
 بسم الله الرحمن الرحيم

 SUDAN UNIVERSITY OF SCIENCE AND

 TECHNOLOGY

COLLEGE OF GRADUATE STUDIES

ELECTRONICS ENGINEERING DEPARTMENT

An Algorithm for Adaptive Queue Management

Based on Time-to-live field (TTL)

 TTLعلى عتمادا إخوارزمية أدارة الصف

A thesis submitted in Partial fulfillment of the requirements of the

degree of M.Sc. in Computer Engineering

Prepared By:

Hussam Mohammed Mukhtar

Supervisor:

Dr. Abuagla Babiker Mohammed

July 2015

I

 الأي ه

 بسم الله الرحمن الرحيم

وتوُا العِلْمَ دَرَجَاتٍ﴾
ُ
ُ الهذِينَ آمَنُوا مِنكُمْ وَالهذِينَ أ ﴿يرَْفَعِ اللَّه

[11]سورة المجادلة: الآية

II

III

Acknowledgement

I would like to thank my university (Sudan University of Science and

Technology) and my (College of Graduate Studies Electronics Engineering

Department). And my teachers for inspiring me this project.

Especial thanks to my supervisor Dr. Abuagla Babiker Mohammed; whose

sponsorship and guidance are considered as a very precious asset to make this

effort (An Algorithm for adaptive queue management Based on time-to-live

field T.T.L) possible.

My greatest thanks to my wife who followed up this project since the

beginning up to the end.

My thanks also extend to engineer Thowban who had personally provided the

equipment required in this project. And thanks to engineer Osama who help

me in the idea of this project.

Also my thanks to my parents who for their continuous support. At last, thanks

to Mohammed Kamal for his help.

IV

Abstract

Each Active Queue Management Algorithms aims to improve the

performance of routers and thus improve the performance of the network in

general. The goals of these Algorithms are avoiding congestion, reduce

delays, and decrease (Bufferbload) and preservation of the channel capacity.

So all attempts of Active Queue Management Algorithms aimed to drop the

packets appropriately and determine the length of the queue properly as much

as possible to achieve the desired goal of improving network performance.

this project has invented a new algorithm called the (An Algorithm for

adaptive queue management based on time-to-live field (TTL) in this

algorithm the queue are arranged according to the (TTL) value, from the

smallest to the biggest, so that the smaller value served first. This algorithm

does not depend on the parameters used in most Active Queue Management

Algorithms. But it relies on the packets, which spend the longest distance and

the (round-trip time RTT) is barely to be completed, will be served first in

order to reduce retransmitting the packet many time. Therefore retransmission

of the packets many time lead to congestion. It is found that this algorithm

reduces congestion, delays and preserves the channel capacity better than (IP

QoS Priority Queuing) Algorithms.

V

 المستخلص

 وبالتالى تحسين الشبكه بشكل عام، ،الموجهاتخوارزميات ادارة الصف تهدف الى تحسين اداء كل

والمحافظه (Bufferbloadتجنب الازدحام وتقليل التاخير و تقليل تضخم الصفوف)مهمتها أن اذ

سقوط الرسائل بشكل خوارزميات أدارة الصف تهدف الى كل محاولات وعليه فأن على سعة القناة.

 مناسب وتحديد طول صف مناسب قدر المستطاع لتحقيق الهدف المنشود وهو تحسين أداء الشبكة.

-time-toجديدة سميت بـ)خوارزمية أدارة الصف أعتمادا على خوارزمية اقترعتفى هذا المشروع

live field TTL) وفق قيمةالصف فى هذه الخوارزمية يتم ترتيب (TTL) الأصغر الى الأكبر، من

مة فى أغلب المعاملات المستخدهذه الخوارزمية لم تعتمد على بحيث القيمة الأصغر تخدم اولا.

وصول بل أعتمدت على ان الرسالة التى قطعت أطول مسافة ويكاد زمن ،خوارزميات أدارة الصف

 ،الرسالة مرة اخرى دة أرسالأعاوذلك لتقليل ، تخدم اولا. ينتهىان (RTT)بها عودة الأقرارالرسالة و

حام هذه الخوارزمية تقلل الازد ووجد ان الأزدحام. حجماعادة الارسال اكثر من مرة يزيد وعليه فأن

 .(IP QoS Priority Queuing) خوارزميةاكثرمن و تحافظ على سعة القناةو التاخير

VI

TABLE OF CONTENTS

CHAPTER TITLE PAGE

 Initiation I

Dedication II

Acknowledgement III

Abstract IV

Abstract in Arabic V

Table of contents VI

List of table VII

List of figures IX

List of abbreviations X

1 Introduction 1

1.1 Preface 1

1.2 Problem statement 2

1.3 Proposed solution 2

1.4 Objectives 2

1.5 Scope 2

1.6 Methodology 3

1.7 Research Outlines 3

VII

2 Literature Review 5

2.1 Background 5

 2.1.1 Understand Congestion 5

 2.1.2 Techniques to Avoid Congestion 6

 2.1.3 TCP Congestion Control 6

 2.1.4 Understanding Queues 8

2.2 Related Work 9

 2.2.1 Effective queue management approaches

 leads to congestion reduction 9

 2.2.2 Queue management: the effect of Queue

 length (Buffer size) on congestion reduction 9

 2.2.3 Queue management: the effect of packet

 dropping in congestion reduction 11

 2.2.4 Controlled Delay Management (CoDel) 13

 2.2.5 TCP Congestion Control 16

 2.2.6 Queue management: the effect of TTL

 In congestion reduction 18

3 Methodology 23

3.1 (priority Queuing based on TTL value)

 (PQT) algorithm 23

 3.1.1 Subroutine of PQT algorithm 24

 3.1.2 Time-To-Live Scheduler 25

 3.1.3 Flow Chart 26

VIII

3.2 Network Simulation of PQT 28

 3.2.1 Overview 28

 3.2.2 Network Simulation block diagram 28

 3.2.3 The hardware of network 29

 3.2.4 The software of network 32

 3.2.5 Network Inventory Summary 36

4 Results and discussion 38

4.1 Results of priority Queuing based on TTL

 value algorithm 38

 4.1.2 Evaluation of PQT through various traffic loads 40

4.2 Router A <-> Router B: point-to-point Statistics 41

 4.2.1 Queuing delay in router A <-> router B (sec) 41

 4.2.2 Throughput (-- >) (packet / sec) 45

4.3 Router A Statistics 47

 4.3.1 IP Processing Delay (sec) 47

 4.3.2 CPU Utilization in Router A 48

 4.3.3 Switch A <-> Router A – in point-to-point

 queuing delay (sec) --> 50

5 Conclusion and Recommendations 54

5.1 Conclusion 54

5.2 Recommendations 55

REFERENCES 56

Appendix A 59 – 60

X

List of Tables

TABLE NO. TITLE PAGE

3.1 Network Inventory Summary 36

XI

List of Figures

FIGURE NO. TITLE PAGE

2.1 Four hosts connected by two switches 5

3.1 Subroutine of PQT algorithm 24

3.2 TTL scheduler 25

3.3 Flow Chart 27

3.4 Block diagram of network 28

3.5 Connected routers in logical network 30

3.6 Links used in network 31

3.7 Application configuration 33

3.8 QoS configuration 34

4.1 Simulation: Network infrastructure Design,

 Configuration and PQT implementation 39

4.2 Queuing delay from router A to router B 41

4.3 The zooming Queuing delay from router A to router B 42

4.4 Queuing delay from router B to router A 43

XII

4.5 The zooming Queuing delay from router B to router A 44

4.6 The average Throughput (-- >) (packet / sec) 45

4.7 The zooming average in throughput (packets/sec) 46

4.8 The average in IP Processing Delay (sec) 47

4.9 CPU Utilization of Router A (overlaid) 48

4.10 CPU Utilization of Router A (stacked) 49

4.11 Switch A <-> Router A–in point-to-point-queuing

 delay (sec) (-->) 50

4.12 Switch A <-> Router A–in point-to-point-queuing

 delay (sec) (<--) 51

4.13 Switch A <-> Router A in point-to-point

queuing delay (sec) (<--) (-- >) 52

XIII

LIST OF SYMBOLS

β - A constant timeout value weighting factor.

α - A constant new weighted average factor.

XIV

LIST OF ABBREVIATIONS

ACK : Acknowledgement

AQM : Active Queue Management

ARED : Adaptive or Active Random Early Detection

BPDU : Bridge Protocol Data Units

CoDel : Controlled Delay Management

CPU : Central Process Unit

DRED : Dynamic Random Early Detection

FIFO : First In First Out

Gbps : Giga bit per second

HTTP : Hypertext Transfer Protocol

IP : Internet Protocol

LAN : Local Area Network

MTU : Maximum Transmission Unit

OSPF : Open Shortest Path First

PQT : Priority Queuing based on TTL value

QoS : Quality of Service

RED : Random Early Detection

RIP : Routing Information Protocol

RTT : Round Trip Time

Sec : Second

SRED : Stabilized Random Early Drop

XV

TCP : Transmission Control Protocol

TOS : Type of Service

TTL : Time To Live

UDP : User Datagram Protocol

WFQ : weighted Fair Queuing

Introduction

1

Chapter

CHAPTER ONE INTRODUCATION

 1 INTRODUCATION

Introduction

1.1 Preface:

A number of active queue management algorithms for IP (Internet Protocol)

router, have been proposed in the past few years [8]. The essential goal of

most of them is to avoid congestion, reducing delay and keeping the link

utilization high. To achieve the above mentioned objectives they play around

several parameters, such as queue size, average queue size, average queue

length and dropping probability.

Although a lot of work has been done with respect to the queue management

(queue management algorithm), the time to live (TTL) value has an

indication to the number of hops that the packet has taken.

Thus, in practice, the time to live acts as a (hop limit) rather than an estimate

of delay. Each router only decrements the value by 1.One of the most

important and complex ideas in TCP (Transmission Control Protocol) is

embedded in the way it handles timeout and retransmission. Retransmission

is resending of packets which have been either damaged or lost.

Retransmission is one of the basic mechanisms used by TCP protocols. To

handle packet loss, transport protocols use positive acknowledgement with

retransmission.

If congestion occurs, the ratio of packet dropping will be increased

accordingly, the retransmission will be more resulting in lower throughput.

Moreover, regarding the dropping and overall bandwidth consumption,

dropping the packet with less TTL may lead to bandwidth waste (since those

packet with less TTL value have travelled very long than those with large

http://en.wikipedia.org/wiki/Packet_(information_technology)
http://en.wikipedia.org/wiki/Network_protocol

CHAPTER ONE INTRODUCATION

 2 INTRODUCATION

value of TTL). Thus there is an urgent need to consider the TTL value when

doing queuing management.

1.2 Problem statement:

Inefficient queue management has a direct effect on retransmission due to

packet dropping. When congestion occurs in a router, no way to skip packet

dropping, but the question to be raised is to Which packet that must be

dropped, and what are the suitable criteria for dropping a specific packet

which can lead to retransmission reduction.

1.3 Proposed solution:

Propose a new algorithm for retransmission reduction using TTL. In another

way it means tore-order the router queue using time-to-live (TTL) as one of

the metrics for prioritizing the packet dropping. The algorithm should be

able to avoid congestion and reduce the delay causes by retransmission and

acknowledgments.

1.4 Objectives:

The main objectives of this research are to:

 Propose and simulate new queue management algorithm using TTL as

one of the essential metrics.

 Comparing the proposed algorithm with the related work

 Avoiding the congestion and reducing delay

The outcome of the above mentioned objectives is to reduce the bufferbload,

packet dropping and Preserves the channel capacity

1.5 Scope:

The scope of this research is to cover the area of backbone router, queue

core router, retransmission, and internet network area should be covered.

CHAPTER ONE INTRODUCATION

 3 INTRODUCATION

1.6 Methodology:

The research had been done in multi-stages to complete the design of

(priority Queuing based on TTL value) PQT algorithm and run it.

Stage one: design the controlling retransmission using TTL. (PQT

algorithm) by flowing parameters:

Determine the size queue according to the literature review

Stage two: re-order the packets in router queue using time-to-live (TTL).

Stage three: implement and test of the PQT algorithm in simulation system.

Stage four: comparing the proposed algorithm with standard queuing

algorithms via the Op-net simulation and plot the comparison results.

1.7 Research Outlines:

Chapter2: Explores the literature review which consists of two major parts

theoretical background which includes oversizing router buffers, packet loss,

packet drop, transport protocols, time-to-live (TTL) positive

acknowledgement with retransmission and timeout… etc. more over the

second part elaborates the relevant related work.

Chapter3: Shows the network design including Algorithm (priority

Queuing based on TTL value) (PQT) and explain in details all components

and their parameters and how does it work.

Chapter4: Explain the implementation; furthermore, it also includes the

simulation in addition to the results and discussion. Finally, it also compares

the results of the proposed algorithm with other scenario of similar work.

Chapter5: Comprises the conclusion and the recommendations for the

future researchers.

Literature Review

2

Chapter

CHAPTER TWO LITERATURE REVIEW

 5 LITERATURE REVIEW

Literature Review

2.1 Background:

 This chapter discuses concept of understand congestion, techniques to

avoid Congestion, transmission control protocol (TCP) congestion control,

understanding queues, queuing delay and related Work.

2.1.1 Understand Congestion:

To understand how easily congestion can occur, consider four hosts

connected by two switches as Figure (2-1) illustrates.

Figure (2-1) Four hosts connected by two switches.

Assume each connection in the figure operates at 1 Giga bit per seconds

(Gbps), and consider what happens if both computers attached to switch 1

attempt to send data to a computer attached to switch 2. Switch 1 receives

data at an aggregate rate of 2 Gbps, but can only forward 1 Gbps to switch 2.

The situation is known as congestion. Even if a switch temporarily stores

packets in memory, congestion results in increased delay. If congestion

persists, the switch will run out of memory and begin discarding packets.

Although retransmission can be used to recover lost packets, retransmission

sends more packets into the network.

CHAPTER TWO LITERATURE REVIEW

 6 LITERATURE REVIEW

Thus, if the situation persists, an entire network can become unusable; the

condition is known as congestion collapse. In the Internet, congestion

usually occurs in routers. Transport protocols attempt to avoid congestion

collapse by monitoring the network and reacting quickly once congestion

starts.

2.1.2 Techniques to Avoid Congestion:

There are two basic approaches:

1- Arrange for intermediate systems (i.e., routers) to inform a sender

when congestion occurs

2- Use increased delay or packet loss as an estimate of congestion

The former scheme is implemented either by having routers send a special

message to the source of packets when congestion occurs or by having

routers set a bit in the header of each packet that experiences delay caused

by congestion. When the second approach is used, the computer that

receives the packet includes information in the acknowledgement (ACK) to

inform the original sender. Using delay and loss to estimate congestion is

reasonable in the Internet because:

Modern network hardware works well; most delay and loss results from

congestion, not hardware failure. The appropriate response to congestion

consists of reducing the rate at which packets are being transmitted. Sliding

window protocols can achieve the effect of reducing the rate by temporarily

reducing the window size.

2.1.3 TCP Congestion Control:

One of the most interesting aspects of TCP is a mechanism for congestion

control. Recall that in the Internet, delay or packet loss is more likely to be

caused by congestion than a hardware failure, and that retransmission can

CHAPTER TWO LITERATURE REVIEW

 7 LITERATURE REVIEW

exacerbate the problem of congestion by injecting additional copies of a

packet. To avoid congestion collapse, TCP uses changes in delay as a

measure of congestion, and responds to congestion by reducing the rate at

which it retransmits data. Although we think of reducing the rate of

transmission, TCP does not compute a data rate. Instead, TCP bases

transmission on buffer size. That is, the receiver advertises a window size,

and the sender can transmit data to fill the receiver’s window before an ACK

is received. To control the data rate, TCP imposes a restriction on the

window size by temporarily reducing the window size, the sending TCP

effectively reduces the data rate. The important concept is:

Conceptually, a transport protocol should reduce the rate of transmission

when congestion occurs. Because it uses a variable-size window, TCP can

achieve a reduction in data rate by temporarily reducing the window size. In

the extreme case where loss occurs, TCP temporarily reduces the window to

one-half of its current value. TCP uses a special congestion control

mechanism when starting a new connection or when a message is lost.

Instead of transmitting enough data to fill the receiver’s buffer (i.e., the

receiver’s window size), TCP begins by sending a single message containing

data. If an acknowledgement arrives without additional loss, TCP doubles

the amount of data being sent and sends two additional messages. If both

acknowledgements arrive, TCP sends four messages, and so on. The

exponential increase continues until TCP is sending half of the receiver’s

advertised window. When one-half of the original window size is reached,

TCP slows the rate of increase, and increases the window size linearly as

long as congestion does not occur. The approach is known as slow start.

TCP’s congestion control mechanisms respond well to increases in traffic.

CHAPTER TWO LITERATURE REVIEW

 8 LITERATURE REVIEW

By backing off quickly, TCP is able to alleviate congestion. In essence, TCP

avoids adding retransmissions when the Internet becomes congested. More

important, if all TCPs follow the standard, the congestion control scheme

means that all senders back off when congestion occurs and congestion

collapse is avoided. [6]

2.1.4 Understanding Queues:

Developing effective active queue management has been hampered by

misconceptions about the cause and meaning of queues. Network buffers

exist to absorb the packet bursts that occur naturally in statistically

multiplexed networks. Queues occur in the buffers as a result of short-term

mismatches in traffic arrival and departure rates that arise from upstream

resource contention, transport conversation startup transients, and/or changes

in the number of conversations sharing a link. Unfortunately, other network

behavior can cause buffers to fill, with effects that are not nearly as benign.

With the wrong conceptual model for queues, Active Queue Managements

(AQM)s have limited operation- al range, require a lot of configuration

tweaking, and frequently impair rather than improve performance. [2]

Queuing Delay: the store-and-forward paradigm used in packet switching

means that a device such as a router collects the bits of a packet, places them

in memory, chooses a next hop, and then waits until the packet can be sent

before beginning transmission. Such delays are known as queuing delays. In

the simplest case, a packet is placed in a first in first out output (FIFO)

queue, and the packet only needs to wait until packets that arrived earlier are

sent; more complex systems implement a selection algorithm that gives

priority to some packets. Queuing delays are variable the size of a queue

depends entirely on the amount of traffic that has arrived recently.

CHAPTER TWO LITERATURE REVIEW

 9 LITERATURE REVIEW

Queuing delays account for most delays in the Internet. When queuing

delays become large, we say that the network is congested. [6]

2.2 Related Work:

2.2.1 Effective queue management approaches leads to congestion

reduction:

The requirement to management the queue by increasing or adaptive the

length of the queue on routers is very important to reduce the congestion

occur in routers there for reduce the congestion for all network.

2.2.2 Queue management: the effect of Queue length (Buffer size) on

congestion reduction:

All Internet routers contain buffers to hold packets during times of

congestion. Today, the size of the buffers is determined by the dynamics of

TCP’s congestion control algorithm. In particular, the goal is to make sure

that when a link is congested, it is busy 100% of the time; which is

equivalent to making sure its buffer never goes empty. That is mean

determined the size of buffer is very important today, because it has more

effect to reduced congestion.

C. Villamizar and C. Song Report the ((Round-Trip Time) RTT × C) rule

equation ----- (1), in which the authors’ measure link utilization of a 40 Mb/s

network with 1, 4 and 8 long-lived TCP flows for different buffer sizes.

They found that for FIFO dropping discipline and very large maximum

advertised TCP congestion windows it is necessary to have buffers of

(RTT×C) to guarantee full link utilization. They concluded that because of

dynamics of TCP’s congestion control algorithms a router needs an amount

of buffering equal to the average round trip time of a flow that passes

CHAPTER TWO LITERATURE REVIEW

 10 LITERATURE REVIEW

through the router, multiplied by the capacity of the router’s network

interfaces.

This is the well-known rule-of-thumb (B = RTT ×C) rule. Where B is length

of the queue, RTT is the average round-trip time of a flow passing across the

link and return Ack, and C is the data rate of the link (channel capacity).[1]

The rule-of-thumb (B = RTT ×C) is lacks efficiency because small number

of TCP flows and the length of queue directly proportional with channel

capacity that causes long queues and increase the delay of queues.

G. Appenzeller et al prove that the rule-of-thumb (B = RTT ×C) is now

outdated and incorrect for backbone routers today. This is because of the

large number of flows (TCP connections) multiplexed together on a single

backbone link. Then the rule-of-thumb is correct only if the number of flow

is few. They believe that significantly smaller buffers could be used in

backbone routers (e.g. by removing 99% of the buffers) without a loss in

network utilization.

The goal of their paper is to determine the size of the buffer so as to

maximize throughput of a bottleneck link. The basic idea is that when a

router has packets buffered, its outgoing link is always busy. If the outgoing

link is a bottleneck, then we want to keep it busy as much of the time as

possible, and so we just need to make sure the buffer never under flows and

goes empty. They showed that a link with (n) flows requires no more than

B = (RTT×C)/√n ------ equation (2), for long-lived or short-lived TCP flows.

Here (n) is the number of flows at link. [2]

The rule of sizing router buffers B = (RTT×C)/√n is convincing for my

objectives. In this research because they prove that we can use smaller buffer

for large number of flows with full link utilization. Subsequently this will

CHAPTER TWO LITERATURE REVIEW

 11 LITERATURE REVIEW

cause a little delay for any packet. In this research the same equation is used

but, the calculated (n) is being differently tacked.

O. A. Bashir et al developed a new algorithm called the automatic

calculation of the length of the queues (auto), the main work for this

algorithm is to modify the length of the queue B automatically, according to

the equation B = (RTT×C)/√n.

Where that C is the channel capacity and RTT is the time to send a packet

and return Ack, and n is the number of connections probably estimated and

not retain any information relating to connections.

The idea of new algorithm is to estimate the length of the accurate queue and

estimates the number of connections in the router probably. Estimates the

number of connection probably taken from SRED (Stabilized Random Early

Drop) algorithm. [3]

The auto algorithm used the B = (RTT×C)/√n and depend on parameters as

follow: C= fixed, RRT=100ms (from codel: Controlled Delay Management)

and n= number of connections probably estimated. In my research I take the

idea of (n) and apply it in another way. They found that the performance of

the auto algorithm is better with respect to congestion that causes Buffer

bloat and reduced the delay in routers in addition to the preservation of the

channel capacity.

2.2.3 Queue management: the effect of packet dropping in congestion

reduction:

Dropping is one of the common methods using to reduce congestion, and

there are many manners and techniques can perform the dropping. And these

some of them.

CHAPTER TWO LITERATURE REVIEW

 12 LITERATURE REVIEW

T. J. Ott et al described a mechanism called “SRED” (Stabilized Random

Early Drop). Like RED (Random Early Detection) SRED pre-emptively

discards packets with a load-dependent probability when a buffer in a router

in the Internet or an Intranet seems congested.

SRED has an additional feature that over a wide range of load levels helps it

stabilize its buffer occupation at a level independent of the number of active

connections.

The main idea is to compare, whenever a packet arrives at some buffer, the

arriving packet with a randomly chosen packet that recently preceded it into

the buffer. When the two packets are “of the same flow” we declare a “hit”.

The sequence of hits is used in two ways, and with two different objectives

in mind:

 To estimate the number of active flows

 To find candidates for “misbehaving flow”

A simple way of comparing an arriving packet with a recent other packet is

to compare it with a packet still in the buffer. This makes it impossible to

compare packets more than one buffer drain time apart. To give the system

longer memory, we augment the information in the buffer with a “Zombie

List”. We can think of this as a list of M recently seen flows, with the

following extra information for each flow in the list: a “Count” and a “time

stamp”. Note that this zombie list or flow cache is small and maintaining this

list is not the same as maintaining per-flow state. We call the flows in the

zombie list “zombies”.

The zombie list starts out empty. As packets arrive, as long as the list is not

full, for every arriving packet the packet flow identifier (source address,

CHAPTER TWO LITERATURE REVIEW

 13 LITERATURE REVIEW

destination address, etc.) is added to the list, the Count of that zombie is set

to zero, and its timestamp is set to the arrival time of the packet. Once the

zombie list is full it works as follows: Whenever a packet arrives, it is

compared with a randomly chosen zombie in the zombie list.

(1: Hit) If the arriving packet’s flow matches the zombie we declare a “hit”.

In that case, the Count of the zombie is increased by one, and the timestamp

is reset to the arrival time of the packet in the buffer. (2: No Hit) If the two

are not of the same flow, we declare a (no hit). In that case, with probability

p the flow identifier of the packet is overwritten over the zombie chosen for

comparison. The Count of the zombie is set to 0, and the timestamp is set to

the arrival time at the buffer. With probability 1p there is no change to the

zombie list. [4]

The idea of SRED algorithm is create zombie list, the arriving packet with a

recent other packet is zombie list to compare it with a packet still in the

buffer. Once the zombie list is full it works as follows: Whenever a Packet

arrives, it is compared with a randomly chosen zombie in the zombie list. In

the research produced different list from TTL.

2.2.4 Controlled Delay Management (CoDel):

K. Nichols and V. Jacobson innovate a new algorithm called CoDel

(Controlled Delay Management) has three major innovations that distinguish

it from prior AQMs. First, CoDel’s algorithm is not based on queue size,

queue-size averages, queue-size thresholds, rate measurements, link

utilization, and drop rate or queue occupancy time. They used the local

minimum queue as a more accurate and robust measure of standing queue.

Then we observed that it is sufficient to keep a single-state variable of how

long the minimum has been above or below the target value for standing

CHAPTER TWO LITERATURE REVIEW

 14 LITERATURE REVIEW

queue delay rather than keeping a window of values to compute the

minimum. Finally, rather than measuring queue size in bytes or packets, they

used the packet-sojourn time through the queue. Use of the actual delay

experienced by each packet is independent of link rate, gives superior

performance to use of buffer size, and is directly related to the user-visible

performance. Using the minimum value has some important implications.

The minimum packet sojourn can be decreased only when a packet is

dequeued, which means all the work of CoDel can take place when packets

are dequeued for transmission and that no locks are needed in the

implementation. The minimum is the only statistic with this property. The

only addition to packet arrival is that a timestamp of packet arrival time is

created.

If the buffer is full when a packet arrives, then the packet can be dropped as

usual. CoDel assumes a standing queue of target is acceptable and that it is

unacceptable to drop packets when there are less than one MTU’s

(maximum transmission unit’s) worth of bytes in the buffer. CoDel identifies

the persistent delay by tracking the (local) minimum queue delay packets

experience. To ensure the minimum value does not become stale, it has to

have been experienced within the most recent interval. When the queue

delay has exceeded target for at least interval, a packet is dropped and a

control law sets the next drop time. The next drop time is decreased in

inverse proportion to the square root of the number of drops since the

dropping state was entered, using the well-known relationship of drop rate to

throughput to get a linear change in throughput.

When the queue delay goes below target, the controller stops dropping. No

drops are carried out if the buffer contains fewer than an MTU’s worth of

CHAPTER TWO LITERATURE REVIEW

 15 LITERATURE REVIEW

bytes. Additional logic prevents reentering the dropping state too soon after

exiting it and resumes the dropping state at a recent control level, if one

exists. Target and interval are constants with straightforward interpretations:

acceptable standing queue delay and a time on the order of a worst-case RTT

of connections through the bottleneck. We experimented to determine values

for target and interval that give a consistently high utilization with a

controlled delay across a range of bandwidths, RTTs, and traffic loads.

Below a target of 5ms, utilization suffers for some conditions and traffic

loads; above 5ms there is very little or no improvement in utilization.

Interval is loosely related to RTT since it is chosen to give endpoints time to

react without being so long that response times suffer.

A setting of 100ms works well across a range of RTTs from 10ms to 1

second (excellent performance is achieved in the range from 10ms to

300ms). CoDel’s efficient implementation and lack of configuration are

unique features that make it suitable for managing modern packet buffers.

The three innovations using minimum rather than average as the queue

measure, simplified single-state variable tracking of minimum, and use of

queue-sojourn time lead directly to these unique features [5].

The CoDel algorithm is new Innovations in controlling queue delay has

major difference from active queue management (AQM) (e.g.: RED, SRED,

ARED, DRED, BLUE, FRED) are congestion control algorithm. Codel is

delay control algorithm is depend on the equation of size queue (B= nominal

RRT × C) ----- equation (3). Where nominal RRT = 100ms. Used in the

research. Codel has constants parameters: Target (Target queue delay) = 5

ms Interval (Sliding minimum time window width) (RRT) = 100 ms Max

packet (Maximum packet size in bytes) (MTU) = 512

CHAPTER TWO LITERATURE REVIEW

 16 LITERATURE REVIEW

2.2.5 TCP Congestion Control:

D. E. Comer explains that to handle packet loss, transport protocols use

positive acknowledgement with retransmission. Whenever a frame arrives

intact, the receiving protocol software sends a small acknowledgement

(ACK) message that reports successful reception. The sender takes

responsibility for ensuring that each packet is transferred successfully.

Whenever it sends a packet, the sending-side protocol software starts a

timer. If an acknowledgement arrives before the timer expires, the software

cancels the timer; if the timer expires before an acknowledgement arrives,

and the software sends another copy of the packet and starts the timer again.

The action of sending a second copy is known as retransmitting, and the

copy is commonly called a retransmission. Of course, retransmission cannot

succeed if a hardware failure has permanently disconnected the network or if

the receiving computer has crashed. Therefore, protocols that retransmit

messages usually bound the maximum number of retransmissions. When the

bound has been reached, the protocol stops retransmitting and declares that

communication is impossible.

Note that if packets are delayed, retransmission can introduce duplicate

packets. Thus, transport protocols that incorporate retransmission are usually

designed to handle the problem of duplicate packets.

As expected TCP uses retransmission to compensate for packet loss.

Because TCP provides data flow in both directions; both sides of a

communication participate in retransmission. When TCP receives data, it

sends an acknowledgement back to the sender. Whenever it sends data, TCP

starts a timer, and retransmits the data if the timer expires. Before TCP was

invented, transport protocols used a fixed value for retransmission. Delay the

CHAPTER TWO LITERATURE REVIEW

 17 LITERATURE REVIEW

protocol designer or network manager chose a value that was large for the

expected delay. Designers working on TCP realized that a fixed timeout

would not operate well for the Internet. Thus, they chose to make TCP’s

retransmission adaptive.

That is, TCP monitors current delay on each connection, and adapts (i.e.,

changes) the retransmission timer to accommodate changing conditions.

How can TCP monitor Internet delays? In fact, TCP cannot know the exact

delays for all parts of the Internet at all times. Instead, TCP estimates round-

trip delay for each active connection by measuring the time needed to

receive a response. Whenever it sends a message to which it expects a

response, TCP records the time at which the message was sent. When a

response arrives, TCP subtracts the time the message was sent from the

current time to produce a new estimate of the round-trip delay for that

connection. As it sends data packets and receives acknowledgements, TCP

generates a sequence of round-trip estimates and uses a statistical function to

produce a weighted average. In addition to a weighted average, TCP keeps

an estimate of the variance, and uses a linear combination of the estimated

mean and variance when computing the timeout which retransmission is

needed.

Experience has shown that TCP adaptive retransmission works well. Using

the variance helps TCP react quickly when delay increases following a burst

of packets. Using a weighted average helps TCP reset the retransmission

timer if the delay returns to a lower value after a temporary burst. When the

delay remains constant, TCP adjusts the retransmission timeout to a value

that is slightly longer than the mean round-trip delay. When delays start to

CHAPTER TWO LITERATURE REVIEW

 18 LITERATURE REVIEW

vary, TCP adjusts the retransmission timeout to a value greater than the

mean to accommodate peaks. [6]

2.2.6 Queue management: the effect of TTL in congestion reduction:

Time to live: An 8-bit integer initialized by the original sender and

decremented by each router that processes the datagram.

 If the value reaches zero, the datagram’s discarded and an error message is

sent back to the source. [6]

D. E. Comer clarify that in principle, field time to live specifies how long, in

seconds, the datagram is allowed to remain in the internet system. The idea

is both simple and important: whenever a computer injects a datagram into

the internet, it sets a maximum time that the datagram should survive.

Routers and hosts that process datagram’s must decrement the time to live

field as time passes and remove the datagram from the internet when its time

expires. Estimating exact times is difficult because routers do not usually

know the transit time for physical networks.

A few rules simplify processing and make it easy to handle datagram

without synchronized clocks. First, each router along the path from source to

destination is required to decrement the time to live field by me when it

processes the datagram header. Furthermore, to handle cases of overloaded

routers that introduce long delays, each router records the local time when

the datagram arrives, and decrements the time to live by the number of

seconds the datagram remained inside the router waiting for service.

Whenever a time to live field reaches zero, the router discards the datagram

And sends an error message back to the source. The idea of keeping a timer

for datagram’s is interesting because it guarantees that datagram cannot

travel around an internet forever, even if routing tables become corrupt and

CHAPTER TWO LITERATURE REVIEW

 19 LITERATURE REVIEW

routers route datagram’s in a circle. Although once important, the notion of a

router delaying a datagram for many seconds is now outdated - current

routers and networks are designed to forward each datagram within a

reasonable time. If the delay becomes excessive, the router simply discards

the datagram.

Thus, in practice, the time to live acts as a "hop limit" rather than an estimate

of delay. Each router only decrements the value by 1.One of the most

important and complex ideas in TCP is embedded in the way it handles

timeout and retransmission. Like other reliable protocols, TCP expects the

destination to send acknowledgements whenever it successfully receives

new octets from the data stream. Every time it sends a segment, TCP starts a

timer and waits for an acknowledgement. If the timer expires before data in

the segment has been acknowledged, TCP assumes that the segment was lost

or corrupted and retransmits it.

To understand why the TCP retransmission algorithm differs from the

algorithm used in many network protocols, we need to remember that TCP is

intended for use in an internet environment. In an internet, a segment

traveling between a pair of machines may traverse a single, low-delay

network (e.g., a high-speed LAN: Local Area Network), or it may travel

across multiple intermediate networks through multiple routers. Thus, it is

impossible to know a priori how quickly acknowledgements will return to

the source. Furthermore, the delay at each router depends on traffic, so the

total time required for a segment to travel to the destination and an

acknowledgement to return to the source varies dramatically from one

instant to another. TCP software must accommodate both the vast

differences in the time required to reach various destinations and the changes

CHAPTER TWO LITERATURE REVIEW

 20 LITERATURE REVIEW

in time required to reach a given destination as traffic load varies. TCP

accommodates varying internet delays by using an adaptive retransmission

algorithm. In essence, TCP monitors the performance of each connection

and deduces reasonable values for timeouts. As the performance of a

connection changes, TCP revises its timeout value (i.e., it adapts to the

change).

To collect the data needed for an adaptive algorithm, TCP records the time

at which each segment is sent and the time at which an acknowledgement

arrives for the data in that segment. From the two times, TCP computes an

elapsed time known as a sample round trip time or round trip sample.

Whenever it obtains a new round trip sample, TCP adjusts its notion of the

average round trip time for the connection. Usually, TCP software stores the

estimated round trip time, RZT, as a weighted average and uses new round

trip samples to change the average slowly. For example, when computing a

new weighted average, one early averaging technique used a constant

weighting factor, α, where 0 ≤ α < 1, to weight the old average against the

latest round trip sample:

RTT = (α × Old RTT) + ((1 - α) × New Round Trip Sample) --- equation (4)

Choosing a value for a close to 1 makes the weighted average immune to

changes that last a short time (e.g., a single segment that encounters long

delay). Choosing a value for a close to 0 makes the weighted average

respond to changes in delay very quickly. When it sends a packet, TCP

computes a timeout value as a function of the current round trip estimate.

Early implementations of TCP used a constant weighting factor, β (β > I),

and made the timeout greater than the current round trip estimate:

Timeout = β * RTT ---- equation (5) Choosing a value for β can be difficult.

CHAPTER TWO LITERATURE REVIEW

 21 LITERATURE REVIEW

On one hand, to detect packet loss quickly, the timeout value should be close

to the current round trip time (i.e., β should be close to1). Detecting packet

loss quickly improves throughput because TCP will not wait an

unnecessarily long time before retransmitting. On the other hand, if β = 1,

TCP is overly eager - any small delay will cause an unnecessary

retransmission, which wastes network bandwidth.

The original specification recommended setting β=2; more recent work

described below has produced better techniques for adjusting timeout. [7]

Methodology

3

Chapter

CHAPTER THREE METHODOLOGY

23 Methodology

Methodology

3.1 (priority Queuing based on TTL value) (PQT) algorithm:

The idea behind this algorithm is re-ordering the queue of router based on

time-to-live (TTL) value from lowest to biggest. Moreover the TTL can also

be used to determine the dropped packets when the buffer is full.

The important question is why do we choose TTL as an important metric for

prioritizing the packet scheduling and dropping?

The answer to this question can be summarized according to the following

reasons:

The First reason: the current TTL value for packet illustrated the time spent

in network. Because the current TTL value for packet show the number of

hops that packet cross.

The Second reason: the lowest TTL value of packet demonstrated that the

packet cross long distance. The cause of that is the packet cross many router

in network, and finally, The Third reason: There is another reason but

indirect to use TTL value in this algorithm is the round trip time (RTT). Before

finish the RTT the packet must service.

RTT is determined by the sender and it is 200ms by default for the packet,

there for if the TTL value is lowest that is mean the RTT is close to finish. If

the RTT finished then retransmission is done again to the packet and that

cause congestion in queue of the router and increase the delay of the queue.

For dropping: if congestion occur and the queue be full, the (PQT) algorithm

drop the max TTL value from the queue.

For all these reasons above the TTL value chosen as essential metric for PQT

algorithm, there for the packet with lowest value service first from the router.

CHAPTER THREE METHODOLOGY

24 Methodology

And one of the method used to avoid the congestion, reducing delay, reducing

retransmission is using (PQT) algorithm.

3.1.1 Subroutine of PQT algorithm:

 Figure (3-1) below illustrate subroutine simulate how can (priority Queuing

based on TTL value) PQT algorithm works, programed by C++ Language.

The code of this program illustrated in appendix A.

Figure (3-1): subroutine of PQT algorithm

As can been seen from the figure above there is ten different TTL value

entered from the keyboard, then the program re-ordered the TTL value from

smallest to biggest according to the PQT algorithm.

CHAPTER THREE METHODOLOGY

25 Methodology

3.1.2 Time-To-Live Scheduler:

There are many flows came to router, in TTL scheduler the flows have several

packets, and every packet has time-to-live value.

The flows enter as input queue to TTL scheduler, the TTL scheduler re-order

the packets according to the TTL value from smallest to bigger in output

queue. And if the queue is full, packets with maximum TTL values will have

greater dropping probability rather than those with lower TTL values (since

they are travelling longer distance than the others and has been surviving with

more intermediate systems (routers).

 Figure (3-2): TTL scheduler

CHAPTER THREE METHODOLOGY

26 Methodology

3.1.3 Flow Chart:

Figure (3-2) shows the flow chart of the proposed algorithm it consists of

several steps such as:

First step: the packets received from many flows to the queue of the router

with different time-to-live (TTL) value, some packets send from far sender

and other send from near sender.

Second step: read and check the time-to-live (TTL) value from IP header by

the proposed algorithm (priority Queuing based on TTL value algorithm)

(PQT).

Third step: the PQT algorithm re-order the packets according to the smallest

time-to-live value.

Case one: if the queue full, then drop the packet with max TTL value.

Case tow: if the queue isn’t full, then insert the packet in the queue while

considering the TTL value in queue ordering.

CHAPTER THREE METHODOLOGY

27 Methodology

Figure (3-3): Flow Chart

CHAPTER THREE METHODOLOGY

28 Methodology

3.2 Network Simulation of PQT:

This part consists of the following: the overview, network simulation block

diagram, the hardware of network, the software of network and the network

inventory Summary.

3.2.1 Overview:

This section covers and explains the design of all Network Simulation,

including Algorithm (priority Queuing based on TTL value) (PQT) in details

and their components and parameters and how does it work, using opnet

simulation.

3.2.2 Network Simulation block diagram:

 Figure (3-4): block diagram of network

CHAPTER THREE METHODOLOGY

29 Methodology

The network consists of two parts: hardware and software.

The 4 clients connected with 4 logical network, every logical network have

multi routers, ranged from (10 to 40 routers so as to obtain different TTL

values for the purpose of simulation). Every logical network connected with

switch A. And switch A connected with router A.

Router A connected with router B. router B connected with switch B. switch

B connected with 4 servers. Moreover the performance analysis of the

algorithm will be done by injecting different traffic loads to this network from

various application types (heavy/light)

3.2.3 The hardware of network:

First the Devices are (8 Ethernet workstations: as 4 clients (Type Of Service)

TOS-sender, and 4 servers TOS-receiver), (102 routers), (2 Switches) and (4

logical network).

Client: the (Ethernet wkstn adv) node model represents a workstation with

client-server applications running over TCP/IP and (User Datagram Protocol)

UDP/IP. The workstation supports one underlying Ethernet connection at 10

Mbps, 100 Mbps, or 1000 Mbps.

 Switch: the (ethernet8_switch_base) node model represents a switch

supporting up to 8 Ethernet interfaces. The switch implements the Spanning

Tree algorithm in order to ensure a loop free network topology. Switches

communicate with each other by sending Bridge Protocol Data Units

(BPDU's). Packets are received and processed by the switch based on the

current configuration of the spanning tree.

Router: the (ethernet2_slip8_gtwy_base) node model represents an IP-based

gateway supporting up to two Ethernet interfaces and up to 8 serial line

interfaces at a selectable data rate. IP packets arriving on any interface are

CHAPTER THREE METHODOLOGY

30 Methodology

routed to the appropriate output interface based on their destination IP

address. The Routing Information Protocol (RIP) or the Open Shortest Path

First (OSPF) protocol may be used to automatically and dynamically create

the gateway's routing tables and select routes in an adaptive manner.

Logical network: logical network contains routers, the type of routers used

are (the ethernet2_slip8_gtwy_base) connected together in series using

Ethernet-1000 Base Advance link. First router named (node_0) connected to

the client and last router named (node_39) connected to switch A. And so on

up to logical network 4.

The figure (3-5) illustrated an example of one of logical network.

Figure (3-5): connected routers in logical network

CHAPTER THREE METHODOLOGY

31 Methodology

Physical Links: Second the links there are (110) Ethernet link, type: 1000

Base Advance) shown in blue color in figure below and (1 Serial) in red

color.

Figure (3-6): links used in network

CHAPTER THREE METHODOLOGY

32 Methodology

3.2.4 The software of network:
Consists of (3 Configuration Utilities):

Profile configuration: the Profile Configure node can be used to create user

profiles. These user profiles can then be specified on different nodes in the

network to generate application layer traffic. The application defined in the

Application Configure objects are used by this object to configure profiles.

Therefore, you must create applications using the Application Configure

object before using this object. You can specify the traffic patterns followed

by the applications as well as the configured profiles on this object.

Application configuration: the Application Configuration node can be used

for the following specifications:

1. ACE Tier Information: Specifies the different tier names used in the

network model. The tier name and the corresponding ports at which the tier

listens to incoming traffic is cross-referenced by different nodes in the

network.

2. Application Specification: Specifies applications using available

application types. You can specify a name and the corresponding description

in the process of creating new applications. For example, "Web Browsing

Heavy Hypertext Transfer Protocol (HTTP 1.1)" indicates a web application

performing heavy browsing using HTTP 1.1. The specified application name

will be used while creating user profiles on the Profile Configuring object.

3. Voice Encoder Schemes: Specifies encoder Parameters for each of the

encoder schemes used for generating voice traffic in the network.

CHAPTER THREE METHODOLOGY

33 Methodology

Figure (3-7): application configuration

CHAPTER THREE METHODOLOGY

34 Methodology

Quality of service configuration (QoS): defines attribute configuration

details for protocols supported at the IP layer. These specifications can be

referenced by the individual nodes using symbolic names (character strings.)

1. Queuing Profiles: Defines different queuing profiles such as FIFO, WFQ

(weighted Fair Queuing), Priority Queuing, Custom Queuing, MWRR,

MDRR and DWRR.

2. CAR Profiles: Defines different CAR profiles that can be used in the

network.

Figure (3-8): QoS configuration

CHAPTER THREE METHODOLOGY

35 Methodology

The network is composed of four pairs of video clients. Each pair uses a

distinct TOS (Type of Service) for data transfer. The link between the two

routers is a bottleneck. Routers support multiple queues for each type of

service. Queue (4) receives TOS (4) traffic, queue (3) receives TOS (3) traffic,

queue (2) receives TOS (2) and queue (1) receives TOS (1). Queues are

serviced using "Priority Queuing of TTL value" mechanism.

Priority queuing can be enabled on each interface in "advanced" routers.

Queuing profile and queuing processing mechanism are set in a sub-attribute

called (Interface Information) in the (IP QoS Parameters) compound attribute.

Queuing profile defines the number of queues and the classification scheme.

Global queuing profiles are defined in the QoS configuration object. This

object is found in (utilities) palette. Local Priority queuing profiles (not used

in this network) can be configured under (Priority Queue Profiles) in the (IP

QoS Parameters) compound attribute on the router.

CHAPTER THREE METHODOLOGY

36 Methodology

3.2.5 Network Inventory Summary:

The table below illustrate all devices, physical links and Configuration

Utilities are used in network simulation.

 Table 3-1: Network Inventory Summary

Element Type Count

Devices Total 112

 Routers 102

 Switches 2

 Workstations 8

 Logical network 4

Physical

Links

Total 111

 Serial 1

 Ethernet 110

Other Configuration Utilities 3

Results and

Discussion

4

Chapter

CHAPTER FOUR RESULTS &DISCUSSION

38 Results &discussion

Results and discussion

4.1 Results of priority Queuing based on TTL value algorithm:

This paragraph gives a brief description for the results of the (priority Queuing

based on TTL value algorithm) (PQT) using the Opent simulation. On the

other hand PQT considers the TTL value as one of the important factors in the

queue management decisions. Furthermore, this results has been compared

with the results of (IP QoS Priority Queuing algorithm.)

The comparison is based on the following network infrastructure shown in

figure (4-1). In this scenario, stream of the packets have been sent form client

to server through switch A, router A, switch B, and router B. Since Router A

represent a bottleneck, thus in this implementation the above two mentioned

queue management algorithm have been compared according to the generated

traffic, and accordingly their results has been plotted in the coming graphs

(please refer to section 4.2.1 for more information).

CHAPTER FOUR RESULTS &DISCUSSION

39 Results &discussion

Figure (4-1): Simulation: Network infrastructure Design, Configuration and PQT

implementation

CHAPTER FOUR RESULTS &DISCUSSION

40 Results &discussion

4.1.2 Evaluation of PQT through various traffic loads

To examine the performance of PQT compared with IP QoS Priority Queuing,

several types of applications are used in simulation (around fifteen different

application types have been used), some of them are heavy while the others

are considered light. The following examples give a sample of applications to

obtain the expected results.

 Database Access (Heavy)

 Database Access (Light)

 Email (Heavy)

 Email (Light)

 File Transfer (Heavy)

 File Transfer (Light)

 File Print (Heavy)

 File Print (Light)

 Telnet Session (Heavy)

 Telnet Session (Light)

 Video Conferencing (Heavy)

 Video Conferencing (streaming Multimedia)

 Video Conferencing (excellent effort)

 Video Conferencing (standard)

 Video Conferencing (background)

CHAPTER FOUR RESULTS &DISCUSSION

41 Results &discussion

4.2 Router A <-> Router B: point-to-point Statistics:

4.2.1 Queuing delay in router A <-> router B:

The Figure (4-2) illustrates Queuing delay between router A and Router B in

(second) of proposed (priority Queuing based on TTL value) algorithm

represented in red curve, and with compare (IP QoS Priority Queuing)

algorithm represented in blue curve. When the traffics flow from router A to

router B represent by this symbol (-->). And all application run that mentioned

in section (4.1.2). Simulation duration is 600 second. The column represent

the delay in second. The row represent the time duration of simulation run.

Figure (4-2) illustrates Queuing delay from router A to router B

As can be seen from the figure above the proposed algorithm start at (0.0003s)

then after (1m 30s) the delay increased up to (0.0046s), for compared

algorithm start at (0.0003s), also after (1m 30s) the delay increased up to

(0.0048). And this is clearly from the figure above the delay of proposed

algorithm has been decreased about (5%) from compared algorithm.

CHAPTER FOUR RESULTS &DISCUSSION

42 Results &discussion

Figure (4-3) illustrates queuing delay between router A and Router B in

(second) separate into two graph one for (priority Queuing based on TTL

value) and the other one is (IP QoS Priority Queuing). Max queuing delay

value for both algorithm explained in the figure (4-2). In this graph illustrated

the zooming of the delay that shown in figure (4-2).

Figure (4-3) the zooming illustrates Queuing delay from router A to router B

As can be seen form figure (4-3), it is clearly seen that the queuing delay is

decreased for this design of big network and with heavy applications.

CHAPTER FOUR RESULTS &DISCUSSION

43 Results &discussion

Figure (4-4) illustrates Queuing delay between router B and Router A in

(second) for proposed algorithm in this research (priority Queuing based on

TTL value) represented by (red curve) and the other method (IP QoS Priority

Queuing) represented by (blue curve). When the traffics stream from router B

to router A represent by this symbol (<--). Simulation duration is 600 second.

 Figure (4-4) illustrates Queuing delay from router B to router A

As can be seen in above figure the delay of comparing algorithm starts after

(1m 30s), and then begin arising up to (0.0049). At the same point the

proposed algorithm starts the delay, then increasing up to (0.0046). It is

obviously seen that the delay of proposed algorithm is less than the compared

algorithm about (7%) that mean in figure (4-4) the delay is better than the

delay in figure (4-3).

CHAPTER FOUR RESULTS &DISCUSSION

44 Results &discussion

Figure (4-5) illustrates Queuing delay between router B and Router A in

(second) separated into two graph one for (priority Queuing based on TTL

value) and the other one is (IP QoS Priority Queuing). Max value for both

algorithm explained in figure (4-4). In this graph illustrated the zooming of

the queuing delay is shown in figure (4-4).

Figure (4-5) illustrates the zooming Queuing delay from router B to router A

As can be seen form figure (4-5), it is clearly seen that the queuing delay of

proposed algorithm is decreased about (7%) from compared algorithm.

CHAPTER FOUR RESULTS &DISCUSSION

45 Results &discussion

4.2.2 Throughput (-- >) (packet / sec):

Figure (4-6) illustrates average Throughput (packets/sec) for both algorithms

(priority Queuing based on TTL value) and (IP QoS Priority Queuing). The

traffic stream from router A to router B. Simulation duration is 600 second,

The Column shows the packers (packets) and the row shows the time (sec).

 Figure (4-6) illustrates the average Throughput (-- >) (packet / sec)

As can be seen from the above figure shows that the values of the throughput

for both algorithms are same and they have the value (50) packets. The

throughput starting after (1m.30s) of time and began increased up to (50)

packets. It apparently show that the throughput is equal for two algorithms.

That is mean, this result is reasonable for propose algorithm.

CHAPTER FOUR RESULTS &DISCUSSION

46 Results &discussion

Figure (4-7) illustrates the average in throughput in (packets/sec) for both

algorithms separated in two graph. The upper graph demonstrates (IP QoS

Priority Queuing) algorithms and lower graph shows (priority Queuing based

on TTL value) algorithms. The two graphs explained in figure (4-6). They

show the zooming of the average throughput.

Figure (4-7) illustrates the zooming average in throughput (packets/sec)

As can be seen from the figure both algorithms start after (1m 30s), the upper

curve that represents compare algorithm and lower curve representing

proposed algorithm. By looking to the two curves it can see that are similar,

as shown in figure (4-6).

CHAPTER FOUR RESULTS &DISCUSSION

47 Results &discussion

4.3 Router A Statistics:

4.3.1 IP Processing Delay (sec):

Figure (4-8) illustrates the average in IP Processing Delay (sec) in router A

for both algorithms (priority Queuing based on TTL value) represented by

(red curve) and (IP QoS Priority Queuing) represented by (blue curve). The

Column shows the time in (second) and the row shows the time duration of

simulation. Simulation duration is 600 second.

Figure (4-8) illustrates the average in IP Processing Delay (sec)

As can be seen from the figure above the average IP Processing Delay (sec)

in (priority Queuing based on TTL value) algorithm and (IP QoS Priority

Queuing) algorithm begin together at same time (0.000030s), then with TTL

rising up to (0.000036s) then the two algorithms decrease down between

(0.000020s) and (0.000022s). It is clearly seen that the algorithm with TTL

increased from compare algorithm in processing delay with percentage (9%)

CHAPTER FOUR RESULTS &DISCUSSION

48 Results &discussion

4.3.2 CPU Utilization in Router A:

Figure (4-9) illustrates average Central Process Unit (CPU) utilization in

router A for both algorithms separated in two graph. Simulation duration 600

second, the blue curve represents the (IP QoS Priority Queuing) algorithm and

the Red curve represents the proposed algorithm.

Figure (4-9) CPU Utilization of Router A (overlaid)

As can be seen from the figure above the compared algorithm is beginning

utilization after (1m 30s) then rising up to over (0.20) with time duration (10m

30s). The proposed algorithms begins at the same time and continue rising up

to same value (0.20), observed that CPU utilization of proposed is began

higher than compared then be equal after (1m 30s) in utilization in CPU.

CHAPTER FOUR RESULTS &DISCUSSION

49 Results &discussion

Figure (4-10) illustrates average CPU utilization in router A for both

algorithms separated in two graph. Simulation duration 600 second. But the

curve is separated in tow: first one is for (IP QoS Priority Queuing) while the

second is for proposed algorithm to show the curve in zooming.

Figure (4-10) CPU Utilization of Router A (stacked)

CHAPTER FOUR RESULTS &DISCUSSION

50 Results &discussion

4.3.3 Switch A <-> Router A – in point-to-point - queuing delay (sec) -->:

Figure (4-11) illustrates average in point-to-point queuing delay in switch A

and router A, for both algorithm. Simulation duration 10 minutes.

Figure (4-11) Switch A <-> Router A – in point-to-point - queuing delay (sec) -->

As shown in the figure (4-11) the packets passing from switch A to router B,

represent by this symbol (-->).

The red curve represent proposed algorithm it begin at (0.0001) s and go up

to (0.0002) s until (1m 30s) then the delay increase up to (0.0010) s at (10m

30s). For another curve with blue color represent (IP QoS Priority Queuing)

it begin at (0.0001) until (1m 30s), then the delay increase up to near (0.0011)

at (10m 30s). Observe that queuing delay in proposed algorithm start high

than compared algorithm, but after (1m 30s) time, the queuing delay starting

on decrease.

That mean queuing delay in proposed algorithm is better than other algorithm.

CHAPTER FOUR RESULTS &DISCUSSION

51 Results &discussion

Figure (4-12) illustrates average in queuing delay (sec) (<--) point-to-point

queuing delay in switch A and router A, for both algorithm. Simulation

duration 10 minutes.

Figure (4-12) Switch A <-> Router A – in point-to-point - queuing delay (sec) (<--)

As shown in the figure (4-12) the packets passing from router A to switch A,

represent by this symbol (<--). The queuing delay for both algorithm in this

figure is less than the queuing delay in figure (4-11) especially, compared

algorithm.

CHAPTER FOUR RESULTS &DISCUSSION

52 Results &discussion

Figure (4-13) illustrates average in point-to-point queuing delay in switch A

and router A, for both algorithm the packets passing from and to switch A,

router A. Simulation duration is 10 minutes. Represent by these symbol (<--),

(-->).

Figure (4-13) Switch A <-> Router A in point-to-point-queuing delay (sec) (<--) (-- >)

As shown in the figure above the red and poplars curve for proposed

algorithm, and blue, green curve for compared algorithm. Each curve

explained in Figure (4-11) and Figure (4-12). But in this figure companied

them in one curve to seen complete picture of queuing delay.

Conclusion and

Recommendations

5

Chapter

CHAPTER FIVE CONCLUSION&RECOMMENDATIONS

54 CONCLUSION&RECOMMENDATIONS

Conclusion and Recommendations

5.1 Conclusion:

This research proposed a new algorithm (priority Queuing based on TTL

value) for re-ordering the packets in the router queue which is based on the

Time-To-Live (TTL) value of the packet. This algorithm enables the router to

reduce the overall delay, it also reduces the packet dropping rates as well as

the overall delay for the packets with lower TTL. For more information please

refer to figure (4-4).

As can be seen in figure (4-4), it is clearly seen that the proposed algorithm

outperform to algorithm0 (IP QoS Priority Queuing) in term of delay, also it

contributes to the congestion avoidance since it reduce the overall

retransmission rate. Overall means that we are dealing with packet per

multiple hops.

This algorithm is useful for core routers in the telecom operator’s backbone

rather than the edged routers in the enterprise networks (since there TTL

values will be quite similar), and this will indirectly enhance the response time

for far users.

This algorithm guaranty that the router can forward a completely and safety

packets to receiver as much as possible with little delay and a few

retransmission with less congestion.

CHAPTER FIVE CONCLUSION&RECOMMENDATIONS

55 CONCLUSION&RECOMMENDATIONS

5.2 Recommendations:

There’s a room for improvement waiting the future researchers such as:

Although this algorithm is considered as a great support for queue

management in core routers, future researchers can apply it in all of edged and

core routers as well as for check the overall performance it could be done by

checking certain performance metrics.

This algorithm deals with TTL as a very important metric for queuing priority,

however this algorithm ignores the phenomenon of duplicated packets (the

same packet with the same TTL) will get higher priority rather than other

packets which consider a waste of resource. So future researchers must

consider the duplicated packets.

56

References:

[1] Zhu, C., et al., A comparison of active queue management algorithms

using the OPNET Modeler. Communications Magazine, IEEE, 2002.

40(6): p. 158-167.

[2] Comer, D., Internetworking with TCP/IP Vol. 1: Principles, Protocols

and Applications. Prentice-Hall, 2000.

[3] Comer, D.E., Computer networks and internets. 2008: Prentice Hall

Press.

[4] Nichols, K. and V. Jacobson, Controlling queue delay. Communications

of the ACM, 2012. 55(7): p. 42-50.

[5] Villamizar, C. and C. Song, High performance TCP in ANSNET. ACM

SIGCOMM Computer Communication Review, 1994. 24(5): p. 45-60.

[6] Appenzeller, G., I. Keslassy, and N. McKeown, Sizing router buffers.

Vol. 34. 2004: ACM.

[7] Bashir, O.A., Y.A. Mohamed, and M.A. Elshaikh, The automatic

calculation of the length of the queues (auto). Journal of Engineering

and Computer Science, 2015. 16(2).

[8] Ott, T.J., T. Lakshman, and L.H. Wong. Sred: stabilized red. In

INFOCOM'99. Eighteenth Annual Joint Conference of the IEEE

Computer and Communications Societies. Proceedings. IEEE. 1999.

IEEE.

[9] Modeler, O., OPNET Technologies Inc Documentations, 2008.

 [10] Psaras, I., V. Tsaoussidis, and L. Mamatas. CA-RTO: a contention-

adaptive retransmission timeout. In Computer Communications and

Networks, 2005. ICCCN 2005. Proceedings. 14th International

Conference on. 2005. IEEE.

57

[11] Psaras, I., Transmission and Retransmission Scheduling for Terrestrial

and Space Internetworks. 2008.

[12] Arianfar, S., P. Sarolahti, and J. Ott. Deadline-based resource

management for information-centric networks. in Proceedings of the

3rd ACM SIGCOMM workshop on Information-centric networking.

2013. ACM.

[13] Kaur, J., et al., Analyzing Load and Delay in Wireless LAN using

TTL and Fragmentation. 2014.

[14] Klampfer, S., J. Mohorko, and Z. Cucej, Impact of hybrid queuing

disciplines on the VoIP traffic delay. Electrotechnical Review, 2009.

[15] Vijayakumar, M., V. Karthikeyani, and M. Omar, Implementation of

Queuing Algorithm in Multipath Dynamic routing architecture for

effective and secured data transfer in VoIP. International Journal of

Engineering Trends and Technology, 2013. 4(4): p. 1226-1230.

[16] Bindra, P., J. Kaur, and G. Singh, Investigation of Optimum TTL

Threshold value for Route Discovery in AODV. International Journal

of Computer Applications, 2013. 79(9): p. 45-49.

[17] Matthew, S.M.M.M.T. and N.S.P.H. Obiomon, Modeling and

Simulation of Queuing Scheduling Disciplines on Packet Delivery for

Next Generation Internet Streaming Applications.

[18] Psaras, I. and V. Tsaoussidis, On the properties of an adaptive TCP

Minimum RTO. Computer Communications, 2009. 32(5): p. 888-895.

58

[19] Almofary, N., H. Moustafa, and F. Zaki, Optimizing QoS for voice

and video using diffserv-MPLS. International Journal of Modern

Computer Science & Engineering, 2012. 1(1).

[20] Kesselman, A. and Y. Mansour, Optimizing TCP retransmission

timeout, in Networking-ICN 2005. 2005, Springer. p. 133-140.

[21] Balasundaram, K., T. Velmurugan, and R. Suresh, Performance

Analysis of Queuing Disciplines for Difference Services Using

OPNET Tool. International Journal of Scientific Engineering and

Technology, Volume, 2013(3): p. 47-50.

[22] Mohammed, H.A., A.H. Ali, and H.J. Mohammed, The Affects of

Different Queuing Algorithms within the Router on QoS VoIP

application Using OPNET. arXiv preprint arXiv:1302.1642, 2013.

59

Appendix A

#include <iostream.h>

#include <conio.h>

int main (int argc, char* argv[])

{

 const limit=100;

 float x[limit],smallest;

 int k,i,j,spos,size;

 cout <<"\nThis is routine simulate how can (priority Queuing based on

TTL value) PQT algorithm works, using C++ program \n" ;

 cout <<"\nDetermine the queue size of TTL value from key board

then press enter : \n" ;

 cin >> size ;

 cout <<"Inter the value of TTL from key board then press enter after

each value : \n" ;

 for (k=0; k < size ; k++)

 cin >> x[k] ;

 //now start re-ording the value of TTL from smallest to biggest.

 for (i=0; i<size-1 ; i++)

 {

 smallest = x[i]; spos = i ;

 for (j = i ; j < size ; j++)

 if (x[j] < smallest)

60

 {

 smallest = x[j];

 spos = j;

 }

 x[spos] = x[i];

 x[i]= smallest ;

 }// for i

 //now print on screen the re-order TTL value from smallest to bigest

according to the PQT algorithm

 cout << "The re-order of TTL value from smallest to bigest according

to the PQT algorithm is : \n" ;

 for (k=0; k<size; k++)

 cout << x[k]<< " ";

 getch();

return 0;

}

