Dedication

To my mother Un known soldier in our home, father It is the greatest love that he holds, toscience and knowledge, sisters and brother, To my teachers and all friends.

A cknowledgements

At first I would like to thank Allah who gives me the power to complete this work.

I would like to thank Prof. Mubarak DirarAbdalla who patiently and kindly supervised this thesis and who generously gave me many valuable references which were a great help.

Special thanks to Mr.AbdAlsakhiSulieman -Alneelain University Department of physics for assistance given to do the experimental work.

Also thanks to Dr. RawiaabdAlgani who sincerely advised me during my work through this thesis.

Also special thanks to Mr. AlbashierAbdAlgayum and Dr. AmelAbdAlla(Sudan University- Department of physics)

My gratitude is sent to my dear family who patiently and kindly aided me very much throughout this work.

Also thanks were sent to all who helped me.

Abstract

Identification of elements is very important in mineral exploration. The change of conductivity with frequency shows resonance values for different matter. At these values the conductivity is minimum; this resonance frequency is shown experimentally to be related to the matter density and atomic number beside the magnetic field. These empirical relations can be explained theoretically on the basis of new statistical laws derived from plasma equations beside Zeeman Effect law. Mineral Exploration is very important for industry. There are many spectral techniques used for identification of elements. Unfortunately these techniques are complex and expensive. There is a need for simple technique for exploration. This work utilizes simple technique based on electrical conductivity. The experimental work shows variation of conductivity with frequency, with line shape similar to absorption line. There is a minimum frequency for each element, which can be used as a finger print characterizing it. Fortunately this conductivity –frequency relation can be explained on the basis of quantum and statistical physics.

المستخلص

التعرف على المعادن ذات أهمية في كشف المعادن. والتغير في الموصلية مع التردد توضح قيم الرنين لمختلف المواد،عند هذه القيم الموصلية تأخذ قيمة صغرى تردد الرنين يوضح عمليا علاقة كثافة هذه المواد والرقم الذري بالإضافة الي المجال المغناطيسي. هذه العلاقات البيانية فسرت نظريا على أسس القوانين الإحصائية الجديدة المشتقة من قوانين البلازما وقانون أثرزيمان.

كشف المعادن ذات أهمية في الصناعة توجد عدة تقنيات طيفية أستخدمت في تعريف المعادن. لسوء الحظ هذه التقنيات معقدة وغالية الثمن لذلك نحتاج لتقنية بسيطة للكشف في هذا العمل أستخدمت تقنية بسيطة أعتمدت على الموصلية الكهربية العمل التجريبي وضح تغيير الموصلية مع التردد بشكل خطي مشابه لخط الإمتصاص لأي معدن يوجد أقل تردد أستخدم كبصمة مخصصة له هذه العلاقة بين التردد والموصلية فسرت على أسس الفيزياء الكمية والإحصائية.

List of Figures

Figure	Page
(Fig (3.6.1) Theoretical relation between frequency (f) and	67
density (D)	
Fig (4.4.1) Relation between resonance frequency and	75
Conductivity for Cu, Al, Fe, Au, Ag, Sn	
Fig (4.4.2) Relation between frequency (f) and Conductivity (77
σ) for different magnetic flux densities for gold	
Fig (4.4.3) Relation between frequency (f) and magnetic field	79
in different voltages	
Fig (4.4.4) Relation between frequency and Atomic Number	81
Fig (4.4.5) Relation between frequency and Density	82
Fig (4.4.6) Relation between frequency and electron affinity	83
Fig (4.2) Theoretical relation between frequency (f) and	86
Conductivity (σ)	
Fig (5.3) Theoretical relation between frequency (f) and	89
Conductivity (σ)	

List of Tables

Tables	Page
(4.4.1)The Amplitude and frequency of the received signal	71
without samples	
(4.4.2)The signal after the sample (Al) was put between	72
transmitter and receiver	
(4.4.3)The signal after the sample (Fe) was put between	72
transmitter and receiver	
(4.4.4)The signal after the sample (Cu) was put between	73
transmitter and receiver	
(4.4.5)The signal after the sample (Au) was put between	73
transmitter and receiver	
Table (4.4.6) Relation between frequency (f) and Conductivity (σ) without applied magnetic field for Cu Al Fe Au Ag Sn	74
b) without applied magnetic field for Cu, Ai, FC, Au, Ag, Sh	
Table (4.4.7) Relation between frequency (f) and Conductivity (σ) for different magnetic flux densities for gold	76
	70
in different voltages	/8
Table (4.4.9) Relation between frequency (f), Electron Affinity, Atomic and Densit	80
Atomic number, and Density	

List of Contents

Content	Page
Dedication	Ι
Acknowledgement	II
Abstract	III
Abstract in Arabic	IV
List of Figures	V
List of Tables	VI
Table of Content	VII
Chapter One	
(1.1) Introduction	1
(1.2)Research problem	2
(1.3)Literature review	2
(1.4) Aims of work	4
(1.5) Materials and Methods	4
(1.6) Thesis lay out	5
Chapter Two- Quantum Theory and Mineral Exploration	6
(2.1)Introduction	6
(2.2) Quantum Schrödinger Equation	6
(2.3) Atomic Spectra and Element Identification	8
(2.3.1) Atomic Absorption Spectrometry (AAS)	8
(2.3.2) X-ray fluorescence	11
(2.4) Current Density and Conductivity	23

(2.4.1) Electric Conductivity	31
(2.4.2) Current Flow in a Coil	34
(2.5) Energy splitting and Zeeman Effect	35
(2.6) Metal Detection on the basis of Atomic Spectra	40
(2.6.1) History and Development	40
(2.6.2) Modern developments	40
(2.6.3) further refinements	41
(2.6.4) Discriminators	42
(2.6.5) New coil designs	42
(2.6.6) Pulse induction	43
(2.6.7) Uses	44
(2.6.7.1) Archaeology	44
(2.6.7.2) As a hobby	45
(2.6.7.3) Politics and conflicts in the metal detecting hobby	46
(2.6.7.4) Security screening	48
(2.6.7.5) Industrial metal detectors	48
(2.6.7.6) Basic operation	49
(2.6.7.7) Civil engineering	50
Chapter Three (Literature Review)	
(3.1) Introduction	51
(3.2) Construction of a Beat Frequency Oscillator Metal Detector	51
(3.3) INDUCTION BALANCE METAL DETECTOR	54
(3.4)Active induction balance method for metal detector	55
sensing head utilizing transmitter-bucking and dual current	
source	
(3.5) Quantum Conductivity for Metal-Insulator-Metal Nanostructures	58

(3.6) Zeeman effect and Statistical Theoretical Model	66
Chapter Four	
Identification of Minerals by Electric Coil Detector	
(4.1) Introduction	70
(4.2) Apparatus	70
(4.3) Method	71
(4.4) Tables and Figures	73
(4.5) Quantum Theoretical Model	86
(4.5.1) Classical Absorption Conductivity Resonance Curve	89
(4.6) Discussion	92
(4.7) Conclusion	94
(4.8) Suggested Future Work	95
References	96