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Chapter One 

Lie Groups 

1.1  Topological Manifolds  

Definition   1.1.1.  

 A manifold 𝑀 
1
of dimension 𝑛 ,or 𝑛-manifold is a topological space with the following 

properties : 

1. 𝑀 is Hausdorff  

2. 𝑀 is locally Euclidean of dimension 𝑛  

3. 𝑀 has a countable basis of open sets  

  As a matter of notation 𝑑𝑖𝑚 𝑀 is used for the dimension of 𝑀; when 𝑑𝑖𝑚 𝑀 = 0, then 

𝑀 is a countable space with the discrete topology. It follows from the homeomorphism of 

𝑈 and 𝑈′  that locally Euclidean is equivalent to the requirement that each point 𝑝 have a 

neighborhood 𝑈 homeomorphic to an 𝑛-ball in 𝑅𝑛 . Thus a manifold of dimension 2 is 

locally homeomorphic to an open disk, and so on ……  

Example  1.1.1.  

 The simplest examples of manifolds not homeomorphic to open subsets of Euclidean 

space are the circle 𝑆1 and the 2-sphere 𝑆2, which may be defined to be all points of 𝐸2, 

or of 𝐸3, respectively, which are a unit distance from a fixed point 0. 

 There are to be the subspace topology so that (1) and (2) are immediate. To see that they 

are locally Euclidean we introduce coordinate axes with 0 as origin in the corresponding 

ambient Euclidean space. Thus in the case of 𝑆2 we identify 𝑅3 and 𝐸3, and 𝑆2 becomes 

the unit sphere centered at the origin. At each point 𝑝 of 𝑆2 we have a tangent plane and a 

unit normal vector 𝑁𝑝  . there will be a coordinate axis which is not perpendicular to  𝑁𝑝  
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and some neighborhood 𝑈 of 𝑝 on  𝑆2 will then project in a continuous and one-to-one 

fashion onto an open set 𝑈′  of the coordinate plane perpendicular to that axis. In fig (1.1) 

. 𝑁𝑝  is not perpendicular to the 𝑥2-axis so for 𝑞 ∈ 𝑈, the projection is given quite 

explicitly by 𝜑 𝑞 =  𝑥1 𝑞 , 0, 𝑥3 𝑞   , where   𝑥1 𝑞 , 𝑥2(𝑞), 𝑥3 𝑞   are the coordinate 

of  𝑞 in 𝐸3. Similar considerations show that 𝑆1 is locally Euclidean.  

 

                                                        Fig(1.1)  

Proposition  1.1.1.  

The differential of the differentiable mapping 𝑕 is not (maximum) rank 2 every where
2
 .  

Proof:  

The following Jacobians matrix  

 

𝜕𝜆
𝑥 𝜕𝜙

𝑥

𝜕𝜆
𝑦

𝜕𝜙
𝑦

𝜕𝜆
𝑧 𝜕𝜙

𝑧

 =  
− sin 𝜆 cos 𝜙 − cos 𝜆 sin 𝜙
− sin 𝜆 sin 𝜙 cos 𝜆 cos 𝜙

cos 𝜆 0

   

Is of rank 2 on 𝐷 except at points (
𝜋

2
, 𝜙) and (−

𝜋

2
, 𝜙) where it's of rank 1. At every other 

point there's a reversible 2×2 matrix and the determines are respectively :  
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𝜕𝜆

𝑥 𝜕𝜙
𝑥

𝜕𝜆
𝑦

𝜕𝜙
𝑦  = − sin 𝜆 cos 𝜆                         ( zero if 𝜆 = 0)  

−cos2 𝜆 cos 𝜙                                           (zero if 𝜙 =
𝜋

2
 ,

3𝜋

2
)  

 cos2 𝜆 sin 𝜙                                              ( zero if 𝜙 = 0)   

Definition  1.1.2 ( Chart)  

 A local chart on 𝑀 is the pair  𝑈𝑖 , 𝜙 consisting of :  

1. An open 𝑈𝑖  of 𝑀  

2. A homeomorphic 𝜙 of 𝑈𝑖  onto an open subset 𝜙(𝑈𝑖)  

The open 𝑈𝑖  is called domain of the chart .  

 An arbitrary point of 𝑀 can belong to two distinct opens, for instance 𝑈𝑖  and 𝑈𝑘  . the 

corresponding distinct charts are  𝑈𝑘 , 𝑘  and  𝑈𝑘 , 𝜙𝑘 . The homeomorphisms 𝜙𝑗  and 𝜙𝑘  

being different we link the opens 𝜙𝑗 (𝑈𝑗 ) and 𝜙𝑘(𝑈𝑘) of F by introducing the following 

definition. Let us denote the restriction of 𝜙𝑗
−1 to the open 𝜙𝑘(𝑈𝑘⋂𝑈𝑗 ) of F .  

 

Fig(1.2) 

Afterwards, the space F will be only 𝑅𝑛  . So to each point 𝑀 is associated a chart (𝑈, 𝜙) 

such that 𝜑(𝑢) ia an open of 𝑅𝑛  .  
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Definition  1.1.3  

Two  𝑈𝑗 , 𝜙𝑗   and  𝑈𝑘 , 𝜙𝑘  on 𝑀, such that 𝑈𝑗 ⋂𝑈𝑗 ≠ ∅ are called 𝐶𝑞 - compatible 

(𝑞 ≥ 1) if the over lap mapping 𝜙𝑘𝑗 =
𝜙𝑘 ∘ 𝜙𝑗

−1

𝑈𝑗 ⋂𝑈𝑘
  is a 𝐶𝑞 - defeomorphisms 

between the open 𝜙𝑗 (𝑈𝑗⋂𝑈𝑘) and 𝜙𝑘(𝑈𝑗⋂𝑈𝑘) of  𝑅𝑛  .  

Definition  1.1.4.  (Local Coordinates)   

The local coordinates 𝑥𝑖  of a point 𝑃 belong to the domain 𝑈 of a chart (𝑈, 𝜙) of 𝑀 are 

the coordinates of points 𝜑(𝑃) of 𝑅𝑛  .  

We denoted by  𝑥1 , … …… , 𝑥𝑛 , the order n-tuple of real numbers linked to point 𝑃. 

 

Fig (1.3) 

Definition  1.1.5. (Atlas)   

 An atlas of class 𝐶𝑞  on 𝑀 is a family of charts  𝑈𝑖  , 𝜙𝑖  such that :  

1.The domains 𝑈𝑖  of charts make up a covering of 𝑀.  

2. Any charts  𝑈𝑖  , 𝜙𝑖 ,  𝑈𝑗  , 𝜙𝑗   of 𝐴, with 𝑈𝑖⋂ 𝑈𝑗 ≠ 𝜙, is 𝐶𝑞  - compatible.  

1.2 Differential Manifold structure  

A differential Manifold structure is defined from an atlas representative of it's 

equivalence class ( all the equivalent atlas defining the same differentiable manifold 

structure ).  
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Definition  1.2.1.   

A differentiable manifold structure requires that :  

1. The opens of local charts cover 𝑀.  

2. Two any charts𝑈𝑖  , 𝜙𝑖  , 𝑈𝑗  , 𝜙𝑗  such that 𝑈𝑖⋂ 𝑈𝑗 ≠ 𝜙 ,  is 𝐶𝑞  - compatible 

Definition  1.2.2.  (Differential Manifolds) 

A differentiable or 𝐶∞(or smooth) structure on a topological manifold 𝑀 is a family 

𝒰 = [𝑈𝛼 , 𝜑𝛼] of coordinate neighborhoods such that
3
:   

1. The 𝑈𝛼  cover  . 

2. For any 𝛼, 𝛽 the neighborhood 𝑈𝛼 , 𝜑𝛼  and 𝑈𝛽 , 𝜑𝛽  are 𝐶∞-compatible . 

3. Any coordinate neighborhood  𝑉, 𝜓 compatible with every 𝑈𝛼 , 𝜑𝛼 ∈ 𝒰 is itself in 𝒰.  

A  𝐶∞  manifold is a topological manifold together with 𝐶∞-differentiable structure.  

Definition  1.2.3.   

 A differentiable manifold is a pair of Haussdorff space with countable basis and atlas 

and also it's a manifold if for every point of space there exist an admissible local chart 

(𝑈, 𝜙) such that (𝑈, 𝜙) ⊂ 𝑅𝑛 .  

Example  1.2.1.  

 Sphere 𝑆𝑛  , in 𝑅𝑛+1 let us consider the 𝑛- Sphere 
4
 

𝑆𝑛 = { 𝑥 =  𝑥𝑛 , … … . , 𝑥𝑛+1    𝑥𝑖 = 1𝑛+1
𝑖=1 }    
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Answer . 

To provide 𝑆𝑛  with a differentiable manifold structure we define an atlas consisting of 

2𝑛 + 2 charts (1 ≤ 𝑖 ≤ 𝑛 + 1) : 

 𝑈𝑖
+ = { 𝑥 ∈  𝑆𝑛  𝑥𝑖 > 0} 

𝑈𝑖
− = { 𝑥 ∈  𝑆𝑛  𝑥𝑖 < 0}  

The sphere 𝑆𝑛  is really covered with such charts.  

Now we must construct transformations between charts (changes of charts) which are 𝐶∞  

diffeomorphisms . Let us consider   

𝜑1
+: 𝑈𝑖

+ ⟶ 𝑅𝑛 : 𝑥 =  𝑥𝑛 , …… . , 𝑥𝑛+1 ⟶ 𝑥 =  𝑥𝑛 , … … , 𝑥^𝑖 , … . . , 𝑥𝑛+1                    

Where the symbol ^ means ith coordinates are removed. It is a way the orthogonal 

projection of the "positive hemisphere" onto the corresponding equatorial "plane". That is 

really a bicontinuous bijection. Analogically we define  

𝜑1
−: 𝑈𝑖

− ⟶ 𝑅𝑛 : 𝑥 = 𝑥 ⟶  𝑥𝑛 , … … , 𝑥^𝑖 , … . . , 𝑥𝑛+1   

For instance, let us consider any point 𝑥 of  𝑈𝑖
+ ∩ 𝑈𝑗

+ such that the ith and jth coordinates 

are positive. The following mapping between opens of  𝑅𝑛  :  

𝜑𝑗
+ ∘ (𝜑𝑖

+)−1: 𝜑𝑖
+ 𝑈𝑖

+ ∩ 𝑈𝑗
+ ⟶ 𝜑𝑗

+ 𝑈𝑖
+ ∩ 𝑈𝑗

+ :  𝑥𝑛 , … … , 𝑥^𝑖 , … . . , 𝑥𝑛+1 ⟶

 𝑥1 , … … , 𝑥𝑗−1,  1 −  (𝑥𝑘)2𝑛+1

 𝑘=1
𝑘≠𝑖

 , … … . , 𝑥^𝑗 , … . . , 𝑥𝑛+1   

Is actually a diffeomorphism. A difficulty could have occurred because of the square root 

but the expression under the radical sign is always positive.  

1.3  Submanifold  

Definition  1.3.1.    A subset 𝑁 of a 𝐶∞  manifold 𝑀 is said to have the 𝑛- submanifold 

property if each 𝑝 ∈ 𝑁 has a coordinate neighborhood 𝑈, 𝜑 on 𝑀 with local coordinates 

𝑥1 , … … , 𝑥𝑚  such that :  
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𝜑 𝑈 = 𝐶𝐹
𝑚 (0)   

𝜑 𝑈 ∩ 𝑁 = { 𝑥 ∈ 𝐶𝐹
𝑚  0  𝑥𝑛+1 = ⋯ = ⋯𝑥𝑚=0}  

If 𝑁 has property coordinate neighborhoods of this type
5
 are called preferred coordinates 

(relative to 𝑁).  

Definition  1.3.2.  

  A regular submanifold of a 𝐶∞  manifold 𝑀 is any subspace 𝑁 with the submanifold 

property and with the 𝐶∞  structure that the corresponding preferred  

coordinate neighborhoods determine on it.  

Example 1.3.1.  

If 𝑈 =] −
𝜋

2
, −

𝜋

2
  ×  0,2𝜋  

𝐹: 𝑈 ⊂ 𝑅𝑛 ⟶ 𝑅3 𝜆, 𝜙 ⟶ (𝑥 = cos 𝜆 cos 𝜙 , 𝑦 = cos 𝜆 sin 𝜙 , 𝑧 = sin 𝜆)   

Then 𝑓(𝑈) 
6
is a two-dimensional submanifold of 𝑅3.  

Answer.  

From the (Prop1.1.1) ,we have showed the Jacobian matrix of 𝑓 is  

 
− sin 𝜆 cos 𝜙 − cos 𝜆 sin 𝜙
− sin 𝜆 sin 𝜙 cos 𝜆 cos 𝜙

cos 𝜆 0

   

And it's of (maximum) rank 2. So ,𝑓 is an immersion. And the mapping 𝑓 is injective 

because  

∀ 𝜆, 𝜙 ,  𝜆′ , 𝜙′ ∈ 𝑈: 𝑓 𝜆, 𝜙 = 𝑓 𝜆′ , 𝜙′ ⟹  𝜆, 𝜙 =  𝜆′ , 𝜙′   

                                                           
5
 William M.Boothby – "An Introduction to Differential Manifolds and Riemannian Geometry" – Second 

Edition – Washington University- ST.Lous.Missori- 2003.  

  
6
 "Differential Geometry With Applications to Mechanics and Physics"- Lecture'1'- page '27'- Yves 

Tapaert- Ouagadougou University - Burkina Faso . 
  



 

10 

Indeed, from sin 𝜆 = sin 𝜆′ we deduce 𝜆 = 𝜆′, from the equalities 

 cos 𝜆 cos 𝜙 = cos 𝜆 cos 𝜙 ′ and cos 𝜆 sin 𝜙 = cos 𝜆 sin 𝜙 ′ we deduce cos 𝜙 = cos 𝜙′ 

and sin 𝜙 = sin 𝜙′ ( because cos 𝜆 ≠ 0 ) and thus 𝜙 = 𝜙′ . the mapping 𝑓−1: 𝑓(𝑈) ⟶ 𝑈 

is contiuous since 𝜆 = sin−1 𝑧  an 𝜙 = 𝑎𝑟𝑐 𝑡𝑔
𝑥

𝑦
 . Consequently, 𝑓(𝑈) is a submanifold of 

𝑅3 .  

1.4  Lie Groups  

1.4.1 Preface                                                                                                                                 

Before we start our topic we will take a quick a glance on Group Theory because it‟s very 

important to understand the concepts of Lie Group which it‟s what we want talk about on 

these chapter.  

Group Theory was first developed by the likes of Karl Friedrich Gauss (1777-1855) and 

Evariste Galois (1811-1832) as a means of studying the abstract objects called groups. 

1.4.2  Basic Principles  

i. Group  

 A group denoted 𝐺 is quite simply defined as a collection (set) of objects ( called group 

elements) that can be combined by a binary operation ( called group product and denoted 

by ⊙) that satisfy some basic properties:  

Closure: 𝑖𝑓 𝑎, 𝑏 ∈ 𝐺 ⇒ 𝑎 ⊙ 𝑏 = 𝑐 ∈ 𝐺   

Identity:  ∃𝑒 ∈ 𝐺 𝑠𝑢𝑐𝑕 𝑡𝑕𝑎𝑡 𝑔 ⊙ 𝑒 = 𝑒 ⊙ 𝑔 = 𝑔 , ∀𝑔 ∈ 𝐺  

Inverse:  ∃𝑔−1 ∈ 𝐺 𝑠. 𝑡. 𝑔 ⊙ 𝑔−1 = 𝑔−1 ⊙ 𝑔 = 𝑒   

Associativity:  𝑎 ⊙  𝑏 ⊙ 𝑐 = (𝑎 ⊙ 𝑏) ⊙ 𝑐  

Note that we require associativity but not commutativity. If commutativity is obeyed, the 

group thus formed is called “abelian” .  
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ii. Sub group  

A subgroup denoted as 𝐻 is merely a subset of a group that satisfies the group rules 

above  

𝐺 ⊃ 𝐻 ⟺ ∀𝑕 ∈ 𝐻 , 𝑕 ∈ 𝐺 and   𝐻 is group  

iii. Direct Product  

A group 𝐺 is said to be the direct product of it‟s subgroups 𝐻1, 𝐻2, 𝐻3, … … … , 𝐻𝑛  if :  

The elements of different subgroups commute,  

𝑕𝑖 ∈ 𝐻𝑖  , 𝑕𝑗 ∈ 𝐻𝑗  and 𝑖 ≠ 𝑗 ⇒ 𝑕𝑖 ⊙ 𝑕𝑗 = 𝑕𝑗 ⊙ 𝑕𝑖   

Every element 𝑔 ∈ 𝐺 can be uniquely expressed as  

𝑔 = 𝑕1 ⊙ 𝑕2 ⊙ 𝑕3 … .. where 𝑕𝑖 ∈ 𝐻𝑖  ∀𝑖  

This „direct product structure‟ of a group denoted as:  

 𝐺 = 𝐻1 × 𝐻2 × 𝐻3 × … … … × 𝐻𝑛   

iv. Continuous groups  

There are groups where in the elements cannot be enumerated. Rather , the elements are 

generated via the continuous variation of one or more parameters (which is really define 

the group) .by example the set of all rotations in two dimensions. It can be shown that 

this set obeys the group rules in eq.1. this is then just the group of all possible rotations in 

the plane, that leave the length of the rotated vector invariant.  

From (Fig.1.1). we can deduce the relationship between the components of the initial 

vector 𝑥 2 .  

𝑥2 = 𝑥1 cos 𝜃 − 𝑦1 sin 𝜃  

𝑦2 = 𝑥1 sin 𝜃 + 𝑦1 cos 𝜃  

Expressing eq. in matrix form, we get  
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𝑥2

𝑦2
 =  

cos 𝜃 −sin 𝜃 
sin 𝜃 cos 𝜃

  
𝑥1

𝑦1
    

So all the elements of this group are of the form:  𝑈 𝜃 = 
cos 𝜃 −sin 𝜃 
sin 𝜃 cos 𝜃

    

Two properties of this general transformation are immediately deducible. All matrices 

𝑈 𝜃  are orthogonal i.e. 𝑈𝑇𝑈 = 1 and have unit determinant i.e. 𝑈(𝜃) = 1.  

The latter property enforces the invariance of the length of the vector. The group is 

therefore called „Special Orthogonal group in two dimension‟- SO(2). As it turn out, this 

group is just one of a whole class of continuous groups called Lie groups.  

Definition 1.4.3. (Topological groups)  

A topological group 𝐺 is a topological space
7
 which is a group and has the properties that 

the group operations are contiuous .  

 Lemma  1.4.1.   

Let 𝐺 be a connected topological group . suppose 𝐻 is an abstract open subgroup of 𝐺 . 

then = 𝐺 . 

Proof:  

For any 𝑎 ∈ 𝐺, 𝐿𝑎 : 𝐺 ⟶ 𝐺 given by 𝑔 ⟼ 𝑎𝑔 is homeomorphism. Thus , for each 𝑎 ∈ 𝐺 , 

𝑎𝐻 ⊆ 𝐺 is open . since the cosets partition 𝐺 , and 𝐺 is connected , we must have 

 𝐺 𝐻  = 1 .  

 Lemma 1.4.2.  

Let 𝐺 be a connected topological group, 𝑈 ⊆ 𝐺 a neighborhood of 1. Then 𝑈 is generates 

𝐺.  

Proof:  

For a subset 𝑊 ⊆ 𝐺, write 𝑊−1 = { 𝑔−1 ∈ 𝐺 𝑔 ∈ 𝑊}. Also, if 𝑘 is a positive integer , we 

set 𝑊𝑘 = { 𝑎1, … . , 𝑎𝑘  𝑎𝑖 ∈ 𝑊}. Let 𝑈 be as above, and = 𝑈 ∩ 𝑈−1 . then, 𝑉 is open and 

𝑣 ∈ 𝑉 implies that 𝑣−1 ∈ 𝑉 . let =  𝑉𝑛∞
𝑛=1  . then 𝐻 is subgroup and we claim that 𝐻 is 
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open. Notice, that 𝐻 is precisely the subgroup generated by  𝑈, so unless 𝐻 is open , then 

𝐻 = 𝐺 and Lemma is proved.  

If 𝑉𝑘  is open , then 𝑉𝑘+1 =  (𝑎𝑉𝑘)𝑎∈𝑉  is open since left multiplication is a 

homeomorphism.  

Definition  1.4.4. (Lie groups )   

A Lie group 𝐺 is a 𝐶∞  manifold with a group structure so that the group operations are 

smooth.  More precisely,the maps   

𝑚: 𝐺 × 𝐺 → 𝐺                                    (multiplication) 

𝑖𝑛𝑣: (𝑔1, 𝑔2) ↦ 𝑔1𝑔2
−1                            (inversion)  

Are 𝐶∞  maps of manifolds . The dimension of the group 𝐺 is the dimension of the 

manifold.  

Recall that a 𝑑-dimensional manifold is a generalisation of the notion of a surface. We 

will encounter them in two types: The more intuitive concept is a submanifold, which is a 

subset of 𝑅𝑚  specified by some constraint equations. (One can also define complex 

manifolds by replacing 𝑅 with 𝐶 and “differentiable” with “holomorphic” in the 

following. However, we will only consider real manifolds, i.e. groups with real 

parameters. 

Otherwise we will make no distinction between real or complex functions, matrices etc. 

Example  1.4.1.  

ℝ and ℂ are evidently Lie groups under addition. (more generally any finite dimensional 

real or complex vector space is a Lie group under addition).  

Example  1.4.2.   

ℝ {0} , ℝ > 0, and  ℂ {0}  are all Lie groups under multiplication. Also,  

𝑈 1 = {𝑧 ∈ ℂ:  𝑧 = 1} is a Lie group under multiplication.   
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Example  1.4.3.   

If 𝐺 and 𝐻 is Lie groups then the product 𝐺 × 𝐻 is a Lie group with the evident product 

structures. In view of (1.4.1) and (1.4.2) we conclude that for 𝑛 ∈ ℕ the torus 𝕋𝑛 =

𝑈(1)𝑛  is a Lie group. More generally, for 𝑚, 𝑛 ∈ ℕ we have a Lie group ℝ𝑚 × 𝕋𝑛 .  

Example  1.4.4.  

The fundamental example of a Lie group is the group 𝐺𝐿(𝑛, ℝ) ,Let 𝑀𝑛(ℝ) denote the 

set of all 𝑛 × 𝑛 matrices over ℝ 
8
. define  

 𝐺𝐿 𝑛, ℝ = { 𝐴 ∈ 𝑀𝑛 ℝ   𝑑𝑒𝑡𝐴 ≠ 0}  

Then, 𝐺𝐿 𝑛, ℝ  is a group under the operations 𝑚 𝐴, 𝐵 = 𝐴𝐵 and 𝑖𝑛𝑣 𝐴 = 𝐴−1 =
𝑎𝑑𝑗𝐴

det 𝐴
 

where  𝑎𝑑𝑗 𝐴 denotes the adjugate of 𝐴 .As these operations are smooth on 𝐺𝐿 𝑛, ℝ  

considered as a submanifold of ℝ𝑛2
, 𝐺𝐿 𝑛, ℝ  is a Lie group called the real general linear 

group. Completely analogously, we have the Lie group  

𝐺𝐿 𝑛, ℂ = { 𝐴 = 𝑀𝑛 ℂ  𝑑𝑒𝑡𝐴 ≠ 0}  

The complex general linear group.  

And also,The orthogonal group 𝑂 𝑛 = { 𝐴 ∈ 𝑀𝑛 ℝ  𝐴𝐴𝑇 = 1} is a Lie group as a 

subgroup and submanifold of  𝐺𝐿 𝑛, ℝ .    

 Example  1.4.5.  

The following are examples 
9
of Lie groups  

1. ℝ𝑛  with the group operation given by addition  

2. (ℝ𝑛 ,×) and   (ℝ+,×)  

3. 𝑆1 =  𝑧 ∈ ℂ ∶   𝑧 = 1  ,×  

                                                           
8
 Notes on Lie Groups – Eugene Lerman –February 15,2012. 

  
9
 Introduction to Lie Groups and Lie Algebras – Alexander Kirillov,Jr. – Departement of mathematics, 

Suny At stony Brook,NY 11794, USA. 
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4. 𝐺𝐿(𝑛, ℝ) ⊂ ℝ𝑛2
. Many of the groups we will consider will be subgroups of 

𝐺𝐿(𝑛, ℝ)or  𝑛, ℂ  .  

5. 𝑆𝑈 2 = {𝐴 ∈ 𝐺𝐿(2, ℂ)  𝐴𝐴 𝑡 = 1, det 𝐴 = 1}  . indeed, one can easily see that  

𝑆𝑈 2 =   
𝛼 𝛽

−𝛽 𝛼 
 ∶ 𝛼, 𝛽 ∈ ℂ,  𝛼 2 +  𝛽 2 = 1  .  

Writing = 𝑥1 + 𝑖𝑥2 , 𝛽 = 𝑥3 + 𝑖𝑥4 , 𝑥𝑖 ∈ ℝ, we see that  𝑆𝑈 2  is diffeomorfic to 

𝑆3 = {𝑥1
2 + ⋯… … + 𝑥4

2}) ⊂ ℝ4 .  

Recall that a space is simply connected if every closed curve (a loop)
10

 can be contracted 

to a point. Clearly , this is not true for a curve that wraps a round 𝑆1.  

A general (topological) space is compact if each open cover contains a finite cover. This 

is a rather abstract (through important) notion. Luckily , for subsets of ℝ𝑛 , there is a 

simpler criterion: they are if and only if they are closed and bounded.  

Clearly, 𝑆𝑂 2  and 𝑆𝑈 2  are compact (note that we didn‟t need to introduce parameters 

for 𝑆𝑈 2  to see this). A non-compact example would be 𝑆𝑂 1,1 , the Lorentz group in 

two dimensions. It is defined as the group of linear transformations of ℝ2 which leave the 

indefinite inner product  

 𝑣 , 𝑢   = 𝑣1𝑢1 − 𝑣2𝑢2 

Invariant, and have determinant one. It can be written similarly to 𝑆𝑂 2  as  

Λ =  
𝑎 𝑏
𝑏 𝑎

 ,   𝑎2 − 𝑏2 = 1 

And parameterised by 𝜒 ∈ ℝ as  

Λ(𝜒) =  
cosh 𝜒 sinh 𝜒
sinh 𝜒 cosh 𝜒

  

Hence, as a manifold, 𝑆𝑂 1,1 ≅ ℝ. Actually, since Λ 𝜒 Λ 𝜉 = Λ(𝜒 + 𝜉), this 

isomorphism hold for the groups as well.  

                                                           
10

 Group Theory ( for Physicists )- Christoph L¨udeling  - August, 16, 2010.  
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Theorem  1.4.1 (close subgroup) 

 Let 𝐺 be a Lie group and 𝐻 < 𝐺 a closed subgroup of  
11

. Then, 𝐻 is a Lie group in the 

induce topology as an embedded submanifold of 𝐺. As a direct consequence we have  

Corollary  1.4.1.   

If 𝐺 and 𝐺 ′  are Lie groups and 𝜙: 𝐺 ⟶ 𝐺′ is a continuous homomorphism, then 𝜙 is 

smooth . From the Closed sub group Theorem we can generate quite a few more 

examples of Lie groups.  

Example  1.4.6.   

 The real special linear group 𝑆𝐿 𝑛, ℝ = { 𝐴 ∈ 𝐺𝐿 𝑛, ℝ  𝑑𝑒𝑡𝐴 = 1}  

 The complex special linear group 𝑆𝐿 𝑛, ℂ =   𝐴 ∈ 𝐺𝐿 𝑛, ℂ  𝑑𝑒𝑡𝐴 = 1  

 The special orthogonal group 𝑆𝑂 𝑛, ℝ = 𝑆𝐿 𝑛, ℝ ∩ 𝑂(𝑛)  

 The unitary group 𝑈(𝑛 = { 𝐴 ∈ 𝐺𝐿 𝑛, ℂ  𝐴𝐴∗ = 1}  

           (where 𝐴∗ denotes the Hermitian transpose of 𝐴) 

 The special unitary group 𝑆𝑈 𝑛 = 𝑈(𝑛) ∩ 𝑆𝐿 𝑛, ℂ   

Example  1.4.7.  

Define the Euclidean group of rigid motions, 𝐸𝑢𝑐(𝑛).  

Let 𝐸𝑛𝑑(𝑉, 𝑊) denote the vector space of all linear endomorphisms from a vector space 

𝑉 to it self .As a set, we have  

𝐸𝑢𝑐 𝑛 = { 𝑇 ∈ 𝐸𝑛𝑑 ℝ𝑛   𝑇𝑥 − 𝑇𝑦 =  𝑥 − 𝑦 ∀𝑥, 𝑦 ∈ ℝ𝑛  }  

Where  𝑥 =   𝑥𝑖
2𝑛

𝑖=1  . Now, one can check that if  𝑇 ∈ 𝐸𝑢𝑐(𝑛) and 𝑇 0 = 0, then 

𝑇 ∈ 𝑂(𝑛). Then, we can write 𝑥 ⟼ 𝑇𝑥 − 𝑇(0) ∈ 𝑂(𝑛) and so 𝑇 𝑥 =  𝑇 𝑥 − 𝑇 0  +

𝑇(0). This shows that 𝑇 ∈ ℝ𝑛 × 𝑂(𝑛).  

                                                           
11

 Note on Lie group- Eugen Lerman – February, 15 ,2012  
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We can think of 𝐸𝑢𝑐(𝑛) as a slightly different set. Write  

𝐸𝑢𝑐 𝑛 =    
𝐴 𝑣
0 1

  𝐴 ∈ 𝑂 𝑛 , 𝑣 ∈ ℝ𝑛  

If we identify ℝ𝑛  with the set of all vectors of the form  
𝑤
1

  with 𝑤 ∈ ℝ𝑛 , then we have  

 
𝐴 𝑣
0 1

   
𝑤
1

 =   
𝐴𝑤 + 𝑣

1
  

1.5  Some Differential Geometry  

Since Lie groups are analytic manifolds
12

, we can apply the apparatus of differential 

geometry . in particular, it will turn out that almost all information about the Lie group is 

contained in it‟s tangent space at the identity, the Lie algebra.  

Intuitively, the tangent space is just that : the space of all tangent vectors,i.e. all possible 

“directions” at a given point. When considering submanifolds, the tangent space can 

visualized as a plane touching the manifold at the point 𝑔, see Fig (1.5) .  

Mathematically, the notion of a tangent vector is formalized as a differential opereator , 

this makes intuitive sense since a tangent vector corresponds to “going” into a particular 

direction with a certain “speed”, i.e. the length of the vector, you notice that you move 

because things around you change. Hence it is reasonable that tangent vectors measure 

changes,i.e. they are derivatives.  

We introduce a bit of machinery: A curve is a differentiable map 𝑘: ℝ ⊃ 𝐼 ⟶ 𝐺,  

Where 𝐼 is some open interval. (note that the map itself is the curve, not just the image).  

Definition  1.5.1. (Tangent Vector)  

Let 𝑘: (−𝜀, 𝜀) ⟶ 𝐺 be a curve with 𝑘 0 = 𝑔. The tangent vector of 𝑘 in 𝑔 is the 

operator that maps each differentiable function 𝑓: 𝐺 ⟶ 𝕂 to it‟s directional derivative 

along  ,    𝑋: 𝑓 ⟼ 𝑋 𝑓 =  𝑑
𝑑𝑡

𝑓(𝑘 𝑡 )   𝑡=0   

                                                           
12

 Group Theory ( for Physicists )- Christoph L¨udeling  - August, 16, 2010.  
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The set of all tangent vectors in 𝑔 is called the tangent space of 𝐺 in 𝑔, 𝑇𝑔𝐺. This is 

naturally a vector space: for two tangent vectors 𝑋 and 𝑌 and a real number 𝜆, define the 

sum and multiple by  

        𝑋 + 𝑌  𝑓 =  𝑋 𝑓 + 𝑌[𝑓] 

 𝑋𝜆  𝑓 = 𝜆𝑋[𝑓] 

One can find curves that realise the vectors on the right-hand side, but we only care about 

the vectors.  

Tangent vectors are defined independently of coordinates. Practically, one often needs to 

calculate a tangent vector in agiven coordinate system,i.e. a particular map 𝜙𝑖 . then we 

have  

𝑋 𝑓 =  𝑑

𝑑𝑡
(𝑓 ∘ 𝑘 𝑡 )  

𝑡=0
=  𝑑

𝑑𝑡
(𝑓 ∘ 𝜙𝑖

−1 ∘ 𝜙𝑖 ∘ 𝑘 𝑡 )  
𝑡=0

= 𝑑 (𝑓 ∘ 𝜙𝑖
−1) 

𝑔
∙   

𝑑

𝑑𝑡
𝑓(𝑘 𝑡 )   𝑡=0 

Even more practically: if the elements of 𝑉𝑖 ,i.e. the coordinates around 𝑔, are given by 

𝑥𝑎 , then it is a common abuse of notation to write the curve as 𝜙 𝑘 𝑡  = 𝑥𝑎 𝑡  and the 

function  𝑓 ∘ 𝜙𝑖
−1  𝑥𝑎 = 𝑓(𝜙𝑖

−1 𝑥 ) as 𝑓(𝑥). Thus we get  

𝑋 𝑓 =
𝜕

𝜕𝑥𝑎
𝑓 𝑥 ∙

𝑑

𝑑𝑡
𝑥𝑎 𝑡  

Here we again use the summation convention :  an index that appears twice (the a) is 

summed over. The nice thing about this way of writing the tangent vectoris that we have 

separated the 𝑓-dependent and 𝑘-dependent pieces, and we can even write the tangent 

vector without referring to 𝑓 as the differential operator  

𝑋 =  𝑑
𝑑𝑡

𝑥𝑎 𝑡   
𝑡=0

. 
𝜕

𝜕𝑥𝑎
= 𝑋𝑎𝜕𝑎  

Hence, the partial derivatives along the coordinate directions provide a basis for the 

tangent space at any given point, called the coordinate basis. Clearly, the dimension of 

the tangent space is equal to the dimension of the manifold. The 𝑋𝑎  are called the 
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components of 𝑋. This way of writing a vector comes at the price of introducing a 

coordinates  system, and the components of the vector will depend on the chosen 

coordinates (as it shouldbe: components depend on the basis). However, so do the partial 

derivatives, and the vector itself is entirely independent of the coordinates. Hence one 

often speaks of “the vector 𝑋𝑎” .  

Definition  1.5.2.  (Tangent Space at the identity)  

We define the tangent space 𝑇𝑃(𝑀) to 𝑀 at 𝑃 to be the set of all mappings 𝑋𝑃 : 𝐶∞ ⟶ 𝑅 

satisfying for all 𝛼, 𝛽 ∈ 𝑅 and 𝑓, 𝑔 ∈ 𝐶∞(𝑃) 
13

 the two conditions:  

1. 𝑋𝑃 𝛼𝑓 + 𝛽𝑔 = 𝛼 𝑋𝑃𝑓 + 𝛽(𝑋𝑃𝑔)                                                 (Linearity)  

2. 𝑋𝑃 𝛼𝑓 =  𝑋𝑃𝑓 𝑔 𝑃 + 𝑓 𝑃 (𝑋𝑃𝑔)                                                ( Leibniz rule)  

With the vector space operations in 𝑇𝑃(𝑀) defined by  

1.  𝑋𝑃 + 𝑌𝑃 𝑓 = 𝑋𝑃𝑓 + 𝑌𝑃𝑓  

2. (𝛼𝑋𝑃)𝑓 = 𝛼(𝑋𝑃𝑓)  

A tangent vector to 𝑀 at  𝑃 is any  𝑋𝑃 ∈ 𝑇𝑃(𝑀) .  

 

 

Fig (1.4) 

                                                           
13

 - William M.Boothby – "An Introduction to Differential Manifolds and Riemannian Geometry" 

– Second Edition – Washington University- ST.Lous.Missori- 2003.  
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Theorem  1.5.1.   

 Let 𝐹: 𝑀 ⟶ 𝑁 be a 𝐶∞  map of manifolds . Then for 𝑃 ∈ 𝑀 the map 𝐹∗: 𝐶∞ 𝐹 𝑃  ⟶ 𝐶∞ 𝑃  

defined by  𝐹∗ 𝑓 = 𝑓 ∘ 𝐹 is a homeomorphism of algebras and induces a dual vector space 

homeomorphism  𝐹∗: 𝑇𝑃(𝑀) ⟶ 𝑇𝐹 𝑃 (𝑁) . define by 𝐹∗ 𝑋𝑃 𝑓 = 𝑋𝑃 𝐹∗𝑓 . Which gives  𝐹∗ 𝑋𝑃  

as a map of 𝐶∞ 𝐹 𝑃   to  . when 𝐹: 𝑀 ⟶ 𝑀 is the identity , both 𝐹∗ and 𝐹∗ are the identity 

isomorphism . if 𝐻 = 𝐺 ∘ 𝐹 is a composition of 𝐶∞  maps . then 𝐻∗ = 𝐹∗ ∘ 𝐺∗ and 𝐻∗ = 𝐺∗ ∘ 𝐹∗ .  

Proof:  

 The proof consists of routinely checking the statements against definitions . We omit the 

verification that 𝐹∗ is a homomorphism amd consider 𝐹∗ only . Let 𝑋𝑃 ∈ 𝑇𝑃(𝑀) and  

𝑔 ∈ 𝐶∞ 𝐹 𝑃   ; we must prove that the map 𝐹∗ 𝑋𝑃 : 𝐶∞ 𝐹 𝑃  ⟶ 𝑅 is a vector at 𝐹 𝑃 , that is  

a linear map satisfying the Leibniz  rule . We have  

𝐹∗ 𝑋𝑃  𝑓𝑔 = 𝑋𝑃𝐹∗ 𝑓𝑔 = 𝑋𝑃  𝑓 ∘ 𝐹  𝑔 ∘ 𝐹   

                                                                                  = 𝑋𝑃 𝑓 ∘ 𝐹 𝑔 𝐹 𝑃  + 𝑓 𝐹 𝑃  𝑋𝑃 𝑔 ∘ 𝐹 . 

And so we obtain  

𝐹∗ 𝑋𝑃  𝑓𝑔 =  𝐹∗ 𝑋𝑃 𝑓 𝑔 𝐹 𝑃  + 𝑓 𝐹 𝑃  𝐹∗ 𝑋𝑃 𝑔 

( linearity is even simpler) .Thus 𝐹∗: 𝑇𝑃(𝑀) ⟶ 𝑇𝐹 𝑃 (𝑁) . Further , 𝐹∗ is a homomorphism . 

𝐹∗ 𝛼𝑋𝑃 + 𝛽𝑌𝑃 𝑓 =   𝛼𝑋𝑃 + 𝛽𝑌𝑃  𝑓 ∘ 𝐹 = 𝛼𝑋𝑃 𝑓 ∘ 𝐹 + 𝛽𝑌𝑃 𝑓 ∘ 𝐹   

                                                                   = 𝛼𝐹∗ 𝑋𝑃 𝑓 + 𝛽𝐹∗ 𝑌𝑃 𝑓  

                                                                   =   𝛼𝐹∗ 𝑋𝑃 + 𝛽𝐹∗ 𝑌𝑃  𝑓 . 

Note: the homomorphism 𝐹∗: 𝑇𝑃(𝑀) ⟶ 𝑇𝐹 𝑃 (𝑀) is often called the differential of  𝐹.  

Corollary 1.5.1.  

  If 𝐹: 𝑀 ⟶ 𝑁 is a diffeomorphism of 𝑀 onto an open set 𝑈 ⊂ 𝑁 and 𝑃 ∈ 𝑀, then  

𝐹∗: 𝑇𝑃(𝑀) ⟶ 𝑇𝐹 𝑃 (𝑁) is an isomorphism onto. 
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This follow at once from the last statement of the theorem and the note after (Def 1.5.2) if we 

suppose 𝐺 is inverse to  𝐹 . Then both 𝐺∗ ∘ 𝐹∗: 𝑇𝑃(𝑀) ⟶ 𝑇𝑃(𝑀) and  

 𝐹∗ ∘ 𝐺∗: 𝑇𝐹 𝑃 (𝑁) ⟶ 𝑇𝐹(𝑃)(𝑁) are the identity isomorphism on the corresponding vector space .  

Remembering that any open subset of a manifold is a submanifold of the same dimension. We see 

that if 𝑈, 𝜑 is a coordinate neighborhood on 𝑀, then the coordinate map 𝜑 induces an 

isomorphism 𝜑∗: 𝑇𝑃(𝑀) ⟶ 𝑇𝜑 𝑃 (𝑅𝑛) of the tandent space at each point 𝑃 ∈ 𝑈 onto 

 𝑇𝑎 𝑅𝑛 = 𝜑(𝑃). The map 𝜑∗
−1 , on the other hand , maps 𝑇𝑎 𝑅𝑛  isomorphically onto 𝑇𝑃(𝑀)  

The images 𝐸𝑖𝑃 = 𝜑∗
−1  𝜕

𝜕𝑥𝑖   , 𝑖 = 1, …… … , 𝑛 . of the natural basis  𝜕
𝜕𝑥1 , … . , 𝜕 𝜕𝑥𝑛  at each 

𝑎 ∈ 𝜑(𝑈) ⊂ 𝑅𝑛  determine at 𝑃 = 𝜑−1(𝑎) ∈ 𝑀 a basis 𝐸1𝑃  , …… , 𝐸𝑎𝑃  of  𝑇𝑃(𝑀) ; we call bases 

the coordinate frames .  

Corollary  1.5.2.  

 To each coordinate neighborhood 𝑈 on 𝑀 there corresponds a natural basis 𝐸1𝑃  , …… , 𝐸𝑛𝑃  of 

𝑇𝑃(𝑀) for every  𝑃 ∈ 𝑈; in particular, 𝑇𝑃 𝑀 = dim 𝑀. Let 𝑓 be a 𝐶∞  function defined in a 

neighborhood of  𝑃 , and 𝑓 = 𝑓 ∘ 𝜑−1 it's expression in local coordinates relative to , 𝜑 . then 

𝐸𝑖𝑃𝑓 =  𝜕𝑦𝑗 𝜕𝑥𝑖  
𝜑(𝑃) 

 . In particular , if 𝑥𝑖(𝑞) is the 𝑖𝑡𝑕 coordinate function , 𝑋𝑃 𝑋
𝑖  is the 𝑖𝑡𝑕 

component of 𝑋𝑃  in this basis, that is , 𝑋𝑃 =   𝑋𝑃 𝑥
𝑖 𝐸𝑖𝑃  𝑛

𝑖=1  .  

The last statement of the corollary is a restatement of the definition in (Theorem1.5.1) for           

𝐸𝑖𝑃 = 𝜑∗
−1  𝜕

𝜕𝑥𝑖   , namely ,  

𝐸𝑖𝑃𝑓 =  𝜑∗
−1  𝜕

𝜕𝑥𝑖   𝑓 =  𝜕

𝜕𝑥𝑖
  𝑓 ∘ 𝜑−1  

𝑣=𝜑(𝑃)
 

If we take 𝑓 to be the 𝑖𝑡𝑕 coordinate function. 𝑓 𝑞 = 𝑥𝑖(𝑞) and  𝑋𝑃 =  𝛼𝑖 𝐸𝑖𝑃   , then  

𝑋𝑃  𝑥
𝑖 =  𝛼𝑖(𝐸𝑖𝑃  𝑥𝑖) 

𝑖

=  𝛼𝑖  

𝑖

 
𝜕𝑥𝑖

𝜕𝑥𝑖
 

𝜑(𝑃)

= 𝛼 

We may use this to derive a standard formula which gives the matrix of the linear map 𝐹∗ relative 

to local coordinate systems. Let 𝐹: 𝑀 ⟶ 𝑁 be a smooth map. And let 𝑈, 𝜑 and 𝑉, 𝜓 be 
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coordinate neighborhoods on 𝑀 and 𝑁 with 𝐹(𝑈) ⊂ 𝑉. Suppose that in these local coordinates 𝐹 

is given by   𝑦𝑖 = 𝑓 𝑖 𝑥1, … …… . , 𝑥𝑛  ,                        𝑖 = 1, … …… . , 𝑚 

And that 𝑃 is a point with coordinates =  𝑎1 , …… … . , 𝑎𝑛  . then 𝐹 𝑃  has 𝑦 coordinates 

determined by these functions. Further let 
𝜕𝑦𝑖

𝜕𝑥𝑖
  denote   

𝜕𝑓 𝑖

𝜕𝑥𝑖
   .  

Theorem 1.5.2.   

 Let 𝐸𝑖𝑃 = 𝜑∗
−1  𝜕

𝜕𝑥𝑖   and 𝐸 𝐹(𝑃) = 𝜓∗
−1  𝜕

𝜕𝑦𝑖    , 𝑖 = 1, …… … . , 𝑛 and = 1, …… … . , 𝑚 . be 

the basis of  𝑇𝑃(𝑀) and  𝑇𝐹(𝑃)(𝑁) . respectively, determined by the given coordinate 

neighborhoods. Then  

𝐹∗(𝐸𝑖𝑃) =   
𝜕𝑦 𝑖

𝜕𝑥 𝑖 
𝑎

𝑚
𝑗=1   𝐸 𝐹(𝑃)  .      𝑖 = 1, ……… , 𝑛 

In terms of components, if   𝑋𝑃 =  𝛼𝑖𝐸𝑖𝑃  maps to  𝐹∗(𝑋𝑃) =   𝛽𝑗  𝐸 𝐹(𝑃) . then we have  

𝛽𝑗 =  𝛼𝑖    
𝜕𝑦 𝑖

𝜕𝑥 𝑖 
𝑎

𝑚
𝑗 =1  .        𝑗 = 1, … …… . , 𝑚 

The partial derivatives in these formulas are evaluated of   𝑃: 𝑎 = (𝑎1 , ……… . , 𝑎𝑛) = 𝜑(𝑃) .  

Proof:  

  We have  𝐹∗(𝐸𝑖𝑃) = 𝐹∗ ∘  𝜑∗
−1  𝜕

𝜕𝑥𝑖  
𝜑(𝑃) 

  and according to  (Corollary 1.5.2) , to compute its 

components relative to 𝐸 𝑗𝐹 (𝑃) , we must apply this vector as an operator on 𝐶∞ 𝐹 𝑃   to the 

coordinate functions  𝑦𝑗    

 𝐹∗(𝐸𝑖𝑃) 𝑦𝑗 =  𝐹∗ ∘  𝜑∗
−1  

𝜕

𝜕𝑥 𝑖    𝑦𝑗 =
𝜕

𝜕𝑥 𝑖  𝑦𝑗   𝐹 ∘ 𝜑∗
−1  𝑥 =

𝜕𝑓𝑗

𝜕𝑥 𝑖   .  

These derivatives being evaluated at the coordinates of  𝑃 . that is , at   𝜑(𝑃) ; they could be also 

written    
𝜕𝑦𝑗

𝜕𝑥𝑖
  

𝜑(𝑃) 

 .    
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Example  1.5.1.   

 Suppose 𝑀 to be a two-dimensional submanifold of 𝑅3, that is a surface. Let 𝑊 be an open 

subset, say a rectangle in the (𝑢, 𝑣)- plane 𝑅2 and 𝜃: 𝑊 ⟶ 𝑅3 a parameterization of a portion of 

𝑀 (Fig 1.6 ) . 

 

Fig (1.5) 

Namely, suppose   𝜃 ia an imbedding whose image is an open subset 𝑉 of  ; 𝑉, 𝜃−1 is a 

coordinate neighborhood on 𝑀 . suppose 𝜃 𝑢0 , 𝑣0 =  𝑥0 , 𝑦0 , 𝑧0 , where we now use  𝑥, 𝑦, 𝑧  as 

the natural coordinates in 𝑅3. We may assume that 𝜃 is given by coordinate functions  

𝑥 = 𝑓(𝑢, 𝑣) ,              𝑦 = 𝑔(𝑢, 𝑣)                         𝑧 = 𝑕(𝑢, 𝑣)   . 

Since 𝜃 is imbedding , the jacobian matrix 𝜕(𝑓, 𝑔, 𝑕) 𝜕(𝑢, 𝑣)  has rank 2 at each point of 𝑊. We 

consider the image of the basis vectors 𝜕 𝜕𝑢  and 𝜕 𝜕𝑣   at   𝑢0 , 𝑣0  . we denote these by  𝑋𝑢 0 

and  𝑋𝑣 0 . according to the first formula of previous (Theorem1.5.2) . they are given by  

 𝑋𝑢 0 = 𝜃∗ 
𝜕

𝜕𝑢  =
𝜕𝑥

𝜕𝑢
 
𝜕

𝜕𝑥
+

𝜕𝑦

𝜕𝑢
 
𝜕

𝜕𝑦
+

𝜕𝑧

𝜕𝑢
 
𝜕

𝜕𝑧
 

 𝑋𝑣 0 = 𝜃∗ 
𝜕

𝜕𝑣  =
𝜕𝑥

𝜕𝑣
 
𝜕

𝜕𝑥
+

𝜕𝑦

𝜕𝑣
 
𝜕

𝜕𝑦
+

𝜕𝑧

𝜕𝑣
 
𝜕

𝜕𝑧
 

Where we have   written  𝜕𝑥
𝜕𝑢   , 𝜕𝑥

𝜕𝑣    for 
𝜕𝑓

𝜕𝑢
   ,

𝜕𝑓
𝜕𝑣

  and so on.. these  derivatives being 

evaluated at  𝑢0 , 𝑣0  since 𝜃 has rank 2, these are linearty independent vectors. And they span a 

two-dimensional subspace of 𝑇 𝑥0 ,𝑦0,𝑧0 (𝑅3) . this subspace is what we have by our identification 
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then we use the tangent at this point  𝑥0 , 𝑦0 , 𝑧0  : it consists of all vectors of the form 

𝛼𝜃∗ 
𝜕

𝜕𝑢  + 𝛽𝜃∗ 
𝜕

𝜕𝑣  = 𝛼 𝑋𝑢 0 + 𝛽 𝑋𝑣 0  , 𝛼, 𝛽 ∈ 𝑅; their initial point of course always is   

 𝑥0 , 𝑦0 , 𝑧0  . it is easily to seen that this subspace is the usual tangent plane to a surface , as we 

would naturally expect it to be. We use one of standard descriptions of the tangent plane at a 

point 𝑃 of surface 𝑀 in 𝑅3 ; the collection of all tangent vectors at  𝑃 to curves through 𝑃 which 

lie on  𝑀. In fact let  𝐼 an open interval about 𝑡 = 𝑡0 and let us consider a curve on  𝑀 through 

 𝑥0 , 𝑦0 , 𝑧0  . It is no loss of generality to suppose the curve given by 𝐹: 𝐼 ⟶ 𝑊 composed with 

: 𝑊 ⟶ 𝑅3 ; thus  𝑢, 𝑣 are functions of 𝑡 with 𝑢 𝑡0 = 𝑢0 and  𝑣 𝑡0 = 𝑣0 and the curve is given 

by    

𝜃 𝑓 𝑡  =  𝑥 𝑢 𝑡 , 𝑣 𝑡  , 𝑦 𝑢 𝑡 , 𝑣 𝑡  , 𝑧 𝑢 𝑡 , 𝑣 𝑡    

The tangent to the curve at  𝑥0 , 𝑦0 , 𝑧0  is given by   

 𝜃 ∘ 𝐹 ∗  
𝑑

𝑑𝑡
 = 𝑥  𝑡0 

𝜕

𝑑𝑥
+ 𝑦  𝑡0 

𝜕

𝜕𝑦
+ 𝑧  𝑡0 

𝜕

𝜕𝑧
 

Where  

𝑥  𝑡0 =  
𝑑𝑥

𝑑𝑡
 

𝑡0

=
𝜕𝑥

𝜕𝑢

𝑑𝑢

𝑑𝑡
+

𝜕𝑥

𝜕𝑣

𝑑𝑣

𝑑𝑡
 

Evaluated at  𝑥0 , 𝑦0 , 𝑧0  and 𝑡 = 𝑡0 . Substituting and collecting terms, we have  

 𝜃 ∘ 𝐹 ∗  
𝑑

𝑑𝑡
 =

𝑑𝑢

𝑑𝑡
  

𝜕𝑥

𝜕𝑢
 
𝜕

𝜕𝑥
+

𝜕𝑦

𝜕𝑢
 
𝜕

𝜕𝑦
+

𝜕𝑧

𝜕𝑢
 
𝜕

𝜕𝑧
  +

𝜕𝑣

𝜕𝑡
 
𝜕𝑥

𝜕𝑣
 
𝜕

𝜕𝑥
+

𝜕𝑦

𝜕𝑣
 
𝜕

𝜕𝑦
+

𝜕𝑧

𝜕𝑣
 
𝜕

𝜕𝑧
  

= 
𝑑𝑢

𝑑𝑡
 𝜃∗   

𝜕

𝜕𝑢
 +   

𝜕𝑣

𝜕𝑡
 𝜃∗   

𝜕

𝜕𝑣
  

 = 𝑢  𝑡0  𝑋𝑢 0 + 𝑣  𝑡0  𝑋𝑣 0 . 

If we let =  𝑡 − 𝑡0 + 𝑢0 , 𝑣 = 𝑣0 , we obtain just  𝑋𝑢 0 = 𝜃∗   
𝜕

𝜕𝑢
  and analogously  𝑋𝑣 0 is 

tangent to the parameter curve 𝑢 = 𝑢0 , 𝑣 =  𝑡 − 𝑡0 + 𝑣0 . the coordinate frame vectors are 

tangent to the coordinate curves .  

Definition 1.5.3.  (Vector Fields) 

A vector field is a map that associates a vector 𝑋(𝑔) ∈ 𝑇𝑔𝐺 to each point ∈ 𝐺.  
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In a given map we can choose the coordinate basis and write the components as functions 

of the coordinates,i.e.  

𝑋 = 𝑋𝑎 (𝑥)𝜕𝑎  

Clearly, the vector fields form a vector space (over ℝ) themselves
14

. In contrast to the 

tangent space at a point, which is a 𝑑 -dimensional vector space, however, the space of 

vector fields is infinite-dimensional, since every component is a function on𝐺.  

The vector fields do not only form a vector space, but an algebra. However, one cannot 

simply act with one vector field on another because the result would not be a first-order 

differential operator, so the product will be more sophisticated.   

Definition  1.5.4.  

Given two vector fields 𝑋 and 𝑌, the Lie bracket is a vector field given by  

 𝑋, 𝑌  𝑓 = 𝑋 𝑌 𝑓  − 𝑌 𝑋 𝑓   

This is a reflection of the fact that derivatives on manifolds are not directly straight 

forward. There are tangent vectors, which a priori can only act on (scalar) functions on 

the manifold, but not on vectors. The Lie bracket allows to extend the action to vector 

fields. The Lie bracket is thus sometimes called a Lie derivative,  

ℒ𝑋𝑌 = [𝑋, 𝑌] 

This is not any more truly a directional derivative as it was for functions: it depends not 

only on 𝑋 at the point. 

To see this, observe that for any function  𝑓: 𝐺 ⟶ 𝕂, we can define a new vector field 

𝑋′ = 𝑓𝑋 . Assume that𝑓 𝑔 = 1, so that    𝑋′  𝑔 =  𝑋 𝑔 . Then one could expect that at 𝑔 

also the derivatives coincide, but actually we have  

 ℒ𝑋 ′ 𝑌 = 𝑓ℒ𝑋𝑌 − 𝑌 𝑓 𝑋, and the second term doesnot vanish in general.  

 

                                                           
14

 Group Theory ( for Physicists )- Christoph L¨udeling  - August, 16, 2010 .  
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Definition  1.5.5.  

 A vector field 𝑋 of class 𝐶𝑟  on 𝑀 is a function assigning to each point 𝑃 of 𝑀 
15

a vector   

𝑋𝑃 ∈ 𝑇𝑃(𝑀) whose components in the frames of any local coordinates 𝑈, 𝜑 are functions of class  

𝐶𝑟  on the domain 𝑈 of the coordinates . Unless otherwise noted we will use vector field to mean 

𝐶∞-vector field .  

Example 1.5.2.  

  If we consider 𝑀 = 𝑅3 − {0}, then the gravitational field of an object of unit mass at 0 is a       

𝐶∞-vector field whose components 𝛼1 , 𝛼2 , 𝛼3 relative to the basis 𝜕 𝜕𝑥1 = 𝐸1  , 𝜕 𝜕𝑥2 = 𝐸2  

, 𝜕 𝜕𝑥3 = 𝐸3  are  

𝛼𝑖 = −
𝑥 𝑖

𝑟3 ,   𝑖 = 1,2,3             with    𝑟 =   𝑥1 2 +  𝑥2 2 +  𝑥2 3 2 . 

Definition  1.5.6.  

Let 𝐹: 𝑀 ⟶ 𝑁 a vector field 𝑌 on 𝑀 such that for each 𝑞 ∈ 𝑀 and 𝑃 ∈ 𝐹−1(𝑞) ⊂ 𝑁 we have 

𝐹∗ 𝑋𝑃 = 𝑌𝑞  , then we say that the vector fields 𝑋  on 𝑌 are 𝐹-related and we write, briefly, 

𝑌 = 𝐹∗(𝑋).  

[We do not  require 𝐹 to be onto: if  𝐹−1(𝑞) is empty ,then the condition is vacuously satisfied]  

Theorem  1.5.3.  

If 𝐹: 𝑀 ⟶ 𝑁 is a diffeomorphism , then each vector field 𝑋 on 𝑁 is 𝐹-related to a uniquely 

determined vector field 𝑌 on 𝑀 . 

Proof:  

Since 𝐹 is diffeomorphism . it has an inverse 𝐺: 𝑁 ⟶ 𝑀 , and at each point 𝑃 we have 

𝐹∗: 𝑇𝑃(𝑁) ⟶ 𝑇𝜑(𝑃)(𝑀) is an isomorphism onto 𝐺∗ an inverse . Thus given a 𝐶∞  -vector field 𝑋 

on 𝑁, then at each point 𝑞 on 𝑀. The vector 𝑌𝑞 = 𝐹∗ 𝑋𝐺(𝑞)  is uniquely determined . it then 

remains to check that 𝑌 is a  𝐶∞  -vector field . this is immediate if we introduce local coordinates 

and apply (Theorem 1.5.2) to the component functions . 

                                                           
15

 William M.Boothby – "An Introduction to Differential Manifolds and Riemannian Geometry" – Second 

Edition – Washington University- ST.Lous.Missori- 2003.   
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Definition  1.5.7.   

  If 𝐹: 𝑀 ⟶ 𝑁 is a diffeomorphism and 𝑋 is a 𝐶∞  vector field on 𝑀  such that 𝐹∗(𝑋) = 𝑋. That is  

𝑋 is 𝐹-related to itself, then 𝑋 is said to be invariant with respect to  , or 𝐹- invariant  . 

Theorem  1.5.4.  

  Let 𝐺 be a Lie group and 𝑇𝑒(𝐺) the tangent space at the identity , then each 𝑋𝑒 ∈ 𝑇𝑒(𝐺)  

determine uniquely a  𝐶∞  vector field of 𝑋 on 𝐺 which is invariant under left translations .In 

particular, 𝐺 is parallelizable . 

Proof:  

 To each  𝑔 ∈ 𝐺 there corresponds exactly one left translation 𝐿𝑔  taking 𝑒 to 𝑔. Therefore if it 

exists. 𝑋 is uniquely determined by the formula :  𝑋𝑔 = 𝐿𝑔∗(𝑋𝑒) . Except  for differentiability, 

this formula does define a left invariant vector field for 𝑎 ∈ 𝐺, we have 

𝐿𝑔∗ 𝑋𝑔 = 𝐿𝑎∗ ∘ 𝐿𝑔∗ 𝑋𝑒 = 𝐿𝑎𝑔∗ 𝑋𝑒 = 𝑋𝑎𝑔     . 

We must show that  , so determined is 𝐶∞  . Let 𝑈, 𝜑 be a coordinate neighborhood of 𝑒 such that 

𝜑 𝑒 = (0, ……… . . ,0) and let 𝑉 be a neighborhood of 𝑒 satisfying 𝑉 ⊂ 𝑈 . let 𝑔, 𝑕 ∈ 𝑉 with 

coordinates 𝑥 = (𝑥1 , …… . . , 𝑥𝑛) and 𝑦 = (𝑦1 , …… . . , 𝑦𝑛). respectively, and let 

𝑧 = (𝑧1 , …… . . , 𝑧𝑛) be the coordinates of the product 𝑔𝑕 . Then, 𝑧𝑖 = 𝑓 𝑖(𝑥, 𝑦) , 𝑖 = 1, …… , 𝑛 are 

𝐶∞  functions on 𝜑(𝑉) × 𝜑(𝑉) . if we write   𝑋𝑒 =  𝛾𝑖𝑛
𝑖=1 𝐸𝑖𝑒  ,    𝛾1 , ……… , 𝛾𝑛  real numbers, 

then according to (Theorem 1.5.2) the formula above for  𝑋𝑔  becomes  

𝑋𝑔 =  𝐿𝑔∗ 𝑋𝑒 =   𝛾𝑗   
𝜕𝑓 𝑖

𝜕𝑦𝑗
 

(𝑥,0)

 𝐸𝑖𝑔  

Since in local coordinates 𝐿𝑔  is given by 𝑧𝑖 = 𝑓 𝑖(𝑥, 𝑦) , 𝑖 = 1, …… , 𝑛. With the coordinates 𝑥 of 

𝑔 fixed . It follows that on 𝑉 the components of 𝑋𝑔  in the coordinate frames are 𝐶∞  functions of 

the local coordinates. However ,  for any 𝑎 ∈ 𝐺 the open set a 𝑉 is the diffeomorphic image by 𝐿𝑎  

of 𝑉. Moreover  𝑋, as just shown  , is 𝐿𝑔-invariant so that for every 𝑔 = 𝑎𝑕 ∈ 𝑎𝑉 we have  

𝑋𝑔 =  𝐿𝑎∗ 𝑋𝑕  . It follows that 𝑋 on 𝑎𝑉 is 𝐿𝑔-related to 𝑋 on 𝑉 and therefore 𝑋 is 𝐶∞  on 𝑎𝑉 by 

(Theorem 1.5.3)  . Since 𝑋 is 𝐶∞  in a neighborhood of each element of  . it is 𝐶∞  on 𝐺 .  
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Corollary  1.5.3.  

 Let 𝐺1 and 𝐺2 be Lie groups and 𝐹: 𝐺1 ⟶ 𝐺2 a homomorphism. Then to each left –invariant 

vector field 𝑋 on 𝐺1 there is a uniquely determined left –invariant vector field 𝑌 on 𝐺2 which is 

𝐹-related to  . 

Proof:  

By (Theorem 1.5.4) , 𝑋 is determined by 𝑋𝑒  , it's value at the identity 𝑒1 of  𝐺1 . Let  𝑒2 = 𝐹(𝑒1) 

be the identity of 𝐺2 and let 𝑌 be the uniquely determined left –invariant vector field on 𝐺2 such 

that 𝑌𝑒2
= 𝐹∗(𝑋𝑒1

) . That  𝑌 should have this value at  𝑒2 is surely a necessary condition for 𝑌 to 

be 𝐹-related to 𝑋; and it remains only to see whether this vector field 𝑌 satisfies  𝐹∗(𝑋𝑒1
) =𝑌𝐹(𝑔) 

for every 𝑔 ∈ 𝐺1 . If so  , 𝑌 is indeed 𝐹-related (and uniquely determined) . We write the mapping 

𝐹 as a composition  𝐹 = 𝐿𝐹(𝑔) ∘ 𝐹 ∘ 𝐿𝑔  . Using  𝐹 𝑥 = 𝐹 𝑔 𝐹(𝑔−1𝑥) .and note that since both 

𝑋 on 𝑌 are left-invariant by assumption. This gives  

𝐹 𝑋𝑒 = 𝐿𝐹 𝑔 ∗  ∘ 𝐹∗ ∘ 𝐿(𝑔) ∗ (𝑋𝑔) 

𝐹 𝑋𝑒 = 𝐿𝐹 𝑔 ∗ ∘ 𝐹∗ 𝑋𝑒 = 𝐿𝐹(𝑔)𝑌𝑒  

Therefore 𝑌 meets all conditions and the corollary is true .  

1.6  Action of  groups  

 Important examples of group action are the following actions of 𝐺 on itself 
16

 :  

Left action: 𝐿𝑔 : 𝐺 → 𝐺 is defined by 𝐿𝑔 𝑕 = 𝑔𝑕  

Right action: 𝑅𝑔 : 𝐺 → 𝐺 is defined by 𝑅𝑔 𝑕 = 𝑕𝑔−1  

Adjoint action: 𝐴𝑑𝑔 : 𝐺 → 𝐺 is defined by 𝐴𝑑𝑔 𝑕 = 𝑔𝑕𝑔−1  

Easily sees that left and right actions are transitive; in fact, each of them is simply 

transitive. It is also easy to see that the left and right actions commute and that         

𝐴𝑑𝑔 = 𝐿𝑔𝑅𝑔 .  

                                                           
16

Introduction to Lie Groups and Lie Algebras – Alexander Kirillov,Jr. – Departement of mathematics, 

Suny At stony Brook,NY 11794, USA.   
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Each of these actions also defines the action of 𝐺 on the spaces of functions, vector fields, 

forms,etc. on 𝐺.  

Definition  1.6.1. ( Translation)   

 A vector field 𝑣 ∈ 𝑉𝑒𝑐𝑡(𝐺) is left-invariant if 𝑔. 𝑣 = 𝑣 for every 𝑔 ∈ 𝐺, and right-

invariant if 𝑣. 𝑔 = 𝑣 for every 𝑔 ∈ 𝐺. A vector field is called bi-invariant if it is both left-

and-right- invariant.  

Let (𝐺, 𝜇, 𝑣, 𝑒) be a Lie group
17

. For any element 𝑔 ∈ 𝐺 we can consider the left 

translation 𝜆𝑔 : 𝐺 ⟶ 𝐺 defined by 𝜆𝑒 𝑕 = 𝑔𝑕 = 𝜇(𝑔, 𝑕). Smoothness of 𝜇 immediately 

implies that 𝜆𝑔  is smooth and 𝜆𝑔 ∘ 𝜆𝑔−1 = 𝜆𝑔−1 ∘ 𝜆𝑔 = 𝑖𝑑𝐺  . hence 𝜆𝑔 : 𝐺 ⟶ 𝐺  is  

adiffeomorphism with inverse 𝜆𝑔−1  . Evidently, we have 𝜆𝑔 ∘ 𝜆𝑕 = 𝜆𝑔𝑕  . Similarly, we 

can consider the right translation by 𝑔, which we write as 𝜌𝑔 : 𝐺 ⟶ 𝐺 .  

Again, this is a diffeomorphism with inverse  𝜌𝑔−1
, but this time the compatibility with 

the product reads as 𝜌𝑔 ∘ 𝜌𝑕 = 𝜌𝑔𝑕 . ( many basic of group theory can be easily rephrased 

in terms of the translation mappings ). 

Example  1.6.1.  

   The equation (𝑔𝑕)−1 = 𝑕−1𝑔−1 can be interpreted as 𝑣 ∘ 𝜆𝑔 = 𝜌𝑔−1
∘ 𝑣 or as 

 𝑣 ∘ 𝜌𝑕 = 𝜆𝑕−1 ∘ 𝑣 . the definition of the neutral element can be recast as 𝜆𝑒 = 𝜌𝑒 = 𝑖𝑑𝐺 .  

Lemma  1.6.1.  

1. Let (𝐺, 𝜇, 𝑣, 𝑒) be a Lie group, for 𝑔, 𝑕 ∈ 𝐺, 𝜉 ∈ 𝑇𝑔𝐺  and 𝜂 ∈ 𝑇𝑕𝐺 we have  

𝑇(𝑔,𝑕)𝜇 ∙  𝜉, 𝜂 = 𝑇𝑕𝜆𝑔 ∙ 𝜂 + 𝑇𝑔𝜌𝑕 ∙ 𝜉. 

2. The inversion map 𝑣: 𝐺 → 𝐺 is smooth and for 𝑔 ∈ 𝐺 we have  

𝑇𝑔𝑣 = −𝑇𝑒𝜌
𝑔−1

∘ 𝑇𝑔𝜆𝑔−1 = −𝑇𝑔𝜆𝑔−1 ∘ 𝑇𝑔𝜌𝑔−1
  . 
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In particular, 𝑇𝑒𝑣 = −𝑖𝑑.  

Proof:  

1. Since   𝑇(𝑔,𝑕)𝜇 is linear, we get 𝑇(𝑔,𝑕)𝜇 ∙  𝜉, 0 + 𝑇(𝑔,𝑕)𝜇 ∙  0, 𝜂 . Choose a smooth 

curve 𝑐: (−𝜖, 𝜖) → 𝐺 with 𝑐 0 = 𝑔 and 𝑐′ 0 = 𝜉. Then the curve  𝑡 ⟼ (𝑐 𝑡 , 𝑕) 

represents the tangent vector (𝜉, 0) and the compostion of  𝜇 with this curve equals  

𝜌𝑕 ∘ 𝑐. Hence, we conclude that 𝑇(𝑔,𝑕)𝜇 ∙  𝜉, 0 = 𝑇𝑔𝜌𝑕 . 𝜉.  

2. Consider the function 𝑓: 𝐺 × 𝐺 ⟶ 𝐺 × 𝐺 defined by 𝑓(𝑔, 𝑕) = (𝑔, 𝑔𝑕). From part (1) 

and the fact 𝜆𝑒 = 𝜌𝑒 = 𝑖𝑑𝐺  we conclude that for , 𝜂 ∈ 𝑇𝑒𝐺 , we get                        

𝑇(𝑒,𝑒)𝑓 ∙  𝜉, 𝜂 = (𝜉, 𝜉 + 𝜂).   

Evidently, this is a linear isomorphism 𝑇𝑒𝐺 × 𝑇𝑒𝐺 ⟶ 𝑇𝑒𝐺 × 𝑇𝑒𝐺, so locally around 

 𝑒, 𝑒 , 𝑓 admits a smooth inverse, 𝑓  : 𝐺 × 𝐺 ⟶ 𝐺 × 𝐺. By definition,  𝑓   𝑔, 𝑒 =

(𝑔, 𝑣 𝑔 )  which implies that 𝑣 is smooth locally around 𝑒. Since 𝑣 ∘ 𝜆𝑔−1 = 𝜌𝑔 ∘ 𝑣, we 

conclude that 𝑣 is smooth locally around any 𝑔 ∈ 𝐺.  

By differentiating the equation 𝑒 = 𝜇(𝑔, 𝑣(𝑔)) and using part (1) we obtain  

0 = 𝜇𝑇(𝑔,𝑔−1) ∙  𝜉, 𝑇𝑔𝑣 ∙ 𝜉 = 𝑇𝑔𝜌𝑔−1
∙ 𝜉 + 𝑇𝑔−1𝜆𝑔 ∙ 𝑇𝑔𝑣 ∙ 𝜉 

For any 𝜉 ∈ 𝑇𝑔𝐺. Since 𝜆𝑔−1  is inverse to 𝜆𝑔  this shows that 𝑇𝑔𝑣 = −𝑇𝑔𝜆𝑔−1 ∘ 𝑇𝑔𝜌𝑔−1
.  

1.7  Left invariant vector fields:  

By using left translations to transport around tangent vectors on 𝐺. Put 𝔤 = 𝑇𝑒𝐺, the 

tangent space to 𝐺 at the neutral element 𝑒 ∈ 𝐺. For 𝑋 ∈ 𝔤 and 𝑔 ∈ 𝐺 define  

𝐿𝑋 𝑔 = 𝑇𝑒𝜆𝑔  . 𝑋 ∈ 𝑇𝑔𝐺 

Definition 1.7.1.  

  Let 𝐺 be a Lie group. A vector field 𝜉 ∈ 𝔛 𝐺  is called left invariant if and only if 

(𝜆𝑔) ∗ 𝜉 = 𝜉 for all 𝑔 ∈ 𝐺. The space of left invariant vector fields is denoted by 𝔛𝐿(𝐺).  
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Proposition 1.7.1.  

Let 𝐺 be a Lie group and put 𝔤 = 𝑇𝑒𝐺. We have : 

1. The map 𝐺 × 𝔤 → 𝑇𝐺 defined by  𝑔, 𝑋 ⟼  𝐿𝑋 𝑔  is a diffeomorphism.  

2. For any 𝑋 ∈ 𝔤, the map 𝐿𝑋 : 𝐺 → 𝑇𝐺 is a vector field on 𝐺. The maps 𝑋 ⟼  𝐿𝑋  and 

𝜉 ⟼ 𝜉(𝑒)define inverse linear isomorphisms between 𝔤 and 𝔛𝐿(𝐺).  

Proof:-  

1. Consider the map 𝜑: 𝐺 ×  𝔤 → TG × TG defined by  𝑔, 𝑋 = (0𝑔 , 𝑋) , where 0𝑔  is the 

zero vector in 𝑇𝑔𝐺. Evidently 𝜑 is smooth, and by part (1) of lemma the smooth map 

𝑇𝜇 ∘ 𝜑 is given by  𝑔, 𝑋 → 𝐿𝑋 𝑔 . On other hand, define 𝜓: 𝑇𝐺 → 𝑇𝐺 × 𝑇𝐺 by 

𝜓 𝜉𝑔 = (0𝑔−1 , 𝜉) which is smooth by part (2) of lemma.  

By part (1) of lemma , we see that 𝑇𝜇 ∘ 𝜑 has values in 𝑇𝑒𝐺 = 𝔤 and is given by       

𝜉𝑔 ⟼ 𝑇𝜆𝑔−1 ∙ 𝜉. This shows that 𝜉𝑔 ⟼ (𝑔, 𝑇𝜆𝑔−1 ∙ 𝜉) defines a smooth map                

𝑇𝐺 → 𝐺 × 𝔤, which is evidently inverse to  𝑔, 𝑋 ⟼  𝐿𝑋 𝑔 .  

2. by definistion 𝐿𝑋 𝑔 ∈ 𝑇𝑔𝐺 and smoothness of 𝐿𝑋  follows from (1) ,so 𝐿𝑋 ∈ 𝔛 𝐺 . By 

definition ,  

  𝜆𝑔 
∗
𝐿𝑋  𝑕 = 𝑇𝑔𝑕𝜆𝑔−1𝐿𝑋 𝑔𝑕 = 𝑇𝑔𝑕𝜆𝑔−1  ∙ 𝑇𝑒𝜆𝑔𝑕 ∙ 𝑋 

And using 𝑇𝑒𝜆𝑔𝑕 = 𝑇𝑕𝜆𝑔° 𝑇𝑒𝜆𝑕  we see that equals  𝑇𝑒𝜆𝑕 ∙ 𝑋 = 𝐿𝑋(𝑕). Since 𝑕 is arbitrary, 

𝐿𝑋 ∈ 𝔛𝐿 𝐺  and we have well defined maps in both directions. Of course 𝐿𝑋 𝑒 = 𝑋, so 

one composition is the identity. On other hand. If 𝜉 is left invariant and 𝑋 = 𝜉(𝑒), then  

𝜉 𝑔 =   𝜆𝑔 
∗
𝜉  𝑔 =  𝑇𝑒𝜆𝑔 ∙ 𝜉 𝑔−1𝑔 = 𝐿𝑋 𝑔  

And thus = 𝐿𝑋  .  

  We have used left translations to trivialize the tangent bundle of a Lie group 𝐺 in 

(prop1.6.1)  in same way, one can consider the right trivialization 𝑇𝐺 ⟶ 𝐺 × 𝔤 defined 

by 𝜉𝑔 ⟼ (𝑔, 𝑇𝑔𝜌𝑔−1
∙ 𝜉). The inverse of this map is denoted by (𝑔, 𝑋) ⟼ 𝑅𝑋(𝑔), and  
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𝑅𝑋  is called the right invariant vector field generated by 𝑋 ∈ 𝔤. In general, a vector field 

𝜉 ∈ 𝔵(𝐺) is called right invariant if (𝜌𝑔)∗𝜉 = 𝜉 for all 𝑔 ∈ 𝐺. The space of right invariant 

vector fields is denoted by 𝔵𝑅(𝐺). As in (prop1) one shows that 𝜉 = 𝜉(𝑒) and 𝑋 ⟼ 𝑅𝑋  

 are inverse bijections between 𝔤 and 𝔵𝑅(𝐺).   

Proposition  1.7.2.   

Let 𝑮 be a Lie group
18

. Then, the vector space of all left-invariant vector fields on 𝐺 is 

isomorphic (as a vector space ) to 𝑇1𝐺 .  

Proof:-  

Since 𝑋 is left invariant the following Fig(1.7) commutes  

 

Fig (1.7) 

So that 𝑋 𝑎 = (𝑑𝐿𝑎)1  𝑋 1   for all 𝑎 ∈ 𝐺. We denote that Γ(𝑇𝐺)𝐺  the set of all left 

invariant vector fields on 𝐺. Define a map 𝜙: Γ(𝑇𝐺)𝐺 ⟶ 𝑇1𝐺   by 𝜙: X ⟶ 𝑋(1). Then 

, 𝜙 is linear and injective since if X, Y ∈ Γ(𝑇𝐺)𝐺  and   𝜙 𝑋 = 𝜙(𝑌)  

𝑋 𝑔 = 𝑑𝐿𝑔 𝑋(1) = 𝑑𝐿𝑔 𝑋(1) = 𝑌(𝑔)  , For each 𝑔 ∈ 𝐺.  

Now, 𝜙 is also surjective, for 𝑣 ∈ 𝑇1𝐺, define 𝑋𝑣 ∈ Γ(𝑇𝐺)𝐺  by  𝑋𝑣 𝑎 =  𝑑𝐿𝑎 1(𝑣) for  

𝑎 ∈ 𝐺. We claim that 𝑋𝑣 is a left invariant vector field . now, 𝑋𝑣: 𝐺 ⟶ 𝑇𝐺 is a 𝐶∞  map 

of manifolds since if  𝑓 ∈ 𝐶∞  𝐺, then for 𝑎 ∈ 𝐺.  

 𝑋𝑣(𝑓)   𝑎 =  𝑑𝐿𝑎(𝑣) 𝑓 

                  = 𝑣 𝑓 ∘ 𝐿𝑎  

Now, if 𝑥 ∈ 𝐺 we have  
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 𝑓 ∘ 𝐿𝑎  𝑥 =  𝑓 ∘ 𝑚 (𝑎, 𝑥) 

Which is a smooth map of  𝑎, 𝑥 ( here, 𝑚 is the multiplication map on 𝐺 ).  

Thus, 𝑣 𝑓 ∘ 𝐿𝑎  is smooth and hence so is 𝑋𝑣 .  

We now show 𝑋𝑣 is left invariant. For𝑎, 𝑔 ∈ 𝐺 , we have  

 𝑑𝐿𝑎 (𝑋𝑣 𝑎 ) =  𝑑𝐿𝑎    𝑑𝐿𝑎 1 𝑣   

                  = 𝑑  𝐿𝑔 ∘ 𝐿𝑎 (𝑣) 

           = 𝑑  𝐿𝑔𝑎  (𝑣) 

    = 𝑋𝑣(𝑔𝑎) 

         = 𝑋𝑣 𝐿𝑎 𝑎   

So, that 𝑋𝑣 is left invariant. Therefore 𝜙 is onto and  Γ(𝑇𝐺)𝐺 ≅ 𝑇1𝐺 .  

We now give 𝑇1𝐺 a Lie algebra structure by identifying it with Γ(𝑇𝐺)𝐺  with the Lie 

bracket of vector fields. But, we need to show that   ,   is in fact a binary operation on 

Γ(𝑇𝐺)𝐺  . recall if 𝑓: 𝑀 ⟶ 𝑁 is a smooth map of manifolds and 𝑋, 𝑌 are 𝑓-related if 

𝑑 𝑋 𝑥  = 𝑌 𝑓 𝑥   for every 𝑥 ∈ 𝑀. It is a fact from manifold theory that is 𝑋, 𝑌 and 

𝑋′ , 𝑌′  are 𝑓-related , then so are  𝑋, 𝑌   and [𝑋′ , 𝑌′ ] . but, left invariant vector fields are 

𝐿𝑎  related for all 𝑎 ∈ 𝐺 by definition.  

Proposition  1.7.3.   

 The Lie bracket of two left vector fields is a left invariant vector field. Thus, we can 

regard 𝑇1𝐺 as a Lie algebra and make the following definition .  

Definition  1.7.3.  

 Let 𝐺 be a group. The Lie algebra 𝔤 of 𝐺 is 𝑇1𝐺 with the Lie bracket induced by it's 

identification with Γ(𝑇𝐺)𝐺 .  
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Example  1.7.2.   

Let 𝐺 = (ℝ𝑛 , +). What is  ?  

Answer:  

 Notice that for this group, 𝐿𝑎(𝑥) = 𝑎 + 𝑥, so that 𝑑𝐿𝑎 0 = 𝑖𝑑𝑇0ℝ𝑛  . So,   𝑑𝐿𝑎 0 𝑣 = 𝑣 

for all 𝑣 ∈ 𝑇0𝑅
𝑛  and thus 𝔤 = 𝑇0ℝ

𝑛 ≅ ℝ𝑛 . So, the Lie algebra contains all constant 

vector fields, and the Lie bracket is identically 0 .  

Example  1.7.3.   

 Consider the Lie group 𝐺𝐿(𝑛, ℝ). We have 𝑇1𝐺𝐿 𝑛, ℝ = 𝑀𝑛(ℝ), the set of all 𝑛 × 𝑛 

real matrices. For any 𝐴, 𝐵 ∈ 𝑀𝑛(ℝ), the Lie bracket is the commutator ; that is  

 𝐴, 𝐵 = 𝐴𝐵 − 𝐵𝐴 

To prove this , we compute 𝑋𝐴 , the left invariant vector field associated with the matrix 

𝐴 ∈ 𝑇1𝐺𝐿 𝑛, ℝ  . Now, on 𝑀𝑛(ℝ) , we have global coordinate maps given by  

𝑥𝑖𝑗  𝐴 = 𝐴𝑖𝑗  , the 𝑖𝑗th entry of the matrix 𝐵. 

 So, for 𝑔 = 𝐺𝐿 𝑛, ℝ ,   

 𝑋𝐴 𝑥𝑖𝑗     𝑔 = 𝑋𝐴(𝐼) 𝑥𝑖𝑗  ∘ 𝐿𝑔  . 

also, if 𝑕 ∈ 𝐺𝐿 𝑛, ℝ , then  

 𝑥𝑖𝑗  ∘ 𝐿𝑔  𝑕 = 𝑥𝑖𝑗 (𝑔𝑕) 

                         =  𝑔𝑖𝑘𝑕𝑘𝑗𝑘  

                               =  𝑔𝑖𝑘𝑥𝑘𝑗𝑘 (𝑕) 

Which implies  that 𝑥𝑖𝑗  ∘ 𝐿𝑔 =  𝑔𝑖𝑘𝑥𝑘𝑗𝑘  .  

Now, if 𝑓 ∈ 𝐶∞ 𝐺𝐿 𝑛, ℝ   , 𝑋𝐴 𝐼 𝑓 =  𝑑
𝑑𝑡

 
𝑡=0

 𝑓(𝐼 + 𝑡𝐴) , so that  
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𝑋𝐴 𝐼 𝑥𝑖𝑗 =   
𝑑

𝑑𝑡
 
𝑡=0

 𝑥𝑖𝑗 (𝐼 + 𝑡𝐴) = 𝐴𝑖𝑗  . 

Putting these remarks together, we see that  𝑋𝐴 𝑥𝑖𝑗  ∘ 𝐿𝑔 =    𝑔𝑖𝑘𝐴𝑘𝑗 =   𝑥𝑖𝑘 (𝑔)𝑘𝑘 𝐴𝑘𝑗   

We are now in a position to calculate the Lie bracket of the left invariant vector fields 

associated with elements of 𝑀𝑛(ℝ) :  

  𝑋𝐴, 𝑋𝐵   𝐼  
𝑖𝑗

=   𝑋𝐴 , 𝑋𝐵  𝐼 𝑥𝑖𝑗  

                                          = 𝑋𝐴𝑋𝐵 𝑥𝑖𝑗   − 𝑋𝐵𝑋𝐴 𝑥𝑖𝑗    

                                                          =  𝑋𝐴  𝐵𝑘𝑗 𝑥𝑖𝑘𝑘  − 𝑋𝐵  𝐴𝑘𝑗 𝑥𝑖𝑘𝑘    

                                                      =   𝐵𝑘𝑗 𝑥𝑖𝑙  𝐴𝑙𝑘 − 𝐴𝑘𝑗 𝑥𝑖𝑙𝐵𝑙𝑘𝑘,𝑙  (𝐼) 

                                             =  𝐵𝑘𝑗 𝛿𝑖𝑙  𝐴𝑙𝑘 − 𝐴𝑘𝑗 𝛿𝑖𝑙𝐵𝑙𝑘𝑘,𝑙  

                                     =  𝐴𝑖𝑘𝐵𝑘𝑗 −  𝐵𝑖𝑘𝐴𝑘𝑗𝑘𝑘  

                   = (𝐴𝐵 − 𝐵𝐴)𝑖𝑗  

So,  𝐴, 𝐵 = 𝐴𝐵 − 𝐵𝐴 .                    

1.8  Lie Group Homomorphism:  

Definition  1.8.1.   

 Let 𝐺 and 𝐻 be Lie groups. A map 𝜌: 𝐺 ⟶ 𝐻 is a Lie group homomorphism if : 

1. 𝜌 is a 𝐶∞  map of manifolds and  

2. 𝜌 is a group homomorphism  

 Furthermore, we say 𝜌 is a lie group isomomrphism if it's a group isomomrphisim and a 

diffeomorphism .  

If 𝔤 and 𝔥 are Lie algebras , a Lie algebra homomorphism 𝜏: 𝔤 ⟶ 𝔥 is a map such that : 
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1. 𝜏 is linear  

2. 𝜏  𝑋, 𝑌  =  𝜏 𝑋 , 𝜏(𝑌)  for all  𝑋, 𝑌 ∈ 𝔤 .  

Now, suppose 𝑉 is an 𝑛-dimensional vector space over ℝ . we define,   

𝐺𝐿 𝑉 = {𝐴:  𝑉 ⟶ 𝑉  𝐴 a linear isomorphism}  

Since 𝑉 ≅ ℝ𝑛 , 𝐺𝐿 𝑉 ≅ 𝐺𝐿(𝑛, ℝ).  

1.9  The Lie algebras of a Lie group:  

For a Lie group 𝐺19, left invariant vector fields 𝜉, 𝜂 ∈ 𝔵𝐿(𝐺) and an element 𝑔 ∈ 𝐺 we 

obtain  

𝜆𝑔
∗  𝜉, 𝜂 =  𝜆𝑔

∗ 𝜉 , 𝜆𝑔
∗ 𝜂 = [𝜉, 𝜂] 

So, [𝜉, 𝜂] is left invariant too. Applying this to 𝐿𝑋  and 𝐿𝑌 for 𝑋, 𝑌 ∈ 𝔤 = 𝑇𝑒𝐺, we see that  

[𝐿𝑋 , 𝐿𝑌] is left invariant. Defining [𝑋, 𝑌] ∈ 𝔤 as [𝐿𝑋 , 𝐿𝑌](𝑒), part 2 of proposition show 

that[𝐿𝑋 , 𝐿𝑌] = 𝐿[𝑋,𝑌].  

Proposition  1.9.1.   

 If 𝑋, 𝑌 ∈ 𝔤, so is their Lie bracket [𝑋, 𝑌].  

Proof:  

 We need to show that [𝑋, 𝑌] is left-invariant if 𝑋 and 𝑌 are left invariant. We first notice  

𝑌 𝑓 ∘ 𝐿𝑎  𝑏 = 𝑌𝑏 𝑓 ∘ 𝐿𝑎 =  𝑑𝐿𝑎 𝑏 𝑌𝑏 𝑓 = 𝑌𝑎𝑏 𝑓 =  𝑌𝑓  𝐿𝑎𝑏 = (𝑌𝑓) ∘ 𝐿𝑎 (𝑏)  

For any smooth function 𝑓 ∈ 𝐶∞(𝐺). Thus  

𝑌𝑎𝑏 𝑓 𝑌𝑓 =  𝑑𝐿𝑎 𝑏 𝑋𝑏  𝑌𝑓 =  𝑋𝑏   𝑌𝑓 ∘ 𝐿𝑎 = 𝑋𝑏𝑌(𝑓 ∘ 𝐿𝑎)  

Similarly ,  𝑌𝑎𝑏 𝑋 𝑓 = 𝑌𝑏𝑋(𝑓 ∘ 𝐿𝑎 ).  
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Thus,  

𝑑𝐿𝑎 [𝑋, 𝑌]𝑏 𝑓 = 𝑋𝑏𝑌 𝑓 ∘ 𝐿𝑎 − 𝑌𝑏𝑋 𝑓 ∘ 𝐿𝑎 = 𝑋𝑎𝑏  𝑌 𝑓 − 𝑌𝑎𝑏 𝑋 𝑓 =  𝑋, 𝑌 𝑎𝑏 (𝑓) .  

Definition  1.9.1.  

 Let 𝐺 be a group. The Lie algebras of  𝐺 is the tangent space 𝔤 = 𝑇𝑒𝐺 together with the 

map   ,  : 𝔤 × 𝔤 → 𝔤 defined by  𝑋, 𝑌 = [𝐿𝑋 , 𝐿𝑌](𝑒). 
20

 

Remark 1.9.1.  

 From corresponding properties of the Lie bracket of vector fields, it follows immediately 

that the bracket   ,  : 𝔤 × 𝔤 → 𝔤 is:  

i. Bilinear:  𝑎𝑋, 𝑌 = 𝑎 𝑋, 𝑌  and  𝑋1 + 𝑋2, 𝑌 =  𝑋1, 𝑌 + [𝑋2 , 𝑌]   

ii. Skew symmetric ( 𝑌, 𝑋 −  𝑋, 𝑌 )  

iii. Satisfies the Jacobi identity   𝑋,  𝑌, 𝑍  =   𝑋, 𝑌 , 𝑍 +  𝑌,  𝑋, 𝑍   .  

In general, one defines a Lie algebra as a real vector space together with a Lie bracket 

having these three properties.   

Example  1.9.1.  

 Let us consider the fundamental example 𝐺 = 𝐺𝐿(𝑛, ℝ). As a manifold, 𝐺 is an open 

subset in the vector space 𝑀𝑛(ℝ), so in particular, 𝔤 = 𝑀𝑛(ℝ) as a vector space. 

Consider the matrices 𝐴, 𝐵, 𝐶 ∈ 𝑀𝑛(ℝ)  we have  𝐴 𝐵 + 𝑡𝐶 = 𝐴𝐵 + 𝑡𝐴𝐶, so left 

translation by 𝐴 is a linear map. In particular, this implies that for  𝐴 ∈ 𝐺𝐿(𝑛, ℝ) and 

𝐶 ∈ 𝑀𝑛 ℝ = 𝑇𝑒𝐺𝐿(𝑛, ℝ) we obtain 𝐿𝐶 𝐴 = 𝐴𝐶. viewed as a function 𝐺𝐿(𝑛, ℝ) 

⟶ 𝑀𝑛(ℝ) , the left invariant vector field  𝐿𝐶  is therefore given by right multiplication by 

𝐶 and thus extends to all of 𝑀𝑛(ℝ) .now viewing vector fields on an open subset of ℝ𝑚  

as functions with values in ℝ𝑚 , the Lie bracket is given by  𝜉, 𝜂  𝑥 = 𝐷𝜂 𝑥  𝜉 𝑥  −

𝐷𝜉 𝑥  𝜂 𝑥  . Since, right multiplication by a fixed matrix is a linear map, we conclude 
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that 𝐷 𝐿𝐶 ′   𝑒  𝐶 = 𝐶𝐶′  for 𝐶, 𝐶′ ∈ 𝑀𝑛 ℝ . Hence we obtain [𝐶, 𝐶 ′ ] =  𝐿𝐶  , 𝐿𝐶 ′   𝑒 =

𝐶𝐶′ − 𝐶′𝐶, and rhe Lie bracket on 𝑀𝑛 ℝ  is given by the commutator of matrices.  

Lemma 1.9.1.  

Let 𝑓: 𝑀 ⟶ 𝑁 be smooth map , and let 𝜉𝑖 ∈ 𝔛 𝑀  and 𝜂𝑖 ∈ 𝔛 𝑁  be vector fields for 

𝑖 = 1,2 . if  𝜉𝑖~𝑓𝜂𝑖  for 𝑖 = 1,2 then [𝜉1, 𝜉2]~𝑓[𝜂1, 𝜂2].  

Proof:  

For a smooth map 𝛼: 𝑁 ⟶ ℝ we have  𝑇𝑓 ∘ 𝜉 ∙ 𝛼 = 𝜉 ∙ (𝛼 ∘ 𝑓) by definition of the 

tangent map. Hence 𝜉~𝑓𝜂 is equivalent to 𝜉 ∙  𝛼 ∘ 𝑓 = (𝜂 ∙ 𝛼) ∘ 𝑓 for all 𝛼 ∈ 𝐶∞(𝑁, ℝ). 

Now , assuming that 𝜉𝑖~𝑓𝜂𝑖  for 𝑖 = 1,2 we compute  

𝜉1 ⋅  𝜉2 ⋅  𝛼 ∘ 𝑓  = 𝜉1 ⋅   𝜂2 ⋅ 𝛼 ∘ 𝑓 = (𝜂1 ⋅  𝜂2 ⋅ 𝛼 ) ∘ 𝑓 

From definition of Lie bracket,then   𝜉1, 𝜉2 ⋅  𝛼 ∘ 𝑓 = ([𝜂1, 𝜂2] ⋅ 𝛼) ∘ 𝑓  

And thus,  [𝜉1, 𝜉2]~𝑓[𝜂1, 𝜂2].   

Definition  1.9.2.  

A Lie algebra homomorphism between two Lie algebras 𝐴 and 𝐵 ( over the same field) is 

a linear map that preserves the Lie bracket ,i.e. a map  

𝑓:  
𝐴 ⟶ 𝐵

𝑎 ⟼ 𝑓(𝑎)
  

𝑓  𝑎, 𝑏  = [𝑓 𝑎 , 𝑓 𝑏 ]  

An invertible Lie algebra homomorphism is a Lie algebra isomorphism.  

Proposition  1.9.2.  

Let 𝐺 and 𝐻 be Lie groups with Lie algebras 𝔤 and 𝔥.  

1. If 𝜑: 𝐺 ⟶ 𝐻 is a smooth homomorphism then 𝜑′ = 𝑇𝑒𝜑: 𝔤 ⟶ 𝔥 is a homomorphism 

of Lie algebras, i,e. 𝜑′  𝑋, 𝑌  = [𝜑′ 𝑋 , 𝜑′ 𝑌 ] for all 𝑋, 𝑌 ∈ 𝔤.  
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2. If  𝐺 is commutative, then the Lie bracket on 𝔤 is identically zero.  

Proof:  

1. The equation 𝜑 𝑔𝑕 = 𝜑 𝑔 𝜑(𝑕) can be interpreted as 𝜑 ∘ 𝜆𝑔 = 𝜆𝜑(𝑔) ∘ 𝜑. 

Differentiating this equation in 𝑒 ∈ 𝐺, we obtain 𝑇𝑔𝜑 ∘ 𝑇𝑒𝜆𝜑(𝑔) = 𝑇𝑒𝜆𝜑(𝑔) ∘ 𝜑′ . Inserting 

𝑋 ∈ 𝑇𝑒𝐺 = 𝔤, we get 𝑇𝑔𝜑 ∙ 𝐿𝑋 𝑔 = 𝐿𝜑 ′ (𝑋) 𝜑(𝑔) ,and hence the vector fields 𝐿𝑋 ∈ 𝔛 𝐺  

and 𝐿𝜑 ′ (𝑋) ∈ 𝔛 𝐻  are 𝜑-related for each 𝑋 ∈ 𝔤. Form the lemma, we conclude that for 

𝑋, 𝑌 ∈ 𝔤 we get 𝑇𝜑 ∘  𝐿𝑋 , 𝐿𝑌 = [𝐿𝜑 ′  𝑋 , 𝐿𝜑 ′ (𝑌)] ∘ 𝜑. Evaluated in 𝑒 ∈ 𝐺 this gives 

𝜑′  𝑋, 𝑌  = [𝜑′ 𝑋 , 𝜑′ 𝑌 ].  

2. If  𝐺 is commutative, then (𝑔𝑕)−1 = 𝑕−1𝑔−1 = 𝑔−1𝑕−1 so the inversion map 𝑣: 𝐺 ⟶

𝐺 is a group homomorphism. Hence by part (1) , 𝑣 ′ : 𝔤 ⟶ 𝔤 is a Lie algebra 

homomorphism  

By part (2) of lemma 𝑣 ′ = 𝑖𝑑 and we obtain  

− 𝑋, 𝑌 = 𝑣 ′  𝑋, 𝑌  =  𝑣 ′ 𝑋 , 𝑣 ′ 𝑌  =  −𝑋, −𝑌 = [𝑋, 𝑌]  

and thus  𝑋, 𝑌 = 0 for all 𝑋, 𝑌 ∈ 𝔤 .  

Proposition  1.9.3.  

Let 𝐺 be a Lie group with Lie algebra 𝔤 and inversion 𝑣: 𝐺 ⟶ 𝐺, then we have :  

1. 𝑅𝑋 = 𝑣∗(𝐿−𝑋) for all 𝑋 ∈ 𝔤.  

2. For 𝑋, 𝑌 ∈ 𝔤, we have [𝑅𝑋 , 𝑅𝑌] = 𝑅−[𝑋,𝑌] .  

3. For all 𝑋, 𝑌 ∈ 𝔤, we have [𝐿𝑋 , 𝑅𝑌] = 0  

Proof:  

The equation (𝑔𝑕)−1 = 𝑕−1𝑔−1 can be interpreted as 𝑣 ∘ 𝜌𝑕 = 𝜆𝑕−1 ∘ 𝑣.  

In particular, if 𝜉 ∈ 𝔛𝐿 𝐺  then  

(𝜌𝑕)∗𝑣∗𝜉 = (𝑣 ∘ 𝜌𝑕)∗𝜉 = (𝜆𝑕−1 ∘ 𝑣)∗𝜉 = 𝑣∗𝜆𝑕−1
∗𝜉 = 𝑣∗𝜉  
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So 𝑣∗𝜉 is right invariant. Since 𝑣∗𝜉 𝑒 = 𝑇𝑒𝑣 ⋅ 𝜉 𝑒 = −𝜉 𝑒 .  

Using part (1) we compute  

[𝑅𝑋 , 𝑅𝑌] =  𝑣∗𝐿−𝑋 , 𝑣∗𝐿−𝑌 = 𝑣∗ 𝐿−𝑋 , 𝐿−𝑌 = 𝑣∗𝐿[𝑋,𝑌] = 𝑅−[𝑋,𝑌].  

Consider the vector field (0, 𝐿𝑌) on 𝐺 × 𝐺 whose value in (𝑔, 𝑕) is (0𝑔 , 𝐿𝑋(𝑕)) . by part 

(1) of (Lemma1.6.1) 𝑇(𝑔,𝑕)𝜇 ∙  0𝑔 , 𝐿𝑋 𝑕  = 𝑇𝑕𝜆𝑔 ⋅ 𝐿𝑋 𝑕 = 𝐿𝑋 𝑔𝑕    

Which shows that (0, 𝐿𝑋) is 𝜇- related to 𝐿𝑋  . like wise, (𝑅𝑌 , 0) is 𝜇- related to 𝑅𝑌 , so by 

(Lemma 1.6.1) the vector field 0 = [ 0, 𝐿𝑋 , (𝑅𝑌 , 0) ] is 𝜇- related to [𝐿𝑋 , 𝑅𝑌] . since 𝜇 is 

subjective , this is implies that [𝐿𝑋 , 𝑅𝑌] = 0 .   

1.10  Exponential Map:  

 Given a Lie group and it's Lie algebra  
21

, we would like to construct an exponential map 

from 𝔤 ⟶ 𝐺, which will help to give some information about the structure of 𝔤.  

Proposition  1.10.1.   

 Let 𝐺 be a Lie group with Lie algebra 𝔤. Then, for each 𝑋 ∈ 𝔤, there exists a map 

𝛾𝑋 : ℝ ⟶ 𝐺 satisfying : 𝛾𝑋 0 = 1𝐺   

 𝑑
𝑑𝑡

 
𝑡=0

𝛾𝑋 𝑡 = 𝑋 ,   

  and   𝛾𝑋 𝑠 + 𝑡 = 𝛾𝑋 𝑠 𝛾𝑋 𝑡   

Proof:  

 Consider the Lie algebra map 𝜏: ℝ ⟶ 𝔤 defined by 𝜏: 𝑡 ⟶ 𝑡𝑋 for all ∈ 𝔤 . Now, ℝ is 

connected and simply connected, so by (Theorem 1.5.4) . There exists a unique Lie group 

map 𝛾𝑋 : ℝ ⟶ 𝐺 such that  𝑑𝛾𝑋 0 = 𝜏 ; which is to say  

 𝑑
𝑑𝑡

 
𝑡=0

𝛾𝑋 𝑡 = 𝑋  
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This motivates the following definition :  

Definition  1.10.1.  

Let  𝐺 be a Lie group with Lie algebra  . define the exponential map 𝑒𝑥𝑝: 𝔤 ⟶ 𝐺 by  

exp 𝑋 = 𝛾𝑋 1  .  

Lemma  1.10.1.  

Let  𝐺 be a Lie group with Lie algebra 𝔤 and ∈ 𝔤 . write 𝑋  for the left invariant vector 

field on 𝔤 with 𝑋  1 = 𝑋 . Then, 𝜙𝑡 𝑎 = 𝑎𝛾𝑋(𝑡), is the flow of 𝑋  . in particular; 𝑋  is 

complete ; i.e. the flow exists for all 𝑡 ∈ ℝ .  

Proof:  

For 𝑎 ∈ 𝐺, we have  

 𝑑
𝑑𝑡

 
𝑡=𝑠

𝑎 𝛾𝑋 𝑡 =  𝑑𝐿𝑎 𝛾𝑋(𝑠)
  𝑑

𝑑𝑡
 
𝑡=𝑠

 𝛾𝑋 𝑡    

                        =  𝑑𝐿𝑎 𝛾𝑋 (𝑠)
  𝑑

𝑑𝑡
 
𝑡=0

 𝛾𝑋 𝑡 + 𝑠    

                        =  𝑑𝐿𝑎 𝛾𝑋 (𝑠)
  𝑑

𝑑𝑡
 
𝑡=0

 𝛾𝑋 𝑠  𝛾𝑋 𝑡    

                        =  𝑑𝐿𝑎 𝛾𝑋 (𝑠)
  𝑑

𝑑𝑡
 
𝑡=0

𝐿 𝛾𝑋  𝑠   𝛾𝑋 𝑡     

                        =  𝑑𝐿𝑎𝛾𝑋(𝑠)
 

1
  𝑑

𝑑𝑡
 
𝑡=0

 𝛾𝑋 𝑡    

                        =  𝑑𝐿𝑎𝛾𝑋(𝑠)
 

1
 (𝑋)  

                        = 𝑋  𝑎𝛾𝑋(𝑠)                                               ( since 𝑋  is left-invariant)  

So, 𝑎𝛾𝑋(𝑡) is the flow of 𝑋  and exists for all  .  
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Lemma  1.10.2.   

The exponential map is 𝐶∞  .  

Proof:  

Consider the vector field 𝑉 on 𝐺 × 𝔤 given by : 𝑉 𝑎, 𝑋 = (𝑑𝐿𝑎 𝑋 , 0) Then,𝑉 ∈

𝐶∞(𝐺, 𝔤) and the claim is that the flow of 𝑉 is given by 𝜓𝑡 𝑔, 𝑋 = (𝑔𝛾𝑋 𝑡 , 𝑋). To 

prove this claim , consider the following : 

 𝑑
𝑑𝑡

 
𝑡=0

 (𝑔𝛾𝑋 𝑡 , 𝑋) =  𝑑𝐿𝑎𝛾𝑋 𝑠 
 𝑋 , 0  =𝑉( 𝑔𝛾𝑋 𝑠 , 𝑋) 

From which we can conclude that  𝛾𝑋  depends smoothly on 𝑋.  

Now, we note that the map 𝜙: ℝ × 𝐺 × 𝔤 defined by 𝜙 𝑡, 𝑎, 𝑋 =  𝑎𝛾𝑋 𝑡 , 𝑋  is smooth .  

Thus, if 𝜋1: 𝐺 × 𝔤 ⟶ 𝐺 is projection on the first factor , 𝜋1 ∘  1𝐺  , 𝑋 =  𝛾𝑋 1 =

exp⁡(𝑥) is 𝐶∞  .   

Lemma  1.10.3.   

For all 𝑋 ∈ 𝔤 and for all ∈ 𝑅 ,  𝛾𝑡𝑋 1 =  𝛾𝑋 𝑡  .  

Proof:  

The intent is to prove that for all ∈ ℝ , 𝛾𝑡𝑋 𝑠 =  𝛾𝑋 𝑡𝑠  . Now, 𝑠 ⟼  𝛾𝑡𝑋 𝑠  is the 

integral curve of the left invariant vector field 𝑡𝑋 through 1𝐺  . But, 𝑋 = 𝑡𝑋  , so if we 

prove that , 𝛾𝑋 𝑡𝑠  is an integral curve of 𝑡𝑋  through 1𝐺  , by uniqueness the Lemma will 

be established .  

To prove this , first let 𝜍 𝑠 =  𝛾𝑋 𝑡𝑠 . Then,  𝜍 0 =  𝛾𝑋 0 = 1𝐺  . we also have  

𝑑

𝑑𝑠
𝜍 𝑠 =

𝑑

𝑑𝑠
 𝛾𝑋 𝑡𝑠   

             = 𝑑  𝑑
𝑑𝑢

 
𝑢=𝑡𝑠

𝛾𝑋 𝑢    

             = 𝑡𝑋   𝛾𝑋 𝑡𝑠     

             = 𝑡𝑋  𝜍(𝑠)   
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So,  𝜍(𝑠) is also an integral curve of 𝑡𝑋  through 1𝐺  . Thus, 𝛾𝑡𝑋 𝑠 = 𝛾𝑋 𝑡𝑠  , and in 

particular , when 𝑠 = 1 we have  𝛾𝑡𝑋 1 = 𝛾𝑋 𝑡  

Now, we will prove the nice fact about exponential map .  

Proposition  1.10.2.  

Let 𝐺 be a Lie group and 𝔤 it's Lie algebra . identify both 𝑇0𝔤 and 𝑇1𝐺 with 𝔤 . then 

 𝑑 𝑒𝑥𝑝 0: 𝑇0𝔤 ⟶ 𝑇1𝐺 is the identity map . 

Proof:  

By using the previous (Lemma 1.10.3) we have  

 𝑑 exp 0 𝑋 =  𝑑
𝑑𝑡

 
𝑡=0

exp(0 + 𝑋)  

                      =  
𝑑

𝑑𝑡
 
𝑡=0

 𝛾𝑡𝑋 (1)  

                     =  
𝑑

𝑑𝑡
 
𝑡=0

𝛾𝑋 𝑡   = X 

Corollary  1.10.1.  

For all 𝑡1 , 𝑡2 ∈ ℝ ,  

1.  𝑒𝑥𝑝 𝑡1 + 𝑡2 𝑋  = 𝑒𝑥𝑝𝑡1𝑋 + 𝑒𝑥𝑝𝑡2 𝑋 .  

2. exp⁡(−𝑡𝑋) =  exp(𝑡𝑋) −1  

1.11  Representation of Lie Group :  

Definition  1.11.1.   

An action of a Lie group 𝐺22 an a manifold 𝑀 is an assignment to each 𝑔 ∈ 𝐺 a 

diffeomorphism 𝜌(𝑔) ∈ 𝐷𝑖𝑓𝑓𝑀 such that 𝜌 1 = 𝜌 𝑔 𝜌(𝑕) and such that the map  
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𝐺 × 𝑀 → 𝑀:  𝑔, 𝑚 ⟼ 𝜌 𝑔 . 𝑚  is smooth map.  

Example  1.11.1.  

The group 𝐺𝐿(𝑛, ℝ) (and thus any it‟s Lie subgroup) acts on ℝ𝑛 .  The group 𝑂(𝑛, ℝ) acts 

on the sphere 𝑆𝑛−1 ⊂ ℝ𝑛 . The group 𝑈 𝑛 acts on the sphere 𝑆2𝑛−1 ⊂ ℂ𝑛 .  

Definition  1.11.2. 

Let 𝐺 be a Lie group and 𝑉 a vector space
23

. A representation of a Lie group is a map 

𝜌: 𝐺 ⟶ 𝐺𝐿(𝑉) of Lie groups .  

For a Lie group 𝐺, consider the action of 𝐺 on itself by conjugation: for each 𝑔 ∈ 𝐺 we 

have a diffeomorphism 𝑐𝑔 : 𝐺 ⟶ 𝐺 given by 𝑐𝑔 𝑎 = 𝑔𝑎𝑔−1 .  

Notice that 𝑐𝑔 1 = 1, and we have an invertible linear map  𝑑𝑐𝑔 
1

: 𝔤 ⟶ 𝔤 .  

Now,  𝑐𝑔1𝑔2
= 𝑐𝑔1

∘ 𝑐𝑔2
 for all 𝑔1𝑔2 ∈ 𝐺, and hence   𝑑𝑐𝑔1

 
1
 𝑑𝑐𝑔1

 
1

=  𝑑 𝑐𝑔1𝑔2
 

1
 .  

Definition  1.11.3.  

The Adjoint representation of a Lie group  𝐺 is the representation 𝐴𝑑: 𝐺 ⟶ 𝐺𝐿(𝔤) 

defined by   

𝐴𝑑 𝑔 =  𝑑𝑐𝑔 
1
 

The Adjoint representation of a Lie algebra 𝔤 is the representation  

 𝑎𝑑: 𝔤 ⟶ 𝔤𝔩 𝔤 = 𝐻𝑜𝑚(𝔤, 𝔤) by defined by :  𝑎𝑑 𝑋 =  𝑑 𝐴𝑑 1 (𝑋)  

Proposition  1.11.1.  

Suppose 𝐺 is a Lie group .then, for all ∈ ℝ ,𝑔 ∈ 𝐺 and 𝑋 ∈ 𝔤 we have  

1. 𝑔 𝑒𝑥𝑝 𝑡𝑋 𝑔−1 = exp⁡ 𝑡𝐴𝑑 𝑔  𝑋   and  

2.  𝐴𝑑  exp 𝑡𝑋  = exp 𝑡 𝑎𝑑 𝑋    
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Proof:  

For the first statement , apply naturality of  𝑒𝑥𝑝 to the Fig (1.7)  

 

Fig (1.7) 

Similarly, to prove, apply the naturality of 𝑒𝑥𝑝 to the Fig(1.8) 

 

Fig (1.8) 

Example  1.11.2 

We compute what 𝐴𝑑 and 𝑎𝑑 are as maps when = 𝐺𝐿(𝑛, ℝ) . recall that for any 𝐴, 𝑔 ∈ 𝐺 

we have the conjugation map 𝑐𝑔 𝐴 = 𝑔𝐴𝑔−1. Note that conjugation is linear . thus for 

𝑋 ∈ 𝔤 we have  

𝐴𝑑 𝑔  𝑋 =  𝑑𝑐𝑔 
𝐼
 (𝑋)  

                  =  
𝑑

𝑑𝑡
 
𝑡=0

 𝑐𝑔   𝑒𝑥𝑝 𝑡𝑋    

                  =   
𝑑

𝑑𝑡
 
𝑡=0

 𝑔𝑒𝑥𝑝 𝑡𝑋  𝑔−1  

                  = 𝑔   𝑑
𝑑𝑡

 
𝑡=0

 𝑔𝑒𝑥𝑝 𝑡𝑋  𝑔−1   

                  =  𝑔𝑋𝑔−1  

Also, for 𝑋, 𝑌 ∈ 𝔤  
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𝑎𝑑  𝑋 𝑌 =  𝑑
𝑑𝑡

 
𝑡=0

 𝐴𝑑  𝑒𝑥𝑝 𝑡𝑋  𝑌  

                =  
𝑑

𝑑𝑡
 
𝑡=0

 𝑒𝑥𝑝 𝑡𝑋  𝑌 𝑒𝑥𝑝 −𝑡𝑋   

               =   
𝑑

𝑑𝑡
 
𝑡=0

 𝑒𝑥𝑝 𝑡𝑋   𝑌 exp −0𝑋 + exp 0𝑋 𝑌   
𝑑

𝑑𝑡
 
𝑡=0

 𝑒𝑥𝑝 −𝑡𝑋     

               =  𝑋𝑌 + 𝑌(−𝑋)  

               =  𝑋, 𝑌   

The commutator of the matrices , 𝑌 .  

Theorem  1.11.1.  

Let 𝐺 be a Lie group . then, for any 𝑋, 𝑌 ∈ 𝔤 . 

𝑎𝑑 𝑋 𝑌 =  𝑋, 𝑌   

Proof:  

First note that  

𝑎𝑑 𝑋 𝑌 =   
𝑑

𝑑𝑡
 
𝑡=0

Ad (exp 𝑡𝑥)𝑌  

               =  
𝑑

𝑑𝑡
 
𝑡=0

𝑑  𝐶𝑒𝑥𝑝𝑡𝑥  
1

(𝑌) .  

Also, recall that we have shown:  

𝑐𝑔 𝑎 = 𝑔𝑎𝑔−1 =   𝑅𝑔−1 ∘ 𝐿𝑔 (𝑎)  

 𝑑 𝐿𝑔 
1
 𝑌 = 𝑌  (𝑔) , where 𝑌  is the left invariant vector field with 𝑌  1 = 𝑌,  

The flow 𝜙𝑡
𝑌  of 𝑌  is given by , 𝜙𝑡

𝑌  𝑎 = 𝑎  exp 𝑡𝑋 =  𝑅exp 𝑡𝑋 (𝑎)  

 𝑋 , 𝑌  (𝑎) =  𝑑
𝑑𝑡

 
𝑡=0

𝑑 𝜙𝑡
𝑋    𝑌   𝜙𝑡

𝑋 (𝑎)    

 𝑒𝑥𝑝𝑡𝑋 −1 = exp(−𝑡𝑋)  
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Then we get  

𝑎𝑑 𝑋 𝑌 =  𝑑
𝑑𝑡

 
𝑡=0

𝑑𝑅exp (−𝑡𝑋 )  𝑑 𝐿exp 𝑡𝑋  𝑌   

               =  
𝑑

𝑑𝑡
 
𝑡=0

𝑑𝑅exp (−𝑡𝑋 )  𝑌  (𝑒𝑥𝑝𝑡𝑋)   

               =  
𝑑

𝑑𝑡
 
𝑡=0

𝑑 𝜙𝑡
𝑋    𝑌   𝜙𝑡

𝑋 (1)    

               =  𝑋 , 𝑌   (1)        ,     (by 4)  

1.12  Operation on representations:  

Definition  1.12.1   (Subrepresentations and Quotients)  

 Let 𝑉 be a representation of 𝐺(respectively)
24

. A subrepresentation is a vector subspace 

𝑊 ⊂ 𝑉 stable under the action: 𝜌 𝑔 𝑊 ⊂ 𝑊 for all 𝑔 ∈ 𝐺 (respectively, 𝜌 𝑥 𝑊 ⊂ 𝑊 

for all 𝑥 ∈ 𝔤).  

 If   𝐺 is a connected Lie group with Lie algebra 𝔤, then 𝑊 ⊂ 𝑉 is a subrepresentation for 

𝐺 and only if it is a sub representation for 𝔤 . 

 If 𝑊 ⊂ 𝑉 is a subrepresentation, then the quotient space 𝑉 𝑊  has a canonical strcture of 

a representation. It will be called factor representation, or the quotient representation. 

Lemma  1.12.1.    (Direct sum and tensor product)  

 Let  𝑊, 𝑉 be representations of 𝐺 (respectively 𝔤). Then there is a canonical structure of 

a representation on 𝑉∗, 𝑉 ⊕ 𝑊, 𝑉 ⊗ 𝑊.  

Proof:  

 Action of 𝐺 on  𝑉 ⊕ 𝑊 is given by 𝜌 𝑔  𝑣 + 𝑤 = 𝜌 𝑔 𝑣 + 𝜌 𝑔 𝑤, and similarly for 𝔤  

For tensor product, we define 𝜌 𝑔  𝑉 ⊗ 𝑊 = 𝜌 𝑔 𝑣 ⊗ 𝜌 𝑔 𝑤. However, action of  𝔤 

is trickier: indeed naïve definition 𝜌 𝑥  𝑉 ⊗ 𝑊 = 𝜌 𝑥 𝑣 ⊗ 𝜌 𝑥 𝑤 doesn't define a 
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representation ( it is not linear in 𝑥). Instead, if we write  𝑥 = 𝛾 ∙(0) for some one-

parameter family 𝛾(𝑡) in a Lie group 𝐺 with 𝛾 0 = 1, Then  

 𝜌 𝑔  𝑉 ⊗ 𝑤 =  𝑑
𝑑𝑡

 
𝑡=0

 𝛾 𝑡 𝑣 ⊗ 𝛾 𝑡 𝑤 =  𝛾 ∙(0)𝑣 ⊗ 𝛾 𝑡 𝑤 +  𝛾 0 𝑣 ⊗ 𝛾 ∙(𝑡)𝑤   

                                                                       = 𝜌 𝑥 𝑣 ⊗ 𝑤 + 𝑉 ⊗ 𝜌 𝑥 𝑤  

By Liebnitz rule . Thus, we define  𝜌 𝑥  𝑉 ⊗ 𝑤 = 𝜌 𝑥 𝑣 ⊗ 𝑤 + 𝑣𝜌 𝑥 𝑤 . it is easy to 

shows, even without using Lie group 𝐺, that so defined action is indeed a representation 

of  𝔤 on 𝑉 ⊗ 𝑊.  To define action of 𝐺, 𝔤 on 𝑉∗, we require that the natural pairing 

𝑉 ⊗ 𝑉∗ ⟶ ℂ be a morphism of representations, considering  ℂ as the trivial 

representation. This gives, for 𝑣 ∈ 𝑉, 𝑣∗ ∈ 𝑉∗,  𝜌 𝑔 𝑣, 𝜌 𝑔 𝑣∗ =  𝑣, 𝑣∗ , so action of 𝐺 

in  𝑉∗ is given by   𝜌𝑉∗ 𝑔 = 𝜌 𝑔−1 𝑡 , where for 𝐴: 𝑉 ⟶ 𝑉, we denote by 𝐴𝑡  the adjoint 

operator 𝑉∗ ⟶ 𝑉∗ . 

Similarly, for the action of  𝔤 we get  𝜌 𝑥 𝑣, 𝑣∗ +  𝑣, 𝜌 𝑔 𝑣∗ = 0, so 𝜌𝑉∗ 𝑥 =

− 𝜌𝑣 𝑥  
𝑡
  

Example 1.12.1.   

Let 𝑉 be a representation of 𝐺(respectively 𝔤). Then the space 𝐸𝑛𝑑 𝑉 ≃ 𝑉⨂𝑉∗ of linear 

operators on 𝑉 is also a representation, with the action given by 𝑔: 𝐴 ⟼ 𝜌𝑣 𝑔 𝐴𝜌𝑣 𝑔−1  

maps 𝐻𝑜𝑚(𝑉, 𝑊) between two representations is also a representation with the action 

defined by 𝑔: 𝐴 ⟼ 𝜌𝑤 𝑔 𝐴𝜌𝑣 𝑔−1  for 𝑔 ∈ 𝐺 (respectively, 𝑥: 𝐴 ⟼ 𝜌𝑤 𝑥 𝐴 −

𝐴𝜌𝑣(𝑥) for  𝑥 ∈ 𝔤 ) . 

Similarly, the space of bilinear forms on 𝑉 is also a representation, with action given by  

𝑔𝐵 𝑣, 𝑤 = 𝐵(𝑔−1𝑣, 𝑔−1𝑤),  𝑔 ∈ 𝐺 

𝑥𝐵 𝑣, 𝑤 = − 𝐵 𝑥. 𝑣, 𝑤 + 𝐵 𝑣, 𝑥. 𝑤     ,  𝑥 ∈ 𝔤 . 

Definition  1.12.2.   (Invariants)  

Let 𝑉 be a representation of a Lie group 𝐺. A vector 𝑣 ∈ 𝑉 is called invariant if: 
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 𝜌 𝑔 𝑣 = 𝑣 for all 𝑔 ∈ 𝐺. The subspace of invariant vectors in 𝑉 is deonted by  𝑉𝐺 . 

Similarly, let 𝑉 be a representation of a Lie algebra 𝔤. A vector  𝑣 ∈ 𝑉 is called invariant 

if 𝜌 𝑥 𝑣 = 0 for all 𝑥 ∈ 𝔤. The subspace of invariant vectors in 𝑉 is denoted by 𝑉𝔤. 

If 𝐺 is a connected Lie group with the Lie algebra 𝔤, then for any representation 𝑉 of 𝐺, 

we have 𝑉𝐺 = 𝑉𝔤 . 

Example  1.12.2.  

Let 𝑉, 𝑊 be representations and 𝐻𝑜𝑚(𝑉, 𝑊) be the space of linear maps 𝑉 ⟶ 𝑊, with 

the action of 𝐺 defined as in Example (1.11.2) . Then  𝐻𝑜𝑚(𝑉, 𝑊) 𝐺 = 𝐻𝑜𝑚𝐺(𝑉, 𝑊) is 

the space of intertwining operators. In particular, this shows that 

𝑉𝐺 =  𝐻𝑜𝑚(ℂ, 𝑊) 𝐺 = 𝐻𝑜𝑚𝐺(𝑉, 𝑊) 

With ℂ considered as a trivial representation . 

Example  1.12.3.  

 Let 𝐵 be a bilinear form on a representation 𝑉. Then 𝐵 is invariant under the action of 𝐺 

defined in ( Example 1.11.2)  iff : 𝐵 𝑔𝑣, 𝑔𝑤 = 𝐵(𝑣, 𝑤) For any ∈ 𝐺 ,𝑣, 𝑤 ∈ 𝑉. 

 Similarly, 𝐵 is invariant under the action of 𝔤 iff :  𝐵 𝑥. 𝑣, 𝑤 + 𝐵 𝑣, 𝑥. 𝑤 = 0  ,  for 

any 𝑥 ∈ 𝔤 ,𝑣, 𝑤 ∈ 𝑉  

Definition   1.12.3.   (Irreducible representations)  

A non-zero representation 𝑉 of 𝐺 or 𝔤 is called irreducible or simple if it has no 

subrepresentations other than 0, 𝑉. Otherwise  𝑉 is called reducible .  

Example  1.12.4.   

Space ℂ𝑛 , considered as a representation of 𝑆𝐿(𝑛, ℂ), is irreducible . 

If representation 𝑉 is not irreducible ( such representations are called reducible), then it 

has a non-trivial subrepresentation 𝑊 and thus, 𝑉 can be included in a short exact 

sequence 0 ⟶ 𝑊 ⟶ 𝑉 ⟶ 𝑉/𝑊 ⟶ 0; thus, in a certain sense it is built out of simple 
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pieces. The natural question is whether this exact sequence splits,i.e, whether we can 

write 𝑉 = 𝑊 ⊕  𝑉 𝑊   as a representation. If so then repeating this process, we can 

write 𝑉 as a direct sum of irreducible representations.  

Definition  1.12.4.  

 A representation is called completely reducible (or semisimple) if it is isomorphic to a 

direct sum of irreducible representations: ≃⊕ 𝑉𝑖  , 𝑉𝑖  irreducible . 

In such a case one usually groups together isomorphic summands writing ≃⊕ 𝑛𝑖𝑉𝑖  , 

𝑛𝑖 ∈ ℤ+ where 𝑉𝑖  are pairwise non-isomorphic irreducible representations . The numbers 

𝑛𝑖  are called multiplicities.  

However, as the following example shows, not every representation is completely 

reducible. 

Example  1.12.5.  

Let  𝐺 = ℝ ,so 𝔤 = ℝ. Then a representation of 𝔤 is the same as a vector space 𝑉 with a 

linear map ℝ ⟶ 𝐸𝑛𝑑(𝑉); obviously, every such map is of the form 𝑡 ⟼ 𝑡𝐴 for some 

𝐴 ∈ 𝐸𝑛𝑑(𝑉) which can be arbitrary. The corresponding representation of the group ℝ is 

given by 𝑡 ⟼ exp⁡(𝑡𝐴). Thus, classifying representation of  ℝ is equivalent to classifying 

linear maps 𝑉 ⟶ 𝑉 up to a change of basis. Such a classification is known (Jordan 

normal form) but non-trivial.  

If 𝑣 is an eigenvector of 𝐴 then the one-dimensional space ℂ𝑣 ⊂ 𝑉 is invariant under 𝐴 

and thus a subrepresentation in  . Since every operator in a complex vector space has an 

eigenvector , this shows that every representation of  ℝ is reducible, unless it is one-

dimensional. Thus, the only irreducible representations of ℝ are one-dimensional.  

 Now, it see that writing a representation given by 𝑡 ⟼ exp⁡(𝑡𝐴) as a direct sum of 

irreducible ones is equivalent to diagonalizing 𝐴. So a representation is completely 

reducible iff  𝐴 is diagonalizable . Since not every linear operator is  diagonalizable, not 

every representation is completely reducible . 
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Thus, more modest goals of the representation theory would be answering the following 

questions :  

1. For a given Lie group𝐺, classify all irreducible representations of  . 

2. For a given representation 𝑉 of a Lie group 𝐺, given that is completely reducible, find 

explicity the decomposition of  𝑉 into direct sum of irreducibles . 

3. For which Lie groups  𝐺 all representation are completely reducible?  

 

 

  


