

ببني_مرالله الرّحمز الرّحي_م

Sudan University of Science and Technology

College of Petroleum Engineering and Technology

Department of Transportation and Refining Engineering

SIMULATION OF VACUUM DISTILLATION UNIT (VDU) AND IMPROVING ITS PRODUCTIVITY USING ASPEN HYSYS

محاكاة وحدة التقطير الفراغي وتحسين إنتاجيتها باستخدام برنامج الهايسيس

Dissertation Submitted in Partial Fulfillment of the Requirement for the Bachelor of Engineering (Horns) Degree in Transportation and Refining Engineering

Prepared by:

- Abubakar Abdelazim Babiker
- Ammer Ali Abdeljalil
- Ola Mohamed Morad

Supervisor:

- Mrs. Nihad Omer Hassan

October 2015

Simulation of Vacuum Distillation Unit (VDU) and Improving its Productivity Using Aspen Hysys

Graduation project submitted to college of Petroleum Engineering and Technology in Sudan University of Science and Technology

Submitted in Partial Fulfillment of the Requirement for the Bachelor of Engineering (Hones) Degree in Transportation and Refining Engineering

Prepared by:

- Abubakar Abdelazim Babiker
- Ammer Ali Abdeljalil
- Ola Mohamed Morad

Supervisor:

- Mrs. Nihad Omer Hassan

This project is approved by College of Petroleum Engineering and Technology to Transportation and Refining Department

Supervisor: Mrs. Nihad Omer Hassan

Signature:

Head of Department: Ms. Abdelgadir Bashir Banaga

Signature:

Dean of College: Dr. Tagwa Ahmed Musa

Signature:

Date: / /2015

الإستهلال

قال تعالى:

" وَمَا تَوْفِيقِي إِلَّا بِاللَّهِ ۚ عَلَيْهِ تَوَكَّلْتُ وَإِلَيْهِ أُنِيبُ "

سورة هود الاية (88)

Dedication

We dedicate this project to our parents for the love and support they have provided throughout our entire life, they have been there for every decision we have made and help our dreams become reality, to our friends and families for their help and encouragement. We also dedicate this project to our dear friends *Ms. MuazTajaldeen* and *Ms. Mohamed Abuelgasem*

Acknowledgment

Thankfulness and appreciation for Allah as always before and after. Without the encouragement and support of some people this thesis would have not been feasible.

We would like to express our gratitude and appreciation to **Dr. Dhallia Mamoun Beshir** for all the help and for providing us with the data we needed to complete this project.

We would like to express our gratitude to our supervision *Mrs. Nihad Omer Hassan* for her ideal supervision, her sage advice in significant criticisms and patient encouragement aided the writing of this innumerable ways.
Also we would like to thank *Ms. Abdelgadir Bashir Banaga* whose steadfast support of this project was greatly needed and deeply appreciated.
We are indebted to our colleges of Sudan University of science and technology. Once again, we thank all those who have encouraged and helped us

Abstract

The project studies the design of vacuum distillation unit (VDU) to process the atmospheric residue produced from Khartoum Refinery. It is simulated on Aspen HYSYS v8 Program. The project includes material and energy balance, designing the vacuum distillation unit (VDU), estimating cost of vacuum distillation unit, corrosion protection of the vacuum distillation and improving the production of (VDU).Cost estimation with the economic summary from ASPEN hysys allows us to assess the total cost of the unit. According to this study, it is found that it is possible to increase the production of heavy vacuum gas oil (HVGO) and light vacuum gas oil (LVGO) and this is a main objective we work for it.

Keywords: Vacuum distillation unit, production of gas oil, cost estimation, ASPENHysys, process design.

المستخلص

يدرس هذا المشروع تصميم و محاكاة وحده التقطير الفراغي لمعالجة المتبقي الجوي الناتج من مصفاة الخرطوم, اعتمد المشروع على برنامج هايسسAspen Hysys V8 و موازنة المادة و الطاقة و تصميم وحده التقطير الفراغي و تقدير التكلفة و تحسين الانتاجية وطرق حماية المعدات من التاكل. وفقا لهذه الدراسة وجد انه من الممكن تحويل نسبة كبيره من المتبقي الجوي الي و أيضا تحسين و تطوير هذا الانتاج عن طريق التحكم في ظروف التشغيل يؤدي لزياد ملحوظ في زيت الخام الثقيل (HVGO) وزيت الخام الخفيف (LVGO).

Table of Contents:

i،
Dedicationii
Acknowledgment
Abstractiv
۷۷
Chapter 1:Introduction
1.1. Introduction 1 -
1.2 Aspen Hysys: 1 -
1.3 Vacuum distillation column:
1.4 Objectives:
1.5 Scope of this study:
CHAPTER 2: Literature Review
2.1 Oil refinery4 -
2.2 Refining process:
2.2.1 Distillation
2.2.2 Cracking
2.2.3 Combining
2.2.4 Treating (Removing Impurities)
2.2.5 Reforming
2.2.6 Blending
2.2.7 Quality Control
2.3 Process Units in KRC:
2.4 Petroleum Products and Characterization:
2.4.1 Gas

2.4.1.1 Natural (kuff) gas:	8 -
2.4.1.2 Associated gas:	8 -
2.4.1.3 Dissolved gas:	9 -
2.4.1.4 Refinery off gas:	9 -
2.4.2 LPG (liquefied petroleum gas)	9 -
2.4.3 Gasoline 1	LO -
2.4.4 Naphtha 1	LO -
2.4.5 Kerosene 1	LO -
2.4.6 Diesels	LO -
2.4.7 Lub Oil	11 -
2.4.8 Bitumen	11 -
2.4.9 Coke 1	L1 -
2.5 Crude assay:	L1 -
2.5.1 Bulk properties:	12 -
2.5.2 Fractional Properties 1	L5 -
2.6 Previous work:	L6 -
2.6.1 Deep Cut Vacuum Tower Incentives for Various Crudes:	16 -
2.6.2 Feed Characterization and Deepcut Vacuum Columns: Simulation and Design:	16 -
2.6.3 Improving crude vacuum unit performance:	L7 -
2.7 Process description:	L7 -
2.8 Deep Cut:	18 -
Chapter 3: Methodology	
3.1 Project work:	20 -
3.2 Methodology:	21 -

3.4 Process description:	L -
3.5 Material & Energy balance:	L -
3.6 Process Design:	L -
3.7 Cost estimation:	<u>?</u> -
3.8 ASPEN Hysys:	l -
3.8.1. ASPEN Hysys work procedure:	l -
3.8.2. Improving production of product:	<u>?</u> -
3.9 corrosion protection:	1 -
3.9.1 Introduction:	l -
3.9.2 Type of corrosion protection:	l -
3.9.2.1 DVS-1:	5 -
3.9.2.2 DVS-2 System:	5 -
3.9.2.3 DH/VCI System	5 -
Chapter 4: Results & Discussion	
4.1 Material and Energy Balance:	3 -
4.1.1 Introduction:	3 -
4.1.2 Material balance:	3 -
4.1.2.1 Mass balance around Flash tower:	3 -
4.1.2.2 Material balance around Vacuum column:) -
4.1.3 Energy Balance:	L -
4.1.3.1 STEAM HEAT FLOW CALCULATION:	L -
4.1.3.2 Unit operation energy analysis:	3 -
4.1.3.2.1 Heater:	3 -
4.1.3.2.2 Pumps around energy balance:	3 -

4.1.3.2.2.2 Pumparound (LVGO):	-
4.2 Distillation design:	-
4.2.1 Introduction:	-
4.2.1.1 Types of distillation column:	-
4.2.1.2 General design methods:	-
4.2.1.3 Bubble cap trays:	-
4.2.1.4 Sievetrays:	-
4.2.2 Heavy key and light key:	-
4.2.3 Type of tray:	-
4.2.4 Calculation of relative volatility:	-
4.2.5 Determination of minimum Reflux ratio <i>Rm</i> :46	-
4.2.6 Calculation of Actual Reflux Ratio (R):	-
4.2.7 Calculation of Minimum number of stages <i>Nmin</i> :	-
4.2.8 Calculation of theoretical number of stages: 48	-
4.2.9 Calculation of the column efficiency (E_{o}):	-
4.2.10 Calculation of actual number of stages (<i>Na</i>):	-
4.2.11 Calculation of the height of the column (<i>Ht</i>): 49	-
4.2.12 Calculation of the feed plate location:	-
4.2.13 Calculation of diameter of the column (<i>Dc</i>): 50	-
4.2.14 For a single pass plate:	-
4.3 Plate Design:	-
4.3.1 Weir length (<i>Lw</i>):	-
4.3.2 Perforated area (<i>Ap</i>):	-
4.3.3 Determination of entrainment correlation (Ψ):	-
4.3.4 Weepingpoint:	-

4.3.5 Pressure drop calculation:	-
4.3.6 Down comer liquid back up:	-
4.3.7Down comer residence time:	-
4.4 Cost Estimation:	-
4.4.1 Introduction:	-
4.4.2 Estimation of total capital investment:	-
4.4.2.1 Direct cost:	-
4.4.2.2 Indirect costs:	-
4.4.2.3 Working Capital:	-
4.4.3 Estimation of Total Product cost:	-
4.4.3.1 Manufacturing Cost:	-
4.4.3.2 Fixed Charges:	-
4.4.3.3 Direct Production Cost:	-
4.4.3.4Plant overhead Costs:	-
4.4.4 General Expenses:	-
4.4.4.1 Administrative costs:	-
4.4.4.2 Distribution and Selling costs:	-
4.4.4.3 Research and Development costs:	-
4.5 Result:	-
4.5.1 Introduction:	-
4.5.2 Column profiles:	-
4.5.3 Improving of production result:	-
4.5.4 Design results:	-
4.5.5 Cost estimation:	-
4.5.6 Aspen Hysys Result:	-

Chapter 5: Conclusion & Recommendation

5.1 Conclusion:	67 -
5.2 Recommendation:	67 -
References:	68 -
Appendix (A) Equipment Design Chart	69 -
Appendix (B)Aspen Hysys Report	70 -
Appendix (C)Aspen Hysys: Cost Report	71 -

List of Figures:

Figure 3.1: Installation of mixer	24
Figure 3.2: definition of steam stream	. 24
Figure 3.3: installation of Vac heater	25
Figure 3.4: definition of vac column feed	25
Figure 3.5: Installation of Absorber Column	26
Figure 3.6: Definition of pressure	26
Figure 3.7: Definition of LVGO pumparound	27
Figure 3.8: Definition of LVGO pumparound and HVGO pumparound	27
Figure 3.9: Definition of HVGO pumparound	28
Figure 3.10: Definition of pressure drops	28
Figure 3.11: Input efficiencies values	29
Figure 3.12: Input temperature value	29
Figure 3.13: Definition of Slop Wax Rate and top temperature spec	30
Figure 3.14: Definition of D1160 specs for the LVGO and HVGO	30
Figure 3.15: Definition of Net from #11 and Net from #4	31
Figure 3.16: Overall specs	31
Figure 3.17: Overall view of vacuum distillation process	32
Figure 3.18: Activation of HVGO D1160 T95 specs	33
Figure 3.19: Activation of NET FROM #4	33
Figure 3.20: DVS-2 systems for corrosion protection of large and complicated enclosures of	
equipment, (E. Lyublinski, (2015))	37
Figure 3.21: Mothaballing pipeline systems for applying DH-VCI (DVS-2) system (E.	
Lyublinski, (2015))	. 37
Figure 4.1: Flash tower	. 38
Figure 4.2: Vacuum column	. 39
Figure 4.3: pressure profile	. 60
Figure4.4: temperature profile	. 60
Figure 4.5: Net flow profile	. 61
Figure 4.6: Density profile	61
Figure 4.7: Viscosity profile	62

Figure 4.8: Overall view of vacuum distillation process	66
Figure 4.8: Net flow profile case of increasing HVGO	66
Figure 4.9: net flow profile case of increasing LVGO	66

List of Tables:

Table 3.1: Definitions for Vacuum Distillation Column	23
Table.3.2: The advantages and disadvantages of the existing methods for corrosion prote	ection of
large enclosures	35
Table 4.1: Fractions and specific gravity of the product	40
Table 4.2: Mass balance around vacuum tower.	41
Table 4.3: Steam heat flow.	42
Table 4.4: energy balance of pump around	43
Table 4.5: Unit operation duty	44
Table 4.6: Direct cost.	59
Table 4.7: before improving LVGO.	62
Table 4.8: After improving LVGO.	63
Table 4.9: before improving HVGO.	63
Table 4.10: After improving HVGO	63
Table 4.11: design result	64
Table 12.6: Fixed capital cost.	64
Table 4.13: Total capital investment.	65
Table 4.14: Manufacture cost.	65
Table 4.15: Total product cost.	65

Chapter1 INTRODUCTION

1.1. Introduction:

Numerous methods have been developed to selectively remove water and other volatile contaminants from hydraulic and lubricating fluids. These methods include absorbent filter media and regenerable adsorbent packings and In many cases, it is not economical or practical to use disposable media, and as a result, continuous scrubbing processes have been developed. The most common scrubbers are derivatives of vacuum distillation processes used in refineries.

In this project we will design the vacuum distillation unit for process the atmospheric residue form Khartoum refinery (KRF). ASPEN Hysys software will be used in simulation of vacuum distillation column gives us accurate Information of how processes take place.

Material and energy balance will concentrate on the quantity of energy required by units and mass flow of matter during process. In the cost estimation we will estimate total cost of operation.

The main reason to do this project is to try to improve the production of this column after designing the vacuum distillation column. We will concentrate on improving gas oil production because it is one of the most valuable products.

1.2 Aspen Hysys:

Aspen HYSYS Refining contains a database, the petroleum assay, that you can use to store and calculate the physical and petroleum properties of the crude oil stream. The petroleum assay is a vector that stores physical properties and assay properties for a specific component list. Physical properties include all properties used in a typical HYSYS simulation case. Assay properties comprise refinery related properties as cloud point, octane numbers, flash point, freezepoint, sulphur content, PONA distribution, GC data and etc. A component list typically consists of library components (for instance, methane to n-pentane) and pseudocomponents(hypothetical components). Aspen HYSYS Refining is based on a flexible structure so that no pre-defined list of pseudo component sis required. Moreover, existing lists of pseudo components created by the HYSYS Oil Environment can be used in Aspen HYSYS Refining. Each component stores a value of a physical and assay property. The assay properties are usually imported from an assay management system, as for instance, Crude Manager(TM)-Aspen HYSYS Refining Link from Spiral Software Ltd. At the Simulation Environment, each stream may have its own petroleum assay, that is, the physical and assay properties of components on one stream may differ from other streams. Bulk values for assay properties are calculated using specific lumping rules. When process streams are mixed together on any HYSYS or Aspen HYSYS Refining operation, a new petroleum assay is created and special blending rules are employed to re-calculate the physical and assay properties.

HYSYS Refining is based upon a flexible structure that allows auser to characterize this petroleum assay using the least available data and using rigorous laboratory data. The user does not need to have data in the RefSYS format mentioned above; RefSYS can take data in different formats and transmute it into an internal petroleum assay format.

1.3 Vacuum distillation column:

Atmospheric residue (AR) from atmospheric distillation tower contains several valuable cuts which should be recovered. AR cannot be fractionated at atmospheric tower as fractionation of this cut needs excessive temperature where, cracking or decomposition of crude starts resulting in severe coke deposition. Hence, AR is recovered as a bottom product from the tower and distilled under sub-atmospheric pressure.

Crude oil can be categorized as lube-bearing crude and non-lube bearing crude. Non-lube bearing crude cannot produce lubricating oil cut in vacuum distillation as this range of hydrocarbons are not present in non-lube bearing crude. The unit for processing of non-lube bearing crude and lube-bearing crude are known as fuel-type and lube-type vacuum distillation column respectively. The former produces vacuum gas oil (VGO) and later produces lubricating oil as the main distillate product. AR is introduced into the vacuum distillation column after heat exchanging with distillation products, vacuum residue and pump-around reflux streams and finally heated in a furnace at required temperature. Vacuum distillation furnace may be classified into two types, wet and dry. In wet type, steam is injected into the furnace coils and that helps to lower the partial pressure of feed as well as steam carries the feed vapours through the furnace tube more rapidly. In dry type, steam injection is not done in the furnace. Steam injection lowers the steam consumption in the vacuum ejector systems. The choice of the type depends on the overall economy of the refinery.

1.4 Objectives:

-This project aims to operate atmospheric distillation residue on a vacuum distillation to produce gas oil.

-Detailed design for vacuum distillation column.

-Improve the production of light vacuum gas oil (LVGO) and heavy gas oil (HVGO).

1.5 Scope of this study:

The scope of this project is to give detailed study for design of vacuum distillation unit. The project will cover the following:

- 1- ASPEN Hysys software.
- 2- Material balance.
- 3- Energy balance.
- 4- Process design.
- 5- Cost estimation.

All calculation are performed by Excel worksheet.

CHAPTER 2 Literature Review

2.1 Oil refinery

An oil refinery or petroleum refinery is an process plant where crude oil is processed and refined into more useful products such as petroleum naphtha, gasoline, diesel fuel, asphalt base, heating oil, kerosene and liquefied petroleum gas. Oil refineries are typically large, sprawling industrial complexes with extensive piping running throughout, carrying streams of fluids between large chemical processing units. In many ways, oil refineries use much of the technology of, and can be thought of, as types of chemical plants. The crude oil feedstock has typically been processed by an oil production plant. There is usually an oil depot (tank farm) at or near an oil refinery for the storage of incoming crude oil feedstock as well as bulk liquid products. An oil refinery is considered an essential part of the downstream side of the petroleum industry.

Raw or unprocessed crude oil is not generally useful in industrial applications, although "light, sweet" (low viscosity, low sulfur) crude oil has been used directly as a burner fuel to produce steam for the propulsion of seagoing vessels. The lighter elements, however, form explosive vapors in the fuel tanks and are therefore hazardous, especially in warships. Instead, the hundreds of different hydrocarbon molecules in crude oil are separated in a refinery into components which can be used as fuels, lubricants, and as feedstock's in petrochemical processes that manufacture such products as plastics, detergents, solvents, elastomers and fibers such as nylon and polyesters.

2.2 Refining process:

Most refineries, regardless of complexity, perform a few basic steps in the refining process: DISTILLATION, CRACKING, TREATING and REFORMING. These processes occur in our main operating areas – Crude/Aromatics, Cracking I, RDS/Coker, Cracking II, and at the Sulfur Recovery Unit.

2.2.1 Distillation

Modern distillation involves pumping oil through pipes in hot furnaces and separating light hydrocarbon molecules from heavy ones in downstream distillation towers – the tall, narrow columns that give refineries their distinctive skylines.

The Pascagoula Refinery's refining process begins when crude oil is distilled in two large Crude Units that have three distillation columns, one that operates at near atmospheric pressure, and two others that operate at less than atmospheric pressure, i.e., a vacuum.

During this process, the lightest materials, like propane and butane, vaporize and rise to the top of the first atmospheric column. Medium weight materials, including gasoline, jet and diesel fuels, condense in the middle. Heavy materials, called gas oils, condense in the lower portion of the atmospheric column. The heaviest tar-like material, called residuum, is referred to as the "bottom of the barrel" because it never really rises.

This distillation process is repeated in many other plants as the oil is further refined to make various products.

In some cases, distillation columns are operated at less than atmospheric pressure (vacuum) to lower the temperature at which a hydrocarbon mixture boils. This "vacuum distillation" (VDU) reduces the chance of thermal decomposition (cracking) due to overheating the mixture.

Using the most up-to-date computer control systems, refinery operators precisely control the temperatures in the distillation columns which are designed with pipes to withdraw the various types of products where they condense. Products from the top, middle and bottom of the column travel through these pipes to different plants for further refining.

2.2.2 Cracking

Convert middle distillate, gas oil and residuum into primarily gasoline, jet and diesel fuels by using a series of processing plants that literally "crack" large, heavy molecules into smaller, lighter ones.

Heat and catalysts are used to convert the heavier oils to lighter products using three "cracking" methods: fluid catalytic cracking (FCC), hydrocracking (Isomax), and coking (or thermal-cracking).

The Fluid Catalytic Cracker (FCC) uses high temperature and catalyst to crack heavy gas oil mostly into gasoline. Hydrocracking uses catalysts to react gas oil and hydrogen under high pressure and high temperature to make both jet fuel and gasoline.

We blend most of the products from the FCC and the Isomaxes directly into transportation fuels, i.e., gasoline, diesel and jet fuel. We burn the lightest molecules as fuel for the refinery's furnaces, thus conserving natural gas and minimizing waste.

In the Delayed Coking Unit (Coker), low-value residuum is converted (using the coking, or thermal-cracking process) to high-value light products, producing petroleum coke as a by-product. The large residuum molecules are cracked into smaller molecules when the residuum is held in a coke drum at a high temperature for a period of time. Only solid coke remains and must be drilled from the coke drums.

2.2.3 Combining

While the cracking processes break most of the gas oil into gasoline and jet fuel, they also break off some pieces that are lighter than gasoline. This process takes the small molecules and recombines them in the presence of sulfuric acid catalyst to convert them into high octane gasoline.

2.2.4 Treating (Removing Impurities)

The products from the Crude Units and the feeds to other units contain some natural impurities, such as sulfur and nitrogen. Using a process called hydrotreating (a milder version of hydrocracking), these impurities are removed to reduce air pollution when the fuels are used In the RDS Unit's six 1,000-ton reactors, sulfur and nitrogen are removed from FCC feed stream. The sulfur is converted to hydrogen sulfide and sent to the Sulfur Unit where it is converted into elemental sulfur. Nitrogen is transformed into ammonia which is removed from the process by water-washing. Later, the water is treated to recover the ammonia as a pure product for use in the production of fertilizer.

The RDS's Unit main product, low sulfur vacuum gas oil, is fed to the FCC (fluid catalytic cracker) Unit which then cracks it into high value products such as gasoline and diesel.

2.2.5 Reforming

Octane rating is a key measurement of how well a gasoline performs in an automobile engine. Much of the gasoline that comes from the Crude Units or from the Cracking Units does not have enough octane to burn well in cars.

The gasoline process streams in the refinery that have a fairly low octane rating are sent to a Reforming Unit where their octane levels are boosted. These reforming units employ preciousmetal catalysts - platinum and rhenium – and thereby get the name "rheniformers." In the reforming process, hydrocarbon molecules are "reformed" into high octane gasoline components. For example, methyl cyclohexane is reformed into toluene.

The reforming process actually removes hydrogen from low-octane gasoline. The hydrogen is used throughout the refinery in various cracking (hydrocracking) and treating (hydrotreating) units.

2.2.6 Blending

A final and critical step is the blending of our products. Gasoline, for example, is blended from treated components made in several processing units. Blending and Shipping Area operators precisely combine these to ensure that the blend has the right octane level, vapor pressure rating and other important specifications. All products are blended in a similar fashion.

2.2.7 Quality Control

In the refinery's modernly-equipped Laboratory, chemists and technicians conduct quality assurance tests on all finished products, including checking gasoline for proper octane rating.

2.3 Process Units in KRC:

- Crude Distillation Unit (CDU).
- Residue Catalytic Cracking Unit (RFCC).
- Semi-regeneration Catalytic Reforming Unit (SCR).
- Diesel Hydro Treating Unit (DHT).
- Delayed Coking Unit (DCU).
- Gasoline/ Diesel Hydro Treating Unit (GDHT).
- Continuous Catalytic Reforming Unit (CCR)

1. Crude Distillation Unit (CDU)

To produce naphtha (which it the feed (SCR)), jet fuel, diesel and residue the feed of (RFCC) unit.

2. Residue Catalytic Cracking Unit (RFCC).

It designed to process the residue from (CDU) and consist of five parts:-

The reactor-regenerator, the fractionation, the absorber -diabsorber, sweating system for gasoline, LPG and dry gas and compressors. The products of (RFCC) are dry gas, LPG, gasoline, gas oil and slurry.

3. Semi-regeneration Catalytic Reforming Unit (SCR)

It designed to process the naphtha from (CDU) to produce the refined gasoline and at the same time to supply the hydrogen to (DHT). This unit had been shut down after (CCR) unit run normal and now it is standby unit.

4. Diesel Hydro Treating Unit (DHT)

It designed to process the Gas oil from (RFCC) and to produce refined diesel.

5. Delayed Coking Unit (DCU)

It designed to process Fulla Crude Oil and its products include fuel gas, LPG, Coker gasoline, Coker diesel, the heavy coked gas oil and the petroleum Coke.

6. Gasoline/ Diesel Hydro Treating Unit (GDHT)

ton it designed to treat the Coker gasoline and the Coker diesel from (DCU) unit to produce LPG, the refined diesel and treated Coker gasoline.

7. Continuous Catalytic Reforming Unit (CCR).

it designed to treat the mixture of the treated Coker gasoline and (CDU) unit naphtha and produce LPG, gasoline and hydrogen which it is send to (GDHT) and (DHT).

2.4 Petroleum Products and Characterization:

2.4.1 Gas

Gas from petroleum is produced and classified under different names

2.4.1.1 Natural (kuff) gas: Produced as free gas from the reservoir. It contributes 85-98% methane accompanied by ethane, condensate, inert (N2/CO2) and sulfur.

2.4.1.2 Associated gas: Found as separate gas cap above oil level inside the reservoir. The pressure of this gas is the source energy of the primary oil recovery from the well. It is mainly methane with proportions of C2/C3/C4/C5 recovered as NGL (natural gas liquid)

2.4.1.3 Dissolved gas: Found dissolved in oil due to high pressure. It contributes up to 600 SCFt ³/bbl. For piping and storage of crude oil, this gas should be separated at early stages of crude processing, namely at GOSP and CPF.

2.4.1.4 Refinery off gas: developed from conversion, stabilization and topping processes like reforming and cracking. It constitutes:

- Dry gas (C1/C2) which is utilized as refinery fuel gas.
- Wet gas (C3/C4/C5) utilized as LPG sales and gasoline blending
- Impurities like CO2, N2, mercaptans, H2S and water vapor.

Each of the above classes may be utilized as petrochemical feedstock. Sulfur may be recovered from gas when it is in considerable amount.

2.4.2 LPG (liquefied petroleum gas)

It is produced from different refinery processes e.g. cracking, reforming. It is a mixture of propane and butane in some different gradients. It widely used as domestic fuel that is supplied in 12-15kg cylinders, beside petrochemical feed stocks. It is stored in vapor/liquid mixture.

Important characteristics of LPG

- Vapor pressure at 65C = 10-26kg/cm2
- Reid Vapor Pressure $RVP = 6.7 \text{ kg/cm}^2$
- 95% evaporation temperature = -2C
- Sulfur % wt = 0.02
- H2S = Nil
- Moisture content = Nil

LPG Composition

component	value
Ethane	Traces
Propane	24.7%
i-butane	36.7%
butane	36.5%
pentane	nil

2.4.3 Gasoline

It is volatile petroleum fraction used as motor fuel (motor spirit) with boiling range from 37 0C to 180 0C. It is produce as:

- Straight run gasoline (SRG, C5-93 0C) from distillation. It is of low octane number. It is used as fuel blend.

- Reformate gasoline from reforming process
- Coker gasoline from thermal cracking e.g. DCU
- Alkylated gasoline
- Polymer gasoline
- Cracked gasoline from catalytic / hydro-cracking.

Gasoline is characterized by ASTM distillation range, RVP, octane number, gum and sulfur contents.

2.4.4 Naphtha

Volatile cut with boiling range of the motor spirit. It is of low octane number. It is mainly used in reforming process to produce high octane gasoline. Naphtha may be used as paint solvent.

2.4.5 Kerosene

Boiling range =150-250 C. It is used as heating oil and in jet production. Kerosene is characterized by:
Flash point: usually above 42 C
Smoke point: it is defined as the max height of the flame in mm at which the given oil will burn without giving smoke.
Volatility: 10% evaporation temp indicates flash point and ease of ignition
50% evaporation temp indicates viscosity
60% evaporation temp indicates steady performance
Sulfur content: max of 0.13% wt is accepted
Burning Quality: good oil of 650 cc must burn for at least 120 hrs

Aniline point: indicates aromatic content

2.4.6 Diesels

These are gas oil fractions in the boiling range 250-320 C

Characterized by:

Aniline point: it is defined as the min temperature at which equal volumes of anhydrous Aniline and oil mix together. It is an indication for aromatics content in oil. Aromatics in fuel cause abnormal ignition Diesel Index = 45 to 55 normal Flash Point: it is of no real significance on fuel performance, but required for safe storage and

handling. Usually 50-55 0C

Calorific Value: 41.83 kj /gm

Viscosity: ease of start and low temp operability

2.4.7 Lub Oil

These are fractions left after light components from crude distillation. They are of boiling range above 350 0C. They are obtained from vacuum distillation of atmospheric distillation residue. General Molecular Structure

Naphthenic or aromatic rings arranged in as many as six groups with Paraffinic side chain. Lube oils are characterized by: flash point, pour point, oxidation stability, viscosity and carbon residue.

2.4.8 Bitumen

It is residual product from crude distillation (bottom of the barrel). It is solid at room temperature. Bitumen is blown with air to produce asphalt utilized in highway construction, water proofing and coating works. Bitumen is characterized by: softening point, penetration index and ductility. Ductility is the capacity to elongation and stretching.

2.4.9 Coke

Solid coke from crude is produced by thermal cracking process. Typical application is Fula blend cracking in KRC-Coker of 14% wt yield on crude basis.

2.5 Crude assay:

Crude oils and petroleum fractions are the most important feed stocks for refining processes. To properly simulate the refining processes, we must have good understanding of the compositional information and thermo physical properties of crude oils and petroleum fractions.

However, the complexity of molecular composition of crude oils and petroleum fractions makes it hardly possible to identity individual molecules. Instead, modern refiners use assay to characterize crude oil sand petroleum fractions.(*A.-F. Chang, K. 2012*)

It is extracted from the earth, formed naturally from the fossil of animals and plants. The viscosity and relative weight of crude oil varies and it can exist in either liquid or solid state.

Color: Light brown to dark brown

Sp.gr: 0.81-0.985

Boiling range: 25 – 400oC

Hydrocarbons C1- C70 (4000 compounds)

Metals: V, Fe, Ni S-(H2S, Thiols (mercaptans), sulfides, di sulfides, poly sulfides and thiophenes). Cause corrosion of equipment's, bad odour in products, catalyst poisoning, Air pollution –Indols, pyridines and quinolenes (Difficult to remove).

- Oxygen compounds: present as naphthenic acids and phenols
- Are corrosive in nature and cause odour.
- Metal: act as catalyst poisons

Crude composition

C: 84-87%, H: 11-14%, S: 0-5%, N: 0-1%, O: 0-2%.

Crude assay is a detailed report which describes the properties of the whole crude, as well as the major fractions into which a crudes distilled at the refinery -gasoline, naphtha, kerosene, jet fuel, middle distillates, gas oils and reside. Typically, the data contained in a crude assay includes yields generated from the physical distillation & Distillate/reside properties. (*U.VenkataRamana*, "25th–28 AUG 2010)

A typical crude assay includes two types of information for an oil sample:

(1) bulk properties; and (2) fractional properties. For design and modeling purposes, it is always the best practice to have process data obtained in the same period as assay data, since the properties and composition of crude change over time as it is produced from a given well

2.5.1 Bulk properties:

Bulk properties include specific gravity, sulfur content, nitrogen content, metal (Ni, V, Fe etc.) content, asphaltene content, C/H ratio, pour point, flash point, freeze point, smoke point,

aniline point, cloud point, viscosity, carbon residue, light hydrocarbon yields (C1–C4), acid number, refractive index and boiling point curve. We generally use the API (American Petroleum Institute) gravity to specify the specific gravity (SG) of the crude oil as API = (141.5/SG) - 131.5. SG is the specific gravity defined as the ratio of the density of the crude oil to the density of water both at 15.6 °C (60 °F). The API gravity varies from less than 10 for very heavy crudes, to between 10 and 30 for heavy crudes, to between 30 and 40 for medium crudes, and to above 40 for light crudes.

The sulfur content is expressed as a percentage of sulfur by weight, and varies from less than 0.1% to greater than 5%. Crude oils with less than 1 wt.% sulfur are called low-sulfur or sweet crude, and those with more than 1 wt.% sulfur are called high-sulfur or sour crude. Sulfur-containing constituents of the crude oil include simple mercaptans (also known as thiols), sulfides, and polycyclic sulfides. Mercaptan sulfur is simply an alkyl chain (R–) with –SH group attached to it at the end. The simplest form of R–SH is methyl mercaptan, CH3SH.

The pour point is a measure of how easy or difficult to pump the crude oil, especially in cold weather. Specifically, the pour point is the lowest temperature at which a crude oil will flow or pour when it is chilled without disturbance at a controlled rate. The pour point of the whole crude or oil fractions boiling above 232 $^{\circ}$ C (450 $^{\circ}$ F) is determined by the standard test ASTM D97.

The flash point of a liquid hydrocarbon or an oil fraction indicates its fire and explosion potential, and it is the lowest temperature at which sufficient vapor is produced above the liquid to form a mixture with air that a spontaneous ignition can occur if a spark is present. One of the standard ASTM test methods for the flash point is D3278.

The freeze point is the temperature at which the hydrocarbon liquid solidifies at atmospheric pressure. It's an important property for kerosene and jet fuels, because of the very low temperatures encountered at high altitudes in jet planes. One of the standard test methods for the freeze point is ASTM D4790.

The smoke point refers to the height of a smokeless flame of fuel in millimeters beyond which smoking takes places. It reflects the burning quality of kerosene and jet fuels, and is determined by the standard testing method ASTM D1322.

The aniline point represents the minimum temperature for complete miscibility of equal volumes of aniline and petroleum oil. It's an important property of diesel fuels, and is measured by ASTM D611.

- 13 -

The cloud point refers to the temperature at which solidifable components (waxes) present in the oil sample begin to crystallize or separate from solution under a method of prescribed chilling. It's an important specification of middle distillate fuels, as determined by ASTM D2500.

The Conrad son carbon residue (CCR) results from ASTM test D189. It measures the cokeforming tendencies of oil. It is determined by destructive distillation of a sample to elemental carbon (coke residue), in the absence of air, expressed as the weight percentage of the original sample. A related measure of the carbon residue is called Rams bottom carbon residue. A crude oil with a high CCR has allow value as a refinery feedstock.

The acid number results from ASTM test method D3339-11 that determines the organic acidity of a refinery stream.

The refractive index represents the ratio of the velocity of light in a vacuum to that in the oil. It is determined by ASTM D1218.

The gross heat of combustion or high heating value (HHV) is the amount of heat produced by the complete combustion of a unit quantity of fuel. We obtain the gross heat of combustion by cooling down all products of the combustion to the temperature before the combustion, and by condensing all the water vapor formed during combustion.

The net heat of combustion or lower heating value (LHV) is obtained by subtracting the latent heat of vaporization of the water vapor formed by the combustion from the gross heat of combustion or higher heating value.

The true boiling point (TBP) distillation of a crude oil or petroleum fractions results from using the U. S. Bureau of Mines Hempel method and the ASTM D-285 test procedure. Neither of these methods specifies the number of theoretical stages or the molar reflux ratio used in the distillation. Consequently, there is a trend toward applying a 15 : 5 distillation according to ASTM D2892, instead of the TBP. The 15 : 5 distillation uses 15 theoretical stages and a molar reflux ratio of 5. A key result from a distillation test is the boiling point curve, that is, the boiling point of the oil fraction versus the fraction of oil vaporized. The initial boiling point (IBP) is defined as the temperature at which the first drop of liquid leaves the condenser tube of the distillation apparatus. The final boiling point or the end point (EP) is the highest temperature recorded in the test.

The ASTM D86 distillation of an oil fraction takes place at laboratory room temperature and pressure. Note that the D86 distillation will end below an approximate temperature of 650 $^{\circ}$ F (344 $^{\circ}$ C), at which petroleum oils begin to crack at one atmospheric pressure.

The ASTM D1160 distillation of an oil fraction is applicable to high-boiling oil samples (e.g. heavy heating oil, cracker gas oil feed, residual oil, etc.) for which there is significant cracking at atmospheric pressures. The sample is distilled at a reduced pressure, typically at 10 mmHg, to inhibit cracking. In fact, at 10 mmHg, we can distill an oil fraction up to temperatures of 950 to 1000 °F (510 to 538 °C), as reported on a 760-mmHg basis. The reduced pressure used for D1160 distillation produces a separation of components that is more ideal than that for D86 distillation. (*A.-F. Chang, 2012*)

2.5.2 Fractional Properties

Refineries require fractional properties of the oil sample that reflects the property and composition for specific boiling point range to properly refine it into different end products such as gasoline, diesel and raw materials for chemical process. Fractional properties usually contains paraffins, naphthenes and aromatics (PNA) contents, sulfur content, nitrogen content for each boiling-point range, octane number for gasoline, freezing point, cetane index and smoke point for kerosene and diesel fuels.

The octane number is a measure of the knocking characteristics of a fuel in a laboratory gasoline engine according to ASTM D2700 [1]. We determine the octane number of a fuel by measuring its knocking value compared to the knocking of a mixture of n-heptane and isooctane or 2-2-4-trimethylpentane (224TMP). By definition, we assign an octane number of 0 to pure heptane and of 100 to 224TMP. Therefore, a mixture of 30% heptanes and 70% isooctane has an octane number of 70.

There are two specific octane numbers in use. The motor octane number (MON) reflects the engine performance at highway conditions with high speeds (900 rpm), while the research octane number (RON) corresponds to the low-speed city driving (600 rpm). RON is typically higher than MON because of engine test efficiencies. The posted octane number is an average of MON and RON.

The cetane number measures the ease for self-ignition of a diesel fuel sample and is essentially an opposite of the octane number. It represents the percentage of pure cetane (n-hexadecane) in a blend of cetane and alpha methyl-naphthalene that matches the ignition quality of a diesel fuel sample. This quality is important for middle distillate fuels.

The cetane index is a number calculated from the average boiling point and gravity of a petroleum fraction in the diesel fuel boiling range, which estimates the cetane number of the fraction according to ASTM D976. (*A.-F. Chang, 2012*)

2.6 Previous work:

Distillation was developed into its modern form with the invention of the alembic by Islamic alchemist Jabir ibnHayyan in around 800 AD. The distilling of petroleum products from crude oil to some extent or other has long been practiced. Certainly the ancient Egyptians, Greeks, and Romans had some form of extracting a flammable oil from, probably, weathered crude oil seepage. It wasn't though until the turn of the nineteenth and twentieth century that crude oil well drilling was first discovered and commercialized. It will be of interest to outline briefly an important development that occurred in this process during the early 1960s. Originally vacuum units followed closely on design to the atmospheric unit except of course it operated under a vacuum condition.

2.6.1 Deep Cut Vacuum Tower Incentives for Various Crudes:

This study compares deep cut incentives for typical light and heavy crudes, Brent and Arabian Heavy. The resultant yields structures and incentives are compared for the two crudes, and economic calculations presented for various charge rates. This technique is valuable in determining project potential and equipment requirements. Deep Cut concerns are also reviewed so that a structure for benefit and risk analysis can be developed. (*Donald F. Schneider, March 1997*)

2.6.2 Feed Characterization and Deepcut Vacuum Columns: Simulation and Design:

Impact of High Temperature Simulated Distillation: The higher vacuum gas oil yield associated with deepcut improves refinery margins. The amount of additional Gas oil is a function of the processing conditions and the quantity of recoverable gas oil in the feed. he vacuum column feed distillation can be improved by using gas chromatographic ASTMD2887 and high-temperature simulated distillations (HTSD). (*S.W. Golden*, , *April 199*)

2.6.3 Improving crude vacuum unit performance:

This article focuses on sharing data specifically from unconventional heavy crude vacuum units operating in wet mode (stripping and velocity steam) to provide some insight into using a proven vacuum distillation tower simulation topology with heavy oil/bitumen upgrade feeds. (*Darius Remesat Q3 2008*,)

2.7 Process description:

The atmospheric residue coming from atmospheric distillation unit is sent directly to vacuum distillation unit. The residue is sometimes stored at range of 150 °C to guarantee its viscosity. It's heat exchanged against hot product and pumparound streams before being vaporized in the distillation unit heater. Afterward it is heated in a furnace at a maximum temperature of some 380 to 415 °C at the column inlet and feed into vacuum distillation unit.

The distillated products of atmospheric distillation unit (ADU) are limited to the boiling fractions under 350 °C such as gasoline and diesel because petroleum fractions tend to thermally degrade in high temperatures. To recover additional distillates and gas oils, the refinery uses vacuum distillation unit (VDU) following the ADU. The reduced operating pressure of VDU allows recovery of heavy boiling fraction above 560 °C from the atmospheric residue.

There are two major types of VDU operations in a modern refinery – *feedstock preparation and lubricant production*. Feedstock preparation is the most common operation that recovers gas oil from the atmospheric residue as a feed to the downstream conversion units (e.g. FCC and hydrocracking units), which converts the gas oil into more valuable liquid products such as gasoline and diesel. Lubricant production is designed to extract petroleum fractions from the atmospheric residue to produce luboil with desirable viscosity and other related properties.

Thereafter the distillate vapors are condensed in the tower by heat and mass transfer with the cold reflux streams moving down the tower via the side streams. The distillate is withdrawn as LVGO and tows other cuts, MVGO, HVGO and vacuum residue. The tow cuts of MVGO and HVGO are necessary to extract heat from the tower at more advantageous level from the HVGO pumparound. Figure represents a typical process flow diagram of VDU operated under wet

conditions with three vacuum gas oil (VGO) side products from light (L) to medium-boiling (M) to heavy (H) – LVGO, MVGO, and HVGO. The furnace outlet temperature varies from 380 to 420 °C, depending on the feedstock type. The products are taken off at the appropriate sections are cooled either by heat exchange with colder streams in the atmospheric unit, by air coolers or, in some cases as heating mediums to light end reboilers. They are then pumped to storage. (*A.-Fu Chang*, (2012).

Figure 2.1: Typical Process Flow Diagram Of VDU(A.- Fu Chang, (2012)

2.8 Deep Cut:

The term deepcut vacuum column operation has no Standard definition, and one refiner's deepcut operation is another's typical operation. The authors' definition of deepcut is a heavy vacuum gas oil (HVGO) TBP cut point of 1100+ °F degrees on a light crude and 1050+ °F on high –metals crude oil. More than one definition Of HVGO cut point is used in the industry. This
definition is inadequate for high cut points, and it predicts different cut points for two different types of crude vacuum column operations yielding 9 an equivalent vacuum residue yield. Here, the HVGO TBP cut point is defined as the temperature on the whole crude TBP curve Figure 2.2: that corresponds to the cumulative distillate yield. (*S.W.Golden, (Aprill 1994).*

Deep cut vacuum unit modifications improve gas oil yield. This means a higher residue initial boiling point and greater heavy vacuum gas oil (HVGO) production. The higher vacuum gas oil yield associated with deep cut improves refinery margins. The amount of additional gas oil is a function of the processing conditions and the quantity of recoverable gas oil in the feed. Cutting deeper into the bottoms to recover desirable product is not a new strategy for any fractionation system. Increased product recovery has always been beneficial to profit enhancement. (*Donald F.Scheider, (March 1997)*

Figure 2.2: Crude Oil TBP- HVGO Cut Point (S.W.Golden, (Aprill 1994)

Chapter 3 Methodology

3.1 Project work:

3.2 Methodology:

This chapter will descript the simulation steps for VDU or the procedure of the simulation by HYSYS, and also provide the procedure that's followed to design the vacuum distillation tower, the procedure of increasing some of the products.

3.3 Selection of case study:

Gasoline produced from Khartoum refinery is chosen as the subject for this project, the amount of gasoline production by Khartoum refinery is 3400 ton/day.

3.4 Process description:

A simplified process flow diagram for the VDU plant shown in figure 3.17. The atmospheric residue is the main source of this process. The atmospheric residue is mix with steam at the mixture to increase velocity and minimize coke formation within the heater, afterward it is heated in a furnace to match the vacuum column conditions, then feed to vacuum column.

3.5 Material & Energy balance:

- Over all material balance.
- Material balance around vacuum distillation column.
- Energy balance around heater.
- Energy balance around HVGO pumparound.
- Energy balance around LVGO pumparound.

3.6 Process Design:

- 1. Determination of type of tray required.
- 2. Specification of the light and heavy key component.
- 3. Calculation of Minimum Reflux Ratio (R_{min}).
- 4. Calculation of Actual Reflux Ratio (R).
- 5. Calculation of Minimum number of stages (N_{min})
- 6. Calculation of theoretical number of stages (N).
- 7. Calculation of the column efficiency (E)

- 8. Calculation of actual number of stages (N_a).
- 9. Calculation of the height of the column (H_t) .
- 10. Calculation of the feed plate location.
- 11. Calculation of diameter of the column (D_c) .
- 12. Determination of entrainment correlation (Ψ).
- 13. Calculation of the Pressure drop.
- 14. Calculation of the Down comer liquid back up.
- 15. Calculation of the Down comer residence time.
- 16. Checking of flooding.

3.7 Cost estimation:

- Estimation of total capital investment.
- Determination of Fixed capital investment.
- Determination of Working Capital.
- Estimation of Total Product cost.
- Determination of Manufacturing Cost.
- Determination of Fixed Charges.
- Determination of Direct Production Cost.
- Determination of Plant overhead Costs.
- Determination of General Expenses.
- Determination of Administrative costs.
- Determination of Distribution and Selling costs.
- Determination of Research and Development costs

Туре	Operating Parameter
"Trays" & Efficiencies	14 trays. Numbering from top:
	Tray 1: 100%
	Trays 2 to 11: 50%
	Tray 12: 100%
	Trays 13 to 14: 30%
Condenser Type	No condenser, LVGO pumparound liquid return to top stage
Reboiler Type	None, Direct Fired Heater
Pressures	Top Tray: 50 mmHg
	Bottom Tray: 62 mmHg
Temperatures	Top 180°F (controlled by top LVGO pumparound)
Feed Locations	Crude oil to Tray #12
	Stripping Steam at bottom (Tray #14) – 20,000 lb/hr @ 500°F, 150 psig
Feed Heater	20,000 lb/hr steam injected into heater coils with the Atmospheric Resid feedstock (500°F
	& 150 psig)
	Outlet @ 180 mmHg & 760°F (max); would like 3,000 bpd excess wash liquid (liquid rate
	from tray above feed, #11)
Pumparounds	LVGO Pumparound
	Draw from Tray #4, returned to Tray #1
	22,300 bpd flow, outlet temperature adjusted to control top temperature of tower;
	approximately 85°F, 42 MMBtu/hr cooling
	HVGO Pumparound
	Draw from Tray #8, returned to Tray #5
	50,000 bpd flow, 150°F cooling
Products	LVGO from Tray #4; 915°F D1160 T95; 5,000 bpd (approximate)
	HVGO from Tray #8, 1050°F D1160 T95; 21,000 bpd (approximate)
	Slop Wax from Tray #11, 1,000 bp
	Vacuum resid from bottom

Table 3.1, Definitions for Vacuum Distillation Column

3.8 ASPEN Hysys:

3.8.1. ASPEN Hysys work procedure:

-The first step is to mix the atmospheric residue (Atm Resid) from the Atmospheric Distillation Column with the steam upstream of the Vacuum Heater. Place a Mixer on the flow sheet & define specification from table 3.1. You will have to define the steam stream from table 3.1 this shown in figure 3.1.and figure 3.2.

Mixer: \	/ac Heate	er Mixer			
Design	Rating	Worksheet	Dynamics		
Desig Connect Paramet User Var Notes	ions ions iables	Inlets	Name Atm R Vac Coil Ste	Vac Heater Mixer Outlet Coutlet To Vac Heater Fluid Package Basis-1	
	elete			OK	Ignored

Figure 3.1: Installation of mixer

esign prauni	g Worksheet Dynamics				
Vorksheet	Name	Atm Resid	Vac Coil Steam	To Vac Heater	
onditions	Vapour	0.0006	1.0000	0.4735	
roperties	Temperature [F]	615.9	500.0	609.3	
omposition	Pressure [psig]	22.00	150.0	22.00	
r specs	Molar Flow [lbmole/hr]	1379	1110	2490	
	Mass Flow [lb/hr]	6.712e+005	2.000e+004	6.912e+005	
	Std Ideal Liq Vol Flow [kbpd]	47.26	1.372	48.63	
	Molar Enthalpy [Btu/lbmole]	-3.043e+005	-1.007e+005	-2.135e+005	
	Molar Entropy [Btu/lbmole-F]	370.8	41.32	225.3	
	Heat Flow [Btu/hr]	-4.197e+008	-1.118e+008	-5.315e+008	

Figure 3.2: definition of steam stream

- Create a new Heater on the flow sheet & call it vacuum heater(Vac Heater) and define specification from table 3.1 and define vacuum column feed (vac column feed) from table 3.1 this shown in figure 3.3 and figure 3.4.

Heater:	Vac Hea	ter			
Design	Rating	Worksheet	Performance	Dynamics	
Desi	gn		<u>N</u> ame	Vac Heater	
Connect Paramet User Var Notes	ions ers iables	In <u>l</u> et To V Fluid <u>F</u> Basis-	ac Heater		Energy Q-Vac Heater
	elete				OK 📃 Ignored

Figure 3.3: installation of Vac heater.

Morksheet Name To Vac Heater Vac Column Feed Q-Vac Heater Vapour 0.4735 0.7545 <empty> Temperature [F] 609.3 760.0 <empty> Pressure [psig] 22.00 -11.22 <empty> Molar Flow [lbmole/hr] 2490 2490 <empty> Mass Flow [lb/hr] 6.912e+005 6.912e+005 <empty> Std Ideal Liq Vol Flow [kbpd] 48.63 48.63 <empty> Molar Enthalpy [Btu/lbmole] -2.135e+005 -1.749e+005 <empty> Molar Entropy [Btu/lbmole-F] 225.3 261.7 <empty> Heat Flow [Btu/hr] -5.315e+008 -4.354e+008 9.610e+007</empty></empty></empty></empty></empty></empty></empty></empty>	esign	Rating	Worksheet	Performance	Dynamics				
Conditions Properties Composition PF SpecsVapour0.47350.7545 <empty>Temperature [F]609.3760.0<empty>Pressure [psig]22.00-11.22<empty>Molar Flow [lbmole/hr]24902490<empty>Mass Flow [lb/hr]6.912e+0056.912e+005<empty>Std Ideal Liq Vol Flow [kbpd]48.6348.63<empty>Molar Enthalpy [Btu/lbmole]-2.135e+005-1.749e+005<empty>Molar Enthalpy [Btu/lbmole-F]225.3261.7<empty>Heat Flow [Btu/hr]-5.315e+008-4.354e+0089.610e+007</empty></empty></empty></empty></empty></empty></empty></empty>	Worksh	eet	Name			To Vac Heater	Vac Column Feed	Q-Vac Heater	
Properties Composition PF SpecsTemperature [F]609.3760.0 <empty>Pressure [psig]22.00-11.22<empty>Molar Flow [lbmole/hr]24902490<empty>Mass Flow [lb/hr]6.912e+0056.912e+005<empty>Std Ideal Liq Vol Flow [kbpd]48.6348.63<empty>Molar Enthalpy [Btu/lbmole]-2.135e+005-1.749e+005<empty>Molar Entropy [Btu/lbmole-F]225.3261.7<empty>Heat Flow [Btu/hr]-5.315e+008-4.354e+0089.610e+007</empty></empty></empty></empty></empty></empty></empty>	Conditio	ns	Vapour			0.4735	0.7545	<empty></empty>	
Composition PF Specs Pressure [psig] 22.00 -11.22 <empty> Molar Flow [lbmole/hr] 2490 2490 <empty> Mass Flow [lb/hr] 6.912e+005 6.912e+005 <empty> Std Ideal Liq Vol Flow [kbpd] 48.63 48.63 <empty> Molar Enthalpy [Btu/lbmole] -2.135e+005 -1.749e+005 <empty> Molar Entropy [Btu/lbmole-F] 225.3 261.7 <empty> Heat Flow [Btu/hr] -5.315e+008 -4.354e+008 9.610e+007</empty></empty></empty></empty></empty></empty>	Propertie	s	Temperature	[F]		609.3	760.0	<empty></empty>	
Molar Flow [lbmole/hr] 2490 2490 <empty> Mass Flow [lb/hr] 6.912e+005 6.912e+005 <empty> Std Ideal Liq Vol Flow [kbpd] 48.63 48.63 <empty> Molar Enthalpy [Btu/lbmole] -2.135e+005 -1.749e+005 <empty> Molar Entropy [Btu/lbmole-F] 225.3 261.7 <empty> Heat Flow [Btu/hr] -5.315e+008 -4.354e+008 9.610e+007</empty></empty></empty></empty></empty>	Composi	tion	Pressure [psig]		22.00	-11.22	<empty></empty>	
Mass Flow [lb/hr] 6.912e+005 6.912e+005 <empty> Std Ideal Liq Vol Flow [kbpd] 48.63 48.63 <empty> Molar Enthalpy [Btu/lbmole] -2.135e+005 -1.749e+005 <empty> Molar Entropy [Btu/lbmole-F] 225.3 261.7 <empty> Heat Flow [Btu/hr] -5.315e+008 -4.354e+008 9.610e+007</empty></empty></empty></empty>	PF Specs		Molar Flow [lb	omole/hr]		2490	2490	<empty></empty>	
Std Ideal Liq Vol Flow [kbpd] 48.63 48.63 <empty> Molar Enthalpy [Btu/lbmole] -2.135e+005 -1.749e+005 <empty> Molar Entropy [Btu/lbmole-F] 225.3 261.7 <empty> Heat Flow [Btu/hr] -5.315e+008 -4.354e+008 9.610e+007</empty></empty></empty>			Mass Flow [lb	/hr]		6.912e+005	6.912e+005	<empty></empty>	
Molar Enthalpy [Btu/lbmole] -2.135e+005 -1.749e+005 <empty> Molar Entropy [Btu/lbmole-F] 225.3 261.7 <empty> Heat Flow [Btu/hr] -5.315e+008 -4.354e+008 9.610e+007</empty></empty>			Std Ideal Liq \	ol Flow [kbpd]		48.63	48.63	<empty></empty>	
Molar Entropy [Btu/lbmole-F] 225.3 261.7 <empty> Heat Flow [Btu/hr] -5.315e+008 -4.354e+008 9.610e+007</empty>			Molar Enthalp	y [Btu/Ibmole]		-2.135e+005	-1.749e+005	<empty></empty>	
Heat Flow [Btu/hr] -5.315e+008 -4.354e+008 9.610e+007			Molar Entropy	/ [Btu/lbmole-F]	225.3	261.7	<empty></empty>	
			Heat Flow [Btu/hr]			-5.315e+008	-4.354e+008	9.610e+007	

Figure 3.4: definition of vac column feed.

- Create an Absorber Column on the flow sheet then double-click start to fill in the information. Fill in the basic information from table 3.1 and Specify that the top stage reflux comes from a Pump-around. Specify the LVGO, HVGO, & Slop Wax streams on this form as Optional Side Draws this shown in figure 3.5.

Absorber Column Input Expert	
Column <u>N</u> ame Vac Column	
	O <u>v</u> hd Vapour Outlet
Optional Inlet Streams	Vac Column Overhead
Stream Inlet Stage Vac Column Feed 12_Main Tov << Stream >>	# Stages n = 14
	n-1 Optional Side Draws Stream Type Draw Stage
Botto <u>m</u> Stage Inlet	LVGO L 4_Main Towe + HVGO L 8_Main Towe +
Vac Column Steam	Bottoms Liquid Outlet
Stage Numbering Top Down O Bottom Up	
< Prev Next >	Connections (page 1 of 3)

Figure 3.5: Installation of Absorber Column.

- Initialize the pressure profile the specification found in table 3.1 this shown in figure 3.6.

Absorber Column Input Expert		
	Top Stage Pressure -13.73 psig r dP D0 psi Bottom Stage Pressure -13.50 psig	
< P <u>r</u> ev Ne <u>x</u> t >	Pressure Profile (page 2 of 3)	<u>C</u> ancel

Figure 3.6: Definition of pressure.

- Add temperature estimates & flow information for the top pumparound. Enter the data for the light vacuum gas oil(LVGO)Pumparound from table 3.1.

Figure 3.7: Definition of LVGO pumparound.

- Changed the Name from the default to light vacuum gas oil (LVGO) Pumparound. Then click Add Pump-Around and define the heavy vacuum gas oil (HVGO) Pumparound.

Side Operations Input Expert				X
	Pump-Arounds			
		Draw Stage	Return Stage	
\frown	LVGO Pumparound	4_Main Tower	1_Main Tower	
	HVGO Pumparounc	8_Main Tower	5_Main Tower	
2 Return Stage				
5 Main Tower				
	Name			_
	HVGO Pumparo	und	Add Pump-Around	
$\begin{bmatrix} \hat{\gamma} & \hat{\gamma} \\ \hat{\gamma} & \hat{\gamma} \end{bmatrix}$ (Z)	in do rumpare	unu	<u></u> .	
n-1 Draw Stage				
n 8 Main Tower				
				=
< Prev Next >	Pump-Arc	ound Connections	<u>C</u> ancel]

Figure 3.8: Definition of LVGO pumparound and HVGO pumparound.

- Add the heavy vacuum gas oil (HVGO) Pumparound specs from table 3.1 this shown in figure 3.9.

Figure 3.9: Definition of HVGO pumparound.

- Define pressure drops through the pumparounds this shown in figure 3.10.

Side Operations Input Expert			
	Pump-Around P	ressure Specs	
		Cooler dP [psi]	
	LVGO Pumpar	0.00	
	HVGO Pumpa	0.00	
		~	
< <u>Prev</u> <u>D</u> one	Pump-Aroun	d Pressure Specifications	Cancel

Figure 3.10: Definition of pressure drops.

- Enter the efficiencies for the stages. Select Efficiencies under the Parameters tab and enter the values from Table 3.1 this shown in figure 3.11.

esign Parame	eters Side Ops Rating	Worksheet	Performance	Flowsheet	Reactions	Dynamics		
arameters	Stage Efficiencies							
rofiles	Efficiency Type			Stage Efficien	cy			
stimates	Ouerell	1 Main	Tower	2	1.000			
olver	Overall	2 Main	Tower		0.5000			
/3 Phase	Component	3 Main	Tower		0.5000			
uid Pkgs		4_Main	Tower		0.5000			
	Efficiency Values	5_Main	Tower		0.5000			
	Grouped	6_Main	Tower		0.5000			
	User Specified	7_Main	Tower		0.5000			
		8_Main	Tower		0.5000			
		9_Main	Tower		0.5000			
		10_Mai	in Tower		0.5000			
		11_Ma	in Tower		0.5000			
		12_Ma	in Tower		1.000			
		13_Ma	in Tower		0.3000			
		14_Ma	in Tower		0.3000			
	Eff. Multi-Spec							
	Specify>						Efficiency Tuning	
		,	(·		

Figure 3.11: Input efficiencies values.

- Go to the Profiles item under the Parameters tab. It's pretty typical to have a top temperature of about 150°F and a bottom temperature of 700°F. You may also want to specify the 2nd stage temperature of 325°F this shown in figure 3.12.

sign Paran	neters Side Ops	Rating	Worksheet	Performance	Flowsheet	Reactions Dynamics	5
rameters	Steady State Prof	iles —					- Flow Paris
ofiles					Optional Es	timates	Molar Marr
Estimates Efficiencies Solver		Stage	Pressure [psig]	Temp [F]	Net Liquid [lbmole/hr]	Net Vapour [lbmole/hr]	© Volume ◎ Std Ideal Vol
Phase	1_Main Tower	0	-13.73	150.0	<empty></empty>	<empty></empty>	Act Volume
luid Pkgs	2_Main Tower	1	-13.71	325.0	<empty></empty>	<empty></empty>	
	3_Main Tower	2	-13.69	<empty></empty>	<empty></empty>	<empty></empty>	Description Trans Description from T
	4_Main Tower	3	-13.68	<empty></empty>	<empty></empty>	<empty></empty>	Pressure vs. Tray Position from To
	5_Main Tower	4	-13.66	<empty></empty>	<empty></empty>	<empty></empty>	-13.45 Pressure
	6_Main Tower	5	-13.64	<empty></empty>	<empty></empty>	<empty></empty>	
	7_Main Tower	6	-13.62	<empty></empty>	<empty></empty>	<empty></empty>	-13.50
	8_Main Tower	7	-13.60	<empty></empty>	<empty></empty>	<empty></empty>	
	9_Main Tower	8	-13.59	<empty></empty>	<empty></empty>	<empty></empty>	-13.55
	10_Main Towe	9	-13.57	<empty></empty>	<empty></empty>	<empty></empty>	
	11_Main Towe	10	-13.55	<empty></empty>	<empty></empty>	<empty></empty>	-13.60
	12_Main Towe	11	-13.53	<empty></empty>	<empty></empty>	<empty></empty>	
	13_Main Towe	12	-13.51	<empty></empty>	<empty></empty>	<empty></empty>	-13.65
	14_Main Towe	13	-13.50	700.0	<empty></empty>	<empty></empty>	
	Up <u>d</u> ate from	Solution	n Clear	Tray	ear All Trays	Lock	-13.75 -13.75 0 2 4 6 8 10 12 Unlock Stream Estimates

Figure 3.12: Input temperature value.

- Select the Specs item in the left-hand column under the Design tab and add spec Slop Wax Rate, top temperature spec, D1160 specs for the LVGO and HVGO, Net from #11 and Net from #4 all of this specification found in table 3.1 shown in figure 3.13, figure 3.14, figure 3.15 and overall specs shown in figure 3.16.

Draw Spec: Slop Wax Rat	te 📃 🗖 🗖	x	E Temp Spec: 1	Top Tempera	ture		x
Parameters Summary	Spec Type		Parameters	Summary	Spec Type		
Name	Slop Wax Rate		Name		Т	op Temperature	
Draw	Slop Wax @COL3		Stage			1_Main Tower	
Flow Basis	Std Ideal Vol		Spec Value			150.0 F	
Spec Value	1.000 kbpd						
Delete			Delete				

Figure 3.13: Definition of Slop Wax Rate and top temperature spec.

Cut Pt Spec: LVGO D1160 T	95 🗖 🗖 💌	Cut Pt Spec: HVGO D1160 7	r95 🗖 🗖 💻 🗖	
Parameters Summary S	б <mark>рес Туре</mark>	Parameters Summary	Spec Туре	
Name	LVGO D1160 T95	Name	HVGO D1160 T95	
Stage	4_Main Tower	Stage	8_Main Tower	
Туре	D1160 ATM	Туре	D1160 ATM	
Flow Basis	Volume Fraction	Flow Basis	Volume Fraction	
Phase	Liquid	Phase	Liquid	
Cut Point [%]	95.00	Cut Point [%]	95.00	
Spec Value	915.0 F	Spec Value	1050 F	
Delete		Delete		

Figure 3.14: Definition of D1160 specs for the LVGO and HVGO.

Net from #4
Main Tower
td Ideal Vol
00000 kbpd

Figure 3.15: Definition of Net from #11 and Net from #4.

	rs Side Ops Rating Wo	rksheet Performa	ance Flo	wsheet f	Reactions Dynan	nics			
Design	Specs Summary								
Connections		Specified Value	Active	Current	Fixed/Ranged	Prim/Alt	Lower	Upper	
Monitor	LVGO PA Rate(Pa)	22.30	V	R	Fixed	Primary	<empty></empty>	<empty></empty>	
Specs Summary	LVGO Pumparound TR	85.00			Fixed	Primary	<empty></empty>	<empty></empty>	
Subcooling	LVGO PA_Duty(Pa)	<empty></empty>			Fixed	Primary	<empty></empty>	<empty></empty>	
Notes	LVGO Rate	5.000	\checkmark		Fixed	Primary	<empty></empty>	<empty></empty>	
	HVGO Rate	21.00	V	▼	Fixed	Primary	<empty></empty>	<empty></empty>	
	Slop Wax Rate	1.000	V	V	Fixed	Primary	<empty></empty>	<empty></empty>	
	HVGO Pumparound_Ri	50.00	\checkmark	v	Fixed	Primary	<empty></empty>	<empty></empty>	
	HVGO Pumparound_D	150.0	\checkmark	▼	Fixed	Primary	<empty></empty>	<empty></empty>	
	HVGO Pumparound_D	<empty></empty>			Fixed	Primary	<empty></empty>	<empty></empty>	
	Top Temperature	180.0		V	Fixed	Primary	<empty></empty>	<empty></empty>	
	LVGO D1160 T95	915.0			Fixed	Primary	<empty></empty>	<empty></empty>	
	HVGO D1160 T95	1050			Fixed	Primary	<empty></empty>	<empty></empty>	
	Net from #4	0.1000			Fixed	Primary	<empty></empty>	<empty></empty>	
	Net from #11	3.000			Fixed	Primary	<empty></empty>	<empty></empty>	

Figure 3.16: Overall specs.

-The final model of vacuum distillation unit shown in figure 3.17.

Figure 3.17: Overall view of vacuum distillation process.

3.8.2. Improving production of product:

By changing of specification on specs summary this improve the rate of product. We use HVGO D1160 T95 specs to improve the production of HVGO this shown in figure 4.18and useNET FROM #4 specs to improve the production of LVGO in figure 3.19.

Paramete	rs side Ops Rating wor	ksneet Periorma	nce Mo	wsneet R	eactions Dynam	lics			
Design	Specs Summary								
Connections		Specified Value	Active	Current	Fixed/Ranged	Prim/Alt	Lower	Upper	
Specs	LVGO pumparound_Ra	22.30	Γ.	5	Fixed	Primary	<empty></empty>	<empty></empty>	
Specs Summary	LVGO pumparound_DL	<empty></empty>	Г	Г	Fixed	Primary	<empty></empty>	<empty></empty>	
Subcooling	LVGO Rate	5.000	Γ.	5	Fixed	Primary	<empty></empty>	<empty></empty>	
Notes	HVGO Rate	21.00	Г	Г	Fixed	Primary	<empty></empty>	<empty></empty>	
	slop wax Rate	1.000	Γ.		Fixed	Primary	<empty></empty>	<empty></empty>	
	LVGO pumparound_TR	29.44	Г	Г	Fixed	Primary	<empty></empty>	<empty></empty>	
	HVGO pump around_R	50.00	Γ.	5	Fixed	Primary	<empty></empty>	<empty></empty>	
	HVGO pump around_E	83.33	Γ.	5	Fixed	Primary	<empty></empty>	<empty></empty>	
	TOP TEMPERATURE	65.56	Γ.	5	Fixed	Primary	<empty></empty>	<empty></empty>	
	LVGO D1160 T95	490.6	Г	Г	Fixed	Primary	<empty></empty>	<empty></empty>	
	HVGO D1160 T95	565.6			Fixed	Primary	<empty></empty>	<empty></empty>	
	NET FROM 4	0.1000	Г	Г	Fixed	Primary	<empty></empty>	<empty></empty>	
	NET FROM 11	3.000	Г	Г	Fixed	Primary	<empty></empty>	<empty></empty>	
	PA_1_Rate(Pa)	22.30	Г	Г	Fixed	Primary	<empty></empty>	<empty></empty>	
	PA_1_TRet(Pa)	29.44	Г	Г	Fixed	Primary	<empty></empty>	<empty></empty>	

Figure 3.18: Activation of HVGO D1160 T95 specs

lumn: T-100 / O	OL2 Fluid Pkg: Refine	ry / Peng-Robir	nson									
esign Parameters	s Side Ops Rating Wor	ksheet Performa	nce Flor	wsheet R	eactions Dynam	ics						
Design	Specs Summary											
Connections		Specified Value	Active	Current	Fixed/Ranged	Prim/Alt	Lower	Upper	1			
Page	LVGO pumparound_Ra	22.30	Γ.	5	Fixed	Primary	<empty></empty>	<empty></empty>				
pecs pecs Summary	LVGO pumparound_DL	<empty></empty>	Г	Г	Fixed	Primary	<empty></empty>	<empty></empty>				
ubcooling	LVGO Rate	5.000	Г	Г	Fixed	Primary	<empty></empty>	<empty></empty>				
otes	HVGO Rate	21.00	Г	Г	Fixed	Primary	<empty></empty>	<empty></empty>				
	slop wax Rate	1.000	5	5	Fixed	Primary	<empty></empty>	<empty></empty>				
	LVGO pumparound_TR	29.44	Г	Г	Fixed	Primary	<empty></empty>	<empty></empty>				
	HVGO pump around_R	50.00	5	5	Fixed	Primary	<empty></empty>	<empty></empty>				
	HVGO pump around_E	83.33	Γ.	5	Fixed	Primary	<empty></empty>	<empty></empty>				
	TOP TEMPERATURE	65.56	Γ.	5	Fixed	Primary	<empty></empty>	<empty></empty>				
	LVGO D1160 T95	490.6	Г	Г	Fixed	Primary	<empty></empty>	<empty></empty>				
	HVGO D1160 T95	565.6	Γ.		Fixed	Primary	<empty></empty>	<empty></empty>				
	NET FROM 4	0.1000			Fixed	Primary	<empty></empty>	<empty></empty>				
	NET FROM 11	3.000	Г	Г	Fixed	Primary	<empty></empty>	<empty></empty>				
	PA_1_Rate(Pa)	22.30	Г	Г	Fixed	Primary	<empty></empty>	<empty></empty>				
	PA_1_TRet(Pa)	29.44	Г	Г	Fixed	Primary	<empty></empty>	<empty></empty>				
Delete	Column Environment	Run		Reset			Conv	verged		Update Out	ets 🛛	Ignored

Figure 3.19: Activation of NET FROM #4

3.9 corrosion protection:

3.9.1 Introduction:

Corrosion is a major issue in distillation equipment even with proper designs. Multiple factors can interact and create corrosive attack. With the current run length of plants between maintenance outages approaching five years, corrosion control is a must to maintain distillation efficiency and recovery.

Areas of corrosion in distillation include; crude distillation, vacuum distillation, and solvent extraction. Proper metallurgy selection and then proper chemical treatment is essential to prevent corrosion in the distillation equipment for hydrocarbon and chemicals processing.

Corrosion treatment chemicals include neutralizers, filmers, and other corrosion

inhibitors. These chemical can prevent or mitigate damage from galvanic bi-metallic, aqueous acidic, and under-deposit corrosion, as well as pitting.

Corrosion rates on these internal surfaces depend on the design of the equipment, materials, atmospheric/gaseous conditions, relative humidity (RH), presence of aqueous solutions, temperature and the frequency of temperature changes, corrosion condition of the internal surfaces.

To exclude this situation were created two types of corrosion protection systems that combine dehumidification (DH) of environment applying VCI in cases of presence of vapour condensed layers in some parts of the equipment due to fluctuation the temperature. In most cases the selected inhibitor composition that in vapour space works as VCI when absorbed in condensed water layer or in aqueous solution became SCI. In this case application of the system became very simple (*Y. I. Kuznetsov, 1996*).

3.9.2 Type of corrosion protection:

- a. DH/VCI
- b. DVS-1
- c. DVS-2

3.9.2.1 DVS-1:

Is a packaging system (Figure 3) to control external and internal corrosion in the vapour space and in the condensed on the metal surface water or aqueous solutions. This is a two layer system that allows controlling RH inside of the first layer (VCI or plain film) and excluding the entry of moisture into the inner layer from outside through the external barrier packaging film. This system recommended in most cases for corrosion protection of external surface of any size of equipment and internal surface for not very large and complicated equipment.

This system has been applied in many cases where existing packaging systems not efficient. The storage and shipment environment was extremely aggressive: RH of up to 100%, temperature from $+40^{\circ}$ C to -20° C, sea atmosphere, and industrial environment. For most of this equipment, only DVS-1 system is efficient and cost effective. (*E. Y. Lyublinski*,,(2009)).

3.9.2.2 DVS-2 System:

Is developed for corrosion protection of different type of large and complicated design of mothballing equipment. The main advantages and disadvantages of different methods are described in Table

Table.3.2: The advantages and disadvantages of the existing methods for corrosion protection of
large enclosures

Protection method	Advantages	Disadvantages
1. Replacement of existing environment with nitrogen (N2)	1. 100% efficiency in case if it is possible to achieve the fully sealing of enclosure	It is impossible to check that the environment was not fully replaced Not efficient in spaces where exist liquid that cannot be replaced with nitrogen condensed For not fully sealed enclosure the consumption of N2 is unpredictable and corrosion protection cannot be guarantied Cost of the delivery system and N2 is high
2. Applying VCI	1. Average efficiency for	1. Efficiency decreases if the concentration

	about 80%	decrease near than the protection		
	2. Applicable in different	concentration		
	environment	2. Type of inhibitor depends on environment		
	3. Low cost	condition and type of metals		
		3. Does not exist the application technology		
		for large and complicated equipment		
3. Dehumidification	High efficient and low	High efficient only in fully sealed enclosures		
	cost			

3.9.2.3 DH/VCI System

This system consists of:

- A closed system for dehumidification and/or delivery of VCI on external and internal surfaces.
- A "pump" that periodically performs dehumidification and then delivers VCI

This is the only/unique system that allows achieving corrosion protection of complicated and very large enclosures that can contain parts from different metals. To achieve the corrosion protection of any mothballing equipment it is not necessary to know the type of metals used in the enclosures, configuration, size and condition of the metal surfaces. To achieve corrosion protection, this system includes two steps:

Step1: First step include dehumidification that allow achieving the required RH less than 50% (this is the criteria of achieving corrosion protection in vapour space). In most cases the applied RH is close to 30%).

Step2: Second step include heating of powder of liquid VCI compounds to increase their vapour pressure and delivery VCI by using the dehumidification part of the system.

The temperature range in the system allows very fast to achieve the required vapour pressure for different VCI compounds. In some cases can be used compounds that only by heating became VCI. This is the additional advantage of this system.

Figure 3.20: DVS-2 systems for corrosion protection of large and complicated enclosures of equipment, (E. Lyublinski, (2015))

Figure 3.21: Mothaballing pipeline systems for applying DH-VCI (DVS-2) system (E. Lyublinski, (2015))

Chapter 4 Results & Discussion

4.1 Material and Energy Balance:

4.1.1 Introduction:

A material balance in it is most broad definition is the application of the law of conservation of mass, which states matter is neither created nor destroyed. Matter may flow through a control volume and may be reacted to form another species, however, no matter is ever lost or gained. The same is true for energy. As with material balances, we can apply the law that energy is neither created nor destroyed, it is simply converted into another form of energy. The law of conservation of mass and energy leads to what is called a mass (material) and energy balance. The data use in this chapter obtains from Aspen hysys model shown in appendix (B) (*A. Bhatia B.E. (2012)*).

4.1.2 Material balance:

4.1.2.1 Mass balance around Flash tower:

Figure 4.1: Flash tower

Total low = 311.159ton/h V/M = (0.7545/760.2) = 0.0009925

At top:

V = 311.159*0.0009925 = 0.308825 ton/hr

At Bottom:

B = (1-0.0009925)*311.159 = 310.85 ton/hr

4.1.2.2 Material balance around Vacuum column:

The equation of material balance for any system=

Input + Generation – Consumption – Output = Accumulation

The mass flow rate:

Figure 4.2: Vacuum column

At steady state:

- Accumulation=0
- Generation=0

- Consumption=0

Then:

Input = Output

For overall material balance

$$\boldsymbol{F} = \boldsymbol{D} + \boldsymbol{P}_1 + \boldsymbol{P}_2 + \boldsymbol{P}_3 + \boldsymbol{R}$$

Where:

D = vacuum over head F = vacuum Feed P_1 = LVGO P_2 = HVG P_3 = Slop wax

R = vacuum residue

Component	Concentration in feed	SG
D	0.0347	0.840
<i>P</i> ₁	0.0954	0.7668
<i>P</i> ₂	0.4233	0.750
<i>P</i> ₃	0.0208	0.740
R	0.4258	0.7948
Total F	1	

Table 4.1: Fractions and specific gravity of the product

The mass Flow rate of: $D = 311.159 \times 0.0347 = 10.8 \text{ ton/h}$ The mass Flow rate of: $P_1 = 311.159 \times 0.0954 = 29.68 \text{ ton/h}$ The mass Flow rate of: $P_2 = 311.159 \times 0.4233 = 131.71 \text{ ton/h}$ The mass Flow rate of: $P_3 = 311.159 \times 0.0208 = 6.47 \text{ ton/h}$ The mass Flow rate of: $R = 311.159 \times 0.4258 = 132.5 \text{ ton/h}$

Products	Cut	Mass flow	Mass flow	Volume	Volume	Density
	mass	(Ton/h)	(Kg/h)	flow	flow	
	%			(m^3/h)	(bbl/day)	
vacuum over	3.47	10.8	10810	237400	35880000	840
head						
LVGO	9.54	29.68	29670	38.7	5842	766.8
HVGO	42.33		131700	175.6	26510	750
Slop wax	2.08	6.47	6479	8.755	1322	740
vacuum residue	42.58	132.5	132500	166.9	25170	794.8
Total	100	311.159	311159	354500	53520000	762

Table 4.2: Mass balance around vacuum tower

4.1.3 Energy Balance:

4.1.3.1 STEAM HEAT FLOW CALCULATION:

The first of thermodynamics can be written as fallow

Input of Energy - Output Energy = Accumulation of energy in process

We can assume

Steady state: accumulation= Zero

Rate of energy input= rate of energy output

Rate in =
$$\sum f_{i,in} (h_{i,in} + pe_{i,in} + ke_{i,in}) + Q + W$$

Rate out = $\sum f_{i,out} (h_{i,out} + pe_{i,out} + ke_{i,out})$

Where:

 f_i = flow rate of component i

 h_i =specific enthalpy,

 pe_i =specific potential energy,

 ke_i =specific kinetic energy

W=mechanical work done on system

Q = heat input to system

Changes in Ke and Pe smaller than enthalpy

$$\sum f_{i,in}(h_{i,in} + pe_{i,in} + ke_{i,in}) + Q + W$$

 f_i , h_i =product of flow rate and specific enthalpy=total rate of energy transport with component i

Tabulated values of enthalpy are available only for the more common materials. In the absence of published data the following expressions can be used to estimate the specific enthalpy (per unit mass) for pure materials, with no phase change

$$H_T = \int_{T_d}^T C_p \, dT$$

Where:

 H_T = specific enthalpy at temperature T

 C_p = specific heat capacity of the material, constant pressure,

 T_d = the datum temperature

	Mw	Mass-flow	Molar	Mass	Heat flow
			Enthalpy	enthalpy	
ATM	424.3	3.012e005	-5.851e005	-1379	-4.15e008
STEAM	18.02	907.2	-2.359e005	-1.309e004	-1.188e007
Vac- Feed	397.4	3.021e005	-4.484e005	-1128	-3.40e008
Vac-steam	18.02	9072	-2.342e005	-1.3e004	-1.17e008
Vac-overhead	19.02	1.069e004	-2.409e005	-1.266e004	-1.354e008
LVGO	260.3	2.266e004	-4.737e005	-1820	-5.39e007
HVGO	377.1	1.317e005	-5.785e005	-1534	-2.02e008
Vac-residue	590.9	1.326e005	-8.230e005	-1393	-1.84e008
Slop wax	467.7	6479	-6.312e005	-1350	-8.744e006
Heated-vac	397.4	3.021e005	-5.620e005	-1414	-4.272e008

Table 4.3: Steam heat flow

4.1.3.2 Unit operation energy analysis:

Rate energy input = rate energy output

 $Q_{mass,in} = Q_{mass,out}$ $Q = mC_p \Delta T$ Q = heat quantity or duty in Kj/hr M = mass flow rate in kg/hr C_p = specific heat capacity kj/kg.C° ΔT = Temperature change in C° T_o = Reference temperature 25 C°

4.1.3.2.1 Heater:

 $3.021 \times 10^5 kg/hr$ of feed to be heated from (352.5 To 404.4)C°.

We assume steady state: accumulation=zero

Rate energy input=Rare energy output

 $m_1 C_{p_1} \Delta T_1 + Q_{in} = m_2 C_{p_2} \Delta T_2$ $m_1 C_{p_1} \Delta T_1 + Q_{in} = 3.021 \times 10^5 \times 1160 (352.5 - 25) + 8.635 \times 10^7$ $= 1.149 \times 10^{11} kj/hr$ $m_2 C_{p_2} \Delta T_2 = 3.021 \times 10^5 \times 1146 (404.4 - 25) = 1.314 \times 10^{11} kj/hr$

4.1.3.2.2 Pumps around energy balance:

	inlet T ₁	Outlet T ₂	Mass flow
Pump1(HVGO)	183.2C	21.23C	132300
Pump2(LVGO)	294.5C	194.5C	313500

Table 4.4: energy balance of pump around

4.1.3.2.2.1 Pumparound (HVGO):

 $m_1 C_{p_1} \Delta T_1 = Q + m_2 C_{p_2} \Delta T_2$ $m_1 C_{p_1} \Delta T_1 = 132300 \times 1043 \times (183.2 \cdot 25) = 2.183e + 010$ $Q + m_2 C_{p_2} \Delta T_2 = 6.851e + 007 + (3.135e + 005 \times 934.4 \times (211.3 - 25))$ $= 5.464 \times 10^6 kj/hr$

4.1.3.2.2.2 Pumparound (LVGO):

$$m_1 C_{p_1} \Delta T_1 = Q + m_2 C_{p_2} \Delta T_2$$

$$m_1 C_{p_1} \Delta T_1 = 1.323e005 \times 637 \times (189.6 - 25) = 1.387 \times 10^{10} kj/hr$$

$$Q + m_2 C_{p_2} \Delta T_2 = 5.663e + 007 + (1.323e + 005) \times 405.3 \times (-23.59 - 25)$$

$$= 1.387 \times 10^{10} kj/hr$$

Table 4.5: Unit operation duty

unit	Duty(kj/hr)
Heater	8.63E+007
Pump around 1	5.66E+007
Pump around 2	6.851E+007

4.2 Distillation design:

4.2.1 Introduction:

The separation of liquid mixtures into their various components is one of the major operations in the process industries, and distillation, the most widely used method of achieving this end, is the key operation in any oil refinery , that uses the difference in relative volatilities or differences in boiling of the component to be separated .

4.2.1.1 Types of distillation column:

- 1. Single flash vaporization
- 2. Packed towers
- 3. Plates tower
 - a. Bubble cap towers
 - b. Sieve pates
 - c. Valve plates towers

4.2.1.2 General design methods:

In designing a column for a given separation, the number of stages required and the Flow rates of the liquid and vapour streams must first be determined using the general methods outlined previously. In the mechanical design of the column, tower diameter, tray spacing, and the detailed layout of each tray is considered. Initially, a diameter is established, based on the criterion of absence from liquid entrainment in the vapour stream, and then the weirs and the downcomers are designed to handle the required liquid flow.

4.2.1.3 Bubble cap trays:

Bubble-cap trays are rarely used for new installations on account of their high cost and their high pressure drop. In addition, difficulties arise in large columns because of the large hydraulic gradients which are set up across the trays. Bubble cap trays are capable of dealing with very low liquid rates and are therefore useful for operation at low reflux ratios. There are still many bubble-cap columns in use.

4.2.1.4 Sieve trays:

Sieve trays offer several advantages over bubble-cap trays, and their simpler and cheaper construction has led to their increasing use. The general form of the flow on a sieve tray is typical of a cross-flow system with perforations in the tray taking the place of the more complex bubble caps. the key differences in operation between these two types of tray should be noted. With the sieve tray the vapour passes vertically through the holes into the liquid on the tray, whereas with the bubble cap the vapour issues in an approximately horizontal direction from the slots. With the sieve plate the vapour velocity through the perforations must be greater than a certain minimum value in order to prevent the weeping of the liquid stream down through the holes. at the other extreme, a very high vapour velocity leads to excessive entrainment and loss of tray efficiency.

4.2.2 Heavy key and light key:

Heavy key (Hk):NBP [0]378* Light key (Lk): NBP [0]302*

4.2.3 Type of tray:

Sieve tray

4.2.4 Calculation of relative volatility:

$$\alpha_{i} = \frac{K_{i}}{K_{hk}}$$

$$\alpha_{avg} = \sqrt[3]{\alpha_{top}\alpha_{bot}\alpha_{feed}}$$
Where :

 $K_i = K$ valu of component i $K_{hk} = K$ valu of heavy component α from table 1, appendix

(calculation are made by using Excel sheet).

4.2.5 Determination of minimum Reflux ratio *R_m* :

$$\sum_{\alpha=\theta}^{\alpha} = R_m + 1 (1)$$

Where:

 α = average Relative volatility of any component.

 \mathbf{x} = mole fraction of component.

 θ = constant.

 R_m = minimum Reflux ratio.

$$\sum \frac{\alpha Z_f}{\alpha - \theta} = 1 - q \qquad \longrightarrow (2)$$

Where :

 Z_f =mole fraction of component in feed.

 $\mathbf{q} =$ Feed quality.

$$\mathbf{q} = \frac{H_G - H_F}{H_G - H_L}$$

Where :

 H_G = Enthalpy of gas at the feed (KJ/Kmol)

 H_F = Enthalpy of liquid at the feed (KJ/Kmol)

 H_L = Enthalpy of feed (KJ/Kmol)

$$q = \frac{-302841,81 - (-420628,76)}{-302841,81 - (-759194,42)} = 0.2581$$

Substitute in equation (2) to find (θ)

$$\sum \frac{\alpha Z_f}{\alpha - \theta} = 1 \cdot 0.2581$$

$$\sum \frac{\alpha Z_f}{\alpha - \theta} = 0.7419$$

from table 1, appendix (A)
Solving (θ) by Goal seek
 $\theta = 2.9$
Substitute in equation (1) to find (R_m)
 $R_m = 0.906556$
from table 1, appendix (A)
Solving by Goal seek

4.2.6 Calculation of Actual Reflux Ratio (R):

The rule of thumb is:

$$\mathbf{R} = (1.2 \dots 1.5) R_m$$

 $R = 1.2 R_m$ R = 1.2*0.906556R = 1.0879

4.2.7 Calculation of Minimum number of stages N_{min}:

$$N_{min} = \frac{\ln \left[\left(\frac{X_{lk}}{X_{hk}} \right)_D \times \left(\frac{X_{hk}}{X_{lk}} \right)_B \right]}{\ln \alpha_{lk}}$$

-

Where :

 X_{lk} = mole fraction of light key.

X_{hk}= mole fraction of heavy key.

 α_{lk} = average relative volatility of light key.

 $N_{min} = 6.6348$ stages

4.2.8 Calculation of theoretical number of stages:

$$\frac{N-N_{min}}{N+1} = 0.75 \left[1 - \left(\frac{R - R_{min}}{R+1} \right)^{0.560} \right]$$

$$\frac{R-R_{min}}{R+1} = \frac{1.0879 - 0.9066}{1.0879 + 1} = 0.0868$$

$$\frac{N-N_{min}}{N+1} = 0.75 \left[1 - (0.0868)^{0.566} \right]$$

$$\frac{N-N_{min}}{N+1} = 0.5619$$

N = 16.421 stages

Solving by Goal seek

4.2.9 Calculation of the column efficiency (E_{\circ}) :

$$\mathbf{E}_{\circ} = \mathbf{51} - \mathbf{32} \cdot \mathbf{5} \log(\boldsymbol{\mu}_{a} \boldsymbol{\alpha}_{a})$$

Where:

 μ_a = the molar average liquid viscosity.

 α_a = average relative volatility of the light key. μ_a = 0.18 E_{\circ} = 61.28 %

4.2.10 Calculation of actual number of stages (N_a) :

$$N_{a} = \frac{N}{E_{o}}$$

= $\frac{16.42}{0.6128}$ = 26.795 stages

4.2.11 Calculation of the height of the column (H_t):

$$H_t = N_a \times C + \frac{(N_a - 1) \times C}{10} + 0.2 \times H$$

C = tray spacing
C = 0.6
0.8 $H_t = 27 \times 0.6 + \frac{(27 - 1) \times 0.6}{10}$
 $H_t = 22.03$ m

4.2.12 Calculation of the feed plate location:

$$\log \left[\frac{N_r}{N_s}\right] = 0.206 \log \left[\left(\frac{B}{D}\right) \left(\frac{X_{f,hk}}{X_{f,lk}}\right) \left(\frac{X_{b,lk}}{X_{d,hk}}\right)^2\right]$$

Where :

 N_r = number of stages above the feed

 N_s = number of stages below the feed

 $\mathbf{B} =$ molar flow bottom product

 $\mathbf{D} =$ molar flow top product

 $X_{f,hk}$ = concentration of the heavy key in the feed

 $X_{f,lk}$ = concentration of the light key in the feed

 $X_{b,lk}$ = concentration of the light key if in the bottom product

 $X_{d,hk}$ = concentration of the heavy key in the top product

$$\log \left[\frac{N_r}{N_s}\right] = 0.206 \log \left[\left(\frac{1379.593}{57.918}\right) \left(\frac{0.0278}{0.012}\right) \left(\frac{0.000156}{0.00006}\right)^2\right]$$
$$\log \left[\frac{N_r}{N_s}\right] = 0.523$$
$$N_r = 17.4$$
$$N_s = 10.29$$

The feed enter the column at tray no 10 from the bottom

4.2.13 Calculation of diameter of the column (D_c) :

The following areas terms are use in the design:

 A_c = total column cross sectional area

 A_d = cross sectional area of down comer

 A_n = net area available for vapour-liquid disengagement, normally equal to $A_c - A_d$

4.2.14 For a single pass plate:

 A_a = active area, equal to $A_c - 2A_d$ for single-pass plates

 A_h = hole area, the total area of all the active holes

 A_p = perforated area (including blanked areas),

 A_{ap} = the clearance area under the down comer apron

Top diameter calculation:

$$U_f = K_{\sqrt{\frac{\rho_l - \rho_v}{\rho_v}}}$$

Where:

 U_f = flooding vapor velocitym/s, based on the net column cross-sectional area A_n

K = constant obtained from figure (1), appendix (A)

$$F_{LV} = \frac{L_w}{V_w} \sqrt{\frac{\rho_v}{\rho_l}}$$

Where :

 F_{LV} = The liquid-vapor flow factor in figure (1) appendix

 L_w = liquid mass flow-rate, kg/s,

 V_w = vapor mass flow-rate, kg/s.

Top diameter calculations:

$$\frac{L_w}{V_w} = \frac{R}{R+1} = \frac{1.0879}{1.0879+1} = 0.521$$

From ideal gas law:

$$\rho_{\nu} = \frac{T_o P M_{wt}}{T P_o V_o}$$

$$\rho_{\nu} = \frac{273.15 \times 6.867 \times 19.29}{339.06 \times 1 \times 22.4} = 4.764 \text{ Kg/}m^3$$

$$F_{LV} = 0.521 \times \sqrt{\frac{4.764}{783}} = 0.041$$

From figure (1) appendix (A)

$$K = 0.11$$

$$U_f = 0.11 \times \sqrt{\frac{783 - 4.764}{4.764}} = 1.406$$

Design velocity = 80% of U_f

$$U = 0.8 \times 1.41 = 1.1247 \text{ m/s}$$

Net column area used in separation is

$$A_n = \frac{Q_v}{U}$$

 Q_v = Volumetric flow rate of vapors

$$Q_{v} = \frac{\text{mass vapor flow rate}}{3600 \times \text{vapor density}}$$

Mass vapor flow rate = 19670 kg/h

Vapor density= 4.764 kg/m3 $Q_{\nu} = \frac{19670}{3600 \times 4.764}$

 $Q_v = 1.1469 \text{m}3/\text{sec}$

Now, net area

$$A_n = \frac{Q_v}{U} = \frac{1.1469}{1.1247} = 1.0197m^2$$

Assume that down comer occupies 12% of cross sectional Area (A_c) of column

$$A_d = 0.12A_c$$
$$A_c = A_n + A_d$$

$$A_n = A_c - 0.12A_c = 0.88A_c$$

$$A_c = \frac{A_n}{0.88} = \frac{1.1097}{0.88} = 1.1588 \ m^2$$

$$A_c = (\pi/4)D^2$$

$$D_c = \left(\frac{4A_c}{\pi}\right)^{0.5} = 1.215 \ m$$

$$A_d = 0.12A_c$$

$$A_d = 0.12 \times 1.215 = 0.1458m^2$$

4.3 Plate Design:

 $A_a = A_c - 2A_d$ = 1.1588 - 2 (0.1458) = 0.8672 m² Hole area A_h take 10% A_a A_h = 0.1 × A_a = 0.1 × 0.8672 = 0.0867 m²

4.3.1 Weir length (L_w) :

$$A_d/A_c = 0.1458/1.1588 = 0.126$$

From Figure (3) appendix
 $\frac{L_w}{2} = 0.77$

$$p_d = 0.77$$

$$D_d = \left(\frac{4A_d}{\pi}\right)^{0.5}$$

$$D_d = \left(\frac{4 \times 0.1458}{\pi}\right)^{0.5} = 0.431 m$$

$$L_w = 0.77 \times 0.431 = 0.3318 m$$

4.3.2 Perforated area (*A_p*):

From figure (4), appendix $\theta_c = 100^{\circ}$ Angle substances at plate edge by imperforated strip = $180-100 = 80^{\circ}$ **Hole size: 5** mm is the preferred size Calming zone width = 50 mmMean Length imperforated
$= (0.431 - 0.05) \ \pi \times \left(\frac{80}{180}\right) = 0.5317 \ m$

Area of imperforated = $0.05 \times 0.5317 = 0.0266 \ m^2$

Mean length of calming zone

$$= (0.431 - 0.05) \sin\left(\frac{100}{2}\right) = 0.2919 \ m^2$$

Area of calming zone = $2(0.2919 \times 0.05) = 0.0292 \ m^2$

Total area for perforations,

 $A_p = 1.1588 - 0.0266 - 0.0292 = 1.103m^2$

4.3.3 Determination of entrainment correlation (Ψ):

From figure (2), appendix (A) At $F_{LV} = 0.041$ and 80% flooding $\psi = 3.4 \times 10^{-3}$ $\varphi = \frac{\psi \times L}{1-\psi} = \frac{3.4*10^{-3} \times 10263.7}{1-3.4*10^{-3}} = 30.88$ kg/h

4.3.4 Weeping point:

Weeping will occur when $U_{omin} < U_{omin}$ calculated

$$U_o = \frac{V}{\rho_v \times A_h} = \frac{1.967 \times 10^4}{4.764 \times 0.0867 \times 3600} = 13.23 \text{ m/s}$$

Taking 70% turn down

$$U_{omin} = 0.7 \times U_o = 0.7 \times 13.23 = 9.26 \text{ m/s}$$
$$U_{omin} \text{ Calculated} = \frac{K_2 - 0.9 (25.4 - d_o)}{\rho_v^{0.5}}$$

 $d_o = 5 \text{ mm}$

 K_2 is function of $(h_w + h_{owmin})$

 h_w = weir high = 23 mm

 h_{owmin} Minimum weir crest = 750 $\left(\frac{L_{min}}{\rho_l l_w}\right)^{2/3}$ $L_{min} = 0.7 \times 10263.7 = 7184.59$ kg/h

 $h_{owmin} = 750 \times \left(\frac{7184.59}{783 \times 0.3318 \times 3600}\right)^{2/3} = 29.20 \ mm$ $h_{owmin} + h_w = 29.20 + 23 = 52.2 \ mm$ From figure (5), appendix (A) $K_2 = 30$ $U_{omin} \text{ calculated} = \frac{30 - 0.9(25.4 - 0.005)}{(4.764)^{0.5}} = 1.32 \text{ m/s}$ $U_{omin} > U_{omin} \text{ Calculated}$ Weeping will not occur

4.3.5 Pressure drop calculation:

 $\Delta P = 9.81 \times h_t \times 10^{-3} \times \rho_l$ $\Delta P = \text{total plate pressure drop, Pa (N/m2),}$ h_t = total plate drop, mm liquid $h_t = h_d + (h_w + h_{ow}) + h_r$ $h_d = 51 \left(\frac{U_h}{C_o}\right)^2 \frac{\rho_v}{\rho_l}$ From figure (6), appendix (A) At $\frac{A_h}{A_n} = \frac{0.0867}{1.103} = 7.86\%$ Plate thickness = 50 mmHole diameter = $d_h = \left(\frac{4 A_h}{\pi}\right)^{0.5} = \left(\frac{4 \times 0.0867}{\pi}\right)^{0.5} = 0.33 \text{ m}$ $\frac{\text{Plate thicknees}}{\text{Hole diameter}} = \frac{0.05}{0.33} = 0.2$ $C_{0} = 0.7$ $h_d = 51 \left(\frac{13.23}{0.7}\right)^2 \times \frac{4.764}{783} = 110.84 \text{ mm}$ $h_r = \frac{12500}{\rho_l} = \frac{12500}{783} = 15.96 \, mm$ $h_w = 23$ mm $h_{ow} = 29.20$ mm $h_t = 15.96 + 110.84 + 23 + 29.20 = 179 \, mm$ $\Delta P = 9.81 \times 179 \times 10^{-3} \times 783 = 1.37$ kpa

4.3.6 Down comer liquid back up:

For safe design and to avoid flooding

$$h_b < \frac{1}{2}(C + h_w)$$

C = tray spacing

 $h_b = h_t + h_{ow} + h_w + h_{dc}$

 h_b = down comer back-up, measured from plate surface, mm

 h_{dc} = head loss in the down comer, mm

$$h_{dc} = 166 \left(\frac{L}{\rho_L A_m}\right)^2$$

 A_m = either the down comer area A_d or the clearance area under the downcomer

 A_{ap} ; whichever is the smaller, m^2 .

L = liquid flow rate in down comer, kg/s $A_m = A_{ap} = h_{ap} \times L_w$ $h_{ap} = h_w - 10 \text{ mm}$ $h_{ap} = 23 - 5 = 18 \text{ mm}$ $A_{ap} = 0.3318 \times 18 \times 10^{-3} = 0.006 \text{ m}^2$ $h_{dc} = 166 \left(\frac{10263.7}{783 \times 0.006 \times 3600}\right)^2 = 61.13 \text{ mm}$ $h_b = 179 + 29.20 + 23 + 61.13 = 292.33 \text{ mm} = 0.292 \text{ m}$ $\frac{1}{2}(C + h_w) = 0.5 (0.6 + (23*10^{-3}) = 0.312 \text{ m}$ $h_b < \frac{1}{2}(C + h_w) \text{ no flooding will occure.}$

4.3.7Down comer residence time:

$$\mathbf{t_r} = \frac{\mathbf{A_d}\mathbf{h_b}\boldsymbol{\rho_l}}{\mathbf{L}}$$

Where: $\mathbf{t_r}$ = residence time, s,

$$\mathbf{t_r} = \frac{0.1458 \times 0.292 \times 783}{10263.7/3600} = 11.7 \text{ sec}$$

4.4 Cost Estimation:

4.4.1 Introduction:

A preliminary economic analysis is performed for the overall plan. Due to lack of recent data, different cost estimates are done based on cost indices and capacity. However, the present analysis will give a fair idea about the profitability of the plant. Since the exact cost of the plant is not found, the calculations are done based on the purchased equipment cost (PEC).

4.4.2 Estimation of total capital investment:

Total capital investment (T c I) = fixed capital investment + working capital Fixed capital investment= direct cost + indirect cost

4.4.2.1 Direct cost:

Material and labour involved in actual installation of complete facility (70-85% of fixed-capital investment) and we obtain this value from economic evaluation of ASPEN Hysys software this shown in table 6.1.The full sheet of project summary shown in Appendix (C).

4.4.2.2 Indirect costs:

Expenses which are not directly involved with material and labor of actual installation of complete facility (15-30% of Fixed-capital investment).

- Engineering and Supervision: (5-30% of direct costs)

Consider the cost of engineering and supervision = 10% of Direct costs

cost of engineering and supervision = 10% of 6.34E+07

- Construction Expense and Contractor's fee: (6-30% of direct costs)

Consider the construction expense and contractor's fee = 15% of Direct costs

i.e., construction expense and contractor's fee = 15% of 6.34E+07

- Contingency :(5-15% of Fixed-capital investment or 20% to 40% of PEC)

Consider the contingency cost = 30% Purchased Equipment Cost

Contingency cost = 30% of 2.56E+07

Thus, Fixed capital investment = direct cost + indirect cost

= 6.34E + 07 + 24.49E + 06

= 8.69E + 07\$

4.4.2.3 Working Capital:

Consider the Working Capital = 15% of Fixed-capital investment Working capital = 15% of FCI = 13.04E+07\$ Thus, Total capital investment = 8.69E+07 + 13.04E+07

= 21.73E + 07\$

4.4.3 Estimation of Total Product cost:

4.4.3.1 Manufacturing Cost:

Manufacturing cost = Direct production cost + Fixed charges + Plant overhead cost.

4.4.3.2 Fixed Charges:

Depreciation: (depends on life period, salvage value and method of calculation-about 10% of FCI for machinery and equipment and 2-3% for Building Value for Buildings)

Depreciation = $(0.10 \times 8.69E + 07) + (0.02 \times 38590000)$

= 9451800\$

- Local Taxes: (1-4% of fixed capital investment)

Consider the local taxes = 3% of fixed capital investment

 $= 0.3 \times 8.69 \text{E} + 07$

- Insurances: (0.4-1% of fixed capital investment)

Consider the Insurance = 1.0% of fixed capital investment

Insurance = $0.01 \times 8.69E + 07$

=869000\$

Thus, Fixed Charges= 36390800\$

4.4.3.3 Direct Production Cost:

-Raw Materials: (10-50% of total product cost)

Consider the cost of raw materials = 30% of total product cost

Raw material cost = 30% of X

- Operating Labor (OL): (10-20% of total product cost)

Consider the cost of operating labor = 15% of total product cost

operating labor cost = 15% of X

- Direct Supervisory and Clerical Labor (DS & CL): (10-25% of OL)

Consider the cost for Direct supervisory and clerical labor = 20% of OL

Direct supervisory and clerical labor cost = 20% of 0.15X

 $= 0.2 \times 0.15 X$

$$= 0.03X$$

- Utilities: (10-20% of total product cost)

- 57 -

Consider the cost of Utilities = 15% of total product cost

Utilities cost= 15% of X

- Maintenance and repairs (M & R): (2-10% of fixed capital investment)

Consider the maintenance and repair cost = 5% of fixed capital investment

Maintenance and repair $cost = 0.05 \times 8.69E + 07$

=4345000\$

-Operating Supplies: (10-20% of M & R or 0.5-1% of FCI)

Consider the cost of Operating supplies = 10% of M & R

 $= 0.10 \times 4345000$

```
= 434500$
```

-Laboratory Charges: (10-20% of Operating supplies)

Consider the Laboratory charges = 15% of Operating supplies

$$= 0.15 \times 434500$$

= 65175\$

-Patent and Royalties: (0-6% of total product cost)

Consider the cost of Patent and royalties = 5% of total product cost

Patent and Royalties = 5% of X

Thus, Direct Production Cost = 0.68X + 4844675

4.4.3.4Plant overhead Costs:

It is about5-15% of total product cost; includes for the following: general plant upkeep and overhead, payroll overhead, packaging, medical services, safety and protection, restaurants, recreation, salvage, laboratories, and storage facilities.

Consider the plant overhead cost = 10% of total product cost.

Thus, Manufacture cost = Direct production cost + Fixed charges + Plant overhead costs.

Manufacture cost = 0.68X + 4844675 + 36390800 + 0.1X

= 0.78X + 41235475

4.4.4 General Expenses:

General expenses = Administrative costs + distribution and selling costs +research and development costs

4.4.4.1 Administrative costs:

About 15% of costs for operating labor, supervision, and maintenance or 2-6% of total product cost. Includes costs for executive salaries, clerical wages, legal fees, office supplies, and communications.

Consider the Administrative costs = 4% of total product cost

4.4.4.2 Distribution and Selling costs:

It equal2-20% of total product cost includes costs for sales offices, salesmen, shipping, and advertising.

Consider the Distribution and selling costs = 10% of total product cost

4.4.4.3 Research and Development costs:

It is about 5% of total product cost. Consider the Research and development costs = 5% of total product cost.

Thus, General Expenses = 0.19 of total product cost

Thus, Total Product cost = Manufacture cost + General Expenses

X = 0.78X + 41235475 + 0.19X

X=13.75E08\$

Table 4.6: Direct cost

Direct cost	Total Cost
Purchased Equipment Cost	2.56E+07
Equipment Setting	678996
Piping	9.75E+06
Civil	3.49E+06
Steel	410240
Instrumentation	1.45E+06
Electrical	523548
Insulation	2.38E+06
Paint	105782
Other	1.73E+07

G and A Overheads	1.74E+06
Total Cost	6.34E+07\$

4.5 Result:

4.5.1 Introduction:

In this chapter we mention all result from each section.

4.5.2 Column profiles:

- Pressure profile:

Figure 4.3 shown the increasing of pressure during process.

Figure 4.3: pressure profile

- Temperature profile:

The change of temperature from tray to another shown in figure 4.4

Figure4.4: temperature profile

- Net flow profile:

The quantity of liquid flow and vapour flow shown in figure 4.5.

Figure 4.5: Net flow profile

- Transport properties:

The change of viscosity, density and molecular weight through trays shown in figure 4.6 and figure 4.7.

Figure 4.6: Density profile

Figure 4.7: Viscosity profile

4.5.3 Improving of production result:

The result from use specs summary from ASPEN Hysys software that we previously explains shown in table 4.7 before increasing and after increasing shown in table 4.8 for light vacuum gas oil (LVGO) and for heavy vacuum gas oil (HVGO) shown in table 4.9 before increasing and after increasing show in table 4.10. The flow rate chart after improving the production of LVGO and HVGO is shown in

Tahla 4 7.	hefore	improv	ina	IVGO
1 abic 4.7.	UCIOIC	mprov	шg	

Flow rate	29673.11kg/hr
Density @15 °C	764.8 kg/m3
Molecular weight	254.6
Kinematic viscosity	0.5796 (cSt)

Table 4.8: After improving LVGO

Flow rate	112489.26 kg/hr
Density @15 °C	783.9 kg/m3
Molecular weight	325.7
Kinematic viscosity	0.5324 (cSt)

Table 4.9: before improving HVGO

Flow rate	131678.155 kg/hr
Density @15 °C	757.5kg/m3
Molecular weight	405.3
Kinematic viscosity	0.3223 (cSt)

Table 4.10: After improving HVGO

Flow rate	184171.493kg/hr
Density @15 °C	757.5kg/m3
Molecular weight	405.3
Kinematic viscosity	0.3223 (cSt)

4.5.4 Design results:

The result from theoretical design of vacuum column shown in table 4.11.

Table 4.11: design result

No. of tray	27 tray	Perforated area	1.103 m ²
Pressure drop	1.37 kpa	Tray thickness	0.05 m
Height of column	22.03 m	Weir height	0.023 m
Diameter of column	1.2 m	Reflux ratio	1.09
Hole size	0.05 m	Tray spacing	0.6
Weir length	0.3318 m	Active area	1.159 m

4.5.5 Cost estimation:

Cost estimation results summarize in a table 4.12, table 4.13, table 4.14 and table 4.15.

PROJECT CAPITAL SUMMARY	Total Cost
direct cost	6.34E+07
Indirect costs	24.49E+06
Fixed capital investment	8.69E+07

Table 4.13: Total capital investment

PROJECT CAPITAL SUMMARY	Total Cost
Fixed capital investment	8.69E+07
Working capital	13.04E+07
Total capital investment	21.73E+07

Table 4.14: Manufacture cost

PROJECT CAPITAL SUMMARY	Total Cost
Direct production cost	93.98EO7
Fixed charges	36390800
Plant overhead cost.	13.75E07
Manufacture cost	111.75E07

Table 4.15: Total product cost

PROJECT CAPITAL SUMMARY	Total Cost
General Expenses	26.125E07
Manufacture cost	111.75E07
Total Product cost	13.75E08

4.5.6 Aspen Hysys Result:

The full model of the process shown in figure 4.8.

Figure 4.8: Overall view of vacuum distillation process.

Figure 4.8: Net flow profile case of increasing HVGO

Figure 4.9: net flow profile case of increasing LVGO

Chapter 5 Conclusion &Recommendation

5.1 Conclusion:

The designs have been performed using ASPEN Hysys software this represent a benefit and useful results. The material and energy balance have been calculated using information from ASPEN Hysys model this help to give full evaluate of the equipment. The theoretical design gives a specified details and information of design the vacuum distillation column. Cost estimation of process give a brief view of total cast that may help to anticipate the capital needed. By ASPEN Hysys software we performed a method to increasing the production of light vacuum gas oil (LVGO) and heavy vacuum gas oil (HVGO) this give us a marked increase in a flow rate of production.

5.2 Recommendation:

- We recommend using vacuum distillation unit in Khartoum Refinery because of economic impact of it.

- For other prospector we advise them to visit the Khartoum refinery to evaluate all factors that may affect on the process.

References:

- Dhallia Mamoun Beshir, (2015), Impact of American petroleum institute standards variation on crude distillation unit KRC case study January 2015
- R. K. Sinnott (1999), *Coulson & Richardson's Chemical Engineering volume 6 third edition Chemical Engineering Design*, London: England
- J. D. SeaderErnest J. Henley D. Keith Roper (2011), SEPARATION PROCESS PRINCIPLES Chemical and Biochemical Operations Thired edition, United States of America
- A.- Fu Chang, KlranPashikanti, and Y.A. Liu (2012), *Refinery Engineering: Integrated Process Modeling and Optimization, weinheim*, Germany: wiley- VCH VerlagGmBH& Co KGaA.
- S.W.Golden, D.C.Villalant, and G.R.Martin (Aprill 1994). Feed Characterization and Deepcut Vacuum Columns: Simulation and Design, Atlanta, Georgia: AlchE1994 spring National Me
- Donald F.Scheider, Lidia M.Surez, and Joseph Musumeci (March 1997). *DeepcutVacuum Tower Incentives for Various Crude*, Leagae city, Texas: Strtus Engineering, Inc.
- David S.J. Stan Jones and Peter R.Pujado (2006). *Handbook of Petroleum Processing*, Netherland: Springer.
- U. Ven Kata Raman (Aug 2010).*Crude Oil Characteristics and Refinery*, New Delhi: Academia Workshop on Refining and Petrochemicals.
- A.Bhatia B.E.(2012). *Introduction to Material and Energy Balance*, PDH online Course, M239, Page109.
- Y. I. Kuznetsov, Organic Inhibitors of Corrosion of Metals, Premium Press, New York, 1996
- E. Y. Lyublinski, Y. L. Vaks, R. Singh, S. Narasivani and A. Teylor, *Two Layer System* for Long Term Corrosion Protection in Unpredictable Environments, EUROCORR 2009.
- (E. Lyublinski, Y. Vaks. W. Rohland, (2015). New hibernation system for Corrosion protection of Internal Substrate surface of Chemical Processing Plants, Saopaulo, Brazil: InTJ. Corros. S Cak In hib.

Appendix (A) Equipment Design Chart

Appendix (A)

Equipment design chart

Figure 1: Flooding velocity, sieve plates

Figure 2: Entrainment correlation for sieve plates (Fair, 1961)

Figure 3: Relation between down comer area and weir length

Figure 4: Relation between angle subtended by chord, chord height and chord length

Figure 5: Weep-point correlation (Eduljee, 1959)

Figure 6:Discharge coefficient, sieve plates (Liebsonet al., 1957)

Composition	K valu FEED	ALPH Feed	K valu top	АLPН Тор	K valu Bot	ALPT Bot
Methane	0	0	0	0.00F+00	0	0
n-Pentane	973 373166	170 51079	236 3106257	1 84F+04	0	0
i-Pentane	1016 59624	178.08240	269,1185837	2.09F+04	0	0
n-Butane	1369 93278	239.97819	464 8793757	3.61F+04	0	0
i-Butane	1500 70404	262 88606	560 0789354	4 35F+04	0	0
Pronane	0	0	0	0.00F+00	0	0
Fthane	0	0	0	0.00F+00	0	0
H2O	3057.74558	535.64105	2573,401861	2.00E+05	3018.0028	6029.686796
NBP[0]60*	694.935017	121.73535	138.4761383	1.08E+04	0	0
NBP[0]77*	574.282072	100.59995	97.5335138	7.58E+03	0	0
NBP[0]93*	473.218455	82.896115	68.31826135	5.31E+03	0	0
NBP[0]113*	376.822779	66.009988	44.06260123	3.42E+03	173.73041	347.0970929
NBP[0]135*	293.397484	51.395949	27.12838649	2.11E+03	122.79089	245.3246981
NBP[0]151*	239.273434	41.914761	18.33011603	1.42E+03	92.628397	185.0628591
NBP[0]170*	187.146263	32.783375	11.41046226	8.86E+02	65.895255	131.6525457
NBP[0]189*	144.988055	25.398305	6.978691321	5.42E+02	46.261051	92.4252463
NBP[0]208*	111.100974	19.462130	4.1789157	3.25E+02	31.977287	63.88762452
NBP[0]227*	83.9540552	14.706665	2.4382531	1.89E+02	21.680984	43.31657514
NBP[0]246*	63.3095612	11.090262	1.40319376	1.09E+02	14.600085	29.1696012
NBP[0]264*	47.1675087	8.2625756	0.79196764	6.15E+01	9.679122	19.337979
NBP[0]283*	34.5656831	6.0550488	0.432224024	3.36E+01	6.2650546	12.51699214
NBP[0]302*	24.9073259	4.3631446	0.228152583	1.77E+01	3.9587069	7.909125575
NBP[0]321*	17.7540677	3.1100715	0.11784609	9.15E+00	2.4623982	4.91964099
NBP[0]340*	12.3873166	2.1699501	5.83E-02	4.53E+00	1.4855727	2.968035016
NBP[0]359*	8.48310144	1.4860286	2.79E-02	2.16E+00	0.8729901	1.7441524
NBP[0]378*	5.70857215	1	1.29E-02	1.00E+00	0.500524	1
NBP[0]397*	3.7585863	0.6584109	5.71E-03	4.43E-01	0.2784022	0.556221602
NBP[0]416*	2.45971215	0.4308805	2.50E-03	1.94E-01	0.1535514	0.306781356
NBP[0]443*	1.24662324	0.2183774	6.69E-04	5.20E-02	5.92E-02	0.118183263
NBP[0]484*	0.42958316	0.0752523	0	0.00E+00	1.33E-02	0.026551507
NBP[0]521*	0.14791977	0.0259119	0	0.00E+00	3.00E-03	0.005985741
NBP[0]562*	4.02E-02	0.0070484	0	0.00E+00	4.89E-04	0.000975979
NBP[0]600*	1.09E-02	0.0019078	0	0.00E+00	8.00E-05	0.000159783
NBP[0]641*	2.40E-03	0.0004203	0	0.00E+00	9.97E-06	1.9919E-05
NBP[0]737*	4.84E-05	8.4773E-06	0	0.00E+00	5.00E-08	9.99721E-08

Table 1:Design Calculation

AVG ALPH	X D	ХВ	XF
0	5.36E-17	2.19E-24	4.05E-13
0	4.56E-10	4.80E-16	1.59E-07
0	2.35E-10	2.27E-16	9.35E-08
0	4.08E-11	2.11E-17	2.80E-08
0	2.87E-12	1.23E-18	2.38E-09
0	6.66E-13	1.58E-19	9.42E-10
0	3.67E-15	4.08E-22	1.07E-11
8642.987953	2.19E-04	2.88E-04	0.4189834
0	3.20E-09	6.83E-15	6.53E-07
0	1.33E-08	4.24E-14	1.91E-06
0	4.34E-08	2.06E-13	4.34E-06
428.0377668	1.32E-07	1.00E-12	8.45E-06
298.4030182	5.71E-07	7.23E-12	2.21E-05
222.7010812	2.21E-06	4.17E-11	5.62E-05
156.3989706	7.77E-06	2.23E-10	1.12E-04
108.3664752	3.89E-05	1.37E-09	2.45E-04
73.90300133	3.30E-04	8.91E-09	5.44E-04
49.41447615	4.72E-03	6.88E-08	1.36E-03
32.79204369	4.76E-02	4.84E-07	3.04E-03
21.42149732	0.17976056	2.89E-06	5.52E-03
13.65255745	0.30016649	1.65E-05	8.36E-03
8.488344402	0.28557563	1.56E-04	1.20E-02
5.193316903	0.1517678	2.35E-03	1.56E-02
3.079044062	2.82E-02	1.66E-02	1.87E-02
1.776980259	1.59E-03	3.54E-02	2.29E-02
1	6.24E-05	4.96E-02	2.78E-02
0.545558188	2.39E-06	6.80E-02	3.64E-02
0.295133816	9.31E-08	8.70E-02	4.57E-02
0.110289362	8.03E-10	0.1744296	9.06E-02
0	1.55E-13	0.1458417	7.53E-02
0	3.25E-17	0.120994	6.24E-02
0	1.04E-21	8.92E-02	4.60E-02
0	3.29E-26	6.10E-02	3.14E-02
0	2.14E-30	6.20E-02	3.20E-02
0	7.02E-30	8.72E-02	4.50E-02

 Table 1:Design Calculation

Appendix (B) Aspen Hysys Report

				ame: (6.0 ATMOSPHERIC CI	RUDE OIL KR	C.HSC		
3	aspentech Burlington	; , МА	Unit Set:	: 1	NewUser31				
4 5	USA		Date/Tin	ne:	Sun Oct 18 13:22:19 2)15			
6	• •				<u></u>				
7 8	Colum	nn Sub-Flowsh	eet:	1-100	@Main				
9 10			CONNE	CTIONS					
11			Inlet S	tream					
12	STREAM NAME	Stag	е			FROM UNIT	OPERATION		
13	vacuum column steam	14_TS-1							
14	Vacuum Feed	12_TS-1			Heater			E-101	
15		0 1	Outlet S	Stream					
16		Stag	e			TO UNIT O	PERATION		
17	vacuum column overnead	1_15-1 14_TS-1							
19	TonStagePA O-Cooler 1	14_13-1							
20		4 TS-1							
21	HVGO	8 TS-1							
22	slop wax	11TS-1							
23	HVGO pump around_Q-Cooler	HVGO pump around	ł						
24	LVGO_Draw								
25	PA_1_Q-Cooler	PA_1							
26			MON	TOR					
27									
28		Sp	pecification	ns Summan	y				
29		Specified Value			Current Value		Wt. Error		
30	LVGO pumparound_Rate(Pa)	22.3	30 kbpd *		22.30	kbpd		-4.206e-006	
22	LVGO Pote	E 0(00 kbpd *		E 000			4 1000 006	
33	HVGO Rate	21 (00 kbpd *		21.00	kbpd		-4.199e-000	
34	slop wax Rate	1.0	00 kbpd *		1 000	kbpd		-3 420e-005	
35	LVGO pumparound TRet(Pa)		85.00 F *						
36	HVGO pump around_Rate(Pa)	50.0	00 kbpd *		50.00	kbpd		-7.061e-006	
37	HVGO pump around_Dt(Pa)		150.0 F *		1{	60.0 F		1.246e-006	
38	TOP TEMPERATURE		150.0 F *		15	150.0 F -1.995e-006			
39	LVGO D1160 T95		915.0 F *		76	8.2 F	-1.631e-002		
40	HVGO D1160 T95		1050 F *		95	5.1 F		-1.054e-002	
41	NET FROM 4	0.10	00 kbpd *		18.35	kbpd		182.5	
42	NET FROM 11	3.00	00 kbpd *		26.80	kbpd		7.932	
43	PA_1_Rate(Pa)	22.,	95 00 E *		22.30			-4.2068-006	
45		Wt Tol	00.001	Δ	Abs. Tol	Active	Estimate	Used	
46	LVGO pumparound Rate(Pa)	1.000e-	002	,	22.19 kbpd *	On	On	On	
47	LVGO pumparound_Duty(Pa)	1.000e-	002		0.9478 Btu/hr	Off	On	Off	
48	LVGO Rate	1.000e-	002		22.30 kbpd *	On	On	On	
49	HVGO Rate	1.000e-	002		50.00 kbpd *	On	On	On	
50	slop wax Rate	1.000e-	002		0.9999 kbpd *	On	On	On	
51	LVGO pumparound_TRet(Pa)	1.000e-	002		1.800 F *	Off	On	Off	
52	HVGO pump around_Rate(Pa)	1.000e-	002		50.00 kbpd *	On	On	On	
53		1.000e-	002		1.800 F *	On	On	On	
55	LVGO D1160 T95	1.000e-0	002		0 1800 E	Off	On	Off	
56	HVGO D1160 T95	1 000e-0	002		0 1800 F	Off	On	Off	
57	NET FROM 4	1.000e-	002		0.1510 kbpd	Off	On	Off	
58	NET FROM 11	1.000e-	002		0.1510 kbpd	Off	On	Off	
59	PA_1_Rate(Pa)	1.000e-	002		0.1510 kbpd	Off	On	Off	
60	PA_1_TRet(Pa)	1.000e-	002		1.800 F *	Off	On	Off	
61			SPE	cs					
62	Aspen Technology Inc	Acnen HVC	SYS Vare	ion 8 (27	0.0.8138)			Page 1 of 16	
05	Licensed to: LEGENDS	Aspentits		10110 (27.	.0.0.0100)		* Spe	cified by user.	

1			Case N	ame: 6.0 ATN	MOSPHERIC CRUDE O	IL KRC.HSC	
3	(the aspentech Burli	ENDS ngton, MA	Unit Set	:: NewUs	er31		
4	USA		Date/Tir	me: Sun Oc	t 18 13:22:19 2015		
6							
7 8	Col	umn Sub-Flows	heet:	T-100 @M	lain (continu	led)	
9		Colu	Imn Specific	ation Parameters			
10		I VG	0 numpar	ound Rate(Pa)			
11			- pumpu				
12 13	Fix/Rang: Fixe Spec Type: Elow Rate	d Prim/Alter: e Pumparound:	Primary PA 1	Lower Bnd: Flow Basis:	 Std Ideal Vol	Upper Bnd:	
14 15		LVG	O pumpar	ound_Duty(Pa)			
16	Fix/Rang: Fixe	d Prim/Alter:	Primary	Lower Bnd:		Upper Bnd:	
17	Spec Type: Dut	y Pumparound:					
18 19			LVGC) Rate			
20	Fix/Rang: Fixe	d Prim/Alter:	Primary	Lower Bnd:		Upper Bnd:	
21	Stream: LVG0	D Flow Basis: Ste	d Ideal Vol				
22			HVGC	0 Rate			
24	Fix/Rang: Fixe	d Prim/Alter:	Primary	Lower Bnd:		Upper Bnd:	
25	Stream: HVG	D Flow Basis: Sto	d Ideal Vol				
26			slop w	ax Rate			
27	Fix/Pana: Fixe	d Prim/Alter	Primany	Lower Brd		Upper Brid:	
29	Stream: slop wa	x Flow Basis: Sto	d Ideal Vol	Lower Dild.		opper brid.	
30 31	·	LVG	O pumpar	ound_TRet(Pa)			
32	Fix/Rang: Fixe	d Prim/Alter:	Primary	Lower Bnd:		Upper Bnd:	
33	Spec Type: eturn Temperatur	e Pumparound:					
34 35		HVG	O pump ar	round_Rate(Pa))		
36	Fix/Rang: Fixe	d Prim/Alter:	Primary	Lower Bnd:		Upper Bnd:	
37	Spec Type: Flow Rate	e Pumparound: VGO pur	mp around	Flow Basis:	Std Ideal Vol		
38 39		HVG	O pump a	around_Dt(Pa)			
40	Fix/Rang: Fixe	d Prim/Alter:	Primary	Lower Bnd:		Upper Bnd:	
41	Spec Type: Temperature Dro	p Pumparound: VGO pur	np around				
42		1		PERATURE			
44	Fix/Rang: Fixe	d Prim/Alter:	Primary	Lower Bnd:		Upper Bnd:	
45	Stage: 1_TS-	1					
46 47			LVGO D	1160 T 95			
48	Fix/Rang: Fixe	d Prim/Alter:	Primary	Lower Bnd:		Upper Bnd:	
49	Stage: 4_TS-	1 Type: D	1160 ATM	Flow Basis:	Volume Fraction	Phase:	Liquid
50 51	Cut Point 95.0	0 *					
52			HVGO D	1160 T 95			
53	Fix/Rang: Fixe	d Prim/Alter:	Primary	Lower Bnd:		Upper Bnd:	
54	Stage: 7_TS-	1 Type: D	1160 ATM	Flow Basis:	Volume Fraction	Phase:	Liquid
55 56	Cut Point 95.0	0 *					
57			NET F	ROM 4			
58	Fix/Rang: Fixe	d Prim/Alter:	Primary	Lower Bnd:		Upper Bnd:	
59	Stage: 4_TS-	1 Flow Basis: Ste	d Ideal Vol	Liquid Spec:	Light		
60 61			NET FF	ROM 11			
62	Fix/Rang: Fixe	d Prim/Alter:	Primary	Lower Bnd:		Upper Bnd:	
63	Aspen Technology Inc.	Aspen H	YSYS Ver	sion 8 (27.0.0.81	138)		Page 2 of 16
	Liconcod to: LEGENDS						* Coopified by upor

* Specified by user.

1		LEOEN	5.0		Case Na	ame: 6	0.0 ATMOSPHER	RIC CRUDE OIL	KRC.HSC		
3	(aspented	Burlingto	on, MA		Unit Set	: N	NewUser31				
4	uopointoo	USA			Date/Tir	ne: S	Sun Oct 18 13:22	2:19 2015			
6		• •					<u> </u>				
7 8		Colu	mn Sub	o-Flowsh	eet:	T-100	@Main (continue	ed)		
9				Colum	nn Specifica	ation Parame	eters				
10 11					NET FF	ROM 11					
12	Stage:	8_TS-1	Flow Basis:	Std I	ldeal Vol	Liquid Sp	ec:	Light			
13					PA_1_R	ate(Pa)					
15	Fix/Rang:	Fixed	Prim/Alter:		Primary	Lower Bn	d:		Upper Bnd:		
16	Spec Type:	Flow Rate	Pumparoun	d:	PA_1	Flow Basi	is: S	Std Ideal Vol			
17 18					PA_1_T	Ret(Pa)					
19	Fix/Rang:	Fixed	Prim/Alter:		Primary	Lower Bn	d:	1	Upper Bnd:		
20	Spec Type: eturn	Temperature	Pumparoun	d:	PA_1						
22					PROF	ILES					
23					General P	arameters					
24 25	Sub-Flow Sheet:			I-100	Profile E	Number o stimates	of Stages:				14 *
26				Te	emperature	,	Ne	t Liquid		Net Vapour	
27			1 TC	1	(F)	150.0.*	(Ibn	nole/hr)	7	(Ibmole/hr)	1044
20			2 TS-	1		325.0 *		203	5		1790
30			3_TS-	1		321.4		2442	2		2158
31			4_TS-	1		373.2		920.1			2565
32			5_1S- 6 TS-	1	499.1 3769		3		3053		
34			7_TS-	1		526.7 3846		6		3429	
35			8_TS-	1	562.4 981.9		9		3506		
36 37			9_15- 10 TS-	1	665.4 835.6				3243		
38			11_TS-	1		684.4		571.4	1		3097
39			12_TS-	1		717.2		711.	2863		
40			13_TS- 14 TS-	1		693.0 700.0 *		576.4	1 2		1328
42				<u> </u>	EFFICIE	NCIES					
43					Stago Eff	icioneioe					
44 45	Stages	Ove	erall	Methane	stage En	n-Pentane	e	i-Pentane		n-Butane	
46	1_TS-1		1.000		1.000		1.000		1.000		1.000
47	2_TS-1 3_TS-1		0.5000 *		0.5000		0.5000		0.5000		0.5000
49	4_TS-1		0.5000 *		0.5000		0.5000		0.5000		0.5000
50	5_TS-1		0.5000 *		0.5000		0.5000		0.5000		0.5000
51	6TS-1		0.5000 *		0.5000		0.5000		0.5000		0.5000
52 53	7_TS-1 8_TS-1		0.5000 *		0.5000		0.5000		0.5000		0.5000
54	9_TS-1		0.5000 *		0.5000		0.5000		0.5000		0.5000
55	10TS-1		0.5000 *		0.5000		0.5000		0.5000		0.5000
56	11_TS-1		0.5000 *		0.5000		0.5000		0.5000		0.5000
57 58	12_15-1 13_TS-1		0.3000 *		0,3000		0 3000		0.3000		0.3000
59	14_TS-1		0.3000 *		0.3000		0.3000		0.3000		0.3000
60	Stages	Ove	erall	i-Butane		Propane		Ethane		H2O	
61	1_TS-1		1.000		1.000		1.000		1.000		1.000
63	Aspen Technology Ir	nc.	0.000	Aspen HYS	SYS Vers	sion 8 (27.	0.0.8138)		0.5000	Page	3 of 16
_	37					1					

* Specified by user.

1	\sim		Case Na	ame: 6.0 ATMOSPHER	RIC CRUDE OIL KRC.HSC			
3	(aspentech	Burlington, MA	Unit Set	Unit Set: NewUser31				
4		USA	Date/Tin	Date/Time: Sun Oct 18 13:22:19 2015				
6								
7		Column Sub	o-Flowsheet:	T-100 @Main (continued)			
8			Stage Eff	iciencies				
10	Stages	Overall	i-Butane	Propane	Ethane	H2O		
11	3_TS-1	0.5000 *	0.5000	0.5000	0.5000	0.5000		
12	4_TS-1	0.5000 *	0.5000	0.5000	0.5000	0.5000		
13	5_TS-1	0.5000 *	0.5000	0.5000	0.5000	0.5000		
14	6_TS-1	0.5000 *	0.5000	0.5000	0.5000	0.5000		
15	7_TS-1	0.5000 *	0.5000	0.5000	0.5000	0.5000		
16	8_TS-1	0.5000 *	0.5000	0.5000	0.5000	0.5000		
17	9_TS-1	0.5000 *	0.5000	0.5000	0.5000	0.5000		
18	10_TS-1	0.5000 *	0.5000	0.5000	0.5000	0.5000		
19	11_IS-1	0.5000 ^	0.5000	0.5000	0.5000	0.5000		
20	12_1S-1	1.000	1.000	1.000	1.000	1.000		
21	13_15-1 14_TS 1	0.3000 *	0.3000	0.3000	0.3000	0.3000		
23	Stages	Overall	NBP[0]60*	NBPI0177*	NBPI0193*	NBPI01113*		
24	1 TS-1	1.000	1.000	1.000	1.000	1.000		
25	2 TS-1	0.5000 *	0.5000	0.5000	0.5000	0.5000		
26	3_TS-1	0.5000 *	0.5000	0.5000	0.5000	0.5000		
27	4_TS-1	0.5000 *	0.5000	0.5000	0.5000	0.5000		
28	5_TS-1	0.5000 *	0.5000	0.5000	0.5000	0.5000		
29	6TS-1	0.5000 *	0.5000	0.5000	0.5000	0.5000		
30	7_TS-1	0.5000 *	0.5000	0.5000	0.5000	0.5000		
31	8_TS-1	0.5000 *	0.5000	0.5000	0.5000	0.5000		
32	9_TS-1	0.5000 *	0.5000	0.5000	0.5000	0.5000		
33	10_TS-1	0.5000 *	0.5000	0.5000	0.5000	0.5000		
34	11_TS-1	0.5000 *	0.5000	0.5000	0.5000	0.5000		
35	12_1S-1	1.000	1.000	1.000	1.000	1.000		
27	13_15-1	0.3000 *	0.3000	0.3000	0.3000	0.3000		
38	14_13-1	Overall	NBPI01135*	NBPI01151*	NBPI01170*	NBPI01189*		
39	1 TS-1	1 000	1 000	1 000	1 000	1 000		
40	2 TS-1	0.5000 *	0.5000	0.5000	0.5000	0.5000		
41	3 TS-1	0.5000 *	0.5000	0.5000	0.5000	0.5000		
42	4TS-1	0.5000 *	0.5000	0.5000	0.5000	0.5000		
43	5_TS-1	0.5000 *	0.5000	0.5000	0.5000	0.5000		
44	6_TS-1	0.5000 *	0.5000	0.5000	0.5000	0.5000		
45	7_TS-1	0.5000 *	0.5000	0.5000	0.5000	0.5000		
46	8_TS-1	0.5000 *	0.5000	0.5000	0.5000	0.5000		
47	9_TS-1	0.5000 *	0.5000	0.5000	0.5000	0.5000		
48	10_TS-1	0.5000 *	0.5000	0.5000	0.5000	0.5000		
49	11_IS-1	0.5000 *	0.5000	0.5000	0.5000	0.5000		
50	12_13-1	1.000 ×	1.000	1.000	1.000	1.000		
52	14_TS-1	0.3000	0.3000	0.3000	0.3000	0.3000		
53	Stages	Overall	NBP[0]208*	NBP[0]227*	NBP[0]246*	NBP[0]264*		
54	1_TS-1	1.000	1.000	1.000	1.000	1.000		
55	2_TS-1	0.5000 *	0.5000	0.5000	0.5000	0.5000		
56	3_TS-1	0.5000 *	0.5000	0.5000	0.5000	0.5000		
57	4_TS-1	0.5000 *	0.5000	0.5000	0.5000	0.5000		
58	5_TS-1	0.5000 *	0.5000	0.5000	0.5000	0.5000		
59	6TS-1	0.5000 *	0.5000	0.5000	0.5000	0.5000		
60	7_TS-1	0.5000 *	0.5000	0.5000	0.5000	0.5000		
61	8_TS-1	0.5000 *	0.5000	0.5000	0.5000	0.5000		
62	9_TS-1	0.5000 *	0.5000	0.5000	0.5000	0.5000		
63	Aspen Technology Inc.		Aspen HYSYS Vers	sion 8 (27.0.0.8138)		Page 4 of 16		

Specified by user.

1	\sim		Case	Name: 6.0	ATMOSPHE	RIC CRUDE OIL KRC.HSC	
3	(aspentech	Burlington, MA	Unit	Set: Nev	vUser31		
4	aspenteer	USA	Date	Time: Sun	Oct 18 13:2	2:19 2015	
5							
7		Column Sub	-Flowsheet:	T-100 @	Main	(continued)	
8						·	
9	Stagos	Overall	Stage	Inperior		NPDI01246*	NPPI01264*
11	10 TS-1	0 5000 *	0 5000		0 5000	0 5000	0 5000
12	11 TS-1	0.5000 *	0.5000)	0.5000	0.5000	0.5000
13	12_TS-1	1.000	1.000)	1.000	1.000	1.000
14	13_TS-1	0.3000 *	0.3000)	0.3000	0.3000	0.3000
15	14TS-1	0.3000 *	0.3000)	0.3000	0.3000	0.3000
16	Stages	Overall	NBP[0]283*	NBP[0]302*		NBP[0]321*	NBP[0]340*
17	1_TS-1	1.000	1.000)	1.000	1.000	1.000
18	2_IS-1	0.5000 *	0.5000		0.5000	0.5000	0.5000
20	3_15-1 4_TS-1	0.5000 *	0.5000		0.5000	0.5000	0.5000
20	4_13-1 5_TS-1	0.5000 *	0.5000		0.5000	0.5000	0.5000
22	6 TS-1	0.5000 *	0.5000)	0.5000	0.5000	0.5000
23	7 TS-1	0.5000 *	0.5000)	0.5000	0.5000	0.5000
24	8 TS-1	0.5000 *	0.5000)	0.5000	0.5000	0.5000
25	9_TS-1	0.5000 *	0.5000)	0.5000	0.5000	0.5000
26	10_TS-1	0.5000 *	0.5000)	0.5000	0.5000	0.5000
27	11_TS-1	0.5000 *	0.5000)	0.5000	0.5000	0.5000
28	12_TS-1	1.000	1.000)	1.000	1.000	1.000
29	13_TS-1	0.3000 *	0.3000)	0.3000	0.3000	0.3000
30	14TS-1	0.3000 *	0.3000)	0.3000	0.3000	0.3000
31	Stages	Overall	NBP[0]359*	NBP[0]378*	1 000	NBP[0]397*	NBP[0]416*
32	1_15-1 2_TS 1	1.000	1.000		0.5000	0.5000	0.5000
33	2_13-1 3_TS-1	0.5000	0.5000		0.5000	0.5000	0.5000
35	4 TS-1	0.5000 *	0.5000		0.5000	0.5000	0.5000
36	5 TS-1	0.5000 *	0.5000)	0.5000	0.5000	0.5000
37	6_TS-1	0.5000 *	0.5000)	0.5000	0.5000	0.5000
38	7_TS-1	0.5000 *	0.5000)	0.5000	0.5000	0.5000
39	8TS-1	0.5000 *	0.5000)	0.5000	0.5000	0.5000
40	9TS-1	0.5000 *	0.5000)	0.5000	0.5000	0.5000
41	10_TS-1	0.5000 *	0.5000)	0.5000	0.5000	0.5000
42	11_TS-1	0.5000 *	0.5000)	0.5000	0.5000	0.5000
43	12_IS-1	1.000	1.000		1.000	1.000	1.000
44	13_15-1	0.3000 *	0.3000		0.3000	0.3000	0.3000
45	14_13-1 Stages	Overall	NBPI01443*	NBP[0]484*	0.3000	0.3000 NBPI01521*	0.3000 NBPI01562*
47	1 TS-1	1.000	1 000		1.000	1.000	1,000
48	2_TS-1	0.5000 *	0.5000)	0.5000	0.5000	0.5000
49	3_TS-1	0.5000 *	0.5000)	0.5000	0.5000	0.5000
50	4_TS-1	0.5000 *	0.5000		0.5000	0.5000	0.5000
51	5TS-1	0.5000 *	0.5000)	0.5000	0.5000	0.5000
52	6TS-1	0.5000 *	0.5000)	0.5000	0.5000	0.5000
53	7_TS-1	0.5000 *	0.5000)	0.5000	0.5000	0.5000
54	8_TS-1	0.5000 *	0.5000		0.5000	0.5000	0.5000
55	9_TS-1	0.5000 *	0.5000		0.5000	0.5000	0.5000
56	10_15-1 11_TS 1	0.5000 *	0.5000		0.5000	0.5000	0.5000
58	12 TS-1	1 000	1.000		1 000	1 000	1.000
59	13 TS-1	0.3000 *	0.3000		0.3000	0.3000	0.3000
60	14_TS-1	0.3000 *	0.3000)	0.3000	0.3000	0.3000
61	Stages	Overall	NBP[0]600*	NBP[0]641*		NBP[0]737*	
62	1_TS-1	1.000	1.000		1.000	1.000	
63	Aspen Technology Inc	2.	Aspen HYSYS V	ersion 8 (27.0.0	0.8138)		Page 5 of 16

Licensed to: LEGENDS

* Specified by user.

1	~			Case N	ame: 6.0) ATMOSPHER	RIC CRUDE OIL KRC	HSC	
3	(aspentech	Burlington, MA		Unit Set	Unit Set: NewUser31				
4	acpontoci	USA		Date/Tir	ne: Su	in Oct 18 13:22	::19 2015		
6									
7		Column Sub	o-Fl	owsheet:	Т-100 (②Main(continued)		
9				Stage Ef	iciencies				
10	Stages	Overall	NBP	2[0]600*	NBP[0]641	*	NBP[0]737*		
11	2_TS-1	0.5000 *		0.5000		0.5000	0.9	5000	
12	3_TS-1	0.5000 *		0.5000		0.5000	0.5	5000	
13	4_TS-1	0.5000 *		0.5000		0.5000	0.9	5000	
14	5_TS-1	0.5000 *		0.5000		0.5000	0.8	5000	
15	6_TS-1	0.5000 *		0.5000		0.5000	0.5	5000	
16	7_IS-1	0.5000 *		0.5000		0.5000	0.8	5000	
17	8_IS-1	0.5000 *		0.5000		0.5000	0.9	5000	
10	9_15-1	0.5000		0.5000		0.5000	0.:	5000	
19	10_15-1	0.5000 *		0.5000		0.5000	0.:	-000	
20	10_TE 1	0.5000		0.5000		0.5000	0.:	000	
21	12_15-1	0.2000 *		0.2000		0.2000	I	.000	
22	13_13-1 14_TS 1	0.3000 *		0.3000		0.3000	0.0	2000	
23	14_13-1	0.3000		0.3000		0.3000	0.0	5000	
24				RAT	ING				
26									
27				Tray S	ections				
28	Tray Section			TS-1					
29	Tray Diameter		(ft)	4 921					
30	Weir Height		(ft)	0.1640	*				
31	Weir Length		(ft)	3.937	*				
32	Tray Space		(ft)	1.640					
33	Tray Volume	((ft3)	31.20					
34	Disable Heat Loss Calculat	ions		No					
35	Heat Model			None					
36	Rating Calculations			No					
37	Tray Hold Up		(ft3)	3.120					
38				COND	TIONS				
39 40	Name		um col	umn steam @Main	Vacuum	eed @Main	vacuum residue @l	Main	column overhead @Main
41	Vapour			1.0000	racaann	0.7545 *	0.0	0000	1.0000
42	Temperature	(F)		500.0000 *		760.0000 *	668.1	1414	149.9982
43	Pressure	(psia)		164.6960 *		1.3147	1.1	1989	0.9668
44	Molar Flow	(lbmole/hr)		1110.1798		1675.9674	494.2	2037	1241.1979
45	Mass Flow	(kg/h)		9071.9405 *	3	02078.3263	132506.8	3896	10813.1471
46	Std Ideal Liq Vol Flow	(kbpd)		1.3722		46.9450	19.0	607	1.6567
47	Molar Enthalpy	(Btu/Ibmole)		-1.007e+005		1.928e+005	-3.539e	+005	-1.036e+005
48	Molar Entropy	(Btu/Ibmole-F)		41.32		337.0	4	54.9	48.17
49	Heat Flow	(Btu/hr)		-1.1177e+08		3.2310e+08	-1.74906	e+08	-1.2857e+08
50	Name			LVGO @Main	H	/GO @Main	slop wax @l	Main	ePA_Q-Cooler_1 @Main
51	Vapour			0.0000		0.0000	0.0	0000	
52	Temperature	(F)		373.2302		562.4118	684.3	3738	
53	Pressure	(psia)		1.0204		1.0918	1.1	1453	
54	Molar Flow	(lbmole/hr)		250.7361		769.4745	30.	5350	
55	Mass Flow	(kg/h)		29673.1112	1	31678.1547	6478.9	9642	
56	Std Ideal Liq Vol Flow	(kbpd)		5.0000		20.9999	1.(0000	
57	Molar Enthalpy	(Btu/lbmole)		-2.024e+005	· ·	2.48/e+005	-2.714e	+005	
58	Molar Entropy	(Btu/Ibmole-F)		119.7		240.6	3	47.2	
59	Heat Flow	(Btu/hr)		-5.0/39e+0/	· ·	1.91396+08	-8.28/46	3+06	4.2000e+07 *
61									
67									
62	Aspen Technology Inc.		Δ	spen HYSVS Ver	ion 8 (27.0	0.8138)			Page 6 of 16
00	Licensed to: LEGENDS		A		21.0	.0.0100)			* Specified by user.

1			Case Name:	Case Name: 6.0 ATMOSPHERIC CRUDE OIL KRC.HSC			
2		\$, MA	Unit Set:	NewUser31			
4	USA		Date/Time:	Sun Oct 18 13:22:19 20)15		
5 6							
7	Colum	nn Sub-Flows	sheet: T-100	@Main (cor	ntinued)		
9			PROPERTIES				
10	Name	uum solumn stoom @M	Vacuum Food @Main	useuum residus @Main	um column overhead @		
11	Name Melecular Weight	Luum column steam @M	vacuum Feed @iviain	Vacuum residue @iviain	um column overnead @	LVGO @iviain	
12	Molar Donsity (Ibmolo/ff2)	1 660 002	1 2200 004	9 2040 002	1 4790 004	200.9	
14	Mass Density (Ib/ff2)	0.2001	5 319e 002	0.3940-002	2.840e.003	0.1635	
15	Act Volume Flow (barrel/day)	2 858e±005	5 352e+007	2 517e+004	2.040E-003	5842	
16	Mass Enthalov (Btu/b)	-5589	-485.2	-598.7	-5393	-775.6	
17	Mass Entropy (Btu/lb-E)	2 294	0.8482	0 7696	2 508	0 4588	
18	Heat Capacity (Btu/lbmole-E)	8.879	273.7	407.7	8 540	152.1	
19	Mass Heat Capacity (Btu/lb-E)	0.4928	0.6888	0 6897	0.4446	0.5831	
20	LHV Molar Basis (Std) (Btu/Ibmole)	0.0000					
21	HHV Molar Basis (Std) (Btu/Ibmole)	1.763e+004					
22	HHV Mass Basis (Std) (Btu/lb)	978.7					
23	CO2 Loading						
24	CO2 Apparent Mole Conc. (lbmole/ft3)						
25	CO2 Apparent Wt. Conc. (lbmol/lb)						
26	LHV Mass Basis (Std) (Btu/lb)						
27	Phase Fraction [Vol. Basis]	1.000	0.6510	0.0000	1.000	0.0000	
28	Phase Fraction [Mass Basis]	1.000	0.6339	0.0000	1.000	0.0000	
29	Phase Fraction [Act. Vol. Basis]	1.000	0.9996	0.0000	1.000	0.0000	
30	Mass Exergy (Btu/lb)	393.1	180.6	114.8	44.05	31.75	
31	Partial Pressure of CO2 (psia)	0.0000	0.0000	0.0000	0.0000	0.0000	
32	Cost Based on Flow (Cost/s)	0.0000	0.0000	0.0000	0.0000	0.0000	
33	Act. Gas Flow (ACFM)	1114	2.086e+005		1.399e+005		
34	Avg. Liq. Density (lbmole/ft3)	3.458	0.1526	0.1074	3.203	0.2144	
35	Specific Heat (Btu/lbmole-F)	8.879	273.7	407.7	8.540	152.1	
36	Std. Gas Flow (MMSCFD)	10.09	15.23	4.492	11.28	2.279	
37	Std. Ideal Liq. Mass Density (Ib/ft3)	62.30	60.64	63.51	61.51	55.93	
38	Act. Liq. Flow (USGPM)		639.1	734.0		170.4	
39	Z Factor	0.9632		1.180e-003		6.222e-004	
40	Watson K		11.44	11.50	11.50	11.49	
41	User Property						
42	Partial Pressure of H2S (psia)	0.0000	0.0000	0.0000	0.0000	0.0000	
43	Cp/(Cp - R)	1.288	1.007	1.005	1.303	1.013	
44		1.348	1.006	1.210	1.304	1.128	
45	Heat of Vap. (Btu/Ibmole)	1.564e+004	2.446e+005	2.040e+005	1.932e+004	4.783e+004	
46	Line Mass Deposity (CSt)	3.854		1.632	185.1	0.5908	
41	Liq. Wass Density (Std. Cond) (ID/Tt3)	03.35	09.01	1.000-+004	03.31	50.24	
40	Liquid Fraction	0.0000	4.7840+004	1.9900+004	0.000	1 000	
43	Molar Volume (#2/lbmolo)	60.02	7470	11.000	6760	F 460	
51	Mass Heat of Van (Rtu/lb)	968 2	615.5	245.0	1006	182.2	
52	Phase Fraction [Molar Basis]	1 000.2	0 7545	0 0000	1 000	00.0	
53	Surface Tension (dvne/cm)		16.51	19 41		19 45	
54	Thermal Conductivity (Btu/hr-ft-F)	2,338e-002		5 432e-002	1 206e-002	6 072e-002	
55	Viscosity (cP)	1.847e-002		1.297	8.421e-003	0.4530	
56	Cv (Semi-Ideal) (Btu/Ibmole-F)	6.893	2717	405 7	6.554	150.2	
57	Mass Cv (Semi-Ideal) (Btu/Ib-F)	0.3826	0.6838	0.6864	0.3412	0.5755	
58	Cv (Btu/lbmole-F)	6.589	272.2	336.9	6.549	134.8	
59	Mass Cv (Btu/lb-F)	0.3657	0.6849	0.5700	0.3410	0.5169	
60	Cv (Ent. Method) (Btu/lbmole-F)			368.3		139.3	
61	Mass Cv (Ent. Method) (Btu/lb-F)			0.6230		0.5340	
62	Cp/Cv (Ent. Method)			1.107		1.092	
63	Aspen Technology Inc.	Aspen I	HYSYS Version 8 (2)	7.0.0.8138)		Page 7 of 16	

* Specified by user.

Case Name:	6.0 ATMOSE
Unit Set:	NewUser31

e Name: 6.0 ATMOSPHERIC CRUDE OIL KRC.HSC

LEGENDS
Dualization MA
Burlington, MA
USA
OOA

Date/Time: Sun Oct 18 13:22:19 2015

Column Sub-Flowsheet: T-100 @Main (continued)

9 10	PROPERTIES											
11	Name	cuum column steam @M	Vacuum Feed @Main	vacuum residue @Main	um column overhead @	LVGO @Main						
12	Reid VP at 37.8 C (psia)	0.9380	3.127e-004	5.162e-007 2.833e-002		2.084e-004						
13	True VP at 37.8 C (psia)	0.9380	0.9382	0.3216 0.9673		0.1919						
14	Liq. Vol. Flow - Sum (Std. Con(bba)rrel/day)	1349	4.763e+004	1.990e+004	1610	5062						
15	Viscosity Index		-19.10	9.262	-8.206	-5.145						
16	Name	HVGO @Main	slop wax @Main									
17	Molecular Weight	377.3	467.8									
18	Molar Density (Ibmole/ft3)	0.1241	9.876e-002									
19	Mass Density (lb/ft3)	46.82	46.20									
20	Act. Volume Flow (barrel/day)	2.651e+004	1322									
21	Mass Enthalpy (Btu/lb)	-659.3	-580.2									
22	Mass Entropy (Btu/lb-F)	0.6377	0.7422									
23	Heat Capacity (Btu/lbmole-F)	249.0	329.0									
24	Mass Heat Capacity (Btu/lb-F)	0.6601	0.7033									
25	LHV Molar Basis (Std) (Btu/Ibmole)											
26	HHV Molar Basis (Std) (Btu/Ibmole)											
27	HHV Mass Basis (Std) (Btu/lb)											
28	CO2 Loading											
29	CO2 Apparent Mole Conc. (lbmole/ft3)											
30	CO2 Apparent Wt. Conc. (Ibmol/Ib)											
31	LHV Mass Basis (Std) (Btu/lb)											
32	Phase Fraction [Vol. Basis]	0.0000	0.0000									
33	Phase Fraction [Mass Basis]	0.0000	0.0000									
34	Phase Fraction [Act. Vol. Basis]	0.0000	0.0000									
35	Mass Exergy (Btu/lb)	80.42	121.6									
36	Partial Pressure of CO2 (psia)	0.0000	0.0000									
37	Cost Based on Flow (Cost/s)	0.0000	0.0000									
38	Act. Gas Flow (ACFM)											
39	Avg. Liq. Density (Ibmole/ft3)	0.1566	0.1305									
40	Specific Heat (Btu/Ibmole-F)	249.0	329.0									
41	Std. Gas Flow (MMSCFD)	6.995	0.2776									
42	Act Lig Flow (USCPM)	59.09	01.00									
43	Z Eactor	8.022e.004	9.446e.004									
45	Watson K	11 49	11 50									
46	User Property	11.40	11.50									
40	Partial Pressure of H2S (psia)	0.000	0.000									
48	Cp/(Cp - R)	1 008	1 006									
49	Cp/Cy	1 138	1 161									
50	Heat of Vap. (Btu/lbmole)	6.296e+004	7.923e+004									
51	Kinematic Viscosity (cSt)	0.2372	0.2852									
52	Lig. Mass Density (Std. Cond) (lb/ft3)	58.38	60.34									
53	Liq. Vol. Flow (Std. Cond) (barrel/day)	2.126e+004	1012									
54	Liquid Fraction	1.000	1.000									
55	Molar Volume (ft3/lbmole)	8.059	10.13									
56	Mass Heat of Vap. (Btu/lb)	166.9	169.4									
57	Phase Fraction [Molar Basis]	0.0000	0.0000									
58	Surface Tension (dyne/cm)	17.01	15.89									
59	Thermal Conductivity (Btu/hr-ft-F)	5.558e-002	5.185e-002									
60	Viscosity (cP)	0.1779	0.2111									
61	Cv (Semi-Ideal) (Btu/Ibmole-F)	247.1	327.0									
62	Mass Cv (Semi-Ideal) (Btu/Ib-F)	0.6549	0.6991									
63	Aspen Technology Inc. Aspen HYSYS Version 8 (27.0.0.8138) Page 8 of 16											

Licensed to: LEGENDS

aspentech

1	· · · · · · · · · · · · · · · · · · ·		Case N	Case Name: 6.0 ATMOSPHERIC CRUD		ERIC CRUDE	OIL KRC.HSC	
3	LEGENDS Burlington, MA		Unit Set	t:	NewUser31			
4 5	USA		Date/Tir	me:	Sun Oct 18 13:22:19 2015			
6	0 . I			T 400		(
7 8	Colu	mn Sub-Flowsi	neet:	1-100	@Main	(contin	ued)	
9			PROP	ERTIES				
11	Name	HVGO @Main	slop wax (@Main				
12	Cv (Btu/lbmole-F) 218.9		283.3				
13	Mass Cv (Btu/lb-F	0.5801		0.6055				
14	Cv (Ent. Method) (Btu/Ibmole-F)) 228.8		298.3				
15	Mass Cv (Ent. Method) (Btu/lb-F)	0.6066		0.6377				
16	Cp/Cv (Ent. Method)	1.088		1.103				
17	Reid VP at 37.8 C (psia)) 3.920e-006	2.4	10e-006				
18	True VP at 37.8 C (psia)) 0.1206		0.1370				
19	Liq. Vol. Flow - Sum(Std. Condutarrel/day)) 2.126e+004		1012				
20	Viscosity Index	-37.13		-25.42				
21			SUMI	MARY				
22	Flow Basis:	Liqu	id Volume		т	he composition	ontion is selected	
24	How Bable.	Liqu	Feed Cor	npositio	n .			
25		Vacuum Feed		· ·	vacuum column	steam		
26	Flow Rate (m3/h)	46.9450			1.3722			
27								
28	Methane	0.0000			0.0000			
29	n-Pentane 0.0000			0.0000				
30	i-Pentane	i-Pentane 0.0000		0.0000				
31	n-Butane	n-Butane 0.0000		0.0000				
32	i-Butane 0.0000				0.0000			
33	Propane 0.0000				0.0000			
34	Linane	0.0000			1.0000			
36	H2O NRP[0]60*	0.0032			0.0000			
37	NBP[0]77*	0.0000			0.0000			
38	NBP[0]93*	0.0000			0.0000			
39	NBP[0]113*	0.0000			0.0000			
40	NBP[0]135*	0.0000			0.0000			
41	NBP[0]151*	0.0000			0.0000			
42	NBP[0]170*	0.0001			0.0000			
43	NBP[0]189*	0.0002			0.0000			
44	NBP[0]208*	0.0004			0.0000			
45	NBP[0]227*	0.0011			0.0000			
40	NBP[0]246*	0.0020			0.0000			
48	NBP[0]204	0.0000			0.000			
49	NBP[0]302*	0.0123			0.0000		1	
50	NBP[0]321*	0.0169			0.0000			
51	NBP[0]340*	0.0215			0.0000			
52	NBP[0]359*	0.0279			0.0000			
53	NBP[0]378*	0.0357			0.0000			
54	NBP[0]397*	0.0492			0.0000			
55	NBP[0]416*	0.0654			0.0000			
56	NBP[0]443*	0.1410			0.0000			
57	NBP[0]484*	0.1297			0.0000			
0C	NBP[0]521*	U.1167			0.0000			
60	NBP[0]600*	0.0932			0.0000			
61	NBP[0]641*	0.0032			0.0000		1	
62	NBP[0]737*	0.1243			0.0000		1	
63	Aspen Technology Inc.	Aspen H	YSYS Ver	sion 8 (2	7.0.0.8138)			Page 9 of 16

* Specified by user.
| 1 | | Case N | ame: 6.0 ATMOSPHERIC CRUDE | OIL KRC.HSC | | | | |
|--------|---------------------------|-------------------|------------------------------|----------------------|--|--|--|--|
| 2 | LEGENDS
Burlington, MA | Unit Set | :: NewUser31 | | | | | |
| 4 | USA | Date/Tir | me: Sun Oct 18 13:22:19 2015 | | | | | |
| 6 | | | | | | | | |
| 7
8 | Column Sub | nued) | | | | | | |
| 9 | SUMMARY | | | | | | | |
| 11 | Flow Basis: | Liquid Volume | The compositio | n option is selected | | | | |
| 12 | | Feed | Flows | * | | | | |
| 13 | | Vacuum Fee | d vacuum column stear | n | | | | |
| 14 | Flow Rate (m3/h) | 46.9450 | 1.3722 | | | | | |
| 15 | | | | | | | | |
| 16 | Methane (m3/h) | 0.0000 | 0.0000 | | | | | |
| 17 | n-Pentane (m3/h) | 0.0000 | 0.0000 | | | | | |
| 18 | i-Pentane (m3/h) | 0.0000 | 0.0000 | | | | | |
| 19 | n-Butane (m3/h) | 0.0000 | 0.0000 | | | | | |
| 20 | i-Butane (m3/h) | 0.0000 | 0.0000 | | | | | |
| 21 | Propane (m3/h) | 0.0000 | 0.0000 | | | | | |
| 22 | Ethane (m3/h) | 0.0000 | 0.0000 | | | | | |
| 23 | H2O (m3/h) | 0.1504 | 1.3/22 | | | | | |
| 24 | NBP[0]60" (m3/n) | 0.0000 | 0.0000 | | | | | |
| 25 | NDF[0]77" (m3/n) | 0.0000 | 0.0000 | | | | | |
| 20 | NBP[0]93" (m3/n) | 0.0001 | 0.0000 | | | | | |
| 21 | NRP[0]1125* (m3/h) | 0.0002 | 0.0000 | | | | | |
| 20 | NBP[0]155 (III3/II) | 0.0000 | 0.0000 | | | | | |
| 20 | NBP[0]151 (III3/II) | 0.0015 | 0.0000 | | | | | |
| 21 | NBP[0]1/0 (III3/II) | 0.0033 | 0.0000 | | | | | |
| 37 | NEP[0]200* (m2/b) | 0.0078 | 0.0000 | | | | | |
| 32 | NEP[0]206 (III3/II) | 0.0185 | 0.0000 | | | | | |
| 35 | NRP[0]227 (m3/h) | 0.0499 | 0.0000 | | | | | |
| 35 | NBP[0]264* (m3/h) | 0.2324 | 0.0000 | | | | | |
| 36 | NBP[0]283* (m3/h) | 0.2324 | 0.0000 | | | | | |
| 37 | NBP[0]203 (m3/h) | 0.5770 | 0.0000 | | | | | |
| 38 | NBP[0]302* (m3/h) | 0.7946 | 0.0000 | | | | | |
| 39 | NBP[0]340* (m3/h) | 1 0114 | 0,0000 | | | | | |
| 40 | NBP[0]359* (m3/h) | 1.3089 | 0,0000 | | | | | |
| 41 | NBP[0]378* (m3/h) | 1.6779 | 0,0000 | | | | | |
| 42 | NBP[0]397* (m3/h) | 2.3102 | 0.0000 | | | | | |
| 43 | NBP[0]416* (m3/h) | 3.0718 | 0.0000 | | | | | |
| 44 | NBP[0]443* (m3/h) | 6.6173 | 0.0000 | | | | | |
| 45 | NBP[0]484* (m3/h) | 6.0888 | 0.0000 | | | | | |
| 46 | NBP[0]521* (m3/h) | 5.4786 | 0.0000 | | | | | |
| 47 | NBP[0]562* (m3/h) | 4.3760 | 0.0000 | | | | | |
| 48 | NBP[0]600* (m3/h) | 3.2474 | 0.0000 | | | | | |
| 49 | NBP[0]641* (m3/h) | 3.5900 | 0.0000 | | | | | |
| 50 | NBP[0]737* (m3/h) | 5.8344 | 0.0000 | | | | | |
| 51 | | Prod | lucts | | | | | |
| 52 | Flow Basis: | Liquid Volume | The compositio | n option is selected | | | | |
| 53 | | Product Co | mpositions | | | | | |
| 54 | vacuu | m column overhead | LVGO | HVGO | | | | |
| 55 | Flow Rate (m3/h) | 1.6567 | 5.0000 | 20.9999 | | | | |
| 56 | | | | | | | | |
| 57 | Methane | 0.0000 | 0.0000 | 0.0000 | | | | |
| 58 | n-Pentane | 0.0000 | 0.0000 | 0.0000 | | | | |
| 59 | i-Pentane | 0.0000 | 0.0000 | 0.0000 | | | | |
| 60 | n-Butane | 0.0000 | 0.0000 | 0.0000 | | | | |
| 61 | i-Butane | 0.0000 | 0.0000 | 0.0000 | | | | |
| 62 | Propane | 0.0000 | 0.0000 | 0.0000 | | | | |
| 63 | Aspen Technology Inc. | Aspen HYSYS Vers | sion 8 (27.0.0.8138) | Page 10 of 16 | | | | |

Licensed to: LEGENDS

		Case Name: 6.0 ATMOSPHERIC CRUDE OIL KRC.HSC				
3		LEGENDS Burlington, MA USA		NewUser31		
4 5	USA			ne: Sun Oct 18 13:2		
6	Colu	www.Cush.Elaurah	4		(a a untinuu a al)	
7 8	Colu	mn Sub-Flowsn	eet:	I-100 @iviain	(continuea)	
9			SUMN	IARY		
10 11		vacuum column ovorbo	ad	LVGO		HVGO
12	Ethane	0 0000	au	0.0000		0.0000
13	H2O	0.0000		0.0000		0.0000
14	NBP[0]60*	0.000		0.0000		0.0000
15	NBP[0]77*	0.0000		0.0000		0.0000
16	NBP[0]93*	0.0001		0.0000		0.0000
17	NBP[0]113*	0.0001		0.0000		0.0000
18	NBP[0]135*	0.0003		0.0000		0.0000
19	NBP[0]151*	0.0009		0.0000		0.0000
20	NBP[0]170*	0.0020		0.0000		0.0000
21	NBP[0]189*	0.0046		0.0000		0.0000
22	NBP[0]208*	0.0106		0.0002		0.0000
23	NBP[0]227*	0.0226		0.0025		0.0000
24	NBP[0]246*	0.0230		0.0162		0.0000
25	NBP[0]264*	0.0106		0.0425		0.0001
26	NBP[0]283*	0.0038		0.0729		0.0003
27	NBP[0]302*	0.0016		0.1122		0.0006
28	NBP[0]321*	0.0007		0.1522		0.0015
29	NBP[0]340*	0.0002		0.1826		0.0046
30	NBP[0]359*	0.0001		0.1865		0.0179
31	NBP[0]378*	0.0000		0.1185		0.0516
32	NBP[0]397*	0.0000		0.0577		0.0961
33	NBP[0]416*	0.0000		0.0309		0.1385
34	NBP[0]443*	0.0000		0.0210		0.3077
35	NBP[0]484*	0.0000		0.0037		0.2717
36	NBP[0]521*	0.0000		0.0003		0.1082
37	NBP[0]562*	0.0000		0.0000		0.0011
38	NBP[0]600*	0.0000		0.0000		0.0000
39	NBP[0]041" NPD[0]727*	0.0000		0.0000		0.0000
40		slop wax		vacuum residu	10	0.0000
42	Flow Rate (m3/b)	1 0000		19 6607		
43	How Hate (morn)					
44	Methane	0.0000		0.0000		
45	n-Pentane	0.0000		0.0000		
46	i-Pentane	0.0000		0.0000		
47	n-Butane	0.0000		0.0000		
48	i-Butane	0.0000		0.0000		
49	Propane	0.0000		0.0000		
50	Ethane	0.0000		0.0000		
51	H2O	0.0000		0.0000		
52	NBP[0]60*	0.0000		0.0000		
53	NBP[0]77*	0.0000		0.0000		
54	NBP[0]93*	0.0000		0.0000		
56	NBP[0]113*	0.0000		0.0000		
57	NBP[0]133"	0.0000		0.0000		
58	NBP[0]170*	0.0000		0.000		
59	NBP[0]189*	0.0000		0.0000		
60	NBP[0]208*	0.0000		0.0000		
61	NBPI01227*	0.0000		0.0000		
62	NBP[0]246*	0.0000		0.0000		
63	Aspen Technology Inc.	Aspen HYS	SYS Vers	sion 8 (27.0.0.8138)	1	Page 11 of 16
	Licensed to: LEGENDS			, , , , , , , , , , , , , , , , , , , ,		* Specified by user.

		Case Name: 6.0 ATMOSPHERIC CRUDE OIL KRC.HSC						
3		Unit Set:	NewUser31					
4	USA		Date/Time:	Sun Oct 18 13:22:19 2015				
5 6								
7	Colur	nn Sub-Flowsh	eet: T-100	@Main (contin	ued)			
10			SUMMARY					
11		slop wax		vacuum residue				
12	NBP[0]264*	0.0000		0.0000				
13	NBP[0]283*	0.0001		0.0000				
14	NBP[0]302*	0.0002		0.0000				
15	NBP[0]321*	0.0003		0.0000				
16	NBP[0]340*	0.0005		0.0000				
17	NBP[0]359*	0.0010		0.0000				
18	NBP[0]378*	0.0018		0.0000				
19	NBP[0]397*	0.0038		0.0000				
20	NBP[0]416*	0.0077		0.0001				
21	NBP[0]443*	0.0349		0.0008				
22	NBP[0]484*	0.1405		0.0114				
23	NBP[0]521*	0.5669		0.1341				
24	NBP[0]562*	0.1916		0.2117				
25	NBP[0]600*	0.0393		0.1632				
26	NBP[0]641*	0.0109		0.1820				
27	NBP[0]737*	0.0005		0.2967				
28	Flow Basis:	Liquid	Volume	The composition	option is	selected		
29			Product Flows					
30		vacuum	column overhead	LVGO		HVGO		
31	Flow Rate (m3/h)		1.6567 *	5.0000	*	20.9999 *		
32								
33	Methane (m3/h)		0.0000 *	0.0000	*	0.0000 *		
34	n-Pentane (m3/h)		0.0000 *	0.0000	*	0.0000 *		
35	i-Pentane (m3/h)		0.0000 * 0.0000		*	0.0000 *		
36	n-Butane (m3/h)		0.0000 *	0.0000	•	0.0000 *		
37	i-Butane (m3/h)		0.0000 *	* 0.0000		0.0000 *		
38	Propane (m3/h)		0.0000 *	0.0000	*	0.0000 *		
39	Ethane (m3/h)		0.0000 *	0.0000	*	0.0000 *		
40	H2O (m3/h)		1.5223 *	0.0001	*	0.0001 *		
41	NBP[0]60* (m3/h)		0.0000 *	* 0.0000		0.0000 *		
42	NBP[0]77* (m3/h)		0.0000 *	0.0000	*	0.0000 *		
43	NBP[0]93* (m3/h)		0.0001 *	* 0.0000		0.0000 *		
44	NBP[0]113* (m3/h)		0.0002 *	0.0000	*	0.0000 *		
45	NBP[0]135* (m3/h)		0.0006 * 0.0000		*	0.0000 *		
46	NBP[0]151* (m3/h)		0.0015 *	0.0000	*	0.0000 *		
47	NBP[0]170* (m3/h)		0.0033 *	0.0000	*	0.0000		
48	NBP[0]189* (m3/h)		0.0076 *	0.0001	*	0.0000 *		
49	NBP[0]208* (m3/h)		0.0175 *	0.0009	*	0.0001 *		
50	NBP[0]227* (m3/h)		0.0374 *	0.0123	*	0.0002 *		
51	NBP[0]246* (m3/h)		0.0381 *	0.0810	*	0.0008 *		
52	NBP[0]264* (m3/h)	NBP[0]264* (m3/h) 0.0175 * 0.2127		0.2127	*	0.0022 *		
53	NBP[0]283* (m3/h)		0.0064 *	0.3644	*	0.0053		
54	NBP[0]302* (m3/h)		0.0026 *	0.5612	*	0.0130 *		
55	NBP[0]321* (m3/h)		0.0011 *	0.7610	*	0.0322		
56	NBP[0]340* (m3/h)		0.0004 *	0.9132	*	0.0972 *		
57	NBP[0]359* (m3/h)		0.0001 *	0.9324	*	0.3754		
58	NBP[0]378* (m3/h)		0.0000 *	0.5925	*	1.0835 *		
59	NBP[0]397* (m3/h)		0.0000 *	0.2883	*	2.0179		
60	NBP[0]416* (m3/h)		0.0000 *	0.1545	*	2.9084 *		
61	NBP[0]443* (m3/h)		0.0000 *	0.1052	*	6.4620		
62	NBP[0]484* (m3/h)		0.0000 *	0.0186	*	5.7059		
63	Aspen Technology Inc.	Aspen HY:	SYS Version 8 (27)	.0.0.8138)		Page 12 of 16		

Licensed to: LEGENDS

1		Case Name:	6.0 ATMOSPHERIC CRUDE OIL K	RC.HSC
2	LEGENDS Burlington, MA	Unit Set:	NewUser31	
4 5	USA	Date/Time:	Sun Oct 18 13:22:19 2015	
6				n
7	Column Sub-Fl	owsheet: T-100	@Main (continue	d)
9				
10		SUMMARY		
11		vacuum column overhead	LVGO	HVGO
12	NBP[0]521* (m3/h)	0.0000	* 0.0016	* 2.2731 *
13	NBP[0]562* (m3/h)	0.0000	* 0.0000	* 0.0224 *
14	NBP[0]600* (m3/h)	0.0000	* 0.0000	* 0.0001 *
15	NBP[0]641* (m3/h)	0.0000	* 0.0000	* 0.0000 *
16	NBP[0]737* (m3/h)	0.0000	* 0.0000	* 0.0000 *
17		slop wax	vacuum residue	
18	Flow Rate (m3/h)	1.0000	19.6607	
19	Mathema (m0/lb)		* 0.0000	*
20	n Pontono (m3/h)	0.0000	* 0.0000	*
21	i Pentane (m3/h)	0.0000	* 0.0000	*
22	n-Butane (m3/h)	0.0000	* 0.0000	*
24	i-Butane (m3/b)	0.0000	* 0,0000	*
25	Propane (m3/h)	0.0000	* 0.0000	*
26	Ethane (m3/h)	0.0000	* 0.0000	*
27	H2O (m3/h)	0.0000	* 0.0002	*
28	NBP[0]60* (m3/h)	0.0000	* 0.0000	*
29	NBP[0]77* (m3/h)	0.0000	* 0.0000	*
30	NBP[0]93* (m3/h)	0.0000	* 0.0000	*
31	NBP[0]113* (m3/h)	0.0000	* 0.0000	*
32	NBP[0]135* (m3/h)	0.0000	* 0.0000	*
33	NBP[0]151* (m3/h)	0.0000	* 0.0000	*
34	NBP[0]170* (m3/h)	0.0000	* 0.0000	*
35	NBP[0]189* (m3/h)	0.0000	* 0.0000	*
36	NBP[0]208* (m3/h)	0.0000	* 0.0000	*
37	NBP[0]227* (m3/h)	0.0000	* 0.0000	*
38	NBP[0]246* (m3/h)	0.0000	* 0.0000	*
39	NBP[0]264* (m3/h)	0.0000	0.0000	
40	NBP[0]283^ (m3/n)	0.0001	* 0.0000	*
41	NBF[0]302" (m3/l)	0.0002	* 0.0000	*
42	NBP[0]321 (III3/II)	0.0005	* 0.0000	*
43	NBP[0]359* (m3/h)	0.0005	* 0.0000	*
45	NBP[0]378* (m3/h)	0.0018	* 0,0001	*
46	NBP[0]397* (m3/h)	0.0038	* 0.0003	*
47	NBP[0]416* (m3/h)	0.0077	* 0.0012	*
48	NBP[0]443* (m3/h)	0.0349	* 0.0153	*
49	NBP[0]484* (m3/h)	0.1405	* 0.2238	*
50	NBP[0]521* (m3/h)	0.5669	* 2.6370	*
51	NBP[0]562* (m3/h)	0.1916	* 4.1620	*
52	NBP[0]600* (m3/h)	0.0393	* 3.2080	*
53	NBP[0]641* (m3/h)	0.0109	* 3.5791	*
54	NBP[0]737* (m3/h)	0.0005	* 5.8338	*
55	Flow Basis:	Liquid Volume	The composition option	on is selected
56		Product Recoverie	es	10/00
5/	Flow Pote (m2/h)	acuum column overhead	E 0000	HVGO
50 50	Flow Rate (m3/n)	1000.1	0.000	20.9999
59	Methane (%)		0.0019	0.0041
61	n-Pentane (%)	99.9449	0.0018	0.0263
62	i-Pentane (%)	99.9494	0.0250	0.0248
63	Aspen Technology Inc. A	spen HYSYS Version 8 (2)	7.0.0.8138)	Page 13 of 16
		- (y

Licensed to: LEGENDS

1		LEGENDS Burlington, MA USA		6.0 ATMOSPHERIC CRUDE OIL KRC.HSC				
3	aspentech Burlington, MA			NewUser31				
4 5	USA			Sun Oct 18 13:22:19 2015				
6	Column		oot: T 100	Main (continuo)	4)			
8	Coldinii (Sub-Flowsh			<i></i>			
9 10 SUMMARY								
11		vacuum col	umn overhead	LVGO	HVGO			
12	n-Butane (%)	99.	.9666	0.0152	0.0175			
13	i-Butane (%)	99.	.9708	0.0129	0.0157			
14	Propane (%)	99	.9803	0.0080	0.0113			
15	Ethane (%)	99.	.9882	0.0042	0.0073			
16	H2O (%)	99	.9790	0.0034	0.0065			
17	NBP[0]60* (%)	99.	.9147	0.0458	0.0383			
18	NBP[0]77* (%)	99.	.8877	0.0630	0.0478			
19	NBP[0]93* (%)	99	.8511	0.0872	0.0599			
20	NBP[0]113* (%)	99	.7890	0.1304	0.0785			
21	NBP[0]135* (%)	99.	.6864	0.2054	0.1056			
22	NBP[0]151* (%)	99	.5591	0.3033	0.1344			
23	NBP[0]170* (%)	99.	.2850	0.5312	0.1798			
24	NBP[0]189* (%)	98.	.4838	1.2676	0.2435			
25	NBP[0]208" (%)	94.	0107	5.0529	0.4674			
20	NBP[0]227" (%)	14.	.9127	24.0113	0.4074			
28	NBP[0]240 (%)		5221	91 5157	0.0385			
29	NBP[0]283* (%)	1.	6904	96.8766	1 4132			
30	NBP[0]302* (%)	0.	4504	97 2759	2 2467			
31	NBP[0]321* (%)	0.	1372	95 7734	4 0523			
32	NBP[0]340* (%)	0.0	0407	90.2965	9.6104			
33	NBP[0]359* (%)	0.0	0099	71.2360	28.6784			
34	NBP[0]378* (%)	0.0	0015	35.3097	64.5762			
35	NBP[0]397* (%)	0.0	0001	12.4773	87.3469			
36	NBP[0]416* (%)	0.0	0000	5.0300	94.6811			
37	NBP[0]443* (%)	0.0	0000	1.5891	97.6531			
38	NBP[0]484* (%)	0.0	0.0000 0.3063		93.7118			
39	NBP[0]521* (%)	0.0	0000	0.0289	41.4905			
40	NBP[0]562* (%)	0.0	0000	0.0001	0.5115			
41	NBP[0]600* (%)	0.0	0000	0.0000	0.0033			
42	NBP[0]641* (%)	0.0	0000	0.0000	0.0000			
43	NBP[0]737^ (%)	0.0	0000		0.0000			
44	Flow Pate (m3/b)	1	p wax	19 6607				
46	now Nate (mont)	1.5						
47	Methane (%)	0.0	0002	0.0000				
48	n-Pentane (%)	0.0	0009	0.0000				
49	i-Pentane (%)	0.0	0008	0.0000				
50	n-Butane (%)	0.0	0006	0.0000				
51	i-Butane (%)	0.0	0006	0.0000				
52	Propane (%)	0.0	0004	0.0000				
53	Ethane (%)	0.0	0003	0.0000				
54	H2O (%)	0.0	0003	0.0109				
55	NBP[0]60* (%)	0.0	0012	0.0000				
56	NBP[0]77* (%)	0.0	0014	0.0000				
57	NBP[0]93* (%)	0.0	0017	0.0000				
58	NBP[0]113* (%)	0.0	0027	0.0000				
59	NBF[U]135* (%)	0.0	0027	0.0000				
61	NBP[0]170* (%)	0.0	0032	0.0000				
62	NBP[0]189* (%)	0.0	0052	0.0000				
63	Aspen Technology Inc.	Aspen HY:	SYS Version 8 (2	7.0.0.8138)	Page 14 of 16			
	Licensed to: LEGENDS		2.2.1.0.00000 (2		* Specified by user.			

1						Case	e Name:	6.0 ATI	MOSPHERIC CRUDE OIL	KRC.	ISC	
2	(aspentar	h	LEGEN Burling	NDS Iton, MA		Unit	Set:	NewUs	ser31			
4	aspenter		USA			Date	/Time:	Sun Oc	~+ 18 13-22-19 2015			
5						Date	/ fille.	Sun Oc				
7		C	Colu	ımn Sub	-Flow	sheet:	T-100	@N	lain (continu	ed)		
8								<u> </u>	•			
9 10						SU	MMARY					
11						slop wax			vacuum residue			
12	NBP[(D]208* (9	%)			0.0066			0.0000			
13	NBP[0	0]227* (9	%)			0.0086			0.0000			
14	NBP[(0]246* (9	%)			0.0112			0.0000	_		
15	NBP[0	J]264* (9	%) X)			0.0148			0.0000	_		
17	NBPI)]203 (†]]302* (9	%) %)			0.0198			0.0000			
18	NBPI)]321* (9	%)			0.0370			0.0002			
19	NBP[()]340* (9	%)			0.0519			0.0005			
20	NBP[(0]359* (9	%)			0.0743			0.0013			
21	NBP[(0]378* (9	%)			0.1087			0.0038			
22	NBP[0	0]397* (9	%)			0.1637			0.0120			
23	NBP[(JJ416* (9	%) %)			0.2511			0.0378			
24	NBPI)]443" (†)]484* (9	%) %)			2 3068			3 6752			
26	NBP[0)]521* (9	%)			10.3479			48.1326			
27	NBP[0	0]562* (9	%)			4.3785			95.1100			
28	NBP[(0]600* (9	%)			1.2093			98.7874			
29	29 NBP[0]641* (%)					0.3036			99.6964			
30	NBP[0	0]737* (9	%)			0.0094			99.9906			
31						COLUM	N PROFILE	ES				
33	Reflux Ratio:		1.343	Reboil Ratio):		- The	Flows	Option is Selected	Flow E	Basis:	Liquid Volume
34						Column	Profiles Flo	ows				1
35		Ten	np	Pres	Net	Liq	Net Va	ap	Net Feed		Net Draws	Duty (Dtu/br)
36	1 TS.1	150)	(psia)	30.1	81	(кора)	(KDPU) 22.30		(KDPU) 1.657	(Blu/III)
38	2 TS-1	239	.0	1	36.0	68	10.16	6				
39	3_TS-1	321	.4	1	44.	89	16.03	3				
40	4TS-1	373	.2	1	18.3	35	24.25	5			27.30	
41	5_TS-1	462	.3	1	83.9	92	25.00)	50.00			-6.49e+007 *
42	6_TS-1	499	0.1	1	94.3	36	40.58	3				
43	<u>/_</u> IS-1 8 TG 1	526	./	1	98.	57 80	51.02	2			71.00	
45	9 TS-1	631	.9	1	20.0	03	54.45	5				
46	10TS-1	665	.4	1	26.4	49	54.69	9				
47	11_TS-1	684	.4	1	18.	71	54.15	5			1.000	
48	12_TS-1	717	.2	1	26.	63	47.37	7	46.94			
49	13_TS-1	693	.0	1	22.3	39	8.343	3				
5U	14_15-1	668	0.1	1		Column F	4.099 Profiles End	erav	1.372		19.00	
52				Temperature		Lig	Enthalpy		Vap Enthalpy		Heat	Loss
53				(F)		(B	tu/lbmole)		(Btu/lbmole)		(Bt	u/hr)
54	1_TS-1			150.0		-2.1	135e+005		-1.036e+005		-	
55	2_TS-1			239.0		-1.9	972e+005		-1.142e+005			
56	3_TS-1			321.4		-1.9	911e+005		-1.158e+005			
57	4_1S-1			373.2		-2.0	U24e+005		-1.229e+005			
59	<u> </u>			499.1		-2.4	386e+005		-1.407e+005			
60	7 TS-1			526.7		-2.3	399e+005		-1.470e+005			
61	8_TS-1			562.4		-2.4	487e+005		-1.504e+005		-	
62	9_TS-1			631.9		-2.	634e+005		-1.529e+005			-
63	Aspen Technology I	Inc.			Aspen	HYSYS V	ersion 8 (27	7.0.0.8	138)		P	age 15 of 16

Licensed to: LEGENDS

1	\sim					Case Na	ime: 6.0 AT	MOSPHER	RIC CRUDE OI	L KRC.HSC			
2				Unit Set:	NewUs	ser31							
4	aspente	U	JSA			Date/Time: Sun Oct 18 13:22:19 2015							
6													_
7 8		С	olum	n Sub	o-Flows	sheet:	Г-100 @N	/lain (continu	ied)			
9 10							ROFILES						
11			Т	emperature	e	Liq Ent	thalpy	V	/ap Enthalpy Heat Loss				
12 13	10 TS-1			(F) 665.4		-2 665	e+005	(Btu/Ibmole)		(Btu/r	ir)	
14	11_TS-1			684.4		-2.714	e+005		1.532e+005				
15	12TS-1			717.2		-3.093	e+005	-'	1.450e+005				
16	13_TS-1			693.0		-3.336	e+005	-	1.182e+005				
17	14_IS-1			668.1		-3.5396	e+005	-'	1.083e+005				
19						FEEDS / PI	RODUCTS						
20	Flow Basis:	0			Liq	uid Volume	Otata	E la seconda de		E atha	- I		T
21		St	ream		ype D	uty kJ/h)	State	Flov (m3	vs /h)	Entha (k.l/k	anpy amole)		(C)
23		<pa_1></pa_1>		Ener	gy -t	5.4e+007	*		,		5		
24	1_TS-1	PA_1_R	eturn	Feed		-	Liquid	22.3	3	* -2.5e	+005	*	-10.47
25		vacuum	column ov	verh Draw			Vapour	1.66	3	* -1.0e	+005	*	150.00
26	2_TS-1			_									
28	3_13-1	LVGO		Draw			Liquid	5.00)	* -2.0e	+005	*	373.23
29	4_TS-1	PA_1_D	raw	Draw			Liquid	22.3	3	* -2.0e	+005	*	373.23
30	5 TS-1	<hvgo< th=""><th>pump aro</th><th>und Ener</th><th>gy -6</th><th>6.5e+007</th><th>*</th><th></th><th></th><th></th><th></th><th></th><th></th></hvgo<>	pump aro	und Ener	gy -6	6.5e+007	*						
31	0_101	HVGO p	ump arou	nd_ Feed			Liquid	50.0)	* -2.8e	+005	*	412.41
32	6_1S-1 7_TS-1												
34	<u></u> 10-1	HVGO		Draw		-	Liquid	21.0)	* -2.5e	+005	*	562.41
35	8_TS-1	HVGO p	ump arou	nd_ Draw		Liquid 50.0)	* -2.5e	+005	*	562.41	
36	9_TS-1												
37	10_TS-1	elen wer		Dreu			Linuid	1.00	<u> </u>	* 0.70	1005		604.25
39	12 TS-1	Vacuum	Feed	Feed		-	Mixed	46.9)	* -1.9e	+005	*	759.97
40	13_TS-1												
41	14 TS-1	vacuum	column st	ean Feed		-	Vapour	1.37	7	* -1.0e	+005	*	500.00
42		vacuum	residue	Draw			Liquid	19.7	7	* -3.5e	+005	*	668.14
43						SET	'UP						
45					(Column Flows	neet Topology						
46	Total Theor. Stages:		14 *	Fotal Tray-S	Sections:	1*	Condenser + R	eboiler:	0 *	Pump Arour	nds:		2 *
41 48	Side Strippers:		01	side Rectifi	ers:	U * Sub-Elo	vapour Bypass wsheet	es:	0*				
49	Internal	Feed Stre	am			External Fe	ed Stream			Transfe	r Basis		
50	vacuum	column ste	eam		V	acuum column	steam @Main			P-H F	lash		
51	1 Vacuum Feed				Vacuum Fe	ed @Main		P-H Flash					
52	Internal	I Prod Stre	am			External Pr	od Stream			Transfe	r Basis Tash		
54	vacuum c vacu	um residue	e		vac	vacuum resi	due @Main			P-H F	Flash		
55	55 TopStagePA Q-Cooler 1		То	pStagePA_Q-0	Cooler_1 @Main			None	Req'd				
56		LVGO				LVGO (@Main			P-H F	lash		
57		HVGO				HVGO	@Main			P-H F	Flash		
58	S HVGO pumr	op wax)-Cooler			slop wax	wiviain			P-H F	-iasn Regid		
60	LV(GO_Draw	2 000101							P-H F	-lash		
61	PA_1	1_Q-Coole	r							None	Req'd		
62													
63	Aspen Technology	Inc.			Aspen H	HYSYS Vers	ion 8 (27.0.0.8	138)			Pag	je 16	of 16

Licensed to: LEGENDS

Appendix (C) Aspen Hysys: Cost Report

Aspen Hysys: Cost Report

PROJSUM.ICS (Project Summary)		
ITEM ******	UNITS	VALUE
PROJECT INFORMATION		
Project Name Project Description Analysis Date and Time Simulator Type Simulator Version Simulator Report File Simulator Report Date Economic Analysis Type Version Project Directory Scenario Name Scenario Description		6.0 ATMOSPHERIC CRUDE OIL Sat Oct 17 00:04:44 2015 Aspen HYSYS C:\USERS Thursday, June 11, 2015 IPE 21.0.0 C:\USERS Scenario1
Date Country Units of Measure Currency (Cost) Symbol Currency Conversion Rate System Cost Base Date Project Type Design code Prepared By Plant Location Capacity Time Difference Between System Cost Base Date and Start Date for Engineering User Currency Name User Currency Description User Currency Symbol	USD/U.S. DOLLAR Days	17-oct-15 US I-P U.S. DOLLAR 1 1Q 12 Grass roots/Clear field ASME North America 1.#INF -820 DOLLARS U.S. DOLLARS USD
TIME PERIOD		
Period Description Operating Hours per Period Number of Weeks per Period Number of Periods for Analysis	Hours/period Weeks/period Period	Year 8000 52 20

*******	****	
SCHEDULE		
Start Date for Engineering Duration of EPC Phase Length of Start-up Period Duration of Construction Phase Completion Date for Construction	Weeks Weeks Weeks	01-janv-10 69 20 56 Thursday, May 05, 2011
*******	****	
CAPITAL COSTS PARAMETERS		
Working Capital Percentage	Percent/period	5
*******	****	
OPERATING COSTS PARAMETERS		
Operating Supplies (lump-sum) Laboratory Charges (lump-sum) User Entered Operating Charges (as percentage) Operating Charges (Percent of Operating Labor Costs) Plant Overhead (Percent of Operating Labor and Maintenance Costs) G and A Expenses (Percent of Subtotal Operating Costs)	Cost/period Cost/period Percent/period Percent/period Percent/period	0 0 25 25 50 8
*******	****	
GENERAL INVESTMENT PARAMETERS		
Tax Rate Interest Rate Economic Life of Project Salvage Value (Fraction of Initial Capital Cost) Depreciation Method	Percent/period Percent/period Period Percent	40 20 10 20 Straight Line
ESCALATION		
Project Capital Escalation Products Escalation Raw Material Escalation	Percent/period Percent/period Percent/period	5 5 3,5

Operating and Maintenance Labor Escalation	Percent/period	3
Utilities Escalation	Percent/period	3
***************************************	*****	
PROJECT RESULTS SUMMARY		
Total Project Capital Cost	Cost	7,17E+07
Total Raw Materials Cost	Cost/period	0
Total Products Sales	Cost/period	0
Total Operating Labor and Maintenance Cost	Cost/period	2 66F+06
Total Utilities Cost	Cost/period	2,55E±07
Total Operating Cost	Cost/period	$2,05\pm 07$
Total Operating Cost	Cost/period	3,202+07
Operating Labor Cost	Cost/pariod	600000
Meintenance Cost	Cost/period	2.065.06
	Cost/period	2,002+00
Operating Charges	Cost/period	150000
Plant Overnead	Cost/period	1,33E+06
Subtotal Operating Cost	Cost/period	2,96E+07
G and A Cost		2,37E+06
***************************************	****	
PROJECT CAPITAL SUMMARY		Total Cost
Purchased Equipment	Cost	2,65E+07
Equipment Setting	Cost	681922
Piping	Cost	1,07E+07
Civil	Cost	3,49E+06
Steel	Cost	400759
Instrumentation	Cost	1,57E+06
Electrical	Cost	540796
Insulation	Cost	2.41E+06
Paint	Cost	128280
Other	Cost	1 81 F±07
Subcontracts	Cost	0
C and A Overbanda	Cost	
G anu A Overneaus	Cost	1,012+00
	Cost	2,17 E+00
Escalation	Cost	0
Contingencies	Cost	1,23E+07
		0.005.07
I otal Project Cost	Cost	8,08E+07
Adjusted Total Project Cost	Cost	7,17E+07
***************************************	*****	
ENGINEERING SUMMARY		Cost
Basic Engineering		915800
Detail Engineering		1,86E+06

Material Procurement		578500
Home Office		885500
Total Design, Eng, Procurement Cost		4,24E+06
********	*****	
RAW MATERIALS COSTS AND PRODUCTS SALES		
Raw Materials Cost per Hour	Cost/Hour	0
Total Raw Materials Cost	Cost/Period	0
Producto Salos por Hour	Cost/Hour	0
Total Products Sales	Cost/Period	0
Total Floudets Sales	COSt/Fenou	0
Main Product Name		
Main Product Rate		0
Main Product Unit Cost	1.#INF	0
Main Product Production Basis		
Main Product Rate per Period	1.#INF	0
Main Product Sales	USD/Year	0
By-product Sales	USD/Year	0
***************************************	*****	
OPERATING LABOR AND MAINTENANCE COSTS		
Operating Labor		
Operating Labor		2
Upit Cost	Cost/Operator/	2
Total Operating Labor Cost	H	20
Total Operating Labor Cost	Cost/period	320000
Maintenance		
Cost/8000 Hours		2 06F+06
Total Maintenance Cost		2.06E+06
	Cost/period	_,
Supervision		
Supervisors per Shift		1
Unit Cost		35
	Cost/Supervis	
Total Supervision Cost	Or/H	280000
	Cost/period	
~~~~~*********************************	****	
Electricity		
Rate		127.665
Unit Cost	KW	0.0775
Total Electricity Cost		,
	Cost/KWH	79152,3
Potable Water	Cost/KWH Cost/period	79152,3

Rate Unit Cost	Cost/MMGAL	0
Total Potable Water Cost	Cost/period	0
Fuel		
Rate		
Unit Cost	Cost/MMBTU	7,85
Total Fuel Cost	Cost/period	0
Instrument Air		
Rate		
Unit Cost	Cost/KCF	0
Total Instrument Air Cost	Cost/period	0
Subtotal Cost	Cost/period	79152,3
Process Utilities		
Subtotal Cost	Cost/period	2,54E+07

## Aspen Hysys: Cost Report

PROJECT CAPITAL SUMMARY	Design, Eng, Procurement	Construction Material	Construction Manhours	Construction Manpower	Construction In directs
Purchased Equipment		2.65E+07			
Equipment Setting		,	22279	681922	
Piping		7,31E+06	111734	3,38E+06	
Civil		2,06E+06	58179	1,42E+06	
Steel		345164	1992	55594,5	
Instrumentation		1,37E+06	6620	200994	
Electrical		460543	2781	80253,3	
Insulation		1,23E+06	52531	1,19E+06	
Paint		41818,3	3866	86461,8	
Other	4,24E+06	4,03E+06			9,81E+06
Subcontracts					
G and A Overheads	0	1,30E+06		212811	294321
Contract Fee	220527	892101		445698	616406
Escalation	0	0		0	0
Contingencies	803057	8,19E+06		1,40E+06	1,93E+06
Adjusted Total Project Cost					
*****	*				
ENGINEERING SUMMARY	Manhours				
Basic Engineering	8252				
Detail Engineering	17484				
Home Office	8726				