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Chapter One 
(1.1) Introduction: 
The basic unit of matter is atom, the three particles of the atom are: 

protons, neutrons, and electrons. The central portion of the atom is 

nucleus which it consist of protons and neutrons. Electrons orbit the 

nucleus. If the nucleus consists of excess mass or excess energy, it 

gets rid of them by emitting α or	ߛ radiation. 

 Alpha (α) radiation is the Helium nucleus, while gamma (ߛ) radiation 

is a stream of photons. β rays which are electrons or anti electrons can 

be emitted. They are emitted if the number of neutrons is not equal to 

the number of protons, the nucleus will not be stable. The unstable 

atom will try to become stable by converting the excess neutrons or 

protons to protons or neutrons respectively. The materials that emit 

radiation are called radioactive materials [1, 2]. 

 Radio activity is widely used in medicine in curing some diseases like 

cancer, beside applications in diagnosis. It is also used in non-

distractive testing and mineral exploration [3, 4]. 

(1.2)The Problem of the Thesis:   
  The radioactive decay law is not related to the laws of quantum 

mechanics. The nucleus which is responsible for decay consists of sub 

atomic particles which are described by quantum laws. This is obvious 

as far as the nucleuseswhich are responsible for nuclear radiation, is 

described by the laws of quantum mechanics, and have nothing to do 

with classical laws [5, 6, 7]. 

 

 



2 
 

(1.3) Literature Review: 
Different attempts were made to construct new quantum laws [7, 8] 

and statistical laws to describe physical phenomena [9, 10]. But most 

of them are directed to describe scattering processes or atomic spectra. 

No well-established work is done for nuclear reaction. 

 (1.4)The Aim of the Thesis:  
  The aim of this work is to derive the radioactive decay laws 

from the laws of quantum machines and statistical laws. It also needs 

relating the half-life to the relaxation time. 

(1.5)Thesis out Line: 
The thesis consists of four chapters .Chapter one is the  introduction, 

and chapter two is concerned with Radioactive decay Law  .Chapter 

three is the literature review, while chapter four is devoted for 

contribution. 
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Chapter Two 

Nuclear Reaction 
(2.1) Introduction 
Early Greek philosophers speculated that the earth was made up of 

different combinations of basic substances, or elements. They 

considered these basic elements to be earth, air, water, and fire. 

Modern science shows that the early Greeks held the correct concept 

that matter consists of a combination of basic elements, but they 

incorrectly identified the elements [11]. 

In 1661 the English chemist Robert Boyle published the modern 

criterion for an element. He defined an element to be a basic substance 

that cannot be broken down into any simpler substance after it is 

isolated from a compound, but can be combined with other elements 

to form compounds. To date, 105 different elements have been 

confirmed to exist, and researchers claim to have discovered three 

additional elements. Of the 105 confirmed elements, 90 exist in nature 

and 15 are man-made [12,13,14]. 

Another basic concept of matter that the Greeks debated was whether 

matter was continuous or discrete. That is, whether matter could be 

continuously divided and subdivided into ever smaller particles or 

whether eventually an indivisible particle would be encountered. 

Democritus in about 450 B.C. argued that substances were ultimately 

composed of small, indivisible particles that he labeled atoms. He 

further suggested that different substances were composed of different 

atoms or combinations of atoms, and that one substance could be 

converted into another by rearranging the atoms. It was impossible to 
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conclusively prove or disprove this proposal for more than 2000 years. 

The modern proof for the atomic nature of matter was first proposed 

by the English chemist John Dalton in 1803. Dalton stated that each 

chemical element possesses a particular kind of atom, and any 

quantity of the element is made up of identical atoms of this kind 

[15,16]. What distinguishes one element from another element is the 

kind of atom of which it consists, and the basic physical difference 

between kinds of atoms is their weight. 

(2.2)Composition of Atomic Nucleus - Neutrons and 

Protons: 
Nuclides are nucleus of different isotopes, which is represented 

by the symbol A
Z X - X being symbol of the element [17]. A is the mass 

number, which is the sum of number of protons & neutrons; Z is the 

atomic number, the number of protons, which also represents the 

nuclear charge. Number of neutrons = (A – Z). For example, the 

symbol of carbon-14 nuclide is 14
6 C, which means a carbon-14 nuclide 

has 6 protons and 8 neutrons. The nuclide symbol of lead-206 is 206
82 Pb. 

(2.3) Radioactive Decay: 
Nuclei with unsuitable compositions are unstable and they 

undergo spontaneous disintegration or nuclear decay. Nuclides that 

undergo spontaneous decay are said to be radioactive. Nuclear decay 

changes a radioactive nuclide into a stable one, which also change the 

identity of the nuclide. For example, when a carbon-14 nuclide decays 

by emitting a beta particle, it becomes nitrogen-14 (which is stable) 

[18,19,20]. 
14

6 C   14
7 N  + 0

1 e(2.3.1) 
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Therefore, unlike a chemical reaction, nuclear reactions alter the 

identity of the atom. 

There are three Types of Radioactive Decay Alpha Decay, Beta Decay 

and Gamma Decay. 

(2.3.1) Alpha Decays: 

  There are several different types of radioactive decay [21]. One 

frequently observed decay process involves production of an alpha (ߙ) 

particle, which is a helium nucleus and assigned the 4
2  This is the .ߙ

common mode of decay for heavy radioactive nuclides (those with 

atomic number, Z > 83)[22,23].  When a nucleus loses an alpha 

particle its mass number  (A) decreases by 4 units and the atomic 

number (Z) decreases by 2 units. The product of an alpha decay is a 

nuclide with two less protons and neutrons, respectively, than the 

original nuclide.  

ܺ௓஺ → ௓ܻିଶ
஺ିସ +  (2.3.2)ߙ

ߙ			 = ଶ݁ܪ
ସ  

For example, uranium-238 ( 238
92 U) and radium-226 ( 226

88 Ra) decay 

by alpha particle emission, which change them to thorium-234 and 

radon-222, respectively. 

 238
92 U   234

90 Th + 4
226 ;ߙ2

88 Ra  222
86 Rn + 4

2  (2.3.3)ߙ

(2.3.2) Beta Decays: 

  Another common nuclear decay involves the production of a 

beta (ߚ) particle, which is a nuclear particle identical to an electron in 

mass and charge, and is assigned the symbol 0
1  [24,25] ߚ

ܺ௓஺ → ௓ܻାଵ
஺ + ିߚ +  (2.3.4)ିݒ
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For example, radioactive nuclides such as cobalt-60 ( 60
27 Co) and 

carbon-14 ( 14
6 C), decay by emitting ߚ particle.  

 60
27 Co  60

28 Ni + 0
1 14  ;ߚ

6 C  14
7 N  + 0

1  (2.3.5) ;ߚ

The lost of a beta particle convert a neutron to a proton:  1
0 n   1

1H +  
0
1  Thus, the product of beta decay is a nuclide with the same mass .ߚ

number (A), but with an atomic number one unit higher than the 

original nuclide [26, 27]. Both decay processes (as well as other types 

of radioactive decay) are accompanied by the production of gamma 

 rays, which are high-energy photons of electromagnetic radiation (ߛ)

that has a very short wavelength (λ ~ 10-13 m) and a very high 

frequency (1021 ~ ݒ s-1). The new nuclide formed in the decay process 

goes to an excited nuclear energy state, which then relaxes to the 

ground state and releases the excess nuclear energy as ߛ radiation. For 

example, when uranium-238 decays, two types of ߛ rays of different 

energy are produced in addition to alpha particle ( 4
   :(ߙ2

 238
92 U   234

90 Th  +  4
0 2  +  ߙ2

 (2.3.6);ߛ0

 Rays are photons, which have zero charge and mass. The productionߛ

of ߛray does not change the mass number (A) or the atomic number 

(Z). 

(2.3.3) Positron Emission: 

  A positron is identical to an electron in mass, but it is positively 

charged.  The symbol used for positron is  0
 [28.29] ߚ1

ܺ௓஺ → ௓ܻାଵ
஺ + ାߚ +  (2.3.7)ݒ

 For example, carbon-11 decays by a positron emission: 

 11
6 C   11

5 B  + 0
ߚ1 +  (2.3.8)ݒ
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When a nuclide emits a positron, a proton is converted to neutron:  
1
1p 1

0n +  0
 (2.3.9)ߚ1

 Thus, the product of positron emission is a nuclide with the same 

mass number (A), but with one unit lower in atomic number relative to 

the original nuclide. 

Positron is not easily detected because as soon as it is released it 

will encounter an electron outside the nucleus and they annihilate each 

other, producing characteristic ߛ rays that go in opposite directions:   
0
0  +  ߚ1

1  (2.3.10) .ߛ  2ߚ

 This annihilation process is an example whereby matter 

is converted to energy, and positron is often referred to as 

antimatter. 

(2.3.4) Electron Capture: 

  Some radioactive nuclides decay by the electron capture 

(EC) process; that is, an electron from the innermost shell (n = 

1) is absorbed by the nucleus, where it combines with a proton 

to form a neutron:  
1
1p  + 0

1 ߚ 1
0 n                                          (2.3.11) 

As in the positron emission, an electron capture produces a nuclide 

with the same mass number (A), but with one unit less in atomic 

number (Z) [30].  For example: 

 195
79 Au  + 0

1 e   195
78 Pt(2.3.12) 

(2.3.5)Gamma Decay: 

     Gamma rays are a type of electromagnetic radiation that results 

from a redistribution of electric charge within a nucleus. A ߛ ray is a 

high energy photon. The only thing which distinguishes a ߛ ray from 
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the visible photons emitted by a light bulb is its wavelength; the ߛ 

ray's wavelength is much shorter. For complex nuclei there are many 

different possible ways in which the neutrons and protons can be 

arranged within the nucleus. Gamma rays can be emitted when a 

nucleus undergoes a transition from one such configuration to another. 

For example, this can occur when the shape of the nucleus undergoes 

a change. Neither the mass number nor the atomic number is changed 

when a nucleus emits a ߛ ray in the reaction [31]. 

(2.3.6)Radioactive Decay Series: 

Heavy radioactive nuclides, such as radium-226 and uranium-

238, cannot gain stability by emission of a single radioactive particle. 

They undergo a decay series, producing either an alpha or a beta 

particle and gamma radiation during each step, until a stable nuclide is 

formed [32]. For example, uranium-238 undergoes a decay series to 

form a stable lead-206.  

 238
92 U   234

90 Th 234
91 Pa   234

92 U   230
90 Th 226

88 Ra   222
86 Rn 218

84 Po   
214

82 Pb 214
83 Bi   214

84 Po   210
82 Pb 210

83 Bi   210
84 Po   206

82 Pb(2.3.13) 

In nuclear reactions, equations are balanced by matching the 

atomic number (that is, the charges) and the mass number on both side 

of the equation. Once the atomic number of the product nuclide is 

determined, it must be assigned proper symbol. For example, 

polonium-212 decays by an alpha emission. Identify the new nuclide 

formed. 

 212
84 Po   4

 ?  +ߙ2

To identify the second product, its mass number and atomic number 

must be determined. That is, the new nuclide has an atomic number = 
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84 - 2 = 82 (which is lead) and a mass number = 212 - 4 = 208. The 

nuclide symbol of the new nuclide is S (208, 82)Pb. The nuclear 

equation is written as: 

 212
84 Po  208   +  ߙ

82 Pb(2.3.14) 

(2.3.7) Nuclear Transformation or Transmutation: 

Transmutation is an induced nuclear reaction that results when a 

target nucleus is bombarded with a fast moving particle or nuclear 

particle called projectile [33].  The first transmutation process was 

observed by Rutherford in 1919, who noticed that when nitrogen-14 

was bombarded with an alpha particle an oxygen-17 is formed: 

 14
7 N  + 4

ߙ2 17
8 O  +  1

1p(2.3.15) 

About 14 years later, Irene Curie and her husband, Frederick Joliot, 

observed a similar transformation of aluminum to phosphorus when 

bombarded by alpha particles.  

 27
13 Al  + 4

2 ߙ 30
15 P  +  1

0 n(2.3.16) 

Transmutation can also be carried out by bombarding the target with 

other positive ions. Since the bombarding particles (the projectile) are 

positively charged and strongly repelled by the target nuclei, they 

must be accelerated to a very high speed in order to acquire sufficient 

kinetic energy that would overcome the repulsion force. This is 

accomplished in various types of particle accelerators, such as the 

Stanford Linear Accelerator, the cyclotron at UC Berkeley Lawrence 

Livermore Lab, and other particle accelerators.    

All transuranium elements (those with Z > 93) are produced by 

transmutation processes. For example, element-106 (Seaborgium) was 

formed by bombarding californium-249 with oxygen-18 nuclei, the 
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projectiles are accelerated in a linear accelerator, called Superhilac. 

 249
98 Cf  + 18

8 O    263
106 Sg  +  4 1

0 n (2.3.17) 

Element 110, which is not yet named, was produced by bombarding 

lead-208 with nickel-64 ions: 

 208
82 Pb  + 64

28 Ni+ 271
110 E  +   1

0 n(2.3.18)  

(*E is not actual symbol) 

Neutrons are also used as projectiles in many transmutation processes.  

Since neutrons are neutral particles, they are not strongly repelled by 

target nuclei and do not to be accelerated as fast as positively charged 

particles. Instead, neutrons are accelerated by heat, thus called thermal 

neutrons, which gives them enough energy to enter target nuclei. The 

reaction is called neutron capture: 

59
27 Co  + 1

0 n 60
27 Co  +  0

 (2.3.19) ߛ0

152Dy* ---->152Dy + γ    (2.3.20) 

(2.4)Radioactive Decay law 

(2.4.1) Mathematical Consideration of Radioactive Decay: 

Consider the number of nuclei (dN) decaying in a short time dt 

[34].The decaying rate is given by : 

(dN/dt)= - λN(2.4.1) 

Where: N is the number of radioactive nuclei present at that moment 

dtis the time over which the measurement is made the element, 

represented by a constant (λ) called the disintegration (or 
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decay)constant. 

So:  

dN/dt = - λN 

the minus sign is there because the number of radioactive nuclei 

decreases as time increases. The quantity dN/dtis the rate of decay of 

the source or the activity of the source and is the number of 

disintegrations per second. This is measured in units called Becquerels 

(Bq) where 1 Bq = 1 disintegration per second. 

A larger and more traditional unit is the Curie (Ci) 1 Ci = 3.7 x1010Bq.  

The disintegration constant or decay constant (λ) can be defined as the 

probability of a nucleon decaying in the next second,and we can use it 

to find out the mass of a given source if we know its activity. 

Returning to the formula 

dN/dt = -λN(2.4.2) 

Rearranging gives:  

dN/N = -λdt(2.4.3) 

Which when integrated between the limits N = No and N = N for the 

number of nuclei at time 0 and t gives:  

න
݀ܰ
ܰ

= ݐන݀ߣ
௧

଴

ே

ேబ

 

݈݊
ܰ
଴ܰ
=  ݐߣ−

ܰ = ଴ܰ݁ିఒ௧ (2.4.4) 

If we plot ln(N) against t we have a straight line graph with gradient    

(–λ) and an intercept on the ln(N) axis of ln(No). Fig (2.1)It is this sort 

of graph that would be most helpful in finding the half-life (T) by 
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measuring the gradient and then using the relation between the half-

life and the disintegration constant. 

 
Fig: (2.1) 

Returning to the equation and taking anti logs of both sides of equations 

gives: 

N = Noe-λt(2.4.5) 

This is known as radioactive decay law . 

The activity A is defined as a decay rate per unit time, thus it is given 

by: 

A= -dN/dt= ߣ ଴ܰ݁ିఒ௧ =  (2.4.6)ܰߣ

(2.4.2)Half-life and the Radioactive Decay Constant: 

We can now get a much better idea of the meaning of not only the 

half-life (T) but also of the decay constant (λ) [34]. 

When 

 N = No/2(2.4.7) 

The number of radioactive nuclei will have halved and so one half-

lives will have passed. Therefore when 

t = T 
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N = No/2 = Noe-λT(2.4.8) 

And so: 

1/2 = e-λT(2.4.9) 

Taking the inverse gives: 

2 = eλT 

And so:  

ln(2) = 0.693 = λT 

λ = 0.693/T (2.4.10) 

Where:λ is the decay constant 

The following table (2.1) gives some values of half-lives and decay 

constants. Notice that short half-lives go with large decay constants - a 

radioactive material with a short half-life will obviously lose its 

radioactivity rapidly. 
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Isotope Half life Decay 

constant 

(s-1) 

Uranium 

238 
4.5x109 years 5.0x10-18 

Plutonium 

239 
2.4x104 years 9.2x10-13 

Carbon 

14 
5570 years 3.9x10-12 

Radium 

226 
1622 years 1.35x1011 

Free 

neutron 

239 

15 minutes 1.1x10-3 

Radon 

220 
52 seconds 1.33x10-2 

Lithium 8 0.84 seconds 0.825 

Bismuth 

214 
1.6x10-4 seconds 4.33x103 

Lithium 8 6x10-20 seconds 1.2x1019 

To Proof that: 

 A = Ao/2n 

Start with the standard radioactive decay law and take logs to the base:  

A = Aoe-λt 

ln A = lno-λt = lnAo – ln2 (t/T)(2.4.11) 

Where:T is the half-life. 

Therefore:  

ln A = ln(Ao/2n) (2.4.12) 

Where: 
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n = t/T(2.4.13) 

And so: 

A = Ao/2n(2.4.14) 

(2.5) Radioactivity Dating 
(2.5.1)The Detection of Radioactivity:  

Radioactivity or the rate of nuclear decay is measured in units called 

becquerel (Bq), where 1 Bq = 1 event (disintegration) per second.  

Another commonly used unit of radioactivity is the Curie (Ci), where 

1 Ci = 3.70 x 1010Bq.  

Radioactivity may be measured using a Geiger counter or scintillation 

detector. A Geiger counter counts activities by measuring the pulses 

of electric current produced by ionized gas particles in the probe. The 

probe in a Geiger counter is filled with argon gas. When the high-

energy radioactive particles, such alpha or beta particles, enter the 

probe, they collide with argon atoms and ionize the latter. The argon 

ions create an electrical potential and produce electrical pulses which 

are detected and counted by the detector [35].  

 In the scintillation detector, the probe uses a substance such as 

sodium iodide that produces flashes of light when struck by 

radioactive particles. These flashes produce photoelectric current, 

which are detected and measured by the detector.  Unlike a Geiger 

counter which only measures the rate of nuclear decay, a scintillation 

detector also measures radiation energy [36]. 

The biological units for radiation dose are roentgen (R), rad (D), gray 

(Gy), and rem (roentgen equivalent man). One roentgen is the quantity 

of radiation that will produce 2.1 x 109 ion pairs in 1 cm3 of dry air at 
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normal temperature and pressure, or generates about 1.8 x 1012 ion 

pairs per gram of tissue. 

The rad and gray are biological units to describe the effects of 

radiation dose in terms of the amount of radiation energy absorbed by 

the affected tissue. 1 rad = 1.0 x 10-2 J (or 2.4 x 10-3cal) of radiation 

energy per kilogram of tissue, 1 gray = 1 J per kg tissue. The rem is a 

biological radiation unit that takes into account the different effects of 

various types of radiation. A 1-rad dose of gamma radiation does not 

produce the same health effects as a 1-rad of alpha radiation. Since 

alpha particles are more massive, at the same energy, alpha radiation 

would cause a greater damage to tissue than either beta or gamma 

radiation. Therefore, the unit rem is created as a standard comparative 

unit, such that one rem of any type of radiation has the same health 

effect as 1 roentgen of gamma rays or X-rays [36]. 

Archeologists and geologists use radioactive substances to 

determine the ages and accurate dates of artifacts and rocks. Artifacts 

that were made from woods or plant materials can be dated using 

carbon-14 dating. Rocks can be dated using uranium or other 

radioactive substances present in them.  

 Since the rate of radioactive decay is constant and the half-life of a 

given radioactive substance is fixed, it can serve as a dating clock.  

For example, carbon-14 is continuously being formed in the upper 

atmosphere by the bombardment of nitrogen-14 with neutrons from 

cosmic rays. 

 14
7 N  + 1

0n   14
6 C  +  1

1p(2.5.1) 

Carbon-14 then undergoes beta-decay to nitrogen-14:   
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14
6 C   14

7 N  + 0
1  ߚ	

After millions of years, the rate of formation and decay of carbon-14 

reach a steady state level, and the natural abundance of carbon-14 

becomes constant. The steady state level for carbon-14 in a fresh plant 

material is about 15.0 dis. per min. per gram of total carbon (dpm/g 

C). This level continues to decrease and after several hundred to a few 

thousand years, only a fraction of the activity remains. From the ratio 

of the residual activity to the steady state activity of carbon-14, and 

the half-life of carbon-14, the age of the artifact can be estimated. The 

following equation is used to calculate the age of artifacts or rocks: 

 ln(Nt/N0)  =  ି	଴.଺ଽଷ௧
୲భ/మ

(2.5.2) 

Where:Nt = radioactivity at the present time or at the time the artifact 

was discovered 

N0 = the initial or steady state activity; 

t1/2 = half-life of the radioisotope; 

t = the age of the artifact. The Radioactive Decay Law 

Exponential decay law 

(2.5.2)Half-Lives of Radioactivity: 

The activity of a radioactive substance is normally given in the 

form of its half-live, which the time is taken for 50% of the original 

amount of the radioactive substance to decay.  For example, the half-

life of carbon-14 is 5730 years, which means that, if a sample 

originally contains 100 million carbon-14 nuclides, the first 50 

millionwill decay in 5730 years, the next 25 million nuclei decay in 

another 5730 years, the next 12.5 million nuclides decay in another 

5730 years, and so on.  
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The half-life of iodine-131, which is used in radiotherapy for thyroid 

cancer, is 8.0 days. If a sample contains 100 millions I-131 nuclides, it 

will take only 8.0 days for the first 50 million nuclides to decay, and 

the next 25 million will take the same number of days to decay, and so 

on. On the other hand, a sample containing the same number of 

uranium-238 nuclides, which has a half-life 4.5 x 109 years,  will take 

4.5 x 109 years for the first 50% of the sample to decay [37].  

               5730 y  5730 y 

100 millions 14
6 C     50 millions 14

6 C    25 millions 14
6 C   

 

                8.0 d    8.0 d 

100 millions 131
53 I     50 millions 131

53 I    25 millions 131
53 I  

 

       4.5 x 109 y      4.5 x 109 y 

100 millions 238
92 U      50 millions 238

92 U        25 millions 238
92 U   

Thusradioactive elements with short half-lives have higher activity 

(decay at faster rates) than those with longer half-lives. It also means 

that, radioactive materials with longer half-lives remain active for 

longer periods than those with short half-lives. Nuclides with very 

long half-lives also means that they are relatively more stable and 

nuclides with half-lives longer than 1011 years are considered as 

stable. 

(2.6) Nuclear Binding Energy: 
The total mass of a stable nucleus is always less than the sum of the 

masses of its separate protons and neutrons. 
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It has become energy, such as radiation or kinetic energy, released 

during the formation of the nucleus. 

This difference between the total mass of the constituents and the 

mass of the nucleus is called the total binding energy of the nucleus. 

To compare how tightly bound different nuclei are, we divide the 

binding energy by Ato get the binding energy per nucleon [38].See Fig 

(2.2) 

 
Fig: (2.2) 

 

The higher the binding energy per nucleon, the more stable the 

nucleus. More massive nuclei require extra neutrons to overcome the 
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Coulomb repulsion of the protons in order to be stable.

 
Fig: (2.3) 

The force that binds the nucleons together is called the strong nuclear 

force. It is a very strong, but short-range, force. It is essentially zero if 

the nucleons are more than about 10-15m apart. The Coulomb force is 

long-range; this is why extra neutrons are needed for stability in high-

Znuclei, see fig (2.3). 

Nuclei that are unstable decay; many such decays are governed by 

another force called the weak nuclear force. 

(2.7) Nuclear Fission Process: 
The most important nuclear fission is the fission of uranium-235 

when bombarded with thermal neutrons: 

 

 235
92 U  + 1

0 n 236
92 U*  141

56 Ba +  92
36 Kr  +  3 1

0 n (2.7.1) 
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Bombarding uranium-235 nuclides with a slow (thermal) neutron 

produces an excited uranium-236, called a compound nucleus.  The 

unstable uranium-236 then undergoes fission to form two "daughter 

nuclei" and more neutrons.  The fission is a random process that is all 

types of daughter nuclei will be formed. The neutrons produced in one 

fission reaction can be used to cause further fission on other nuclei, 

which causes the number of neutrons and fission reactions to increase 

very rapidly, producing branching chain reactions [38].   

The extent of chain reactions depends on the size of the target 

sample.  A critical sample size is needed to maintain the chain 

reactions in a controllable fashion. If the size is too large (supercritical 

size) the number of neutrons produced increases very rapidly and it 

will cause a chain reaction in an uncontrolled manner.  An enormous 

amount of energy is released in a very short time and a tremendous 

explosion may occur. 

Since slow or thermal neutrons are needed to bring about nuclear 

fission on uranium-235, a moderator, such as liquid sodium, is used to 

slow down neutrons produced by the fission process. These are then 

fed back into the reactor core to bring about more fission. The core in 

a nuclear reactor contains the fuel and the control rods.  The control 

rods usually contain cadmium or boron carbide, absorbs slow neutrons 

effectively. If the number of neutrons produced from fission increases, 

the control rods are lowered in between the fuel rods to absorb excess 

neutrons, and this will slow down the fission reactions.  When the 

number of neutrons becomes too low, the control rods are raised and 

the fission reactions increase.  
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(2.8)Nuclear Fusion Process: 
Fusion is the combination of nuclides of low mass numbers.  A 

simple example is the fusion of hydrogen-2 to form hydrogen-3 or 

helium-3: 

 2
1 H  + 2

1 H    3
1H  +   1

1p(2.8.1)   
2
1 H  + 2

1 H    3
2 He  +  1

0 n(2.8.2) 

For fusion to occur, the nuclei must be accelerated to a very high 

speed so that they have enough kinetic energy to overcome the nuclear 

repulsion and to bind the nuclei together. The process requires a 

temperature in the order of 106 - 107 K.   

 The following fusion reactions are believed to occur in the interior of 

the sun, which produces in the order of 1019 kJ/day of solar energy 

[38]. 

2 1
1p  +  2 1

1p  2 2
1 H  +  2 0

 (2.8.3)	ߚ1

2 1
1p  +  2 2

1 H    2 3
2 He  +  2 (2.8.4)ߛ 

 3
2 He +  3

2 He    4
2 He  + 2 1

1p(2.8.5)  

 Net: 

   4 1
1p 4

2 He  +  2 0
 (2.8.6)ߛ 2  +  ߚ1

(2.9) Problem Associated with Nuclear Power: 
 The supply of uranium-235 is very limited.  The relative natural 

abundance of uranium-235 is only about 0.7%; naturally occurring 

uranium is mostly uranium-238, which does not undergo fission 

reaction. Therefore, a uranium sample has to go through an extensive 

enrichment process, to increase the concentration of uranium-235 to 

about 3%, before it can be used as fuel in a nuclear reactor. The spent 

fuel, which is still highly radioactive, must be properly stored [38].   
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(2.10) Application of Nuclear Physics: 
Technological advances spurred by the demands of nuclear research 

have led directly to the creation of research and analytical tools in 

fields ranging from medicine and environmental science to art and 

archaeology. These new technologies have also found practical 

applications ranging from integrated circuit production to weapons 

verification. Emerging applications of nuclear technology show great 

potential for addressing the future needs of the nation [39]. 

(2.10.1)Medical Diagnosis and Treatment: 

Nuclear diagnostic techniques have revolutionized medicine by 

providing ways to see inside the body without surgery. Today, 3500 

hospital-based nuclear medicine departments in the U.S. perform 10 

million nuclear medicine procedures each year, generating about $1 

billion in business and saving countless lives. In many cases, the 

practitioners are nuclear physicists who cooperate with physicians to 

develop and apply the techniques [42].  

(2.10.2) Radioactive Isotopes: 

Many medical procedures require radioactive isotopes. A 

radiopharmaceutical is a drug containing a radioactive isotope, an 

unstable nucleus. The isotope concentrates in the relevant part of the 

body and emits small amounts of radiation, which is sensed by a 

detector known as a "gamma camera."  

Radioimmunoassay is an in vitro procedure which combines radio 

chemicals and antibodies to detect trace quantities of hormones, 
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vitamins, or drugs in a patient's blood. Physicians rely on 

radioimmunoassay to monitor the concentration of digitalis, a 

medication that slows the heart rate, in the blood of coronary patients 

[41].  

(2.10.3)Positron Emission Tomography: 

Positron emission tomography (PET) is a medical imaging technique 

which reveals dynamic effects such as blood flow. The patient ingests 

a radiopharmaceutical which emits a form of anti-matter, a positively 

charged electron called a positron.  

When the positron meets a normal electron, the two annihilate each 

other, emitting a pair of gamma rays in opposite directions. A circle of 

detectors pinpoints the location of each annihilation event. In the 

image below left, a PET scan of a brain, the bright red and yellow 

colors indicate the presence of malignant head and neck tumors. [39].  

(2.10.4)Cancer Treatment: 

Radiation with X-rays is a conventional treatment for cancer. The X-

rays are generated by microwave linear accelerators, which are the 

descendants of nuclear physics research tools. Physicists cooperated 

with radiologists to optimize versions of these systems for medical 

treatment.  

X-rays deposit most of their energy where they enter the body, then 

successively less until they leave the body. As a result, normal tissues 

near the X-ray source receive higher doses of radiation than the tumor 
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itself. The sensitivity of normal tissues to radiation limits the dose 

which radiologists can safely deliver, especially when a tumor lies 

near vital organs.  

To solve this problem, nuclear physicists and radiologists have 

developed a new treatment known as proton therapy. Protons 

penetrate only to a controllable depth, and they deposit most of their 

energy at the end of their range. They enable radiologists to increase 

the dose to the tumor while reducing the dose to normal tissues [42].  

(2.10.5) Environmental Science: 

Accelerator mass spectrometry (AMS), a new technique which can 

find any nucleus in concentrations below 1 part per trillion, is making 

important contributions to environmental science. AMS has 

revolutionized carbon-14 dating, which can determine the age of 

organic material up to 50,000 years old. Traditional techniques 

measure the decay rate of radioactive carbon-14. AMS is more 

sensitive because it counts individual carbon-14 nuclei. As a result, 

AMS can analyze samples a thousand times smaller [39].  

(2.10.6)Ocean Circulation Studies and Global Warming: 

Radioactive dating of the oceans by AMS is helping researchers 

understand ocean circulation patterns. Carbon-14 atoms, produced in 

the upper atmosphere when cosmic rays strike nitrogen nuclei, join 

with oxygen atoms to form carbon dioxide (CO2). The atmosphere 

exchanges CO2 with the ocean, which tends to inhale CO2 near the 

poles and to exhale it near the equator. As seawater ages, the carbon-
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14 content of its CO2 decreases, Researchers are creating a 3-

dimensional map of the age of the oceans based on AMS studies of 

seawater samples taken at various depths, latitudes, and longitudes. 

These studies are helping researchers to understand the oceans' large-

scale circulation patterns and the earth's weather patterns.  

Many people are concerned that man-made CO2 contributes to global 

warming. Since the atmosphere exchanges CO2 with the ocean, the 3-

dimensional map of oceanic carbon-14 is also helping researchers 

learn about the natural fluctuations of the earth's CO2 cycle -- an 

essential step toward understanding the significance of man-made CO2 

in the atmosphere [41].  

(2.10.7)Water Resources: 

The National Park Service asked hydrologists to evaluate water supply 

alternatives in the Wawona area of Yosemite National Park. In 

cooperation with physicists and nuclear geochemists, the hydrologists 

found that the ground water in Wawona's fractured granitic rocks is 

vertically segregated.  

AMS measurements of carbon-14 showed that rainfall recently 

recharged the shallow ground water. But the deeper zone of the 

aquifer contains a mixture of water from a deep saline source and 

water from ancient rainfall; it was last recharged about 6,000 years 

ago. The deep and shallow zones are not hydraulically connected. 

Since the deep zone recharges slowly, the scientists recommended 

high altitude springs as a more reliable source of water for 
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Wawonathan deep wells [40].  

(2.10.8)Air Quality: 

Since wood contains carbon-14 and fossil fuels do not, AMS studies 

of particulates in smog can identify the relative contributions of wood 

burning and fossil fuel burning. These studies have shown that wood 

burning is the major source of air pollution during winters in 

Albuquerque and Las Vegas.  

Nuclear physicists are studying air pollution in the National Parks by 

proton-induced X-ray emission (PIXE). Since PIXE can detect 

constituents of the haze in concentrations below 1 part per trillion, the 

physicists can often identify the source of the pollution. They 

identified the Navajo Generating Station, a coal-fired power plant, as 

the main source of air pollution in the Grand Canyon. Their data 

convinced plant operators to install scrubbing equipment to reduce 

emissions by 90% [41].  

(2.10.9)Stratospheric Ozone Depletion: 

Man-made chlorofluorocarbons in the atmosphere have depleted the 

ozone layer over Antarctica. In the spring, half the ozone over the 

South Pole disappears, including nearly 100% of the ozone at altitudes 

between 25 and 45 kilometers. Since ozone screens the sun's 

ultraviolet rays, its depletion over populated areas could increase 

cancer rates.  

AMS studies of radioisotopes such as beryllium-7 and beryllium-10 

are contributing to an understanding of ozone depletion. These 
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beryllium isotopes are created in the stratosphere when cosmic rays 

strike nitrogen atoms. AMS researchers are studying the concentration 

of these isotopes in falling snow and in air samples collected by high-

altitude aircraft. Since beryllium isotopes attach readily to aerosols, 

they are helping scientists to understand aerosol movement in the 

upper atmosphere. Aerosol particles serve as host sites for chemical 

reactions which create the forms of chlorine that destroy ozone [41].  

(2.10.10) ENERGY- Nuclear Power: 

 

Nuclear power plants generate 22% of the electricity in the U.S. To 

enhance the safety of these plants, nuclear physicists are  

in reactor pressure vessels by a technique known as neutron 

diffraction. Their results are helping plant manufacturers to refine 

the analytical models that predict plant performance.  

Other nuclear physicists are developing a process for treating 

radioactive waste from power plants. By bombarding waste with 

neutrons, they hope to transmute certain radioactive nuclei into either 

stable nuclei or nuclei with a shorter half-life that would require 

relatively brief storage Subcritical power plants, designed for 

maximum safety and now under development, may someday be 

essential to replace our dwindling oil reserves.  

On a much smaller scale, nuclear "batteries" have served as the power 

sources of heart pacemakers. Similar nuclear sources are found in 

other common devices such as home smoke detectors [5].  
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(2.10.11) On-Line Analysis of Coal: 

The coal and electric utility industries have installed 600 on-line 

analyzers which determine the chemical composition of coal by 

nuclear techniques. On-line analyzers monitor the quality of coal at 

the mine, sort and blend coal, and streamline the operation of power 

plants. They are helping the coal and utility industries to reduce air 

pollution [40].  

(2.10.12)Nuclear Fusion: 

The U.S. and several other countries have established long-range 

plans to generate electricity with commercial nuclear fusion reactors. 

These reactors fuse hydrogen nuclei to create helium, thereby 

liberating energy in a process similar to nuclear reactions in the sun 

[38].  

(2.10.13)MATERIALS - Ion Implantation: 

Chip manufacturers create integrated circuits by doping silicon 

wafers with boron or phosphorous ions. Ion implantation systems 

load several wafers onto a wheel and rotate the wheel in front of an 

ion beam see [40]. They accelerate the dopant ions to high energies 

and shoot them into the wafers. The ion accelerators in these systems 

are descendants of nuclear physics research tools.  

Nitrogen ions implanted into surgical alloys help prevents repeated 

surgery to replace hip prostheses by reducing wear and corrosion 

from normal body fluids [40]. 

 



30 
 

(2.10.14)RBS and Channeling: 

Rutherford back scattering (RBS) and channeling are quality 

assurance techniques in the semiconductor industry. Both techniques 

accelerate alpha particles (helium nuclei) toward a chip. RBS 

experiments study the reflected alpha particles to measure levels of 

impurities. Channeling experiments check the effectiveness of ion 

implantation. Implanted boron and phosphorous ions serve their 

intended purpose as electron donors or receptors only if they sit on a 

silicon site in the crystal lattice, not if they occupy random interstitial 

sites. Since interstitial ions block the transmission of alpha particles 

through channels in the lattice, channeling experiments can detect 

them [40].  
 

(2.11)The Ordinary Schrödinger Equation: 
(2.11.1) The Time-Dependent Schrödinger Equation: 

        The Schrödinger equation is the key equation of quantum 

mechanics [43]. This second order, partial differential equation 

determines the spatial shape and temporal evolvement of a wave 

function in a given potential and for given boundary conditions. The 

one-dimensional Schrödinger equation is used when the particle of 

interest is confined to one spatial dimension .To derive the one-

dimensional Schrödinger equation, we start with the total energy 

equation, i.e. the sum of kinetic and potential energy. 

ܧ = ௉మ

ଶ௠
+ ܸ(2.11.1) 

Multiplying both sides by Ѱ 

Ѱܧ = ௉మ

ଶ௠
Ѱ+ ܸѰ (2.11.2) 
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The wave function of free particle is given by 

Ѱ = ݁௜(௞௫ି௪௧) (2.11.3) 

But according to Planck theory  

ܧ = ħݓ 

ܲ = ħ݇ 

Ѱ = ݁ܣ
೔
ħ
(௉௫ିா௧)(2.11.4) 

Therefore  
డѰ
డ௧
= − ௜

ħ
 Ѱ(2.11.5)ܧ

݅
ħ
߲Ѱ
ݐ߲

=  Ѱܧ

߲Ѱ
ݔ߲ =

݅
ħ ܲѰ 

݅
ħ
߲Ѱ
ݔ߲

= ܲѰ 

߲ଶѰ
ଶݔ߲

= ൬
݅
ħ
ܲ൰

ଶ
Ѱ = −

1
ħଶ
ܲଶѰ 

−ħଶ
߲ଶѰ
ଶݔ߲

= ܲଶѰ 

In three dimension  

ħ
݅ ∇Ѱ = ܲѰ 

−ħଶ∇ଶѰ = ܲଶѰ(2.11.6) 

Sub equation (2.11.5) and (2.11.6) in equation (2.11.2) yields  
௜
ħ
డѰ
డ௧
= − ħమ

ଶ௠
∇ଶѰ+ ܸѰ(2.11.7) 

This is the ordinary Schrödinger equation. 
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(2.11.2) The Time-Independent Schrödinger Equation: 

For static potential which is independent of time, one can separate the 

wavefunction into time and time independent part: 

,ݔ)ߖ (ݐ =  (2.11.8)(ݐ)݂(ݔ)ߖ

   Where ݀݊݁݌݁݀(ݔ)ߖ  only on ݔand ݂(ݐ)  depend only on t. Insertion 

of Eq. (2.11.8)into the Schrödinger equation yields  
ଵ

అ(௫)
(ݔ)ߖܪ = ௜ћ

௙(௧)
ௗ
ௗ௧
 (2.11.9)(ݐ)݂

       The left side of this equation depends on ݔ only, while the right 

side depends on t, because ݔ and ݐ are completely independent 

variables, the equation can be true only if both sides are constants 
௜ћ
௙(௧)

ௗ
ௗ௧
 const                               (2.11.10)= (ݐ)݂

    Tentatively this constant is designated as constantܧ where the 

meaning of ܧ  become evident below, integration of   Equation 

(2.11.10) yields 

(ݔ)݂ = ݁ି௜ா௧ ћ⁄ (2.11.11) 

    Insertion of this result in to Equation (2.11.8) yields the time-

dependent wave function                 

,ݔ)ߖ ௜ா௧ି݁(ݔ)ߖ =(ݐ ћ⁄ (2.11.12)       

        If ܧ is real, then the wave function has amplitude  Ψ(ݔ)   and a 

phase exp (−iEt ћ⁄ )[43]. The amplitude and a phase representation are 

convenient for many applications. To find the physical meaning of the 

real quantity ܧ,we calculate expectation value of the total energy 

using the wave function obtained from the product method [43,44] 

௧௢௧௔௟ܧ = ݁௜ா௧ ћ⁄ ݁ି௜ா௧ ћ⁄ ܧ ∫ ∞∗ߖ
ି∞ ݔ݀(ݔ)ߖ(ݔ) =        (2.11.13)ܧ

Because the wave function is normalized that is   
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,(ݔ)ߖ〉 〈(ݔ)ߖ = 1	 (2.11.14) 

   The designated as ܧ the expectation value of the total energy. 

        The time –independent Schrödinger equation is obtained by 

inserting the wave function obtained from the product method. 

Equation (2.11.12) into the time- independent Schrödinger equation 

one obtains 

− ћమ

ଶ௠
డమ

డ௫మ
(ݔ)ߖ + (ݔ)ߖ(ݔ)ܷ =        (2.11.15)(ݔ)ߖܧ

   This is the time-independent Schrödinger equation. Using the 

Hamiltonian operator, one obtains 

(ݔ)ߖܪ =   (2.11.16)(ݔ)ߖܧ

      Since H is an operator and ܧ is real number, the Schrödinger 

equation has the form of an eigenvalue equation. The Eigen function 

 ௡ are found by solving the Schrödingerܧ and the eigenvalue(ݔ)௡ߖ

equation. 

         The Eigenvalues of the Schrödinger equation ܧ௡are discrete, that 

is only certain energy values are allowed, all other energies are 

disallowed or forbidden. The energy Eigen values or Eigen energies, 

the lowest Eigen state energy is ground state energy. All higher 

energies are called of excited state energies. 

(2.11.3)Probability Current Density: 

    The Probability Current Density is given by: 

߲
ݐ߲ න ݎଷ݀݌ = න

ଶ|ߖ|߲

ݐ߲ ݀ଷݎ = න
߲
ݐ߲ ߖ

 ݎଷ݀ߖ∗

  =∫ ቂߖ∗ డఅ
డ௧
+ డఅ∗

డ௧
      (2.11.17)ݎቃ݀ଷߖ

  But from Schrödinger equation: 
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ߖ߲݅
ݐ߲

=
−ћଶ

2݉
∇ଶߖ + 			,					ߖܷ

−݅ћ߲ߖ∗

ݐ߲
=
−ћଶ

2݉
∇ଶߖ∗ +  ∗ߖܷ

డఅ
డ௧
= ି௜ћమ

ଶ௠
∇ଶߖ − 						,						ߖܷ݅ ћడఅ∗

డ௧
= ି௜ћమ

ଶ௠
∇ଶߖ∗ +         (2.11.18)∗ߖܷ݅

Thus: 

߲
ݐ߲
න ݎଷ݀݌ =

݅ћ
2݉

නߖ∗∇ଶߖ  ݎଷ݀∗ߖଶ∇ߖ−

= ௜ћ
ଶ௠∫∇. ߖ]

ߖ∇∗ −  ݎଷ݀[ߖ(∗ߖ∇)

     = ௜ћ
ଶ௠

∫∇. ܵ ݀ଷݎ= ௜ћ
ଶ௠

∫∇. ߖ∇∗ߖ]       (2.11.19)ܣ݀[ߖ(∗ߖ∇)−

But the continuity equation reads: 
డఘ
డ௧
+ ∇. ܬ = 0																																										(2.11.20) 

In view of (2.11.19): 
డఘ
డ௧
+ ∇. ܵ = 0																																(2.11.21) 

  Thus S   represents the Intensity of particles, i .e the flux of particles 

crossing unit area per unit time, where: 

 S= ௜ћ
ଶ௠

ߖ∇∗ߖ] −      (2.11.22)[(∗ߖ∇)ߖ

 It is well known that the momentum operator is hermition . 

Hence: 

∫ ෠ܲߖഥ ഥߖ∫=ݎଷ݀ߖ ෠ܲ  ݎଷ݀ߖ

−
ћ
݅
න∇݀ߖ∗ߖଷݎ = −

ћ
݅
නߖ∗  ݎଷ݀ߖ∇

Hence: 

തതതതതത∗ߖ∇ߖ =  ߖ∇തതതത∗ߖ−

Therefore: 

ܵ =
݅ћ
2݉

 [ߖ∇തതതതത∗ߖ2]
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ܵ = ௜ћ
௠
      (2.11.23)ߖ∇തതതത∗ߖ

Generally =Real[௜ћ
௠
 [ߖ∇തതതത∗ߖ

(2.12)Quantum Tunneling of Radiation: 
Although the walls of the potential well of finite height, they were 

assumed to be infinitely thick. As a result the particle was trapped 

forever even though it could penetrate the walls. We next look at the 

situation of a particle that strikes a potential barrier of height U, again 

with E < U, but here the barrier has a finite width what we will find is 

that the particle has a certain probability not necessarily great, but not 

zero either, of passing through the barrier and emerging on the other 

side. The particle lacks the energy to go over the top of the barrier, but 

it can nevertheless tunnel through it, so to speak. Not surprisingly, the 

higher the barrier and the wider it is, the less the chance that the 

particle can get through [43]. The tunnel effect actually occurs, 

notably in the case of the alpha particles emitted by certain radioactive 

nuclei. an alpha particle whose kinetic energy is only a few MeV is 

able to escape from a nucleus whose potential wall is perhaps 25 MeV 

high. The probability of escape is so small that the alpha particle 

might have to strike the wall 1038 or more times before it emerges, 

but sooner or later it does get out. Tunneling also occurs in the 

operation of certain semiconductor diodes in which electrons pass 

through potential barriers even though their kinetic energies are 

smaller than the barrier heights. Let us consider a beam of identical 

particles all of which have the kinetic energy E. The beam is incident 

from the left on a potential barrier of height U and width L, as in on 

both sides of the barrier U = 0, which means that no forces act on the 
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particles there. The wave function region I represents the incoming 

particles moving to the right and region–Irepresents the reflected 

particles moving to the left,regionIII represents the transmitted 

particles moving to the right. The wave function region II represents 

the particles inside the barrier, some of which end up in region III 

while the others return to region I. The transmission probability T for a 

particle to pass through the barrier is equal to the fraction of the 

incident beam that gets through the barrier see fig (2.12.1). 

 
Fig (2.12.1) 

 The approximate value of the probability is calculated by [43]: 

T=݁ିଶ௞మ௅ 

Where: 

݇ଶ =
ඥ2݉(ܷ − (ܮ

ћ
 

 

(2.12.1) Nuclear Quantum Tunnelling: 

The radioactive decay of nuclear particles can be considered as 

resulting from tunneling of them through the finite potential barrier 

see fig (2.12.2). 
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Fig (2.12.2) 

Schrödinger equation takes the form 

ࣔ૛Ѱ
ࣔ૛࢞

+
૛࢓
ħ૛

ࡱ) − Ѱ(ࢂ = 0 

ࣔ૛Ѱ
ࣔ૛࢞

+ ࢑૛Ѱ = 0(2.12.1) 

Where: 

݇ଶ = ଶ௠
ħ૛
ܧ) − ܸ)(2.12.2) 

Consider the barrier as shown in fig (2.12.3). In the first and third 

region  

ܸ = 0 

 
Fig (2.12.3) 

And Schrödinger equation becomes: 
ࣔ૛Ѱ૚

ࣔ૛࢞
+ ࢑૙Ѱଵ = 0(2.12.3) 

݇଴ଶ =
ଶ௠
ħ૛
 ଴(2.12.4)ܧ
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ࣔ૛Ѱ૜

ࣔ૛࢞
+ ࢑૙Ѱଷ = 0(2.12.5) 

଴ܧ = ଴ܶ =  (2.12.6)ݕ݃ݎ݁݊݁ܿ݅ݐ݁݊݅ܭ

Where Ѱଵ represents incident and reflected waves.  

Hence: 

Ѱଵ = ௜௞బ௫݁ܣ  ௜௞బ௫(2.12.7)ି݁ܤ+

Where Ѱଷ represents transmitted wave, thus: 

Ѱଷ =  ௜௞బ௫(2.12.8)݁ܩ

For particles inside the barrier: 

݇ଶୀଶ
2݉
ħ૛

(ܶ − ܸ) 

݇௕ = −݅݇ଶ 

The wave function becomes: 

Ѱଵ = ௞್௫ି݁ܥ +   ௞್௫(2.12.9)݁ܦ

The boundary conditions at: 

ݔ = ݔ݀݊ܽ	0 =  ܮ

Requires: 

ݔ = 0 

Ѱଵ = Ѱଶ  

Ѱ૚
′ = Ѱ૛

′  

At 

ݔ =  ܮ

Ѱଶ = Ѱଷ 

Ѱ૛
′ = Ѱ૜

′  

This finally gives transmission probability P given by: 

ܲ =
ଶ|ܧ|

ଶ|ܣ|
= ݁ିଶ௞್௅ 
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The decay constant ߣ  is found to be equal: 

ߣ = ݂ܲ =
ݒ
2ܴ

ܲ 

ߣ࢔࢒ = ln ቀ ௩
ଶோబ

ቁ + 2.97ܼଵ/ଶܴ଴
ଵ/ଶ − 3.95ܶିଵ/ଶ(2.12.10) 

Where:ܴ଴, Z and T is the nuclear radius, atomic number and kinetic 

energy of alpha particle respectively andL is the width of the barrier. 
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Chapter three 

Literature Review 
(3.1) Introduction: 
         Different attempts were used to construct new quantum laws 

accounting for the effect of friction on particles moving in a medium. 

These laws succeeded in explaining some physical phenomena which 

cannot be explained easily by ordinary quantum equations. 

        This chapter exhibits some of these attempts. It also exhibits 

some new statistical mechanics laws which solve some long standing 

problems. 

(3.2) Modification of Schrödinger Equation in a Media: 
A collision phenomenon is one of the oldest quantum mechanical 

problems. It includes scattering process in which a particle or a beam 

of particles is scattered by a medium. The scattering quantum theory is 

very complex [44, 45, 46, 47]. Therefore it is very difficult to solve 

scattering quantum equations without doing certain approximations, or 

doing special treatments. For example the inelastic scattering process 

is explained by the so called optical potential in which an imaginary 

potential is inserted by hand in the energy expression [48,49, 50, 51] 

These problems motivateK.Haroun and M.Dirar to propose a new 

quantum mechanical equation for scattering process [52]. 

In this model new quantum Schrodinger Equations derived by using 

the expression of the electric decaying wave in a conducting medium 

[53,54 ]. This expression is based on Maxwell’s equations. 
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In this model the wave function for particles in a media of 

conductivityߪ, refractive index ݊ଵ a magnetic permeabilityߤ and 

electic permittivity ߝ is given by: 

Ѱ = ఈ௫݁ିఉ௫݁ି݁ܣ
೔
ћ(௉௫ିா௧)(3.2.1) 

Where : 

ቐ
ߙ = ଶగఓ௖ఙ

௡భ

ߚ = ఙ
ఌ

ቑ(3.2.2) 

With C standing for speed of light using this wave function the new 

Schrödingerequation is given by: 

݅ћ డѰ
డ௧
+ ݅ћߚѰ = − ћమ௖భ

ଶ௠௡భమ
∇ଶѰ − ћమఈ௖భ

ଶ௠௡భమ
∇Ѱ − ћమఈమ

ଶ௠௡భమ
ܿଵѰ  (3.2.3) 

Where: 

ܿଵ = ቀ1 −
ݔ
ߝ2
ቁ 

This equation succeeds in explaining inelastic scattering process easily 

compared to ordinary Schrödinger equation. 

(3.3) Quantization of Friction for Non Isolated Systems: 
            A useful expression for frictional quantum system was 

proposed by SwasanElhouri, M.Dirar and others [55]. 

In this model the plasma equation for a fluid having a pressure P is 

given by: 

ݒ̇]݊݉ + .ݒ [ݒ∇ = ܨ+ − ∇ܲ −  ௥(3.3.1)ܨ

With F, ܨ௥  Standing for field and frictional forces respectively, where  

ܨ = −݊∇ܸ(3.3.2) 

n here is the particle number density and V is the potential per unit 

particle. 
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     According to this equation the particle energy in the presence of 

pressure and friction is given by: 

ܧ = ௉మ

ଶ௠
+ ܸ + ݇ܶ − ௜ћయ

ଶఛ௠మ௖మ
Ѱ(3.3.3) 

߬here is the relaxation time and T is the absolute temperature. 

According to this energy equation the new Schrödinger equation is 

given by: 

݅ћ డѰ
డ௧
= − ћమ

ଶ௠
∇ଶѰ + ݇ܶѰ − ௜ћయ

ଶఛ௠మ௖మ
Ѱ(3.3.4) 

For particle in a box, the friction energy ܧଶ is quantized, where: 

ଶܧ =
݊ଶℎଶ

ଶ߬݉ଶܿଶܮ8
 

(3.4)Derivation of Klein-Gordon Equation from 

Maxwell’s Electric Equation: 
          K. H. Elegilnai and others derived Klein-Gordon equation by 

using Maxwell’s equation [56].      

 Maxwell’s equations for free particle are given by: 

−∇ଶܧ + ߝߤ డ
మா
డ௧మ

= ߤ− డమ௉
డ௧మ

(3.4.1) 

The polarization term can be reduced to be: 

ߤ− డమ௉
డ௧మ

= ܧଶ߱ߝߤ− = −݇௠ଶ  (3.4.2)ܧ

݇௠is the medium wave number. 

 From (3.4.1) and (3.4.2): 

−∇ଶܧ + ߝߤ డ
మா
డ௧మ

= −݇௠ଶ  (3.4.3)ܧ

Multiplying both sides by ћଶ yields: 

−ܿଶћଶ∇ଶܧ + ћଶ డ
మா
డ௧మ

= −ܿଶћଶ݇௠ଶ ܧ = −ܿଶ݉଴
ଶܿଶ(3.4.4)ܧ 
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Where the medium polarization takes the form: 

௠ܲ
ଶ = ћଶ݇௠ଶ = ݉଴

ଶܿଶ(3.4.5) 

Thus: 

−ћଶ డ
మா
డ௧మ

= −ܿଶћଶ∇ଶܧ + ݉଴
ଶܿସ(3.4.6)ܧ 

The ordinary Klein-Gordon equation can be found by replacing E by 

Ѱ , where  |ܧ|ଶ, |Ѱ|ଶ are both proportional to the photon intensity, 

thus: 

−ћଶ డ
మѰ
డ௧మ

= −ܿଶћଶ∇ଶѰ +݉଴
ଶܿସѰ(3.4.7) 

(3.5)Interpretation of the change of Intensity and Spectral 

line width for Bhutan, Neon, Fluorine, and Chlorine by 

Using Complex Statistical Distribution and Quantum 

harmonic Oscillator Model: 
The wavelength of the emitted photons changes due to some 

interactions .For example the thermal motion of atoms can produce 

Doppler shift due to the effect of velocity [57]. Collision of atoms due 

to thermal vibration can also change the wavelength due to Compton 

scattering [58]. These thermal effects on the spectrum wavelength for 

some gases is investigated and studied in this work [59]. 

(3.5.1)Materials and Methods: 

The following Apparatus   and Instruments and Gases are used in the 

experiment: 

1- Apparatus   and Instruments: 

USB2000 Fiber Optic Spectrometer (Ocean Optics), Heater, 

Thermometer, Laptop, Source of Helium Neon laser -133, Power 

supply, Connect cable. Test tubes (Borosilicate Glass). 
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2- Gases: 

Bhutan (C4ସHଵ଴), Neon (Ne),Fluorine ( F2) and Chlorine (CL2). 

3- Experiment set up: 

Glass tube is filled by gases, each gas should be heated in steps 

about one or two degrees and the spectrum are recorded at each degree 

by using thermometer. Helium-133 beams is directed to incident on 

the glass tube, the spectrum of each gas including the intensity and 

band width is recorded for each temperature by using USB2000 Fiber 

Optic Spectrometer. The relations are drawn between intensity and 

line width of the transmitted radiation from each gas and temperature. 

4-  Results 

Table (3.5.1): Spectrum of Bhutan (࡯૝ࡴ૚૙) at Different 

Temperatures 

T = temperature, λ= wavelength, I = Intensity, A = area   W=width 

T(K) λ (nm) A(m2) W (nm) I(a.u) 

300 630.73 4390.43 6.92 126.8 

301 630.78 2536.69 6.96 125.89 

303 630.83 2282.57 7.07 125.74 

305 630.79 1645.95 7.03 125.79 

307 630.78 1645.9 7.02 125.79 

309 630.84 1855.9 7.16 125.13 

311 630.78 1888.66 7.1 124.64 

313 630 1698.66 7.03 124.79 

315 630.83 1482.01 7.003 124.53 

317 630.86 1560.78 7.03 123.96 

318 630.84 1717.5 7.04 123.5 

319 630.89 2037.01 7.08 123.46 

320 630.95 1310.88 6.95 117.62 

323 631.01 1265.28 7.02 116.95 

324 631.01 1276.02 7.05 116.65 
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Fig (3.5.1.1) Relation between Intensity and Temperature                         

 

 

 

 

 
Fig (3.5.1.2) Relation between Width and Temperature 
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Table (3.5.2): Spectrum of Neon (Ne) atDifferent Temperatures 

T(K) λ (nm) A(m2) W(nm) I(a.u) 

307 630.66 6071.9 6.41 102.94 

312 630.7 2287.59 6.48 103.25 

313 630.76 1941.9 6.51 103.04 

315 630.74 2111.14 6.46 103.45 

317 630.73 3099.17 6.51 103.21 

319 630.77 2276.22 6.53 103.26 

320 630.78 3762.85 6.46 103.34 

321 630.8 3515.7 6.51 103.39 

322 630.77 2276.22 6.53 103.25 

323 630.77 3179.53 6.48 103.4 

 

 
Fig (3.5.2.1) Relation between Intensity and Temperature   

 

 
Fig (3.5.2.2) Relation between Width and Temperature 
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Table (3.5.3): Spectrum of Fluorine (ࡲ૛) atDifferent 

Temperatures 

T(K) λ (nm) A(m2) W(nm) I(a.u) 

304 631.02 6337.97 7.04 100.25 

305 630.81 5964.04 6.44 98.63 

307 630.9 5565.97 7.11 102.13 

309 630.01 4442.99 7.16 102 

311 631.01 5302.56 7.23 101.88 

312 630.98 5332.11 7.25 101.52 

314 631.06 4669.27 7.23 101.95 

316 631.05 5193.09 7.16 101.82 

317 631.08 5193.92 7.19 101.37 

319 631.04 4549.7 7.2 101.66 

321 631.11 3541.63 7.21 102.04 

323 631.07 3351.55 7.13 102.3 

325 631.08 4702.13 7.18 102.5 

 

 
Fig (3.5.3.1) Relation between Intensity and Temperature                        
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Fig (3.5.3.2) Relation between Width and Temperature 

 
 

Table (3.5.4): Spectrum of Chlorine (CL2) at Different Temperatures 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T(K) λ (nm) A(m2) W(nm) I(a.u) 

301 630.86 15934.5 6.92 122.23 

303 630.83 7706.45 7.03 130.73 

306 630.96 7478.8 7 124.24 

308 630.95 8890.52 7.01 124.92 

311 630.88 5738.32 7.08 126.31 

313 630.94 5137.66 7.11 127.67 

315 630.87 4995.6 7.01 127.81 

317 630.88 4764.68 7.11 128.59 

319 630.85 6501.06 7.006 129.27 

321 630.93 4897.88 7.09 130.43 

323 630.72 7777.74 6.88 131.22 

325 630.77 6840.38 7.012 132.51 

327 630.75 4907.18 6.92 134.15 

329 630.75 5803.33 7.001 135.56 

330 630.77 2866.74 7.05 137.006 

331 630.83 2045.54 7.09 137.77 
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Fig (3.5.4.1) Relation between Intensity and Temperature 

 

 
 

Fig (3.5.4.2) Relation between Width and Temperature 

 

(3.5.2) Theoretical Interpretation 

Three scenarios are proposed to explain the temperature effect on the 

atomic spectra 
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(3.5.2.1)Complex Energy Statistical Distribution: 

Heat energy results from collision of particles which lead to loss 

of energy that appears as heat thermal energy. In some theories, like 

optical theorem the energy is written as a summation of real and 

imaginary part. The real part stands for the particle energy, while the 

imaginary part represents the energy lost by the particle due to its 

interaction with the surrounding medium. 

		ଵܧ =ܧ +  ଶ(3.5.1)ܧ݅

If the uniform back ground is the attractive gas ions potential. Then 

തܧ = − ௠ܸ(3.5.2) 

According to Shair .S model for non-equilibrium is given by system, 

the distribution: 

݊=݊଴݁
ିಶಶഥ 

Where  ܧ   represents the non-uniform particle energy, where as  ܧത  

stands for uniform particle energy thus substituting this in the 

equation: 

݊=݊଴݁
ಶభశ೔ಶమ
ೇ೘  

n=݊଴݁
ಶభ
ೇ೘݁

೔ಶమ
ೇ೘  

n=݊଴݁
ቀ ಶభ
ೇ೘

ቁ ቂcos ாమ
௏೘
+ ݅ sin ாమ

௏೘
ቃ(3.5.3) 

Considering the complex term standing for thermal energy: 

n=݊଴݁
ቀ ಶభ
ೇ೘

ቁ ቂ݊݅ݏ ாమ
௏೘
ቃ(3.5.4) 

In view of equations (3.5.4): 

଴݁ܫ =ܫ
ቀ ಶభ
ೇ೘

ቁ ቂ݊݅ݏ ாమ
௏೘
ቃ(3.5.5) 
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Assuming  ܧଵ	  to be kinetic thermal energy of the particle and ܧଶ	be 

the lost thermal energy such that: 

	ଶܧ = 	ଵܧ଴ܥ =  ଴݇ܶ(3.5.6)ܥ

௠ܸ = ݇(3.5.7) 

It follows that: 

ܫ = ଴ܫ e୘sin  ଴ܶ(3.5.8)ܥ

଴ܥ =  ߨ

  

 
Fig (3.5.2) 

 

However if the uniform background is the negative repulsive electron 

gas .In this case: 

തܧ = ௠ܸ(3.5.9) 

Thus equation   (3.5.7) and   (3.5.8) reduces to: 

n=݊଴݁
ቀషಶభೇ೘

ቁ ቂcos ாమ
௏೘
− ݅ sin ாమ

௏೘
ቃ(3.5.10) 

଴݁ܫ=ܫ
ቀషಶభ
ೇ೘

ቁ ቂ݊݅ݏ ாమ
௏೘
ቃ(3.5.11) 

In view of equations (3.5.8) and (3.5.7) 

ܫ = ଴ܫ eି୘sinܥ଴ܶ	(3.5.12) 

 ߨ=଴ܥ

-٢٠٠٠٠٠

٠

٢٠٠٠٠٠

٤٠٠٠٠٠

٦٠٠٠٠٠

٠ ٥ ١٠ ١٥

I(a
.u

)

T(ºK)

I=I0eT sinΠT
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Fig (3.5.3) 

 

Using Maxwell _Boltzmann distribution for electron: 

ne   =geିαeିβ(୉భା୧୉మ)(3.5.13) 

The imaginary part stands for absorption from medium or emission   

to the medium: 

		Eୣ   = Eଵ +  Eଶ(3.5.14) 

For photon the number of photons is given by: 

n୮  =eିβ(୉యା୧୉ర)(3.5.15) 

	E୮  =E3 +  E4 

The for composite system medium which consists of electrons 

emitting photons, the energy is given by: 

E   = Eୣ    +  E୮(3.5.16) 

Where E is the energy of the electron in excited stateEୣ is the electron 

energy in the ground state, while E୮ is the photon energy thus the 

number of photon which is equal to the number of excited electrons is 

given by: 

n =   eିβ(୉)    =    eିβ(୉ୣା୉୮)(3.5.17) 

-٢.٥
-١.٥
-٠.٥

٠.٥
١.٥
٢.٥
٣.٥
٤.٥
٥.٥
٦.٥

٠ ٢ ٤ ٦ ٨ ١٠
I(
a.
u)

T(ºK)

I=I0e-TsinΠT
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For electron and photons colliding with particles medium, the energy 

lost appears as an imaginary part.  

Thus: 

n= eିβ(୉భା୉య)eି୨β(୉మ	)eି୨(β୉ర) 

For      E1→ 0          E3→ 0 

n= eି୨β(୉మ	)eି୨(β୉ర)(3.5.18) 

n = (cosβEଶ  -	i sinβEଶ) (cosβEସ   +	i sinβEସ)                   (3.5.19) 

Taking real part yields: 

n= 	cosβEଶcosβEସ(3.5.20) 

݊ = cos θଶ cosθସ(3.5.21) 

I=cos θଶ cosθସ 

If one assumes energy lost by the electron is 10 times that lost by the 

photon, it follows that 

I=cos 10θସ cosθସθଶ 	= 10θସ 

I=cos 10T cos  

 
Fig (3.5.4) 
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(3.5.2.2)Quantum Mechanical Approach: 

According to the laws of quantum mechanics, the density and 

number of particles ݊ are related to the wave function    ߖ according 

to the relation: 

݊=  ଶ(3.5.22)|�ߖ|�

But the intensities of radiation  ܫ is related to the total number of 

excited electrons per unit volume ݊ 

 ଴݊(3.5.23)ܥ C݊௣=C= ܫ

But the number of electrons   n   is given by: 

n=	number of atoms excited  per second X number of electrons 

excited   per second: 

݊=ௗ௡ೌ
ௗ௧

× ௗ௡೐
ௗ௧

= ቀௗ
�|అೌ �|మ

ௗ௧
ቁ ቀௗ

�|అ೐ �|మ

ௗ௧
ቁ(3.5.24) 

Now consider simple case of free particles, In this case such equation. 

Reads: 

− ћమ

ଶ௠
డమ

డ௫మ
 (3.5.25)ߖܧ=

The solution will be: 

ߖ = ߖ,ݔߙ݊݅ݏܣ =  (3.5.26)ߖଶߙ−

ћమ

ଶ௠
ߖଶߙ = ଶ=ଶ௠ாߙ,ߖܧ

ћమ
( 3.5.27) 

The probability current density is given by equation to be: 

S= ћ
మ

௠
ଶܣ=[ߖ∇∗ߖ] ћమ

௠
[∝  [ݔߙݏ݋ܿݔߙ݊݅ݏ

ௗ௠
ௗ௧

= ݏ = ஺మ∝ћమ

ଶ௠
ݔ∝2݊݅ݏ = ܿ଴	(3.5.28)ݔ∝2݊݅ݏ 

But since: 

ݒ = 0 
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ܧ =
ଶݒ݉

2
=
ଶ݌

2݉
 

ଶ݌=ܧ2݉ = ћଶ݇ଶ(3.5.29) 

From (3.5.27): 

ଶߙ = ݇ଶ 

∝= ݇ = ଶగ

= ଶగ௙

௙
= ఠ

௩
 

∝= ћఠ
ћ௩

(3.5.30) 

If one heat particles are harmonic oscillator, thus according to 

equation (3.5.29) the kinetic thermal energy becomes: 

ܶܭ = ܧ = 	ћ߱(3.5.31) 

∝= ௄்
ћ௩

(3.5.32) 

Thus for atoms and electrons see equation (3.5.27): 
ௗ௡ೌ
ௗ௧

= ܿ௔2݊݅ݏ
௄்
ћ௩ೌ

 (3.5.33)ݔ

ௗ௡೐
ௗ௧

= ܿ௘2݊݅ݏ
௄்
ћ௩೐

 (3.5.34)ݔ

In view of equation (3.5.23): 

ܫ = ଴݊ܥܥ = 2݊݅ݏ௘ܥ௔ܥ଴ܥܥ
௄்௫
ћ௩ೌ

2݊݅ݏ ௄்௫
ћ௩೐

(3.5.35) 

t a certain position ݔ଴: 

ܫ = 2݊݅ݏ௘ܥ௔ܥ
௄்௫బ
ћ௩ೌ

2݊݅ݏ ௄்௫బ
ћ௩೐

(3.5.36) 

ܫ = 2݊݅ݏ்ܥ
௄்௫బ
ћ௩ೌ

2݊݅ݏ ௄்௫బ
ћ௩೐

(3.5.37) 

For Simi plicate let: 

20Kݔ଴ =ћݒ଴(3.5.38) 
ଶ௄௫బ

ћ
= ௩బ

ଵ଴
(3.5.39) 

Thus: 
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ܫ = ݊݅ݏ்ܥ
்௩బ
ଵ଴௩ೌ

݊݅ݏ ்௩బ
ଵ଴௩೐

(3.5.40) 

Let also :ݒ௔ =
ଵ
ଷ
௘ݒ =

ଵ
ଷ
 ଴ݒ

ܫ =  (3.5.41)3ܶ݊݅ݏܶ݊݅ݏ்ܥ=ܶ݊݅ݏ3ܶ݊݅ݏ்ܥ

்ܥ = 10 

 
Fig (3.5.5) 

(3.5.2.3)Semi Classical Harmonic Oscillator Mod: 

Consider on electric field that causes oscillation of atoms and 

electrons to emit radiation. The equation of motion of the oscillating 

particle is given by: 

ma=  -F                                                       (3.5.42) 

The force acting on the electron or atom is the electric field. Thus: 

F= Ee(3.5.43) 

The displacement isgiven by: 

 ݁ି௜ఠబ௧	଴ݔ=ݔ

Hence, the speed and acceleration are given by: 

ݒ = ݔ̇ = −݅߱଴ݔ	, ܽ = ݔ̈ = −߱଴
ଶݔ																																																(3.5.44) 

Inserting (3.5.44) and (3.5.43) in (3.5.42): 

-m߱଴
ଶݔ =  (3.5.45)ܧ݁−

If resistive force for a medium of particles density n is the form: 

-١٠

-٥

٠

٥

١٠

٠ ١٠٠ ٢٠٠ ٣٠٠ ٤٠٠ ٥٠٠ ٦٠٠ ٧٠٠ ٨٠٠I(a
.u

)

T(ºk)

I=10 sinTsin3T
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௥ܨ =
ି௡௠௩
ఛ

= ௡௜௠
ఛ

ω(3.5.46)ݔ 

The frequency change from  ߱଴   to    ߱  , thus the equation of motion 

becomes: 

ma=  ௥(3.5.47)ܨ- ܧ݁−

With: 

ݔ =  ݁ି௜ω௧	଴ݔ

ݒ = ݔ̇ = −݅ωݔ	, ܽ = ݔ̈ = −߱ଶ(3.5.48)ݔ 

Therefore, inserting (3-3-4),(3-3-5) and(3-3-7) in(3-3-6)yields: 

−݉߱ଶݔ = −݉߱଴
ଶݔ +

݅݊݉ωݔ
߬

 

߱଴
ଶ − ߱ଶ =

݅݊ω
߬

 

൫ω + ߱଴൯൫߱଴ − ω൯ = ௜௡ω
ఛ

(3.5.49) 

If: 

ω ≈ ߱଴							,ω +߱଴ ≈ 2߱		, ߱଴ − ω = ∆߱(3.5.50) 

Thus: 

(2߱)(∆߱) = 	 ௜௡ω
ఛ

 

(∆߱) = ௜௡
ଶఛ

(3.5.51) 

According to quantum harmonic oscillator model, if one treat the 

electrons and atoms as harmonic oscillators, their energy is given by: 

଴ܧ = ћ߱଴		,					ܧ = ћ߱(3.5.52) 

The energy difference due to friction is thus given by: 

ܧ∆ = ଴ܧ − ܧ = ћ൫߱଴ − ω൯ = ћ∆߱ = ௜ћ௡
ଶఛ

(3.5.53) 

The imaginary term is not surprising as far as the inelastic scattering is 

described by imaginary potential. This is known as optical theorem, in 
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which inelastic scattering, where particles loose energy by collision, is 

described by a complex potential. 

In atomic spectra thus thermal energy leads to lost or gain of energy 

by collision leading numerically to the change of frequency in the 

from: 

∆݂ = ∆ఠ
ଶగ
= ௡

ସగఛ
(3.5.54) 

The cores ponding change of length takes the form: 

∆݂ = ଴݂ − ݂ = ௖
బ
− ௖


= ௖(ିబ)

బ
 

= ௖∆
మ

= ௖మ

௖మ
∆ = ௙మ

௖
∆(3.5.55) 

Where: 

 ≈ ଴∆ =  − ଴(3.5.56) 

Thus, in view of   (3.5.56), equation (3.5.45) gives: 

∆ = ௡௖
ସగ௙మఛ

= గ௡௖
ఠమఛ

(3.5.57) 

But since the number density is related to the wave function according 

to the relation: 

n=|ߖ|ଶ 

Thus: 

∆ = గ௖|అ|మ

ఠమఛ
(3.5.58) 

Using the complex energy statistical distribution in equation: 

݊ = ݊଴݁ாభ ௏೘⁄ sin ாమ
௏೘

(3.5.59) 

Following the same procedures in equation from (3.5.6) to (3.5.12) 

one gets the line width in the form: 

w~∆~݁ି்(3.5.60)ݐߨ݊݅ݏ 
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Fig (3.5.6) 

If one using the expression for the total number of electrons resulting 

from multiplying the number of electrons in each atom by the number 

of atoms, one gets: 

w~∆~ܿܧߚݏ݋ଶܿܧߚݏ݋ସ 

 (3.5.61)ܶݏ݋10ܶܿݏ݋ܿ~

 
Fig (3.5.7) 

Where one follows the same procedures used for the intensity 

expression derived for complex energy by using Maxwell's 

distribution (see equation (3.5.20)) 

The use of quantum expression in equations (3.5.45) together with 

equation (3.5.58) leads to 

W~∆~(3.5.62)3ܶ݊݅ݏܶ݊݅ݏ 

-٢.٥
-١.٥
-٠.٥

٠.٥
١.٥
٢.٥
٣.٥
٤.٥
٥.٥
٦.٥

٠ ٢ ٤ ٦ ٨ ١٠
I(
a.
u)

T(ºK)

I=I0e-TsinΠT
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Fig (3.5.8) 

(3.5.3)Discussion 

The relation between Intensity and temperature for Neon (Ne) 

see fig. (3.5.21) resembles that obtained theoretically in equations 

(3.5.5) and (3.5.8) ,for the case when the temperature Is non-uniform[ 

see fig   (3.5.2)].Thus: 

,ଵܧ  ܶ݇~ଶܧ

And the electric static potential is assumed to be uniform. This 

agrees with the fact that the gas is heated at the bottom, where it is 

very hot, while its temperature at the top is less. The same empirical 

relation for Ne can be explained by using quantum mechanics model 

in Fig (3.5.6). 

The model based on semi classical harmonic oscillator and quantum 

mechanics explains the effect of temperatures on the line width of the 

spectrum for the gases Bhutan (CସHଵ଴), Neon (Ne), Fluorine (F2) and 

chlorine (CL2). 

The comparison of Figs   (3.5.1.2) with Fig (3.5.7), (3.5.2.2) 

with Fig   (3.5.8), (3.5.4.2) with Fig      (3.5.7) and (3.5.3.2)   with Fig 

(3.5.3) shows that the theoretical relations of line width with 

temperatures resembles the corresponding empirical relation 

-١٠

-٥

٠

٥

١٠

٠ ١٠٠ ٢٠٠ ٣٠٠ ٤٠٠ ٥٠٠ ٦٠٠ ٧٠٠ ٨٠٠I(a
.u

)

T(ºk)

I=10 sinTsin3T
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(3.6)Explanation of Intensity Spectral change of Bhutan, 

Carbon dioxide , Carbon Monoxide, Oxygen, Nitrogen  

Gases on the basis of Non Equilibrium Statistical 

Distribution: 
The experimental work shows parabolic increase of wave length 

and decrease of peak separation with temperatures. These changes 

were explained on the relation between change of refractive index and 

wavelength change, beside cavity length [60]. In another work Bragg 

grating central wave length changes with temperatures is also 

investigated [61.62]. The experimental work shows increase of Bragg 

wave length with temperature, this change was explained on the base 

is of the relation of wave length change with refractive index and 

thermal expansion to temperature, fortunately no explanation was 

done by using quantum or statistical laws which are suitable for the 

micro world [63].  

(3.6.1)StatisticalDistribution Law of Non- Equilibrium Statistical 

System: 

The plasma equation of motion of particles in the presence of a 

field potential per particle ܸ and a pressures force ܲ beside a resistive 

force  ܨ௥     is given by: 

݊݉ ௗ௩
ௗ௧

݌∇-=  − ݎܨ − ∇ܸ݊(3.6.1) 

Where ݊,݉ stands for particle number density and particle mass 

respectively considering the motion to be in one dimension along the 

 :axis the equation of motion becomes-ݔ

݊݉ ௗ௩
ௗ௫

.ௗ௫
ௗ௧
= − ௗ௣

ௗ௫
− ௗ(௡௏)

ௗ௫
−  ௥(3.6.2)ܨ
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ݒ݉݊
ݒ݀
ݔ݀

= −
݌݀
ݔ݀

−
ܸ݀
ݔ݀

−  ௥ܨ

݊
ௗ(	భమ௠௩

మ)

ௗ௫
= − ௗ௣

ௗ௫
− ௗ(௡௏)

ௗ௫
−  ௥(3.6.3)ܨ

The term T stands for the kinetic energy of a single particle and can be 

written as: 

ܶ = ଵ
ଶ
ଶݒ݉ =  ଴(3.6.4)ܧ

The pressure ܲ can also split in to thermal  ௧ܲ   and non thermal   ଴ܲ  

to be in the form: 

ܲ = ௧ܲ + ଴ܲ = ݊݇ܶ + ݊ ௣ܲ(3.6.5) 

Where ௣ܲ     in the non-thermal pressure for one particle 

(3.6.2) Plasma Statistical Equation in the Presence of Potential 

Field Only: 

When the potential is only present beside the thermal pressure term 

the equation of motion (3.6.3) read: 

݊ ௗாబ
ௗ௫

= − ௗ(௡௏)
ௗ௫

− ௗ(௡௞்)
ௗ௫

 (3.6.6) 

If one assumes    to change with (ܺ) due to the change of (݊) only then 

equation (3.6.2) to: 

݊ ௗாబ
ௗ௫

= −݇ܶ ௗ௡
ௗ௫
− ௗ(௡௏)

ௗ௫
(3.6.7) 

The temperature here is assumed to be uniform; here one has two 

cases either்ܸ = ܸ݊  changes with respect toܺ due to the change of 

ܸonly. In this case equation (3.6.7) reads: 

݊ ௗாబ
ௗ௫

= −݇ܶ ௗ௡
ௗ௫
− ݊ ௗ௏

ௗ௫
 (3.6.8) 

݊ ௗ(ாబା௏)
ௗ௫

= −݇ܶ ௗ௡
ௗ௫

(3.6.9) 

The total energy is given by: 
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ܧ = ܶ + ܸ = ଴ܧ + ܸ(3.6.10) 

Therefore (3.6.9) becomes: 

݊
ܧ݀
ݔ݀

= −݇ܶ
݀݊
ݔ݀

 

ܧ݀݊ = −݇ܶ݀݊ 

Integration both sides yields: 

−න
ܧ݀
ݔ݀

= න
݀݊
݊

 

݈݊݊ = −
ܧ
݇ܶ

+  ଴ܥ

݊ = ݁ܥ
షಶ
ೖ೅                                                                                 (3.6.11) 

This is the ordinary Maxwell-Boltzmann distribution. But if  ்ܸ     

changes due to change of (݊) only, then equation (3.6.7) reads: 

݊
଴ܧ݀
ݔ݀

= −݇ܶ
݀݊
ݔ݀

− ܸ
݀݊
ݔ݀

 

݊
଴ܧ݀
ݔ݀

= −(݇ܶ + ܸ)
݀݊
ݔ݀

 

−
଴ܧ݀

ܶܭ) + ܸ)
=
݀݊
݊

 

Integration both sides yields: 

න
݀݊
݊
= −න

଴ܧ݀
(݇ܶ + ܸ)

 

݈݊݊ = −
଴ܧ

݇ܶ + ܸ
+  ଴ܥ

݁ܥ=݊
షಶబ

(಼೅శೇ)                                                                             (3.6.12) 

The energy ܧ଴   here stands for the kinetic energy only as shown by 

equation (3.6.4). 
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2-2 Plasma Statistical Equation When Thermal Pressure Changes Due 

to the Temperature Change 

When the thermal pressure change due to the temperature change: 
ௗ௉೟
ௗ௫

= ݊ ௗ(௞்)
ௗ௫

(3.6.13) 

In this case the plasma equation (3.6.3) in the absence of a resistive 

force is given by: 

݊
଴ܧ݀
ݔ݀

= −
௧݌݀
ݔ݀

−
݀(ܸ݊)
ݔ݀

 

݊ ௗாబ
ௗ௫

= −݊ ௗ(௞்)
ௗ௫

− ௗ(௡௏)
ௗ௫

(3.6.14) 

Where the pressure here is assumed to be due to the thermal pressure 

only,if the total potential  ்ܸ     is assumed to be related to the rate of 

change at V only, I.e. 
ௗ௏೅
ௗ௫

= ௗ(௡௏)
ௗ௫

= ݊ ௗ௏
ௗ௫

(3.6.15) 

In this case equation (3.6.14) reads: 

݊
଴ܧ݀
ݔ݀

= −݊
݀(݇ܶ)
ݔ݀

− ݊
ܸ݀
ݔ݀

 

଴ܧ = ܶܭ− − ܸ +  ଴ܥ

Thus: 

଴ܥ = ଴ܧ ܶܭ+ + ܸ 

One can easily deduce that  ܥ଴    is equal to the total energy ܧ,I.e 

ܧ = ଴ܧ + ܸ + ݇ܶ(3.6.16) 

I.e. the total energy is equal to kinetic energy ܧ଴   beside potential 

energy ܸ and thermal energy݇ܶ, But if  ்ܸ    change due to the rate of 

change of n only, I.e. 
ௗ௏೅
ௗ௫

= ܸ ௗ௡
ௗ௫

(3.6.17) 

Equation (3.6.14) thus reads: 
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݊
଴ܧ݀
ݔ݀

= −݊
݀(݇ܶ)
ݔ݀

− ܸ
݀݊
ݔ݀

 

଴ܧ݀)݊ + ݀݇ܶ) = −ܸ݀݊ 

න
݀݊
݊
= −න

଴ܧ݀) + ݀݇ܶ)
ܸ

 

݈݊݊ = −
ܧ
݇ܶ

+  ଴ܥ

݁ܥ=݊
ష(ಶబశೖ೅)

ೇ (3.6.18) 

I f the change of    ்ܸ   with respect to (ݔ) is due to the change of both 

(݊) and (ܸ) with respect to (ݔ): 
ௗ௏೅
ௗ௫

= ௗ(௡௏)
ௗ௫

= ݊ ௗ௏
ௗ௫
+ ܸ ௗ௡

ௗ௫
(3.6.19) 

Inserting (3.6.19) in (3.6.14) yields: 

݊
଴ܧ݀
ݔ݀

= −݊
݀(݇ܶ)
ݔ݀

− ݊
ܸ݀
ݔ݀

− ܸ
݀݊
ݔ݀

 

଴ܧ)݀݊ + ݇ܶ + ܸ) = −ܸ݀݊ 

න
݀݊
݊
= −න

଴ܧ)݀ + ݇ܶ + ܸ)
ܸ

 

݈݊݊ = −
଴ܧ) + ݇ܶ + ܸ)

ܸ
+  ଴ܥ

݁ܥ=݊
ష(ಶబశೖ೅శೇ)

ೇ (3.6.20) 

Thus for non-uniform temperature systems, and non-uniform potential 

energy per particle, the statistical distribution low is described by 

(3.6.20). This relation is different from that obtained in (3.6.11), 

where the temperature is assumed to be uniform. 

2-3 Plasma Statistical Equation When Thermal Pressure Change 

Due to the Change of Both (ܶ) and (݊)   
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When the thermal pressure changes due to the change of both 

(݊) and (ܶ), in this case the plasma equation (3.6.14) is given by: 

݊ ௗாబ
ௗ௫

= −݊ ௗ(௞்)
ௗ௫

− ݇ܶ ௗ௡
ௗ௫
− ௗ(௡௏)

ௗ௫
(3.6.21) 

If the total potential  ்ܸ   is assumed to be related to the rate of change 

of (ܸ) only ,I.e 
ௗ௏೅
ௗ௫

= ௗ(௡௏)
ௗ௫

= ݊ ௗ௏
ௗ௫

(3.6.22) 

In this case equation (3.6.21) reads: 

݊
଴ܧ݀
ݔ݀ = −݊

݀(݇ܶ)
ݔ݀ − ݇ܶ

݀݊
ݔ݀ − ݊

ܸ݀
ݔ݀  

଴ܧ݀)݊ + ݀(݇ܶ) + ܸ݀) = −݇ܶ݀݊ 

න
݀݊
݊
= −න

଴ܧ݀) + ݀(݇ܶ) + ܸ݀)
݇ܶ

 

݈݊݊ = −
଴ܧ) + ݇ܶ + ܸ)

݇ܶ
+  ଴ܥ

݁ܥ=݊
ష(ಶబశೖ೅శೇ)

ೖ೅ (3.6.23) 

But if    change due to the rate of change on n only , I.e. 
ௗ௏೅
ௗ௫

= ௗ(௡௏)
ௗ௫

= ܸ ௗ௡
ௗ௫

(3.6.24) 

In this case equation (3.6.21) reads: 

݊
଴ܧ݀
ݔ݀

= −݊
݀(݇ܶ)
ݔ݀

− ݇ܶ
݀݊
ݔ݀

− ܸ
݀݊
ݔ݀

 

଴ܧ݀)݊ + ݀(݇ܶ)) = −(݇ܶ + ܸ)݀݊ 

݀݊
݊
= −

଴ܧ݀) + ݀(݇ܶ))
(݇ܶ + ܸ)

 

න
݀݊
݊
= −න

଴ܧ݀) + ݀(݇ܶ))
(݇ܶ + ܸ)

 

݈݊݊ = −
଴ܧ) + ݇ܶ)
(݇ܶ + ܸ)

+  ଴ܥ
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݁ܥ=݊
ష(ಶబశೖ೅)
(ೖ೅శೇ) (3.6.25) 

If the change of   ்ܸ     with respect to ݔ is due to the change of both n 

and ܸ with respect to, then: 
ௗ௏೅
ௗ௫

= ௗ(௡௏)
ௗ௫

= ݊ ௗ௏
ௗ௫

+ܸ ௗ௡
ௗ௫

(3.6.26) 

Inserting (3.6.26) in (3.6.21) yields: 

݊
଴ܧ݀
ݔ݀

= −݊
݀(݇ܶ)
ݔ݀

− ݇ܶ
݀݊
ݔ݀

− ݊
ܸ݀
ݔ݀

− ܸ
݀݊
ݔ݀

 

଴ܧ݀)݊ + ܸ݀ + ݀(݇ܶ)) = −(݇ܶ + ܸ)݀݊ 

න
݀݊
݊
= −න

଴ܧ݀) + ܸ݀ + ݀(݇ܶ))
(݇ܶ + ܸ)

 

݈݊݊ = −
଴ܧ) + ݇ܶ + ܸ)
(݇ܶ + ܸ)

+  ଴ܥ

݁ܥ =݊
ష(ಶబశೖ೅శೇ)

(ೖ೅శೇ) (3.6.27) 

(3.6.3)Variation of Spectral Intensity of Some Gases with 

Temperature: 

1- Materials and Methods: 

The following Apparatus   and Instruments are used in the experiment 

2- Apparatus   and Instruments: 

USB2000 Fiber Optic Spectrometer (Ocean Optics), Thermometer, 

Heater, Laptop, Source of Helium Neon laser -133, Power supply, 

Connect cable, Origin program which specialist draw, analyze and 

address the different data and Test tubes (Borosilicate Glass) . 

3-Gases: 

Bhutan   (C4ସHଵ଴), carbon dioxide  (CO2),Carbon Monoxide (CO), 

nitrogen  (N2) ,oxygen (O2) 
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4-Experiment Set Up 

Glass tube is filled by gases, each gas should be heated in steps 

about one or two degrees and the spectrum are recorded at each degree 

by using thermometer. Helium-133 beams is directed to incident on 

the glass tube, the spectrum of each gas including the intensity and 

band width is recorded for each temperature by using USB2000 Fiber 

Optic Spectrometer. The relations are drawn between intensity and 

line width of the transmitted radiation from each gas and temperature. 

5- Results 

Table (3.6.1): Spectrum of Bhutan (࡯૝ࡴ૚૙) at different 

temperatures 

T = temperature, λ= wavelength, I = Intensity, A = area          

W=width 

T(K) λ (nm) A(m2) W (nm) I(a.u) 

300 630.73 4390.43 6.92 126.8 

301 630.78 2536.69 6.96 125.89 

303 630.83 2282.57 7.07 125.74 

305 630.79 1645.95 7.03 125.79 

307 630.78 1645.9 7.02 125.79 

309 630.84 1855.9 7.16 125.13 

311 630.78 1888.66 7.1 124.64 

313 630 1698.66 7.03 124.79 

315 630.83 1482.01 7.003 124.53 

317 630.86 1560.78 7.03 123.96 

318 630.84 1717.5 7.04 123.5 

319 630.89 2037.01 7.08 123.46 

320 630.95 1310.88 6.95 117.62 

323 631.01 1265.28 7.02 116.95 

324 631.01 1276.02 7.05 116.65 
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Fig (3.6.1) Relation between Intensity and temperature 

 

Table (3.6.2): spectrum of Carbon dioxide (CO2) at different 

temperatures 

T(K) λ(nm) A(m2) W(nm) I(a.u) 

308 631.09 6721.97 7.09 104.78 

310 630.69 3971.93 6.56 104.82 

312 630.71 2990.83 6.61 104.98 

314 630.68 2313.09 6.67 105.16 

318 630.67 2672 6.59 105.105 

319 630.73 2562.34 6.62 105.16 

321 630.77 2788.17 6.63 104.95 

323 630.75 2604.82 6.71 105.38 

325 630.81 2746.3 6.76 105.25 

327 630.75 2630.97 6.68 105.37 

329 630.77 2896.99 6.58 105.56 

331 630.66 3235.75 6.72 107.02 

333 630.7 2852.53 6.67 109.16 

336 630.64 2867.93 6.73 112.15 
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Fig(3.6.2)relationship between intensity and temperature 

 

Table (3.6.3): spectrum of Carbon Monoxide (CO) at different 

temperatures 

T(K) λ (nm) A(m2) W(nm) I(a.u) 

305 630.81 7727.23 7.19 127.88 

308 630.83 17902.95 7.52 128.35 

310 631.15 23879.64 7.95 127.71 

314 631.24 28752 8.02 127.72 

316 630.95 35431.03 7.82 128.63 

317 630.87 33455.02 7.63 129.07 

318 630.97 35343.99 7.67 128.96 

319 630.75 36682 7.59 128.89 

320 630.5 31212.8 6.31 128.81 

321 630.54 30925.51 6.29 129.12 

323 630.53 35011.42 6.37 129.37 

324 630.62 29236.35 6.28 132.05 

325 630.62 30482.95 6.83 132.47 

326 630.61 32561.45 6.4 134.94 

328 630.6 28986.9 6.43 136.16 
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Fig(3.6.3) relationship between intensity and temperature 

 

Table (3.6.4): spectrum of Oxygen (O2) at different temperatures 

T(K) λ (nm) A(m2) W   (nm) I(a.u) 

307 630.38 6.33 8357.87 121.82 

309 630.39 6.45 8237.15 124.16 

310 630.36 6.29 10776.64 105.39 

312 630.39 6.34 9984.4 107.28 

313 630.33 6.26 10333.1 108.35 

317 630.36 6.36 10055.14 111.84 

319 630.25 6.29 8871.58 114.79 

320 630.1 6.37 10285.94 126.56 

322 630.17 6.31 6953.2 126.2 

323 630.14 6.37 7661.5 126.12 
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Fig(3.6.4) relationship between intensity and temperature 

 

Table (3.6.5): spectrum of Nitrogen (N2) at different temperatures 
T(K) λ (nm) A(m2) W(nm) I(a.u) 
307 630.57 13210.75 6.46 106.37 
308 631.05 22845 7 106.55 
309 631.17 19689.5 7.03 105.14 
313 631.14 26622.9 7.06 102.97 
318 631.03 37660.7 7.02 101.47 
323 631.04 22161.25 7.04 100.71 
325 631.02 17831.8 6.99 100.73 
326 631.15 20802.4 6.99 100.46 
327 631.07 20115.56 7.05 100.21 
328 631.05 23555.87 7.12 99.97 
329 631.07 13968.94 6.99 101.27 
331 631.1 13849.26 7.07 101.94 
333 631.13 13601.3 7.07 102 
334 631.15 14948.05 7.06 102.37 
337 631.01 13328.25 7.02 103.29 

 

 
Fig (3.6.5) relationship between intensity and temperature 
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(3.6.4)Theoretical Interpretation: 

The behavior of gases can be explained by using statistical 

physics .This explanation is related to the fact. That gas consists of a 

large number of atoms and molecules. The electrons and atoms of 

gases can also be explained by using the laws of quantum mechanics. 

This is not surprising, since atomic and sub atomic microscopic 

particles are explained by using the laws of quantum mechanics. 

 

(3.6.4.1) Thermal Equilibrium Statistical Interpretation: 

According to Maxwell distribution the density of particles is given by: 

݊=݊଴݁
ି ಶ
಼೅(3.6.28) 

It is quite natural to assume that the density of photons emitted 

݊௣is proportional to the exited atoms or electrons density I. e 

݊௣=ܥ଴݊=ܥ଴݊଴݁
ି ಶ
಼೅(3.6.29) 

Where ܥ଴  is a constant 

Assume that the spectrum is formed due to the emission of free 

electrons surrounding the positive ion of the gas. In this case the 

potential is negative and attractive. By neglecting kinetic term, when 

the potential is very high in this case 

-=ܧ ଴ܸ(3.6.30) 

Therefore equation becomes (3.6.29): 

݊௣=ܥ଴݊଴݁
ೇబ
಼೅(3.6.31) 

଴ܸ~
9 × 10ଽ × (1.6)ଶ × 10ିଷ଼

଴ݎ
	~
10ିଶ଼

଴ݎ
 

଴ܸ

݇
~
10ିହ

଴ݎ
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10ିହ݉					~	଴ݎݎ݋ܨ
௏బ
௞
~1																						(3.6.32) 

The light intensity of the emitted photons is given by: 

ܫ = ଴݊଴݁ܥܥୀ		௣݊ܥ
ೇబ
಼೅ = ଴݁ܫ

ೇబ
಼೅(3.6.33) 

By a suitable choice of (3.6.32)   and using (3.6.33)   parameters one 

can choose: 

଴݁ܫ=ܫ
భ
೅ ,ܫ଴ = 	10																		(3.6.34) 

 
Fig (3.6.6) 

(3.6.4.2)Non- Equilibrium Statistical System: 

The work done by SuhairSalihMakawySuliman [64] shows that 

for non-Equilibrium systems where the temperature, potential are no 

longer constant, but worry with position, the number density is given 

by: 

݊=݊଴݁
ିಶಶഥ(3.6.35) 

Where E	stands for non-uniform varying energy, while Eഥ represents 

the uniform energy .If one assumes that the electrons are affected by 

the bulk potential of positive ions, which is attractive, then: 

തܧ = − ଴ܸ(3.536) 

ܧ = ݇ܶ(3.5.37) 

Sub situating (43.5.29)    and (3.5.37)    in (3.5.35)    yields: 

٩.٥
١٠

١٠.٥
١١

١١.٥

٠ ٢٠٠ ٤٠٠ ٦٠٠

I(a
.u

)

T(ºK)

I=I0e 1/T
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݊=݊଴݁
಼೅
ೇబ (3.6.38) 

In view of equations (3.6.29), (3.6.33) and (3.6.34)   .The light 

intensity is given by: 

଴݁ܫ=ܫ
಼೅
ೇబ (3.6.39) 

Using (3.6.32): 
V଴
k
	~1 

When: 

଴ܸ~݇~1 × 10ିଶଶ																									(3.6.40) 

In this case equation (3.6.39) becomes : 

଴ܫ଴்݁ܫ=ܫ = 10(3.6.41) 

 
Fig (3.6.7) 

When the electron energy is equal to thermal energy, beside energyV୰ 

resulting from repulsive force. 

In this case: 

E=KT + V		୰																																		(3.6.42) 

If the back ground is the attractive uniform potential as in equation     

(3.6.29) then: 

n=n଴e
౒౨శే౐
౒బ (3.6.43) 

٠
٥٠٠

١٠٠٠
١٥٠٠
٢٠٠٠
٢٥٠٠
٣٠٠٠
٣٥٠٠
٤٠٠٠
٤٥٠٠

٠ ٢ ٤ ٦ ٨

I(a
.u

)

T(ºK)

I=I0e T
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Assuming that: 

V୰	~		100V଴ 

										V଴	~		100K~10ିଶଵ(3.6.44) 

Using relations (3.6.29), (3.6.33), (3.5.43)	and(3.544)	yields: 

I=I଴e
౒౨శే౐
౒బ  

I=I଴e
ଵ଴଴ା ౐

భబబ					, I଴ =10                   (3.6.45) 

 
Fig (3.6.8) 

 

If the energy resulting from the repulsive electron gas is assumed to be 

uniform, then: 

തܧ = ௥ܸ(3.6.46) 

When the electron energy is the thermal, beside the energy resulting 

from attractive ions ଴ܸ then: 

ܶܭ=ܧ − ଴ܸ(3.6.47) 

In this case equation (3.5.35)   reads: 

݊=݊଴݁
ೇబష಼೅
ೇೝ = ݊଴݁

ೇబ
ೇೝ
ିೖ೅ೇೝ (3.6.48) 

In view of equations (3.5.29), (3.5.33) and (3.6.48), one gets: 

଴݁ܫ=ܫ
ೇబ
ೇೝ
ିೖ೅ೇೝ(3.6.49) 

٠

١٠٠٠٠

٢٠٠٠٠

٣٠٠٠٠

٤٠٠٠٠

٠ ٢٠٠ ٤٠٠ ٦٠٠ ٨٠٠

I*
10

^4
3(

a.
u)

T(ºK)

I=I0e 100+(T/100)
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Assuming: 

଴ܸ	~		5 ௥ܸ 

௥ܸ	~		݇(3.6.50) 

One gets the light intensity in the form: 

଴ܫ଴݁ହି்ܫ=ܫ = 2	 (3.6.51) 

 

 

 

 

 

 

 

 

Fig (3.6.9)   One can Assume Gas where the Thermal Equilibrium 

തܧ =  ܶܭ

And assuming electron repulsive back ground 

=ܧ ௥ܸ  

Thus equation (3.5.35) reads: 

݊ = 		 ݊଴݁
షೇೝ
಼೅ (3.5.52) 

For: 

௥ܸ~݇(3.6.53) 

Using also equations (3.5.29)   and   (3.5.33) one gets: 

଴݁ܫ=ܫ
ିభ
೅(3.5.54) 

Set: 

଴ܫ = 10݁ 

ܫ = 10݁݁ି
భ
೅=10݁ଵି

భ
೅(3.6.55) 
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Fig (3.6.10) 

 

(3.6.5)Dissection: 

Fig (3.6.1) shows the Relation between Intensity and 

temperature for Bhutan (4ସܪଵ଴),the curve of this relation resembles 

that of fig(3.6.9).This means the Bhutan gas the homogenous 

repulsive electron gas potential is almost constant compared   to 

attractive ion potential and temperature. 

Fig (3.6.2) shows the Relation between Intensity and 

temperature for Carbon dioxide (CO2) which has a curve that 

resembles the curve in figs (3.6.7) and (3.6.8) .This indicates that the 

attractive positive ions looks homogeneous and stable compared to 

temperature. This is not surprising since the gas was heated at the 

bottom by a heater. This means that the bottom is hotter than the top 

part of the gas .Thus the temperature is not uniformities 

In Fig (3.6.3) the Relation between Intensity and temperature 

for Carbon Monoxide (CO) which is displayed in this fig, resembles 

the curve of figs (3.6.7) and (3.6.8). This is not surprising, since for 

both figures the statistical distribution is based on the homogeneity of 

the ionic field and non-homogeneity of temperature. The non-
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homogeneity of temperature results again from the fact that the bottom 

of the gas exposed to a heater is very hot compared to the top of the 

gas. 

However Fig (3.6.4) shows that the Relation between Intensity 

and temperature for Oxygen (O2) can be easily explained by fig   

(3.6.10) where the repulsive homogeneous electron field dominates, 

compared the attractive ionic field. Fig (3.6.5) shows for 

Nitrogen (N2) it spectrum is displayed by the Relation between 

Intensity and temperature.  The curve of this relation resembles fig 

(3.6.6) which shows homogeneity of temperature compared to less 

homogenous attractive crystal field. 

(3.6.6)Conclusion: 

The new statistical non-equilibrium model based on plasma 

equation that relates to the intensity of atomic spectra to the gas 

temperature can successfully describe the dependence of atomic 

spectra on temperature. The promotion of these models in the future 

may successfully be capable of determining the atmospheric 

temperatures of deferent layers. 

(3.7) Summary and Critique: 
In these attempts new Schrödinger equation was derived to account 

for friction. But most of them are complex and does not base on 

harmonic oscillator model which is a corner stone of conventional 

ordinary Schrödinger equation. 

It is important to note that none of them derives radioactive decay law 

on the basis of quantum mechanical laws. 
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Chapter 4 

Schrödinger Quantum Frictional Equation for 

Nucleus 
(4.1)Introduction: 
      When any particle enters a certain medium it suffers from friction 

which decreases energy and momentum. Such particle cannot be 

described by using ordinary Schrödinger equation. Thus one needs 

new quantum equation that accounts for the effect of friction. This 

chapter is concerned with this new equation. This equation is used to 

derive radioactive decay law. A new statistical physical law for 

particle in a field is also derived and used for describing nuclear 

behavior. 

(4. 2) Relaxation time and Friction: 
For any particle having mass ݉ and velocity  ݒ the force ܨexerted on 

it can be described by the equation: 

݉ ௗ௩
ௗ௧
=  (4.2.1) ܨ

Considering the particle as harmonic oscillator the velocity ݒ is given 

by : 

ݒ =  ଴݁௜௪బ௧(4.2.2)ݒ

Where 

   ଴is the angular frequencyݓ

 is the maximum velocity	଴ݒ

Substituting equation (4.2.2) in (4.2.1) yields  

଴ݒ଴ݓ݉݅ =  (4.2.3)   ܨ
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If the particle moves in a resistive medium of coefficient ߛ the 

equation of motion becomes  

݉ ௗ௩
ௗ௧
= ܨ	 −  (4.2.4)ݒ݉ߛ

According to equation (4.2.3) the force affect the velocity amplitude 

and frequency. The force also changes the energy of the system. 

Assuming that the frictional force affects the frequency only, one can 

assume  

ݒ =  ଴݁௜௪௧(4.2.5)ݒ

If one treat the particle as a harmonic oscillator, the energies forݓ଴ , 

andݓ are given by: 

଴ܧ = ħݓ଴,ܧ = ħ(4.2.6)ݓ 

This means that E is affected by the frequency only. This conforms to 

our assumption that F affect the frequency only as far as F affect E. 

Substituting equation (4.2.3) in equation (4.2.4) yields: 

଴ݒݓ݉݅ = ଴ݒ଴ݓ݉݅ −  ଴ݒ݉ߛ

Cancelling similar terms and multiplying both sides by ݅ yields 

ݓ − ଴ݓ = ߛ݅ = ௜
ఛ
(4.2.7) 

Thus the energy loss is given by  

ܧ∆ = ħݓ଴ − ħݓ = ħߛ݅− = ି௜ħ
ఛ

(4.2.8) 

Thus the new energy of the system affected by friction is given by: 

ܧ = ଴ܧ + ܧ∆ = ଴ܧ −  ħ(4.2.9)ߛ݅

Thus the wave equation can be written  

Ѱ = ݁ܣ
೔
ħ
[௉௫ି(ாబି௜ħఊ)௧] 

Ѱ = ݁ܣ
೔
ħ(௉௫ିாబ௧)݁ି

ംħ೟
ħ (4.2.10) 

Ѱ = ఊ௧݁ି݁ܣ
೔
ħ(௉௫ିாబ௧)(4.2.11) 
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It is very striking to observe that the imaginary friction term in 

equations (4.2.7) and (4.2.8) appears in equation (4.2.11) to make the 

amplitude of Ѱ decay with time. 

Therefore the average energy ܧത which is equal total classical value,i.e 

തܧ = ∫Ѱഥ ݐѰ݀ܧ =  ଶఊ௧(4.2.12)ି݁ܧ

Indicates that the energy decays with time .This agrees with the fact 

that friction causes particle energy to decrease  

The relation time from uncertainty principle is given by  

ݐ∆ܧ∆ = ħ(4.2.13) 

With  

ܧ∆ = ħ
∆௧
= ħ

ఛ
(4.2.14) 

Where         ∆ݐ = ߬ 

It’s very interesting to note that equations (4.2.8) and (4.2.14) give the 

same numerical values. But the expression (4..2.8) is more convenient, 

as far as it is insertion in the wave function predicts time decaying 

energy .This means that treating particles as harmonic oscillators gives 

quantum results similar to the classical one. 

(4.3)Schrödinger Equation for Frictional Media: 
     The ordinary Schrödinger equation does not account for the effect 

of frictional force. For example consider two particles; both of them 

are affected by a field of potential V. Let the first one moves in free 

space, while the other move in a medium like water. Schrödinger 

equation for the two particles gives the same wave function, with the 

same average wave function, with the average momentum and energy. 

This situation is in direct conflict with experiments and common 

sense. This is due to the fact that the second particles have less 
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momentum and energy because it loses them due to friction effect of 

the medium [50]. 

    This means that one needs new Schrödinger equation accounting for 

the effect of friction. This can be done with the aid of equation (4.2.9), 

where 

ܧ = ଴ܧ −  ћ(4.3.1)ߛ݅

 ଴isthe energy when no friction exists. For classical system thisܧ

energy is given by: 

଴ܧ =
௉మ

ଶ௠
+ ܸ  (4.3.2) 

Hence the complete expression of energy in the presence of friction is 

given by: 

ܧ = ௉మ

ଶ௠
+ ܸ −  ћ(4.3.3)ߛ݅

To derive the new Schrödinger equation multiplying both sides of 

equations (4.3.3) by Ѱ to get: 

Ѱܧ = ௉మ

ଶ௠
Ѱ + ܸѰ −  ћ(4.3.4)ߛ݅

For free particle the wave function is given by  

Ѱ = ௜(௞௫ି௪௧)݁ܣ = ݁ܣ
೔
ћ(௉௫ିா௧) (4.3.5) 

Differentiating both sides with respect to time and coordinate gives: 

߲Ѱ
ݐ߲

= −
݅
ћ
 ݐܧ

݅ћ డѰ
డ௧
=  Ѱ(4.3.6)ܧ

߲Ѱ
ݔ߲

=
݅
ћ
ܲѰ 

߲ଶѰ
ଶݔ߲

= −
ܲଶ

ћଶ
Ѱ 
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−ћଶ డ
మѰ
డ௫మ

= −ћଶ∇ଶѰ = ܲଶѰ(4.3.7) 

Inserting equations (4.3.6) and (4.3.5) in (4.3.4) yields: 

݅ћ డѰ
డ௧
= − ћమ

ଶ௠
∇ଶѰ + ܸѰ −  ћѰ(4.3.8)ߛ݅

This equation is the Schrödinger equation for frictional medium. 

(4. 4) The Wave Function of Free Particle in Frictional 

Medium: 
        For free particle the potential vanishes, i.e 

V=0                 (4.4.1) 

For ordinary Schrödinger equation the equation reduced to: 

݅ћ డѰ
డ௧
= − ћమ

ଶ௠
∇ଶѰ(4.4.2) 

The solution of this equation is given: 

Ѱ = ݁ܣ
೔
ћ(௉௫ିா௧)(4.4.3) 

However for the new Schrödinger equation the equation reduced to: 

− ћమ

ଶ௠
∇ଶѰ − ћѰߛ݅ = ݅ћ డѰ

డ௧
 (4.4.4) 

This can be solved by assuming: 

Ѱ =  ௜ఉ௧ା௜௞௫(4.4.5)ି݁ܣ

Thus  

ቊ
∇ଶѰ = ݇ଶѰ
డѰ
డ௧
=  Ѱቋ(4.4.6)ߚ݅−

Substituting (4.4.5) and (4.4.6) in (4.4.4) yields  

ቂћమ௞మ

ଶ௠
− ћቃѰߛ݅ = ћߚѰ(4.4.7) 

Since from free particle: 

ܲ = ћ݇ 
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ܧ = ௉మ

ଶ௠
(4.4.8) 

Therefore: 

ћߚ =
ܲଶ

2݉
− ћߛ݅ = ܧ −  ћߛ݅

ߚ = ா
ћ
−  (4.4.9)ߛ݅

Substituting (4.4.9) in (4.4.5) yields: 

Ѱ = ௜ఊ݁ି݁ܣ
೔
ћ(௉௫ିா௧)(4.4.10) 

The average energy for this particle given to be: 

〈ܧ〉 = ∫Ѱഥ ݎ෡Ѱ݀ܪ = ∫Ѱഥ ݎѰ݀ܧ = ܧ ∫Ѱഥ Ѱ݀ݎ =  ଶఊ௧           (4.4.11)ି݁ܧ

(4.5)Quantum Radioactive Decay Law: 
A simple expression for radioactive decay law can be obtained by 

using equation (4.4.10) .The number of particles is given according to 

equation (4.4.10): 

ܰ = ѰѰഥ =  ଶఊ௧ (4.5.1)ି݁ܣ

Since at  

ݐ = 0	, ܰ = ଴ܰ 

Thus equation (4.5.1) gives: 

଴ܰ =  ܣ

Therefore equation (4.5.1) becomes: 

ܰ = ଴ܰ݁ିଶఊ௧(4.5.2) 

By setting: 

ߛ2 =  ߣ

ܰ = ଴ܰ݁ିఒ௧(4.5.3) 

This is the ordinary radioactive decay law 
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The radiation emitted by unstable nuclei is due to the fact that these 

nuclei are in an excited state .This can be shown with the aid of 

equations (4.2.8),(4.2.14)and (4.5.2), where: 

ܧ∆ = ħ
ఛ
=  ħ(4.5.4)ߛ

Thus: 

ܰ = ଴ܰ݁
ିଶ∆ಶħ ௧(4.5.5) 

This shown that nuclear decay is due to nuclear excitation .i.e. the 

existence of the nucleus in an excited state. 

According to the classical harmonic oscillator model, equation (4.2.8) 

shows that the energy loss due to frictional force is shown to be 

related to the reciprocal of the relaxation time. The relaxation time 

here measures the delay in particle motion .It is very striking to find 

that typical expression for energy loss by excited particle is obtained 

by using quantum uncertainty  principle according to equation (4.2.14) 

.Here again ߬ represents time taken by a particle in an excited state . If 

a photon is absorbed by a particle it become excited for ߬ seconds , 

then it return back to the ground state after re-emitting a photon with 

time delay ߬seconds. 

       However the imaginary term in the classical expression (4.2.8) 

make it give a direct physical meaning of the role of friction in 

causing energy losses according to equation (4.2.12).It is also very 

interesting to note that the wave function resulting from the energy 

expression for resistive media in equation (4.2.11) can be utilized to 

derive a simple expression for the radioactive decay law. 

          Fortunately this mew expression shows that decay of particles 

results from nuclear excitation .This is since the original energy does 
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not appear, while excitation energy appears in decay expression as 

shown by equation (4.5.5).  

     The harmonic oscillator model which is related to the string theory 

appears to be successful in describing the interaction of particles with 

bulk matter. The classical and quantum expression for the energy lost 

due to this interaction are numerically the same. This model succeeded 

in deriving very simple direct radioactive decay law. 

(4.6)Nuclear Reaction on the Basis of Statistical 

distribution Based on Nuclear Potential: 
.                  The nucleus is held by the forces which protect them from 

the enormous repulsion forces of the positive protons. It is a force with 

short range and not similar to the electromagnetic force. It is well 

known that the nucleus is consistingof protons and neutrons. These are 

formed from quarks which are held together with strong force. This 

strong force is residual color force. The basic exchange particle is 

called gluon which works as mediator forces between quarks. Both the 

particles; gluons and quarks are present in protons and neutrons. 

The range of force between particles is not determined by the mass of 

particles. Thus, the force which balanced the repulsion force between 

the positively charged particles protons is a nuclear attraction which 

overcomes the electric repulsion force.  

Nuclear Force is defined as the force exerted between numbers of 

nucleons. This force is attractive in nature and binds protons and 

neutrons in the nucleus together. Since the protons are of same 

positive charge they exert a repulsive force among them.  
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Because of this attractive Nuclear Force, the total mass of the nucleus 

is less than the summation of masses of nucleons that is protons and 

neutrons. This force is highly attractive between nucleons at a distance 

of 10ିଵହm or 1 femtometer (fm) approximately from their centers. 

There are two types of nuclear forces, strong and weak nuclear force.  

Nuclear forces are independent of the charge of protons and neutrons. 

This property of nuclear force is called charge independence. It 

depends on the spins of the nucleons that is whether they are parallel 

or no and also on the non-central or tensor component of nucleons. 

The short range nuclear force field does not exist outside the nucleus. 

However the gravity and electric beside magnetic fields can distribute 

themselves around the nucleus affecting the surrounding electrons. In 

general the effect of gravity on electrons can be neglected compared to 

the electrostatic effects. But the gravitational field becomes important 

for some astronomical objects like neutrons stars. The gravity and 

electromagnetic fields manifests themselves as macroscopic potential, 

while nuclear short range field is a microscopic field. 

In the statistical physics the role of macroscopic fields and their 

generation are not widely studied. Some attempts were made to 

accounts for the effect of potential on statistical distribution. But no 

detailed studies were made to use statistical laws to explain generation 

of macroscopic fields by the nucleus and neutron stars.  

(4.6.1)Newtonian Statistical Distribution Laws for Particles in a 

Field: 

According to Newton laws, the total energy E is given by: 

ܧ = නܧ௡ܸ݀ܲ݀ 
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For one particle the total energy takes the form: 

ܧ = ௉మ

ଶ௠
+ ܸ(4.6.1) 

Where: P is the momentum and Vis the potential ,thus for n particles 

the total energy is given by: 

E = ∫ ቀ୔
మ

ଶ୫
+ Vቁ ݁ିఉ൤൬

ುమ

మ೘൰ା௏൨ܸ݀ܲ݀(4.6.2) 

Thus the average energy is given by: 

〈ܧ〉 = ݕ݃ݎ݁݊݁݁݃ܽݎ݁ݒܽ =
∬ ൬ು

మ

మ೘ା௏൰௘
షഁቆು

మ
మ೘శೇቇ

ௗ௉ௗ௏∞
బ

∬ ௘
షഁቆು

మ
మ೘శೇቇ

ௗ௉ௗ௏∞
బ

(4.6.3) 

〈ܧ〉 =
∫ ܸ݁ିఉ௏ܸ݀∞
଴

∫ ݁ିఉ௏ܸ݀∞
଴

+
∫ ௉మ

ଶ௠
݁ିఉ

ುమ

మ೘݀ܲ∞
଴

∫ ݁ିఉ
ುమ

మ೘ௗ௉∞
଴

=
ଵܫ
ଶܫ
+
ଷܫ
ସܫ

 

Taking the integral: 

∫ ܸ݁ିఉ௩ܸ݀∞
଴ (4.6.4) 

By integrating by parts: 

ଵݑ = ܸ → ଵݑ݀ = ܸ݀ 

݀ ଵܸ= ݁ିఉ௩ܸ݀ → ଵܸ = - ଵ
ఉ
݁ିఉ௏ 

∫ ଵݑ
∞
଴ ଵݑ=  ܸ݀ ଵܸି ∫ ଵݑଵ݀ݒ

∞
଴  

Then: 

ଵܫ = ∫ ܸ݁ିఉ௏∞
଴ ܸ݀= - ቂ௏

ఉ
݁ିఉ௏ቃ

଴

∞
 - ∫ − ଵ

ఉ
݁ିఉ௏∞

଴ ܸ݀ 

ଵܫ = 0 +
1
ߚ
න݁ିఉ௏ܸ݀ 

ଵܫ =
ଵ
ఉ ∫ ݁ିఉ௏∞

଴ ܸ݀ = ଵ
ఉ
[ - ଵ

ఉ
݁ିఉ௏]଴∞ 

ଵܫ =	
ିଵ
ఉమ
[	0 − 1	] = 	 ଵ

ఉమ
(4.6.5) 
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ଵܫ =
ଵ
ఉమ

(4.6.6) 

The second integral is given by: 

ଶܫ = ∫ ݁ିఉ௏ܸ݀∞
଴  =  −ቂଵ

ఉ
݁ିఉ௏ቃ

଴

∞
 

ଶ=ିଵܫ
ఉ
[	0 − 1	] =ଵ

ఉ
(4.6.7) 

Thus from (4.6.7) and (4.6.6) one gets: 

୍భ
୍మ
=

∫ ୚	ୣషβ౒∞
బ 	ୢ୚

∫ ୣషβ౒∞
బ ୢ୚

 = 
భ

βమ
భ
β

 = β
βమ

 = ଵ
β
 

୍భ
୍మ
=

∫ ୴	ୣషβ౬∞
బ 	ୢ୴

∫ ୣషβ౬∞
బ ୢ୴

= ଵ
β
(4.6.8) 

The third integral is given by: 

ଷܫ = ∫ ௉మ

ଶ௠
∞
଴ ݁ିఉ

ುమ

మ೘݀ܲ(4.6.9) 

Let ݔ = ߚ		 ௣ଶ
ଶ௠

→ (ଶ௠
ఉ
ଵ/ଶି(ݔ 	 = ܲ(4.6.10) 

→ ݀ܲ =ଵ
ଶ
(ଶ௠
ఉ
ଵ/ଶି(ݔ ቀଶ௠

ఉ
ቁ ௠=ݔ݀

ఉ
(2݉/ܲ		)ିଵ/ଶିݔଵ/ଶ݀ݔ 

At: 

ܲ = 0 → ݔ = 0, ܲ = ∞ → ݔ = ∞ 

ଷܫ = න
ݔ
ߚ

∞

଴

݁ି௫
݉
ߚ
(
2݉
ߚ
	)ିଵ/ଶିݔଵ/ଶ݀ݔ 

ଷ=௠ܫ
ఉమ
(ଶ௠
ఉ
)ିଵ/ଶ ∫ ∞ଵ/ଶିݔ

଴ ݁ି௫݀(4.6.11)ݔ 

By using Gamma Function integrations: 

⌈(݊)� = ∫ ∞௡ିଵݔ
଴ ݁ି௫݀(4.6.12)ݔ 

݊ − 1 = 1/2 → ݊ = 3/2 

∫ ∞ଵ/ଶିݔ
଴ ݁ି௫݀ݔ= ቒቀଷ

ଶ
ቁ = ଵ

ଶ
ቒቀଵ
ଶ
ቁ =  (4.6.13)      2/��ߨ√	

Then 
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ଷܫ =
௠
ఉమ
(ଶ௠
ఉ
	)ିଵ/ଶඥ(4.6.14)2/ߨ 

The forth integral is also given by: 

Iସ = නeିβౌ
మ

మౣୢ୔ୀ
ౣ
β
ቀమౣ

β
ቁ
షభ/మ

඄൬
1
2
൰�

∞

଴

 

ସܫ =
௠
ఉ
ቀଶ௠
ఉ
ቁ
ିଵ/ଶ

 (4.6.15)ߨ√

Then from (4.2.1.14) and (4.2.1.15): 

୍య
୍ర
=

ౣ
βమ
ቀమౣ

β
ቁ
షభ/మ√π

మ

ౣ
β ቀ

మౣ
β ቁ

షభ/మ
√π
= ଵ

ଶβ
(4.6.16) 

Thus inserting equations (4.6.8) and (4. 6.6) in equation (4.6.3) yields: 

〈ܧ〉 = ଵ
ఉ
+ ଵ

ଶఉ
= ଶାଵ

ଶఉ
= ଷ

ଶఉ
(4.6.17) 

According to liquid drop model, the nuclear can treated as consisting 

of a large number of small tiny particles like massive photons. Thus 

the use of statisticalphysics in describing its behavior is justifiable. 

Thus if these particles that consciences the nucleus are re-distributed 

to be at infinity, then no field is observed. But when a work done to 

assemble and collect these tiny particles by bringing them from 

infinity the nucleus produces macroscopic gravity field, beside 

electrostatic field, with field strengths equal to ܧ௚andܧ௘respectively. 

Thus the total macroscopic energy produced by the nucleus is: 

ܧ = ቀܧߝ௘ଶ +
ଵ

ସగீ
௚ଶቁܧ ቀ

ସగ
ଷ
ܴ଴ଷቁ(4.6.18) 

Where ܧ௚and ܧ௘are the gravity and electric field strengths just outside 

the nucleus, But according to equation (4.6.17) to be: 

ܧ = ଷே
ଶఉ

(4.6.19) 

Where N are the number of particles forming the nucleus 
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Comparing equations (4.6.19) and (4.6.18): 

3ܰ
ߚ2

= ൬ܧߝ௘ଶ +
1

ܩߨ4
௚ଶ൰ܧ ൬

ߨ4
3
ܴ଴ଷ൰ 

ߚ = ଷ
ଶ

ே
ቀఌா೐మା

భ
రഏಸா೒

మቁቀరഏయ ோబ
యቁ

(4.6.20) 

This parameter is related to the macroscopic energy produced by 

nucleus. While the potential appearing in equations (4.6.1) and (4.6.3) 

is the microscopic potential which may have functional form and thus 

nature different from the macroscopic nucleus. 

(4.6.2)Massive and Super Massive Astronomical Objects: 

                  Consider a massive astronomical body like planets or stars 

or super massive neutron stars. For such objects the macroscopic field 

produced is the gravitational field. When any object is formed by 

assembling far tiny particles located at infinity to form this 

astronomical objects the work done to move them from infinity 

requires giving them a kinetic energy. A work is also done against the 

field existed. Thus the total energy given by equation (4.6.17) is 

transformed to gravitational energy given by equation (4.6.18), thus: 

ܧ = ଷே
ଶఉ
=

ா೒మோయ

ଷீ
(4.6.21) 

Where R is the radius of the star 

(4.6.3) Statistical Laws Based on Generalized Special Relativity: 

According to generalized special relativity: 

ܧ = ݉ܿଶ(4.6.22) 

The average energy is given by: 

〈ܧ〉 = ∫ ா௘షഁಶௗா∞
బ

∫ ௘షഁಶௗா∞
బ

(4.6.23) 
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〈ܧ〉 = ∫ ௠௖మ௘షഁ೘೎మௗ௠௖మ∞
బ

∫ ௘షഁ೘೎మ∞
బ ௗ௠௖మ

 (4.6.24) 

ଵܫ = ∫݉ܿଶ݁ିఉ௠௖మ݀݉ܿଶ(4.6.25) 

Let: 

ݔ = ଶܿ݉ߚ →
ݔ
ଶܿߚ

= ݉ → ݀݉ =
ݔ݀
ଶܿߚ

 

Then: 

න
ݔ
ߚ
݁ି௫

ݔ݀
ߚ
= න

ݔ
ଶߚ

݁ି௫݀ݔ =
1
ଶߚ

නି݁ݔ௫݀ݔ 

Use integration by parts let: 

ݑ = ݔ → ݑ݀ = ,ݔ݀ ݒ݀ = ݁ି௫݀ݔ → ݒ = −݁ି௫ 

නି݁ݔ௫݀ݔ = ௫ି݁ݔ− +න݁ି௫ ݔ݀ = ௫ି݁ݔ− − ݁ି௫ 

∴ ଵܫ =
ଵ

ఉమ௖మ
௫ି݁ݔ−] − ݁ି௫] = ଵ

ఉమ௖మ
(4.6.26) 

Let: 

ଶܫ = න݁ିఉ௖మ௠݀݉ܿଶ 

Let: 

ݔ = ଶ݉ܿߚ → ݉ =
ݔ
ଶܿߚ

→ ݀݉ =
ݔ݀
ܿߚ

 

ଶܫ = ∫ ݁ି௫ ௗ௫
ఉ௖మ

= ଵ
ఉ௖మ ∫ ݁

ି௫݀ݔ = ቂ− ௘షೣ

ఉ௖మ
ቃ
଴

∞
= ଵ

ఉ௖మ
 (4.6.27) 

〈ܧ〉 = ூభ
ூమ
= ଵ

ఉ
(4.6.28) 

〈ܧ〉 =

ଵ
ఉమ
௫ି݁ݔ−] − ݁ି௫]଴∞

ଵ
ఉ
[݁ି௫]଴∞

=
1
ߚ
[−(0 + 0) + (0 + 1)]

1
 

〈E〉 = ଵ
ஒ
 (4.6.29) 
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Where ଵ
ఉ

the energy per particle isconstant 

݉଴ܿଶ + ݇ܶ + ఌாమ

௡
(4.6.30) 

For relativistic particles producing nucleus  

ܧ = 〈ܧ〉ܰ = ே
ఉ
= ܰ ቀ݉଴ܿଶ + ݇ܶ + ଶ௘ܧߝ +

ா೒
ସగఏ

ቁ ቀସగ
ଷ
ܴ଴ଶቁ(4.6.31) 

(4. 7) Discussion: 
According to the classical harmonic oscillator model, equation (4.2.8) 

shows that the energy loss due to frictional force is shown to be 

related to the reciprocal of the relaxation time. The relaxation time 

here measures the delay in particle motion .It is very striking to find 

that typical expression for energy loss by excited particle is obtained 

by using quantum uncertainty principle according to equation (4.2.14). 

Here again ߬ represents time taken by a particle in an excited state. If a 

photon is absorbed by a particle it become excited for ߬ seconds , then 

it return back to the ground state after re-emitting a photon with time 

delay ߬	seconds. 

  However the imaginary term in the classical expression (4.2.8) make 

it give a direct physical meaning of the role of friction in causing 

energy losses according to equation (4.2.12).It is also very interesting 

to note that the wave function resulting from the energy expression for 

resistive media in equation (4.2.11) can be utilized to derive a simple 

expression for the radioactive decay law. 

          Fortunately this mew expression shows that decay of particles results 

from nuclear excitation .This is since the original energy does not 

appear, while excitation energy appears in decay expression as shown 

by equation (4.5.5).  
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The ordinary Schrödinger equation cannot accounts for affected of 

frictional for particles moving in a resistive medium. 

This is since the average energy, which is related to the classical 

energy, is given by: 

〈ܧ〉 = ∫Ѱഥ ݅ћ డѰ
డ௧
ݎ݀ = ∫ѰܧѰ݀ݐ = ܧ ∫Ѱ Ѱ݀ݎ =  (4.7.1) ܧ

Is constant, this is in direct conflict with experiments which shows 

decrease of energy and momentum with time. 

However the situation is different for the new Schrödinger equation 

(4.3.8) which has an imaginary term consisting of friction 

coefficientߛ. This equation when solved for particle in a resistive 

medium shows time decaying energy as shown by equation (4.4.11). 

This result confirms with experiments which shows energy decrease 

with time. 

                 The total energy and average energy of statistical systems 

consisting of particles having both kinetic as well as potential energy 

was derived as shown by equation (4.6.17) and (4.6.19). 

The parameter β is related to the macroscopic energy as in the 

conventional statistical laws. In the case of nucleus the macroscopic 

energy includes gravity and electric fields produced by the nucleus as 

shown by equation (4.6.18). Thus β is given by (4.6.20). For 

Astronomical objects the β is related to the gravity field as shown by 

equation (2.6.21).when relativistic effects are taken in to account β 

includes also rest mass energy. 

The new statistical law which incorporates potential energy beside 

kinetic one can be used to find new statistical laws that can describe 

the generation of macroscopic fields. 
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(4. 8) Conclusion: 

       The new quantum and statistical models are promising, since they 

can easily describe radioactive decay phenomena. It also enables 

statistical laws to describe macroscopic electric and gravity field 

beside rest mass energy. 

(4. 9) Recommendation: 
1. The new quantum model needs to be applied for neutron stars and 

black holes. 

2. The scattering process this new quantum model should be also 

established. 

3. The new statistical model can be used for stars evolution. 
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