𝑓]= - , 𝛼 𝑓 = 0, so 𝔞 is solvable Lie algebra .  from Lie theorem, we 

can choose a basis in 𝔤 such that operators ad 𝑒, ad𝑓, ad are upper triangular.  

Since .  = [𝑒, 𝑓] ,ad will be strictly upper-triangular and thus nilpotent. But since  ∈  𝔥, it 

is also semisimple. Thus  = 0. On the other hand,  = (𝑒, 𝑓)𝐻𝛼 ≠ 0. This contradiction 

proves the first part of the theorem.  

The second part is immediate from definitions and (Lemma 2.10.1).   

Lemma  2.10.3.   

Let 𝛼 be a root , and let 𝔰𝔩(2, ℂ)𝛼  be the Lie sub algebra generated by 𝑒 ∈ 𝔤𝛼  , 𝑓 ∈ 𝔤−𝛼  and 

𝛼  as in the (Lemma 2.10.2), consider the sub space V = ℂ 𝛼⨁ ⊕𝑘∈ℤ ,𝑘≠ 0 𝔤𝑘𝛼 ⊂ 𝔤 .   

Then V is an irreducible representation of 𝔰𝔩(2, ℂ)𝛼   .  

Proof:-                                                                          

  Since ad . 𝔤𝑘𝛼 ⊂ 𝔤(𝑘+1)𝛼  , and (Lemma 2.10.2) , ad 𝑒. 𝔤−𝛼 ⊂  ℂ 𝛼 , and similarly for 𝑓,V is a 

representation of 𝔰𝔩(2, ℂ)𝛼 . Since   𝛼 , 𝛼  = 2, we see that weight decomposition of V is given 

by V[𝑘] = 0 for odd 𝑘 and V[2𝑘] = 𝔤𝑘𝛼  , V[0] = ℂ 𝛼  . in particular, zero weight space V[0] 

is one-dimensional. Then V is irreducible.  

Now we can prove the main theorem about the structure of semi simple Lie algebras.  

Theorem   2.10.2.   

 Let be a complex semi simple Lie algebra with Cartan sub algebra 𝔥 and root decomposition  

𝔤 = 𝔥⨁ ⊕𝛼∈𝑅 𝔤𝛼  .  

1. R spans 𝔥∗ as a vector space, and elements  𝛼 , 𝛼 ∈ 𝑅, span 𝔥 as a vector space  

2. For each  ∈ 𝑅, the root sub space 𝔤𝛼  is one-dimensional.  

3. For any two roots 𝛼, 𝛽 the number   𝛼 , 𝛼  = 2(𝛼 ,𝛽 )

(𝛼  ,𝛼)
     is integer . 
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4. For  ∈ 𝑅, define the reflection operator  𝑠𝛼 :𝔥∗ → 𝔥∗ by,  𝑠𝛼 (𝜆) = 𝜆 −    𝛼 , 𝜆 𝛼 = 𝜆 − 2(𝛼 ,𝜆)

(𝛼  ,𝛼)
𝛼 

Then for any roots 𝛼, 𝛽,  𝑠𝛼 (𝛽) is also a root. In particular, if  𝛼 ∈ 𝑅, then  −𝛼 =  𝑠𝛼 (𝛼) ∈ 𝑅.  

5. For any root  𝛼 , the only multiples of 𝛼 which are also roots ±𝛼 .  

6. For roots 𝛼, 𝛽 ≠  ±𝛼, the sub space      V =   ⊕𝑘∈ℤ 𝔤𝛽+𝑘𝛼  , is an irreducible representation 

of 𝔰𝔩(2, ℂ)𝛼 .  

7. If 𝛼, 𝛽 are roots such that 𝛼 + 𝛽 is also a root, then [𝔤𝛼 , 𝔤𝛽 ] = 𝔤𝛽+𝑘𝛼  .  

Proof:-  

1. Assume that 𝑅 does not generate 𝔥∗; then there exists a non-zero  ∈  𝔥 such that  , 𝛼  = 0 

for all 𝛼 ∈ 𝑅. But then root decomposition (1) implies that ad = 0. However, by definition in 

a semi simple Lie algebra, the center is trivial: 𝔷(𝔤) = 0.  

The fact that  𝛼  span 𝔥 now immediately follows: using identification of 𝔥 with 𝔥∗ given by 

the Killing form, elements  𝛼  are identified with non-zero multiples of 𝛼.  

2. Immediate from ( Lemma 2.10.3) and the fact that in any irreducible representation of 

𝔰𝔩(2, ℂ), weight sub spaces are one-dimensional.  

3. Consider 𝔤 as a representation of 𝔰𝔩(2, ℂ)𝛼 . Then elements of 𝔤𝛽  have weight equal to 

  𝛼 , 𝛼 . But from the fact that ( V admits a weight decomposition with integer weights: V = 

⊕𝑛∈ℤ  V[𝑛]) weights of any finite-dimensional representation of  𝔰𝔩(2, ℂ) are integer.  

4. Assume that    𝛼 , 𝛼 =  𝑛 ≥ 0. Then elements of 𝔤𝛽  have weight 𝑛 with respect to action of 

𝔰𝔩(2, ℂ)𝛼 . By the same fact above , operator 𝑓𝛼
𝑛  is an isomorphism of the space of vectors of 

weight 𝑛 with the space of vectors of weight  – 𝑛. In particular, it means that if 𝑣 ∈ 𝔤𝛽  is non-

zero vector, then𝑓𝛼
𝑛  𝑣 ∈ 𝔤𝛽−𝑛𝛼  is also non-zero. Thus 𝛽 − 𝑛𝛼 =  𝑠𝛼 (𝛽) ∈ 𝑅.  

5. Assume that 𝛼 𝑎𝑛𝑑 𝛽 = 𝑐𝛼, 𝑐 ∈ ℂ are both roots. By part (3) ,2(𝛼 ,𝛽 )

(𝛼  ,𝛼)
 = 2𝑐 is integer, so 𝑐 is a 

half-integer . same argument shows that 1 𝑐  is also a half-integer. It is easy to see that this 

implies that  𝑐 = ±1, ±2, ± 1 2 . Interchanging the roots if necessary and possibly replacing 

𝛼by –𝛼, we have  𝑐 = 1 or 𝑐 = 2.  

Now let us consider the sub space V = ℂ 𝛼⨁ ⊕𝑘∈ℤ ,𝑘≠ 0 𝔤𝑘𝛼 ⊂ 𝔤. 

 From (Lemma 2.10.3) V is an irreducible representation of  𝔰𝔩(2, ℂ)𝛼  , and by part (2) , V[2] 

= 𝔤𝛼 = ℂ𝑒𝛼 . Thus, the map ad 𝑒𝛼 : 𝔤𝛼 → 𝔤2𝛼  is zero. But the results of representation of 
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𝔰𝔩(2, ℂ) show that in an irreducible representation, kernel of 𝑒 is exactly the highest weight 

sub space. Thus, we see that V has highest weight 2: V[4] = V[6] = ⋯ = 0. This means that                             

V= 𝔤−𝛼⨁ ℂ 𝛼⨁𝔤𝛼  , so the only integer multiples of 𝛼 which are roots are ±𝛼. In particular, 

2𝛼 is not a root , Combining these two results, we see that if 𝛼, 𝑐𝛼 are both roots, then  

𝑐 = ±1.  

6. Proof is immediate from dim 𝔤𝛽+𝑘𝛼  = 1.   

7. We already know that [𝔤𝛼  , 𝔤𝛽 ] ⊂ 𝔤𝛽+𝑘𝛼  . since dim𝔤𝛽+𝑘𝛼  = 1, we need to show that for 

non-zero , 𝑒𝛼 ∈ 𝔤𝛼 ,  𝑒𝛽 ∈ 𝔤𝛽  , we have [𝑒𝛼  , 𝑒𝛽 ] ≠ 0. This follows from the previous part and 

the fact that in an irreducible representation of 𝔰𝔩(2, ℂ), if 𝑣 ∈V[𝑘] is non-zero and V[𝑘 +

2] ≠ 0, then 𝑒. 𝑣 ≠ 0.  

Theorem   2.10.3.   

i. Let 𝔥ℝ ⊂  𝔥 be the real vector space generate by  𝛼 , 𝛼 ∈ 𝑅. Then 𝔥= 𝔥ℝ⨁ 𝑖𝔥ℝ , and the 

restriction of Killing form to 𝔥ℝ is positive definite.  

ii. Let 𝔥ℝ
∗ ⊂ 𝔥∗ be the real vector space generated by 𝛼 ∈ 𝑅. Then 𝔥∗ = 𝔥ℝ

∗⨁𝑖𝔥ℝ
∗  also, 𝔥ℝ

∗= 

{𝜆 ∈ 𝔥∗| 𝜆,  ∈ ℝ for all  ∈ 𝔥ℝ} = (𝔥ℝ)∗.   

Proof:-  

Let us first prove that the restriction of the Killing form to 𝔥ℝ is real and positive definite. 

Indeed,  (𝛼  , 𝛽 ) = tr (ad𝛼  ad𝛽 ) =   𝛼  , 𝛾  𝛽  , 𝛾 𝛾∈𝑅  

But by (Theorem 2.10.2),  𝛼  , 𝛾  𝛽  , 𝛾 ∈ ℤ , so  (𝛼  , 𝛽 ) ∈ ℤ .Now let  =  𝑐𝛼𝛼 ∈ 𝔥ℝ . 

then   , 𝛾   =  𝑐𝛼  𝛼  , 𝛾 ∈ ℝ for any root 𝛾, so (, ) = tr (ad )² =    , 𝛾  ²𝛾  ≥ 0  

Which proves that the Killing form is positive definite. This shows that 𝑑𝑖𝑚ℝ𝔥ℝ  ≤ 1

2
𝑑𝑖𝑚ℝ𝔥= 

𝑟, where 𝑟 =  𝑑𝑖𝑚ℂ𝔥 is the rank of 𝔤 . On the other hand, since 𝛼  generate 𝔥overℂ, we see 

that 𝑑𝑖𝑚ℝ𝔥ℝ ≥ 𝑟. Thus, 𝑑𝑖𝑚ℝ𝔥ℝ = 𝑟, so 𝔥 = 𝔥ℝ⨁ 𝑖𝔥ℝ.  

Definition  2.10.2.     (Abstract root systems)  

An abstract root system is a finite set of elements 𝑅 ⊂ 𝐸 {0}  , where 𝐸 is a real vector space 

with a positive definite inner product , such that the following properities hold :  

(R1) 𝑅 generates 𝐸 as a vector space .  

(R2) For any two roots 𝛼, 𝛽, the number  
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𝑛𝛼𝛽 =
2  𝛼 ,𝛽 

 𝛽 ,𝛽 
         is integer                                                                                (2.9) 

(R3) Let 𝑠𝛼 : 𝐸 ⟶ 𝐸 be definite by  𝑠𝛼 𝜆 = 𝜆 −
2  𝛼 ,𝜆 

 𝛼 ,𝛼 
 𝛼   

Then for any roots 𝛼, 𝛽, 𝑠𝛼 𝛽 ∈ 𝑅 . The number  𝑟 = dim 𝐸 is called the rank of  𝑅 . 

If ,in addition 𝑅 satisfies the following property  

(R4) If 𝛼, 𝑐𝛼 are both roots , then 𝑐 = ±1 .  Then 𝑅 is called a reduced root system .  

Remark  2.10.1.   

 From proof of  (theorem 2.10.2) it easy to deduce from (R1) ــــ (R3) that if 𝛼, 𝑐𝛼 are both 

roots , then 𝑐 = ±1, ±2, ±
1

2
 . However , there are indeed examples of non- reduced root 

systems, which contain 𝛼 and 2𝛼 as roots . Thus, condition (R4) does not follow from (R1) ـــ 

(R3) .  

Note that conditions (R2) ,(R3) have a very simple geometric meaning. Namely, 𝑠𝛼  is 

reflection around the hyperplane  ,  𝐿𝛼 = {  𝜆 ∈ 𝐸  𝛼, 𝜆 = 0}  

It can be defined by 𝑠𝛼 𝜆 = 𝜆 if   𝛼, 𝜆 = 0 and 𝑠𝛼 𝛼 = −𝛼 .  

Similarly, the number 𝑛𝛼𝛽  also has a simple geometric meaning : if we denote by 𝑝𝛼  the 

operator of orthogonal projection onto the line containing 𝛼 , then 𝑝𝛼 𝛽 =
𝑛𝛽𝛼

2
 𝛼 . Thus, 

(R2) says that the projection of 𝛽 onto 𝛼 is a half – integer multiple of 𝛼 . 

Theorem  2.10.4.  

 Let 𝔤 be a semisimple complex Lie algebra , with root decomposition . then the set of roots 

𝑅 ⊂ 𝔥ℝ
∗ {0}  is a reduced root system .  

It's proof coming from (theorem 2.10.3).  

Remark  2.10.2.  

 We will use it's convenient to introduce, for every root 𝛼 ∈ 𝑅 , the corresponding coroot 

 𝛼∨ =
2  𝛼 ,𝜆 

 𝛼 ,𝛼 
  .  

Note that for the root systems of a semisimple Lie algebra, this coincides with the definition 

of 𝛼 ∈ 𝔥 defined by : 𝛼∨ = 𝛼  . 

Then one easily sees that  𝛼∨, 𝛼 = 2 and that :  
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𝑛𝛼𝛽 =  𝛼, 𝛽∨  

       𝑠𝛼 𝜆 = 𝜆 −  𝜆, 𝛼∨  𝛼 

If we assume that we have 𝐵 is non – degenerate on  , so there is an induced isomorphism 

𝐵:  ⟶ ∗ . by definition, < 𝑠  , ′ >= 𝐵( , ′)  

Let's calculate  

< 𝑠𝐻𝛽 , 𝐻𝛼 > = 𝐵 𝐻𝛽 , 𝐻𝛼 = 𝐵(𝐻𝛼 , 𝐻𝛽 )                       (𝐵 Symmetric)   

                      = 𝐵 𝐻𝛼 ,  𝑋𝛽 , 𝑌𝛽    = 𝐵([𝐻𝛼 , 𝑋𝛽 ], 𝑌𝛽 )        (𝐵 invariant)  

                       = 𝐵(𝑋𝛽 , 𝑌𝛽 )𝐵(𝐻𝛼 )  

                        = 1

2
𝐵([𝐻𝛽 , 𝑋𝛽 ], 𝑌𝛽 )𝛽(𝐻𝛼 )                          (2𝑋𝛽 = [𝐻𝛽 , 𝑋𝛽 ])  

                         = 1

2
𝐵(𝐻𝛽 , 𝐻𝛽 )𝛽(𝐻𝛼 )                                 (𝐵 invariant)  

Thus, we have that  𝑠(𝐻𝛽 ) =
(𝐻𝛽  ,𝐻𝛽 )

2
𝛽 , also compute  

 𝛼, 𝛽 =< 𝛼, 𝑠−1𝛽 > = 𝛼  
2𝐻𝛽

𝐵(𝐻𝛽 ,𝐻𝛽 )
 =

2𝛼(𝐻𝛽 )

𝐵(𝐻𝛽 ,𝐻𝛽 )
    …………….. (2.10)  

Inparticular, letting 𝛼 = 𝛽, we get 𝑠(𝐻𝛽 ) =
2𝛽

(𝛽 ,𝛽)
 . this is sometimes called the co-root of 𝛽 , 

and denoted 𝛽  . then we can use (1) to rewrite this fact  

For 𝛼, 𝛽 ∈ ∆ ,   
2(𝛼 ,𝛽)

(𝛽 ,𝛽)
 ∈ 𝑍 and 𝛼 −

2(𝛼 ,𝛽)

(𝛽 ,𝛽)
 𝛽 ∈ ∆  ⟹ ∆⊆ ∗                (set of roots)  

Now we can define  𝑟𝛽 : ∗ ⟶ ∗ by 𝑟𝛽 𝑟 = 𝑥 −
2(𝛼 ,𝛽)

(𝛽 ,𝛽)
 𝛽 . this is the reflection through the 

plane orthogonal to 𝛽 in ∗. The group generated by the 𝑟𝛽  for  𝛽 ∈ ∆ is a coxeter group .  

Definition  2.10.3.  

A root system is irreducible if it cannot be decomposed into the union of two root systems of 

smaller rank.  

Example  2.10.1.  

Let us classify all systems of rank 2 which observe that   

2(𝛼, 𝛽)

(𝛼, 𝛼)
 
2(𝛼, 𝛽)

(𝛽, 𝛽)
= 4𝑐𝑜𝑠2𝜃 
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Where 𝜃 is the angle between 𝛼 and  , this must be  an integer , thus there are not many 

choices for 𝜃 .  

± 3

2
 ±

1

 2
 ±

1

2
 0 cos 𝜃 

π

6
 ,

5π

6
 

π

4
,
3π

4
  

π

3
,
2π 

3
  

π

2
   θ 

                    

Choose two vectors with minimal angle between them. If the minimum angle is 
𝜋

2
 , the system 

is reducible. (notice that  𝛼 and 𝛽  can be scaled independently). If the minimal angle is 

smaller than  
𝜋

2
 , then  𝑟𝛽 (𝛼) ≠ 𝛼, so the difference  𝛼 − 𝑟𝛽 (𝛼) is non-zero integer multiple of 

𝛽. (in fact, a positive multiple of 𝛽 since 𝜃 <
𝜋

2
).  

If we assume  𝛼 ≤  𝛽  we get that   𝛼 − 𝑟𝛽 (𝛼) < 2 𝛼 ≤ 2 𝛽  . 

Example  2.10.2.   

 Let
20

 𝑒𝑖  be the standard basis of  ℝ𝑛  , with usual inner product :  𝑒𝑖 , 𝑒𝑗  = 𝛿𝑖𝑗  . Let  

𝐸 = {   𝜆1, … . , 𝜆𝑛 ∈ ℝ𝑛   𝜆𝑖 = 0} , and 𝑅 = {  𝑒𝑖 − 𝑒𝑗  1 ≤ 𝑖 , 𝑗 ≤ 𝑛, 𝑖 ≠ 𝑗} ⊂ 𝐸. Then 𝑅 is a 

reduced root system . indeed, one easily see that for 𝛼 = 𝑒𝑖 − 𝑒𝑗  , the corresponding reflection  

𝑠𝛼 : 𝐸 ⟶ 𝐸 is transposition of  𝑖 , 𝑗 enteries :  

𝑠𝑒𝑖−𝑒𝑗
 … . . , 𝜆𝑖 , …… , 𝜆𝑗 , …… .  = (… . . , 𝜆𝑖 , … … , 𝜆𝑗 , …… . ) 

Clearly, 𝑅 is stable under such transposition ( and, more generally, under all permutations) . 

thus , condition (R3) is satisfied . 

Since  𝛼, 𝛼 = 2 for any 𝛼 ∈ 𝑅, condition (R2) is equivalent to  𝛼, 𝛽 ∈ ℤ  for any 𝛼, 𝛽 ∈ 𝑅 

which is immediate . 

Finally , condition (R1) is obvious. Thus, 𝑅 is a root system of rank 𝑛 − 1 . for historical 

reasons, this root system is usually referred to as "root system of type 𝐴𝑛−1 "   

Alternatively, one can also define 𝐸 as a quotient of  ℝ𝑛: 𝐸 = ℝ𝑛 ℝ(1, … . ,1)   

In this description we see that this root system is exactly the root system of Lie algebra 

𝔰𝔩(𝑛, ℂ).  

 

                                                           
20
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Example  2.10.3.   

Let us consider an example 𝔰𝔲(3) contains the traceless Hermitean matrices  

𝑛 𝜃 𝛼   2

𝛽   2
 

0 90∘ Arbitrary 

1 60∘, 120∘ 1 

2 45∘ , 135∘ 1

2
 , 2 

3 30∘ , 150∘ 1

3
 , 3 

The possible angle and relative lengths of roots 

(in physicist's convention), which is an eight – dimensional space. The customary basis is 

𝑇𝑎 =
𝜆𝑎

2
  , where the Gell-Mann matrices  𝜆𝑎  are : 

𝜆1 =  
0 1 0
1 0 0
0 0 0

  ,      𝜆2 =  
0 −𝑖 0
𝑖 0 0
0 0 0

    ,    𝜆3 =  
1 0 0
0 −1 0
0 0 0

   ,      𝜆4 =  
0 0 1
0 0 0
1 0 0

   

𝜆5 =  
0 0 −𝑖
0 0 0
𝑖 0 0

  ,    𝜆6 =  
0 0 0
0 0 1
0 1 0

     ,     𝜆7 =  
0 0 0
0 0 −𝑖
0 𝑖 0

    ,    𝜆8 =
1

 3
 

1 0 0
0 1 0
0 0 −2

  

The first three are an obvious embedding of the Pauli matrices of 𝔰𝔲(2) . they are normalized  

To 𝑡𝑟 𝑇𝑎𝑇𝑏 =
1

2
 𝛿𝑎𝑏  . this is chosen such that  𝑇1 , 𝑇2 = 𝑖𝑇3 . to make it consistent with 

 𝑇𝑖 , 𝑇𝑗  = 𝛿𝑖𝑗  , we choose the normalization to be 𝑘 = 2 . then the Killing matric is 𝑔𝑖𝑗 = 𝛿𝑖𝑗  , 

and we do not have care about upper and lower indices on the structure constants , i.e , 

𝑓𝑎𝑏𝑐 = 𝑓𝑎𝑏
𝑐  . the independent nonvanishing structure constants are  

𝑓123 = 2𝑓147 = 2𝑓246 = 2𝑓257 = −2𝑓156 = −2𝑓367 =
2

 3
 𝑓458 =

2

 3
 𝑓678 = 1 . 

This algebra has rank two . As Cartan generators one usually chooses 𝐻1 = 𝑇3 and  𝐻2 = 𝑇8, 

which are already diagonal, so they commute . to find the roots , we have to diagonalise the 

adjoint action of the Cartan elements . A straight forward calculation gives  

𝐸± 1,0 =
1

 2
 (𝑇1 ± 𝑖𝑇2) , 𝐸

± 1
2

, 3
2

 
=

1

 2
 (𝑇4 ± 𝑖𝑇5) ,  𝐸

± −1
2

, 3
2

 
=

1

 2
 (𝑇6 ± 𝑖𝑇7) .  

So the roots are  : 𝛼1 =  1

2
,  3

2
  ,   𝛼2 =  1

2
, −

 3

2
    ,  𝛼3 = (1,0)  

And their negatives. we will use a notation where superscripts label the roots, while subscripts 

label the vector components . ( So the subscripts are actually lower indices, while the 
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superscripts are not proper indices, and they do not take part in the summation convention. 

This is even more confusing because both sub – and superscripts have the same range ).  

Of course the 𝑇𝑎  not only give the adjoint representation by acting on themselves, but they 

naturally act on ℂ3 . For any matrix algebra , this is called the defining or vector 

representation , and it is denoted by it's dimension as 3 . Since they are already diagonal, the 

eigenvalues of  𝐻1 and 𝐻2 are simply the diagonal elements ,and the eigenvectors are the 

standard basis of ℂ3 . Hence , the weights are  

  𝜔1   ≡  
1
0
0
 =    

1

2
,

1

2 3
     ,       𝜔2   ≡  

0
1
0
 =    −

1

2
,

1

2 3
      ,   𝜔3   ≡  

0
0
1
 =    0, −

1

 3
      

Note that indeed the differences of weights are roots .  

There is even a third representation we can construct from the  𝑇𝑎 's , which is called 

thecomplex conjugate representation : Clearly, if the generators −𝑇𝑎
∗ . This is of course true 

for any representation. Since, the Cartan generators are diagonal and real, the weights just 

receive an overall minus sign, in particular, they are different. ( This is in contrast to the 

adjoint representation, which is isomorphic to it's complex conjugate representation ). So we 

have a representation, again three-dimensional ,called 𝟑  , with states  

  𝑣1   =   −  
1

2
,

1

2 3
    ,         𝑣2   =   −  −

1

2
,

1

2 3
     ,             𝑣3   =    0,

1

 3
       

The weights of the vector representation.  

2.11  Automorphisms and Weyl group :  

Most important information about the root system is contained in the number  𝑛𝛼𝛽  rather than 

in inner product themselves . this motivates the following definition :  

Definition  2.11.1.   

Let 𝑅1 ⊂ 𝐸1 , 𝑅2 ⊂ 𝐸2 be two root systems . An isomorphism 𝜑: 𝑅1 ⟶ 𝑅2 is a vector space 

isomorphism 𝜑: 𝐸1 ⟶ 𝐸2 which also gives a bijection 𝑅1 simeq 𝑅2 and such that 

𝑛𝜑 𝛼 𝜑 𝛽 = 𝑛𝛼𝛽  for any 𝛼𝛽 ∈ 𝑅1 .  

Note that : the condition 𝑛𝜑 𝛼 𝜑 𝛽 = 𝑛𝛼𝛽  will be automatically satisfied if 𝜑 preserves inner 

product . However,  not every isomorphism of root systems preserves inner products . for 

example : for any 𝑐 ∈ 𝑅+ , the root systems 𝑅  and 𝑐𝑅 = {𝑐𝛼 , 𝛼 ∈ 𝑅} are isomorphic . The 

isomorphism is given by 𝑣 ⟼ 𝑐𝑣, which doesnot preserve the inner product .  
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A special class of automorphisms of a root system 𝑅 are those generated by reflections 𝑠𝛼  .   

Definition  2.11.2.  

The Weyl group 𝑊 of a root system 𝑅 is the subgroup of 𝐺𝐿(𝐸) generated by reflections 

𝑠𝛼 , 𝛼 ∈ 𝑅 . 

Lemma  2.11.1.  

1. The Weyl group 𝑊 is a finite subgroup in the orthogonal group 𝑂(𝐸), and the root system 

𝑅  is invariant under the action of 𝑊 .  

2. For any 𝑤 ∈ 𝑊, we have  𝑠𝑤(𝛼) = 𝑤𝑠𝛼𝑤−1 .  

Proof:  

Since every reflection  𝑠𝛼  is an orthogonal transformation, 𝑊 ⊂ 𝑂(𝐸) . Since 𝑠𝛼 𝑅 = 𝑅 (by 

axioms of a root system ) , we have 𝑤 𝑅 = 𝑅 for any 𝑤 ∈ 𝑊 . Moreover, if some  𝑤 ∈ 𝑊 

leaves every root invariant, then 𝑤 = 𝑖𝑑 ( because 𝑅 generates 𝐸). Thus, 𝑊 is a subgroup of 

the group 𝐴𝑢𝑡(𝑅) of all automorphisms of 𝑅 . Since 𝑅 is a finite set,  𝐴𝑢𝑡(𝑅) is finite; thus 𝑊 

is also finite . The second identity is obvious : indeed , 𝑤𝑠𝛼𝑤−1 acts as identity on the 

hyperplane 𝑤𝐿𝛼 = 𝐿𝑤(𝛼) , and  𝑤𝑠𝛼𝑤−1 𝑤 𝛼  = −𝑤(𝛼) , so it is a reflection 

corresponding to root 𝑤(𝛼) . 

Example  2.11.1.  

Let 𝑅 be the root system of type 𝐴𝑛−1 ( from Example 2.10.2) . Then 𝑊 is the group 

generated by transfositions 𝑠𝑖𝑗  . it is easy to see that these transpositions generate the 

symmetric group 𝑠𝑛  ; thus, for this root system 𝑊 = 𝑠𝑛  .  

In particular, for root system  𝐴1 ( i.e., root system of 𝔰𝔩(2, ℂ)) ,we have   𝑊 = 𝑠2 = ℤ2 =

{1, 𝜍} where 𝜍 acts on 𝐸 ≃ ℝ by 𝜆 ⟼ −𝜆 . 

It should be noted, however, that not all automorphisms of a root system are given by 

elements of Weyl group . for example, for 𝐴𝑛  , 𝑛 > 2 , the automorphism 𝛼 ⟼ −𝛼 is not in 

the Weyl group . 

Pair of roots and rank two root systems:  

We take 𝑅 is reduce root system . and also from condition (R2),(R3) impose very strong 

restrictions on relative position of two roots .  

 



 

103 

Theorem  2.11.1.   

Let 𝛼, 𝛽 ∈ 𝑅 roots which are not multiples of one another , with  𝛼 ≥  𝛽  ,and let 𝜑 be the 

angle between them. Then we must have one of the following possibilities :  

1. 𝜑 = 𝜋 2  (i.e., 𝛼, 𝛽 are orthogonal ), 𝑛𝛼𝛽 = 𝑛𝛽𝛼 = 0  

2.  𝜑 = 2 𝜋 3  ,   𝛼 =  𝛽  , 𝑛𝛼𝛽 = 𝑛𝛽𝛼 = −1  

3.  𝜑 = 𝜋 3  ,   𝛼 =  𝛽  , 𝑛𝛼𝛽 = 𝑛𝛽𝛼 = 1  

4. 𝜑 = 3 𝜋 4  ,   𝛼 =  2 𝛽  , 𝑛𝛼𝛽 = −2 , 𝑛𝛽𝛼 = −1  

5.  𝜑 = 𝜋 4  ,   𝛼 =  2 𝛽  , 𝑛𝛼𝛽 = 2 , 𝑛𝛽𝛼 = 1  

6.  𝜑 = 5 𝜋 6  ,   𝛼 =  3 𝛽  , 𝑛𝛼𝛽 = 3 , 𝑛𝛽𝛼 = 1  

7.  𝜑 = 𝜋 6  ,   𝛼 =  3 𝛽  , 𝑛𝛼𝛽 = −3 , 𝑛𝛽𝛼 = −1   

Proof:  

Recall 𝑛𝛼𝛽  defined by (2.9) . Since  𝛼, 𝛽 =  𝛼  𝛽 cos 𝜑 , we see that 𝑛𝛼𝛽 = 2
  𝛼 

  𝛽 
 cos 𝜑 . 

thus , 𝑛𝛼𝛽 𝑛𝛽𝛼 = 4 cos2 𝜑 . Since 𝑛𝛼𝛽 𝑛𝛽𝛼 ∈ ℤ, this means that 𝑛𝛼𝛽 𝑛𝛽𝛼  must be one of 

0,1,2,3. Analyzing each of these possibilities and using 
𝑛𝛼𝛽

𝑛𝛽𝛼
=

 𝛼 

 𝛽 
 if cos 𝜑 ≠ 0, we get the 

statement of the theorem . 

Theorem  2.11.2.  

1. Let 𝐴1 × 𝐴1 , 𝐴2 , 𝐵2 , 𝐺2 be the sets of vectors in ℝ2 shown in (FIG 2.3) then each of 

them is a rank two root system .  

2. Any rank two reduced root system is isomorphic to one of root systems 𝐴1 × 𝐴1 , 𝐴2 , 𝐵2 

, 𝐺2   
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Fig(2.3) 

Proof:   

Proof of part (1) is given by explicit analysis . Since for any pair of vectors in these systems, 

the angle and ratio of lengths is among one of the possibilities listed in  (Theorem 2.11.1) , 

condition (R2) is satisfied . It is also to see that condition (R3) is satisfied .  

To prove the second part, assume that 𝑅 is a reduced rank 2 root system . Let us choose 𝛼, 𝛽 

to be two roots such that the angle 𝜑 between them is as large as possible and   𝛼 ≥  𝛽  . 

Then 𝜑 ≥ 𝜋 2   ( otherwise , we could take the pair 𝛼, 𝑠𝛼(𝛽) and get a larger angle ). Thus, 

we must be in one of situations (1) ,(2) ,(3) ,(6) of  (Theorem 2.11.1) .   

Consider the example , case (2) :  𝛼 =  𝛽 , 𝜑 ≥ 2𝜋 3  . by definition of root system , 𝑅 is 

stable under reflections   𝑠𝛼  , 𝑠𝛽  . But successively applying these two reflections to 𝛼, 𝛽 we 

get exactly the root system of type 𝐴2 generated by 𝛼, 𝛽 . 

To show that in this case 𝑅 = 𝐴2 , note that if we have another root 𝛾 which is not in  𝐴2 , 

then  𝛾 must be between some of the roots of 𝐴2 ( since 𝑅 is reduced ) . Thus, the angle 

between  𝛾 and some root 𝛿 is less than 𝜋 3  , and the angle between 𝛾 and – 𝛿 is greater than 

2𝜋 3  , which is impossible because angle between 𝛼, 𝛽 is the maximal possible . Thus, 
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𝑅 = 𝐴2 . Similar analysis shows that in cases (1) , (3) , (6) of ( Theorem 2.11.1) , we will get  

𝑅 = 𝐴1 × 𝐴1 ,  𝐵2 , 𝐺2 respectively .  

Result 2.11.1.   

Let  𝛼, 𝛽 ∈ 𝑅 be two roots such that  𝛼, 𝛽 < 0, 𝛼 ≠ 𝑐𝛽 . then 𝛼, 𝛽 ∈ 𝑅 .  

Definition   2.11.3.    ( Positive roots and simple roots )  

In order to proceed with classification of root systems , we would like to find for each root 

system some small set of  "generating roots" , similar to what was done in the previous 

section of rank 2 root systems . in general it can be done as follows ; 

Let 𝑡 ∈ 𝐸 be such that for any root 𝛼,  𝑡, 𝛼 ≠ 0 ( such elements 𝑡 are called regular ) .Then 

we can write  

𝑅 = 𝑅+ ⊔ 𝑅− 

𝑅+ = {  𝛼 ∈ 𝑅  𝛼, 𝑡 > 0} ,         𝑅− = {  𝛼 ∈ 𝑅  𝛼, 𝑡 < 0} 

Such a decomposition will be called a polarization of 𝑅. Note that polarization depends on the 

choice of 𝑡 . the roots 𝛼 ∈ 𝑅+ will be called positive, and the roots  𝛼 ∈ 𝑅− will be called 

negative .  

Definition  2.11.4.  

A root 𝛼 ∈ 𝑅+ is called simple if it cannot be written as a sum of two positive roots .  

We will denote the set of simple roots by  ∏ ⊂ 𝑅+ .  

Lemma 2.11.2.  

Every positive root can be written as a sum of simple roots . 

Proof:  

If  a positive root 𝛼 is not simple , it can be written in the form 𝛼 = 𝛼′ + 𝛼′′ , with 𝛼′ + 𝛼′′ ∈

𝑅+ and  𝛼′, 𝑡 <  𝛼, 𝑡 ,  𝛼′′, 𝑡 <  𝛼, 𝑡  . if 𝛼′ , 𝛼′′ are not simple, we can apply the same 

argument to them to write them as a sum of positive roots . Since  𝛼, 𝑡  can only take finitely 

many values, the process will terminate after finitely many steps .  

Example  2.11.2.  
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Let us consider the root system 𝐴2 and let 𝑡 be as shown in Figure below . Then there are 

three positive roots : two of them are denoted by 𝛼1 , 𝛼2 and the third one is  𝛼1 + 𝛼2 .  

Thus,one easily sees that 𝛼1 , 𝛼2 are simple roots, and 𝛼1 + 𝛼2 is not simple .  

 

 

Positive and simple roots for 𝑨𝟐,   Fig (2.4) 

Lemma  2.11.3.  

If 𝛼, 𝛽 ∈ 𝑅+ are simple , then  𝛼, 𝛽 ≤ 0.  

Proof:  

 Assume that  𝛼, 𝛽 > 0. Then , applying (Result 2.11.1) to −𝛼, 𝛽, we see that 𝛽′ = 𝛼 − 𝛽 ∈

𝑅. If 𝛽′ ∈ 𝑅+ , then 𝛽 = 𝛽′ + 𝛼 can not be simple . if 𝛽′ ∈ 𝑅− , then −𝛽′ ∈ 𝑅+ , so 𝛼 =

−𝛽′ + 𝛽 cannot be simple . this contradiction shows that  𝛼, 𝛽 > 0 is impossible .  

Second we can apply the master formula ,   
𝛽   .𝛼   

𝛼   .𝛼   
= −

1

2
  𝑝 − 𝑞   

𝑞 measures how often we can substract 𝛼 from 𝛽 without leaving root space . But we saw that 

already 𝛽 − 𝛼 is not a root , so 𝑞 = 0 and  

𝛽 . 𝛼 = −
1

2
𝑝𝛼 . 𝛼 ≤ 0 

By the same argument  

𝛼 . 𝛽 = −
1

2
𝑝′𝛽 . 𝛽 ≤ 0 

Hence the angle between simple roots and the relative lengths are  
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cos 𝜃 = −  𝑝𝑝 ′

2
   ,            

𝛼2

𝛽2 =
𝑝′

𝑝
 

In particular, the angle is constrained to be 90° ≤ 𝜃 < 180° . the first constraint comes 

because the cosine is nonpositive, the second because the roots are positive , so they lie in a 

half-space .  

Theorem  2.11.3.  

Let 𝑅 = 𝑅+⨆ 𝑅− ⊂ 𝐸 be a root system . then the simple roots form a basis of the vector space 

𝐸.  

Proof:  

By (Lemma 2.11.2) every positive root can be written as linear combination of simple roots . 

Since 𝑅 spans  𝐸 , this implies that the set of simple roots spans 𝐸 .  

Simple roots are linearly independent. To see this, consider a linear combination  

𝛾 =  𝑐𝛼

𝛼

𝛼 

We can find coefficients 𝑐𝛼  such that 𝛾 = 0. Since all 𝛼 are positive, the 𝑐𝛼  cannot all have 

the same sign. Hence we can split 𝛾 into strictly positive and negative pieces,  

𝛾 =  𝑐𝛼

𝑐𝛼 >0 

𝛼 −  −  𝑐𝛼

𝑐𝛼 >0 

𝛼 = 𝜇 − 𝑣 

Now consider the norm of 𝛾 :  

𝛾2 =  𝜇 − 𝑣 2 = 𝜇2 + 𝑣2 − 2𝜇 . 𝑣 

Clearly, 𝜇 and 𝑣 cannot vanish, so their norm is positive. However, since 𝜇 and 𝑣 are both 

positive linear combinations of simple roots, their scalar product is negative. Hence, the norm 

𝛾 never vanishes, so no linear combination of simple roots can be zero.   

Additionally, the simple roots form a basis : if this was not the case , there would be a vector 

𝜉  which is orthogonal to all simple roots . but it is easy to see that any positive root can be 

written as a linear combination of simple roots with non-negative integer coefficients,  

𝛾 =  𝑘𝛼𝛼  𝑠𝑖𝑚𝑝𝑙𝑒  𝛼    
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This follows by induction: It is obviously true for simple roots themselves. Any other positive 

root can be written as a sum of positive roots, hence the statement follows. Since the roots are 

linearly independent, the decomposition is unique , and we can associate to any positive root 

its level  𝑘 =  𝑘𝛼𝛼    .  

Then we have  𝜉 . 𝛼 = 0 for all roots 𝛼 , so we see that the operator  𝜉 . 𝐻    commutes with all 

elements of the algebra  :  𝜉 . 𝐻   , 𝐻𝑖 =  𝜉 . 𝐻   , 𝐸𝛼  = 0  

But this means that 𝜉 . 𝐻    is in the center of the algebra, which is trivial for a semisimple algbra 

Hence, there is no such 𝜉 ,and the simple roots form a basis of ℝ𝑟 . Hence, in particular the 

number of simple roots is equal to the rank of the algebra .  

We can find all positive roots . that is , given the simple roots , we can determine whether a 

linear combination 𝛾𝑘 =  𝑘𝛼𝛼 is a root or not .by induction over the level and using the 

master formula again . the key points is that for the simple roots, i.e. those at level one all 

𝑞𝑖 = 0 since the difference of simple roots is never a root . Hence, from the master formula 

we can find the  𝑝𝑖  , and thus the allowed roots on level two . Now for these roots, we by 

construction know the  𝑞𝑖  , hence we again can find the 𝑝𝑖  , and continue this process until we 

found all the roots, i.e. until at some level all roots have all 𝑝𝑖 = 0 .  

Lemma  2.11.4.   

Let 𝑣1 , … … , 𝑣𝑘  be a collection of non-zero vectors in a Euclidean space 𝐸 such that for 𝑖 ≠ 𝑗, 

 𝑣𝑖 , 𝑣𝑗  ≤ 0. Then  𝑣1 , …… , 𝑣𝑘  are linear independent .   

Corollary  2.11.1.  

Every 𝛼 ∈ 𝑅 can be uniquely written as linearly combination of simple roots with integer 

coefficients : 𝛼 =  𝑛𝑖𝛼𝑖
𝑟
𝑖=1         ,     𝑛𝑖 ∈ ℤ  

Where  𝛼1 , …… , 𝛼𝑟 = ∏ is the set of simple roots .if 𝛼 ∈ 𝑅+ , then all 𝑛𝑖 ≥ 0 ; if 𝛼 ∈ 𝑅− , 

then all 𝑛𝑖 ≤ 0 . For positive root 𝛼 ∈ 𝑅+ , we define its height by ht   𝑛𝑖𝛼𝑖 =  𝑛𝑖  ∈ ℤ+ 

so that ht 𝛼𝑖 = 1 . im many cases, statements about positive roots can be proved by 

induction in height .  

Example  2.11.3.  

Let 𝑅 be the root system of type 𝐴𝑛−1 or equivalent, the root system of 𝔰𝔩 𝑛, ℂ .( from 

Example 2.10.1 and Example 2.10.2 )  Choose the polarization as follows :  



 

109 

𝑅+ = {  𝑒𝑖 − 𝑒𝑗  𝑖 < 𝑗} 

( The corresponding root subspaces 𝐸𝑖𝑗  , 𝑖 < 𝑗 ,generate the Lie algebra 𝔫 of strictly upper-

triangle matrices in 𝔰𝔩 𝑛, ℂ  ) . Then it is easy to show that the simple roots are  

𝛼1 = 𝑒1 − 𝑒2  ,  𝛼2 = 𝑒2 − 𝑒3 , …… ,   𝛼𝑛−1 = 𝑒𝑛−1 − 𝑒𝑛  

And indeed, any positive root can be written as a sum of simple roots with non-negative 

integer coefficients . for example ,  𝑒2 − 𝑒4 =  𝑒2 − 𝑒3 +  𝑒3 − 𝑒4 = 𝛼2 + 𝛼3 . the height 

is given by  : ht 𝑒𝑖 − 𝑒𝑗  = 𝑗 − 𝑖 .   

Definition  2.11.5   ( Weight and root lattices )  

In study of root systems of simple Lie algebras , we will frequently use the following lattices. 

( recall that a lattice in real vector space 𝐸 is an abelian group generated by a basis in 𝐸) . by 

suitable change of basis any lattice 𝐿 ⊂ 𝐸 can be identified with ℤ𝑛 ⊂ ℝ𝑛  .  

Every root system 𝑅 ⊂ 𝐸 gives rise to the following lattices :  

𝑄 = { abelian group generated by  𝛼 ∈ 𝑅 } ⊂ 𝐸  

𝑄∨ = { abelian group generated by  𝛼∨, 𝛼 ∈ 𝑅 } ⊂ 𝐸∗ 

Lattice 𝑄 is called the root lattice of 𝑅, and 𝑄∨ is the coroot lattice .  

To justify the use of the word lattice , we need to show that   𝑄, 𝑄∨ are indeed generated by a 

basis in 𝐸( respectively  𝐸∗) . This can be done as follows:  

Fix a polarization of 𝑅 and let ∏ = {𝛼1 , …… …, 𝛼𝑟} be the corresponding system of simple 

roots . Since every root can be written as a linear combination of simple roots with integer 

coefficients ( Corollary 2.11.1) , one has  𝑄 =⊕ ℤ𝛼𝑖
 Which shows that 𝑄 indeed a lattice,  

𝑄∨ =⊕ ℤ𝛼𝑖
∨ . 

Even more important in the applications to representation theory of semisimple Lie algebras 

is the weight lattice 𝑃 ⊂ 𝐸 defined as follows :  

𝑃 = {  𝜆 ∈ 𝐸  𝜆, 𝛼∨ ∈ ℤ for all 𝛼 ∈ 𝑅 } = {  𝜆 ∈ 𝐸  𝜆, 𝛼∨ ∈ ℤ for all 𝛼∨ ∈ 𝑄∨} .  

In other words,  𝑃 ⊂ 𝐸 is exactly the dual lattice of  𝑄∨ ⊂ 𝐸∗. Elements of 𝑃 are frequently 

called integral weights .  

Since 𝑄∨ is generated by 𝛼𝑖
∨ , the weight lattice can also be defined by  
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𝑃 = {  𝜆 ∈ 𝐸  𝜆, 𝛼𝑖
∨  ∈ ℤ for all simple roots 𝛼𝑖  }   

One can easily defined a basis in 𝑃. Namely, defined fundamental weights 𝜔𝑖 ∈ 𝐸 by: 

 𝜔𝑖 , 𝛼𝑖
∨  = 𝛿𝑖𝑗  , Then one can easily sees  that so defined  𝜔𝑖  form a basis in 𝐸 and that :  

𝑃 =⊕𝑖   ℤ𝜔 𝑖
  . 

Finally note that by the axioms of a root system, we have 𝑛𝛼𝛽 =  𝛼, 𝛽∨ ∈ ℤ for any roots 

𝛼, 𝛽 . Thus,  𝑅 ⊂ 𝑃 which implies that  𝑄 ⊂ 𝑃 . 

However, in general 𝑃 ≠ 𝑄, as the examples below show. Since both 𝑃, 𝑄 are free abelian 

groups of rank 𝑟, general theory of finitely generated abelian groups implies that the quotient 

group 𝑃 𝑄  is a finite abelian group. It is also possible to describe the order  𝑃 𝑄   in terms of 

the matrix 𝛼𝑖𝑗 =  𝛼𝑖
∨, 𝛼𝑗   . ( from Example 2.10.2)  

Example (2.11.4) :  

 Consider the root system 𝐴1. It has the unique positive root 𝛼 , so 𝑄 = ℤ𝛼  , 𝑄∨ = ℤ𝛼∨ . if we 

define the inner product   ,   by   𝛼, 𝛼 = 2, and use this product to identify 𝐸∗ ≃ 𝐸, then 

under this identification 𝛼∨ ⟼ 𝛼 , 𝑄∨ ⟶ 𝑄 . Since  𝛼, 𝛼∨ = 2 , we see that the fundamental 

weight is 𝜔 =
𝛼

2
 , and 𝑃 = ℤ

𝛼

2
 .Thus, in this case 𝑃 𝑄 = ℤ2 .  

Example (2.11.5):  

 For the root system 𝐴2 , the root and weight lattices are shown in Fig (2.5) . this figure also 

shows simple roots 𝛼1 , 𝛼2 and fundamental weights  𝜔1, 𝜔2 .  

 

Fig (2.5) 

It is easy to see from the figure ( and also easy to prove algebraically) that one can take 𝛼1 , 𝜔2 

as a basis of 𝑃, and that 𝛼1 , 3𝜔2 = 𝛼2 + 2𝛼1 is a basis of 𝑄 . Thus, 𝑃 𝑄 = ℤ3 .  
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2.12    Weyl chambers  

 We recall that a polarization is defined by an element 𝑡 ∈ 𝐸 which does not lie on any of the 

hyperplanes orthogonal to roots :  

𝑡 ∈ 𝐸   𝐿𝛼

𝛼∈𝑅

   

 𝐿𝛼 = {  𝜆 ∈ 𝐸  𝛼, 𝜆 = 0} 

Moreover, the polarization actually depends not on 𝑡 itself but only on the signs of  𝑡, 𝛼 ; 

thus, polarization is unchanged if we change 𝑡 as long as we do not cross any of the 

hyperplanes . This justifies the following definition .   

Definition  2.12.1   

 A Weyl chamber is a connected component of the complement to the hyperplanes :  

𝐶 = connected component of  𝐸   𝐿𝛼𝛼∈𝑅      

For example , for root system 𝐴2 there are 6 Weyl chambers ; one of them is shaded in the 

Fig(2.5)  

Clearly, to specify a Weyl chamber we need to specify, for each hyperplane   𝐿𝛼  , on which 

side of the hyperplane the Weyl chamber lies . Thus, a Weyl chamber is defined by a system 

of inequalities of the form ,    ± 𝛼, 𝜆 > 0. (one inequality for each pair of roots 𝛼, − 𝛼). Any 

such system of inequalities defines either an empty set or a Weyl chamber.  

Lemma 2.12.1.   

 The closure 𝐶  of a Weyl chamber 𝐶 is unbounded convex cone . The boundary 𝜕𝐶  is a union 

of finite number of codimension one faces : 𝜕𝐶 =  𝐹𝑖  . Each 𝐹𝑖  is a closed convex 

unbounded subset in one of the hyperplanes   𝐿𝛼 , given by a system of inqualities. The 

hyperplanes containing  𝐹𝑖  are called walls of 𝐶 .  

Theorem   2.12.1.  

 The Weyl group acts transitively on the set of Weyl chambers .  

Proof:  

Let us say that two Weyl chambers 𝐶, 𝐶′ are adjacent if they have a common codimension one 

face 𝐹 ( obviousely, they have to be on different sides of 𝐹 ). If  𝐿𝛼  is the hyperplane 
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containing this common face 𝐹, then we will say that 𝐶, 𝐶′ are adjacent chambers separated 

by  𝐿𝛼  .  

Corollary   2.12.1  

 Every weyl chamber has exactly 𝑟 = rank  𝑅  walls . Walls of positive Weyl chamber 𝐶+ are 

 𝐿𝛼𝑖
 , 𝛼𝑖 ∈ ∏ . 

Proof:  

 For positive Weyl chamber 𝐶+ , this follows ( Lemma 2.11.4) . Since  every Weyl chamber 

can be written in the form 𝐶 = 𝑤(𝐶+) for some 𝑤 ∈ 𝑊, all Weyl chambers have the same 

number of walls .  

2.13  Simple reflections  

Is it possible to recover 𝑅 from the set of simple roots ∏ ? the answer is based on the use of 

Weyl group .  

Theorem   2.13.1.   

 Let 𝑅 be a reduced root system , with fixed polarization 𝑅 = 𝑅+ ⊔ 𝑅− , Let  ∏ =

{𝛼1 , … . , 𝛼𝑟} be the set of simple roots . Consider reflections corresponding to simple roots 

𝑠𝑖 = 𝑠𝛼𝑖
 ( they are called simple reflections ).  

1. The simple reflections 𝑠𝑖  generates 𝑊.  

2. 𝑊 ∏ = 𝑅: every 𝛼 ∈ 𝑅 can be written in the form 𝑤 𝛼𝑖  for some  𝑤 ∈ 𝑊 and 𝛼𝑖 ∈ ∏ .  

Proof:  

We start by proving the following result  

Lemma  2.13.2.    

Any Weyl chamber can be written as : 𝐶 = 𝑠𝑖1
… . . 𝑠𝑖𝑙  (𝐶+)  

For some sequence of indices  𝑖1 , …… . , 𝑖𝑙  ∈ {1, … . . , 𝑟}  

Proof:  

By the construction given in the proof  ( Theorem 2.12.1) , we can connect 𝐶+ , 𝐶 by a chain 

of adjacent Weyl chambers 𝐶0 = 𝐶+, 𝐶1 , …… , 𝐶𝑙 = 𝐶 . then 𝐶 = 𝑠𝛽1
… . . 𝑠𝛽𝑙

 (𝐶+) , where  𝐿𝛽𝑖
 

is the hyperplane separating  𝐶𝑖−1 and  𝐶𝑖  .  
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Since 𝛽1 separates  𝐶0 = 𝐶+ from 𝐶1 , it means that 𝐿𝛽1
 is one of the walls of 𝐶+ . Since the 

walls of 𝐶+ are exactly hyperplanes 𝐿𝛼𝑖
 corresponding to simple roots ( Colloray 2.12.1) we 

see that 𝛽1 = ±𝛼𝑖1
 for some index 𝑖1 ∈ {1, …… , 𝑟}, so 𝑠𝛽1

= 𝑠𝑖1
 and 𝐶1 = 𝑠𝑖1

(𝐶+)  .  

Consider now the hyperplane 𝐿𝛽2
= 𝑠𝑖1

(𝐿) for some hyperplane  𝐿 which is a wall of 𝐶+ . 

Thus, we get that  𝛽2 = ±𝑠𝑖1
(𝛼𝑖2

) for some index  𝑖2. By ( Lemma 2.11.1), we therefore have 

𝑠𝛽2
= 𝑠𝑖1

𝑠𝑖2
 𝑠𝑖1

 and thus  , 𝑠𝛽2
𝑠𝛽1

= 𝑠𝑖1
𝑠𝑖2

 𝑠𝑖1
 . 𝑠𝑖1

=  𝑠𝑖1
𝑠𝑖2

 and 𝐶2 = 𝑠𝑖1
𝑠𝑖2

(𝐶+)  

Repeating the same argument , we finally get that  𝐶 = 𝑠𝑖1
… . . 𝑠𝑖𝑙  (𝐶+) and the indices 𝑖𝑘  are 

computed inductively, by : 𝛽𝑘 =  𝑠𝑖1
……𝑠𝑖𝑘−1

(𝛼𝑖𝑘 )  which completes the proof of the lemma   

Now the theorem easily follow. Indeed , every hyperplane  𝐿𝛼  is a wall of some Weyl 

chamber 𝐶. Using the lemma, we can write 𝐶 = 𝑤(𝐶+) for some 𝑤 = 𝑠𝑖1
… . . 𝑠𝑖𝑙  . Thus,  

𝐿𝛼 = 𝑤(𝐿𝛼𝑗
) for some index 𝑗, so 𝛼 = ±𝑤(𝛼𝑗 ) and 𝑠𝛼 = 𝑤𝑠𝑗  𝑤

−1 , which proves both 

statements of the theorem .  

Corollary  2.13.1.   

The root system 𝑅 can be recovered from the set of simple roots ∏ .  

Proof:  

Given  ∏ ,we can recover 𝑊 as the group generated by 𝑠𝑖  and then recover 𝑅 = 𝑊 ∏  . 

Let us say that a root hyperplane 𝐿𝛼  separates two Weyl chambers 𝐶, 𝐶′ if these two chambers 

are on different sides of 𝐻𝛼  , i.e. 𝛼 𝐶 ,  𝛼(𝐶′ ) have different signs .  

Definition  2.13.1.   

Let 𝑅 be a reduced root system, with set of simple roots ∏ . Then we define , for an element 

𝑤 ∈ 𝑊. Its length by 𝑙 𝑤 = number of root hyperplanes hyperplanes separating  𝐶+ and 

𝑤 𝐶+ =    𝛼 ∈ 𝑅+ 𝑤(𝛼) ∈ 𝑅−   . it should be denoted that  𝑙 𝑤  depends not only on 𝑤 

itself but also on the choice of polarization 𝑅 = 𝑅+ ⊔ 𝑅− or equivalently, the set of simple 

roots .  

Example  2.13.1.   

Let 𝑤 = 𝑠𝑖 be a simple reflection. Then the Weyl chambers 𝐶+ and 𝑠𝑖 𝐶+  are separated by 

exactly one hyperplane, namely 𝐿𝛼𝑖
 . Therefore, 𝑙 𝑠𝑖 = 1, and   𝛼 ∈ 𝑅+ 𝑤(𝛼) ∈ 𝑅− =  𝛼𝑖   

In other words, 𝑠𝑖 𝛼𝑖 = −𝛼𝑖 ∈ 𝑅− and 𝑠𝑖  permutes elements of  𝑅+ \ 𝛼𝑖   .  
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This example is very useful in many arguments involving Weyl group, such as the following 

lemma .  

Lemma 2.13.2  

 Let  𝜌 =
1

2
   𝛼𝛼∈𝑅+

,  Then:   𝜌, 𝛼𝑖
∨ =  

2 𝜌  ,𝛼𝑖 

 𝛼𝑖 ,𝛼𝑖 
= 1  

Proof:  

Writing  𝜌 =  𝛼𝑖 +    𝛼𝛼∈𝑅+\ 𝛼 𝑖 
 /2 and using results of (Example 2.13.1) , we see that 

𝑠𝑖 𝜌 = 𝜌 − 𝛼𝑖  . On the other hand, by definition 𝑠𝑖 𝜆 = 𝜆 −  𝛼𝑖
∨, 𝜆  𝛼𝑖  .  

2.14  Dynkin diagrams and classification of root systems :  

 There is an obvious construction which allows one to construct larger root systems from 

smaller ones . Namely, if  𝑅1 ⊂ 𝐸1 and 𝑅2 ⊂ 𝐸2 are two root systems, then we can define 

𝑅 = 𝑅1 ⊔ 𝑅2 ⊂ 𝐸1 ⊕ 𝐸2 , with the inner product on 𝐸1 ⊕ 𝐸2 defined so that 𝐸1 ⊥ 𝐸2 . so 

define that 𝑅 is again root system .  

Definition 2.14.1   

 A root system 𝑅 is called reducible if it can be written in the form 𝑅 = 𝑅1 ⊔ 𝑅2 , with 

𝑅1 ⊥ 𝑅2 . Otherwise , 𝑅 is called reducible .  

Lemma  2.14.1.   

 Let 𝑅 be a reduced root system, with given polarization, and let ∏ be the set of simple roots . 

If 𝑅 is reducible : 𝑅 = 𝑅1 ⊔ 𝑅2, then ∏ = ∏1 ⊔ ∏2 , where ∏𝑖 = ∏ ∩ 𝑅𝑖  is the set of simple 

roots for  𝑅𝑖  . Conversely, if ∏ = ∏1 ⊔ ∏2 , with ∏1 ⊥ ∏2 , then 𝑅 = 𝑅1 ⊔ 𝑅2 , where 𝑅𝑖  is 

the root system generated by ∏𝑖  .  

Proof:  

The first part is obvious . to prove the second part notice that if 𝛼 ∈ ∏1 , 𝛽 ∈ ∏2 , then 

𝑠𝛼 𝛽 = 𝛽 and 𝑠𝛼  , 𝑠𝛽  commute . Thus, if we denote by 𝑊𝑖  the group generated by simple 

reflections 𝑠𝛼  , 𝛼 ∈ ∏𝑖  , then 𝑊 = 𝑊1 × 𝑊2 , and 𝑊1 acts trivially on  ∏2  , 𝑊2 acts trivially 

on  ∏1 .Thus, 𝑅 = 𝑊 ∏1 ⊔ ∏2 = 𝑊1  ∏1 ⊔ 𝑊2  ∏2  .  

It can be shown that every reducible root system can be uniquely written in the form 𝑅1 ⊔

𝑅2 … …  ⊔ 𝑅𝑛  , where 𝑅𝑖  are mutually orthogonal irreducible root systems . Thus, in order to 

classify all root systems, it suffices to classify all reducible root systems , 𝑅 is an irreducible 
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root system and   ∏ is corresponding set of simple roots . We assume that we have chosen an 

order on the set of simple roots : ∏ =   𝛼1 , … . . , 𝛼𝑟  .  

The compact way of describing relative position of roots 𝛼𝑖 ∈ ∏ is by writing all inner 

products between these roots . However, this is not invariant under isomorphisms of root 

systems . A better way of describing relative position of simple roots is given by cartan matrix  

Definition  2.14.2.   

 The Cartan matrix  𝐴 of  a set of simple roots ∏ ⊂ R  is the 𝑟 × 𝑟 matrix with entries  

𝛼𝑖𝑗 = 𝑛𝛼𝑗  𝛼𝑖
=   𝛼𝑖

∨,  𝛼𝑗  =
2 𝛼𝑖 ,𝛼𝑗  

 𝛼𝑖 ,𝛼𝑖 
  

The following properties of Cartan mtrix immediately follow from definitions and from 

known properties of simple roots.  

Lemma  2.14.2   

i. For any 𝑖, 𝛼𝑖𝑖 = 2 .  

ii. For any 𝑖 ≠ 𝑗 ,  𝛼𝑖𝑗  is a non-positive integer : 𝛼𝑖𝑗 ∈ ℤ ,  𝛼𝑖𝑗 ≤ 0 .  

iii. For any   𝑖 ≠ 𝑗 ,  𝛼𝑖𝑗 𝛼𝑗𝑖 = 4 cos2 𝜑 , where 𝜑 is angle between  𝛼𝑖  , 𝛼𝑗  . if 𝜑 ≠
1

2
 , then  

 𝛼𝑖 
2

 𝛼𝑗  
2 =  

𝛼𝑗𝑖

𝛼𝑖𝑗
  

Example  2.14.1.     

For the root system 𝐴𝑛  , the Cartan matrix is   

A =  

 
 
 
 
 
 

2 −1 0
−1 2 −1

−1 2
⋯

⋮ ⋮

⋯
−1 2 −1

−1 2  
 
 
 
 
 

  

Because 2 
 𝑒𝑖−𝑒𝑖+1  ,𝑒𝑖+1−𝑒𝑖+2   

 𝑒𝑖−𝑒𝑖+1  ,𝑒𝑖−𝑒𝑖+1   
= −1   ,      ( Entries which are not shown zeroes ).  

Definition  2.14.3.   

 Let ∏ be a set of simple roots of a root system 𝑅. The Dynkin diagram of ∏ is the graph 

constructed as follows :  
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For each simple root 𝛼𝑖 , we construct a vertex 𝑣𝑖  of the Dynkin diagram ( traditionally, 

vertices are drawn as small circles rather than as dots ) . 

For each pair of simple roots 𝛼𝑖 ≠ 𝛼𝑗  , we connect the corresponding vertices by 𝑛 edges, 

when 𝑛 depends on the angle 𝜑 between 𝛼𝑖 , 𝛼𝑗  :  

For 𝜑 = 𝜋 2  , 𝑛 = 0 ( vertices are not connected )  

For 𝜑 = 2𝜋 3  , 𝑛 = 1 ( case of 𝐴2 system )  

For 𝜑 = 3𝜋 4  , 𝑛 = 2 ( case of 𝐵2 system )  

For 𝜑 = 5𝜋 6  , 𝑛 = 3 ( case of 𝐺2 system )  

Finally, for every pair of distinct simple roots 𝛼𝑖 ≠ 𝛼𝑗 , if  𝛼𝑖 ≠  𝛼𝑗   and they are not 

orthogonal , we orient the corresponding ( multiple ) edge by putting on it an arrow pointing 

towards the shorter root .  

Example  2.14.2.   

The Dynkin diagrams for rank two root systems are shown in (Fig 2.6)  

𝐴1 × 𝐴1:              𝐴2:                𝐵2:      𝐺2:    

Fig (2.6) 

Theorem   2.14.1.   

 Let ∏ be a set of simple roots of a reduced root system 𝑅 .  

1. The Dynkin diagrams is connected if and only if 𝑅 is irreducible .  

2. The Dynkin diagram determines the Cartan matrix 𝐴 .  

3. 𝑅 is determined by the Dynkin diagram uniquely up to an isomorphism : if 𝑅, 𝑅′ are two 

reduced root systems with the same Dynkin diagram, then they are isomorphic .    

Proof:  

1. Assume that 𝑅 is reducible; by (Lemma 2.14.1)  we have ∏ = 𝑃𝑖1
⊔ ∏2 , with ∏1 ⊥ ∏2 . 

thus ,by construction of Dynkin diagram, it will be a disjoint union of the Dynkin diagram of 

∏1 and the Dynkin diagram of ∏2 . proof in the opposite direction is similar .  
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2. Dynkin diagram determines, for each pair of simple roots 𝛼𝑖 , 𝛼𝑗  , the angle between them 

and shows which of them is longer . Since all possible configurations of two roots are listed in 

(Theorem 2.11.1)  , one easily sees that this information, together with  𝛼𝑖 , 𝛼𝑗  ≤ 0 , uniquely 

determines 𝑛𝛼𝑖𝛼𝑗
  , 𝑛𝛼𝑗𝛼𝑖

 .  

3. By part (2) the Dynkin diagram determines ∏ uniquely up to an isomorphism. ∏ 

determines 𝑅 uniquely up to an isomorphism .  

Theorem  2.14.2.   

 Let 𝑅 be a reduced irreducible root system . Then its dynkin diagram is isomorphic to one of 

the diagrams below ( in each diagram, the number of vertices is equal to the subscript, so 𝐴𝑛  

has exactly 𝑛 vertices ) :  

𝐴𝑛   𝑛 ≥ 1 :   

𝐵𝑛   𝑛 ≥ 2 :   

𝐶𝑛   𝑛 ≥ 2 :   

𝐷𝑛   𝑛 ≥ 4 :     

𝐸6 ∶   

𝐸7:   

𝐸8:   

𝐹4:   

𝐺2:   

Fig (2.7) 

Conversely, each of these diagrams does appear as a Dynkin diagram of a reduced irreducible 

root system . 


