Chapter 1
Equivalence Relations and Ellipsoidal Tight Frames

We find the closest and respectively the nearest tight frame to a given frame .Our
main tool in the infinite dimensional case is a result we have proven which concerns the
decomposition of a positive invertible operator into a strongly converging sum of (not
necessarily mutually orthogonal) self-adjoint projections. This decomposition result implies
the existence of tight frames in the ellipsoidal surface determined by the positive operator.
In the real or complex finite dimensional case, this provides an alternate (but not
algorithmic) proof that every such surface contains tight frames with every prescribed
length at least as large as dim H. A corollary in both finite and infinite dimensions is that
every positive invertible operator is the frame operator for a spherical frame.

Section(1.1): Distances Between Hilbert Frames

Suppose H is an infinite dimensional separable Hilbert space. A theorem due to
Paley-Wiener [198] states the following: let {e;};cybe an orthonormal basis of H and let
{f:}ien be a family of vectors in H. If there exists a constant 1 € [0, 1) such that
1By ciler— N < ATy el = AT e )12 (1)
for all n,cq,cy, ..., c,, then {f;};cyis a Riesz basis in H and a frame with bounds (1 —
)2, (1 + A)%. An extension of this theorem was given by Christensen in [193] to Hilbert
frames and by Christensen and Heil in [194] to Banach frames. Duffin and Eachus ([75])
proposed a converse of the above result by proving that every Riesz basis, after a proper
scaling, is close to an orthonormal basis in the sense of (1). We are going to extend this
result to Hilbert frames and show some results about quadratic closeness and distance
between two frames.

Let | be a countable index set. A family of vectors F = {f;},c; in H is called
a(Hilbert) frame if there exist two real numbers 0 < A < B < oo such that for any x €
H we have:

A x| < el fid1* < Blix|I%. (2)
If A= B we call the frame tight. The largest constant A and respectively the smallest
constant B that satisfy (2) are called the (optimal) frame bounds.

To a frame F we associate several objects. Consider the operator

T: H- 12(1) ,T(X) = ((-xrfi))iel,
called the analysis operator associated to F (see [199] for terminology). From (2) we get
that it is a bounded operator with norm ||T|| = VB and its range is closed. The adjoint of
T is given by
T*: 1?(1) - H, T*c=z cfi s
iel

and is called the synthesis operator. With these two operators we construct the frame
operatorby S:H — H,S =TT or S(x) = Y, fi) f;- The condition (2) can then be
readas A.1 < S < B.1 and therefore the frame boundsare B = || S ||, 4 = ||S7!||"d.

To every frame F one can associate two special frames: one is called the (stan-dard)
dual frame and the other (less frequently used) is called the associated tight frame [191].
The (standard) dual frame is defined by

F={f}_ fi=sf (3)
and has a lot of useful properties. A few of them are the following:
(a) F is a frame with frame bounds %,% :

(b) If Tis the analysis operator associated to F, then T = TS~! and the following
resolutions of identity (or reconstruction formulae) hold:

1=TT =TT orx = Yici{x, ;) fi = Ziectlx, i) [



(©) In I2(I), T and T have the same range (E = RanT = RanT)and P = TT* =TT* is
the orthogonal projector onto E.
(d) For any ¢ € I?(I) we can consider the set of sequences d € [*(I) with the same image
asc,i.e.,T*c =T*d; the minimum [%-norm in this set is achieved by the sequence
c¢* = Pc € E. The associated tight frame is defined by

“]:'# — {fi#}iel'fi# — S_l/zfi- (4)
A few properties of the associated tight frame that can be simply checked are the following:
(i) The associated tight frame is a tight frame with frame bound 1.
(i) If T# is the analysis operator associated to F#, then T# = TS~1/2: its range coincides
with E = Ran T, and the orthogonal projector onto E, P, is also equal to T#(T#)*. We shall
come back to this associated tight frame in this section .

So far, we have just listed properties of one frame and some derived frames.

We shall discuss mainly the relations between two frames. Let F = {f;},; and
G =1{g;};c; betwo frames in H. We define the following notions:

(@) If Q is an invertible bounded operator Q : H — H and if g; = Qf;, then we say that F
and G are Q-equivalent.

(b)We say they are unitarily equivalent if they are Q-equivalent for a unitary operator Q.
(c)If Q is a bounded operator Q : H — H (not necessarily invertible) and g, = Qf;, then
we say F is Q-partial equivalent with G.

(dWe say F is partial isometric equivalent with G if there exists a partial isometry
J: H — H such that g; = Jf; (then J should satisfy jJ* = 1 since g; € RanJ and G is a
complete set in H).

The last two relations (Q-partial equivalent and partial isometric equivalent) are not
equivalency relations, because they are not symmetric.

We say that a frame G = {g,};c; is (quadratically) close to a frame F = {f;},¢; if
there exists a positive number A > 0 such that

IXierci(gi — N < AUXies e £l (5)
for any ¢ = (¢;);e; € 1?(1) (see [201]). The infimum of such A’s for which (5) holds for
any c € [?(I) will be called the closeness bound of the frame G to the frame F and denoted
by c(G, F).

The closeness relation is not an equivalency relation (it is transitive, but not reflexive,
in general). However, if G is quadratically close to F with a closeness bound less than 1,
then F is also quadratically close to G but the closeness bound is different, in general.
Indeed, from (5) it follows that || ;e ¢; (g:—f,)|| < 1'1: 1Zics ¢ g:ll.

The closeness bound can be related to a relative operator bound used in perturbation
theory (see [197]). More specifically, if T9 , T/ denote the analysis operators associated,
respectively, to the frames G and F, then c¢(G ,F) is the (T)* -bound of (T9)* — (T/)*
(in the terminology of Kato).

The next step is to correct the nonreflexivity of the closeness relation. We say that two
frames F = {f;};c; and G = {g;};c; arenearif Fiscloseto G and G iscloseto F. Itis
fairly easy to check that this is an equivalency relation. In this case we define the
predistance between F and G , denoted d°(F,G)as the maximum between the two
closeness bounds:

d°(F,G) = max(c(F,6), c(G,F)). (6)
It is easy to prove that d° is positive and symmetric, but does not satisfy the triangle
inequality. This inconvenience can be removed if we define the (quadratic) distance
between F and G by

d(F,G) = log(d®(F,§) + 1). (7)



Then, as we shall see later (Theorem(1.1.7), this is a veritable distance (a metric) on
the set of frames which are near to one another.

Since the nearness relation is an equivalency relation, we can partition the set
of all frames on H, denoted F(H), into disjoint equivalent classes, indexed by an index set
A:

T(H) = UaeA Eq (8)
with the following properties:
g Neg=¢, fora

VF,GE¢g, ,d(F,G) <oand VF € &,,G € ggwitha # f,d(F,§) = oo,

Let  denote the index projection m:F(H) - A, with F » n(F) =a if F € ¢,.
We shall prove that the partition (8) corresponds to the nondisjoint partition of 1%(1) into
closed infinite dimensional subspaces. Moreover, the two equivalency relations introduced
before are identical (i.e., two frames are near if and only if they are Q-equivalent) as we
shall prove later.

For a frame G we denote by T! the set of tight frames which are quadratically close
to G and by T2 the set of tight frames such that G is close to them:

T ={F ={f;};g/|F is atightframe and c(G,F) < +oo}, (9)

T2 ={F = {f.};¢/|F is atight frame and c(F,§) < +oo}. (10)

Let d*:T!' > R,,d*: T? - R,denote the map from each F to the associated
closeness bound, i.e., d'(F) = ¢(G,F) and d*(F) = c(F,G). If G is a tight frame itself,
then G € 7' N T2 and min d* = mind? = 0.

Consider now the intersection between these two sets
T=T'nT%={F = {f};a|F is atightframeand d(F,§) < +o0} C g,(5. (11)

In this section we will be looking for the minima of the functions d*, d? and d| .
And we are mainly concerned with the relations introduced previously. We shall prove that
Q-equivalence is the same as nearness (in other words, two frames are Q-equivalent if and
only if they are near). The following lemmas are fundamental for all constructions and
results in this section.

Lemma (1.1.1)[62]: Consider F; = {f!};¢; and F, = {f*};¢; two tight frames in H with
frame bounds 1. Denote by T; and T, respectively their analysis operators. Then:
a) RanT, € RanT ,if and only if F; and F, are partial isometric equivalent;moreover,if
Jis the corresponding partial isometry,then ker] =~ RanT; /RanT,; more specifically
Ker ] = Tf(RanT; N (RanT,)*);
b) RanT; = Ran T, if and only if F;and F, are unitarily equivalent,
Proof. 1. Suppose F; and F, are partial isometric equivalent. Then £ = Jf?
and T, = T;J* for some partial isometry J. Obviously, Ran T, < Ran T;. Now, recall that
T, and T, are isometries from H onto their ranges (since F; and F, are tight frames with
bound 1). Therefore they preserve the scalar product and linear independence. Thus,

RanT; =Ti(Ran]* @ Ker]) =TJ"(H) @ Ty (Ker]J) = RanT, @ Ty (Ker ])
and T;(Ker ]) is the orthogonal complement of Ran T,into Ran T;. On the other hand,
T\ |gant, istheinverse of T, : H —» Ran Ty; thus,

Ker ] = T{(RanT; N (Ran T,)1)

fixing canonically the isometric isomorphism Ker ] = RanT;/RanT,. Conversely,
suppose Ran T, € Ran T;. Then, the two projectors are P, = T;T; onto RanT; and
P, =T,T, onto Ran T, and we have P,T, = T, .Now, consider J: H - H,] = T, T; which
acts in the following way:

1@ = ) G ) 2
i€l

We have



J)=TLTTT, =T,AT, =T, T, =1.

We want to prove now that f* = J£;" for all j. We have, for fixed j,
]f}l _f]"2 — Z((flrﬁl) _ (f'zrfiz))fiz — TZ*C
iel
Where ¢ = {c;}ier ci = (f, ') = (f?, fi*) . On the other hand,
0= ﬁl B Z‘e[<f}1'ﬂl)ﬁ1 - 2‘61(6ij - (ﬁl'fil)) fil = Tl*aj

where @/ = {a/} _ ,al =6; —(f".f) and &;is the Kronecker symbol. Similarly,
0="T;b/ with b/ ={bl} _, bl =8; —(f%f?) Thus, @/ € Ker Ty and b/ € KerTy.
But Ker Ty = (RanT,)* ¢ (RanT,)* = Ker T;.Therefore o/ € KerT;  and then
¢/ =a — b € KerT, which means T; ¢/ = 0 or f*=]f' . Moreover, T, = T;J*
and, as we have proved before, Ker ] = T{ (Ran T; N (Ran T,)%1).
2. The conclusion comes from point 1: the partial isometry will have a zero kernel
(Ker ] = { 0}) and therefore it is a unitary operator (recall that the range of J should be H).
This ends the proof of the lemma.
Lemma (1.1.2)[62]: Consider F; = {f!};c; and F, = {f?};; two frames in H. Let us
denote by T; and T,respectively, their analysis operators. Then:
a) RanT, c RanT; if and only if F; and F,are Q-partial equivalent for some bounded
operator Q; furthermore, KerQ = Ty (Ran Ty N (Ran T,)"Y).
b) RanT; = RanT, if and only if F; and F, are Q-equivalent, for some invertible
operator Q.

Proof. Letusdenoteby S, =T, T;,S, = T, T, the frame operators.
a. Suppose Ran T, © Ran T;. We have that F, is Q-equivalent with F}

_1
((fil)# =S, /Zﬁ-l);?-"l# is J-partial equivalent with 5 from Lemma (1.1.1), where
J = (T$)'T# is a partial isometry, and F§ is Q-equivalent with F, with Q = S,/* (f* =
1

S2(£2)*). By composing , we get F;is Q-partial equivalent with F, via Q = S,’%Js; /2.
Furthermore, since S;and S, are invertible, KerQ = S,/ Ker] = T; (RanT, N
(Ran T,)Y).

Conversely, if F; is Q-partial equivalent with F, and Q is the bounded operator
relating F; to F,, then T, = T;Q* and obviously Ran T, € Ran T;. On the other hand,
since Ty T, = S, is invertible, Q = T; T;S7* and then F,* is J-partial equivalent with F
with | = 52_1/2 QSll/2 . We have

JJ* = 52—1/20511/2511/20*52—1/2 _ 52—1/2T;P1T252—1/2
where P, = T;S{* Ty is the orthogonal projection onto Ran T;. But RanT, € RanTy;
hence, P,T, =T,. Thus, JJ*= 52_1/2T2*T252_1/2 = 1,proving that J is a partial
isometry.Now we apply the conclusion of Lemma (1.1.1) and obtain that Ker] =
(T{)*(Ran T; N (Ran T,)*). Substituting this into KerQ =511/2 Ker ] we obtain the
result.
b. The statement is obtained from (1) by observing that KerQ = {0}; since we also know
that RanQ = H, Q is therefore invertible with bounded inverse.
Lemma (1.1.3)[62]: Consider F; = {f!};; and F, = {f*};; two frames in H. Let us
denote by T;and T,, respectively, their analysis operators. Then, F; is close to F, (i.e.,
c(F,, F,) < o) if and only if F, is Q-partial equivalent with F; for some bounded operator
Q and therefore Ran T, € Ran T,. Moreover, c(F;,F,) = ||Q — 1]|.



Proof. = Suppose F, is close to F,.Then ||X;c;c;(f1 — O < ATie i f2l for
A= c(F,F).If ¢ ={c;}ic; € Ker Ty,
then necessarily ¢ € KerT; Therefore, Ker T, c Ker Ty or RanT, = (Ker T})* c
(KerT;)* = Ran T,. Now, applying Lemma (1.1.2) we get that F, is Q-partial equivalent
with F;. Then, ' = Qf? and if we denote v = ¥, c;f> we have
1@ — Vvl <Alvl.

The smallest A > 0 that satisfies the above inequality forany v € His ||[Q — 1] .
Therefore c( Fy, F,) = [1Q — 1]I.
&=Suppose F, is Q-partial equivalent with F;. Then, it is easy to check that c( F;,F;).=
lQ — 1| and then F; is close to F,. As a consequence of this lemma, we obtain the
following result:
Theorem (1.1.4)[62]: Let F; and F, be two frames. Then, they are near if and only if they
are Q-equivalent for some invertible operator Q. Moreover,

d°(Fy, Fp) = max(llQ — 1l 111 — Q7).
Applying this theorem to the set T defined in (11) we obtain the following corollary:
Corollary (1.1.5)[62]: Consider a frame G = {g,};c; in H and consider also the set T
defined by (11). Then T is parametrized in the following way:
T ={F = {f}i |f; = @Ug{ where @ > 0and U is unitary}.
Proof. Indeed, let « > 0 and U be unitary. Then, by computing its frame operator one can
easily check that F = {f;};c;, f; = aUg! is a tight frame with bound a?. Conversely,
suppose F = {f;};c; € T . Then, from Theorem (1.1.4) we obtain f; = Qg for some
invertible Q. We compute its frame operator

- ZlEl( fl)fl - Q(ZLEI( 'k )gl )Q - QQ
Therefore, QQ* = A .1 which means that — Q is unitary. Thus Q = +/A U for some unitary

U.

The following result makes a connection between the extension of the Paley and
Wiener theorem given by Christensen in [193] and the relations introduced so far.
Theorem (1.1.6)[62]: Let F = {f;};c; be aframein H and G = {g,};; be a set of vectors in
H. Suppose there exists A € [0, 1) such that

D cto 0] =a[3 oo}

foranyn € N andcy,cy,...InC. Then G is a frame in H and

(@) G is Q-equivalent with F;

(b) if T/ and T9 are the analysis operators associated respectively to F and G,
then Ran T/ = Ran TY;

(c) c(G,F) <A< 1andd’(G,F) < .

Proof. The conclusion that g is a frame follows from a stability result proved by
Christensen in [193]. As we have checked before, from c(G, F) < 1 we get

c(F, G < 1% < oo. Therefore, F and G are near and we can apply Theorem (1.1.4) and

complete the proof. Theorem (1.1.4) allows us to partition the set of all frames on H,
denoted F(H), into equivalent classes, as follows: F(H) = Ugea &, Where g, € F(H) is
a set of frames such that any F, G € ¢,, F is Q-equivalent with G or, equivalent, F is near to
G. Therefore, for each index a € A, the function d° : ¢, X g, » R, is well-defined and
finite. We want to show now that the function d: ¢, X &, = R, ,d(F,G) = log(1 +
d°(F,)) is a distance on each class ¢, .

Theorem (1.1.7)[62]: The function d defined above is a distance on &,. Moreover, for any
FeEegandg € F(H),ifd (F,G) <o, theng € g,.



Proof. The second part of the statement is immediate: if d(F,G)is finite so is d°(F, §);
hence, F is close to G and therefore they belong to the same class.
To show that d is a distance we need to check only the triangle inequality. Let 7, G, H € ¢,
then, there exist Q and R invertible bounded operators on H such that g; = Qf;,h; = Rg;
and therefore h; = RQf;. We have
d(F,G) = log(1 + max(llQ — 1lI,11Q™" = 1I)))
d(G,H) = log(1 +max(lIR — 1|, IR7" = 1|D)
| d(F,H) = log(1 +max(||RQ — 1|, [IQ”'R™" = 1]]))
an
IRQ -1l = [R-D@-D+R +Q—-2]
< [[R=1]. [[Q -1 + [[R=1] +]l¢ —11]
= (IR-11 +DCllQ — 1|l +1) - 1.
Hence,
log(IIRQ — 11+ 1) <log(llR — 1[I+ 1) + log(llQ — 1l +1).
Similarly for ||Q71R~! — 1]| and therefore d(F,H) < d(F,G) + d(G,H).

The next step is to relate the partition (8)with the set of infinite dimensional closed
subspaces of 1?(I). We suppose H is infinite dimensional and | is countable.Otherwise, the
following result still holds providing we replace “infinite dimensional closed subspaces of
dimension equal to the dimension of H”.

Let us denote by S(I?(I)) the set of all infinite dimensional closed subspaces of
12(I). Then Lemma (1.1.2) and Theorem (1.1.4) assert that F(H) is mapped into S(I2(1))
by

i: F(H) - S(2(D)),i(e,) = RanT (12)

where T is the analysis operator associated to any frame F € ¢, . The natural question that
can be asked is whether i is surjective, i.e., if for any closed infinite dimensional subspace
of 12(I) we can find a corresponding frame in F(H). The answer is yes as the following
theorem proves (see Christensen [192], Aldroubi [88] or Holub [196] for this type of
argument).
Theorem (1.1.8)[62]: For any infinite dimensional closed subspace E of [2(I) there exists a
frame F € F(H) (and therefore a class ¢,) such that i(F) = E (in other words, Ran T =
E with T the analysis operator associated to F). Therefore, i, considered from the set of
classes ¢, into S(1%(I)), is a bijective mapping.
Proof. Let E < [2(I) be an infinite dimensional closed subspace. Choose an orthonormal
basis {d;};c; in E and a basis {e; };c; in H (recall H is infinite dimensional and | countable).
Let pi : 1?(I) = C be the canonical projection, p;(c) = c;, where ¢ = {Cj}jel' let i € I and
P : I?(I) > C be the canonical projection onto E.

Let us denote by {6;},¢; the canonical basis in 12(I), i.e., §; = {5 }jel.

Then, it is known (see [196]) that {P§,};c; is a tight frame with bound 1 in E (and
any tight frame indexed by I with bound 1 in E is of this form, i.e., the orthogonal
projection of some orthonormal basis of 1%(I), since

Z(C,P(Si)P&- = PZ(PC, 8;)6; =Pc=c¢, Vc€EE

iel i€l
We define a tight frame with bound 1 in H in the following way:

fi = ZjelPoi,dy)e; = Byerldi dj) ¢ = Xy i (d))g-
It is easy to show that f;'s are well defined, since ||f;||*> = ZJ-E,|(P51-,dj)|2 = ||P§;]| % < oo.
Let T be the analysis operator associated to {]j- }iel and x € H be arbitrary. Then

(x, fi) = Zjelpi(dj)<x;ej) = pi(2j61<xrej)dj); Viel

6



Thus, T (x) = {{x, fi)}ier = Xjerfx, €} d; and obvious Ran T = E. It is simple to check that
Tf; = P&, and therefore, {f;};¢;is a tight frame with bound 1.

We are concerned here with the closeness and distance functions d!, d? and d| introduced
earlier. In fact, we would like to characterize the minima of these functions. Here is the
main result:

Theorem (1.1.9)[62]: Consider G = {g;};c; a frame in H with optimal frame bounds

A; B and consider the sets7', T?and T introduced in (9), (10) and (11). Let us denote by

_ VB—JA _1 . . . _
0 = N and p = 7 (logB — logA). Then the following conclusions hold:

(a) The values of the minima of d!, d? and d| are given by
mind! = mind? = O mind|; =p
(b) These values are achieved by the following scalings of the associated tight frames of G :

= (e St = L8 gt (13)
F? = {fP)er S} }ﬁ_fg#, (14)
FO = {f%e . f° = VABg} (15)

Hence, d'(F1) = d? (F?) = 0 and d(F°) = p.

(c) Any tight frame that achieves the minimum of one of the three functions d*, d? or d is
unitarily equivalent with the corresponding solution (13), (14) or (15) in the following way:
@)@ ={K= {k Yiellk; = US7,

H _ 1/2
U unitary and”U v’+\/‘5 ” = 0} (16)

(d)71(6) = (K= {ki}ie/[k; = US?

U unitary and”U —%5‘1/2” = 6}

d(p) == {K = {ki}ie/lk; = U,

U unitary and||U — VABS~1/2|| = ”U — WS”Z” =p}  (18)
where S is the frame operator associated to G. Moreover, any unitary operator that
parametrizes (d1)~1(8), (d*)~1(8) or d~1(p) as above, has the value 1 in its spectrum.
Proof. If G is a tight frame, then F1 = F2 = F° = Gand 6§ = p = 0 and the
problem is solved. Therefore, we may suppose that A < B.
We show this in the following way: In the first step we check that d'(F!) = d?(F?) =0
and d(F°) = p.Then,since 8 < 1, it follows that the infimum of d'and d? are less than
1. Now, using Corollary (1.1.5) and Theorem (1.1.4) we can reduce our problem to an
infimum of an operator norm. In the third step we will prove two lemmas, one to be applied
to d! and d?, and the other to d, and this will end, the proof.
(@) Let us check that (13), (14), (15) achieve the desired values for d', d? and d,

respectively. For f! = Qg; with Qz@gsﬁ/2 we have d'(F!) = c(G,F}) =

11 — Q1. Now,vA < S'/?2 <~/B where the inequalities cannot be improved. Therefore,

VE-VA_ | o VE-Vi
TVBVA = VB +Va
which means that ||1 — Q|| = 6. Similarly, for f> = Lg;, with L = %S‘”Z we have
d?(F%) = c¢(F%,G) = ||L — 1| and a similar calculus shows that d?(F2) = @ . For F° we
have f = Rg; with R = YABS~1/2 and therefore
d(F%) =log(1+ max(|IR — 1II,1I1 — R7|D).
Now, an easy calculation shows that

IR = 1l =11 — R =max<4\/g—1,1— ‘*\/3>=4\/E—1 .
A B A
7

a7)



Therefore, d(F°) = logi/é = p.

(b) Since we are looking for the infimum of the functions d!, d? and since 8 < 1 we may
then restrict our attention to only the tight frames F € 7* (or to T?) such that d!( F) < 1
(respectively, d?(F) < 1). But this implies also that d?(F) < oo (respectively, d'( F) <
o). Therefore, we may restrict our attention only to tight framesin 7 N T = T.

Corollary (1.1.5) tells us that these frames must have the form F = {f;},c; and

=+/CUg} =CUS~Y%g; for some C > 0 and U unitary. Hence

#5) - [1- 0] - |5t o] =
d2(F) = ”\/fUS_Tl— 1| = ”\/_Sz ~ul, (20)
d°(F) = max (|| =52 - v||. |[Vesz - u])). (21)

To minimize d is equivalent to minimizing d°; since d° has a simpler expression, we
prefer to work with d° from now on. Thus, our problem is reduced to find minima of the
operator norms (19), (20), (21) subject to € > 0 and U unitary.
(c) The next step is to solve these norm problems. For d* and d? we apply the following
lemma to be proved later:
Lemma (1.1.10)[62]: Consider R a selfadjoint operator on H with a = ||[R7!||"! and
b = ||R]| . Then, the solution of the following inf-problem

p= inf |larR =U]| (22)
u unitary
isgiven by u = Z%Z and a = ﬁ . This infimum is achieved by the identity operator; any
other unitary U that achieves the infimum must have 1 in its spectrum.
1
If we apply this lemma with R = Sz, & = — and a = VA, b = VB , then we get

VT
_ VB-VA _ . : :
= i =60 and a \/_ ik hence the parametrization (16) of the solutions. This shows

(19). For (20) we apply the lemma with R = S~%/2,a =+C and a = — ,b = — . We get
VB

VA
u=6anda = \/2_—\/?_ hence the parametrization (17) of the solutions.

Proof. Let § = a—— We denote by o(X) the spectrum of the operator X. Thus,

a,b € a(R). Now, by Weyl s criterion (see for instance, [200]), there are two sequences of
normed vectors in H, (v,,),,ex and ((wy,),en Such that
”vn” = ”Wn” = 1and llmn ”(R - a)vn” = Or llmn ” (R - b)Wn” = 0.

Consider & > 0. Let ¢ = %b . Then there exists an index N such that for any
n> N,|[Rw, — bw,]|| Si . We get |[aRw, || = ab — &> 1and

b—a
b+a

”(CZR - U)Wn” = ”aRWn” - ”UWn” = ”aRWn” —-1=>a b—e—-1=
Therefore,

+ &.

b—a b—a
”CZR—U”ZE+68>E—,H. (23)
Consider now & < 0. Let ¢ = Sa > 0. Then, there exists an N such that for any n >
N, |IRv, — av, || < 2 . We get ||aRv, || < aa + & < 1 and

I@R — Vv, [l = llaRv, |l = [ Uv, |l =1~ [l aRv, || =1~ aa—e=""+e¢.

+a
Therefore,

b—a b—a
||CZR—U||ZE+E>E—M. (24)
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From (23) and (24) we observe that the infimum of ||[aR — U|| has the value Z%Z and may

be achieved only if § =0, ie, a = ﬁ . Thus, the first part of the lemma has been

showed.
The set of all unitary U that achieves the infimum is then given by

{U: H— H|U unitary and ||—R U” = E} (25)

We still have to prove that the set (25) contains the identity and 1 is in spectrum of any

b—a

unitary operator from this set. From a< R < b we get —— <2 R-1<22
b+a ~ a+b b+a

Therefore, ”iR — 1” < b;a .But, us we have showed, TZ is the minimum that can be
achieved. Therefore, ”a—R — 1” = = p and thus, 1is in the set (25).
Now recall the sequence (v, ), and the mequallty (23) which is realized on (v,),,. For U in

the set (25) we have ”(—R U)
2

2 2,y _ 2
| (a+bR U) = +b)2 — (00, R?0,) — = (1, (RU + U"R)v,) + 1.
From (R — a)v, — 0 we get (v,, R?*v, ) — a?. Therefore,
a+b 4a? 2\ _
lim, (v,,, (RU + U R)v,) = 5= (2o + 1 0%) = 2a

Now:
RU+U'R=R-a)U+U*(R—a)+a(U +U"
and the previous limit gives lim,{ v,, (U + U")v, ) = 2.
Therefore,
“(U - 1)vn”2 = <vn(2 - (U + U*)vn) -0
or lim [|(U — 1), = 0 which proves 1 € o(0).

Lemma (1.1.11)[62]: Consider R a bounded invertible selfadjoint operator on H with

a= IIR‘lll‘1 and b = || R|| . Then, the solution of the following optimization problem:
—inf aso max(llaR ull, || R1 U||) (26)
U unitary
isgiven by u = \/; -1,a= \/__ and U in the set (27)

(U:H - H|U unitary and|| =R — U|| = |[VabR~* — U] = \/é— 13,
Moreover, the set (25) contains the identity and therefore, is not empty and the spectrum of
any U contains 1. The solution for d° is now straightforward: we apply this lemma to (21)

with R = SY2 |« =%_ and a=+vA, b =+vVB . We get pu= mind°=4\/g—1 and

a= \/A_ hence the parametrization (18) of the solution and the proof of theorem is

complete.
Proof. First, let us solve the following scalar problem:

) (28)

g = inf,., max (maxagsblax 1], max

o a<x<b
Because of monotonicity,
max |ax — 1| = max(|aa — 1], Iab - 1)),
a<x<p lax

a<x<b )
Therefore, it = inf,-, f (a) where

1 1
f(a) = max (Iaa —1|,|ab — 1], |—— 1|,|__ 1|)
aa ab

——1|,

aa

max = max (

9



It is now simple to check that the infimum may be achieved only when at least two moduli
are equal. This condition is fulfilled at the following points:
2 1 1 1 a 1 1 a+b

M= pim = gias = ohg (1= fa = gmias = piag = o

We evaluate f(a) at these points and we get
b—a vb—a
s fas) =

a a

a
;

b —
f(ay) = oa flaz) = (\/E— Vb—a),

b—a

b b —
flay) = \/;— 1;f(as) = Taif(%) =
It is obvious now that f(a,) < f(a;) = f(as) < f(az) = f(as) < f(az) and therefore,

_ b 1
a=f(a,) = \E— 1 and agpm = ag = = Observe also that for a = a, we have

1
max a,x —1| = max |——1].
anSb|4 | a<csh lagx

Let us now return to the norm problem (26). Our claim is that the infimum is

achieved for a = \/% =a, and U = 1 (the identity) and the value of the infimum is

U= \E— 1 = j& . The solution of the scalar problem (28) proves also that the set (27)

contains the identity. We are now going to prove that u = j is the optimum and @ = a,. As
in the previous lemma, consider (v,),> and (w,),>; two sequences of normed vectors in
H (llvall = llwy, |l = 1) such that lim, [|[(R — @)v, || = 0, lim[|(R — b)w, || = 0.

It is simple to check that lim ”(R‘1 — 2) v,|| =0 and lim ”(R‘1 — %) w,{| =0 hold
. Then, as the scalar problem proved, we

Vab

also. Now, consider some a > 0,a # a4 =
have
. _ 1 —
either argxagblaﬁf - 1-| > [ c?r Jmax |; - 1| > i (29)
Suppose the first inequality holds. Now, either |aa — 1| > or |ab — 1| > . In the
former case we use the sequence (v,), as follows: Let &= %(Iaa —1l-pg) >0
and let N, be such that||(R — a)v, || < ifor any n > N,. Then
I(aR — U)v, |l = [llaRv, || = [[Uv, l|=|allav, + (R — @)v, || — 1| = |aa — 1] —
a||(R — a)v, || > g + & which implies ||aR — U|| > i + eSimilarly, in the later case(|ab —
1>u—we take e=12 ab—1—-u>0 and Ve such that

(R —b)w,]| < ifor any n > N..Therefore,

|(@R — UV)w, || = [llaRw, || = [UW, |l|=]allbw, + (R — B)w, || — 1]
> |lab — 1| — a||(R — b)w,|| > i + .
Thus, in both cases we obtain||aR — U|| > a. If the second inequality in (29) holds, a

similar argument can be used to prove that, for ¢ + a, we have
lp-1— U|| >0

a

Therefore, the optimum in (26) is achieved for a = \/% and the value of itis u = \/g —-1.1t

is obvious now that the set of unitary operators that achieve the optimum is given by (27)
and also that the identity operator is in that set. The only problem that still remains to be
proved is that all these unitary operators have 1 in their spectra.

The previous argument shows the following conclusion fix §, > small enough and
let U be in the set (27). Then, forany 0 < § < §, the following inequality holds:

10



i< ||(6r+=R-U)w,

=
for n > N5 here Ng is an integer depending on §. Then, g < ||(5R +\/%R — U) w, || <
S|IR|| + fx for n > Ny, and it is fairly easy to prove now that ”(\%R — U) w, || = @& when

n — oo. Now, by repeating the argument given in the previous lemma we obtain lim, ||(U —
1w, || = 0 which proves 1 € o(U)and the lemma is showed. (or In this section we
introduced and studied a distance between Hilbert frames having the same index set I. This
distance partitions the set of frames into equivalency classes characterized (and indexed) by
closed subspaces of the space of coefficients I2(I). Thus, two frames are at a finite distance
if and only if their analysis operators have the same (closed) range in ?(I) and this happens
if and only if there exists a bounded and invertible operator on the Hilbert space that maps
one frame set into the other.)Next we determined the closest, respectively nearest, tight
frame to a given frame. It turns out that these tight frames are scaled versions of the
associated tight frame.We point out that the entire theory can be carried out on the set of
Hilbert frames over different Hilbert spaces, but indexed by the same index set. All the
results are similar, the changes being straightforward.

As a final remark we acknowledge that Lemmas (1.1.1) and (1.1.2) have also been
independently obtained by D. Han and D. R. Larson in a recent paper ([79]).

Section (1.2)[45]: Projection Decompositions of Operators

Frames were first introduced by Dufflin and Schaeffer [75] in 1952 as a component in the
development of non-harmonic Fourier series, and a paper by Daubechies, Grossmann, and
Meyer [94] in 1986 initiated the use of frame theory in signal processing. A frame on a
separable Hilbert space H is defined to be a complete collection of vectors{ x;} ¢ H for
which there exist constants 0 < A < B such that for any x € H, Allx||*> < X;|{x, x;)|* <
Bllx]||* .

The constants A and B are known as the frame bounds. The collection is called a
tight frame if A = B, and a Parseval frame if A = B = 1. (In some of the existing literature,
Parseval frames have been called normalized tight frames; however it should be noted that
other authors have used the term normalized to describe a frame consisting only of unit
vectors.) The length of a frame is the number of vectors it contains, which cannot be less
than the Hilbert space dimension. References in the study of frames include [184], [79], and
[185].

Hilbert space frames are used in a variety of signal processing applications, often
demanding additional structure. Tight frames may be constructed having

specified length, components having a predetermined sequence of norms, or with properties
making them resilient to erasures. For examples, see [36], [47], and [49]. One area of
rapidly advancing research lies in describing tight frames in which all the vectors are of
equal norm, and thus are elements of a sphere, [36]. Since frame theory is geometric in
nature, it is natural to ask which other surfaces in a finite or infinite dimensional Hilbert
space contain tight frames.

By an ellipsoidal surface we mean the image of the unit sphere S; = {x : [|x|| =
1} under a bounded invertible operator T € B(H) . Let £, denote the ellipsoidal surface
Er =TS, . A frame contained in & is called an ellipsoidal frame, and if it is tight it is
called an ellipsoidal tight frame (ETF) for that surface. We say that a frame bound K is
attainable for E; if there is an ET for £; with frame bound K. If an ellipsoid £ is a sphere
we will call a frame in € spherical.

Given an ellipsoid &€, we can assume £ = & , where T is a positive invertible
operator. Given A an invertible operator, let A* = U|A*| be the polar decomposition where
|A*| = (AA*)Y/2. Then A = |A*|U". By taking T = | A*| we see that T'S; = AS; . Moreover
it is easily seen that the positive operator T for which &€ = £ is unique.
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Throughout the section, H will be a separable real or complex Hilbert space and for
x; y; u € J, we will use the notation x @ y to denote the rank-one operator u — (u, y)x.
Note that ||x || = 1 implies that x @ x is a rank-1 projection. There are three theorems in
this section. The first gives an elementary construction of ETF's when # = R", and is
proved in this Section .

We note that, in the non-degenerate case, the definition of an ellipsoidal surface &
given in Theorem(1.2.2) is equivalent to the definition given in the introduction, specifying
that the Hilbert space be R"™ . Indeed, if a;,>1for all i=1,..,n and if

D= diag(al_ a,, ...,an),then X al-xl-2 =1iff (Dx,x) = 1ifand only if

”D%x | 1 iff Dix € S;(R") ifand onlyif x € D~Y/25,(R"). So € = &7 for T = D~/2,
and thus ¢ has the requisite form. To reverse this argument for a non-diagonal positive
operator T, first diagonalize it by an orthogonal transformation given by rotations.
Reversing the steps will then show that e is equivalent to € for some choice of positive
constants {a, , ..., a, }. The second theorem is used to prove Theorem(1.2.3) in the infinite
dimensional case. It has independent interest in operator theory, and to our knowledge is
a new result. The proof, as well as the corresponding result infinite dimensions (Proposition
(1.2.6)), is contained in this Section . Some preliminaries are required before we state
Theorem(1.2.2).

It is well-known (see [187]) that a separably acting positive operator A decomposes as the
direct sum of a positive operator A;with nonatomic spectral measure and a positive
operator A, with purely atomic spectral measure (i.e., a diagonalizable operator). For
B € B(H) , the essential norm of B is ||B||.ss := inf {||B — K || : K is a compact operator
in B(H)}.

In the proof of Proposition (1.2. 11), we have the special case where A is a diagonal

operator, A = diag(a, ay, ...), with respect to some orthonormal basis. In this case, it is
clear that ||A||.ss = sup {& > 0: |a;| = « for infinitely many i}.
For a positive operator A with spectrum o (4), we have ||A|| = supifl : 1 € a(A)} and if A
is invertible, then||A71||™! = infif}l : 1 € 0(4)}. Similarly, ||All,ss = sup{1: 1 € g, (4)
and [|A7'IZss = infifid : A € 0,5, (A)}.In particular, AT < JATHISS < Al ess <
lIAll.

For A a positive operator, we say that A has a projection decomposition if A can be
expressed as the sum of a finite or infinite sequence of (not necessarily mutually orthogonal)
self-adjoint projections, with convergence in the strong operator topology.

Note that in this theorem A need not be invertible. There are theorems in the literature (e.g.,

[188]) expressing operators as linear combinations of projections and as sums of

idempotents (non self-adjoint projections). The decomposition in Theorem(1.2.9) is

different in that each term is a self-adjoint projection rather than a scalar multiple of a

projection.

The next theorem states that every ellipsoidal surface contains a tight frame. We also

include some detailed information about the nature of the set of attainable frame bounds.

Lemma(l.2. 1)[45]: Let n € N, leta,, ..., a, = 0.be such that ¥:7 a; = n and let
e={x=(x,..,x,)" € RX} ajsz = 1}.

Then there is an orthonormal basis v, ..., v, for R" consisting of vectors v; € ¢.

Proof: Proceed by induction on n. The case n = 1 is trivial. Assume n > 2 and without

loss of generality suppose a; =1 and a, <1. Let 6 be such that a; (cos 6)* +

a, (sin )% = 1and let b, = a,(sin 8)? + a,(cos §)2. Consider the rotation matrix
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cosf sinf

—sinf cos6
1
w1

R =

Then
R7'e ={(yy, ... y)" ER|

y + 2(a; — a,)y;y,cos0sinf + b,y + Y& atjyj2 = 1}.
We have b, + Y5 a; =n — 1. Let v be the subspace of R" consisting of all vectors of the
form (0, x, ..., x,)". By the induction hypothesis, there is n orthonormal basis u, ..., u, for
v consisting of vectors u; € Rle. Let u; = (1,0,...,0)* € R", and let v; = Ru; . Then
V1, ..., U, IS an orthonormal basis for R™ consisting of vectors v; € e.
In the case of a general ellipsoid, where}.;_;a; =r >0, the lemma gives a constant
multiple of an orthonormal basis on the ellipsoid.
Theorem(1.2.2)[45]: Letn; k € Nwithn <k, leta,,...,a, = 0besuchthatr:=27qa >

0 and consider the (possibly degenerate) ellipsoid
D axt = 1]-

1
Then there is a tight frame for R™ consisting of k vectors u4, ..., u; € €.

This result is valid for degenerate ellipsoids (in which some of the major axes are infinitely

long). Our method of proof provides geometric insight to the problem, but does not extend

to infinite dimensions.

Proof. Consider the isometry W: R* — R¥ and the projection P = W*: R¥ —» R" given by
W(xg, e ) = (%41, 0, %,,0, ..., 0)F,

P(xq, ., %) = ((xq, b x)"
Leta; = 0 forn+1<j< kand let

£=14x = (x1, ..., x,)" ER"

k

D a4y = 1}-

£ = {y =, Vi)t €RK
1

By Lemma(1.2. 1), there is a multiple of an orthonormal basis vy, ...., v, for R¥ consisting
of vectors v; € €. Let w, = Pv; . Then u; € &. Moreover, u,, ..., u is a tight frame for R",
because if x € R™, then

k k

Sl =Y lwx ) == el = < e,

= = r r
Proposition(1.2.3)[45]: Let A € B(H) be a finite rank positive operator with integer trace
k. If k € rank(A), then A is the sum of k projections of rank one.
Proof. We will construct unit vectors x1; xq, x5, ..., xS0 that A is the sum of the projections
x; @ x; . The proof uses induction on k. Let n = rank(A) and write H,, = range(A). If
k = 1, then A must itself be a rank-1 projection.
Assume k > 2. Select an orthonormal basis {e;}7—, for H, such that A can be written on
H,,as a diagonal matrix with positive entries a; = a, ...a,, > 0.
Case 1: k > n. In this case, we have a; > 1, so we can take x, = e;. The remainder on
I,

A—(x, @ x,) = diag(a; — 1,a,, ...,a,),

has positive diagonal entries, still has rank n, and now has trace k — 1 > n. By the
inductive hypothesis, the result holds.
Case 2: k = n. We now have that a; = 1 and a,, < 1. Given any finite rank, self-adjoint
R € B(H) , let u, (R) denote the n-th largest eigenvalue of R counting multiplicity. Note
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that w,(A—(e1®e))=20,u,(A—(,®e,)) <0, and p,(A-(xQx)) is a
continuous function of x € #,,. Hence, there exists y € A, such that
U, (A—(y ®y)) =0. Choose x;, =y. Note the remainder (A — (x, ® x;)) =0 and
Trace (A— (x, ® %)) =n—1,Rank (A— (, ®x))=n—-1=k— 1
Again, by the inductive hypothesis, the result holds. _
Lemma (1.2.4)[45]: Let P, P,, ..., B, be mutually orthogonal projections on a Hilbert space
H, all of the same nonzero rank k, where k can be finite or Infinite. Let 1,15, ..., 1, be
nonnegative real numbers, and let r = )} r;. Difine the operator
A =nP+ nP+-+nh,.
If the sum r is an integer and r > n, then there exist rank-k projections Qy, ..., Q, such that
A= 01 +0Qx+ -+ 0.

Proof. If k =1, then r = trace(A) and we have rank (A) < n < r, so the result follows
from Proposition (1.3.3). If k > 1, each projection P; can be written as a sum of k mutually
orthogonal rank-1 projections:

P,=Py +Py+-+Py.
(Here and elsewhere in this proof, sums with indices running from 1 to k should be
interpreted as infinite sums in the case where k = c0.) All rank-1 projections P;; are thus
mutually orthogonal. Define operators Ay, ..., Ay by A, =11Pyj + 1Py + -+ 1, P
Now, A = A; + -+ + A, and each A; has rank n and trace r. By Proposition(1.2.3), each
A; can be written as a sum of r rank-1 projections:

A =T+ T+ ..+ T,
Note that projections T;; and T, are orthogonal if j # m. De_ne the rank-k projections
Q1 -, @y by

Q =Ty +Ty ++ Ty
ThisgivesA=Q,+Q, + ..+ Q,.
Lemma(1.2.5)[45]: Let A be a positive operator with finite spectrum contained in the
rationals @, such that all spectral projections are infinite dimensional, and also such that
||A]l > 1. Then A is a finite sum of self-adjoint projections.
Proof. By hypothesis, there are mutually orthogonal infinite-rank projections P;, ..., P, and
positive rational numbersr; > r, > .-+ = r;, such that

A=nrP +--+1P,.
By hypothesis ||A]| > 1, hence r; > 1.
Write r; = s;/t; with s;and t; positive integers, and let s =}, s;, t =X, t; . We may
assume s > t, for otherwise we can choose m € Nsuch that
ms; +s,+:-+s, =2mt;+t, +---+¢,

and replace s; with ms; and t with mt;.
Each P; can be written as a sum of ¢; mutually orthogonal infinite rank projections P;; ,j =
1, ..., t; which then allows us to write

n b
A=zZT‘iPij.

i=1j=1
The operator is now a linear combination of ). t; = t mutually orthogonal Projections of
infinite rank, and the sum of the coefficients is now an integer ) t;7; =) s; = s. Since
s > t, Lemma (1.2.4) implies that A can be written as a sum of s projections.
Lemma (1.2.6)[45]: Let A be a positive operator which has a projection-decomposition.
Then either A is a projection or |[A]| > 1.
Proof. Suppose, to obtain a contradiction, that ||A|| < 1 and that A is not a projection. By
assumption, A = Y, P, with the series converging strongly.

ThusA—P > Oforalli. Then P(A— PB)P, > 0,so BAP, > P.
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LetK; = BH and B = PA| g, . Then B; is positive and B; = I, (the identity operator

on K;). Since ||B; || < 1, this implies B; = I, and thus
PAR = P.

Now, B =P(;P )P =P + % PBP ;50 ¥ PBP =0 . Since each PPP > 0, this
implies PP, = 0. Thus, (BR) (PR) = 0, so PP, = 0. Since this is true for arbitrary i,j
with i # j, this shows that A is the sum of mutually orthogonal projections, and hence is
itself a projection.
The contradiction shows the result.
Proposition(1.2.7)[45]: Let A be a positive operator in B(H) with the property that all
nonzero spectral projections for A are of infinite rank. If ||A || > 1, then A admits a
projection decomposition as a sum of infinite rank projections.
Proof. We will show that A can be written as a sum A = Y72, A; of positive operators, each
satisfying the hypotheses of Lemma(1.2.5), where the sum converges in the strong operator
topology. We can then decompose each of the operators A; as a finite sum of projections
A and then re-enumerate with a single index to obtain a sequence Q; of projections which
sumto A in SOT. Indeed, the partial sums of ). Q; are dominated by A, hence}; Q; converges
strongly to some operator C, and since the partial sums of )’ A; are also partial sums of }; Q;
, the sequence of partial sums of ). Q; has a subsequence which converges to A4, and hence
C = A.

By hypothesis, we have ||A|| > 1. We may choose a positive rational number a > 1
and a nonzero spectral projection G for A suchthat A > aG.

Let B=A— aG, so that B > 0. Using a standard argument, we can write B =

7>, B;, where each B; is a positive rational multiple of a spectral projection for A, with
convergence in the SOT. We can write G = Y. G;, G; as an infinite direct sum of nonzero
infinite rank projections, with the requirement that G; be a subprojection of G which
commutes with all the spectral projections for A. (This can clearly be done when the
spectral projections for A are all of infinite rank.) Now, let A; = aG; + B;. We have
Al = a > 1.

By Lemma(1.2.5), it follows that A; is a finite sum of projections. By the
construction, we have the requisite form A = A;.
Proposition(1.2.8)[45]: Let A be a positive operator in B(H) which is diagonal with
respect to some orthonormal basis {e;} for the Hilbert space 7. Suppose ||A|l,ss > 1. Then
there is a sequence of rank-1 projections {P;};=, = 1 such that A =Y, P;, where the sum
converges in the strong operator topology.
Proof. Write A as diag (ag,a4,...) and let E, = e, ® e, . Since ||A||.sc > 1, there is a
constant « > 1 such that a; = a for infinitely many i. Let k > 2 be an integer such that
1+ 2/(k—1) < a.Permuting if necessary, we can without loss of generality assume that
the indices n for which a,, < « are all multiples of k.

Let By = agEy + - + a,_q Ex_1. Therefore, we have rank (By) < k and Trace (B;) =
k1a, 2a0+(k—1)a2a0+(k—1)(1+kzj)=a0+k+1.

Let L, be the greatest integer less than trace (By). Then L, = k + 1. Define a;,_; to

be the real number 0 < 4, _; < aj_, such that if
By = apEy + -+ ay 2B o + a1 Ep 4,
then
trace(BO) =Lg=>k + 1> rank(BO)
By Proposition(1.2. 3) B, can be written as a sum of L, rank-1 projections.
In the next step, let ak 1= A1 — a,_q, and let
By = ay_1Ex_1 + ayEy + Qy1Epyr + -+ age_1 By,
Thusrank (B;) < k + 1 and
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Trace (By) = a};_l +a, + (g ++axy_q) = a;_l +a, +(k—1a

p 2 "
>a,_1+a.+k-1) (1 +m) =a,_1+a,+k+1=rank(B,).

Construct B; in a similar manner, so that its trace is an integer greater than or equal
to its rank. Then B; can be written as a sum of rank-1 projections using Proposition(1.2.3).
Proceeding recursively in a like manner, we may write A = }”ZIBJ.' converging in SOT,
Wh,ere each Bj' IS a positive operator supported in Ejk_l + -+ E11)k—1 and with trace
(B;) an integer that is greater than or equal to rank(B;). Invoking Proposition(1.2.3) again
to write each Bj' as a sum of rank-1 projections, the proposition is showed.
Theorem(1.2.9)[45]: Let A be a positive operator in B(H) for H a real or complex Hilbert
space with infinite dimension, and suppose ||A|l .. > 1. Then A has a projection
decomposition
Proof . Write A = A; + A,, where A; and A, respectively denote the nonatomic and purely
atomic parts of A. Then ”Allless = ”Alll ’ and ”A”ess = maX"ﬂlAlll, ”Azlless } So
|A]l,ss > 1 implies ||A{|l > 1 or||A4,|l.ss > 1. Suppose first that ||A,|] > 1. Then there is
a nonzero spectral projection P for A; and a constant « > 1 such that A;P > aP. Let Q be a
nonzero spectral projection for A; dominated by P such that P — Q # 0.

Then A; —aQ satisfies the hypotheses of Proposition (1.2.7), so is projection
decomposable. Also, QA;, = A,Q = 0,s0 A, + aQ is a diagonal operator with essential
norm greater than or equal to «a, and so it is projection decomposable by Proposition
(1.2.8). The result follows by decomposing A; — aQ and A, — aQ as sums of projections
and combining the series.

For the case ||4A;]| <1 and [|4,]|,sc > 1, we use a similar argument. There is a constant
a > 1 and an infinite rank spectral projection P for A, such that A, —aP > 0. Then P
dominates a projection Q that commutes with A, such that both Q and P — Q are of infinite
rank. Then A, — aQ satisfies Proposition (1.2.8) and hence has a projection decomposition.
The operator A; + aQ has norm greater than or equal to a and all of its nonzero spectral
projections have infinite rank, so it satisfies the hypotheses of Proposition(1.2.7). Thus,
A; + aQ has a projection decomposition, and we combine this decomposition with the
decomposition of A, + aQ to get a projection decomposition for A.

Let 2 be a finite or countably infinite dimensional Hilbert space. Let {x; }j eDbe a frame for

H, where J is some index set. Consider the standard frame operator defined by

Sw= ) wx)y = (5 ®x)w.
j€) j€)
Thus, S = ¥ x; ® x;, where this series of positive rank-1 operators converges in the strong
operator topology (i.e., the topology of pointwise convergence).
In the special case where each ||x; || = 1, is the sum of the rank-1 projections

P =x ®x; . Ifwelety, = S71/2x;, then it is well-known that {y;} _is a Parseval frame

J€J
(i.e., tight with frame bound 1). If each ||x; || = 1, then {y, }jeﬂ is an ellipsoidal tight frame

for the ellipsoidal surface e,-1,2 = S71/2S; .

Moreover, it is well-known (see [79]) that a sequence {xj }j - C H is a tight frame for H if
and only if the frame operator S is a positive scalar multiple of the identity, i.e., S = KI, and
in this case K is the frame bound.

The link between Theorem(1.2.9) and Theorem(1.2.11) is the following:

Proposition(1.3.10)[45]: Let T be a positive invertible operator in B(H) , and let
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K > 0 be a positive constant. The ellipsoidal surface £, = TS; contains a tight frame {y;}
with frame bound K if and only if the operator R = KT~? admits a projection
decomposition. In this case, R is the frame operator for the spherical frame {T~1y,}.

Proof. We present the proof in the infinite dimensional setting, and note that the
calculations in the finite dimensional case are identical but do not require discussion of
convergence. Let ] be a finite or infinite index set.

Assume & contains a tight frame {y; }j ., With frame bound K. Then %;;¢;y; ® y; = K1, with

the series converging in the strong operator topology.
Letx; := T‘lyj € 51,50 x; @ x; are projections. We can then compute:

R =KT? = T1<Zy] ®)/,>T1 ZZT_lyj ®T_1yj :Zx) ®x]

j€l j€l j€l

This shows that R can be decomposed as required. Conversely, suppose R admits a
projection decomposition R =P , where {P]} are self-adjoint projections and
convergence is in the strong operator topology. We can assume that the P have rank-1, for
otherwise we can decompose each P, as a strongly convergent sum of rank-1 projections, and
re-enumerate appropriately. Since B = 0, the convergence is independent of the
enumeration used. Write P=xQ xjfor some unit vector X Letting y, = Tx; , we have
y; € er,and we also have

Kl = TRT=T<Zx,- ®xj>T=Zij &® Tx; =Zyj ® .

j€l J€J j€J
This shows that), y; ® y; converges in the strong operator topology to K1.
Thus, {y; }j ., is atight frame on ., as required.

Theorem(1.2. 11)[45]: Let T be a bounded invertible operator on a real or complex Hilbert
space. Then the ellipsoidal surface & contains a tight frame. If H is finite dimensional with
n = dim¥H, then for any integer k > n, ey contains a tight frame of length k, and every
ETF on 7 of length k has frame bound K = k[ trace(T~2]71. If dim3 = oo then for any
constant K > ||T2||;.L ercontains a tight frame with frame bound K.

We begin by showing that every ellipsoid can be scaled to contain an orthonormal basis.

Proof. Let € be an ellipsoid. Then € = & = TS, for some positive invertible T € B(H) .
Let K be a positive constant, and let R = KT 2.

The condition K > ||[T2||;L implies ||R|l,ss > 1. So, by Theorem (1.2.9), R admits a
projection decomposition, and thus Proposition(1.2.10) implies that E contains a tight frame
with frame bound K.

In the finite dimensional case, let n = dim3 . Proposition (1.2.10) states that £ will contain
a tight frame with frame bound D if and only if KT 2 admits a projection decomposition,
and by Proposition(1.2.3) this happens if and only if trace(KT~2) is an integer k > n, and in
this case k is the length of the frame. Thus, we have K = k[trace(T~2)]~!. Therefore,
every ellipsoid € = &, contains a tight frame of every length k > n, and every such tight
frame has frame bound k[trace(T~%)]71.

Corollary(1.2.12)[45]: Every positive invertible operator S on a separable Hilbert space H
is the frame operator for a spherical frame. If H has finite dimension n, then for every
integer k > n, S is the frame operator for a spherical frame of length k, and the radius of

the sphere is \/trace(S)/k. If 7 is infinite dimensional, the radius of the sphere can be

taken to be any positive number
1/2
ess "

r < |IS]]
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Proof. In the finite dimensional case, let c = k/trace(S) and A = ¢S, so that trace (4) = k.
Then,by Proposition(1.2.3), A has a projection decomposition into k rank-1 projections,
making A the frame operator for the frame of unit vectors ||xl-||§‘=1. Thus, S is the frame

operator for {x; /\/E}le.

When H has infinite dimension, let ¢ be any constant greater than |||, and let A = cS.
The hypotheses of Theorem (1.2.9) are satisfied, so A admits a projection decomposition.
Then A is the frame operator for a frame {x;} of unit vectors, so S is the frame operator for

the spherical frame {x; /v/c}.
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Chapter 2
Parseval Frames and Prescribed Norms

We further investigate several of Parseval frame properties. Finally, we apply the
algorithm to several numerical examples . Let H be a finite dimensional (real or complex)
Hilbert space and let {a;};=, be a non-increasing sequence of positive humbers. Given a
finite sequence of vectors F = {f;}}_; in 3£ we find necessary and sufficient
conditions for the existence of r € N U {0} and a Bessel sequence G = {g;}/—; in H such
that F U G is a tight frame for H and||g;||> = a; for1<i<r.

Section(2.1)[71]: A Generalization Of Gram-Schmidt Orthogonalization
Let H'be a finite—dimensional Hilbert space. A sequence (f;)7—; € H forms a frame, if
there exist constants 0 < A < B < oo such that

Allgll* < T Kf o) < Bllgll* forall g € H. 1)
Frames have turned out to be an essential tool for many applications such as, for example,
data transmission, due to their robustness not only against noise but also against losses and
due to their freedom in design [74, 47]. Their main advantage lies in the fact that a frame
can be designed to be redundant while still providing a reconstruction formula. Since the
frame operator Sg = X"_,(g,f;) f; is invertible, each vector g € % can be always
reconstructed from the values (g, f;)7-; via

n
g=55"g =) (a.f)S7'f:
i=1

However, the inverse frame operator is usually very complicated to compute. This
difficulty can be avoided by choosing a frame whose frame operator equals the identity.
This is one reason why Parseval frames, i.e., frames for which S = Id or equivalently for
which A and B in (1) can be chosen as A = B = 1, enjoy rapidly increasing attention.
Another reason is that quite recently it was shown by Benedetto and Fickus [36] that in R®
as well as in €% finite equal norm Parseval frames, i.e., finite Parseval frames whose
elements all have the same norm, are exactly those sequences which are in equilibrium
under the so—called frame force, which parallels a Coulomb potential law in electrostatics.
In fact, they demonstrate that in this setting both orthonormal sets and finite equal norm
Parseval frames arise from the same optimization problem. Thus, in general, Parseval
frames are perceived as the most natural generalization of orthogonal bases [183],[74].

Our algorithm is designed to be iterative in the sense that one vector is added each
time to an already modified set of vectors and then the new set is adjusted again. In each
iteration it not only computes a Parseval frame for the span of the sequence of vectors
already dealt with at this point, but also preserves redundancy in an exact way. Moreover, it
reduces to Gram-Schmidt orthogonalization if applied to a sequence of linearly independent
vectors and each time a linearly dependent vector is added, the algorithm computes the
Parseval frame which is closest in 2 —norm to the already modified sequence of vectors.

The section is organized as follows. In this Section we first state the algorithm and
show that it in fact generates a special Parseval frame in each iteration. Additional
properties of the algorithm such as, for example, the preservation of redundancy, are treated
in this Section. Finally, in this Section we first compare the complexity of our algorithm
with the complexity of the Gram-Schmidt orthogonalization and then study the different
steps of the algorithm applied to several numerical examples. Throughout this section let H
denote a finite—dimensional Hilbert space. We start by describing our iterative algorithm.
On input n € N and f = (f;)i~, € H the procedure GGSP (Generalized Gram-Schmidt
orthogonalization to compute Parseval frames) outputs a Parseval frame g = (g;)i=; € H
for span{(f;)i=1} with special properties (see Theorem 2.2). procedure GGSP(n, f; g)
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0 fork:=1tondo

1 begin

2 if f, = 0then
3 gr:=0;

4 else

5 begin

6 gr:i=/fi — Zj‘(;ll<fkugj>gj;
7 ifg, #0 then
8

Gie *= ||gk|| [IPELE
9 else
10 begin

jr — —_ .= - 1 ! — . '
11 fori:= 1tok—1do g, gi + TAE (W 1) (Gi» fie) fies

1
12 ke \/1+||fk||2fk,
13 end;
14 end;
15 end;
end.

In the remainder of this section the following notation will be used.
Let & denote the mapping(f;)’=; — (g;)i=; of a sequence of vectors in H to another
sequence of vectors in H given by the procedure GGSP. We will also use the notation

(fDi=1,9) = (fi, .. fo, g) for (f)iz, c H and g € H.
The foIIowing result shows that the algorithm not only produces a Parseval frame for

span{(ﬁ } but even in each iteration also produces a special Parseval frame for
span{(f)ia} ke = 1,. 1

It is well-known that applylng S72 to a sequence of vectors (f;)_, in 7 yields a Parseval
frame, where S denotes the frame operator for this sequence (see [182]). Moreover,
Theorem(2.1. 3) will show that the Parseval frame (S 2 ﬁ _, Is the closest |n I2—norm to
the sequence (f;)-; . However, in general the computatlon of the operator S™ 2 is not very

efficient. In fact, in our algorithm we do not compute S‘E((ﬁ " ). Instead in each iteration
when adding a vector, which is linearly dependent to the already modified vectors, we apply

1
Sz to those vectors and the added one, where here S denotes the frame operator for this
new set of vectors. This eases the computation in a significant manner, since the set of
computed vectors already forms a Parseval frame, and nevertheless we compute the closest
Parseval frame in each iteration. When we add a linearly independent vector, we
orthogonalize this one vector by using a Gram-Schmidt step. Thus this algorithm is also a
generalization of Gram-Schmidt orthogonalization
Theorem(2.1.1)[71]: Let n €N and (f))/-; € H. Then, for each k € {1,...,n}, the
sequence of vectors ®((f,)~,) is a Parseval frame for span{(f,)k, = span{d)((ﬁ D}
In particular, for each k € {1, ..., n}, the following conditions hold

(i) Iff; Espan{((ﬁ 1)} then

(/) = (S 2@(T), f),
where S is the frame operator for (P ((ﬁ) ), fk)

(“) Iffk $Span{(fl } then
((ﬁ L)) = (@D 00), gk €A llgill =1
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and

g L @ ((fi)i-{:_f )
Proof. We will prove the first claim by induction and meanwhile in each step we show that,
in particular, the claims in (i) and (ii) hold. For this, let [ denote the smallest number in
{1,...,n} with f; # 0. Obviously, foreach k € {1,...,1 — 1} the generated set of vectors g,
(see I|ne 3 of GGSP) forms a Parseval frame for span{(ﬁ _,} = {0} and also (i) is fulfilled.
The hypothesis in (ii) does not apply here. Next notice that in the case k =1 we have

g = ”fl ” fi. (line 8), which certainly is a Parseval frame for span{(f,)*_,} = span{f;}. It

Is also easy to see that (i) and (ii) are satisfied.

Now fix some k € {l+1,.. n} and assume that the sequence (g,)*=! := ®((f) ) is a

Parseval frame for span{(f,)’=!} = span{(gl i } We have to study two cases.

Case 1: The vector g, := f —Z}‘;ll(fk,gj)gj computed in line 6 is trivial. This implies that
span{(f)i=f } = span{(@)I5)'} = span{(f)iz ), (2)

since otherwise the Gram—Schmidt orthogonalization step would yield a non-trivial vector.
In particular, only the hypothesis in (i) applies.
Now let P denote the orthogonal projection of }[ onto span{f; }. In order to compute

1
S~z , where S denotes the frame operator for ((g;)*ZL, f.), we first show that each (I —
P)gl,z =1,...,k—1 is an eigenvector for S with respect to the eigenvalue 1 or the zero

vector. This claim follows immediately from
k—1

SU - P)g, = Z((z P)7.3) 5 + (U - P)F. fofy

= 2 ((1 _P)gug])g]

= (I—-P)g;
since (g;)*=! is a Parseval frame for span{(g;)*=! }. Also f, is an eigenvector for S, but
with respect to the elgenvalue 1+ |1 112, which is proven by the following calculation:

Sfi = Z(fk,g,>g, + o ffe = (1 + AP

Using f}, as an elgenba5|s for P(span{(gl }) and an arbitrary eigenbasis for (I —

P) (Span{(gl-)izl }), we can diagonalize S to compute S72 . This together with the fact that
(I - P)g;,i =1,...,k—1is an eigenvector for S with respect to the eigenvalue 1 and that
S(I —-P)f, =0 ylelds

572G = mpgﬁ (-
and

P)g; for 1<i<k-1

1 !
S =1-— .
Jie Nk

Comparing these equalities with line 11 and 12 of GGSP shows that in fact
d(f)k! :( ‘%((gi kol fk)> , which is (i). By [183] and (14), this immediately

implies that the sequence ®((f,)¥.,) is a Parseval frame for span{CD((ﬁ 1)}—

span{(f)i=1 )}
Case2: The condition in line 7 applies, i.e., we have g, := (fi — X/=i{fi, G0 3;) /

(i = Zfzif ggi||) #0 . Then we set g;:=g for all i=1,.. k-1
Obviously, |lg, |l = 1. Moreover, since by induction hypothesis (g;)%=! forms a Parseval
frame, foreachi =1,...,k — 1, we have
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(9o fi = ) s §)5)) = {9 fid = (G fi) = 0.

Thus g, is normalized vector, which is orthogonal to g4, ..., g,—1. Hence (ii) is satisfied and,
for all h € span{(g;)¥_,}, we obtain
k k-1

D K gdl2 = Y KU = PO gI: + KPR g = I = PYRIZ + [IPAI = IIAlf,

i= i=1
where P denotes the orthogonal projection of # onto span{g,}. This proves that
(gl 1) CD(ﬁ ) is a Parseval frame for span{®(f;)¥ 1)} Moreover, we have

span{®((f){=1)} = span{(f)i=], fi - X[ Z1{fi, 9;) 9; = span{(f,){=, }. This finishes the
proof, since the hypothesis in (i) does not apply in this case.

The algorithm can be seen as a “Gram—Schmidt procedure backwards” in the sense
that in each iteration, if the added vector is linearly dependent to the already computed
vectors, not only this vector is modified, but also all the other vectors are rearranged with
respect to the new vector so that the collection forms a Parseval frame. This way of
computation will be demonstrated by several examples in Subsection .

In this section we first determine in general which Parseval frame is the closest to the initial
sequence and study which properties of our algorithm this result implies.

Then we investigate several additional properties of the procedure GGSP, in particular we
characterize those sequences, which lead to orthonormal bases, and we show that &
regarded as a map from finite sequences to Parseval frames is “almost” bijective. At last, we
examine the redundancy of the generated Parseval frame.

Given a sequence (f;)i—; with frame operator S, by [183], the sequence (S ﬁ _, always
forms a Parseval frame The following result shows that this sequence can in fact be
characterized as the very same Parseval frame, which is the closest to(f;)™, in [*-norm.
Theorem(2.1.2)[71]: If (f;)i; € H,n € N is any frame for # with frame operator S,
then

Z”f S 1/ZfL” mf{ZIIfl gill?: (g)™,is a Parseval frame forH .

Moreover (S~ 1/2ﬁ ', is the unique minimizer.
Proof. Let (e; )Fl,d = dim3, be an orthonormal eigenvector basis for /' with respect to
S and respective eigenvalues (4, )J‘Ll. Then we can rewrite the left-hand side of the claimed

inequality in the following way:
2

illﬁ—s-“%llz Z Z<ﬁ,e>e— (e
i=1

2

2
= Y0, Xl g)] 1—?—}_
2
=y, 1—?}_ el
2
=S (1| 4

- Z:;i=1(’1j N 2\/71' T 1)-
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Now let (g;)I-, be an arbitrary Parseval frame for #. Using again the eigenbasis and its

eigenvalues, we obtain
2

leﬁ gl|2—z Z(ﬁ,e>e (906

) ; j=1|<fi'ej _(gi’eﬂl
= 3 St ([ +|(gi,ej)| — 2Re(fi ¢ g, 9)])
Zm,ej)(gi,e,-)])
=1

N i (ikﬁvej”z + il(gi,ej)l2 — 2Re
j=1 \i=1 =1

=271 (4 + 1= 2Re[X7 (fi ¢ Xgi )])-
Moreover, we have

¢ Re[Zri(f, e Xgu )] < T4 Ti|(fe)| [(gue)]

2 2
sl (5 lan el
= Zfl =1 \/T
Combining this estimate with the computations above yields

I = g2 = B (3 — 297 + 1) = Sl - s
Slnce (S™Y2£)™, is a Parseval frame for 7€, the first clalm follows.
For the moreover part, suppose that (g;)7—,is another minimizer. Then, by the above
calculation, for each k € {1,...,n}, we have

Re(fy. e )(gk, )= |<fkfej>| |<gkfej>| (3)
and, foreachj € {1,...,d},

Sl 5101 = \/Z”_1|<fk,e->|2Jzn_lkgk,e»lz- @

Now let 7 ; ,s,; > 0and 6, ; ,9; € [0,2m) be such that (f, e;) = 7, ;e and
(gr,€) = s e’V . We compute

Re[(fi, e Xgi. €)] = rk,jsk,jRe[ei(gk‘j_w k)] = Tiej Sk €0S(Or — ;).
Hence (3) implies that

Ty Sk €0S(Orj = Yii) =Ty,

which in turn yields 6, ; =, .Thus(gy,e) = t;; {fi,e) for some ¢t,; >0 for all
ke€{l,...,n}j€e{l,...,d}. By (4), for each j € {1,...,d} there exists some u; > 0 such
that

ujl(fkfej)| = |<gkfej)| = tk,j|(fkfej>|-
This implies t, ; = u; forall k € {1,...,n}. Hence, for each k € {1,...,n} and
j €{1,...,d}, we obtain the relation

<gkre)_u (fkre) (5)
Since (g;)-, is a Parseval frame for H', we have

1= Zk=1|(gkrej)| =Y Z:k=1|<fk'ej>| = u’},
This shows that u; = f . Thus, using (5) and the definition of (ej);l_1 and (/1]-);,1_1, it
A = =

follows that g, = S~'/2f forall k € {1,...,n}.
This result together with Theorem( 2.1.1) (i) implies the following property of our
algorithm.
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Corollary(2.1. 3)[71]: In each iteration of GGSP, in which a linearly dependent vector is
added, the algorithm computes the unique Parseval frame, which is closest to the frame
consisting of the already computed vectors and the added one.
Next we characterize those sequences of vectors applied to which the algorithm computes
an orthonormal basis. The proof will show that this is exactly the case,when only the steps
of the Gram—Schmidt orthogonalization are carried out.
Proposition(2.1.4)[71]: Let (f;)!-; € H,n € N. The following conditions are equivalent.
(a) The sequence @ ((f;)™,) is an orthonormal basis for span{(f;)?;}.
(b) The sequence (f;)™ is linearly independent.
Proof. If (b) holds, only line 6-8 of GGSP will be performed and these steps coincide with
Gram-Schmidt orthogonalization, hence produce an orthonormal system. Now suppose that
(b) does not hold.This is equivalent to dim(span{(f;)7-;} < n.
By Theorem( 2.1.1), we have span{(f;)’-;} = span{®((f;)7=,)}. This in turn implies
dim(span{®((f;,)’=;}) < n.Thus ®((f;)?~;) cannot form an orthonormal basis for
span{(f)i;}.
The mapping & given by the procedure GGSP of a finite sequence in  to a Parseval frame
for a subspace of H is “almost” bijective in the following sense.
Proposition(2.1.5)[71]: Let @ be the mapping defined in the previous paragraph. Then &
satisfies the following conditions.
(@) @ is surjective.
(b) For each Parseval frame (g;)™, c 7€, the set ®~1(g,)™,equals
. <\i—1 2\

( (£ if span {(5)_} = span{(F),_,}.
{(fi tif = M+ 9, A € R, ©)
k k @ € span {(ﬁ );11} otherwise )
for some (ﬁ)]n=1 e d1((g)r).
Proof. It is easy to see that each step of the procedure GGSP is reversable which
implies (a).
To show (b) we first show that the set (6) is contained in ®~1((g;)™,). For this, let (f;)™,
be an element of the set (6). Notice that, by definition of (£;)™,, we have span{(f)*,} =
span{(fi)f:l} for all k € {1,...,n}. Since (f})?zl € ®1((g)™,), we only have to study
the case span{(f;)*=! # span{(f,)_,} for some k € {1,...,n}. But then line 8 of GGSP
will be performed. Let ®(f;)*=! be denoted by (g;)“Z} . By Theorem( 2.1.1), the sequence
(g forms a Parseval frame for span{(f;)*=! }. Hence

Afero-S 21O 140,803 M=%t fi 3,8
Afk +<.0—Zf=—11(/1fk +9.9;)d; Afk_Z;c:_%(/lfk gjrdj
fk—Z]’-‘:_f(fk 9j)dj
| fk_zjk;11<fk 9j)dj ”,

which proves the first claim.
Secondly, suppose (f;)l-; € H is not an element of (6). We claim that ®((f;)l~,) #

o ((fl):;l) which finishes the proof. Let k € {1,...,n} be the largest number such that f;

does not satisfy the conditions in (6). We have to study two cases.
Case 1: Suppose that f;, # fi., but span{(f,)i={ } = span{(f;)¥_,}. Then in the kth iteration

line 12 will be performed and we obtain
1 1

hk = —/—sz * —ﬁc ::Ek!
1+||fk|| 1+”fk”2
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since fi # fi.. Thus @((f)ley) = @ ((£)")

If in the following iterations the condition in line 7 always applies, we are done, since h;
and hy,, are not changed anymore. Now suppose that there exists [ € {1,...,n},1 > k with
span{(f)!Z}} = pan{(£,)!_,}. Then in the Ith iteration h, and h, are modified in line 11.
Since f; = f; by choice of k, using a reformulation of line 11, we still have

1 1 _ L
b= kP POhy % - PR+ 0= PR =R,
+ ~12
fi 1+ 7]

where P denotes the orthogonal projection onto span{f;}.
Case 2: Suppose that f;, # Af, + ¢ for each 1 € Rt and ¢ € span{(f,)*Z}}, and also

span{(f)* } # span{(f)E,}. Let (h)¥! and (Ei)i,‘: denote ®((f)¥1) and

cp((ﬁ-)i;l ), respectively. If (k)T = (ﬁi)i,‘:, the computation in line 8 in the
kth iteration yields

fi = 22 fe by L fie = T2 fio BBy
i = EfSfo il | (1 fe = 223 B |

If (h)! =+ (ﬁi)i,:ll then there exists some [ € {1,...,k —1} with h, # h;. In both
situations these inequalities remain valid as it was shown in the preceding paragraph.

An important aspect of our algorithm is the redundancy of the computed frame.

Hence it is desirable to know in which way redundancy is preserved throughout the
algorithm. For this, we introduce a suitable definition of redundancy for sequences in a

finite—dimensional Hilbert space.
Definition (2.1.6)[71]: Let (f;)7-; € H, n € N.Then the redundancy red ((f;)"_;) of this

setis defined by red (f)[y) = s
im (span {(fi);=1
where we set = = oo,

Indeed in each iteration our algorithm preserves redundancy in an exact way.
Proposition(2.1.7)[71]: Let (f;)|-;, € H,n € N. Then

red(cb((fi ?21)) =red((f;)-,).

Proof. By Theorem( 2.1.1), we have span{(f;)'-;} = span{®(f;)?-;)}. From this, the
claim follows immediately.
We will first compare the numerical complexities of the Gram—-Schmidt orthogonalization
and of GGSP. In a second part the procedure GGSP will be applied to several numerical
examples in order to visualize the modifications of the vectors while performing the
algorithm.

Only the constants are slightly larger in the new step, which is performed in case of
linear dependency. Thus both the Gram-Schmidt orthogonalization and GGSP possess the
same numerical complexity of 0(dn?).

In order to give further insight into the algorithm, in this subsection we will study the
different steps of GGSP for three examples. The single steps of each example are illustrated
by a diagram. In each of these the first image in the uppermost row shows the positions of
the vectors of the input sequence. Then in the following images the remaining original
vectors and the modified vectors are displayed after each step of the loop in line 0 of GGSP.
The original vectors are always marked by a circle and the already computed new vectors
are indicated by a filled circle. The vector, which will be dealt with in the next step, is
marked by a square.

Recall that, by Theorem( 2.1.1), in each step the set of vectors marked with a filled circle
forms a Parseval frame for their linear span.

k:=| :Ek'
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MNext vector to be moved
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“Figure 1,[71]. GGSP applied to the sequence of vectors ((1, 0.1), (1, 0.2), (1, 0.3),(1, 0.4),

(1,-0.1), (1,-0.2), (1,-0.3), (1,-0.4)).

In the first example we consider the sequence of vectors ((1, 0.1), (1, 0.2), (1, 0.3), (1, 0.4),
(1,-0.1), (1,-0.2), (1,-0.3), (1,—0.4)). Figure 1 shows the modifications of the vectors while
performing the GGSP. The Gram-Schmidt orthogonalization, which is performed in line 6-
8 of GGSP, applies twice. In all the following steps the added vector is linearly dependent
to the already modified vectors. Therefore we have to go through line 11 and 12, and the
vectors already dealt with are newly rearranged in each step.

Figure 2 shows the same example with a different ordering of the vectors. It is no surprise
that the generated Parseval frame is completely different from the one obtained in Figure 1,
since already the Gram-Schmidt orthogonalization is sensitive to the ordering of the

vectors.
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. Modified vector m] Next vector to be moved O Original vector

Figure 2,[71]. GGSP applied to the sequence of vectors ((1,-0.4),

(1,-0.3), (1,-0.2), (1,-0.1), (1, 0.1), (1, 0.2), (1, 0.3), (1, 0.4))

Both generated Parseval frames have in common that the first components of the vectors are
almost all positive. Intuitively this is not astonishing, since already all vectors of the input
seguence possess a positive first component.

The following example gives further evidence for the claim that the generated Parseval
frame inherits the geometry of the input sequence in aparticular way. Here the vectors of the
input sequence are located on the unit circle, in particular we consider the sequence of
vectors ((1, 0), (0.5N0.5), (0, 1), (—V0.5°N0.5), (-1, 0), (—0.5—0.5), (0,-1),
(70.5,—V0.5)). While performing the GGSP the vectors almost keep the geometry of a circle
and the final Parseval frame is located on a slightly

deformed circle (see Figure 3). Notice that in the second step of the algorithm the second
vector is moved to the position of the third vector (0,1). Hence in all the following
computations these two vectors remain indistinguishable.
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Figure 3,[71]. GGSP applied to the sequence of vectors ((1, 0), (¥0.5, V0.5), (0, 1),
(—V0.5,N0.5), (-1, 0), (—V0.5,—0.5), (0,~1), (NO.5,

—0.5))

The graphical examples seem to indicate that to a certain extent output sequences inherit
their geometry from the input sequence. For applications it would be especially important to
characterize those input sequences, which generate equal norm Parseval frames or more
generally “almost” equal norm Parseval frames (compare [2]).

Section(2.2): Tight Frame Completions

In recent years, the study of frames in finite dimensional Hilbert spaces has been
motivated by a large variety of applications, such as signal processing, multiple antenna
coding, perfect reconstruction filter banks, and Sampling Theory.
Some particular frames, called tight frames, are of special interest since they allow simple
reconstruction formulas. For practical purposes, is often useful to obtain tight frames with
some extra “structure”, for example with the norms of its elements prescribed (controlled) in
advance.
In [180] D. Feng, L. Wang and Y. Wang considered the problem of computing tight
completions of a given set of vectors. More explicitly, given a finite sequence F = {f; }_,
of vectors in ', how many vectors we have to add in order to obtain a tight frame, and how
to find those vectors? [180] provides a complete answer to this question. But when the
norms of the additional vectors are required to be one (with the initial set of given vectors of
norm one) the authors obtained a lower bound for the number of unit norm vectors we have
to add ([180]; but they showed that their lower bound is not sharp in some cases.

Note that this problem may not have a positive solution for a given set of initial
vectors and a fixed sequence of “prescribed norms”. Therefore we first find conditions for
such a tight frame completion to exist. The main tool used here is Theorem (2.2.5), which
relates the squared norms of the vectors in a Bessel sequence with the spectrum of its frame
operator.
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In order to state the main results, we fix some notation used throughout the section.
Let H be a real or complex finite dimensional vector space with dim H =n € N. Let
F={fi}_, €H be a finite sequence with frame operator S* whose eigenvalues
(counted with multiplicity) are A, >...=> 4,, , and let a = {a; };,cy be a non-increasing
sequence of positive real numbers. Finally, let « = tr(S% ).
Theorem (2.2.1)[54]: Given r € N, there exists G = {g; }i-y € H such that FuUg is a

tight frame if and only if % (2Xi=1(a; + a) = A, and

1(x 1%
;(2 a; + a) > EZ(ai + 1,_i41),1 < k < min{n,r}. (7)
i=1

i=1

On the other hand, there exists an infinite Bessel sequence G = {g; }i=; in H such that
F U G is a tight frame if and only if {a; }?2, € #! (N),% (X2,a; + a) = Aand
%(Zﬁl(ai +a) = %2{;1(“1' + Ap—is1), 1<k <n. (8)

So from Theorem A we get necessary and sufficient conditions for the existence of a
sequence G = {g; }_, , for some r € N U {0}, with ||g;||* = a; , and such that F U
G is atight frame (for some suitable constant). If such a completion exists we say that F is
(a,r) —completable. In case F is (a,r)-completable, we are then interested in computing

the minimum number 1, of vectors we have to add. In order to state our next result we
introduce the following numbers: letc, = A;andfor1 < k < nlet

1
Cx = max (Ck—l ' i1 + Ay )) - 9)
Theorem (2.2.2)[54]: Assume that F is (a,r) —completable for some r € N U {0} and let
19 € N U {0} be the minimum such that F is (a, ry)-completable.
Then

Case 1:my < nifandonlyifc,, =~% a; + a).
Case2: n < ry < ooifandonlyif ¢, ;t% (Zileai + a)v1 <k<n-1 and

1p 1S the minimum such that ¢,, < %2?&1 a; + a).
Case 3: 1, = oo ifand only if ¢, ;t% Xk ia + a)foralll1< k <n—1

and

1 (0]
Cp, = - Z a + a
i=1
We should remark that although Theorems A and B are of practical interest, they are not
efficiently (fast) algorithmic implementable in a computer (see the discussion at the
beginning of Section ). In this Section we deal with the problem of finding a not so optimal

but efficiently algorithmic computable finite tight completion as follows:
Theorem (2.2.3)[54]: Assume that a is a divergent sequence. Let d € R be an algorithmic

computable upper bound for|| S ¥ ||and let c = max(d + 1,d + a,). If r € N is such that
r—1 r

Zai< c-n— tr(S¥) SZai

i=1 i=1
then there exists an algorithmic computable sequence G = {g;}/—; such that F UG is a
tight frame and such that ||g;||> = a; for 1 < i < r . We also consider particular cases of
Theorems (2.2.1)and (2.2.2)whena; = 1fori > 1.
Throughout the section, H will be a finite dimensional (real or complex) Hilbert space with
dim £ =n € N and L(# )* will denote the cone of bounded positive semi-definite
operatorson H . Givenm € N U {o},asequence F = {f; }'x; c H isaframe forH if
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there exist numbers a, b > 0 such that, for every f € H,
allfII> < T K 12 < blIFI (10)
The optimal constants in (10) are called the frame bounds. If the frame bounds a, b coincide,
the frame is called a-tight (or simply tight). Finally, tight frames with all its elements having
the same norm are called equal norm tight frames.
The sequence F is Bessel if there exists b > 0 such that the upper bound condition in (10) is
satisfied. Given a Bessel sequence F , we define its frame operator by
ST f = SAf. ). (11)
It is easy to see that S¥ is a positive semi-definite bounded operator on # . Moreover, F is
a frame if and only if its frame operator S¥ is invertible. Indeed, the optimal frame bounds
a,b in (10) are respectively A, (S¥ Yand A, (S ), the minimum and maximum
eigenvalues of S* . In particular, a frame F is a-tight if and only if S¥ = al. For an
introduction to the theory of frames and related topics see the books [74, 182].
Given a Bessel sequence F , there is a close relationship between the norms of its elements
and the spectrum of S¥ that can be expressed in terms of majorization (see [35] for details).
First, we introduce some definitions. We say that a sequence {a; }/~; is summable if m € N,
orifm=ocoand {a; }>, € £ (N).
Dentition(2.2.4)[54]: Let a={a; }/*;,b = {b;};—.; be non-increasing summable
sequences of non-negative numbers, with s,m € N U {0}, and let t = min{s,m}. We say
that b majorizes a, noted b > a, if

b =¥_ja;fori<j<tand ¥, b =X, (12)

If m=s €N in Definition( 2.2.1) then this notion coincides with the usual vector
majorization in R™between vectors with non-negative entries which are arranged in non-
increasing order (see [181]).
On the other hand, as an immediate consequence of Definition(2.2.1) we see that if s € N,
and then a < b ifand only if a < (b, 0,,) for every n € N, where
(b,0,,) € RS™ | and similarly (a,0,, ) <bifm € M.
Now we can state the frame version of the Schur-Horn theorem, which we shall need in the
sequel.
Theorem (2.2.5)[54]: Let a = {a;}*; be a non-increasing sequence of positive numbers and
let S € L(#)* with eigenvalues (counted with multiplicity and arranged in non-increasing
order) A = {4;}7_; . Then the following statements are equivalent:

(@ a=< A
(b) There exists a Bessel sequence G = {g;}-, < H such that ||g;||* = q; for 1 <
i <mandS9% =S.

Definition( 2.2.6)[54]: We say that F is (a,r) —completable if there exists r € N U {0}
and a Bessel sequence G = {g;}/_; € H, with ||g;||> = a; for 1 < i < r,and such that
F UG isatight frame. We say that G = {g;}/_; isan (a,r) -completion of F.

. For the sake of clarity in the exposition, in what follows we consider separately

the cases where F is (a,r)-completable for some r € N and the case r = o,

although there is no substantial difference in the arguments involved.

Theorem(2.2.7)[54]: Let r € N. Then F is (a,r)-completable if and only if

%(21721 a; + a) = A; and
1
- Qisia; +a) 2

%Z{-‘;l(ai + Ap_iy1), 1 < k < min{n,r}. (13)
Proof: Assume that there exists » € N and a finite sequence G = {g,};—; such that

STY =857 +89 =cI and ||g;l|? =a;for1 < i < r.Then cI — S¥ =59 >0; in
particular we have c = |[|S|| = 4; . On the other hand, we see that the eigenvalues of
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SY9 arranged in non-increasing order are c — A, >...=> ¢ —A; = 0. By Theorem (2.2.3)
we have

(c = A,,¢c — Ayqyeeeyc — A1) > (aq,...,a,). (14)
Then, by Definition( 2.2.1) we see that %( Yi—ia; + @) = and (26) hold, using that

c =%( Yi-ia; + a) .
Conversely assume that%( Yi_ia; + @) =2, and (26) hold for r € N. Set

c= %( YI_1a; + a) and note that the spectrum of the positive operator
c —S¥,(c—A,,¢c — A,_1,...,c — A;), majorizes (in the sense of Definition( 2.2.4)
{a;}—_; . By Theorem( 2.2.5) we conclude that there exists a finite sequence G =
{g;}_ withSY =cI —S%¥and ||g;||> = a;for 1 < i < r and we are done.
By inspection of the proof of Theorem(2.2.7), we have the following corollaries.
Corollary (2.2.8)[54]: Using the notations of Theorem(2. 2.7), F is (a,r)-completable with
r<nifandonlyif,fori <i<n—-rand1<k<r,
=g +a)and ;= (TK a; + Ayi). (15)
Corollary(2. 2.9)[54] : Let F be (a, r)- completable for some r € N. Then
()if r < nthen F is not (a, k)-completable for any k < n other than r,
(i)if r = n then F is (a, k)-completable for every k € N with k > r.
The next result gives different equivalent conditions for a sequence a and vectors F in order to
be (a, r)-completable for some r € N. First, we define inductively the following numbers: let
co = Arandforl <k <nlet

k
1
c, = max (CH'EZ a; + /1n_i+1>. (16)
i=1

It is clear from definitionthat 4, < ¢; <...< ¢,.
Proposition(2. 2.10)[54]: Let r € N. F is (a, r)-completable if and only if

%(Zle a,+a)=c, forr <n. (17)
Or Moreover, if ¢, = %(2?:1 a; + a)some forr < n,thenc, = ;.

Poof. A ssume that F is (a,r)- completable
If r < n note that, by (17) in Corollary (2.2.8), we have 1, = ¢y < <c¢,=A;and A, =

~(ya; + @),
so (17) holds. If r >n then min {n,r} =n and Theorem (2.2.7) together with the

definition of ¢, imply that
1( r )
— 2 a+a|=c,.
n

i=1
%(Zle a,+a)=>c, forr >n. (18)
So in this case (18) holds. Conversely, if we assume (18), then it is clear F is (a,r)-
completable, by Theorem (2.2.7). Assume now that for some

r<n,c, = l(Z-rz a; + a) . We show that F is (a, r)-completable; indeed, since nc, =
n i=1

i1 a; + a, then
n-—r T T
re, + (n—r)c, — Z/ll- = Z a; + Z/ln_iﬂ
i=1 1 i=1

=

So by definition of c, we have
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Z(ai+/1n—i+1) < rc = Z(ai + i) — Z(Cr -A) < Z(ai + Ay_ig1)-
= =1 i=1 i=1

But then
A =%(Z{=1ai+a)for1sl'gn—r

and
k

1
Ay = max ;Z(ai + A1)

1<k<r

i=1
So F is (a,r)-completable, by Corollary (2.2.8). The last claim of the proposition is clear
from our previous computations.
We are now able to give a formula for the minimum r € N such that F is
(a,r)-completable, when suchan r € N exists.
Theorem(2. 2.11)[54]: Let F be a (a,r)-completable for some r € N. Letr, € N be the
minimum such that F is (a, ry)-completable. Then

ase 1:my < nifand only if ¢, =~ (212, a; + @)
ase2: ry<=n ifandonlyif ¢, # %(Z:&l a+a)foralll1<k<n-—
1 andr0eNis the minimum such that cz<1n/=1r0ai+a.

Proof: Note that, by Proposition(2. 2.10), at least one the cases has to be fulfilled by some
r € N. If we assume that case 1 holds for some r < n then,by Proposition (2.2.10) F is
(a,r)-completable. By Corollary(2. 2.9) case 1 does not hold for k < n with r # k. Itis
clear that in thiscase ry = r.

Assume now that there is no r < n satisfying case 1 above. Then, there exists

r € N such thatc, S%(Z?zl a; + a) by Proposition(2. 2.10) we see that F is (a,r)-
completable. It is clear that ry is the minimum natural number r satisfying this condition.
Finally note that if » € N is such thatc, < %(Z{zl a; + ) then

1 n 1 T n r
—(Zai +a> < ¢y S—(Zai +a> :Zai SZai
n n
i=1 i=1 i=1 i=1
and r = n since for every i € N,a; > 0.
The next example shows that it is possible to obtain a set of vectors F and a sequence a such
that F is (a, r)-completable for only one r € N (in virtue ofCorollary (2. 2.9) , r < n).

Example(2. 2.12)[54]: Let F = {v/2e;,V2e,,e3} in C* where {e;} is the canonical or-

0]

i—1
honormal basis and let a = {G) } . Then, easy computations show that the
i=1
eigenvalues of STare A, =21, =2 and A;=1,s0 a= trS¥ = 5. By
Corollary
(2.2.8) Fis (a,1)-completable since 4; = %(a1 + a) and 4; = a; + A3 Moreover, it is
clear that if we add the vector esto F we obtain a 2-tight frame.
On the other hand, it easy to see that %(Z;";l a; +a) = % < % = c¢3 S0 byProposition
(2.2.10) Fisnot (a,r)-completable for any r > 3.
In fact, as the following proposition shows, if F is (a, r)-completable with r < n
the existence of some r; = n such that F is (a, r;)-completable depends only on
the tail of the sequence {a;}i2, .1
Proposition(2. 2.13)[54]:Let F be (a, r)-completable for some r < n. There existsr; € N
with r; = n and such that F is (a, r;)-completable if and only if
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1

1 1 .
max
n :E: a; 22r+15%5m,k a;

i=r+1 i=r+1

Proof:By Theorem(2. 2.7) F is (a,r;)-completable if and only if
~(EL i +a) = and — (B @ + @) 2 5K (a+ Aypn) 1Sk <n
By hypothesis and Corollary(2. 2.8),
= %(Z?zlai +a)l1<i<n-—rand 4 2% k (@, +_41),1<k<r
Since F is (a,r)- completable with r <n. So F is (a,r)-completable if and only if
~(TL a @) = 2 (a4 Ayp) T H1 <k <7
or equivalently, |f for every r + 1<k<n

za . l_k(za Y ra-m-on)

i=r+1 i= r+1
Z++Z>”Z+”Z""Z+
a a = = a a a;, — a; a
k k ' k '
i= r+1 i=r+1 i=1
k
n
Za+a+2 SXETIED)
i= r+1 i=1
k
n
Z“izz
i=r+1 i=r+1

since by hypothesis 1; = %(2;1 a+a)forit<i<n-—r.

In this section we consider some complementary results to those obtained

in the previous section and prove Theorems (2.2.1)and(2.2.2).

If F={f;}'_, and a are as before, then a necessary condition for F to be

(a, 0)-completable is that a € £1(N).

Theorem(2. 2 14)[54]: Fis (a, o0)-completable (by a Bessel sequence) if and only if

a € ¢! (N),= O 1a + a) = 4, and

—(Z 214 +a)> Z (@ +4,_i41), 1<k <n, (19)
or equivalently if (a € 1(N)
—(Z 2ia;ta) =c,. (20)

The proof of Theorem(2. 2.14), which is based on Theorem( 2.2.5), is similar to that of
Theorem(2. 2.6) and Proposition(2. 2.10).

Proof of Theorem (2.2.1). The first part of the theorem is Theorem(2. 2.6), while the

second part is Theorem (2.2.14).

Proof of Theorem (2.2.2). Assume there exists a natural number r € N such that

F is (a,r)-completable. Then r, < rand in this case the theorem follows from

Theorem(2. 2.11). If there isno r € N such that F is (a, r)-completable, then F

is(a, ©)-completable so by Theorem (2.2.14) a € #(N) and l(2‘?"_1a- +a)>c, if
—(Z 2,a; + a) > ¢, then there exists r € N such that— Qisjai+a)=c,. If

then by Proposition(2. 2.11) we get that F is (a,r)- completable, a contradiction.
We finish with the counter-part of Proposition (2.2.13) for the infinite completion case.

Proposition(2. 2.15)[54]: Let a € £} (N) and let F be (a,r)-completable for

. . .1
some r < n. Then, F is (a, ©) —completable if and only |f;21 21 A = rﬁﬁg Zl i1 @
In this section we consider the particular case when a = {a, }icy IS a constant
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sequence, a; = 1 for all i € N(the general case follows in an analogous way). Note that in
this case F is (a, r)-completable for some r € N; so we shall compute the minimum natural
number r of vectors with norm one we have to add to F in order
t frame. We keep the notation of the previous section forF = {f;}}_,,

FlAy =+ =21, and a.

Theorem(2.2.16)[54]:Let h := i, A;_,,, and denote by 7, the minimum numbe r of norm
one vectors we have to add to Fin order to have a tight frame.

Casel:Supposeh < n.Thenr, = hif h € Nand 1 + %Zﬁ;l An—iv1 < Aqin particular, c,=4,).
Otherwise, 1y = n.

Case 2:If h > n, ry is the minimum integer greater than or equal to h .

Proof. Assume that h< n;then, since h = nl; — a, we have thatc,, = 1 +%

RIf in addition h<n and 1+%Z?=1/1n_i+1 <A, SO ¢ = 1;(h +a) = A thenry =
h byTheorem(2.2.11).Otherwise, c;, # 1;(lk +a) forall k <n (ifc¢, = 1;(k + a) for some
k < n, then by Proposition(2.2.10) ¢, = A, and h would be a natural number); since c, =
1+ % the minimum integer greater than or equal to nc, —a iIsnsor, =n by Theorem
(2.2.11).

Finally, h > n implies thatc, # 1;(k + o) for all k <n and ¢, = A, . Therefore, again by
Theorem (2.2.11), 1, is the minimum integer greater than or equal to n4; — a = h.

Example (2.2.17)[54]:This example is taken from [180]. It is interesting because it shows

the difference between the cases when we can complete F to a tight frame with r <n orr

>n vectors. Let f; = (1.0) and f, = (cos8,sin®) in R?, and consider a; = 1 Vi.

It easy to see that the eigenvalues of S are 1 + cos8, hence h =1,_1, = 2|cos8)|.

Therefore, by Theorem (2.2.16), the minimum number r, of unit vectors we have to add t

frame is 2 unless 6 = %n or 6 = %1‘[ wherer, = 1 . Note that When r, = 1 the tight frame

obtained is the well known “Mercedes Benz” (it is—up to rigid rotations, reflections and
negation of individual vectors— the only unit norm tight frame on R?with three elements

47].

,[A gonsequence of Theorem (2.2.16) is the characterization of the minimum number of

vectors that we have to add in order to get a tight frame, in the particular case when F is a
unit norm tight frame on its linear span.

Proposition (2.2.18)[54]:Let F ={f;}’_,be a unit norm 3 —tight frame on its span, where d

< n is the dimension of span F . Then, the minimum number 7, of unit norm vectors we
have to add to F in order to obtain a tight frame inFis:

() (n— d)gif (n— d)§<nand (n— d)geN.

O)nif(n—d)E<nand (n-d)~ ¢ N

(c) the minimum integer greater than or equal to (n — d) 3 if (n— d)g >n.

Proof. Since Fis an unit norm tight frame on a subspace of dimension d, the eigenvalues of
S¥are: A, :gz 1 for 1<i <d, and A, =0 for d + 1 <i <n. Therefore, h = Y, 1, —
A; = (n—d) . Moreover, if h <n and h €N, then 1+%2?=1 An—iv1 = A1 . Indeed,

T T g = 1+ 2=t (21)
the proposition is then a consequence of Theorem (2.2.16)
LetF ={f;}'_,S H and assume that a is a divergent sequence. Then, by Remark (2.2.8), F

is (a, r)-completable for some r €N. From the proof of Theorem(2.2.7) we see that if
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i=1
then equation (26) holds. Therefore, by theorem (2.2.4),theoretically there exists a Bessel
sequence G ={g;})_, < Hsuch that ||g;||*= a; for 1<i <r and SY =cI — S”. In this case, G
is a (a,r)-completion of F; moreover, if r € N is obtained as in Theorem (2.2.11) then g
would be (a, r)-tight completion having the minimum number of vectors for which a tight
completion of F exists. Although constructive, the proof of Theorem (2.2.4) is not
practicable; it depends on some matrix decompositions which can not be performed
efficiently by a computer for large values of t = mingn, ry. There are several recent papers
related to algorithmic construction of frames with additional properties. In [178] Casazza and
Leon considered the problem of constructing frames with prescribed properties from an
algorithmic point of view; in particular, they obtained an algorithm for constructing tight
frames with pre-scribed norms of its elements, under the admissibility conditions of
Theorem( 2.2.4). In [180] there is a fast algorithm for constructing tight frames with
prescribed norms of its elements based on Householder transformations; in [44] a fast
algorithmic proof of some results related to the Schur-Horn theorem is considered and as a
consequence a generalized one-sided Bendel-Mickey algorithm (see Theorem (2.2.19)
below) is obtained. Still, as far as we know, the problem of constructing a frame forH with
prescribed general (positive definite) frame operator and norms (that are admissible in the
sense of Theorem(2.2.4)) using an efficient computable algorithm has not been solved: we
remark that for the purposes of this discussion, the diagonalization of a positive semi-definite
matrix is considered as not efficiently computable. If such an algorithm is obtained, then
optimal tight frame completions can be constructed as described in the first paragraph of this
section. In what follows we shall consider a not so optimal tight frame completion of a given
set F ={f;}_,but that is efficiently algorithmic computable, based on the generalized one-
sided Bendel-Mickey algorithm and the Cholesky’s decomposition. Let us begin with the
following result from [44]. We remark that our notation is opposite to that in [44] so we
translate their result into our terminology.

Theorem (2.2.19) ([44]): Leta = {a;};—-1 b = {b;};—1be two finite and non-increasing
sequences of positive numbers such thata < b . Let X be an n X r matrix whose squared
columns norms are listed by b. Then there is a finite sequence of algorithmic computable
plane rotations U, , ..., U,_; € M, (C) suchthat X(U; ... U._;)has squared columns norms
listed by a.

Actually, each plane rotation that appears in the theorem above operates non-trivially in the
coordinate plane span {e;, e;} forsome1<i,j<r (see[44] for details). Note that the
initial matrix X and the final matrix Y = X(U; ... U,_;) satisfy XX* =YY",

Taking into account Theorem (2.2.19), an strategy to construct a frame with pre-scribed
frame operator S € M, (C) and norms of its elements listed by a(satisfying the conditions in
Theorem( 2.2.4)) would be the following: consider a diagonalization
S = Udiag(;, .., A,)U*and the factorization XX* = S with X = Udiag(,/2; ,...y/A,). Note
that the squared norms of the columns of X are listed by (A, ...,A,) so we can apply
Theorem (2.2.19) and obtain

Y =X(U;...U;)

with YY* = S with the squared norms of the columns of Y given by a . Unfortunately, we
consider this procedure as not an eciently computable one, so we have to find an alternative
approach.

Along this section we prove Theorem C; we begin with an informal discussion of the
algorithm. Assume that the non-increasing sequence of positive numbers {a;};=; forms a
divergent series, so that Fis (a, t)-completable for some t €N. Let S = S¥ and let ¢ >
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||S|[that we shall consider as a variable. We will obtain an algorithmic computable value of
¢ for which the Cholesky’s decomposition cl, —S = RR” satisfies that the squared norms
of the columns of R mayorize{a,;};_,for an integer r>n. Once we have obtained such c, we
apply Theorem (2.2.19) and get a finite sequence G = {g,};—,with frame operator cl,, — S
and||g;|l?-a;, for1 < i<r.Letc > ||S|| + B S0 A, (cI = S) = c — ||S|| = B, where >
0is a fixed number controlling the invertibility of cI —S. LetR = R(c) be the upper
triangular matrix obtained from the Cholesky’s decomposition of cI — S (note that the
hypothesis on ¢ is made in order that the Cholesky’s algorithm becames stable). Then
RR* = ¢l — S and note that ¢ — ||S|| = A (RR*) = A, (R*R) s0, if C;(R) denotes the
i-th column of R then
min [C;(R)|I* = c — IS,

Since ||C;(R)|I? = (R R);; and (RR )u > Amin (R*R) for 1 < i <n . In particular

LAC®IZ =3 (R*R)y = k.(c— ISI)).Let ¢ =max(lISIl + B, ISIl + ay)
and note that then
c=>- Z _,a; +||S|[,for1 <k <n (22)

smce— 1al >f11 _,a;if 1< k<h<n.Letr eN be such that

r

Z a <Z||c R =cn—tr(S) < ) (23)

=1 i=1
So r>n We deflne c :—Zr 1a; +tr(S¥),where r is defined by (23) so that, if
R(c")denotes the holesky’Cs decomposmon of ¢'I — S then we get

, (@)= <UIC;R(ENIPL,
Thus, with this ¢ € R and r € Nwe can apply Theorem (2.2.19) to the matrix
= [R(C’): Onx(r—n)]

and get the (efficiently algorithmic computable) n X r matrix Y such that YY* = §
and||C;(N)||? = q; for 1 < i <7 ; setting g;=C;(Y) we get {g,}'_, with the desired
properties. We briefly resume the previous considerations in the following pseudo-code

implementation:

(@)Find an algorithmic computable upper bound d for ||S]|.

(b)Compute ¢ = max (d + S,d + a;) (where § > 0 is previously fixed)

and r € N satisfying (23).

(c) Redefine c = = (T1_, a; + tr(s¥)).

(d) Compute the Cholesky’s decomposition cI — S=RR".

(e) Apply Theorem(2.2.19) tothe n X r matrix [R, Onx¢—n)] and getthe n X r

matrix Ysuch that cI —S = YY*and ||C;(Y)||? = a;for1 < i < r.

(f) Defineg; = Ci(Y)forl < i <r .

Example (2.2.20)[54]: Assume that||fj|| =1 for 1 < i < p and that||a;|| = 1, so we
are looking for unit norm tight completions of a unit norm family of vectors F.

In this case, it is shown in [180] that if d = [||S¥|| + 1], where [h] denotes the
smallest integer greater than or equal to h, there always exists a unit norm tight
completion of F with dn — p elements. Our arguments above show that there exists an
efficiently algorithmic computable unit norm tight completion with [n.(||ST|| + 1) —
p] (assuming that we can compute efficiently||S*|| and seting B = 1). Note that in
general we have that

n ST+ 1] = p = [n. (ISTIl + 1) — p] -

Corollary(2.2.21)[202]: Let a™° = {amo}m0 . be a non-increasing power sequence of
positive numbers and let S € L(H)* with eigenvalues (counted with multiplicity and
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arranged in non-increasing order) A = {A]m};‘_mozl . Then the following statements are
equivalent:

(i) a™ < A.

.. . r mo |12

(ii) There exists a Bessel power sequence ™ ={g"’} <3 such that ||g/"[" =
a/"forl < i,my < mand S5"° =s§mo,

Proof. If we assume that S™° > 0 then the case when m € N is in [35], while the case
when m = oo is Theorem 4.7 in [35]. If the spectrum of S™° has zeros (note that this is the
case whenever m < n) we can reduce to the invertible case, restricting S™° to the
orthogonal complement of ker S™o.

Corollar(2.2.22)[202]: Let r € N. Then F™0 is (a™°,r)-completable if and only if

(ko T (@™ + a™0) = A7 and - (Th XL (@™ + a™) =
%Z,Lnozl Y@ + A0, ), min(n, 7). (24)
Proof. Assume that there exists » € N and a finite power sequence G™° = {g?O}Zmozl
such that
SFIOVGTO = gFTY 4 §6M0 = ¢mol  and lg™ " = a™for1 < i,my < r.Then
cmo] —SF" =89 > 0; in particular we have c™0 > ||S|| = 27" . On the other hand,
we see that the eigenvalues of S9™° arranged in non-increasing order are ¢™ — A7'° >

.= ¢™ =" > 0.ByTheorem (2.2.5) we have
(cmo — A0, cmo — A0, cmo — AT )
> (a,...,a7"). (25)
Then, by Definition( 2.2.1) we see that% Cho=1 X1 (@ + a™)) = A7 and (7) hold,
using that ¢™o :% b=t iz (@ + a™) |
Conversely assume that% Cho=12i=1(a@® + a™ ) = A7 and (7) hold for r € N. Set
c™mo =% Cho=12i=1(a® + a™ ) and note that the spectrum of the positive operator
cmo] —SF (Mo — A0 cMmo — AT L, ¢™o — A7 ), majorizes (in the sense of
Definition (2.2.4)) {a?o}zmozl . By Theorem (2.2.5) we conclude that there exists a finite
power sequence G™ = {g?O}Zmozl with S§™° = cmof — S and ||g™||* = ™ for

1< i,my < rand we are done.
Corollary (2.2.23)[202]: Let r € N. F™0 is (a™°,r)-completable if and only if

= Tkt 2 (@™ + a™0)) = ¢forr <n (26)
or

% Ch=1 21 (@™ + a™ ) = ¢, forr = n.

(27)

mo

Moreover, if ¢, '° =% Che=12i=1(a™® + a™)) forsomer < n, then ¢;"* = A]
Poof. A ssume that F™o is (a™°,r)- completable. If r < n note that, by (9) in Corollary

(22.8), we have A= g << 0= A7 and A0 = = (Bhyo Tiea(a +
a™ ),

so (11) holds. If r >=n then min {n,r} =n and Theorem (2.2.7) together with the

definition of c,imply that ~ (X, _ Ti_y(a"® + a™ ) > .

So in this case (12) holds. Conversely, if we assume (27), then it is clear F™0 is (a™°,1)-

completable, by Theorem (2.2.7). Assume now that for some
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r<mn,c,’ =% Cho=12i=1(al® + a™ ) . We show that F™is (a™o,r)- completable
indeed, since n ¢, * = (Th,=12i=1(a® + a™) thenr¢,'® +(n—1) ¢ °

mo=1 211 A = 0 WON YLD IRE D XD Yy K
So by deflnltlon of ¢, ° we have

IT;’L0=1Z 1(am0 + /1 Ol+1) <r Cmo =

Z:71;10=1Z 1(0'mO + 2'rnllol+1) Zmo 12 (Cmo + /1;”01+1 = 0 12 1(0'?10 +
An—i+1ma0 ).
But then
mo =% (Z 2@ +am)forl<imy<n-—r
and

_ mO
202 s Z Z @0+ .

So F™o is (a™9,r)-completable, by Corollary (2.2.8). The last claim of the proposition is
clear from the computations.

We give a formula for the minimum r € N such that F™° is (a™9, r)-completable, when
suchan r € N exists.

Corollary (2.2.24)[202]: LetF™o be a (a™°,r)-completable for some r € N. Let r, € N be
the minimum such that F™°is (a™0, ry)-completable. Then

Casel:ry < nifand only if ¢y =~ (zL Lo X @ + am)
Case2: ry =n if and only if ¢, ° # - (Z mo= 12 (@] + a™) foralll<k<n-—

1 and r, =€ N is the minimum such that ¢’ < ; Cho=1 Zio (@™ + a™).

Proof. Note that, by Proposition (2.2.10), at least one the cases has to be fulfilled by some
r € N. If we assume that case 1 holds for some r < n then,by Proposition (2.2.10), F™° is
(a™o,r)-completable. By Corollary (2.2.9) case 1 does not hold for k < n withr # k. Itis
clear that in this case 1y = .

Assume now that there is no r < n satisfying case 1 above. Then, there exists

r € N such thatc,"° S% (Ch,=1 Zi=1(a"® + a™) by Proposition (2.2.10) we see that
F™o is (a™o,r)- completable. It is clear that r;, is the minimum natural number r satisfying
this condition. Finally note that if € N is such that c,*° S% Cmo=12i=1(a@l™® + a™))
then

—(zz @’ +am)< ¢’ <— (ZZ ai°+am0))=>zz

mo=1 mo=1 mo=1 i=

DI

mo=1

and r > n since for every i, m; € N,a;"° > 0.

The next example shows that it is possible to obtain a set of vectors F™° and a power
sequence a™° such that F™o is (a™¢,r)-completable for only one r € N (in virtue of
Corollary (2.2.9), r < n).

Corollary(2.2.25)[202]:

Deduce that

(i) =’ =¢

i mo 19
(i) c3°> 9,n—3.
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From (12) we can find
L (S T @™+ a™)) = e > 0
Divide this equation with (11) we have ¢, — ¢, * = ¢ (28)
In Example (2.2.12), by choosing n = 3, we have that c;" > 2,

Corollary (2.2.26)[202]: Let F™° be (a™°,r)- completable for some r < n. There exists
rl € N with r; = n and such that F™o is (amO r;)-completable if and only if

= (Zmo 12;11(61?10 + a™o )) 2 r+rf;])§<nk (Z o=r+1 Zl =r+1 amO :
Proof By Theorem (2.2.7), F™0 is (a™°,1y)- completable if and only if
(— K= 21 (@™ + A ) = /1m°and Qg Zisg (@ + a™ )2
;Z K o= 2i1(a™ + Afolﬂ ), 1<k<n.

By hypothesis and Corollary (2.2.8),

;0= % (Xno=1 Yioi(@™ a™)),1<imy<n—r and /11 0 _1 2 (] +

An—i+1m0 ), 1<k<r
Since F™o is (a™°,r)-completable with r < n. So F™° is (a™°,r;)-completable if and only

r m m 1 m m

if = ~ (Bt Zikg (@ + @™ ) 2 X5 L X (@ + 4,0 ) 1<k <n

or equwalently if foreveryr+1<k< n

Z Zl o a"® + a™ )+ Z

mo=r+1 mo= r+1l r+1
r
n
=zl 2. Z @’ + Z ST @+ am— -2
k i=r+1
mo=1 i= mo—r+1
> e Z >
mo=1 mo=r+1i=r+1
k k
mo mo n 0
aL. + a™0) +E a
mo= 1 mo=r+1i=r+1
_n- k mo mo
( (a; " + a™)
i=1
mo—
NGRS
mo=1 mo=r+1i=r+1
k k
n
mO mo _ mo
SIICRTERL WP
mo 1 mo=r+1i=r+1
> Yl Y Y
mo—r+1l r+1 mo—r+1l r+1

since by hypothesis A" = ; Cip=12i=1(@™® + a™ ) for1 <i,my<n-—r.
Corollary (2.2.27)[202]: F™o is (a™°, c0)-completable (by a Bessel power sequence) if and
only if a™o € #1 (N), - X o= 12 (@] + a™ ) = A" and
L (5 S (@ + @) 2 LT TR @ 4 AT ) 1Sk sn (29)
or equivalently if (a™° € fl(N)
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1=

mo=1
The proof of Theorem (2.2.14) which is based on Theorem (2.2.5), is similar to that of
Theorem (2.2.11) and Proposition (2.2.10).
Proof of Theorem (A). The first part of the theorem is Theorem (2.2.7), while the second part
is Theorem (2.2.14).
Proof of Theorem (B). Assume there exists a natural number r € Nsuch that F™0 is
(a™o,r)-completable. Then ry < rand in this case the theorem follows from Theorem 3.8.

If there isno r € N such that F™o is (a™°, r)-completable, then Fmo  is(a™0,00)-
completable so by Theorem (2.2.14) a™o € £1(N) and% (Zﬁozlzﬁl(af"’ + a™0)
>c 0 If % Emo=1 iz (@ + a™ ) > ¢ then there exists 7 € Nsuch

that% Crmg=1 Ziz1(a]® + a™ ) = c,;'°. But then, by Proposition (2.2.11) we get that
F™o is (a™o, r)-completable, a contradiction.
Corollary (2.2.28)[202]: Leth =Y _, ¥ ,A7° — A", and denote by rythe minimum

number of norm one vectors we have to add to F™°in order to have a power tight frame.
Casel:Suppose h < n.Thenr, = hif h € Nand 1 + %Zﬁnozl YhL A < ATC(in
particular, c, °=1"°). Otherwise, r, = n.
Case 2:If h > n, ry is the minimum integer greater than or equal to h .

Proof. Assume that h< n;then, since h = nA"® — a™o, we have that ¢, ° =1 + “nﬂ If in
addition h < n and 1+%an0=1 ShA <A S0 ¢ = 1;(h + a™0) = A]"’thenry =

n—i+1
hby Theorem (2.2.11) .Otherwise, ¢} ° # 1;(k +am™) for all k < n (if ¢° =
= (Jk + ™)
for some k < n, then by Proposition (2.2.10) ¢,"® = A{*°and h would be a natural number);

a™o

sincec,® =1+ —, the minimum integer greater than or equal to nc, ° —a™® is n so

1o =n by Theorem 3.8.

Finally, h > n implies that c,’("" #* 1;(k + a™) forall k <nand ¢, ° = ATO. Therefore,
again by Theorem 3.8, r;, is the minimum integer greater than or equal to nA;"° — a™° =
h.

Corollary (2.2.29)[202]: Let F™o :{fim"i ﬁmo:lbe a unit norm %— power tight frame on
its span, where d < n is the dimension of span F™0 . Then, the minimum number r, of
unit norm vectors we have to add to F™° in order to obtain a power tight frame in His:

(@ (n— d)%if (n— d)§<nand (n— d)geN.

(b)nif(n—d)§<nand (n—d)%(f N.

(c) the minimum integer greater than or equal to (n — d) % if (n— d)% =>n.

Proof. Since F™0 is an unit norm power tight frame on a subspace of dimension d, the

eigenvalues of S7""are:2"* =% >1 for 1<i,me<d, and]"® =0 ford + 1<i,m, <n.

Therefore, h = Y0 o, Xi, A7 — 470 = (n — d)g . Moreover, if h < n and h €N, then

L
1vh h m
1+z2m0=1 21':1 An—0i+1 = /’11 O- |ﬂd€€d,

1 h—(n—d
T S B A, =14 e R (31)
the proposition is then a consequence of Theorem (2.2.16).

Now we show the following
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Corollary(2.2.30)[202]: For F™o :{fimoi} ¢ e > 0,n € N be a unit norm % — power

i=1mg=1
tight frame on its span, where € > 0 is the dimension of span F™¢ . Then, the minimum
number 1, of unit norm vectors we have to add to F™° in order to get a power tight frame
inH.
Proof. Given F™0 is unit norm power tight frame on a subspace of dimensionn — ¢, the
eigenvalues of S™"%are:A["* = = > 1 ,= 0<e <nfor 1<imy <n—e¢ and 2"* =0 for

l
n—e+1<i,my<n. Therefore, h=3Xp _, X1, 27" —A° = e% = n . Further, if h<n

2

and heN, then 1+%an0=12?=1/121_°!.+1 = A7°. Therefore,

1$h h mo _ N
1+32m0=1 z:i=1 An—i+1 e
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Chapter 3
The Spectra of Contractions
let$ be a complex, separable Hilbert space, and let L ($) denote the set of all
bounded, linear operators acting on . A contraction T €L ($), i.e., an operator with
norm
IT|| < 1, belongs to the class
(a) Cy, iflim,_ |[T"h]|| # 0, for every 0 # h € §;
(b) Cy, iflim,_,, ||T"h|| = 0, for every h € &;
(cl1Cq ,ifT" € Cy;
(d) G, if T" € Gy,
Section(3.1): Spectral Classes
let$ be a complex, separable Hilbert space, and let L ($) denote the set of all
bounded, linear operators acting on . A contraction T €L (), i.e., an operator with
norm
IT|| < 1, belongs to the class
(a) Cq, iflim,_,, ||T"h|| # 0, forevery 0 #h € ;
(b) Cy, iflim,_,, ||T"h|| = 0, for every h € &;
(cICy ,if T* €Cy ;
(d) Cp, if T* € C,.
We shall use the terminology and notation of the monograph [29]
1. First of all we recall some facts from the theory of contractions (cf. [29]) which will be
needed in the sequel.
Let T €~ (9), be a contraction, and let us consider its minimal unitary dilation U €
(K), . It can be proved that the subspace £ = ((U — T)$) is wandering for U, and so
M(R) =@;_, U"L reduces U to a bilateral shift. Then the orthogonal complement
R, =IO M(L) also reduces U, and the restriction R,  := U \R.. € ~(R.)is called the
x-residual part of T.
It is known that if T is completely non-unitary (cnu) then U and so R.; too are
absolutely continuous unitary operators. Moreover, if T is of class C;,_then T can be
injected into R,;: T <' R.r., i.e., there is an injective operator X € « ($,R.) which
intertwines T and R, r: XT = R,rX.. There is in fact a canonical choice fur X. Namely,
the operator X € « (9, R,) defined by
Xh=1lim,,, U T h h € $,
will be an injection, intertwining T and R, if we assume yet that the point spectrum
o, (T*) of T* does not cover the open unit disc D = {1 € C: || < 1}, then X will be a
quasi-affinity (i.e., an injection with dense range), hence T will be a quasi-affine
transformof R, r: T < R, 1.
In this case, i.e., when T € C,. and o,(T*) # D, the =-residual part R, of T can be
characterized as the unitary extension of T. In fact, let us introduce a new scalar product
on $:
(x,y). = lim,_(T"x, T"y) for every x,y € $.
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(Since the limit lim ||T™x]| clearly exists for every .x, € $, the polar identity guarantees
n—oo

the existence of the limit above.) Let § denote the Hilbert space obtained by completing
the inner product space (%, (.,.).). Then the uperator T can be uniquely extended to an
isometry T € (S). Let us take a point A € D\a,,(T™). Since ran(T — AI) is dense in
%, it follows that ran( T — RI) is dense in . Hence T is a unitary operator, called the
unitary extension of T'. It can be easily seen that T is unitarily equivalent to

R, r: T = R, 1.
Finally, we’ shall need the following
Definition (3.1. 1)[25]: Let_ (D) denote the system of all nonempty, compact subsets o
of D such that for every nonempty closed and open subset ¢ of o we have m(g N D) >
0. (Here and in the sequel m stands for the normalized Lebesgue measure on dID.).
Let 4 (D) denote the subset./ (D) := {a € .# (D):a c dD}. It is easy to see that a

compact subset a of dD belongs to , 4 (D)if and only if « is regular in the sense that «

coincides with the support of the measure y,dm. (Here y, is the characteristic function
of @) We say that the set @ € /4 (DD)is neatly contained in ¢ € .# (D), denoted by

a c™ ¢, if a ¢ o and for every closed and open subset 6 of o we have

m(o’' N a) > 0.
Applying the Riesz-Dunford functional calculus we can derive from [ 29] the following
Theorem(3.1.2)[25]:1f T isa cnu C,-contraction,then o(T) € .# (D),o(R.r) €
(D) and o (R.7) is neatly contained in o(T).
Proof: Since R, r,- is absolutely continuous, it follows that
o(R.r) € A (D). Moreover, applying [ 29] for T* and taking into account that Ry« =

(R.7)", where Ry-. is the residual part of T*, we obtain o(R.r) < a(T).

Let us assume that a(T) is not connected, and let ¢ be a non-empty closed and open
subset of a(T). Then the Rieszz-Dunford functional calculus (cf. [ 175]) provides us a
subspace &, invariant for T such that o( T[$‘)) = ¢. From the preceding part we infer
that ¢ D o(R.r5), and m(o(R.r5)) > 0, since H°# {0}. But R, pg,is unitarily
equivalent to (T|9)~ = T|$~, which implies that o(R.r15) © o(R.r). Therefore
m(o’ N o(R.r)) > 0, and the proof is completed.

In [6] it was proved that every set in . 4 (D) can serve as the spectrum of a Cy;-
contraction. It is natural to ask whether this is the case in connection with Cj,-
contractions too. First we list some examples:

(a) The simplest C;,-contraction is the unilateral shift S of multiplicity

1. Its spectrumis g (S) = D.

(b) More generally, if the defect index dy, of a contraction T € Cy, is finite, then d-,.
must be greater than d, and so again o(T) = D.

(c) Gilfeather has shown (cf. [171]) that the spectrum can be thin.

Namely, he provided a weighted bilateral shift T € C;,, such that o(T) = dD. (Cf. also
Eckstein’s paper [169].)

(d) The spectrum can be non-circular symmetric. The following example was given by K.
Takahashi. Let u be a non-constant function in the Hardy space H*’ such that [Jull, < 1
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and m((A € 0D: |lu(d) = 1) > 0. Then the operator M,,, of multiplication by u in the
Hardy space H? belongs to C;, and its spectrum is ¢(M,) = u(D). (In connection with
Hardy spaces we refer to [174].)

(e) Beauzamy provided an example for a Cj,-contraction T such that o(T) N dD,
contains a non-trivial closed arc disjoint from o (R, 1 ) (cf.

[167]).The following theorem together with Theorem(3.1.2) give a complete
characterization of the possible spectra of C;,-contractions and their *-residual parts.
Propositon(3.1.4)[25]:For every a €./ (ID)and real numberK > 0 there exists a Cj,-

contruction A such that 6(4) = o(R.,) = aand |[A" || > K.

The analogous statement in the case of C;;-contractions could be proved easily. In fact a
C;1-contraction of defect indeces 1 can be found. The C;,- case is more difficult, as we
saw before the spectrum of C;,contractions with finite defect indices is the closed unit
disc D .We are looking for a C;,-contraction with properties above among the restrictions
of weighted bilateral shifts to their invariant subspaces.

Let {e, },ez be an orthonormal basis in the Hilbert space $ where Z denotes the set of
integers. Let w € {w, },,ez be a sequence of real numberssuch that 0 <w, <1 for
every n € Z.

Throughout this section T € « ($) will denote the weighted bilateral shift with weight
sequence w.i.e.T e, = w, e, foreveryn € Z.

T is clearly a quasi-affine contraction, whose adjoint T* is also a weighted bilateral shift:
T e, =w,|e,|foreveryn € Z.

An easy computation with weighted shifts (cf. [173, 176]) proves the following

Lemma (3.1.4)[25]: T is of class C;, and o(T) = dD If and only if

(a) w, >0,
n=1
(b) [171, w, =0, an
(C) limk—mo infnel (Wan+1 '"Wn+k—1)1\k =1
We shall consider special weight sequences.
Definition(3.1.6)[25]: We call { r;};cy @ regular co-sequenc(N denotes the set of positive
integers) if r,=1,n€N,r, >, 14 p—141 =14 —1;, for every i €N, and
{r;}ien 1S Of density O, i.e.,
limk_)oo % = 0.
Here and always in the sequel m;, denotes the frequency of the sequence
{r:i}ien i.€.,m;, = max{i € N:r; < k}.
We call {y;};ey a regular O-sequence if y; € R,0 <y, < 1,y; =vy,;41,foreveryi € N,
and
iz1 Vi =0.
We say that w = { w,, },,ez IS a regular weight sequencec orresponding to the regular co-
and 0-sequences {r;};en and {y; };en, respectively, if w, =y; when n is not of the form
-7;(i € N) =1 whenn € Z is not of the above.
Lemma(3.1.5)[25]: If wis aregular weight sequence then T € C;, and o(T) = dD.
Proof. We have only to verify property (iii) of Lemma (3.1.3) However, for every k €
N, we have
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Hence lim,,_,,, (m; /k) = 0 implies that (iii) is fulfilled.
It is wellknown (cf. [173, 176] that the weighted shift T can be considered as a shift
operator on a weighted sequence space. In fact, let 8 = {8, },.c, be the sequence defined
by
B, = (Wowy ..ew,, )?ifn>0=1ifn=0=Ww_w_,..w,) 2 ifn<0
and let 12(B) denote the L?-space corresponding to the measure

pp@)= ) frwe )

n

2(B) = [2(ug) = {f = (F0}, o 1713 = D 17608, < oo}.

n=—oo

Then the shift operator T, € ¢ (12(B)), defined by
TsXtny = Xm+1y fOreveryn €z,
is unitarily equivalent to T. In what follows g will always denote the sequence defined
above, and we shall also write T instead of Ty,.
0) _

To the special sequence B© = {3 ., where B =1, for every n € Z, there
corresponds the usual sequence space:

2 =12(B0) = {£ = {fm)}, _: IFI* = N2 = Teer|fm)|” < oo},

Since B, = 1, for every n € Z, we infer that
Ifllg = Ifll for every f € 1*(B),
and so
12(B) c I2.
As before, let m be the normalized Lebesgue measure on dID. The trigonometric system
{8, hez (Where g, (A) = A", for every n € Z) is an orthonormal basis in the Hilbert
space L? = L?(m). Hence, the sequence space 12 can be identified with the function space
L2 via the unitary transformation
U2 12, U f = (), = S (WG

Therefore, every element f € 12 can be considered as an element of L?, and conversely.
We note yet that if w is a regular sequence, then

-2
B.=1ifn=0=(1_"r) if n<o.
The following lemma plays an essential role in our construction.

Lemma( 3.1.6)[25]: Let {f.}ren b€ @ sequence of functions belonging to L?. There
exists a strictly increasing sequence {ri(o)}ieN of natural numbers such that if {r;};cy is a
regular co -sequence satisfying r; > ri(o), for every i > iy, with some iy € N, {y;}ien IS
an arbitrary regular 0-sequence, and w is the regular weight sequence corresponding to
{r;}ien and {y;};en, then f, € 12(B) forevery k € N.

(0

Proof: Let us choose inductively strictly increasing sequences {7,

,L
0) )
numbers such tha 7., =77,

}ien Of natural
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and
(0)|fk (n)| < = foreveryk,i € N.
(0)}

0 .
i( ) = ri,(i) ((l € N))'
Now, let {r;};cy be a regular co-sequence such that r; > rl.(o) for every i > i, with some
ip €N, let {y;};en be an arbitrary regular 0-sequence, and let us consider the regular

weight sequence w corresponding to {r; };,cy and {y; };en. We shall show that
fi €12(B)  foreveryk € N.

In fact, let k be an arbitrary natural number . If i > k = maxi{k, iy}, then r, > ri(o) =
' > 1% . Hence, we obtain
Il = Zianl fe | B = 2524 S )| (nj”{;}yl) + ol i@,
‘-’il(n;_lyl)‘z z;itﬁ,“lfk( | + Tl f )|
< Xilps1V 1_Zl' + 3y Ziliiiflfk(n)l +2n=0|fk(n)|2

< et 43y S A @+ 1fill2 < oo,

and so f;, € lI?(B). The proof is finished.

Propositon(3.1.7)[25]:For every a €./ (DD)and real numberK > 0 there exists a C;,-
contruction A such that 0(4) = o(R.,) = aand |[A" || > K.

The analogous statement in the case of C;;-contractions could be proved easily. In fact a
C;1-contraction of defect indeces 1 can be found. The C;,- case is more difficult, as we
saw before the spectrum of C;,contractions with finite defect indices is the closed unit
disc D .We are looking for a C;,-contraction with properties above among the restrictions
of weighted bilateral shifts to their invariant subspaces.

Proof. Let @ € .4 (ID) be an arbitrary set. Let {r(o)} .y De the sequence occurring in

Lemma (3.1.6), corresponding to the sequence{g_; xq }ren, Where g_, (A} = 27 | Let
{r:};enbe a regular co-sequence such that

r = rOfor every i > i,

Let us define the sequence {r

with some i, € N, and that

n

] 1+ n? <
holds for the frequences m, = max{i € N:r,<n}. Let {y;};ey be a regular0-
sequence, and let w be the regular weight sequence corresponding to {r;};cy and {y;};en-
Let us consider the shift operator T € & (12(B)).
Since g_,x, € I2(B), for every k € N, and taking into account that [2(8) is a vector
space, invariant for the shift, it follows that

MO,a = {f)(a:f € MO} c lz(ﬁ)

where M,, denotes the set of trigonometric polynomials. Let 9t, () denote
the closure of M, in1(B) . The subspace M, (B) is clearly invariant for T, and we
define the operator A as the restriction
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A:=T|M,(B) € &« (M, (B)).
In virtue of Lemma(3.1.5) we know that T € C;, and a(T) = dD. It immediately follows
that A € C;p and A is bounded from below. Taking into consideration that A M, , =
My, is dense in M, (B) we infer that A is invertible. Since do(A) € o(T) = 9D, it
follows that (A) c 9dD. The estimate

Mgy \ L

Al = 1T R < 1T = oy ewo) = [ ] <™
i=1
being true for every n € N, implies that
logllA™"ll _ " malogyr!
1+n2 ~ 1+ n?
n=1 n=1
Now, a result of Beauzamy and Rome (see [ 166]) yields that
0(A) =0(A) N oD = a(ﬁ),
where 4 is the unitary extension of A. However, for every f € M, (B) we
have
Tim |47 fllg = Tm I7"fllp = [If1.
Hence M, (B)~ = L*(a) := {x..f:f € [*}) and A € 7 (I*(a)) acts as the operator of
multiplication by the function g; (1) = 1. Consequently, we obtain that o(4) = a and so
o(4) = a.
We have to show yet that the norm of A~ can be arbitrarily large. Let us consider the
operator A obtained before. Since A € C;, and A is invertible, it follows that the defect
numbers of A are equal: dy =dy = Ny. Let {0(Q), €, €} be a contractive analytic
function coinciding with the characteristic function of A. Then @ is an inner, «-outer
function. Moreover, ®(A)is invertible for every A € D, and the set s(@) = {1 € dD: A
does not lie on an open arc I ¢ dD where @ is analytic unitary valued} coincides with a.
((see 29].) Itis clear that, for every n € N, {0(1)", €, €} is also an inner, «-outer function
which is invertible in every point of D and for which s(0™) = a. We infer that the model
operator 4, = S(O™) is of class C;, and 6(4,, ) = a. Moreover, we have
1411 = [l8(0)™I.
So the proof will be completed if we show that { ||@(0)"||},, can be bounded.
Let us suppose that € = D,, and let x, € € be an arbitrary unit vector.
Then y, = —Axy € DA™ and ||y,ll = qllxoll, where 0 < g < 1. LetZ € & (Dy-,Dy) be
a unitary operator such that Z y, = qx,. Let us define @ as the product® = Z0, , where
©,, is the characteristic function of A.
Then {©(1), €, €} coincides with ®, and
0(0)xg = Z0, (0)xg =Z(—Ax) = Zyy = q Xo.
Hence 0(0)" x, = q"x, and so
[186(0) ™| = g™ —» (n - )
The proof is completed.
In virtue of Proposition (3.1.7) we can prove Theorem(3.1.12) applying the technique
based upon the SzNagy-FoiaS functional calculus which was used in [6]. We need some
lemmas.
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Lemma (3.1.8)[25]: If Aisa C,-contraction and u € H* is a non-constant function with
norm [|ull,, < 1, then the contraction u(A) is also of* class C,.

Proof. Let w € H® be the function w(A1) = (1 — uy)/(1 — fiyA), where uy, = u(0) €
D andv:=wou € H*.Then v(A) = (u(4) — DI — fyu(A)) ~1, moreover
u(A) € C, if and only if v(A) € C, (see [29]). Since v(0) = 0, v is of the form v(1) =

Av;(A), where v; € H* and
lville = lim sup|v;(A)| = lim sup v
r-1-0 [Al=r r-1-0 [Al=r
Now v(A) = Awv;(A) implies that v(A)™ = v, (A)"(A)™, for every n € N. Taking
into account ||v; (A)™|| < [lvi (D™ < |lv1]I% < 1, we infer that
lv(A)™ Rl < v (A II[A™AI < |A™R]| -0 (n - o)
Hence v(4) € Cy, and so u(4) € C,.
Lemma (3.1.9)[25]: If A is a Cjp-contraction and u € H* is a non-constant function
such that |lull, < land|u(d)|=1,f or ae. ,1 €D nNna(A) (with respect to the
Lebesgue measure), then the contraction u(A) also belongs to Cj,.
Proof. Since A is of class Cy, it follows that A can be injected into R, 4: A <' R, 4.0n
the other hand, A being cnu, R, 4 is an absolutely continuous unitary operator. We infer
that

= |Ivlle < 1.

u(4) <t u(R. ).
Taking into consideration that ¢(R, 4) © (6(A) N dD), cf. Theorem(3.1.2) , the spectral
theorem yields that u(R, 4) is unitary, and so u(R, 4) € C; .
Since u(A) can be injected into u(R.,), we obtain that u(4) € C;.. Now, applying
Lemma (3.1.8) we conclude that u(A) is of class Cyq.
The following statement is the basic tool in our construction.
Proposition (3.1.10)[25]: Let Q < DD be a simple connected domain whose boundary
[' = 0Q is a rectifiable Jordan curve containing a closed arc | of D, m(I) > 0. Let us

given a .setf € 4 (D),B cI,a point y, € Q and a real number K > 0. Then there

exists a contraction B such that
(a) B € ClOr
(b) o(B) = B,
© (B =DMl > K, and
(d) |(B — uD)7 | < dist(u, Q)" for every u € C\Q.
Proof. The Riemann mapping theorem and Caratheodory’s theorem ensure us a
homeomorphism u: D™ - Q, which is holomorphic on D. It can be assumed that
u(0) = uo. Since T is a rectifiable Jordan curve, it follows that « = u™1(8) € (D)
[169].
Because of Proposition(3.1.7) we can find a contraction A € C;, such that o(4) =
a and ||A7Y|| > 2k. We define B by the aid of the Sz.-Nagy-Foias functional calculus,
namely B := u(A).
Since u(o(4)) = u(a) = f c 0D, we infer by Lemma(3.1.9) that B = u(4) € Cyo.
On the other hand, the Foias-Mlak spectral mapping theorem (cf. [170]) yields that
o(B) =u(a) =p.
The relation u(0) = u, implies that u(1) — p, = Av(1), where v € H* and

-48 -



lv|[e = lim sup —u(/l) —Ho
© rsloper A

Since u(4) — uol = Av(4), it follows A1 = (u(4) — uel) v (4) and
2K < A7 < @A) = oD 7HH v < 1B = oD HHTY o
< 2[|(B = uoD)7M,

< llulle + luol < 2.

i.e.,
(B — oDl > K.
While, if peC\Q7, then v,() = @) -w™" €eH),|y, || = dist(u,Q )™
Hence
I B =uDMl =l —uD M = v < vl = distwa)™,
and the proof is completed.
Lemma (3.1.11)[25]: Leta,o be sets belonging to.g, (D) and ,.~ (D).

respectivelysuch that a c™ g. Let us given a point ,pu, € cand positive
numher. K, . There exists a contraction T such that

(@) T € Cyo,

(b) o(T) c q,

©) (T —uD7 Y| > K, ifs” uy & o(T)and

(d) (T — uD)7 Y| < (dist(u,0) — &)~ Lifdist(u, o) > «.
Proof. Let us consider the open set (g, = {4 € C: dist(A.,0) < €}, containing o. Let g,
be the component of g, including p,. Since a,\ 0y is also open, it follows that (¢ = gy N
o is a non-empty closed and open subset of . In virtue of @ €™ ¢ we get m(¢ N a) >
0. The set g, N dD consists of countably many open arcs, hence there exists a closed arc
I € (0D Nay)such that m(I N a) > 0. Let B denote the support of the measure

Xine dm. Since I N a is closed in dD, it follows that f < I N a, moreover € .# (D).

Let us assume first that u, € D. There exists a simply-connected domain Q such that
Q c g, N D is arectifiable Jordan curve, 9Q > I, and u, € Q . (Note that 6, N D is also
connected.) Now, Proposition(3.1.10) provides us a contraction T € C;, such that
o(T) =B(ca), I(T—peD)7'I > K and ||(T —uD)7 M| < dist(u,Q~1)~" for every
pu € C\Q 1. Since Q c g, c o, it follows that dist(u,o) > ¢ implies u & Q. and so
(T —uD)™|| < dist(u, Q™) < (dist(u,0) — &)L,

Let us assume now that y, € dID.. Let us choose a point g, € D such that |gy — ugl <
p, Where 0 <p < % It is clear that g, € op. Now let T € C;, be a contraction

corresponding to g, and K + 1 by Proposition(3.1.10). We have only to examine the
inverse of T — ol . Let us suppose that uy, € o(T). Since ||(T — pgo)7 > K +1,
there is a unit vector x, such that ||(T — goDx,ll < (K + 1)~ 1. Hence ||(T — poD x|l <
(T = o Dxoll + lug — ol < K+ 17" +p and so (T —poD™HII > (K+1D7' +
p) L. But (K +1)~! + p)~! > K if p is small enough, and the proof is finished.

Now, we are ready to show Theorem(3.1.12).

Theorem (3.1.12)[25]: If a € 4 (ID)is neatly contained in ¢ € .# (ID) then there exists a

Cyo-contraction T such that ¢(T) = o and o(R.7) = a.
2. In proving Theorem(3.1.11) first we show that every element of ./ (DD)can be the

spectrum of a C;,-contraction.
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Proof. Let us given sets @ € .4 (D) and (¢ € .# (D) such that a c™ o. Let {u, } ey bE

a sequence of points of o, which is dense in o, and in which every term is repeated
infinitely many times. Let {K, },ey and {&, },,en De sequences of positive numbers such
that lim,,,, K, = o and lime, = 0. For every n € N, let T,,, be a C;,-contraction

n—oo

corresponding to a € #4(D),c € #(D), pu, €0,K, >0, and ¢ >0 by

Lemma(3.1.10). Moreover, Proposition(3.1.6) ensures us a contraction T, of class Cjq
such that (6(T,) = o(R.z,) = a.Letus define T as the orthogonal sum T =@ T,. It
is easy to verify that T belongs to C;o and its spectrum o(T) = o. Finally, the unitary
extension of T being the orthogonal sum of the unitary extensions of T, ‘s, we conclude
that 6(R.1) = Uy—oo ( R.r, ) = a. The proof is completed.
First of all we note that if T belongs to Cg,, then both its residual and its «-residual part:
Ry, and R, r, respectively, act on the trivial space {0}(see[29]).
An important subclass of C,,, denoted by C, is the system of those cnu contractions T
which are annihilated by a non-constant function u € H* : u(T) = 0. The spectrum of a
Co-contraction T can be completely described by the aid of its minimal function m; €
H” e.g.,o(T) n D coincides with the set {1 € D: my(4) = 0} [29]. Hence, for a Cy-
contraction T, o(T) n D is always countable, moreover the sum X, ¢, rynp (1 — [4]) is
finite. The following theorem shows that the spectrum of a countable orthogonal sum of
Co-contractions, and so the spectrum of a C,,-contraction, is already an arbitrary compact
subset of D.
Theorem ( 3.1.13)[25]: For every non-empty, compact .suhset K of’ D , there exists a
contraction T € & ($) such that
(@) T is a countable orthogonal sum of C,-contractions,
(b) o(T) = K,and
(c) T iscyclic, i.e., V,,5cT™"h = $ holds ,fiw a vector h € $.
Proof. (a) Let {a,),¢; be a dense sequence of different points in K N ID. (Here J is of the
formJ = {n € N:n < N), where n € N or N = w, the first infinite ordinal. In the case
N = 1 the set ] is empty.) Let u be the Borel measure on C defined by
p(w) = X4 en 27" forevery Borel set w < C.
Let us consider the Hilbert space $; = L?>(u)and the operator T; € & (H,) of
multiplication by the identity function f(1) = A.Ty, is a normal operator and for its
spectrum we have
KnD co(Ty) = clos(a,),er € K.
Moreover, a theorem of Bram (cf. [195]) states that T, has cyclic vectors.
(b) Let v be a finite, positive, Borel measure on dD singular with respect to the
Lebesgue measure such that supp v = K n dD. (E.g., let {b, },,c; be a dense sequence in
K noD and v(w) = X, e, 27", for any Borel set w ¢ dD) Let u € H” be the singular
inner function deriving from v:
21 eit +2
u(d) = exp [—fo eit—/ldv]' A € D.
Now we define T,, acting on the space $, = H> © uH? as the model operator
corresponding to u, i.e.,
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T, =S) = P525|52,
where S denotes the multiplication by (1) = A. on H?. Then T, will be a C,-contraction
with minimal function u. Moreover, T, is cyclic (since S is cyclic), and
o(T,) = suppv =K nab.[29].
(c) NowT is defined as the orthogonal sum T =T, @ T, acting on =9, D
$,.Since T; is unitarily equivalent to @®,¢ S(m,), where m, is the Blaschke-

factorm, (1) = (ljnl)(an —-A)/(1 —a,A) corresponding to a,,, it follows that T is a

countable orthogonal sum of C,-contractions. On the other hand, the spectrum of T is
o(T)=0(T))Va(T,) =K.
(d) Finally, we show that T is cyclic. Let {; € &;, be a cyclic vector of T; fori = 1,2. We
claim that { =, @ {; €  will be a cyclic vector for T, i.e., the subspace I =
{p(T){:p(A) 1s a polynomial}~ coincides with $).
Taking into account that u(T) can be approximated by the polynomials of T in the strong
operator topology, we infer that, for any polynomial p(4), the vector u(T) p(T){
belongs to 9t. But
u(T)p(T)C = u(T1)P(T1)€1 @ p(T)u(T,)q = u(T)p(T)$ D 0.
If p runs through the set of polynomials, the vectors p( T;) ¢; form a dense set, in $; .
Since u( Ty) is clearly a quasi-affinity, we obtain that
W > H; D {0}.
If n € $H,and € > 0 are arbitrarily chosen then, ¢, being cyclic for T, we can find a
polynomial g such that ||q(T>){, —n || < &. Then q(T){ — (q(T,){; @ 0) € Mt and
1@(T)¢ = (@ (TG @ 0) = 0l = [[0® (¢(T))% —nl| <«

Consequently, {0} @ 9, < W also holds, and so H = M. The proof is completely
finished.
Section(3.2): Asymptotically Nonvanishing Contractions

Let H be a complex, separable Hilbert space, and let L(H) stand for the set of all
bounded, linear operators acting on H.. An operator T € L(H) is a contraction if
IT|] < 1. We say that the contraction T is asymptotically nonvanishing, in notation:
T € C, if there exists a vector x, € F. such that lim,,_,., [[T"x,|| > 0. It is a longstanding
open problem whether every asymptotically nonvanishing contraction T, which is not
scalar multiple of the identity, has a nontrivial hyperinvariant subspace M. We recall that
the (closed) subspace M of' H. is called nontrivial, if {0} #M*H and M is
hyperinvariant for T, if it is invariant for every operator Q belonging to the commutant
{TY:={A € L(H) : AT = TA} of T. The hyperinvariant subspace lattice of T is denoted
by Hlat T. It is easy to see that for any contraction T € L(H), the subspace H,(T) :=
{xe H: Pl?o”TnX” = 0} belongs to Hlat T. We write T € Cy. if Hy(T) = H and we
write T € C;.if H(T) = {0}. Foranyj = 0,%,1, by definition T € C; if T* € C;. (H) is
true for the adjoint operator. Finally, for any choice of i,j = 0,%,1, we consider the set
Cy: = C;.n C; . This classification of contractions, according to the asymptotic behaviour
of the iterates, was introduced by Bela SzokefalviNagy and Ciprian Foias (see [29]).
They showed that if T € C,, is nonscalar, then Hlat T is nontrivial, that is Hlat T #
{{0}, H} (see [29]). Therefore, addressing the hyperinvariant subspace problem for

asymptotically nonvanishing contractions, we can assume that T is of class C;, . In what
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follows, we shall consider mainly contractions of class C; The advantage of the

assumption T € C,_is that a nonzero unitary asymptote T® € L(#. ") can be associated
with T. Namely, if (.,.) stands for the original inner product on A then a new semi-inner
product can be introduced on H by the formula [x,y]: = lim,_(T" x, T"y) (X,y € H).

Forming quotient space and taking completion, we arrive at a Hilbert space :HT(aJZ where
T can be continuously extended to an isometry TT(a)). The natural embedding Xi: H —

}[T(f‘j,x - x + H,y(T) is contractive and intertwines T with TT(a)), in notation: X{ €

T (T,T) := {A € LK, ) : AT = T™) A}. The unitary asymptote T® € £(T{™)
is defined as the minimal unitary extension of the isometry Tf’)), and the canonical
intertwining mapping X1 € T (T, T®) is defined by X« := X¥x (x € H). Clearly,
kerX: = Hy(T) and (ranX;)™ = }[T(aj Thus, if T € C, (H) then the unitary operator
T®@ is nonzero (i.e. acts on a nonzero space), and if T € C,(H) then the mapping Xy is
an injection. For more details in connection with these concepts, we refer to [29], [20],
[10] and [157]. It is well-known that any contraction T € L(#) can be uniquely
decomposed into the orthogonal sum T =T, @ T, @ T; of a completely nonunitary
(c.n.u.) contraction T; , an absolutely continuous (a.c.) unitary operator T, and a
singular unitary operator T; (see [29] and [152]). Applying the Lifting Theorem of Sz.-
Nagy and Foias it can be easily verified that the hyperinvariant subspace lattice of T
splits into the direct sum Hlat T = Hlat(T; @ T,) @ HlatT; (see [29] and [148]).
Thus, we can (and shall) assume in the sequel that the singular unitary component T; is
zero, that is the contraction T is absolutely continuous. In that case the unitary asymptote
T®@ js also a.c. (see [29] and [157], or [20]).

Now, the factorization theorem claims that if T € L(#) is an a.c. contraction such that
the spectral multiplicity function of the unitary asymptote T® dominates the function
nx,(n € N,,) and w € By, then the natural embedding J, ,: H2(g,) = X, L*(g,), f—
Xof can be factorized into the product J,, = ZY, where Y€ L (S,, T)and Z€
L (T,M, ), and we have a control on the norms of Y and Z. The hyperinvariant subspace
lattices of the operators S, and M, , are dramatically different. Namely, Hlat$, is
isomorphic to the lattice of (equivalence classes of) inner functions, while Hlat M,, , is
isomorphic to the Boolean lattice of (equivalence classes of) Borel subsets of w. (See
[158].) Now, the question is how the hyperinvariant subspace lattice of the intermediate
operator T behaves. We are going to examine under what conditions the properties of T
show similarities with those of S, and when the properties of T are closer to those of
M, .. The concept of the quasianalytical spectral set m(T) of a C,-contraction T is
introduced in this Section . This is a Borel subset of the unit circle, which plays central
role in our investigations. The connection of m(T) with the support p(T) of the spectral
measure of T® called the residual set of T) is examined. One of the main results in this
section is that Hlat T is nontrivial, if (T) # p(T). We study the transformation laws
concerning these sets in the Sz.-Nagy~Foias functional calculus. As a result, we obtain an
abundance of examples for possible pairs of m(T) and p(T). It is shown that the
contraction T exhibits a 'quasianalytic property' on the quasianalytical spectral set m(T).
We devoted to different intertwining relations. The operators in the commutant of T are
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studied. It is shown that every nonZero operator in {T}' is injective in the quasianalytic,
cyclic case. Furthermore, a sufficient condition is given for the existence of an operator
0 # Q € {T} with nondense range.

Let H* denote the Hardy space of bounded, analytic functions, defined on the open unit
discD. We recall that, for any u € H®, the radial limit lim,_; u(rz) exists for almost
every (a.e.) z € T the limit function will be also denoted by u. In connection with the
basic properties of H, we refer to [9] and [29]. Given any u,v € H®, we say that the

function u is smaller than v in absolute value, in notation: u=vif lu(z)| < |v(z)] holds,
for every z € D. This relation can be characterized in the following way.

Lemma (3.2.1)[31]: For any functions u,v € H*, the following conditions are
equivalent:

@u=v;

(b) there exists w € H® such thatu = vwand |[w]l,, <1

©) llu@ll <lv(2)|1 is true for a.e. z € T, and the inner component of v divides the
inner component of u.

In a similar fashion, given any A, B € L(#), we say that the operator A is

smaller than B in absolute value, in notation: A B, if ||Ax|| < ||Bx]|| is true, for every
x € . This relation can be also easily characterized.

Lemma (3.2.2)[31]: For any operators A,B € L(H), the following conditions are
equivalent:

(a) A<B;

(b) there exists C € L(H) suchthat A = CB,||C|| < 1

(c) A*A < B*B.

Clearly, these relations on H* and L(H) are reflexive and transitive. We shall consider
the following sets of decreasing sequences:

D(H®) = (F = {£,}°_: f, € H®, 1< f, for every n € N}
and
D(H) ={A={A}"_1:A, € L(F),A,, <A, foreveryn e N}.

(o]

To any sequence F = {f, },—; € D(H®) we can associate the limit function

(pF(Z) = 1il’nn—)oo |f;1 (Z)|1
defined almost everywhere on the unit circle T. Similarly, to any sequence A =
{A,, };>_; there corresponds the limit operator

1/2
oy = (lim 434,) .
n—00
Here the convergence is meant in the strong operator topology; furthermore,
||® x|l = lim||A,x]| is true, for every x € H.
n—00

Let T € L(H) be an a.c. contraction, and let us consider the Sz.-Nagy-Foias functional
calculus for T. We remind the reader that this calculus is a uniquely determined unital
algebra-homomorphism 1 : H* — L(H), f » f(T), which assigns T to the identical
function y, and which is continuous in the weak-- topologies (see [29] or [3]). It is easy
to verify that ¥, is monotone with respect to the relations introduced before. Indeed, if
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u=v(u,v € H®), then u = vw is true with some w € H®, |w||,, < 1, and sinceyr is
contractive, we infer that |[u(T)x || = [w(T)v(D)x|l < |lv(T)x|| (x € #), that is

u(T)iv(T). Therefore, given any F = {f,}—; € D(H*), we can form the sequence
F(T) := {f,(T)}>-, € D(H). The subspace

Ho(T, F) := ker ®p¢ry = {x € H: lim ||, (T)x || = 0}
is clearly hyperinvariant for T. The following propositions show that under specific
conditions this subspace is trivial. We note that for a function ¢ € L = L*(m), the
notation ¢ = 0or ¢ > 0 means that ¢(z) = 0 or ¢(z) € (0, ), respectively, for a.e.
z €T.
Proposition (3.2.3)[31]: Let T € L(H)be an a.c. contraction, and F = {f,};—, €
D(H®).If @r =0 then Hy(T,F)=H.
Proof: By Sz.-Nagy's celebrated dilation theorem, there exists a unitary operator U on a
larger Hilbert space K, such that T" = P, U"|H is true for every n € N, and K =
V2 _ UMH. Furthermore, this minimal unitary dilation of T is uniquely determined and
absolutely continuous (see [160] and [29]). Let E denote the spectral measure of U, and
let E, be the localization of E at the vector x € H. Then applying Lebesgue's dominated
convergence theorem, we obtain that

[©reryc || = lim I, (Dxll = lim || Pref, U]

1/2
< lim ||, (x|l = lim ( f |fn|2dEx> =0
n—>0co0 n—>0co0 ,]I,

and so ®py = 0.

Proposition (3.2.4)[31]: Given any a. c. contraction T € L(H), the following conditions
are equivalent:

@)Te€C(y;

(b) forany F € D(H™ ), the relation ¢ > 0 implies that H,(T, F) = {0}.

Proof. (b) = (a): This implication is trivial since ¢z = 1>0 holds for the
sequence Fy = {x"},—1 € D(H*) and since H, (T, Fy) = Hy(T).

(a) = (b): Let us suppose that T € C; and let us consider the unitary asymptote
T@ e (™) of T and the canonical intertwining mapping X, € £ (T, T@).

Let F = {f, }5=1 € D(H®) be a sequence such that ¢z > 0. Then, for any vector x € H.
and for any n € N, we have

£ (Dl = 1X7 17 X o (Dl = 1X7 17| (T@) XX |

1/2
= 1%, ( f ledEXTX) ,
T

where E is the spectral measure of the a.c. unitary operator T(®), Lebesgue's Theorem
yields that

1 ) 1/2
|@reryxll = 117 (fy 03 dEy,. ) (x €%0).
Taking into account that X, is injective and that the measure Ex.. is absolutely
continuous, it readily follows that ker ® gy = {0}.
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Let T € L(H) be an a.c. contraction. We say that T is asymptotically strongly
nonvanishing with respect to the Borel set « € B; , in notation: T € C; (a), if Hy(T,F) =
{0} is fulfilled for every sequence F € D(H®) satisfying the condition

Xa®r # 0.5InCe x,@r, = Xo # 0 is true with Fy = {x,, };—;We can see that ¢, (a) (a €
B;) is a subclass of C; It also follows immediately from the definition that C; (@) ©
C;.(B) holds, whenever a c f(a,f € B;). Furthermore, given any sequence {«,, },;—; of
Borel sets in B; , we have

_ _ n;():l Cl.(an) = Cl.(U;.lo=1 an)-

Let C;, :=U,ep, C1.(a) be the set of those a.c. contractions, which are asymptotically
strongly nonvanishing with respect to some a € B;. We make the convention that two
Borel subsets a,f of T are considered equal, if y, = xz, that is if the symmetric

difference a A S is of measure zero.

Proposition (3.2.5)[31]: For any contraction T € C, , there exists a (unique) largest set
ar € Bl , suchthat T € Cl'(aT)).

Proof. Setting 6 := sup{m(a):a € B;,T € C;(a)}, let us consider a sequence
{a,}n-1 € By such that lim,_, m(a,) =4, and T € C; (a,), for every n € N. Since
T eny_; C (a,) = C.(Uy—; @) we can easily see that a; =U;_; a, possesses the
required properties.

The Borel set a; € B; , appearing in the previous proposition, will be called the
quasianalytical spectral set of the contraction T € C; , and it will be denoted by 7 (T). If
the a.c. contraction T is of class C; \C; ., then by definition 7(T): = ¢.

Propositon (3.2.6)[31]:

(@) IfS, € L(H? (&,)) is the unilateral shift of multiplicity n € N, , then (S,,) = T.
(b) IfU € L(H)isana.c. unitary operator, then ©(U) = ¢.

Proof. (a): Let us consider a sequence F = {f; }i=1 € D(H™) such that ¢ # 0,and a
vector 0 # x € H%(&,). Taking into account that x(z) # 0 for a.e. z € T, we obtain
that

2 . .
[ @rsxl” = im Il )xl? = Jim [ 1P Ix@l2dm)
T

=f¢M@WM@WmM@>&
T

(b): Let y,dm (w € By) be a scalar spectral measure of the a.c. unitary operator U.
Givenany a € By ,we canfind F € D(H*) such that y,@r # 0 and the set
wo = {z € w: @p(Z) = 0} is of positive measure. Since

ker®py = kerop(U) = ran x,, (U) # {0},
it follows that U ¢ C; ().
Given any a.c. contraction T € L(H) of class C,,there exists a (unique) Borel set
Pr € By such that . dm is a scalar spectral measure of the unitary asymptote T@), This
set is called the residual set of the contraction T, and is denoted by p(T). We note here
that 7(®) is unitarily equivalent to the «~-residual part of the minimal unitary dilation of T
(see [157]) , and that, for c.n.u. C;i-contractions, p(T) is the smallest Borel set on
Twhich is residual for T in the sense used in [29]. We note also that the residual set p(T)
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is included in the spectrum o(T) of T; see e.g. [10]. The description of possible spectra
of contractions of class C; was given in [143] and [20].
We proceed with exploring the connection of the sets =(T) and p(T).
Theorem (3.2.7)[31]: For any a.c. contraction T € C; () we have n(T) < p(T).
Proof. Let us assume that the set a := o(T)\p(T) is of positive measure. Let us choose
a strictly decreasing sequence {c, },,—; of real numbers, converging to zero; and, for any
n €N, let f, € H® be an outer function such that |f,| = x, + ¢, xr\o- Now, we
consider the sequence F = {f, };—1 € D(H®), with limit function ¢ = x, -
In view of the equality x,|f] = cax,r), We know that c;'f, (T(@)is a unitary
operator (n € N). Thus, given any 0 # x, € H Hand n € N, we have

iy oo |77 £, (D0 || = 1 X7 £, (TNl = (| (T@)Xr 26| = ol Xrxoll < cullzoll,
and so there exists j(n) € N such that || T/ £, (T) x| < 2c, llx|l holds, whenever
j =j(n).Letk: N - N be an increasing mapping such that k(n) = j(n) is true, for
every n € N; and let us consider the sequence G = {g, }n-1 € D(H*), where g, :=
XM f, (n € N). The relations [Ig,(T)xoll < 2¢,llxoll (n € N) imply that 0 # x, €
Hy(T, G). On the other hand, the limit function ¢; = @ = x,.
Therefore, x,@c = xo # 0 is fulfilled, which yields that },(T, ¢) = {0} must hold,
what is a contradiction.
It turns out that if the quasianalytical spectral set and the residual set do not coincide,
then we have affirmative answer for the hyperinvariant subspace problem.
Theorem (3.2.8)[31]: Let T € L(H) be an a.c. contraction of class C; - If  (T) # p(T),
then T has a nontrivial hyperinvariant subspace.
Proof. Let us suppose that the set 8 := p(T)\r(T) is of positive measure. We can find a
sequence F = {f, },=1 € D(H®) such that yzr # 0 and H, (T, F) # 0. Let us consider
the Borel set wo: = {z € p(T) : ¢z (Z) = 0}. Since X;f,(T) = £, T X, holds for every
n € N, it follows that

Xy Hy (T, F) € H P (T, F) = rany,, (T@) # # .

Taking into account that the subspace #. ) (T® , F) is reducing for T(®, and applying
the relation V,ey (T@)™X, H = H Y, we infer that H, (T, F) # 3, and so H, (T, F)
is a proper hyperinvariant subspace of T
Now, we examine how the corresponding quasianalytical spectral and residual sets relate
if there is some weak similarity connection between two contractions. Let T; € L(H;)
and T, € L(H,) be arbitrary operators. We say that T; can be injected into T,, in

notation: T1<iT2, if L (Ty,T,) contains an injection. The operators T; and T, are called
injection-similar, in notation: T; d T,, if T; iTz and TziT1 hold . We say that T; can be
densely mapped into T,, in notatNion:T1 iTz, if (Ty,T,) contains a transformation with
dense range. The operators T; and T, are densely-similar, in notation: T; d T, ifT; iTz

d
and T, < T; hold simultaneously.
The operator T; is called a quasiaffine transform of T, , in notation: T; < T, , if L (T}, T,)
contains a quasiaffinity, that is an injection with dense range. Finally, T, and T, are
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quasisimilar, in notation: T; ~T,, if both T, < T, and T, < T; are fulfilled. These
relations played important role in establishing canonical models for special classes of
operators; see e.g. [29],[163],[154],[141] or [146].

Proposition (3.2.9)[31]: Let T; € L(H;) and T, € L(H,) be a.c. contractions of class
C;_ Then the following statements are true:

(@) Ty < T, implies 7(T,) > 1(Ty),
(b) T, ! T,implies n(Ty) = n(T,),

(©) T, <T; implies p (1)  p(Ty),

(d) T1d T, implies p(T1 ) = p(T),

(e) Ty < T, implies w(Ty) o m(T;) and p(T1) 2 p(T2),

(AT, ~ T, impliesw(Ty) = n(Tz) and p(T1) = p(T2).

Proof. (a): LetY € L (T;,T,) be an injection. Given any sequence F =

{fi}n=1 € D(H?), the relations Y f,,(T;) = f,,(T,)Y (n € N) yield that

Y(H1)o(T1, F) © (H)o(To, F). Thus, if (H3)o(T2, F) = {0} then (31)o(Th, F) =
{0} must be also true; whence the inclusion (T,) < = (T;) readily follows.

(c): Let Z € L(T;,T,) be a transformation with dense range. Since Xr,Z € L(Tl,Tz(a)),
it follows by the universality property of the pair (X, TZ(“)) (see [10]) that there exists a

transformation W € £ (Tl(“),TZ(“)) such that X, Z = WXy, . Taking into account that Z
has dense range, we infer that

- -n
WHL?) = Voen(T¥) W =32
We know that the subspace ker W is reducing for Tl(“) , and that the restriction

7| (ker W)* is unitarily equivalent to T,); see [148]. Hence p(T*) o p(T{*)) must
be true; see e.g. [6].

The remaining statements are immediate consequences of (a) and (c).

We note that if w,w’ c Tare Borel sets such that ¢ # w # w,w < ', then

SléMl_wéMm and p(S;) =T,p(My,) = w,p(My,) = w'. Therefore, the relation

TléTz does not yield p(T;) < p(T,) nor p(T,) < p(Ty).

Now, we are able to extend the validity of Proposition(3.2.6). We recall that the defect
operators of the contraction T € L(#) are defined by Dy := (I — T*T)"/? and Dy~ :=
(I — TT*Y?2, The defect spaces of Tare Dy := (ran D;)~ and Dy := (ranDq+)-;
and the defect indices of T are given by d; := dimD; and d;- := dim Dy«. The
characteristic function ©; of T, introduced by Sz.-Nagy and Foias in[29], is an
L(Dr, Dy« )-valued, bounded, analytic function, defined on the open unit disc D by the
formula @T(Z) = (—T + ZDT*(l — ZT*)_lDT)DT.

Corollary (3.2.10)[31]: Let T € L(H) be an a.c. contraction of class C; _

(@) Let us assume that T € Cy, . Then (T) = Tis true if d; < oo, or if Dim kerT* < oo
and there exists a nonzero § € H* such that WO, = 41 is fulfilled with some L(D+, Dy)
-valued, bounded, analytic function W.

(b) IfT € Cyq,thenn(T) = ¢.
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Proof. (a): Under both conditions T is injection-similar to a unilateral shift; the case
dr < oo was discussed in [161], while the other assumption was considered in [31].
Thus, Propositions (3.2.6) and (3.2.9) yield the statement.

(b): If T € Cyy, then T is quasisimilar to its unitary asymptote T(%); see [29] and [177].
Hence, Propositions(3.2.6) and (3.2.9) can be applied again.

Let T € L(H) be an a.c. contraction of class C; Let us assume that Mis a proper

: : T. : : .
invariant subspace of T, and let T = [01 T*] be the matrix of T in the decomposition
2

H =M @ M. We know that the unitary asymptote T(® is unitarily equivalent to the
orthogonal sum of the corresponding unitary asymptotes of T, and T,: T® = Tl(“) @D

TZ(“)) ;see [162] and [177]. Hence p(T) = p(Ty) U p(T,) readily follows.
On the other hand, it is clear that the a.c. contraction T; € L(H) is of class C;, and that
n(T,) o n(T) is fulfilled. Furthermore, it can be easily verified that ©(T) = n(T;) N
n(T,) holds, if T=T,@T, As a consequence, we obtain that if the set
{n(Ty),n(T,), p(Ty), p(T,)} is not a singleton, and if T = T; @ T,, then n(T) # p(T),
and so T has a nontrivial hyperinvariant subspace by Theorem (3.2.8).
We note that the contraction T, , occurring in the previous triangulation, need not be of
class C; Of course, the definition of quasianalytical spectral set can be easily extended
for arbitrary a.c. contractions. Namely, given any a.c. contraction T € L(H) , let us
Tj of T in the decomposition H = H,(T) @ H,y(T)* .
Then T, € Cp, Ty € C;, and the unitary asymptote T(@ can be identified with T,*.
Hence p(T) = p(T;) and it is natural to work with the definition = (T) := n(Ty) In
particular, if T € C,., then T; acts on the zero space, and then p(T) := ¢ and (T) :=
¢. In the special case, when T = S; € L(H?) is the simple unilateral shift and M =
a—1x™ we can infer that n(T) =n(T;) = T and n(T;) = ¢, thus n(T) # n(T;) N
(Ty).
Let T € L(H) be an a.c. contraction, and let us consider a nonconstant function u € H-
with ||u|lc < 1. Taking into account that any a.c. unitary operator is similar to a c.n.u.
contraction (see [156]), we infer by [29] that the operator u(T)is also an a.c.
contraction. The spectrum of u(T) was characterized in terms of o(T) and u in [151].
Now, we are going to describe the residual and quasianalytical spectral sets of u(T). Let
us introduce the measurable set Q(u) :={z € T : |u(z)| = 1}. First of all, we note that
if T is of class C, and Q(u) N p(T) # ¢ (that is Q(uw) N p(T) is of positive measure by
our convention), then u(T) is of class C,, as well. Indeed, the transformation
Q € L(Hrany,),(T@)), defined by Qx = yx,(T)Xyx with w:= Q) N p(T),is
nonzero and intertwines T with the unitary operator T® |rany,, (T®).
First, we consider the special case, when u is a Mobius transformation.
Proposition (3.2.11)[31]: If T € L(H) is an a.c. contraction and if we are given u(z) =
k(z—a)(1—az)"' (k €T,a €D), then n()=u@@)and p(u(l))=
u(p(T));furthermore, u(T)@ is unitarily equivalent to u(T @).

] ) T,
consider the matrix T = [OO
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Proof. In view of [29] we know that T is of class C,. (C;) if and only if u(T) is of class
Co. ( C; - respectively). Considering the canonical triangulation of T, the proof can be
easily reduced to the case when T and A := u(T) are of class C;

Let us assume that (T) # ¢ and that ¢pyx, (m(T)) # 0 is true, for the sequence F =
{fi}n-1 € D(H*). Clearly, @pou = @p,, is valid, where Fou:= {f,ou}y_; €
D(H®). Since @poy Xy # 0 is fulfilled, it follows that 7, (T, F o u) = {0}.

In virtue of the equations f, cu)(T) = f,,(A) (n € N), we infer that H,(4,F) =
Hy(T,F ou) = {0}. We obtain that m(A) > u(w(T)). Taking into account thatT =
v(A) is true, with the Mobius transformation v(z) = k(z + ka)(1 + kaz) ™}, the equality
m(u(T)) = u(n(T)) follows.

As for the residual sets, the equation X;T = T X, implies that X;u(T) = u(T®)X;.
Applying the universality property ofthe pair (X,,A®), we infer that there exists a
transformation Y € L(A@®W ,u(T@)) such th;'lt X; =YX,. As inthe proof of

Proposition(3.2.9).(iii), we can deduce that u(T®)<A®@. Oonsidering the previous
inverse function v of u,yve obtain in a similar way that v(A(“))év(A)(“) =T@,

whence A@ = u(w(A@)) <u(T®) follows. Therefore, the unitary operators u(T@)
and A are unitarily equivalent (see [173]), and so p(u(T)) = u(p(T)).

We are able to extend the transformation law of the quasianalytical spectral sets for a
larger class of functions. We shall say that the nonconstant function u € H* is regular, if
() lulle = 1, (i) m(Q(w)) > 0, (iii) u(w) is measurable, whenever w c Q(u)is
measurable, and (iv) m(u~! (w")) > 0, provided w’' < u(Q(u)) is measurable and
m(w") > 0. (If w Q(u) is of positive measure, then u(M;,) is a nonzero a.c. unitary
operator, and so m(u(w)) > 0.) We note that a function u € H®, with ||ull, =
1,|u(0) | <1 and m(Q(u)) > 0, is regular, if u is of bounded variation on T; and that
this is the case when u is a Riemann map onto a simple Jordan region with rectifiable
boundary. (See [144] ).

Theorem (3.2.12)[31]: Let T € L(H) be an a.c. contraction such that w(T) # ¢. If
u € H*” isaregular function and Q(u) N (T) # ¢, then m(u(T)) 2 u(Q(w) N r(T)).
Proof: In view of Proposition (3.2.11), we can assume that u(0) = 0,that isu =
x',withv € H”, ||v||, = 1. Since the quasianalytical spectral set 7(T) is nonempty, we

: . . . T :
know that T is of class C,_Let us consider the triangulation T = [00 T*] , Where T, is of
1

class C,. and T; belongs to C; Then u(T) is of the form u(T) = [u (L(;(TO)u(T ;)] Since
1

u(Ty) = v(Ty)T,, we can see that u(T,) € C, On the other hand, Q(u) Nn(T;) =
Q) n n(T) # pimplies that g x,r,) # 0 is true for the sequence F, = {u"};.; €
D(H®), and so u(Ty) is of class C; Therefore, we may assume that T and u(T) are a.c.
contractions belonging to C;. Now, the inclusion u(Q(u) N (T)) € nw(u(T)) can be
verified as in the proof of (3.2.11).

We proceed with the description of p(u(T)), for an arbitrary u € H* . We shall need
the following Lemma.
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Lemma (3.2.13)[31]: Let T € L(H)be an a.c. contraction of class C,, and let us assume
that the functions f, g, h € H® satisfy the conditions

Iflle = llglle = 1,1f(0)| < 1,h = fg and Q(h) Nnm(T) #+ ¢. Let us consider the a.c.
contractions B = f(T) and C = h(T) of class C, Then, there exists a unique operator
B € {C™®Y such that X.B = B X; furthermore, B, is an a.c. isometry.

Proof. The existence of a unique B, € {C®} satisfying the condition X.B = B.X,,
follows from the universality property of (X, c(®); see [10, Section I1]. For any n € N,

the relations A"+ XA £ XA imply h**(T) < ™ (T) £ (T) < h™ (T).
Tending n to infinity, we obtain that || X x|| < |[X:Bx|| < [|X-x|| is true, for every
x € H. Thus, given any vector y = (C®)*X.x (k € N, x € 3), we infer that

k
1Bey | = || ()" Bey || = NBeXexll = IXcBxll = IXcxll = Iyl
Since the set Uy (C@) %X, 7 is dense in ), it follows that B is an isometry.
Let us consider the decomposition }[C(a) = M, @ M,, reducing for B, such that B.|M,

is an a.c. isometry and B.| A, is a singular unitary operator. Let P, € L(?—[C(“)) denote the
orthogonal projection ontoMf;. Since B is an a.c. contraction and (P,X;)B = P,B: X, =
B-(P.X;) , we infer that P, X, = 0, that is M, contains the subspace }(C(“j Taking into
account that A, is hyperinvariant for B, and that the operators ¢®, (¢(®)~! commute
with B, we obtain that M, = }[C(“), and so the isometry B, is a.c.
To formulate the transformation law for the residual sets we introduce some notation.
Given a set w € T of positive measure and a unimodular measurable function
h: w — T, the properly essential range of h is defined by pe —ranh:= {z€ T:
lim, o, m (h"1(D(z,7)))r ! > 0} where D(z,1):= {({ €T:|{—z| <r}. We note
that if the Borel measure u on T, given by u(w") := m(h™} (")) (0w’ € T), is absolutely
continuous, then wuis equivalent to the measure y,dm, where w = pe — ranh; see
[178]. If u € H* is a regular function, then pe — ran(u|w) = u(w) is true, for any
w € By, included in Q(u). (Note that in the latter case both x,, dm and m o (ulw)™!
are scalar spectral measures of the a.c. unitary operator u(MLw).)
Theorem (3.2.14)[31]: Let T € L(H) be an a.c. contraction of class C,,and let u €
H® be a function satisfying the conditions ||ull, = 1, |u(0)| < 1 and Q(u) N p(T) # ¢
.Then, the unitary asymptote A of the a.c. contraction A= u(T) is
unitarily equivalent to the restriction of the normal operator u(A®) to its
hyperinvariant subspace rany,, (T @), where w = Q(w) N p(T). Therefore, p(u(T)) =
pe — ran(u|w);in particular, if u is regular, then p(u(T)) = u(Q(u) N p(T)).
Proof. In view of Proposition (3.2.11), we may assume that u(0) = 0. Hence u is of the
form u = y¥, where v € H* and ||v|l, = 1. Applying Lemma (3.2.13) with y.v,u in
place of f, g, h, respectively, we obtain that there exists an a.c. isometry T, € {A@}
such that X,T = T, X,. In virtue of the equations A®X, = X,A = X,u(T) = U(Ty)X,
we infer that the subspace ker (A — u(T,)) — which is reducing for A - contains the
subspace }[ﬁ}. Thus ker(A@ — U(T,)) = H ), and 50 A@ = u(T,).
Assuming that the isometry T, is not unitary, the Wold-decomposition of T, yields that
T, = U@®S,, where U is an a.c. unitary operator and n € N, . Since A® = u(T,) =
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u(U) @ u(s,) and since u(S,) is a c.n.u. contraction, we arrive at a contradiction.
Therefore, T, must be an a.c. unitary operator.

In view of the universality of (X,, T(®), there exists a mapping Y € £ (T®, T, )such that
Y X; = X,. We can easily verify that Y has dense range; see the proof of Proposition
(3.2.9).

(iii). Furthermore, the equations Yu(T®)=u(T,)Y = A@Yimply that A@® =
u(T@) |ker Y)*.

Since the restriction u(T@®) |ker Y)*. is unitary, we can see that the subspace (ker Y)*.
is contained in the spectral subspace M,,: = ran y,, (T@), where w: = Q(u) N p(T). Let

Q € L(H™) denote the orthogonal projection onto A, , and let R € £ (T,T@|M, )
be defined by Rx := QXpx (x € H). Taking into account that w (T (®))|M,, is unitary and
that R € L (A, u(T@)|M,), we infer by the universality of (X4, A(¥) that there exists a
transformation Z € £ (A ,u(T@)|M,) such that R = ZX,. Clearly,ran Z > ran R

and
\ @) rie=\[ o) " xpe = (036°) = M,

Since (ran Z)~ is reducing for u(T@|M,) = u(T@) |M,,, so it is for T(® | M, as well.
Thus, the transformation Z must have dense range, and so we conclude that
u(T| M, = A@|(ker Z)*. Now, an application of [153] results in that the operators
A@ and u(T@) | M, are unitarily equivalent.
It is known that the scalar spectral measure of the a.c. unitary operator u(T(®) |M,, is
po (ulw)™t, where u = y,dm; see e.g. [6].
Thus, we conclude that p(u(T)) = p(u(T@)|M,) = pe — ran(u|w).
As an immediate consequence of Theorems (3.2.7),(3.2.12), (3.2.14) and
Proposition(3.2.6), we obtain the following
Corollary (3.2.15)[31]: If T € L(H) is an a.c. contraction satisfying the condition
n(T) = p(T) # ¢, then w(w(T)) = p(u(T)) = u(Q(u) N p(T)) is true, for any regular
function u € H* such that Q(u) N p(T) # ¢. In particular, if T, = u(S; € L(H?) is the
analytic Toeplitz operator with symbol u, and u € H”is regular, then n(T,) = p(T,) =
u(Q(w)).
We note here that, in contrast with Proposition(3.2.3), the condition ¢y, (T) = 0 does
not imply H,(T,F) # {0}. Indeed, in view of Corollary(3.2.15), we can find a.c.
contractions A, B of class C; -, such that the sets 7(4) N n(B),n(4)\r(B) and n(B)\
m(A) are of positive measure. Let us consider the orthogonal sum T = A @ B; we know
that m(T) = n(A) Nnn(B) and p(T) = p(A) U p(B). Let f € H” be an outer function
such that If |f| = (1/2)xy(ry + xr\m(T), and let us form the sequence
F ={f"} -1 € D(H”). Since ¢ = yr\n(T), we obtain that ¢y, = 0 and

Ho(T,F) = Ho(A, F) @ Ho(B,F) = {0}.
We are going to show that the property of an a.c. contraction T being symptotically
strongly nonvanishing on a set @ € B, is equivalent to a quasianalytic behaviour of T
on a . To be more precise, let us introduce some notation. Given an a.c. unitary operator
U € L(K), we know that y, dm is a scalar spectral measure of U. Let E denote the
spectral measure of U. For any vector x € K, there exists a unique Borel set w(U,x) c T
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such that the measure y, . dm is equivalent to the localization E, of E at x. Clearly,
w (U, x) # ¢ exactly when x # 0. Furthermore, the vector x is cyclic for the commutant
of the restriction of U to the spectral subspace rany,,y . (U), that is V{Cx:C {U}} =
ran)(a)(U,x) (U)
Let T € L(H) be an a.c. contraction of class C;,-, and let « € B; . We say that the
contraction T is quasianalytic on the set a, if w(T@,X;x) D a is fulfilled, for any
nonzero vector x € .
Theorem (3.2.16)[31]: Given an a.c. contraction T € L(H) of class C;  and a Borel set
a € By, the following conditions are equivalent:
@) T € C(a),
(b) T is quasianalytic on «.
Proof. (a) = (b): Let us assume that the contraction T is not quasianalytic on «a.
Then, there exists a nonzero vector x, € # such that the set w: = a\w(T@, X;x,) is of
positive measure. Let us consider a sequence F = {f;,};—1 € D(H*), with limit function
Qr = X,-Since

limy oo [1 X7 fo, (T)Xo Il = iy, | £, T X0 || = || (T@) X7 x0[| = 0
we can choose an increasing mapping k: N - N such that lim,, L, ||[T*®™ £, (T)x,|| = 0
see the proof of Theorem(3.2.7). Taking into account that ¢; x, = x., # 0 is true for the
sequence G = {g, = x*™f£,}°_, € D(H®), we conclude that the contraction T is not of
class C; (a).
(b) = (a): Assuming that T is quasianalytic on a , let us consider a sequence F =
{f,}>_, € D(H™), such that ¢y, # 0. Let E denote the spectral measure of T(®), Given
any nonzero vector x € ', we know that the measure Ex, is of the form Ex,. = g.dm,

where g, (z) > 0 holds for a.e. z € a. Thus, we have

[@peryx]|” = 11Xr1172 Jolprl? gedm >0

and so T is asymptotically strongly nonvanishing on «a.

In view of this theorem, the a.c. C; -contraction T will be called quasianalytic if p(T) =
n(T).

We note that Theorems ((3.2.7) and(3.2.8) can be also derived from Theorem (3.2.16).
For example, if w(T) # p(T), then by Theorem(3.2.16) there exists a nonzero vector
Xy € H such that the set w := p(T)\w(T®, X;x,) is of positive measure. Since the
nonzero hyperinvariant subspace M = {Cx,: C € {T}'} - is transformed into the subspace
rany, . (T) by X, it follows that M is a proper hyperinvariant subspace of T. We

mention that if T is of class C;;, , then to every spectral subspace of T there
corresponds a hyperinvariant subspace of T; see [29] and [10]. Existence of infinitely
many disjoint nontrivial hyperinvariant subspaces of nonquasianalytic type was proved
also in [30].

We close this section by posing the following problem.

Question (3.2.17)[31]: Is it true that the unitary asymptote T®has uniform spectral
multiplicity on the quasianalytical spectral set =(T), for any a.c. contraction T of class
C,? Since T is quasianalytic on (T), we have some evidence to guess that the answer is
positive. An affirmative answer to Question(3.2.17) would imply that every a.c.
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contraction T of class C; has a nontrivial hyperinvariant subspace, provided the spectral
multiplicity function of the unitary asymptote T® is not constant on p(T).

Applying Theorem(3.2.16), we are able to prove the following statement.

Theorem (3.2.18)[31]: Let A € L(H) and B € L(H) be a.c. contractions of class C;_

(@) If L(A,B) # {0}, then p(A) o n(B).

(b) If(A) = p(A) and T(B)\rm(A) # ¢, then L(4,B) = {0}.

Proof. (a): Let Y € £ (A, B) be a nonzero transformation. By the universality of

(X4, A®), there exists a transformation Z € L(A@, B@) such that XzY = ZX,.

Let x, € H be a vector such that Yx, # 0. Since the contraction B is quasianalytic on the
set m(B), we know that w(B®,XzYx,) o m(B). Taking into account that XzYx, =
ZX,x,, we infer by [148] that p(4) D w(B@W, XY x,).

Statement (b) is an immediate consequence of (a).

As a first application, we prove the following proposition, establishing connection
between the commutant of a contraction and its n-th power.

Proposition (3.2.19)[31]: Let T € L(H) be an a.c. contraction of class C;,and let us
assume that =(T) = p(T) = a,,, Where a,, := {e* : 0 < t < 2m/n},n € N. Then, for the
a.c. C, -contraction T™, we have (T™) = p(T™) = T and {T} = {T"}.

Proof. The equation m(T") = p(T") =T follows from Corollary(3.2.15). Setting
Ny = e2T/m we know that m(x), T) =x) n(T) # n(T) is true, forevery 0 < j <n,j €
N. We infer by Theorem(3.2.18) that £(T,»}, T) = £ (%}, T,T) = {0} holds, whenever
0 < j < n. Thus, a result of Cowen yields that {T"}' = {T}’; see [145].

In view of Proposition(3.2.19) and Theorem(3.2.8), the hyperinvariant subspace problem
for a.c. C; -contractions, with an arc on T as a residual set, has an affirmative answer if it
has positive answer for a.c. C; -contractions satisfying the condition n(T) = p(T) = T.
This latter situation seems to be more tractable, since the assumption p(T) = T implies
existence in abundance of invariant subspaces, where T is similar to the simple unilateral
shift S; ; see [28]. Analogous statements of reductive type were proved in [8].

Let us assume now that the a.c. C; -contraction T € L(H) is cyclic. We know from [162]
that the commutant of T is abelian, that is {T}' = {T}", and that the adjoint T is cyclic, as
well. Alternative proofs of these facts can be given in the following way. Since T is

cyclic and the transformation X;i € L(T, TJE“)) has dense range, it follows that the
isometry T is cyclic; hence {T*'}' is abelian.

By the universality of (X}’,Tfa)) (see [10]), there exists an injective algebra-
homomorphism y,: {T}' - {Tf“)}’ such that X{ C =y, (C)X7 is true, for every C € {T}'.
Thus, the commutativity of {T'}' is implied by that of {Tf“)}’.

On the other hand, if the isometry Tfa) is cyclic, then so is its adjoint; and since

(Tf“))* < T*, we obtain that T* is cyclic. For the characterization of cyclic C;; -
contractions, see [155, Theorem 15].

It is known that commutativity of {T}' does not imply cyclicity, in general;

see [147]. In view of Theorem (3.2.18) we can easily provide a large class of noncyclic
C; -contractions with abelian commutant.
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Example (3.2.20)[31]: LetA; € L(F;),j € N, be a sequence of cyclic a.c. contractions
of class C; such that w(A;) = p(4;) is true for every j € N, w(4;)\m(4,) # ¢ whenever
j#kand N;enp (4 ) # ¢. (Corollary(3.2.15) ensures the existence of such a
sequence.) Let us form the orthogonal sum A = Y72, A; . In virtue of Theorem(3.2.18),
the commutant of A splits into the direct sum of the commutants of the operators
A {AY =272, {4}, thus {A} is abelian. On the other hand, the condition
Njenp (Aj ) # ¢ readily implies that the multiplicity of A is infinite.

We say that the a.c. C;-contraction T is a quasiunitary operator, if the canonical
intertwining mapping X; € L(T,T®) has dense range. These operators are
characterized in the following proposition. We recall that ©; stands for the characteristic
function of T, and that 0 (z) := 0;(2)" (z € D).

Proposition (3.2. 21)[31]: Let T € L(H) be an a.c. contraction of class C; .. Then the
following conditions are equivalent:

(@) T is quasiunitary,

(b) ker ®, N H*(D+) = {0},

(c) @0, = 0 implies @ = 0, for any bounded, analytic, L(D -, €)-valued function &,

(d) £ (T,S,) = {0} is true, for everyn € N, ,

(f) L (T,S; = {0}.

Proof. The implications (b) = (c¢) and (d) = (f) are trivial. For the equivalenceof (a)
and (b), see [157]. It was shown in [164] that condition (c) implies (d). Finally, if T is
not quasiunitary then Tfa) IS a nonunitary isometry containing S; on a reducing subspace,
and so (f) implies (a).

We note that the assumption T € C; vyields that the characteristic function 0 is «-outer,
that is (0;H%(D7+))~ = H*(D7). The conditions (b) and (c) express injectivity
properties of O .

If the a.c. C; -contraction T is not quasiunitary, then it follows by Proposition (3.2.21)
that £ (T,S; # {0}. Taking into account that the restriction of S; to any of its nonzero

invariant subspaces is unitarily equivalent to S;, we obtain that Ti S;- Thus S7 < T, and
so the point spectrum g, (T*) of T* covers the open unit disc D.

We conclude that (ker(T* — AI))* is a nontrivial hyperinvariant subspace of T, for
anyA € D. Therefore, the hyperinvariant subspace problem for C, -contractions can be
reduced to the case, when T is a quasiunitary operator.

It can be easily seen that the a.c. C; -contraction T is quasiunitary, if the residual set p(T)
does not cover the unit circle T. Indeed, the condition p(T) # T implies that the unitary
asymptote T(® is reductive, that is LatT® = Lat(T®)*, and so the transformation X;
has dense range. It may even happen that such T is of class C;,; see [25]. Now, we
exhibit an example for a quasiunitary C;,-contraction T, with the property m(T) =
p(T) =0(T)=T.

Example (3.2.22)[31]: Let w:Z — [1, o0) be a dissymetric weight, considered by Esterle
in [149]; that is w is a decreasing sequence such that limsup,,,_,, w(n — 1)/w(n) < oo,
lim,,_ wn)" =1 and w(n) =1, for every n > 0.Let us assume that w is
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submultiplicative and quasianalytic, the latter meaning that ¥2_,(logw(—n)) n™2 = oo.
(For concrete examples, see [149].
Let us consider the Hilbert space

(w) = {f € ZM:IfIE =I5 | ] 'wi < oo},
and the operator T, € L(L*(w)), defined by T, f := xf.The equations(T,, f)*(n) =
f(n—1) (n €Z) are valid for the Fourier coefficients, so T, is a weighted bilateral
shift. It is easy to see that T,, is a contraction of class C;,. Furthermore, [149] imply that
a(T,) = T and that f(z) # 0 is true a.e. on T for any function 0 # f.€ L*(w).
The pair (Xr , T,\*)) is equivalent to the pair (X, T,,, ), where w, = 1 and
Xo: L*(w) > L%, f & f is the natural embedding; that is there exists a unitary
transformation Z € £ (TWO,TME“)) such that X; = ZX,. Thus, we infer that T, is
quasianalytic on T, and so (T,,) = T holds by Theorem (3.2.16). Taking into account
that the trigonometric polynomials are contained in L?(w), we obtain that T, is a
quasiunitary operator.
The invariant subspace problem is open for quasiunitary operators, in general.
On the other hand, it is known from [165] that if the residual set p(T) covers the unit
circle, then the quasiunitary operator T has disjoint nontrivial invariant subspace.
Let us assume that the a.c. C; -contraction T € L(H) is cyclic. Since the commutant {T}’
is abelian, we know that the subspaces (ranQ)~ and ker Q belong to Hlat T, for every
operator Q € {T}'. The next proposition claims that the nullspaces are all trivial, if the
contraction T is quasianalytic. Furthermore, it is sufficient to assume only the cyclicity of
T, which is a slighter condition than the cyclicity of T; see [163].
Proposition (3.2.23)[31] : Let T € L(H) be an a.c. contraction of class C; -, and let us
assume that w(T) = p(T) and that the unitary assymptote T(®) is cyclic. Then, every
nonzero operator Q € {T}' is injective.
Proof. Let Q € {T}' be an operator with kerQ # {0}. Let R € {T@}' be the uniquely
determined operator, satisfying the condition X; Q = RXy. Since the unitary operator
T is cyclic, there exists a function ) € y, )L™ such that R = (T®); see [6]. Taking
into account that X; is injective and that X (kerQ) c ker R, we infer that the set
w:= {z € p(T): Y(z) =0}is of positive measure. Thus, (T, X;Qx) =
w(T@, P(TNXrx) € p(T)\w #= p(T) is fulfilled, for every vector x € #. Since the
contraction T is quasianalytic, we conclude that Q = 0.
A. Atzmon posed us his conjecture that there exists a nonzero operator Q € {T}' with
nondense range, for every cyclic a.c. contraction T € L(H) of class C;, Verification of
that statement would solve the hyperinvariant subspace problem for cyclic a.c.
contractions of class C, It is natural to start the quest for an appropriate Q in the set of
functions of T. It is known that if v € H* is an outer function, then the operator v(T) is a
quasiaffinity, see [29].
Hence, we should concentrate on the class of operators u(T), where u € H* is an inner
function. For any operator Q € L(H), let y(Q) := inf{||Qx|| : x € H, ||x|| = 1} denote
the lower norm of Q; in the case H = {0}, lety(Q) := 1. It is known that y(Q*) = 0 is
valid exactly when ran Q # H. We are going to give a sufficient condition for
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y(u(T)*) = 0in terms of u and the characteristic function ® ; of T. To that end we
introduce the quantity n,(u, T) := inf {lu(A)| + y(0+(1)*): 1 € D}.
Lemma (3.2.24)[31]: Let T € L(H) be an a.c. contraction of class C,,and let u € H®
be an inner function. If n,(w,T) = 0, then y (u(T)*) = 0.
Proof. We shall apply the technique, introduced in [150]. First of all, we may assume
that the contraction T isc.n.u .. We know from the Sz.-Nagy-Foias model theory of
contractions that T is unitarily equivalent to the operator S(O ;) defined on the space
HO7) =K, ©{0;w@Arw:w € H*(D;)} as the compression
5(07) = Py UsH(©7)  where K, := H*(Dy) @ (ArL*(Dp)) ", Api= (I =
00 ;)2 and U, € L(K,) is the operator of multiplication by y. Hence, we can work
with S(0 ;) instead of T. For short, let us write $ = S(07),H = H(©O;), ©=0,,A=
Ar,D = Dy and D, = Dy. We note that T € C, implies that D, # {0}.
Given anyd € D} and 0 # x € D,, let us consider the vector-valued function E, , €
H%*(D,) c K., defined by E; . (2) := (1 — |/1|2)%(1 — AZ)"1x,z € D~. Forming power
series expansion, we can see that ||EM||2 = |lx||> and U}E,, = AE,,. Let us introduce
the projection F,, := PzE,;, € H. A straightforward computation yields that F; , =
E; x — Gy, Where G; , = O0(A)" E; , @ AO(A)*E) . Thus, we have
u(g)* Fl,x_: Pﬁu(U+)* FA,x = P}Tﬁ(L-T-) EA,x - P}Tﬁ(U-T-)GA,x
= Prpu() E;, — PrU(UD)Gx = u(DF,, — Pra(UD)G)x
whence
||u(§)* F/l,x” < |u(/1)|”F/1,x” + ||G/1,x|| = |u(/1)|||FA,x” + ” G')(/1)*96”
follows. Taking into account that ||FM)||2 = |lx]|> = [1®©(1)*x]|> > 0, we obtain that
. Il 0() x|l

YR = W Gz ey 7
In view of this inequality, we can easily verify that n,(u,T) = 0 implies y(u(T)*) =
y(w($)*) = 0. The following theorem claims that the range of u(T) is not dense for some
inner function wu, if the characteristic function © ; satisfies some boundary conditions.
Theorem (3.2.25)[31]: Let T € L(H) be a contraction of class C;,, and let us assume
that there exist z, € p(T) and {4,},—=; < D such that ©+ (z,) is a nonunitary isometry,
lim, . A,, = z,, the sequence {0;(4,) };r=; converges to O(z,)" in the strong operator
topology, and lim,, ., ¥ (0+(4,)) = 1. Then, there exits an inner function u € H* such
that the nonzero operator u(7) has nondense range.
We note that the assumption T € C;, yields for a.e. z € p(T) that ©,(z) is a nonunitary
isometry, and that {©;(4,) },—; converges strongly to O(z,)* whenever 4, tends to
z nontangentially; see [29, Sections V.2,VI.3]. Furthermore, if ©(z) is a nonunitary
isometry, then y(0(z)) = 1andy(0(zy)*) = 0.
Proof. Turning to a suitable subsequence, if necessary, we can assume that

m—1(1 = |A,]) < oo and that 4, # 0,y(07(4,)) > 1 — 27" are true, for every n € N.
Setting

u,(z) = 7 — (n € N),

S
—_
I
)

S
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let us form the Blaschke product u = [[;-; u,, . Let x, be a unit vector in ker®;(z,)".
Since lim,, o, |07 (4,)* x|l = [187(20)* x|l = 0 and u(4,) = 0(n € N), we can see that
n.(u,T) =0, and so y(u(T)*) = 0 by Lemma (3.2.24). It is clear by [29] that, for any
n € N, we have

y(1,(1) =y(T = 4,D(1 - Z,T) " =y(Or(A,)) =1 -2
Let us form the partial products vy :=[IN_,u, ,N € N. Then

y(on (T)) >1_[y(u () >1_[(1 2 M) =:c>0

holds, for every N € N. We can select a subsequence {un, Ji=1 such that
limy o uy, (2) =u(z) istrue, forae. z € T (see [144]). Now, we infer by [29] that the
operators {uy, (T)};-;converge to u(T) in the strong operator topology, and so

y(u(T)) = ¢ > 0 must be also true.
The relations y(u(T)) > 0 and y(u(T)*) = 0 imply that the nonzero operator u(T) has
closed range, which is a nontrivial subspace of #.
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Chaper 4
Power-Bounded Operator of Class €;and the Hyperinvariant Subspaces
We show that if T is a power-bounded operator of class C, on a Hilbert space

which commutes with a nonzero quasinilpotent operator, then T has a nontrival invariant
subspace. We show that if T does not have nontrivial hyperinvariant subspaces for
elementary reasons, then T is ampliation quasisimilar to a (BCP)-operator in the classCyj:
This reduces the hyperinvariant subspace problem for operators in £(#) to a very special
subcase of itself.
Section(4.1): On Invariant Subspaces
A linear operator T on a Hlibert space H is called power-bound if sup, s||T"|| < . A
power-bounded operator T is said to be of classC, if there exists a nonzero vector x € H
such that the sequence {||T"x]||}, does not converge to 0, and T is of class C, . if
{IIT™x||},, does not converge to O for every nonzero vector x.Itis still an unsolved
problem whether every power-bounded operator of class C, . (in particular, C, .-
contraction) has a nontrivial invariant subspace, i.e.,whether there exists a (closed)
subspace M of H such that {0} # M # H and TM < M. For partial results on that
problem, see, e.g., [122] or [134]. In this note we prove the following theorem.

Theorem(4.1. 1)[121]: Assume that T is a power-bounded operator of class C, - on a

Hilbert space #, which , commutes with a nonzero quasinilpotent operator. Then T has

a nontrivianvariant subspace. This theorem will follow from the following one. We

recall that the operator T is called cyclic if it has a cyclic vector, that is, a vector x such

that the sequence {T" x},,>¢ Spans_the whole space H .
The proof is base on the following construction of the limit isometric operator associated
with T (see [10] and [139]).

Given a power-bounded operator T acting on the Hilbert space H, fix a generalized
Banach limit glim on £ (N) and consider the sesquilinear form Wyon H defined by
Wr(x,v):= glim,_(T"x,T"y),x,y € H. Since {T"},is bounded , it is easy to see
that glim,,_,., ||T™x|| = 0 if and only if inf, 5, ||T"x|| = 0, and this happens if and only if
lim, . ||[T"x|| = 0. Let H,, (T) be the kernel of wy, i.e.,

Ho(T) := {x € H:wp(x,x) =0} = {x € H:lim,_||T"x|| = 0}.

Clearly, H,(T) is a subspace which is invariant for any operator A in the commutant
{T}' of the operator T. Furthermore, H,(T) = H if and only if T is of class C,, and,
Hy(T) = {0} if and only if T is of class C; Thus, Theorem(4.1.1) is an immediate
consequence of Theorem (4.1.2).

Let us form the quotient space H; = H /H,(T), and let us consider the canonical
mapping 1f mpH - Hyp mp(x) :=x + Hy(T) =: 2.The sesquilinear form
wr(%,9) := wr(xy) (x,y € H) provides an inner product on H, so that #is a
pre-Hilbert space. Let T be the operator on H; which is defined by T% := Tx. It is
easy to see that T is an isometry.

Let H; be the comlpletion of H; and let V; be the continuous extension of T, called
the isometric asymptote of T in [11]. Any operator A € {T} generates an operatr4 on
H; by A% :=Ax (x € H) (and by continuous extension from FH; to Hy the
mapping yy: A — A is a contractive algebra-homomorphism from the commutant
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{T} of T into the commutant {V;;}' of the isometl V. Since y; is a unital algebra-
homomorphism, we obtain the spectral inclusion o (4) < a(4) (A € {T}). It follows
that if A is quasinilpotent then so is A. It is also clear that A = 0 holds if and only if
ran A € Hy(T).
For a bounded linear operator V on a Hilbert space K, let {V}" denote the bicommutant
of V. Let R(V) be the set of operators f(V), where f runs through the set of rational
functions with poles off the spectrum o (V), and let A(V) be the closure of R(V) in the
weak operator topology. We will need the following well-known facts on these
algebras.
Lemma(4.1.2)[121]: If V is n isometry on a Hilbert space K,then the abelian Banach
algebra {VV}" ismisimple, and {V}" = A(V).
Proof. For the sake of ompleteness, we sketch the proof. The Hilbert space isometry V
splits into tl orthogonal sumV = V, @ U, where V, is an absolutely continuous
isometery and U, is a singular unitary operator. It is known that {V}" = {V,}" @ {U,}"
and A(V) = A(V,) @ A(U,); see [126] and Rudin's theorem in [8]. Let u and u, denote
the normalized Lebesgue measure and the scalar spectral measure of U, respectively, on
the unit circle T, and let H* be the Hardy subspace of L (u). It can be easily verified that
o} = {o() = ¢ € H* } if V, is nonunitary, {V,}" = {o(V,): ¢ € L*(w)} if V, is
unitary, and {U}" = {Y(U;) = Y € L” (u,)}; see [125]. Classical approximation heorems
yield that {V}" A(V). On the other hand, the previous representation shows that every
operator A € {VV}"is subnormal, and so ||A]| is equal to the spectral radius r(A), which
means that {V/}"does not contain nonzero quasinilpotent operators (or equivalently, the
Gelfand transformation,sociated with {V'}" is injective).
Lemma(4.1. 3)[121]: The isometry V acting on the Hilbert space K is cyclic if and only
if its commutant is abelian, that is, {V} = {V}".
Proof. Considering the former decomposition V =V, @ U, we obtain that V is cyclic if
and only if both V, and U,are cyclic. Let us recall that a unitary operator U is cyclic if and
only if U is «-cyclic, which means that the set {U"x},—_. Spans the whole space with a
suitable vector x; see [124]. Now, the results in [125] imply the statement.
Theorem(4.1.4)[121]: If T is a power-bounded operator of class C; on a Hilbert space
H such that T commutes with a nonzero quasinilpotent operator , then T is not cyclic.
Proof. Let us suppose that T has a cyclic vector x. Since ||y|| < M]||y|| holds for every
y € H, where M = sup{||T"||};>=, the vector X is cyclic for the limit isometry V. Let
A be the nonzero quasinilpotent operator that commutes with T. Then A = y;(A4)
commutes with Vr, hence we infer by Lemma (4.1.4) that A € {V;}". Since {V;}"is
semisimple by Lemma(4.1.3), we have A =0, and so ran A c H,(T) = {0}. Thus
A = 0, which is a contradiction.
Applying the Riesz-Dunford functional calculus, Theorem(4.1.1) can be easily extended to
the following statement.
Corollary (4.1.5)[121]: Let T be a power-bounded operator of class C, on the Hilbert
space . 1f T commutes with a nonscalar operator A having an isolated spectrum point,
then T as a nontrivial invariant subspace. In particular, T has a nontrivial invariant
subspace if T commutes with a nonzero, essentially quasinilpotent operator A.The
following proposition shows how the statement of lemma (4.1.4) can be transferred to
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power-bounded operators.

Proposition(4.1. 6)[121]: Let T be a power-bounded operator of class C; on theHilbert
space H, and let us consider the conditions: (a)T is cyclic, (b)Vy is cyclic, (¢) {T} =
{T}".Then (a) = (b) = (c), but the reverse implications are false.

Proof : We have already seen that (a) implies (b). If V; is cyclic then {V;}' is abelian
by Lemrr( 4.1.3), which implies that {T'}' is also abelian since the mapping y;T is one-
to-one. In [138], in terms of the Sz.-Nagy-Foias functional model of contractions,
examples are given for the case when V; is cyclic but T is noncyclic.

To show that (c) doe not imply (b), let us consider the simply connected domains
Q,:={z€D:Rez> —1/2}and Q_:= {z € D: Re z < 1/2}, where D stands for
the Open unit disc. Let ¢ and 1 be conformal mappings of D ontofl, and ontof_
spectively. Let T, and T, be the analytic Toeplitz operators with symbols ¢ and v,
respectively, on the Hardy space H® that isT,f := of,T,f :=¢f (f € H*), We
know by [136] that ¢ and y are (sequential) weak-~ generators of the algebra H* and
so the operators T,, and T, have the same invariant subspaces as the operator T, where
x(z) = z.Since T, . cyclic, it follows that the operators T, and T;,are cyclic, as well.
It is clear that T, and T;, are contractions of class C; Furthermore, Vr, and V; , are

unitarily equivalent to the restrictions M, := M|x,L*(w) and Mp:= M|yzL?(w),
respectively, where
Mf:=xf (f€’(W)a:= Q)" nTandp:= (Q_NT.

Let us form the orthogonal sum T:=T, @ T,. Since V; is unitarily equivalent to

M, @ Mz and u(a N B) > 0, we obtain that V7 is noncyclic. On the other hand, the

conditions u(f \a)>0and u(a \B ) >0 imply by [127] that {T}' = {T,}'® {T,}"

see also [134]. Taking into account that T, and T,, are cyclic, we infer that {T}' is a

semisimple abelian Banach algebra.

The following examples shows that Lemma(4.1. 2) cannot be generalized to power-

bounded operators.

Example(4.1.7)[121]: We recall that the power-bounded operator T is called of class C;;
if both T and its djoint T* are of class C; The invariant subspace M is called quasi-
reducing. if the restriction T|Mis of class Cy;.

Let T be a cyclic, completely non-unitary contraction of class C;;. on the Hilbert space

H such that the spectrum of T is the closed unit disc D~, and V- is a cyclic bilateral shift

The existence of such operators follows from [123]. For a concrete example we refer to

[130]. The lattice of the quasi -reducing invariant subspaces of T is isomorphic to the

lattice of the spectral subspaces of V;; see [129] and [29]. Thus, we have an abundance of

quasi-reducing subspaces of T. These subspaces are exactly those which can be written
in the form (ran A)~, where A € {T}"; see [129]. Hence, there are many nonzero
operators in {T'}" which have nondense range.

On the other hand, since o(T) = D~ and V; is a bilateral shift, we infer by Runge's

theorem and by [131] that A(T) = H*(T) := {u(T):u € H*}. However, for any

nonzero function u € H*, the operator u(T) is quasisimilar to u(Vy) (see [29] and

[137]), and so u(T) has dense range. Therefore, A(T) is a proper subset of {T}".

Let T be a power-bound operator of class C; on the Hilbert space ..
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Let A, (T) denote the norm -closure of the set R(T). The norm-continuity of y; and the
condition o(T) o o(Vy) imply that y;(Ay(T)) € Ay(Vr) Since Ay(Vp) © A(Vp) =
{V:}" and {V;}" is semisimple, we may infer that. A,(T) is semisimple. This statement
was previously showed in [135].

If yr({T}") c {V;}" holds, then it follows in the same way that {T}" is semisimple.
However, a look at the operator T = T, & T, occurring in the proof of Proposition(4.2.

6) shows that the inclusion y;({T}") c {V;}" does not hold in general. Indeed, the
operator 1@ 0 belongs to {T}", but y;(1& 0) =16 0 does not belong to {V;}" Thus,
the following problem remains open.

Question(4.1. 8)[121]: Is the abelian Banach algebra {T}" semisimple for every power-
bounded Hilbert Space operator T of class C; ?

In view of Theorem(4.1. 4) and Proposition (4.1.6), the answer is affirmative if T is
cyclic.

As a consequence, we obtain that if the power-bounded operator T of class C;_is of finite
multiplicity then the quasinilpotent operators in the commutant of T are nilpotent. So, if T
is of finite multiplicity then the problem above can be reduced to the quastion whether
every nilpotent operator A in the bicommutant of T is necessarily zero.

The following result on the stability of the semigroup {T"},s, is related to Theorem
(4.1.1) and has an analogous proof.

Theorem(4.2.9)[121]: Suppose that T is a cyclic power-bounded operator on a Hilbert
space H . such that T commutes with a quasiinilpotent operator A. Then {T"}, is stable
on th, range of A, that is, lim,,_,., [|T™x|| = 0 holds for every x € (ran A)-.

In connection with Theorem(4.1. 9), let us also note the following related fact contained
in [140].

Theorem(4.1.10)[121]: Let T be a power-bounded operator which commutes with a
compact operator K with dense range. Then {T"}, > is stable 'if and only if T does not
have a unimodular eigenvalue.

We note that most of the previous results can be extended without any difficulty to
operators T such that the norm-sequence {||T"||},so IS regular in the sense of [132].
Studying these problems in the general Banach space setting, we encounter the obstacle
that Lemma(4.1.2) fails, since {V}" is not necessarily semisimple if V is an isometry on
an arbitary Banach space, see [128].

Section (4,2): Hyperinvariant Subspace Problem

In this section # will always be a fixed separable, infinite dimensional, complex Hilbert
space, and (.~ )will denote the algebra of all bounded linear operators on % .If

A € C (the complex plane), then the operator 4.1 will be written simply as 4 , and the
subset of (.~ )consisting of all operators that are not scalar multiples of the identity
operator will be denoted by (.~ )/C If Tex () thenthe commutant of T denoted
by {T}, is the algebra of all operators S in & ( #)such that ST =TS .

Recall that a subspace (i.e., closed linear manifold) .# _ 4 is called a nontrivial
hyperinvariant subspac (nhs.) for T if (0) # # # & and s # < w foreach s

in{T} . The (presently open) hyperinvariant subs pace problem (for operators on Hilbert
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space) is to establish the truth or falsity of the following proposition:

(P,) Every operator in (.~ ) \Chas anhs
Below we show that (P, )is equivalent to a very special case of itself, but first we must
introduce some additional notation. We denote the spectrum of an operator T in
2 () by o(T) and the essential (i.e., Calkin) spectrum of T by o,(T). The sets
o.(T)and o, (T)will be, as usual, the left and right essential spectra of T ,
respectively, and o,,(T):=0,(T)No,(T). Moreover we write o, (T) for the point
spectrum of T (i.e., the set of eigenvalues of T ) and r(T) for the spectral radius of

T . We write also N, for the set of nonnegative integers, D = {¢ € C: |¢| < 1},and
T = 0D . Recall that a subset D of D is said to be dominating for T if almost every
point of T (with respect to Lebesgue arclength measure) is a non tangential limit of a
sequence of points fromD Recall also from the theory of dual algebras (cf., e.g.,

[111]) that a completely non unitary contraction T in & () is called a (BCP)-
operator (notation: if T (BCP), if o,(T)ND is dominating forT .

The class (BCP) has been studied extensively in the theory of dual algebras (cf.
[111]), and, in particular, it is known that (BCP). operators are reflexive [109], which
implies that the lattice Lat (T) of invariant subspaces of any (BCP)-operator T is

quite large. In fact, it contains a sublattice isomorphic to the lattice of all subspaces of
# [111] and also contains a countably infinite family of cyclic invariant subspaces
with the property that any two subspaces from the family have intersection on (0)

[108]. Moreover, the (BCP)-operators are, in a sense, "universal dilations", meaning

that every direct sum of strict contractions can be realized as a compression to some

semi-invariant subspace of an arbitrary (BCP) operator [110]. Recall also from [120]
that a completely nonunitary contraction T is said to belong to the class C,, if both
sequences {{T"}", and {(T*}L converge to zero in the strong operator topology and

foreach0< @ <1 . Finally, define
Ay={eCo<|é <1} (¢H)
Our principal result in this section is the following:

As an easy corollary of Theorem(4.2.10) , we obtain, as a consequence of the results in
this Section below, that proposition (P, ) is equivalent to a(perhaps more amenable, in

view of the above remarks about (BCP)-operators), subcase of itself, namely (P,) Either
every (BCP) -operator T eCy such that o(T)=0,(T)=D" hasan.h.s ., or there
exists 0< 6 <1 such that every (BCP)-operator T e Cysatisfying o(T)=0, (T)=A, and
T = 1/9 has a n.h.s. In ther words, in this Section we will establish the following:

Theorem(4.2.1)[104]: Proposition (P, ) and (F,) are quivalent.
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We introduce a certain equivalence relation on ..« (s) . If n is any cardinal number
satisfyingl<n <X, , we will write " . for the direct sum of n copies of ..# indexed by
the appropriate initial segment of N, (i.e., " =@, % where each 2 =2 ),

Moreover, for any T in (s )we will denote by T™ the direct sum (ampliation) of n

copies of T acting on the space % in the obvious fashion. The following fact is well
known, so no proof is given.

Proposition(4.2.2)[104]: Let T be any operator inin & (~) \C. Then T has a nhs. if
and only if for some (every) cardinal number n satisfying 1<n<¥,, T™ has an.h.s.

Recall next that if S and T are operators in & (%), then S and T are quasisimilar
(notation: S~T T ) if there exist

quasiaffinities X and Y in z (%) (i.e.

ker X =kerX™ =kerY =kerY™ =(0)) such that SX =XT and YS=TY .The following

facts are well-known; for proofs, cf., e.g., [117,119].
Proposition(4.2.3)[104]: Suppose that n is any cardinal number satisfying 1<n<¥N,,

and that {S,},.,., and {T, }....., are bounded sequences of operators in (s )such that
for eachk € Ny, S, ~ T, . Then S =@o<cn Sk ~ T =@®o<kcn Do<k<n Tr . Moreover,

S has an.h.s. ifand only if T does;
We now introduce a relation on & (s )that may be new.

Definition(4.2.4)[104]: For T, and T, in «(#), we say that T, is ampliation
quasisimilar to T, (notation: T; 2T,) if there exist cardinal numbers m and n satisfying
1<m,n<N,, such that™ ~ T,

Proposition(4.2.5)[104]: Ampliation quasisimilarity is an equivalence relation on (%)
Furthermore, if T;2 T, , then T, hasanhs . if and only if T, does. Finally, there are
operators T, and T,in (s )such thatT; 2 T, butT; . T,.

Proof: It is clear that he relation ¢ is reflexive and symmetric. As for transitivity,
if T ~ 7™ and TP ~TOthen T ~ T ~ Ty proposition(4.2.3)
soT1 2 Ts.

The fact that if T; 2 T,, then T, hasanhs . if and only if T, does, follows immediately
from Propositions(4.2.1) and (4.2.3). Finally, if N is any normal operator in & (#)of

multiplicity one, then N ¢ N @ N, but N is not quasisimilar to N @ N because, as is well
known, two normal operators that are quasisimilar are unitarily equivalent.

In this section, we show Theorems (4.2.10) and (4.2.1). Since (F,) obviously implies
(R,), to show Theorem (4.2.1) it suffices to show the converse. This follows

immediately from Proposition (4.2.6), Theorem (4.2.10), and Proposition (4.2.5), applied
in that order, so it is sufficient to prove Theorem (4.2.10), since the following is well-
known.
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Proposition (4.2.6)[104]: Let 0<@<1 be arbitrarily given. If every T in & (s )that has
the properties (a)-(f) set forth in Theorem (4.2.10) has an.h.s., then every operator
in () \Chasan.hs..

Proof. If T is a given operator in & () \C, then T hasanhs . if and only if some
(every) operator 1/y.(T+A4) where =0 and A€ C hasanhs .. The only other
property above hat needs a word of explanation is(f) , and if (f) is not satisfied that T
has anhs. follows from Lomonosov's theorem [118]. (Note that if for some
neN,(T-u) =0, then o,(T)=¢ ).

In order to prove Theorem(4.2.10) , we need some special cases of theorem of

Apostol-Herrero-Voiculescu on the closure of similarity orbits of perators [107,106]. (For
another exposition, see [112],[113].) The first such result that we will need was proved

almost simultaneously and independently in [105,114] For T in & (s )we write & (T)
for the norm closure of the set
{STS":Sez(#)and 0zo(s)}.

Theorem (4.2.7)[104]: (Apostol- Herrero). Suppose T ez (%) is an operator with
singleton spectrum {4} and no (positive, integral) power of T - is a compact operator.
Then

#(T) consists exactly of all Ae.# () such that

@ o.(A)=0,.(A),

(b) o.(A) and o(A) are connected,

() wueo,(A),and

(d) the Fredholm index of A-4 is 0 for all 2 in

o(A)\o,(A).
The following was proved in [114]. For a different proof, see [116].

Theorem (4.2.8)[104]: (Herrero). Suppose T e #(#)and o(T)is a perfect set. Then
every normal operator Ae .« (s )such that o(A)=0(T) belongsto «(T) .

The last such result that we shall need is also from [114]. See also Theorem 5.8 of [116]
for a different proof.

Theorem(4 2.9)[104]: (Herrero). Let T be a normal operator in & (s )such that o (T)
is a perfect set. Then (T consists exactly of all A in & (s )such that

(@ o(T)co(A) and o(T) intersects each component of o (A),

(b) o.(T)co,.(A)=0,.(A) and o, (T) intersects each component of o, (A), and

(c) the Fredholm index of A—4 is 0 forall A .in o(A)\o,(A).

We can now complete the proof of Theorem (4.2.10).
Theorem(4.2.10)[104]: Let 0<8<1 be arbitrarily given, and let T e #(#) have the

following properties:
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(@ (1+0)/2e0(T),

(b) the spectral radius r(T -(1+6/2))<(1-6)/4,

(¢) o(T) is connected,

(d) o(T)=o0.(T)the point spectrum o (T) is empty, and

() no (positive, integral ) power of T —((1+6)/2) is a compact operator.

Then T is ampliation quasisimilar (see Section 2) to a (BCP) -operator T in the class
C such that o(T)=o0,(T)=A, and such that |T7|=1/¢0 wheneverd>0

As an easy corollary of Theorem (4.2.10), we obtain, as a consequence of the results see
below, that proposition (P,) is equivalent to a (perhaps more amenable, in view of the

above remarks about (BCP)-operators), subcase of itself, namely (P,) Either every
(BCP) -operator T eC,, such that o(T)=0,(T)=D" hasan.h.s ., or there exists
0<#<1 such that every (BCP)-operator T eCysatisfying o(T)=0,(T)=A, and
[T*|=1/6 has anhs.

In other words, in Section 3 we will establish the following:

Proof. Let 0<@ <1 be arbitrarily given, and let T € & () \C be given that satisfies
(@}--(f) of The Theorem (4.2.10). Let A, be the annulus (or disc) in (1), and let
in () \C be the disc

g =(gec: - <) @
By (a) and (b), we know that (1+6)/2eoc(T) ando(T)cg . Furthermore, by
(c).o(T)=0,.(T) is either the singleton {(1+6)/2} or is a perfect set. Define the
sequences {r,} and {s,} of positive real numbers by

r,=((4n+3)6+1)/(4n+4), neN, 3)
and

s, =(4n+3+0)/(4n+4), neN,. 4)

Observe that {r,}is a strictly decreasing sequence satisfying 6&<r, <(1+30)/4 and
infr. =6 , while {s,}is a strictly increasing sequence satisfying 1>s, >(3+6)/4 and sup

S, =1 . Define next the annuli

1436
{E € C:+TS €] < Sn},neven

An = (5)

{secn <1g1<22, n odd
Let , denote planar Lebesgue measure on C , and for neN,, let M, be the normal
operator of multiplication Dby the position function on;gfnsz(An,y|An). Let also
N, ez (%) be (anorma operator) unitarily equivalentto M, e # () . One checks next
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that for each neN;,o(N,)=0,.(N,)=A, which is, of course, a perfect set containing
. Thus we may apply either Theorem(4. 2.8) (ifo(T) ={(1+ 0)/2}) or Theorems(4. 2.9)
and (4.2.10) ( otherwise) to conclude that N, e & (T) for all neN,. Therefore for each
nonegative integern , there exists an invertible operator S, in (s )such that

S,TS," =N, | <(1-s,)/2, neven (6)
and
S, TS,' =N, |l<(r,—0)/2, n odd (7)
Define # = # & and note that since
S, TS =[INL[ < (1S, TS, = N, [
and

. n even
IN:[|= ,
(3+6)/4 nodd
a short calculation using (3), (4), (6), and (7) shows that
S, TS 'l<1 neN,.

Thus, the operator f=@neNOSnTS;1 in y(%) is a completely nonunitary contraction in

the class C,, , which is obviously ampliation quasisimilar toT , and we begin to study its
spectral properties. Note that, for every even n in N, and every xe# , we have from
(6) that

SaTS, |2 NaX| =((2=s,)72) ]
>({(1+30)/4}-(1-5,)12)|].
>>((2s,+30-1)/4)|x| = 0|x|. (8)
which shows, in particular, that if @ >0 , then for n even we have
H(snTsnl)lu <1/0 9)

Similarly, for n odd we have from (7) that
SnTS;lx” >N, x| —((rn -0)/ 2)||x||
>(r, ~{(r,~9)/ 2}|x| > 6|, (10)
which shows that if & > 0 then (9) is also valid for n odd, and thus, in particular if
6>0 ,that T isinvertible and
IE supH(SnTSnl )lH <1/6 (11)

We also conclude from this that whether or not6>0 , we have o, (T)co(T)<A, , as

desired.
Next, we will show that o, (f):a(f):Ao , and thus that T is a (BCP) -operator.
To this end (whether or not 8>0), let 4, €A;, (the interior of A, ) be arbitrary.
Then, since infr, = 6 and sups, =1, there exists a positive integer K, such that
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either
(@ A, €A, forallevenk>K, ,or

(b) 4, €A, forall odd k>K,.
Since o, (N,)=A, f(all nin N, by construction, we obtain, in the case that (a) is
valid, a unit vector x, e such that |(N, -4,)x,

<1/n for all even n>K, , and
similarly in case (b) is valid. Now define for each even or oddn> K, , depending on

whether (a) or (b) is valid, the vector ¥, € # = s 0 by taking the component of
X in the nth copy of #in# to be x, and all other components to be zero. It is

obvious that the family{¥, € #:n > K, ,n even or odd depending on whether (a)
or (b) is valid} is an orthonormal family, and it follows from the inequality

(T =7 ) %, =[(s7s2" = 4 )%,
<[(N, = ) %[ +[S, TS, =N,
<(1/n)+max{(1-s,)/2(r,—0)/2}

—0 and thusthat 4, o, (T) . Since o, (T) is closed,
A, co, (f)ca(f)cAo. (12)
Finally, we note that if 6>0 , then [T|=1/0 by (11) and [115].

that H(f ~ )%,

-77 -



Chapter 5
The Schur-Horn Theorem for Operators and Constructing Finite Frames

Let A be a Hilbert space. Given a bounded positive definite operator S on A, and
a bounded sequence ¢ = {c, }ren OF nonnegative real numbers, the pair (S, c) is frame
admissible, if there exists a frame {f;}rexr ONH with frame operator S, such that
(i =c,kEN.

The estimate is valid for a fairly general class of frames — requiring that the
dimension of the Hilbert space and the number of frame vectors is relatively prime. In
addition, we re-phrase our distance estimate to show that certain projection matrices
which are nearly constant on the diagonal are close in Hilbert-Schmidt norm to ones
which have a constant diagonal.

Indeed, the minimum and maximum eigenvalues of the frame operator are the
optimal frame bounds, and the frame is tight precisely when this spectrum is constant.
Often, the second-most important design consideration is the lengths of frame vectors:
Gabor, wavelet, equiangular and Grassmannian frames are all special cases of equal norm
frames, and unit norm tight frame-based encoding is known to be optimally robust
against additive noise and erasures. We consider the problem of constructing frames
whose frame operator has a given spectrum and whose vectors have prescribed lengths.
For a given spectrum and set of lengths, the existence of such frames is characterized by
the Schur-Horn Theorem—they exist if and only if the spectrum majorizes the squared
lengths—the classical proof of which is nonconstructive. Certain construction methods,
such as harmonic frames and spectral tetris, are known in the special case of unit norm
tight frames, but even these provide but a few examples from the manifold of all such
frames, the dimension of which is known and nontrivial. In this paper, we provide a new
method for explicitly constructing any and all frames whose frame operator has a
prescribed spectrum and whose vectors have prescribed lengths. The method itself has
two parts. In the first part, one chooses eigensteps—a sequence of interlacing spectra—
that transform the trivial spectrum into the desired one. The second part is to explicitly
compute the frame vectors in terms of these eigensteps; though nontrivial, this process is
nevertheless straightforward enough to be implemented by hand, involving only
arithmetic, square roots and matrix multiplication.

Section(5.1): Prescribed Norms and Frame Operators
Let ' be a separable Hilbert space and let S be a bounded selfadjoint operator on . In
the first part of this section, we give a complete characterization of the closure in £~ (N)
of the set of possible “diagonals” of S, i.e., the set C[Uyx(S)] of real sequences ¢ =
(¢y)nen SUCh that

(Se,,e,) = c,, neN, (1)
for some orthonormal basis B = {e,,} ,en OFf .

Note that, if dimH = m < oo, this can be made in terms of majorization theory.
More precisely, the Schur-Horn theorem ensures that ¢ € R™ satisfies Eq. (1) for some
orthonormal basis if and only if ¢ is majorized by the vector of eigenvalues of S (see
Theorem (5.1.2) for a precise formulation). In the general case, we define an analogous
form of “the sum of the greatest k eigenvalues” in the following way: given S, a
selfadjoint operator on A, and k € N, we denote

-78 -



U, (S) = sup{tr SP: P € L(H) is an orthogonal projection with tr P = k}, and
Ly (S) = =Ur(=5). _
We prove, based on the results obtained by A.
Neumann in [101], that ¢ belongs to the £ (N) -closure of C[Uy (S)] if and only if
Uk(C) < Uk(S) and Lk(S) < Lk(C),k € N, (2)
Where
Ui (c) = sup|p|=k Xier Ci»
and
Li(c) = infip—y Xier ¢; = -Ui(—0).
Similarly, if S is a trace class operator, we show that ¢ belongs to the £ (N)- closure of
C[Us(S)] if and only if ¢ satisfies formulas (2) and

Z ¢, = trS.
neN

On the other hand, a somewhat technical characterization of the maps U, and L, is
obtained (see Proposition (5.1.7), which is used to compute these quantities and to prove
their basic properties. Related results can be found in R. Kadison [98], [99], and Arveson
and Kadison [89] (which appeared during the revision process of this work).

In the second part of this note, these extended Schur-Horn theorems are used to give
conditions for the existence of frames with prescribed norms and frame operator. First we
recall some basic definitions. Let M = Nor M = {1,2,...,m} :=1,,, for some m € N.
A sequence {f; }rem In I is called a frame for # if there exist constants 4, B > 0 such
that

Al <Y [ f)l < Blixll?,  for everyx €.
keM

For complete descriptions of frame theory and its applications, the reader is referred to
[94], [96], [97], [90], or the books by Young [103] and Christensen [74].
Let F = {fi }xem, be a frame for H'. The operator

S:H - H,givenby S(x) = Yyemlx, fi) fi » x € H, 3)
is called the frame operator of F. It is always bounded, positive and invertible (we use
the notation S € Gl (H)™).
In recent papers by Casazza and Leon [92], [93], Casazza, Fickus, Leon and
Tremain [91], Dykema, Freeman, Korleson, Larson, Ordower and Weber [45], Kornelson
and Larson [100], and Tropp, Dhillon, Heath Jr. and Strohmer [57], the problem of
existence and (algorithmic) construction of frames with prescribed norms and frame
operator has been considered.
Following [92], [93], we say that the pair (S,c) € GI(H)T x £2 (M)t is frame
admissible if there exists a frame F = {f} }xen On H such that
(1) F has frame operator S, and
2) fiI? = ¢, for every k € M.
In this case, we say that F is a (S, c)-frame. We denote by F (S, c¢) the set of all (S, ¢)-
frames on H'. Hence the pair (S, ¢) is frame admissible if F(S,c) = @.
It is known (see [92], [57]) that, in the finite dimensional case, there is a connection
between frame admissibility and the theory of majorization, in particular, the Schur-Horn
theorem. We make this connection explicit both in the finite and infinite dimensional
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context. We use the classical Schur-Horn theorem in the finite dimensional case and its
extension, developed in the first part of the section, for the infinite dimensional case.
This presentation of the problem allows us to get equivalent conditions for the frame
admissibility of a pair (S,¢) € GL,(©)* x £°(N)* , and necessary conditions for the
frame admissibility of a pair (S,¢) € Gl ()" x £ (N)* .
We show that, if the pair (S,c) is frame admissible, then Y,encr = . and U, (¢) <
U, (S) for every k € N. In particular, lim sup ¢ < [|S||., the essential norm of S (see
Theorem (5.1.25). Then, by strengthening these conditions we get sufficient conditions
for the frame admissibility of pairs (S,c¢) € Gl (H)* x ¢*(N)* (Theorem(5.1.28).
These conditions are less restrictive than those found by Kornelson and Larson in [100].
We briefly describe the contents of the section. In this Section we fix our notation, and
we state the classical Schur-Horn theorem. In the Section we prove the extension of the
Schur-Horn theorem for general selfadjoint operators. In this Section we give some
reformulations of the notion of frame admissibility which allow us to apply majorization
theory to this problem, and we show equivalent conditions for frame admissibility in the
finite dimensional case (both for finite or infinite sequences c). In this Section we study
the infinite dimensional case, showing separately necessary and sufficient conditions for
frame admissibility. In the Section we give several examples for the boundary cases of
the conditions studied before. These examples show that, in general, the conditions can
not be relaxed further. We also study different types of frames in F (S, ¢), in terms of their
eXcesses.
Let H'be a separable Hilbert space, and L(H) be the algebra of bounded linear operators
on H. We denote L,(H) the ideal of compact operators, Gl () the group of invertible
operators, L(F ), the set of hermitian operators, L(#)* the set of nonnegative definite
operators, U(F) the group of unitary operators, and Gl (H)* the set of invertible
positive definite operators. We denote by L'(H) the ideal of trace class operators in
L(F0). We set LY (), = LY(H) N L(H), and LY(FH)T = LY(H) n L(H)*. We denote
by ¢'(N) the Banach space of complex absolutely summable sequences. By
25 (N) (resp.#1(N)*) we denote the subsets of real (resp. nonnegative) sequences.
Similarly, we use the notations £ (N), £% (N)and #°(N)*) for bounded sequences.
Given an operator A € L(H), R(A) denotes the range of A, kerA the nullspace of 4, 0(4)
the spectrum of A, A* the adjoint of A4, p(A) the spectral radius of A, and ||A]| the spectral
norm of A. We say that A is an isometry (resp. coisometry) if A*A = I (resp.AA™ = 1).
We also consider the quotient A(H) = L(H)/Ly(H), which is a unital C* —algebra,
known as the Calkin algebra. Given T € L(#), the essential spectrum of T, denoted by
a,(T), is the spectrum of the class T + Ly(H)in the algebra A(#). The essential norm
IT|l, = inf{lIT + K|l : K € Lo(H)} of T is the (quotient) norm of T + Ly(H), also in
A(H). Given S € L(H), , we define

a*t(S) = max 0,(S) = ||S||, and a_(S) = min g, (S). 4)
If S = fa ) tdE (t) is the spectral representation of S with respect to the

spectral measure E, we shall often consider the following compact operators:

7= Jiarcspsn(t = @ ())dE(D), and

S = Jisia_isn(t = a(S))AE®) )
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Note that S_ < 0 < S*.
Given a subset M of a Banach space (x, || - II), its closure is denoted by M or cly., (M),
and the convex hull of A is denoted by conv(M). Also, given a closed subspace S of H,
we denote by Ps the orthogonal (i.e., selfadjoint) projection onto S.If B € L(H) satisfies
P;BP; = B, in some cases we shall use the compression of B to S, (i.e., the restriction of
B to S as a linear transformation from S to S), and we say that we consider B as acting
onsS.
Finally, when dimH = n < oo, we shall identify H with C*, L(H) with M, (C), and we
use the following notations: A, (C), for L(#),, M,(C)* for L(FH)*,U(n) for U(F),
and gGl,, (C) for gl (H).
Majorization. In this subsection we present some basic aspects of majorization theory.
For a more detailed treatment of this notion see [51]. Given b = (by,...,b,) € R",
denote by b'€ R™ the vector obtained by rearranging the coordinates of b in
nonincreasing order. If b,c € R™ then we say that ¢ is majorized by b, and write ¢ < b,
if
Yk obt=¥k ¢ k=1,.,n—1,and¥", b, = Y™, c.
Majorization is a preorder relation in R™that occurs naturally in matrix analysis.
Definition (5.1.1)[35]: Let M =NorM = {1,2,...,m}:=1,, forsomem € N. Let K
be a Hilbert space with dimK = |M] and let B = {e,, },,em be an orthonormal basis of XK.
(i) For any a = (a,)nem € £ (M), denote by My, € L(K) the diagonal operator given
by Mg .e, = a,e,,n € M. When it is clear which basis we are using, we abbreviate
Mg, = M,.
(ii) In particular, for a € C"*, we denote by M, € M, (C) the diagonal matrix (with
respect to the canonical basis of C*) which has the entries of a on its diagonal.
(iii) The diagonal pinching Cy : L(K) — L(K) associated to the basis B, is defined by
CB (T) = MB,a where a = ((Ten; en))nEM'
Theorem (5.1.2) (Schur-Horn)[35]: Let b,c € R". Then ¢ < b if and only if there
exists U € U(n) such that
C.(U'M,U) = M,,
where ¢ is the canonical basis of C".
In this section we present a different version of the “infinite dimensional Schur-Horn
theorem” given by A. Neumann in [101]. Our approach avoids the somewhat technical
distinction between the diagonalizable and nondiagonalizable case. On the other hand,
this version can be applied more easily to the problem of frame admissibility in the
infinite dimensional case. The main tools we use are the Weyl-von Neumann theorem
and the known properties of approximately unitarily equivalent operators.
Given a sequence a € 7 (N), Neumann [101] defines
Ur(a) = supjp=k Zier @ and L (a) = infip oy Xier ;.
This generalizes the partial sums which appear in the definition of majorization.
In the first part of this section we shall extend this definition to arbitrary selfadjoint
operators on a Hilbert space H. Denote by P, the set of orthogonal projections onto k-
dimensional subspaces of # .
Definition(5.1.3)[35]: Given S € L(H),, we define, for any k € N,
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Ui(S) = sup,ep, tr(SP) and L, (S) = inf tr(SP) = ~Up(=S5).
PESk

The following result asserts that Definition(5.1.3) extends the natural extrapolation of
Neumann’s definition for diagonalizable operators.
Proposition(5.1.4)[35]: Let B = {e, },ey b€ an orthonormal basis of a Hilbert space #'.
If a € £7(N), then, forevery k € N,

Upr(Mp) = U (a).
In order to prove this proposition we need the following technical results.
Lemma(5.1.5)[35]: LetS € Ly(H)*t,anddenoteby 4, = A, = -1, = -
the positive eigenvalues of S, counted with multiplicity (if dimR(S) < oo we complete
this sequence with zeros). Then, for every k € N,

k
U(S) = Z 1.
i=1

Moreover, if P € P, is the projection onto the subspace spanned by an orthonormal set of
eigenvectors of 44,..., 4 , then U, (S) = tr(SP).

Proof. Fix k € N. It suffices to show that tr(SQ) < tr(SP) = Y¥_, A, for every Q € P,.
This follows from Schur’s theorem (the diagonal is majorized by the sequence of
eigenvalues), which also holds in this setting (see [102]). _In [101], Neumann proved the
following result: if a € 7 (N),

a = max{a; — lim sup a, 0}, a; min{a; — liminf a,0},i €N, (6)

then, for every k € N,

Up(a) = Up(a™) + k limsup a and L, (a) = Ly(a™) + k liminf a. (7)

The next result extends Eq. (7) to selfadjoint operators. This fact is necessary for the
proof of Proposition(5.1.4), but it is also a basic tool in order to deal with the maps U,
and L, .

Proposition (5.1.6)[35]: LetS € L(H),. Then, forevery k € N.,

() U (S) = Up (ST) + k a™(9),

(i1) L (S) = L (S2) + k a_(S),

where a®(S), a_(S),S*, S_ are defined in (4) and (5). In particular,

lim, o, ”kk“) = a*(S) = |IS|l,and limk_)ooL"T(S) = a_(S). (8)
Proof. Denote a* = a*(S), and
P, = P,(S) = E[IISlle, ISI'T = E[a™,lISII], ©)

where E is the spectral measure of S. Recall that
St = f (t—at)dE(t) = (S —at)P,.
[atlISI]

Then S —S* = S(I —P,)+a*P, < a™I. Therefore, for every k € Nand Q € P,,
tr(SQ) = tr(StQ) + tr((S —SYHQ) < U, (S") + kat, (10)

which shows that U, (S) < U, (S*) + ka™ forevery k € N.

To see the converse inequality, suppse first that tr P, = +oco0. Denote by 4, > 1, >

... A, =---theeigenvalues of S*, chosen as in Lemma (5.1.5).

Let Q, € P, be the projection onto the subspace spanned by an orthonormal set of

eigenvectors of A; ... 4, . Then Q, < P,. By Lemma(5.1.5),
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tr(SQ,) = tr(S*Qy) + tr((S —S1)Q,) = Za + kat = U (S*) + kat

Hence, U, (S) = U,(S™) + ka™. Now, assume that tr P,=1r <oo. lIf k <r,the same
argument as before shows that U, (S) = U, (S7) + ka*. So, let k > r and take € > 0.
SinceP, = E[ a* — ¢, a™) has infinite rank (otherwise ||S]|, < at — &), we can take
Q < P.,aprojectionofrank k —r.If Q, = Q + P,, then
U (S) = tr(S Q) =tr(SP,) + tr(SQ)
tr(SY) + ra* + tr(SP.Q)
tr(SH + rat+(k — r)(at —¢)
U (S +kat—ek — ).
Since ¢ is arbitrary, U,(S) = U,(ST) + ka*. The formula for L,(S) follows by
applying item 1 to —S. Finally, as S* € Ly(H)*, its eigenvalues converge to zero.
Hence, by Lemma (5.1.5), we get that
+

fim == o
and similarly for L, (S5_). Therefore, Eq. (8) follows.
Proof of Proposition(5.1.4) . The result follows using Lemma(5.1.5) , Proposition(.5.1.6),
Eq. (7) and the following obvious identities: if S = My ,, then
() a™(S) = limsupa,and a_(S) = liminf a,
(i) S* = Mg,+ and S_ = Mg,
where a* and a~ are defined as in Eq. (6).
Definition (5.1.7)[35]: Let 7 be a Hilbert space, S € L(#) and B an orthonormal
basis of H'. Then:
(@ Uyi(S) = {USU: U eUH)}.
(b)  ClUy(S)] = {c € £ (N): Mg, € Cp(Uy (S)}

v I

Given a diagonal operator M, € L(H);,, Neumann showed that, if ¢ € 5 (N) the
following statements are equivalent [101]):
() ¢ €C[UM,)]
(i) Uy(a) = Uy(c)and Ly(a) < L,(c), k € N.
Now, our objective is to generalize this equivalence to every operator S € L(H);, (via a
reduction to the diagonalizable case). We need first the following result about
approximately unitarily equivalent operators.
Lemma (5.1.8)[35]: Let S, T € L(H),. Then S € cly;(Us(T)) if and only if
cliy (Uspc($)) = el (Use (T)) -
In this case U, (S) = U, (T) and L, (S) = L, (T) for every k € N.
Proof: If {I,},,eniS a sequence in U(H) such that ||V, TV, — S|| - 0,

n—00
then
1V SV, = Tl = 1V (S = VTVl = IV, TV = SI| = 0.

Hence clyj (Usc(S)) = Ly (Use(T)). Uy TH) = Up(T)  and Ly ((KTV,) = Li(T),
forn,k € N. Fix k € N and take P € . Then
tr SP = lim tr V,TV," P < llmUk(V V) = U, (T).

n—oo
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Hence U, (S) < U, (T). Similarly L, (S) = L, (T). The reverse inequalities follow from
the fact that ISV, - T.

n—-oo

Theorem (5.1.9)[35]: Let S € L(H),, and ¢ € £§ (N). Then the following conditions
are equivalent:
(@) c € C[Uy ()]
(b) U, (S) = Ui(c) and L, (S) < Ly (c) forevery k € N.
If one of these conditions holds, then max o.(S) = lim sup ¢ and min o,(S) <
liminf c.
Proof. The diagonalizable case was proved by Neumann as mentioned before. Note that,
in order to deduce our formulation from Neumann’s result, we need Proposition(5.1.4). If
S is not diagonalizable, there exists a diagonalizable operator D € clj (U (S)). By
Lemma (5.1.8), U,(D)=U,(S) and L,(D)=L,(S) for every k€N, and
Cl||.|| (Ux (D)) = l||.||(’u3.[(5)).. This implies that
clyp, (ClUx (DD = clyy,, (ClU(SD,

because the map T ~ Cg(T) is continuous for every orthonormal basis B.
Hence, the general case reduces to the diagonalizable case. The final remark follows from
the fact that

limsup c =limy_,
and Eq. (8).
A similar result can be stated for hermitian operators in L' () and sequences in £} (N).
In this case our result is a slight generalization, using our maps U, and Lj, of some
results due to Neumann.
Definition (5.1.10)[35]: Let [, be the set of all bijective maps on N and, for any k € N,
denote by [, < [, the set of permutations ¢ such that ¢(n) = n for every n > k. Given
a € £°(N)and o € [], we define:
(3.) dg = (aa(l)r aJ(Z)r et )
(b) Il.a = {a,,o € 11}, the orbit of a, under the action of I1..
(c) conv(II - a), the convex hull of the orbit of a.
(5.1.11)[35]: If b,a are sequences in £ (N), Neumann [101] proved that the following
statements are equivalent:
(@ b € clyy (conv(I - a)).
(b)  Xpoibe = Xi=i 4 and Up(a) = Ui (b), Li(a) < Li(b),k €N.
Proposition(5.1.12)[35]: Let S € L'(H),, and b € £5 (N). Then the following
statements are equivalent:
(i) be Cl||.||1 (C[u}[(S)])
(i) Up(S) = Uy (b),Li(S) < Ly(b)forevery k € N,and };’_; b, = trS.
Proof. i = ii. Note that cl”.”1 (C[Ux (D < clyy, (C[Us(S)]). Hence, by Proposition
(5.1.11), U, (S) = U, (b) and L, (S) < L, (b) for every k € N. The equality},;_; b, =
trS clearly holds if b € C[U,:(S)]. The general case follows from the £ (N)-continuity
of the map b — Y- by.

Ui (c) Ly (c)

and liminf ¢ = limy_, - (11)
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ii = i. Leta € £} (N) and B = {e; }xey an orthonormal basis of # such that S = My,.
By Lemma (5.1.8) and Proposition (5.1.4), it suffices to show that cl||.||1(conv(ll-

a)) € clyy, (C[Usc(S)D-
Claim. cl (conv(Il - a)) = cly, (conv([1p- a)), where [Iy = Upen 1k
Indeed, it is sufficient to prove that [[-a < clj, (conv([]p- a)). Given g €[], a, €

[1.a and e > 0, take N € N such that},-yla,| < /2 and N, € N such that 6~1(II) €
Iy, . There exists o, € [[y,, such that o(k) = go(k) for every k €I, such that
o(k) € Iy. Therefore,

”a o4 60”1 = z:(T(k)&i-HN'a'U(k) - an(k)|

< Yowety |8 | + Zowenyasom] < &
Consider b € conv ([, a). Then there exists n € N such that b € conv([],,a).
This means that the first n entries of b form a convex combination of permutations of the
first n entries of a, and b, = a, for every k >n . Hence (by,...,b,) < (ay,...,a,).
Denote B, = {e,: k<n} and X, =span{B,}. Then, by the Schur-Horn
Theorem(5.1.2), there exists a unitary U, € L(H,)
such that
Mg pl3, = Cs, (USMB,a|Hn Up).
Letting
H,
U= (go S)}[,:i € UWH)
we get that My, = Cz(U"Mp,U), and b € C[U4(S)]. Therefore

cl”.”l(conv(ll -a)) = cl”.”1 (conv(no- a)) € cl”.”1 (ClU+ (DD,

which completes the proof.
In particular, cl”.”l(C[uH(S)]) Is a convex set. On the other hand, since

the maps U, are convex and the maps L, are concave for all k € N, it can
be deduced from Theorem (5.1.9) that cl”.”l(C[‘u}[(S)]) Is convex, for every S €

L(H),. Actually, this fact is known, and can also be deduced from the following results
of Neumann [101]:
1.1f S = Mg, forsome a € £§ (N) and some orthonormal basis B, then

cl||.||oo(c0nv(1_[-a)) = clyy (Clus(S)D.

2. If S is not diagonalizable, then

Cluge ()] = Cluge(SHT + [a = (S), a* ()Y + Cluge (S, (12)
where a*(S),a_(S), ST, S_ are defined in (4) and (5).
Note that formula (12), which holds also for diagonalizable operators, gives another
complete characterization of C[us(S)]. It can be used to give an alternative proof of
Theorem(5.1.9) , but it can also be deduced from the statement of this theorem, and
Proposition(.5.1.5).
Preliminaries on frames. We introduce some basic facts about frames in Hilbert spaces.
For a complete description of frame theory and its applications, the reader is referred to
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Daubechies, Grossmann and Meyer [94], Aldroubi [88], the review by Heil and Walnut
[96] or the books by Young [103] and Christensen [74].
Definition (5.1.13)[35]: Let F = {f, }.en @ S€quence in a Hilbert space .
(i) F is called a frame if there exist numbers A, B > 0 such that

AllfIIZ < Znenl(f, f)1? < BIIfII?, forevery f € 3. (13)
(i1) The optimal constants A, B for Eq. (13) are called the frame bounds for F. The frame
F is called tight if A = B, and Parseval if A = B = 1. Parseval frames are also called
normalized tight frames.
Definition(5.1.14)[35]: Let F = {f,,},enbe a frame in H. Let K be a separable Hilbert
space. Let B = {¢,,: n € N} be an orthonormal basis of K. From Eqg. (13), it follows that
there exists a unique T € L(K, H) such that

T(¢n) = f, mEN.

We shall say that the triple (T, K, B) is a synthesis (or preframe) operator for F. Another
consequence of Eq. (13) is that T is surjective.
Remark (5.1.15)[35]: Let F = {f,},en be a frame in H and (T, K B) a synthesis
operator for F, with B = {¢,: n € N}.
(@) The adjoint T* € L(H, K) of T is given by

T (x) = z(x,fn)(pn , XEH
neN
It is called an analysis operator for F.

(b) By the previous remarks, the operator S = TT* € L (), called the
frame operator of F, satisfies

Sf = Ynen{f, fu)fn . forevery f € H. (14)
It follows from (13) that Al < S < B1.Sothat S € GI(#)*. Note that, by formula (14),
the frame operator of F does not depend on the chosen synthesis operator.
Definition(5.1.16)[35]: Let F = f, },en be a frame in . The cardinal number

e(F) = dim{(cn)nEN € £*(N): z Cnfn = 0}
neN
is called the excess of the frame. Holub [97] and Balan, Casazza, Heil and Landau [3]

proved that, e(F) = sup{|I|:1 S N and {f, },¢; is still a frame on #}.

This characterization justifies the name “excess of F”. It is easy to see that, for every
synthesis operator (T, K,B) of F,e(F) = dim ker T. The frame F is called a Riesz
basis if e(F) = 0, i.e., if the synthesis operators of F are invertible.

Reformulation of frame admissibility. Recall that, given a sequence ¢ = (c¢y)rem €
£°(M)* and S € Gl (H)*, we denote by F(S,c) the set of (S, c)-frames, i.e., those
frames F = {f;, }xen Tor 7€, with frame operator S, such that ||, ||? = ¢, for every k €
M, and we say that the pair (S, c¢) is frame admissible if F(S,c) # @ . We shall consider
the following equivalent formulation of frame admissibility, which makes clear its
relationship with the Schur-Horn theorem of majorization theory.
Proposition(5.1.17)[35]: Let c € £*°(M)* and let S € GI(H)™. Then the following
conditions are equivalent:

(i) The pair (S, ¢) is frame admissible.

(i) There exists a sequence of unit vectors {y; }ren IN H such that
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keM
where, if M = N, the sum converges in the strong operator topology.

(iii) There exists an extension K = H @ H, of H such that, if we denote

5= (5 0)gr, €LY (15)

Then ¢ € C [ug(S;)].
In this case, there exists a frame F € F(S, c) with e(F) = dimH,
Proof: The equivalence between conditions 1 and 2 is well known (see, for example,
[45]). Hence we shall prove 1 <3. Assume that F = {f; }xem € F(S,c) . Let (Ty, Ky, By)
be a synthesis operator for F. Consider the polar decomposition T, = U|T,|, where
U:K, - H is a coisometry with initial space (ker T;)* and range H. Note that U*
maps isometrically 7 onto ker Ty .
Denote H; = ker Ty, and K=H @ H,. Let V: K — K, be the unitary operator given
by
V(L&) =U1+& for(§, ) e @Hy = K
Consider the orthonormal basis B = V*(By) of K, and T =T,V € L(K H).
Then (T, K, B) is another synthesis operator for F, with ker T = H,.
Let T, € L(K) given by T;¢& =T¢ @©0y,,$ €K Then T/T; =TT, = T'T,
. T 0\ H S0
Tl = ITLand Ty 75 = (( o)}(d =(3 o)=5
If T, = Uy|T;| = Uy|T| is the polar decomposition of T;, then U,acts on H =
(ker Ty )* as a unitary operator. Hence W = U; + Py, u(K). Since T; = W|T|,
S, =TT = W|TPW* =W(T*T)W* = W*S;W = T*T.
On the other hand, if B = {e;}ren, then (T*Te,,e,) = (Tey, Te,) = |lfill? = ¢, for
every k € M. Therefore,
Cp W*SiW) = Cp(T'T) = Mp, = c € Clug(S1)].
Conversely, suppose that there exists an extension K =H @ H,; of H and V € u(K)

such that Mg . = Cp(V*S1V ), for some orthonormal basis B = {e,};en0f K. Let

T = Sll/ZV. Since S is invertible, we have R(T) = H and dim ker T = dim%,. Thus

F ={Te,}ren IS a frame for H, with frame operator T T*|4 = Siloe =S . Since
T*T =V*SV and Cg(V*S;V ) = Mg , we have ||Te,||> = (T T*ey, e;) = c, for every
k € M. Hence F € F(S,c) with e(F) = dimH, .
The finite-dimensional case. In this section we assume that # is finite dimensional. We
shall consider separately the cases of frames of finite or infinite length. Suppose that
SeM,(c)tand |M| =m < o. In this case, the classical Schur-Horn Theorem(5.1.2)
gives a complete characterization of frame admissibility for (S, ¢).
Theorem(5.1.18)[35]: Let c € RY, and let S € GL,,(C)*, with eigenvalues b; = b, >- - -
> b, > 0. Then, the pair (S, c¢) is frame admissible if and only if

Yk b=k cfor 1<k<n—1,and ¥ b =37 ¢
In other words, if ¢ < (by,...,b,,0,...,0) € R™.
This result was obtained in [92] and [100], from an operator theoretic point of view.
Actually the proofs given there can be adapted so as to obtain a proof of the classical
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Schur-Horn theorem that is quite conceptual and simpler than those in the literature.
Now, we consider frame admissibility for infinite sequences in finite dimensional Hilbert
spaces. The case S = I of the next result appeared in [91].

Theorem(5.1.19)[35]: Letc € £*(N)*.Let S € GL,(C)*,with eigenvalues b, = b, >

- = b, > 0. Then the following conditions are equivalent:

(@) The pair (S, ¢) is frame admissible.

by Xk.b =U,(c), forevery1<k<n—1 and XM ib; = YienGi

Proof. Letb = (by,...,b,,0,.. ) ELC(N)T.

(b) = (a): Let H be a infinite dimensional Hilbert space, and consider

S, = (g 8) € L(C* @ H).

Then there exists an orthonormal basis B = {e;}yeny Of K = C" @ H'such that S; =
Mjp ,, . Hence, by Proposition (5.1.4),

U (S1) = z b, Uy (c), for every k € N.

On the other hand, note that Lk(Sl) =0<Ly(c) for every ke N and Y.

Y.ien Ci- Then, by Proposition(5.1.12) , there exists a sequence {V, },nen in u(X) such that
Il
CB (Vm*'slvm) — Mc,
m — oo
where ||A||; = tr |A|. Therefore, by Proposition(5.1.21), there exists a norm bounded

sequence of epimorphisms T,, : K— C" such that T,,T,, = Sfor all m €N, and
21N
(T, (e)l?)ien — c. Then, by a standard diagonal argument, we can ensure the
m — oo
existence of a subsequence, which we still call {T,,,},,en, Such that T,,(e;) — f; € C",
m—0o0

with ||£;]]? = ¢; forevery i € N.
Let Ty : span {B} — C" be the unique (densely defined) operator such that T, (e;) = f;
for every i € N. Note that T,, is bounded because, if x = Y/_; a;e;and C = Y;en ¢ =

tr S, then
IToCOll = || ) af Zla [l

< (% 16)1/2(2 1Ial A< VAl
The bounded extension of T,, to K'is denoted T.
Claim. ||T,, — T||—>0
Indeed, let € > 0 and ip € N besuchthat Y72, ¢; < &. Then there exists m; € N
such that

ieiol| T (e )|| < e foreverym > my (16)
This is a consequence of the fact that (||T,, (e;)||?)5> 2o {12 (¢;)iZ;,- On the other hand,
there exists m, = m, such that e
Zlio_.llle (e;) — ﬁ-II2 < forevery m > m, (17)

=19
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Letm >m, and x = )/_; a;e; € span {B}. By equations (16) and (17),
1T = DEOI? < (ZmilZ(Zn(Tm - T)(ei)||2>>
i=1 i=1

< IxlIP(Z2 (T, — TYENI? + 2 E52, 1T (eI + 1T (e)1I?) < Sellx]|?
which proves the claim. Therefore
TT* = lim T, T, = S.

m—0o0

We have proved that the frame F = {f;};en € F (S, ©).
(a) = (b): This follows from Theorem (51.9), applied to S; and ¢, and
Proposition(.5.1.17).
Indeed, suppose that S; # 0 (the case S; = 0 is trivial). Then there exists a sequence
b= (by,...,b,,0,...,0,...) € LY(N)*, with b,, >0, and an orthonormal basis B =
{en}nenof K such that S; = Mg, . Let ¢ € #*(N)*. By Proposition(5.1.12), Condition 2
of Theorem(5.1.23) means that ce cl., (Clux(S;)]) . But, by Proposition(5.1.12),
Condition 1 of Theorem(5.1.23) means that ¢ € Clug(S;)] -
Note that, although cly, (conv(I]- b)) = cljy, (Clug(S1)]) = Clux(Sy)], it is not true
that conv([]- b) is closed, as a subset of #1(N)*. For example, if b = (1,0,0,...), then,
by Proposition (5.1.12),
1

c = (2—n>nEN € cly, (Clugle; ® ey)]) = cl”.”lconv(l_[- b)
Nevertheless, ¢ € conv([]- b), because every sequence in conv([]- b)has finite nonzero
entries. In this case, ¢ = Cz(x @ x) € Clug(e; Q eq)], where

X = Z 2 2e,
neN

Throughout this section H denotes a separable infinite dimensional Hilbert space. The
first result gives necessary conditions for frame admissibility:
Theorem( 5.1.20)[35]: Let S € GL,(H)*" and c € £°(N)™*. If the pair (S,¢) is frame
admissible, then

2ienC; = ©, and
U, (S) = U, (c), forevery k € N. In particular, lim sup ¢ < ||S||,
Proof. Suppose that there exists a frame F € F(S, ¢). Then, by Proposition (5.1.17), there
exists an extension K = H @ H, of H such that, if we denote

5= (5 ) gr, € LU

then ¢ € C [ug(S;)]. Hence, X,enc; =trM, = trS; = c. On the other hand, by
Proposition(5.1.5), U, (S) = U,(S;) for every k € N. Then, applying Theorem(5.1.9) ,
the statement follows.

In [100] (see also [91]) there is the following result which gives sufficient conditions for
a pair (S, ¢) in order to be frame admissible:

Theorem (5.1.21)[35]: (Kornelson-Larson). Let S € GL,(#)* and ¢ € [*(N)™.
Suppose that };cn¢; = o and |[c|l < |IS]|, . Then the pair (S, ¢) air is frame admissible.
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The following result, which generalizes Theorem( 5.1.21), strengths slightly the
necessary conditions for frame admissibility given by Theorem( 5.1.20), to get sufficient
conditions. A tight frame version of this result appeared in R. Kadison [98] and [99].
Recall the notation P,(S) = E[||S|l., lISI| ], where E is the spectral measure of S €
L(H)*.
Theorem(5.1.22)[35]: Let S € Gl (F)*and ¢ € [*(N)*, such that Y,y c; = oo.
Assume one of the following two conditions:
() (@) tr P,(S) = oo,
(b) U,(S) = Ui (c) forevery k € N, and
(© lISlle > lim sup(c).
(i) @) trP,(S) =reN,
(b) U, (S)>U,(c)for1 < k<,
() U,(S) > Ui(c),fork > r,and
@ [ISlle > lim sup(c).
Then, the pair (S, c¢) is frame admissible.
Proof. By Proposition(5.1.13), it suffices to show that there exists a sequence of unit
vectors {x; }xey SUCh that S = X ey CXr @ x;. Assume that the first condition holds.
Then, since ||S||, > lim sup(c), there exist m, € N and € > 0 such that
< [|Sl], —& form = m,.
Let uyy =y, ---=pu, =---be the sequence of eigenvalues of S*, chosen as in Lemma
(5.1.5) Let {y, },,en be an orthonormal system such that S*y, = u,y,. Denote x,,= u,, +
IIS|l,,n € N. Note that |[[S||=>,=IS|l,and Sy,=x,y,, neN. By
Proposition(5.1.6), for every k € N,
XNy @y S, and U (S) = XL
Let ny be the first integer such thaty,"%, ¢; > Y25,
Thenng=mo+1,andh =372 ¢; = X7INi< ¢y < SHle Sxppta
Letcy = (cq,...,Cp, ). Since
Yicini= U (8) = Uy () = Uy (co), 1<k<=mg
we have ¢0 ¢y < (N, ., Xy 1,0, ...,0) € R™. Denote
mo

S1= hpyr1 @ ymoyq + Zx ViQy =S

and S, = S —5;. Then the pair (S1,¢p), actlng on span {y1,...,Ymy+1}, Satisfies the
conditions of Theorem (5.1.17). Hence, there exists a set of unit vectors {x;, ..., x, } such
that 270, ¢;x; ® x; = S;. Note that S, = 0, R(S,) is closed (by Fredholm theory), and
IS21le = [IS]le. Then we can apply Theorem( 5.1.20) to the pair (S,, {c;};>n, ), acting on
R(S,). So, there exist unit vectors x;, for k > n,, such that

52 = Z Ci X, ® X;.

i=ng+1
Therefore we obtain the rank-one decomposition S = Y;enCix; Q X; .
Assume Condition 2. Note that, by equations (8) and (11), the condition
S|l > lim sup(c) implies that U,,, (S) — U,,(c) — o

-90-



(i) Therefore, by item

(c), we can assume that there exists § > 0 such that

(1) U,k (S) =6 > U, (c), forevery k € N.

(ii) There exists my = 1 such thatc,,, < [|S]|, — 6 form = m,.

Let my = max{m,,r + 1}. Let u; =--- = u, be the greatest eigenvalues of S*, and let
{y1,..., ¥} be an associated orthonormal set of eigenvectors.

Denote ;= u; + |ISll,, 1 <i<rand x; =[S, — 0 , r+1<i<my;+1_Then,

2m
by Proposition (5.1.6), 1
@ Uy(S) =Xk x; forl1<k< r and
(0) Up () S U(S) =8 < Tk, for r + 1<k <my +1.
On the other hand, since Q = E([||S|l, - 8/2m4, |IS]|,) ) has infinite rank, there exists an

orthonormal set {y,;1,...,¥m, + 13JR(Q). Therefore
mi+1

ZN’%®)’1‘SS

i=1
mo

Let n, be the first integer such that 7%, ¢; > X" >, . Then ny = my + 1

and
no mo
Bo= = ) N Gy ISl Sxgy+ 1
i=1 i=1

Y= U (8) =2 U (c) 2 Up(cy), 1< k <my,and
YNz U (8)=6 2 Up(c) 2 Up(cy) , 7+1< k <m,
we have ¢y < (3 1,..- 7, » 1, 0,...,0) € R™ . Denote
S1=hymy 19 Ymo+1 T YN Y ®y,<S and S, =S-S5  then the pair
(51,¢0) acting onspan  {y; ....¥m,+1) Satisfies the conditions of Theorem
(5.1.18).Hence there exists a set of unit vectors {x;,...,x,,} S H such that Z?z"l cix; @
x; = S;.Note that S; = 0,R(S;) is closed (by Fredholm theory),and |[|S,]l. =
|IS[c.Then we can apply Theorem (5.1.20)to the pair (Sy, {¢;}i>n,), acting on R(S;). So
there existunit vectors x, for k > mg, Such that S, = »72, ¢;x; @ x;.
Therefore we obtain the rank-one decomposition S = Y;cn ¢ X; Q X;
Example (5.1.23)[35]: below shows that the Condition 2 (c¢) of Theorem (5.1.28) can not
be dropped in general.
Corollary(5.1.24)[35]: Let 0 <A e Randc € £ °(N)* besuchthat0 < ¢; < A4,
i €N. Denote ] = {i e N:¢; = A}. Assume that ¢, c; = o , and limsup;¢; ¢; < A
(or, equivalently, sup;¢; ¢; < A).
Then the pair (AI, ¢) is admissible. This means that there exists a tight frame. Some with
norms prescribed by ¢ and frame constant A.
In the following example we shall see that

U, (S) > Ui(c),k eN,and ||S||[, = limsup(c) # F(S,c) #0.
Example(5.1.25) [35]: Let S= T € L(H) and a € (0,1). Let c € £*(N)™ be given
byc; = p € (0,1)and
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o {ak if k# 1isodd

“Tl1-dak if k is even
Then 0 <¢, < 1 fork eNY,c, =0 =3,(1—-¢,), and limsupc =1=|[S], .
Suppose that there exists a frame F = {f; }x eny F(S,c). Then

Ix)12 = Xrenl(x, fi)]?, for every x € K.
In particular, we get, for every j € N,

2 2
I61° = D 6 Al =AD" + ) l¢gi il

keN k#j
Thus, if j # 1, we obtain the inequality

W51 = 1 AP < Sl 50 =I5 = 15N = g (1 - ¢)

Therefore ,

p=fill* < ”f1”4+2k¢1cj(1_cj) (18)
Takingp = and a € (0, 1) such that

a 1
1_a %

we get that
p>p* +—p
contradicting Eq. (18). Hence, in this case, F(S,c) = @. Note that the pair (S, ¢) satisfies
all of the necessary conditions of Theorem( 5.1.20), because U, (S) = k = U, (c) for
every k € N.
In the second example we see that, in general,
U,(S) = U,(c),k e Nand ||S||, > limsup(c) # F(S,c) #0.
Example (5.1.26)[35]: Let S = M, be the diagonal operator, with respect to an
orthonormal basis of 7, given by s = {1 — (i + 1)71},cy, and let (¢;) ;ey be given
byc; =1andc; = 1/2 foreveryi > 2. Note that
M 1=1Sll. > 1/2 = lim sup(c),
(ii) U1 (S) = Uy(c), and
(i) Upy(S) =k>1+(k —1)/2 = U,(c) forevery k > 2.
Still, we have F(S,c) = @. Indeed, suppose that there exists F € F(S,c).
Then, by Proposition (5.1.20) there exists an extension K = H @ H,; of H such that, if

5= (0 g)féeuK)*,

then ¢ € C [ug(S;)]. LetV € u(K) be such that, in a orthonormal basis
B ={ey}keny M. =Cg(V*S;V). Take x = PyVe;. We have that [x|| <1and
(Sx,x) =(M_.ej,e; ) = ¢; =1, while ||S|| =1. Then Sx =x, and 1would be an
eigenvalue of S, which is false. In this example, Condition 2 (c¢) of Theorem (5.1.22)
does not hold, because ||S|| = ||S||., which implies that r = tr P,(S) = 0; but U,(S) =
1 = U;(c). Note that Y}, ¢, = o = ,,(1 — ¢;) as in the previous example.
The excess of frames in F(S,c). Let S€ GI(H)" and ¢ = (¢;);em € £ (M)* be such
that the pair (S, c¢) is frame admissible. Then there can be many different types of frames
F € F(S, c). We consider the set

Null(S,c) ={e(F): F € F(S,¢c) }.
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In the example below, we show that this set can be arbitrarily large. Moreover, this
example shows that there exists an admissible pair (S, a), satisfying just the necessary
conditions of Theorem( 5.1.20), and in this case U, (S) = U, (a), k e N,and msupa =
ISIl. -

Example(5.1.33)[35]: Let H be a Hilbert space with an orthonormal basis B = {x,, },,en-

Let
1 .1 .1 -
a=(31513,..) €N, ?nd S = My, € GL(H)*
Then the frame (Riesz basis) F, = {agxn}nEN has frame operator S, so that F, €
F(S,a). On the other hand, let

1 1 1 1
F, = {—x JXa, =X, Xg ,—=X1 ,Xg,—=X3,X ,}
1 \/i 2) 14 \/i 246 \/E 1 8 \/i 3,110
It is easy to see that also F; € F(S, a), but e(F;) = 1. Analogously,
1 1 1 1 1
F ={—x,x,—x,x,—x,x ,——Xg, X ,—x,...}EF S,a
2 \/E 20 M4 \/E 2' 6 \/i 8,110 \/E 8112 \/E 1 ( )

with e(F,) = 2. In a similar way, we can construct frames F, € F(S,a) with e(F;) =
k, for every k € N U {co}. Note that

{1 1 1 1 1 1 }
e ==X, X4, —=X), Xg,—= X2, X192 ,—=X3, X16, —= X6, X020 —= X ers ( -
1) X4 2, Xg 2, X12 2 3, X16 2 6 zoﬁ 6

V2 V2 V2
In other words, F,, is the frame induced by the bounded operator T : £2(N) - H given
by
[ X4k if n=2k,

%ka_l if n=6k—S5,

T(c,) =+ 1 .
(€n) *Ex%—z if n=6k—3,
\%x%—z if n=6k—1.
Therefore Null (S,a) = N U [ {0, oo} .
Proposition (5.1.28)[35]: Let S € (H)* and ¢ € £2(N)*. Assume that the pair (S, c) is
frame admissible and lim inf ¢ < min 0,(S). Then Null (S, ¢) = {0},
Proof: Let F = {f,},en € F(S,c), with e(F) = d. By Proposition(5.1.16) there exists
an extension K = H @ H, of H such that, if we denote
_(S 0H +
si=(y o), € LK
then ¢ € C [ug(S;)]- By Theorem 3.10, mino,(S;) < liminf c¢. But, if dimH,; =
e(F) < oo, then a,(S;) = a.(S), which contradicts the fact that
liminf ¢ <minao,(S).
Example (5.1.29)[35]: Let H be a Hilbert space with an orthonormal basis B = {x; };en-

Leta= (1,2,1,2,...),5 =My, € GIF) and c = (3,3,3, ).

We shall show that also Null(S,c) = N U {0, o}. Note that, in this case,

3
a_(S)=1<liminfc = 5= limsupc<2=|S|,
Indeed, take the Riesz basis Fy = {f;, },.en 9iven by

-93 -



Xn

f V2 + Xn+1 if nisodd
n =

—Xn-—1
vz + Xn if niseven
It is easy to see that F, € F(S, c¢). Using that

(112)< 220

an arbitrary number of packs of four vectors with norm\/3_/2 associated to packs of three
even places of the diagonal of S can be interlaced into the previous construction. Each of
these packs adds excess 1 to the whole system.
In this way, frames F,, € F(S, c) with e(F,) = k can be found for every

k € N U [{oo}.
Section(5-2): Equal-Norm Parseval Frames
A family of vectors {f;};¢; is a frame for a Hilbert space # if it provides a stable

embedding of £ in £*(J ) when each vector in 2 is mapped to the sequence of its inner
products with the frame vectors. Frames were defined by Duffin and Schaeffer [75] to
address some deep questions in non-harmonic Fourier series. Traditionally, frames were
most popular in signal processing [77], but today, frame theory has an abundance of
applications in pure mathematics, applied mathematics, engineering, medicine and even
gquantum communication [67,74,77,82,61,64].

Many of these applications give rise to design problems in frame theory, the construction
of frames with certain desired properties. Digital transmissions of analog signals, for
example, often rely on frames because of their built-in resilience to data loss [48,47], and
it has been shown that encoding with equal-norm Parseval frames has certain optimality
properties for this purpose [70] (see also [49,65]). Moreover, the use of frames for
compensating quantization errors has relied on equal-norm Parseval frames as well
[63,66]. Despite their popularity, we know only a few ways to construct such frames
analytically [79,36,68,72], mostly with the help of group actions. Success has been
claimed for generating a special type of equal-norm Parseval frames with numerical
methods [57], however, the analytic verification of convergence remains wanting. The
use of frame potentials [36,69] shows the existence of large numbers of equal-norm
Parseval frames, but offers little control over additional properties (see [49,72]). Finally,
there is an algorithm due to Holmes and Paulsen [49] for turning a Parseval frame into an
equal-norm Parseval frame in finitely many moves. Unfortunately, to the best of the
authors’ abilities, it cannot be combined with the numerical results to provide the
existence of an equal-norm Parseval frame in the close vicinity of a nearly equal-norm
and nearly Parseval frame, because it does not include a distance estimate. Here, the
metric on the set of frames is induced by the norm on the Hilbert space when frames are
viewed as vector-valued, square summable functions (see Section 2 for precise
definitions).

The closest Parseval frame to a frame {f;};¢; is known [62,68,71,80]. Also, the closest
equal norm frame to a given frame can be found easily [68]. However, despite a
significant amount of effort, so far we knew very little about the closest equal-norm
Parseval frame to a given frame. This question is known in the field as the Paulsen
problem. The main problem here is that finding a close equal-norm frame to a given
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frame involves a geometric condition while finding a close Parseval frame involves an
algebraic or spectral condition.

We will present the first method for finding an equal-norm Parseval frame in the vicinity
of a given frame which gives quantitative estimates for the distance. The new technique
we introduce is a system of vector-valued ODEs which induces a flow on the set of
Parseval frames that converges to equal-norm Parseval frames. We then bound the arc
length traversed by a frame by an integral of the so-called frame energy. With an
exponential bound on the frame energy, we derive a quantitative estimate for the distance
between our initial, _e-nearly equal-norm and e-nearly Parseval frame
F = {fi,f2,--., fn} for a d-dimensional real or complex Hilbert space and the equal-
norm Parseval frame G = {g4,9>,-..,9,} Obtained as the limit of the flow governed by

the ODE system,
2

n 1/
29
S s-al’) =Zdnm-1re
j=1

We also show that the order of € in this estimate cannot be improved.

For our method to work, we must assume that the dimension d of the Hilbert space and
the number n of frame vectors are relatively prime. We will use a tensor product
technique to show that if our main goal is to produce equal-norm Parseval frames, this is
not a serious restriction.

Finally, we show that the Paulsen problem is equivalent to a fundamental problem in
matrix theory, and so we find an answer for the corresponding case of this problem.

We Dbelieve that the techniques introduced in this section will have application to other
“nearness” questions in frame theory, in particular, to the famous equiangular tight frame
problem [49,85]. Finding and classifying such frames, or even the easier problem of
finding equiangular lines through the origin in R™ or C", started in 1948 by Haantjes
[78,73], still leaves a lot to be done. This type of equal-norm Parseval frames is
particularly important because of their applications to signal processing [60,85,65,86,81]
and to quantum information theory [87,84,76,64].

In this section, we introduce the notation and terminology used throughout the section .
Definition(5. 2.1)[37]: A family of vectors F = {f; };¢, is a frame for a Hilbert space H
if there are constants 0 < A < B < oo s0 that

Allx])? < z|x,]j-|2 < Bl|x||? for all x € H.
J€l
We call the largest A and smallest B the lower and upper frame bounds respectively. If
we can choose A = B then F is a tight frame and if A = B = 1 it is a Parseval frame. If
all the frame vectors have the same norm, it is an equal-norm frame. The analysis
operator of the frame is the map V : 7 — £2(J) given by (Vx); = (x,f;). Its adjoint is
the synthesis operator which maps a € #2(J) to V*(a) = Yj¢ a; fi. The frame operator is
the positive, self-adjoint invertible operator S = V*V on H and the Grammian is the
matrix G with entries G; , = ( f;, fi,)_so that
G = (VV), k,j €{12,...,n)}.
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Definition(5. 2.2)[37]: (1) A frame {f; }/_, for a d-dimensional real or complex Hilbert
space H is e-nearly equal-norm with constant c if

1-ec <|f|l <@ +e)c, foralje1z,...,n}.
(2) The frame is e-nearly Parseval if the frame constants can be chosenas A = 1 — € and
B= 1+4+esoforall x € H,

(1 - Olxl? < g lx £)] < 1+ e)llxll%
If a frame satisfies either of these properties (1) or (2) with € = 0 then we say that it is an
equal-norm frame or a Parseval frame, respectively.
Definition(5. 2.3)[37]: The #2-distance between two frames F = {fi}j=1and G =

{gi}j=1 for a Hilbert space { is defined by
1/2

I =gl =I5 - gl
=1

Two frames F and G are € -close if ||F — G || < e.

We can now state the main problem we address in this section.

Problem(5.2.4)[37]: (V. Paulsen). Let H be a real or complex Hilbert space of
dimension d. Given € > 0 and an integer n > d, find the largest number § > 0 so that
whenever {f;}/_ is a §-nearly equal-norm, &-nearly Parseval frame for a Hilbert space

3, there is an equal-norm Parseval frame {g; }/_,whose £2-distance to {fi}j=1 is less

than €.

The existence of such a ¢ is assured by an argument of Don Hadwin.

Proposition(5. 2.5)[37]: (D. Hadwin). Given a real or complex Hilbert space H of
dimension d and an integer n > d, then for every € > 0 there isa § > 0 so that whenever
a frame {f;}/_, for 3 is &-nearly equal-norm and §-nearly Parseval, then {f;}i_; is e-
close to an equal-norm Parseval frame.

Proof. We proceed by way of contradiction. If the assertion is false, then there exists
some e > 0 and a sequence {6,,},n=1 converging to zero and a sequence of frames

{fj(m) : 1< j<nm €{1,2,...}} so that each {fj(m)}}‘=1 is 8,,-nearly equal-norm and
om-nearly Parseval but for any equal-norm Parseval frame {g; };_; we have

n

2
DI =gl z e
j=1

By compactness and switching to a subsequence we may assume that the sequence of
frame vectors {fj(m)};";l=1 has a limit for each fixed j € {1, 2,...,n},

Jim £ = f,.
By continuity of the spectrum of V*V in the frame vectors and of the entries in VV* | it
follows that {f;}/—; is an equal-norm Parseval frame and that its distance to {fj(m)};l=1

goes to zero as m — oo which is in contradiction with the assumption that the distance
between each
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{fj(m)}]’-;land any equal-norm Parseval frame was bounded below by € > 0.

The diagonal entries of VI* and the operator inequalities for V*V are not affected when
the frame vectors are multiplied by unimodular constants, because then VIV* is simply
conjugated by a diagonal unitary, and V*V is invariant. Therefore, we can form
equivalence classes of frames which share the same nearly equal-norm and nearly
Parseval properties. A similar, coarser equivalence relation has already proven useful in
the study of frames for erasure coding [47,49].

Definition (5.2.6)[37]: We define two frames ¥ = {f;}/_; and G = {g;}/-, for areal or
complex Hilbert space to be switching equivalent if the frame vectors fiand g; are
collinear and ||f; || = ||g; || for each j € {1,2,...,n}. Accordingly, we speak of switching
a frame F to a frame G, also denoted F(), if we multiply each frame vector by an
unimodular constant, g; = ¢ f; with |¢;| =1 for j € {1,2,...,n}.

Note that unlike the (nearly) equal-norm or Parseval properties, the £2-distance between
two frames is not preserved when one of them is switched. We now define another
distance for frames which does not depend on which particular representative of an
equivalence class is chosen.

Definition(5. 2.7)[37]: The Bures distance between two frames F = {f;}7_jand G =

{g;}/=, forareal or complex Hilbert space H is defined by

, 1/2

2 2
a5 (%,6) = D (151" + g 1I” - 215, 9)])
j=1
Two frames F and G are e-close in the Bures distance if dg(F,G) < e.
The Bures distance is only a pseudo-metric on the set of frames, because dz(F,G) =0
only implies f; = ¢ g; with || =1 forall j € {1,2,...,n}.We have extended its usual
definition for a pair of normalized vectors f and g in a real or complex Hilbert space,
which assigns their Bures distance to be,/2 — 2|f, g|, to the setting of vector-valued
functions. This way of extending the Bures distance is natural when it is viewed as the
solution of a minimization problem.
Lemma(5. 2.8)[37]: Let H be a Hilbert space over the field of real or complex numbers,
here after denoted by FF. The value dg(F, G) is the solution of the minimization problem

1

dp(F,G) = mingers (L=l — ;1)
where T" = {c € F": |¢;| = 1forall 1 < j < n}.

Proof. The equivalence between these two definitions of dj is seen from the inequality
15 =59/ =16 I+l I =25 5,90 2 15 I + Il I = 2145, )]
which is saturated (i.e. gives equality) when each ¢ is chosen so that ¢ (f;,g;) =

[{f;, g;)|. Here, ¢; denotes the complex conjugate of ¢; .

The Bures distance is therefore the quotient metric obtained from the #2-metric when
passing from frames to their equivalence classes. From the fact that equal-norm and
Parseval properties are switching-invariant, we get an immediate consequence for the
closeness of frames.
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Corollary(5. 2.9)[37]: A frame F = {f;}/_ is e-close to an equal-norm Parseval frame
G = {g;}j=1 in Bures distance if and only if it is e-close to an equal-norm Parseval frame
G = {g;}}=, £*-distance.
Proof. The “only if” part follows from choosing the #2-distance minimizing equal-norm
Parseval frame § in the equivalence class of G. For this frame,
|17 = G|l = ds(F.6) = ds(F,§) < e
The “if” part is clear from the inequality dg(F,G) < ||F — 6| -
As a final remark before the main part of the section, we will see in this Section that the
Paulsen problem is equivalent to a problem in matrix theory.
Problem (5.2.10)[37]: Let the field IF be either the real or complex numbers, and assume
F* is equipped with the canonical inner product. Given € > 0, find the largest
number y > 0 so that whenever P is an orthogonal rank-d projection matrix on F" with
nearly constant diagonal, meaning there is ¢ > 0 such that

(I1-y)c<PB; <A +y)c, forallj€e{l1,2,...,n}
then there exists an orthogonal projection Q satisfying
(@) Q;; = % forallj € {1,2,...,n},and

1/2
® (ZralPi—0ul’) <e.
We begin by first finding the closest Parseval frame to a given nearly equal-norm
and nearly Parseval frame.
Proposition(5.2.11)[37]: Let {f;}/-, be an e-nearly Parseval frame for a d-dimensional
Hilbert space #, with frame operator S = V*V , then {S‘l/zjj- }i=1 is the closest Parseval
frame to {f;}/_; and

" ISTV2f — £ < d(2 — e — 2T —¢) < de?/4.
Proof. It is known that {S~'/2f}'_, is the closest Parseval frame to {f}}_,
[62,68,71,80]. We summarize the derivation of this fact.
The squared #2-distance between {f; }i=1 and {g;}/-; can be expressed in terms of their
analysis operators IV and W as
IF = GlI* = tr[(V = W)V —W)"]
=tr[VV* |+ tr[WW™] = 2 tr[VW ™.
Choosing a Parseval frame {g;}/_; is equivalent to choosing the isometry W. To
minimize the distance over all choices of W, consider the polar decomposition V =
UP, where P is positive and U is an isometry. In fact, S = V*V implies P = S/2, which
means its eigenvalues are bounded away from zero.
Since P is positive and bounded away from zero, the term [VW*] = tr[UPW"* =
trW*UP] ] is an inner product between W and U. Its magnitude is bounded by the
Cauchy Schwarz inequality, and thus it has a maximal real part if W = U which implies
W*U = I. In this case,
V = WP = WSY2 orequivalently W* = §~1/2p*
and we conclude gj = S~V forall j € {1,2,...,n}.
After choosing W = VS~1/2 | the £2-distance is expressed in terms of the eigenvalues
{Ae}t_, of S =V*V by
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| F —GlI> = tr[S] + tr[l] - 2tr[51/2]

Z/lk+d ZZ\/Z

If 1—-e<A <1 +4¢€ forallj e {1 2,...,n}, calculus shows that the maximum of

A — 22 isachieved when 1 =1 —e.

Consequently,

| F—GlI? <2d —de — 2dV1 —e.

Estimatingyv1 — e by the first three terms in its decreasing power series gives the

inequality || F — Gl|2 < de?/4.

We have an upper bound for the distance between a frame and the closest Parseval frame,

and for sufficiently small e, we have control over how much of the “nearly equal-norm”

property we lose.

Proposition(5.2.13)[37]: Fix 0 < e <1/2 and let {f;}/_; be an e-nearly equal-norm

frame with constant ¢ which is also an e-nearly Parseval frame with frame operator

S =V*V,then {S7Y/2£}7_, isaParseval frame and for all j € {1,2,...,n} we have
1-¢€)? 1 12 (1+e¢)?

(1 —36)c? < %cz <||S72f || < %cz < (1 —7e)c?.

Proof. Since the frame operator S = V*V is by assumption bounded by (1 —€)I < S <

1+e)l

we have via the spectral theorem

=I<S" i< — 1.

This means that the image of any unit vector has norm between 1/v1+e€
and 1/v1— € , and for the frame vectors with norm bounds (1 — e)c < ||| < (1 +
€)c, we get

(1-e)? , 2 (1+¢€)?
——=c?<|sTV2f|T £ —c?
1+e€ ¢ ” J ” 1—¢€ ¢
Further, convexity and elementary estimates give together with the assumption € < 1/2
the bounds

1 2
(1—- 3e)c? < ||S_7jj-|| <1 + 7e)c?.
Corollary (5.2.13)[37]: Fix 0 <e <1/2 and let {f;}/_; be an e-nearly equal-norm

frame with constant ¢ which is also an € -nearly Parseval frame with frame operator

= V*V , then the norm of each vector S~Y/2f,j € {1,2,...,n}, is bounded by

_ 3d 3d
o < IS0 = 550

Proof. By summing the square-norms of the frame vectors, and using the fact that the
Grammian and the frame operator have the same eigenvalues, except possibly for zero,
we obtain

2
(1-ead=<¥|fl <+ed
The nearly equal-norm condition gives
(1-e)d < (1+e)?c*n
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and
(1+e)d=(1-¢€)?c?n.
This bounds the value of ¢ by
(1—-e)d < 2 < (1+e)d .
(1+€)2n — — (1-€)?n
Now we combine this with the preceding proposition to obtain
1-¢€)3d 2 (A +e)3d

o< lls gl < oo

(1+e)3n (1—-€)3n
In the next section, we turn the resulting nearly equal-norm Parseval frame
{s71/2f, }]ll Into an equal-norm Parseval frame while measuring the distance between

them.
We begin with a dilation argument.We observe that if {f;}/_; is a Parseval frame for a
real or complex Hilbert space, then the Grammian G = {f}, fi }} k=1 is an orthogonal
projection matrix and we have the expression G; , = (Ge;, Ge,) = (V'e;, V™ey) with the
canonical orthonormal basis {e}/_; on £%2({1,2,...,n}) and V*, the adjoint of the
analysis operator of {f; }/_;.
Proposition(5.2.14)[37]: Let G be the Grammian of a Parseval frame for a real or
complex Hilbert space H, then the system of ODEs

“e(®0 =i (66O - IGec@®I?) en(®),  j€{12,...,n} (19)
for the vector-valued functions {e; : R* — £2({1,2,...,n})} with the canonical basis
vectors as initial values {e; (0)}7_; has a unique, global solution on R*. Moreover, there
exists t = 0 such that ¢ (t) = 0 forall j € {1,2,...,n} if and only if there is a ¢ > 0 such
that ||Ge; (¢) || = c forall j € {1,2,...,n}.
Proof. To simplify terminology in the proof, we write " instead of the Hilbert space
£2({1,2,...,n}), where F stands for R or C, depending on whether the Hilbert space
is real or complex. Moreover, we identify a family of vectors {e; (t)}7_; in F" with a
vector (ei(t),ex(t),...,e,(t)) €D/ F* = F** . With this identification, the system

of ODEs for {ej (t )} 1combines to an ODE for a single vector-valued function &: Rt —

n
j:

F** . Since the velocity vector field of the combined ODE is smooth on any bounded set

in F** , we have local existence and uniqueness of the solution in a sufficiently small
neighborhood of t = 0.

We first prove that these local solutions preserve orthonormality of {ej (t )};L=1 and then
conclude the existence of global solutions.
Since Z};l ¢ (0) ® ¢(0) = I we only have to show that

d n

726 ©8gm=0

j=1

Denoting de; (t)/dt = ¢;(t) and dropping the argument of the vector-valued functions,
we compute
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n

n
d .
aZeJ Q¢ = Z(é,. ®¢ +6®(4))
— .

e (llGe || - IIGekII e ® ¢ +(||G 1° = IGel) g ® ef) = 0.
The last step follows from swapping the summation indices in the second term.
Now we invoke that these local solutions are uniformly bounded, because {e; (t)}7_;is
orthonormal for each t > 0. This implies that the Iocal solution stays inside the compact
set S = {(ey, e5,...,€,): ||¢j|| = 1 for all j} = F** . The existence of a unique global
solution now follows from the boundedness of the velocity vector field on the compact
set S™, because otherwise the maximal domain [0, a) for a solution would yield a limiting
value at a inside S, which we could again use as initial value to find a local solution in the
neighborhood of a, and then by the uniqueness of local solutions extend the domain [0, a)
to include a neighborhood of a, contradicting the maximality assumption. For more
details on this argument, see [83].
Finally, we observe that ¢ ; (t) = 0 forall j € {1, 2,...,n} implies by orthonormality that

|Ge; (t)||2 — IGex (OII* = 0 for all j and k and thus the family {Ge;}7_,j=1 is equal-
norm. Conversely, it follows directly from the definition of the ODE system that all
orthonormal bases which G projects to an equal-norm family are fixed points.

By mapping the evolving orthonormal basis with the synthesis operator of a Parseval
frame, we obtain a family of Parseval frames which solves a corresponding ODE system.
Proposition(5.2.15)[37]: Let G be the Grammian of a Parseval frame for a real or
complex Hilbert space 7€, let V : £ - £ 2({1,2,...,n}) be the analysis operator of the
frame, and consider the solution {e; : R* — £2({1, 2,...,n}};_; of the initial value
problem given in the preceding proposition, then f; (t) = Ve (t) defines a family of
Parseval frames {f; : R* - H }i=1 Which satisfies the ODE system

Lrm =4 (£ - 1AO1R) £®), je{L2...n), (0

and V is the analysis operator of {f;(0)}/.;. Conversely, each solution of this
ODE system, with a Parseval frame {f; (0)}/_, having analysis operator V as initial value,
is globally defined and unique, and to each such solution corresponds a unique solution
for the ODE (19) starting at the canonical basis of £ *({1,2,...,n}) such that V*¢; (t) =
f; () forall t = 0.

Proof. We use the two facts that (1) the projection of any orthonormal basis {e; }/_;with
the Grammian G is a Parseval frame for the range of G and that (2) the analysis operator
V of a Parseval frame is an isometry, which implies by orthonormality of {e; (£)}/_; that
for any ¢t = 0,F(t) = {V'e (t)},is a Parseval frame for 7. Moreover, from the
Ve ()| = ||f;(®| forall j €{1,2,...,n} and from applying V"
to both sides of the ODE system (19), we deduce that F: R* —@®j_; H defines a family

of Parseval frames which solves the ODE system (20). The initial value problem for (20)
has a unique solution, which is seen by repeating the argument of the preceding
proposition with the vector-valued function F: R* —@®j_; H instead of £ and with the
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sphere S = {(fl,fz,...,fn):2?=1||ﬁ||2 =d} c®j_; H instead of S™. The set S is
preserved under the flow because each {f; (t)};?=1 is a Parseval frame, so the trace of its

Grammian is equal to its rank, X7, | f; I° = d , independent of the choice of ¢ > 0. Since
the solution of the initial value problem (20) is unique, and F(¢) = {V"e (t)}i=,
provides a solution when the orthonormal basis evolves under (19), each solution of (20)
can be lifted to a unique solution of (19) which has as its initial value {e; (0)};, the

canonical orthonormal basis of € ({1, 2,...,n}).

The reason for introducing the dilation argument with the ODE system for the basis
vectors is that the fixed points of (19) are as desired, whereas the set of fixed points of
(20) contains more than all equal-norm Parseval frames, see the example below.
Proposition(5.2.16)[37]: Given a family of n vector-valued functions{f;: R* — Ky,

satisfying (20), with {f;: (0)};_,a Parseval frame, then ﬁ-(O) =0forallje {1,2,...,n}
if and only if the frame is equal-norm or the following zero-summing conditions hold:

> 5@ =Y IOl 50 =0
j=1 j=1

Proof. In the proof we again omit the explicit time dependence of the frame vectors.
From the ODEs system for the frame vectors, we see that if

5= (617 =12 i = o,
k=1

6D fe = WA fe
k=1 k=1

dtf_dtfm_ ’

then

Hence, if

For j#+me({1,2,...,n} then
IGIEY A= full2 Y s
k=1 k=1

£l = Ifull or  XF_ifi = 0.

Consequently, if;—t]j- =0 forallj € {1, 2,...,n} then the frame is equal-norm or

iﬁ=ZMwQ=a
k=1 k

Conversely, if the zero-summing conditions hold, then ;—t]j- =0 follows for all j €

{1, 2,...,n} directly from the definition of the ODE system (20).

Example(5.2.17)[37]: Given a real or complex Hilbert space 7 of dimension d and an

orthonormal basis {e;, e,,..., e, } for 7, we can construct a Parseval frame {f;}’4{' by

That is,
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Noadl
_ 1
]j- = _Eej—d, d+1<j<2d,
0, j=2d+ 1.

It is straightforward to check that this frame satisfies the zero-summing conditions in the
preceding proposition, and is thus a fixed point for the ODE (20), but it is not an equal-
norm Parseval frame.
It has been observed numerically that using an example of this type as initial value and
dilating the Parseval frame to an orthonormal basis leads to an oscillating behavior of the
basis vectors evolving under the ODE system (19). Therefore, one cannot hope to use
these ODEs alone to achieve convergence to equal-norm Parseval frames.
Definition(5.2.18)[37]: We define the frame energy of a frame F = {f; }/_; by

n

uE =y (151 - 1AIE)

jk=1
We will show below that with an appropriate use of intermittent switching, the energy of
Parseval frames obtained from piecewise solutions of the ODE (20) decreases rapidly (in
fact, exponentially) in time. Together with the following arc length estimate, this amounts
to showing a rate of convergence to an equal-norm Parseval frame.
Definition(5.2.19)[37]: Given a family of differentiable vector-valued functions F =
{fi:R" > H}; and 0 < t; < t,, the arc length traversed by the family between time t,
and t, is defined by
\ 2\1/2
s= 2 (Sl ©l7) " a
The arc length traversed by the vector-valued function F evolving under (20) is bounded
by an energy integral.
Theorem(5.2.20)[37]: The arc length traversed by the solution F: R* - H of the

ODE system (20) between time t; and t, is bounded by the energy integral

t2

1/2
s < f (v(F®)) " at.
t1
Proof. We pass from the solution of (20) to the orthonormal basis & = {g;:R* —
IF"Z}}‘=1 evolving under (19), giving V*e; (t) = f; (t), where V" is the synthesis operator
of{f; (0)};=,. Denoting by G the Grammian, we have by orthonormality,

d I° « ,
Ize| =D (legll* - nGea?)

where we have suppressed the explicit time dependence of the orthonormal basis vectors.
Summing over all j gives
n

n

S el = (leel? - ey = vz
j=1 J

k=1
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Finally, again using the Parseval property, ||Gx| =]||V*x|| for each xe€
£%(1,2,...,n}), yields 1Al = ||ve | = ||;_tGej|| < ”;—tej ”,and we have

gy ®|" <U(F@®) . Now the definition of arc length provides the desired
estimate.
Proposition (5.2.21)[37]: An alternative expression for the frame energy of a Parseval
frame F = {f; }i.;,

v =2 |I5]l" - 2,
=1

where d is the dimension of #.
Proof. We use the antisymmetry of ||f; ||2 — I |I? inj and k to write
n

2 2
v =2 ) (I5I° - A1) 51"
jk=1
Now we can sum over k. Since {fi}i-; IS Parseval, the square-norms sum to d =
dim(H). The result is

v =2 (gl - alg ).
=1

Again, we can split the two terms into separate sums and carry out the sum over j for the
second term to get d again.

Next, we give a closed expression for the time derivative of the frame energy while the
frame F evolves under (20).

Lemma(5.2.22)[37]: If F = {f; : R" — H7} is a solution of (20) with a Parseval frame

{f; (0)};_, as initial value, then

d n
SU(F®) =40 Y GO AO (IO - 1£OI1)

jk=1
Proof. Defining G; . (t) = (Ge; (t), e, (t)) = (f; (t), fi (t)) and proceeding with the lifted
ODE

n

5= (6,0 = Gea®) e ®

k=1
we have

“(6,0) =26 (t)z 1 (650 = Gk (©)),

Summing over j and antisymmetrizing G; (t) with G, (t) gives

d 2
S U(F@®) = 4n Z G (®) (G, () — Gk ®)
jk=1
In terms of the frame vectors, this is precisely the claimed expression.
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Definition(5.2.23)[37]: We define o, to be the uniform probability measure on the n-
torus T" = {c € F":|¢;| = 1 for all j }, where F is R or C. In the complex case, these are
all n-tuples of unimodular complex numbers and in the real case n-tuples of +1's.We
also denote diagonal unitaries {D(c)}, parametrized by the diagonal entries (D(c));; =
G,lgl = 1forallj €{1,2,...,n}

For later notational convenience, we define

n
weE) = an > (L (1517 = 1) 2 (21)
k=1
We recall the definition]of two frames being switching equivalent, meaning the two
families consist of vectors that are pairwise collinear and of the same norm.
We now use the switching dependence of W to our advantage.
Proposition(5.2.24)[37]: Given a Parseval frame F = {f;};.; , then there is a choice
¢ € T" such that
W(F©)<o0

Proof. Let G denote the Grammian of . For the switched frame F), we have

n

W(F©) = 4n Z 66k Gia (G = Giw)?
j k=1

Integrating over the torus T" with respect to the switching-invariant measure o,, gives
J-cj*ckdan(c) = & .
Thus we note, since terms with j Enk have a vanishing contribution in W (F(©)),
fW(T(C))dJ(c) = 0.
T

Since the average is equal to zero, there must be a choice of ¢ which gives W (F©)) < 0.
Next, we compute a lower bound for the variance of W (F ().

Proposition(5.2.25)[37]: For a fixed Parseval frame F, the variance of W (F()) with
respect to the probability measure 6 on the torus {c € T"} is

2
f(W(T(C)))dU(C) = 16nZZ|GjJ| (G = Giex)*
™ Jok

Proof. Similar to the preceding proposition, with the help of

] 6 cicichda(c) = 8 x8um + 6 Bk,

']I‘TL
Letn,d € N be relatively prime, and define
|4 dy
n = min [———
ni<n |n nl
di1<d
then we have a lower bound
1
= —.
n= nn—1)
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This follows immediately from the fact that since d, n are relatively prime, dn; — dynis
a nonzero integer. Since n; < nand d; < d we have

d dq dn, —nd; 1 1

- — > > ,

|n ny | nn, |_nn1_n(n—1)
Lemma(5.2.26)[37]: Let n = 2,n as defined above, and let ¥ = {f;}i_; be a Parseval
frame for a d-dimensional Hilbert space, then the variance of the random variable
W:c - W(F©) on the torus T" equipped with the uniform probability measure o, is
bounded below by

16n
U(F))? < f W(F©)d
o UE s [ W(FO)Y s,
Proof. Without loss of generality we can number the frame vectors so that their norms
decrease, j € {1,2,...,n— 1 If U(F) does not vanish then ||fi|| > ||f,Il and there is at
leastone j € {1,2,...,n — 1} such that

IE1° > 1fall” = QAR = IEI12 /(- 1)_

This means, if j < jand ">+ 1,then also

I | = s - ugimse - o

Thus we have partitioned the frame vectors into two sets, and the difference of square-
norms between any pair of vectors containing one from each of these sets is bounded
below by (lIfill* — fn.2)/(n —1).

Therefore, the matrix A containing entries (||f]12 = If,1I?) /(n — 1) is entry-wise
bounded below by a matrix (block notation)

s (0 €
A= (6]* 0)
where J is a block containing all 1’s anee = (||, 11> = I, 1H)*/(n — D)™

If we form the corresponding blocks in the Grammian
C = (611 Gzz)
GZl GZZ
then we know 0 < G;; < I, meaning the eigenvalues of G, are contained in the closed
interval [0, 1]. Since G is an orthogonal projection, G;; = G#, + Gy,G,; Which means
tr[Gi2Gy1] = tr[Gyy — Gyl
But that is exactly the squared Frobenius norm of the block G;,. Hence,

Zj,lej,klej,k > 2etr[Gy1 — Gf].

The smallest number of non-zero entries in A is achieved when J contains only one row.
If n and d are relatively prime and the vectors are sufficiently near equal-norm, then the
diagonal entries of G;; are close to d/n and summing them does not give an integer.
Therefore, not all eigenvalues are 0 or 1. In fact, a lower bound for the Hilbert—Schmidt
square-norm of Gy, is tr[G;; — G4 ] =n/(2n — 2)]. This is because at least one of the
eigenvalues has distance n/(n — 1) from {0,1} and the function x » x(1 — x) is
bounded below by x — x/2on [0,1/2]and by x — 1/2 — x/20n[1/2,1].
Consequently,
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(UFLI2=N£112) "
el Gl A = =0 oy

Using the equivalence of norms again,
n

Z (”E”z - ||fk||2)2 <nn-DU£f{N? = I 11%)?

j k=1
and then applying Proposition(5.2.28)
2
16 d
_n (U(T)) < 16n? z| f —U(F©) ] da(c).
(n—1)7 = dt
e ™

Next we will bound |W (F ()| by the frame energy.
Lemma(5.2.27)[37]: For a fixed Parseval frame F, the random variable W : ¢~

W (F©) on the torus T" is bounded,
|W(F©)| < du ().

Proof. Let B denote the matrix with entries B, = (||]j-||2 —Ifll»?, and G© =
D(c)GD*(c), then W(F©) = tr[G©B]. Estimating the inner product between G
and B gives

|W(EFD)| = |tr[6©OB]| < mI;axtr[PIBI]
where the maximum is over all rank-d orthogonal projections P , and the spectral

theorem defines |B| = VB*B. According to Perron-Frobenius, the largest eigenvalue of
|B| is bounded by max; »;_; B;; . Hence,

W(F©)| <d maxZB] r<d Z B
j,k=1

Finally, we observe that U(F) = U(F©)) = Zj,klej,k

To finish the quantitative bound on the distance from our initial Parseval frame to our
equal norm Parseval frame, we will find an exponential upper bound on the frame energy.
Theorem (5.2.22) will then give the needed quantitative upper bound on the arc length.
Lemma(5.2.28)[37]: Let W:02 - [—a,a],a > 0 be a bounded random variable on a
probability space, which induces a normalized Borel measure m on [—a,a]. If the

expectation and variance of W are E[W]= f_aa xdm(x)=0 and E[W?]=
ffa x? dm(x) = 0% >0, then the support of m contains a point in the set {x €
[—a,a]: x < —d?/a}.

Proof. We consider the polynomial given by p(x) = (x — a)(x + b), then

E[p(W)] = f(x2 + (b —a)x —ab) dm(x) = o% — ab.
Choosing b = 02 /a gives l;[lp(W) = 0, and so
suppm N {x € [—a,a]: p(x) = 0} # Q.

The subset of [—a, a] where p is non-negative is [—a, —b].
Now we are able to bound W (F()) from above by a strictly negative quantity.
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Theorem (5.2.29)[37]: Let n = 2,1 as defined above and let F = {f;}/_; be a
Parseval frame for a d-dimensional Hilbert space, then there exists ¢ € T™ such that

167
() -t
W(F©) < o174 U(F).

Proof. We have that a = dU(F) bounds the magnitude of W (F()) and its variance o
is bounded below by o2 > (711_6—;7)7 (U(F))?%. The preceding lemma then establishes that
there is a choice for {¢; }/_; such that

2 161

o
W(F©) < TG < o174 U(F).
Theorem(5.2.30)[37]: Let H be a real or complex Hilbert space of dimension d, and let
F ={fi,fo,---, f} be an e-nearly equal-norm Parseval frame, with n > 2 and n and d
relatively prime, then there exists an equal-norm Parseval frame G at £2-distance
n(n— 1)%d

IF -G Il < U@F)?

Proof. We let the frame F serve as the initial value F(0) for the ODE system (20).
Assuming that for each t, we pick c(t) which yields the desired estimate for W, then
naively integrating the differential inequality
d 161
ZU(FCO () = W(FCO () < — ————  U(F(t
2 VFC©) =W (FO®) < - 5 UED)

obtained in the preceding theorem gives
U(FCEO(1)) < U(g:(o))e—16nt/(n—1)7d_

However, we note that there is no guarantee that ¢ is a measurable function. To achieve
this, we relax the constant governing the exponential decay.
Choose 0 < a < 1.We know that for any Parseval frame there is at least one choice of ¢
which gives

d 16 l6a

£ (©) — 1 — 1

—U(F©) < oy V) < -7 U (22)

By the continuity of U and dU/dt in F, we can cover the space of Parseval frames with
open sets for which the strict inequality holds with the choice of a corresponding c. To
finish the argument we need to patch together the local flows in each open set.

We define a global flow by the appropriate choice of c in each subset. Upon exiting a set
at time t , we choose one of the open sets of which the frame G(t) is an element and
continue with the respective flow given by the corresponding choice of c in this subset.
Since the cover is open, c is piecewise constant and right continuous.

In the complex case, we choose a countable number of ¢’s which are dense in the torus.
By continuity of U and W, for any frame there is a choice in this countable set of ¢’s such
that again the strict differential inequality (22) is satisfied. Moreover, the countable
family of open sets corresponding to all ¢’s cover the space of all Parseval frames. By the
Heine Borel property of the compact set of Parseval frames, there is a finite sub-cover
and we can repeat the argument as in the real case.

We recall that switching affects the #2-distance. Piecewise integrating the differential
inequality, including switching when necessary, gives that the frame energy of

{T(C(f))(t)}teR+decays exponentially in time. Then using the inequality between arc
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length and frame energy in Theorem(5.2.22) , we obtain that the sequence
(FeMmI(m)}e_, is Cauchy in the Bures metric, because the series
Y% _o dB (FEm) (m), F(ctn+1) (m + 1)) is dominated by a geometric series, and hence
summable.

Passing to a subsequence converging to an accumulation point G then yields that the

equalnorm Parseval frame G is within Bures distance
o o 1/2

dp(F(0),G6) < f U (T(C(t))(t))l/z dt < j U(F(0)) e 8nat/m-D7dge

0 ( 0 1)7d

12 (n—
= U(F(0)) Sra

However, we recall that we can always choose G in the equivalence class of G which
minimizes the £2-distance to F, and obtain the same result for the £2-distance.
To finish the proof, we recall n > 1/n(n — 1) and use the fact that the set of equal-
norm Parseval frames is closed in the compact set of all Parseval frames. Therefore,
choosing a sequence of values for a converging to one, we obtain a sequence of frames
with an accumulation point within the desired #2-distance.
Now, putting together the distances we computed above, and taking into account that in
the first step we moved from our nearly equal-norm, nearly Parseval frame to the closest
Parseval frame, we can give the distance estimate for the Paulsen problem.

Theorem(5.2.31)[37]: Let n,d € N be relatively prime, n > 2, let 0 <e <% , and

assume F = {f;j}/-; isan e-nearly equal-norm and e-nearly Parseval frame for a real or

complex Hilbert space of dimension d, then there is an equal-norm Parseval frame
G = {g;}j=1 such that
29

IF-gll < Edzn(n —1)%.
Proof. After passing to the closest Parseval frame to the given frame, denoted by
G(0) = {S7'/2f; }, we have by the lower and upper bound for the norms of {S™*/2f;}in
Corollary (5.2.13) a bound for the frame energy

Pn-1)[(A+e)? (1-e3\
< —
U(Q(O)) - n <(1 —€)32 (1+¢)3
Using convexity and elementary estimates, we infer for € < 1/2 that
U(G(0)) < 27%d%e>.

Now using the preceding theorem, we obtain that there is an equal-norm Parseval frame
G at distance

I6(0) ~ 6 1l <2 d?n(n — 1.
To complete the proof, we use the triangle inequality,
d(F,G) < d(F,G(0)) +d(G(0),6) < e +Zd?n(n — 1)°,
and then combine the two contributions after estimating

Jdj2 < d?/2 < d*n(n-1)%/4.
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We conclude with an observation which allows us to reduce the construction of equal-
norm Parseval frames to the special case discussed in the previous section.
Lemma(5.2.32)[37]: Given two Hilbert spaces H ;and H, over the real or complex
numbers and equal-norm Parseval frames F = {fi,...,fy1}and G = {g;,..., gn,} then
the family of vectors

FQRG ={fi ®g;:1<i <my,1<j < ny} is an equal-norm Parseval frame for
HQH,.

Proof. The Parseval property of F & G is equivalent to the identity

x = Z(x,fi R g;)fi ® g;
L
for all x € H; ® H,. From the Parseval property of both frames it is clear that this
identity holds for any x = a @ b with a € H; and b € H,. Linearity then establishes the
result for general x € H; @ H,.
The equal-norm property follows from
If ®gll =Ilfllgll
for any pair (f,g) € F x G and from the equal-norm property of the individual frames.
Corollary(5.2.33)[37]: The construction of an equal-norm Parseval frame of n vectors in
a d-dimensional real or complex Hilbert space # can be reduced to the case of d and
n being relatively prime.
Proof. If their greatest common divisor is not one, say gcd(n,d) = m, then we can
proceed as follows. Consider the Hilbert space H = H; ® H,, where dim(H;) =
d/mand dim(#,) = m.
Now choose an orthonormal basis {e;, ey,...,e,} for H, and construct an equal-norm
Parseval frame of n/m vectors {fi, f5,..., fu/m} for ;. The resulting family of tensor
products {f; ® ¢ : 1 < i < n/m,1 < j <mjisanequal-norm Parseval frame for 7.
In this section we will show that the estimate for the special case of the Paulsen problem
provides a partial answer for Problem( 5.2.11) in matrix theory.
Proposition (5.2.34)[37]: If {f; }je/ {9 }je are frames for H with analysis operators
V1, V, respectively, then

Nvas = vag I < 20012 + WVl Y Il =g, I
jEl jel
Proof. Note thatforallj eI,

Vlﬁ' = Z(ﬁ i e

i€l

and
V9, = Ziel(gj ,3i )e;.
Hence,
2 2
”Vﬂj' - Vzgj||2 = z|<f i) =495, 9 >| = z|<f Ji— 9+ — 95,9 >|
i€l i€l
2
<2) (. fi -] +2) I - g;.0:)2
i€l i€l
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Summing over j gives

Svas - gl <2y D166 - a0l +2) 165 - g5.00]

i€l jel iel jel iel
2 2
=2) YIS -l 210 ) lf - g
i€l jel =
2 2
:2||V1||ZZ||fi - g, I +2||V2||ZZ||]§. —g ”
i€l =

2
=202 + VD Syl — 95 11
Corollary(5.2.35)[37]: Let {f;};e1,{g;}jer be Parseval frames for H with analysis

operators V;, V, respectively. If
2
Dl -g Il <e,

jel
then

2
D = vagy || < 4e”
jEl
Proof. The analysis operators V; and V, are isometries, so the preceding proposition
simplifies to the desired estimate.
Corollary (5.2.36)[37]: Let H be a Hilbert space having two Parseval frames F =

{Jj-}]r;l and G = {gj}?=1 at ¢2-distance||F — G|| < e, then their Grammians G and
Q satisfy

1/2

n
G —Qllys = Z |G; s — Qj,k|2 < 2e.
j k=1
. Corollary(5.2.37)[37]: Let n,d € N be relatively prime, n > 2, and let 0 < e < 1/2.
If G is a rank-d orthogonal n X n projection matrix over R or C and there is ¢ > 0 such
that the diagonal entries satisfy
(1 —e)?c* < G; (1 +e)*c?

for all j € {1,2,...,n}, then there is an orthogonal rank-d projection Q with diagonal
Qi = %and

16~ Qllys <= d? n(n — e

Proof. The matrix G is the Grammian of a nearly equal-norm Parseval frame. Using the
distance estimate in Theorem (5.2.31) and the preceding corollary, we obtain the desired
estimate for the Hilbert—-Schmidt distance.

Section(5.3): Given Spectrum and Set of Lengths

Letting K be either the real or complex field, the synthesis operator of a sequence of
vectors F ={f,}N_,in an M-dimensional Hilbert space H,over K is F : K" -

Hy, Fg := YN_g() f,. Viewing H,, as K", F is the M x N matrix whose columns
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are the f,’s. Note that here and throughout, we make no notational distinction between
the vectors themselves and the synthesis operator they induce. The vectors F are said to
be a frame for H,, if there exists frame bounds 0 < A < B < « such that A||f||* <
IF*fII*> < BIIfII* forall f € H,,. In this finite-dimensional setting, the optimal frame
bounds A and B of an arbitrary F are the least and greatest eigenvalues of the frame
operator:

N
FF' =) fifi, (23)
n=1

Frames provide numericallgl stable methods for finding over complete decompositions of
vectors, and as such are useful tools in various signal processing applications [52, 53].
Indeed, if F is a frame, then any f € H,, can be decomposed as

N
f=FFf =) (f.Fu fu 24)
n=1

where F = { £,}V_, is a dual frame of F, meaning it satisfies FF* = I. The most often-
used dual frame is the canonical dual, namely the pseudoinverse F = (FF*)~1F. Note
that computing a canonical dual involves the inversion of the frame operator. As such,
when designing a frame for a given application, it is important to retain control over the
spectrum {A,,}_, of FF*. Here and throughout, such spectra are arranged in
nonincreasing order, with the optimal frame bounds A and B being A4,, and A,
respectively.

Of particular interest are tight frames, namely frames for which A = B. Note this occurs
precisely when 4, = A for all m, meaning FF* = Al. In this case, the canonical dual is

given by f, = % f», and(24)becomes an over complete generalization of an orthonormal

basis decomposition. Tight frames are not hard to construct: we simply need the rows
of F to be orthogonal and have constant squared norm A. However, this problem
becomes significantly more difficult if we further require the f;,’s—the columns of F to
have prescribed lengths.

In particular, much attention has been paid to the problem of constructing unit norm
tight frames (UNTFs): tight frames for which ||f, || = 1 for all n. Here, since MA =

Tr(FF*)= Tr(F'F) = N, we see that Ais necessarily% UNTFs are known to be
optimally robust with respect to additive noise[48] and erasures [41, 49]. Morezover, all

N
unit norm sequences F satisfy the zeroth-order Welch bound Tr[(FF*)?] > - UNTF

[59, 60]; a physics-inspired interpretation of this fact leading to an optimization-based
proof of existence of UNTFs is given in [36]. We further know that such frames are
commonplace: when N > M + 1, the manifold of all M X N real UNTFs, modulo
rotations, is known to have dimension (M —1)(N — M — 1) [46]. Essentially,
when N = M + 1, this manifold is zero-dimensional since the only UNTF's are regular
simplices [47]; each additional unit norm vector injects M — 1 additional degrees of
freedom into this manifold, in accordance with the dimension of the unit sphere in RY.
Local parametrizations of this manifold are given in [56]. The Paulsen problem involves
projecting a given frame onto this manifold, and differential calculus-based methods for
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doing so are given in [37, 39].

In light of these facts, it is surprising to note how few explicit constructions of UNTF's
are known. Indeed, a constructive characterization of all UNTFs is only known for
M = 2 [47]. For arbitrary M and N, there are only two known general construction
techniques: truncations of discrete Fourier transform matrices known as harmonic
frames [47] and a sparse construction method dubbed spectral tetris [40]. To emphasize
this point, we note that there are only a small finite number of known constructions of 3
x 5 UNTFs, despite the fact that an infinite number of such frames exist even modulo
rotations, their manifold being of dimension (M — 1)(N — M — 1) = 2. The reason for
this is that in order to construct a UNTF, one must solve a large system of quadratic
equations in many variables: the columns of F must have unit norm, and the rows of F

1

must be orthogonal with constant norm (%)2

In this section, we show how to explicitly construct all UNTFs, and moreover, how to
explicitly construct every frame whose frame operator has a given arbitrary spectrum and
whose vectors are of given arbitrary lengths. To do so, we build on the existing theory of
majorization and the Schur-Horn Theorem. To be precise, given two nonnegative
nonincreasing sequences {A,}"_, and {u,}_, we say that {1, }_; majorizes {u,}"_,,
denoted {An}g=1 = {Aun}rl\ll=1’ if

221 /1,1 = 2221 Uy Vn =1,..,N—1,

Rt A = Zai—1 b

Viewed as discrete functions over the axis {1,...,N}, having {A,})_;majorize
{u,}N_;means that the total area under both curves is equal, and that the area under
{1, }_; is distributed more to the left than that of {u,})_;. A classical result of Schur
[55] states that the spectrum of a self-adjoint positive semidefinite matrix necessarily
majorizes its diagonal entries. A few decades later, Horn gave a nonconstructive proof of
a converse result [50], showing that if {1,}_, > {u,}}_,, then there exists a self-adjoint
matrix that has {1, })_,  as its spectrum and {u, }\'_as its diagonal.
These two results are collectively known as the Schur-Horn Theorem:
Schur-Horn Theorem. There exists a positive semidefinite self-adjoint matrix with
spectrum {4,,}_, and diagonal entries {u,}Y_, ifandonly if {1,})_; = {u, }N_;
Over the years, several methods for explicitly constructing Horn’s matrices have been
found; see [44] for a nice overview. Many current methods rely on Givens rotations [42,
44, 58], while others involve optimization [43]. With regards to frame theory, the
significance of the Schur-Horn Theorem is that it completely characterizes whether or not
there exists a frame whose frame operator has a given spectrum and whose vectors have
given lengths; this follows from applying it to the Gram matrix F*F, whose diagonal
entries are the values { ||, [|*}¥_, and whose spectrum {1, }¥_, is a zero-padded version
of the spectrum {4,,}}4_, of the frame operator FF* Indeed, majorization inequalities
arose during the search for tight frames with given lengths [38, 45], and the explicit
connection between frames and the Schur-Horn Theorem is noted in [35, 52]. This
connection was then exploited to solve various frame theory problems, such as frame
completion [54].
In this section, we follow the approach of [51] in which majorization is viewed as the end
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result of the repeated application of a more basic idea: eigenvalue interlacing. To be
precise, a nonnegative nonincreasing sequence {y,,}_, interlaces on another such
sequence {B,,}M_,, denoted {B,,}M_, C {y,, 1 _, provided
Bu<vmu<Bu1Syvma< S B=v2= i < 11 (25)

Under the conventiony, ,,;:= 0, we have that {£,,}¥_, = {y,,}_; if and only if
YMm+1 < ,BM <VYu forallm = 1,...,M.

Interlacing arises in the context of frame theory by considering partial sums of the frame
operator (23). To be precise, given any sequence of vectors F = {f,}¥_, in H,,, then for
every n = 1,..., N, we consider the partial sequence of vectors F, = {f;}%_,. Note that
Fy = F and the frame operator of Fyis

FE =) fifi. (26)
n=1

Let {A,..}_; denote the spectrum (26). For any n=1,...,N — 1, (26) gives that
Foi1Fpp1 = FyES + fusifos and so a classical result [51] involving the addition of
rank-one positive operators gives that {A,.,, }_1 E {dy1m }4—1. Moreover, if ||f,||* =
W, foralln =1,..., N, then for any such n,

M n n
> g = TrEE) = TrEE) = ) Nl ) 27)
m=1 n=1 n=1

Note that as n increases, the Gram matrix grows in dimension but the frame operator
does not since E,F,: K* — K" but E,E,": H,, — H,,. We call a sequence of interlacing
spectra that satisfy (27) a sequence of eigensteps:
Definition (5.3.1)[34]: Given nonnegative nonincreasing sequences {A,,}4_, and
{u,}¥_,, a sequence of eigensteps is a doubly- indexed sequence of sequences
{An;m Im=1)}n=0 for which:

(i) The initial sequence is trivial:

Am =0 Vm =1,...,M.
(ii) The final sequence is {A,,}M_1y =2, VYm= 1,...,M.
(iii) The sequences interlace:
Pt} E= Dy V= 1.1
(iv) The trace condition is satisfied:

M n
ZAN"”:Z‘U vn=1,...,N.
m=1 n=1 4

As we have just discussed, every sequence of vectors whose frame operator has the
spectrum {4, }*_, and whose vectors have squared lengths {u,, }Y,_; generates a sequence
of eigensteps. In the next section, we adapt a proof technique of [51] to show the
converse is true. Specifically, characterizes and proves the existence of sequences of
vectors that generate a given sequence of eigensteps. In this Section, We then use this
characterization to provide an algorithm for explicitly constructing all such sequences of
vectors; see Theorem (5.3.7 ).Though nontrivial, this algorithm is nevertheless
straightforward enough to be implemented by hand in small-dimensional examples,
involving only arithmetic, square roots and matrix multiplication. We will see that once
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the eigensteps have been chosen, the algorithm gives little freedom in picking the frame
vectors themselves. That is, modulo rotations, the eigensteps are the free parameters
when designing a frame whose frame operator has a given spectrum and whose vectors
have given lengths.

The significance of these methods is that they explicitly construct every possible finite
frame of a given spectrum and set of lengths. Computing the Gram matrices of such
frames produces every possible matrix that satisfies the Schur-Horn Theorem; previous
methods have only constructed a subset of such matrices. Moreover, in the special case
where the spectrums and lengths are constant, these methods construct every equal norm
tight frame. This helps narrow the search for frames we want for applications: tight
Gabor, wavelet, equiangular and Grassmannian frames.

The purpose of this section is to prove the following result:

Conversely, any F constructed by this process has {1,,}}_, as the spectrum of FF* and
£ ll? = p,for all n.

Moreover, for any F constructed in this manner, the spectrum of E,F; is {4, }1_, for
aln=1,...,N.

We note that as it stands, Theorem(5.3.6) is not an easily-implementable algorithm, as
Step A requires one to select a valid sequence of eigensteps—not an obvious feat—while
Step B requires one to compute orthonormal eigenbases for each F,. These concerns will
be addressed in the following section. We further note that Theorem(5.3.6) only claims to
construct all possible such , sidestepping the issue of whether such an F actually exists
for a given {1,,}_, and {u,}Y _,. This issue is completely resolved by the Schur-Horn
Theorem. Indeed, in the case where M < N, [35] shows that there exists a sequence of
vectors F = {f, }*_, in H,,whose frame operator FF* has spectrum {,,}_,and which
satisfies ||f, ||> = w,for all n if and only if {1,,}_; U {0} _\,+1 = {u,}"~; . In the case
where M > N, a similar argument shows that such a sequence of vectors exists if and
only if {1, ¥_; > {u,}*_;and A, =0forallm =N +1,...,M. As

Step B of Theorem(5.3.6) can always be completed for any valid sequence of eigensteps,
these majorization conditions in fact characterize those values {4,,}_; and {u,}*_, for
which Step A can successfully be performed; we leave a deeper exploration of this fact
for future work. In order to prove Theorem(5.3.6), we first obtain some supporting
results. The following lemma gives a first taste of the connection between eigensteps
and our frame construction problem:

Lemma(5.3.2)[34]: Let {1,,3¥_, and {u,})_; be nonnegative and nonincreasing, and
let {{A,,}_,}V_, be any corresponding sequence of eigensteps as in Definition (5.3.1).
If a sequence of vectors F = { £,}¥_, has the property that the spectrum of the frame
operator F,F; of E, = {f,}2_, is {1, }_; forall n =1,...,N, then the spectrum of
FF*is {4, }M_ and ||f,1I? =, foralln=1,..,N.

Proof. Definition(5.3.1) (ii) immediately gives that the spectrum of

FF* = FyFy
N is indeed {1,}¥_, = {AN;m}Z_l, as claimed.
Moreover, for any = 1, ..., N., Definition (5.3.1) (iv) gives
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annuz = Tr(RF) = Tr(R ) = Z D = Zun (28)

Lettingn = 1 |n (28) gives ||f1 11> = uy, while for n =2,..,N, con5|der|ng (28) at both
nandn — 1 gives

A Zufnnz Zufnnz Zun Zun b

The next result gives condltlons that a vector must satlsfy |n order for it to perturb the
spectrum of a given frame operator in a desired way(see [51]).
Theorem(5 3.3)[34]: Let F, = {f;;}%_, be an arbitrary sequence of vectors in H,, and

let {Anm} denote the eigenvalues of the corresponding frame operator F, E, . For any

choice of fn+1|n Hy, let F,.q = {f;}21]. Then forany 1 € {/1,”,1}”1=1 the norm of the
projection of f, ,;onto the eigenspace N(AI — E,F;) is given by

||Pn;/1fn+1||2 = - )}11)1}1(3( ) Prllj+gﬁ)€)

where p, (x) and p, 1 (x) denote the characteristic polynomials of F,F,; and F,.{F, 1,
respectively.

Proof. For the sake of notational simplicity, let £, = F,f,.1 = f,fo+1 = G, Py =
Py, p,(x) = p(x), ppi1(x) = q(x),nd let 4,., = B,forall m=1,...,M. We will also
use | to denote the identity matrix, and its dimension will be apparent from context. To
obtain the result, we will express the characteristic polynomial §(x) of the (n + 1) X
(n+ 1)Gram matrix G*G in terms of the characteristic polynomial p(x)of the n x
n Gram matrix F*F. Written in terms of their standard matrix representations, we have

G =|[F f]
G{G [l =l (29)
2 FEOIIR

To compute the determinant of x1 — GG, it is helpful to compute the singular value
decomposition F = U Y V* and note that for any x not in the diagonal of X*X, the
following matrix W has unimodular determinant:
”1 (x1—-2"2)" 1V*F*f] _ [V V(xl—2*2)"V*F*f .
1

(30)
Subtractlng (29) from xI and conjugating by (30) yields

W*(x1—G*GO)W

_[ v Hxl—F*F —F*f HV V(x1 =X 2)"\WW*F*f
WL =2 ) VE) 1L —fF x—|IfI? 1

[(f FV(xl )"y 1
[(xl —F*F)V  (x1 —F*F)V(x1 — X*2)"W*F*f — F*f a1
—f*FV x = IfIIZ = fFFFV(x1 = Z* X)WV F*f (31)
Since F*F = VX*XV*then —F*F = x1 —VX*XV* = V(x1 — X*X)V* . As such,
X1 -FF) Va1l -2 WFf-Ff=WVkl-2)VV(xl—-2E)WFf-
Frf=F*f—F*f=0 (32)
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Substituting (32) into (31) and again noting V*(xI — F*F)V = x1 — X*X gives

. . v 0
Wixl - GOW = [f*FV(xl — )y 1]
(x1 — F*F)V 0
—f'FV  x—=|fl? = fFV(x1 — Z*5)" WV F*f
V*(x1 — F*F)V 0
[f*FV(xl — )Wl = F'F)V = f'FV  x—|IflI? = f'FV(x1 = Z*2)" W F*f
x1—5*% 0
=170 i o - Ry (33)

Since W has unimodular determinant, (33) implies
G(x) := det(xl — G*G) =det [W*(xI — G*G)W] =det(x1 —X*X)(x — ||If]|> -
SRV 1= T —1V+F*f (34)
To simplify (34), note that since V is unitary,
p(x):= det(x] — F*F) = det{V*(x1 — F*F)V] = det(x1 — 2*X)(35)
Moreover, letting (2*2)(n, ) denote the 7 th diagonal entry of 2*X yields
f*FV(x1 — 2*X) YW F*f

= (V'F'f) (a1 - 25\ (VFf) = X, D@l (36)
Substituting (35)and (36)into (34)gives
G(0) = PO — IIfII? — Ty LEDwE (37)
To continue simplifying (37), let §,; denote the nth standard basis element. Then
V*F* = 2*U" impliesthatforany n = 1,..,n,

(VF DG = VFF,60) = (2U°f,8,) = (£,U58,) = {71 Had =M (35

where {aﬁ}ﬂ‘lw'”} are the singular values of F. Since X*X(#; 1) = of for any
n = 1,.., min{M,n}, (38) implies
n min {Mn} min {Mn}
|V F A _ of|(fun?| _ o}
— DGR Z @@ Z oz il (39)
n=1 n=1 n=1
Making the change of variables m = 7 in (39) and substituting the result into (37) gives
min{Mn}

a2
q(X) = ﬁ(X)(.'X,' - “f”z - Z 1;2 |fﬁuﬁ|2 Vx # 012: ey O-rﬁin (M,n) 0. (40)

—
m=1

Here, the restriction that x # af,...,a,flm{M'n},O follows from the previously stated
assumption that x is not equal to any diagonal entry of X*X; the set of these entries is
{o2}t_, if M = nandis {o/}}_, U {0}}_, if M < n. Now recall that p(x) and q(x) are
the Mth degree characteristic polynomials of FF*and GG* respectively, while p(x) is
the nth degree characteristic polynomial of F*F and §(x) is the (n+ 1)st degree
characteristic polynomial of G*G. We now consider these facts along with (40) in two
distinct cases: n < M and M < n. In the case where n < M, we have that p(x) =
xM7 f(x) and q(x) = xM "1 §(x). Moreover, in this case the eigenvalues {8, }}_,
of FF* = UXX*U* are given by B, =c2 forall m=1,..,n and B, = 0 for all
m= n+1,..,M, implying (40) becomes
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B cew- ), )
p(x) )

= 2 (e IFIP — Tl L |<fum)I2)Vx # Bu, s By, (41)
In the remaining case where M < n, we have p(x) = x* ™ p(x),§(x) = x""1"Mg(x)

and B8, = o2 forallm = 1,... M,implying (42) becomes
x" M a () = 2" p(x) (x— I FII? - Z fm —I(f, m>|2> Vx %, ..., By, 0. (42)

We now note that (43)and (44) are equwalent That is, regardless of the relationship
between M and n, we have

M
1 m
5= ;(x — I fII* = Z xfﬁmuf,umw), Vx # By, -, Bu, 0
m=1

Writing || fII? = XY _, ifum)l? and then grouping the eigenvalues A= {5, }M_,
according to multlplicity gives

oRHL Zl(fu I = Z B it | = 1= 3 Wam Z"P””
p(x) X m —ﬂm m “x—Bm

m=1
vx ¢ AU {0}
As such, forany 4 € A.

)Q(x)

hm(x /1)( Z”“f” A[(x—)l)—”P/lf”z—z||Pif||2%

1eA 1ed

lim (x —
x—A

)—IIszII2
yielding our claim.
Though technical, the proofs of the next two lemmas are nonetheless elementary,
depending only on basic algebra
and calculus. As such, these proofs are given in the appendix[34].
Lemma(534)[34] If {8,}_, and {y,,}_, are real and nonincreasing, then

{Bn}m=1 E {¥m}¥m=1 if andonly if

lim,_g (x — ,Bm)qgg_ vm=1,.. M
where p(X) - 1(x - Bm) and q(x) - 1(X m)
Lemma(5.3. 5)[34] If {8, 3 _,, {v,, 1 _, and {6 M _ are real and nonincreasing and
lim,_z (x — Bm)Z(x) llmx_,ﬁm(x—ﬁm);((’;)) vm=1,.. M

where p(x) = [T=1(x = B,), q(x) = [Tn=1(x — yn) and r(x) = [T -1 (x — &,,) then
q(x) =r(x)

With Theorem(5.3.3) and Lemmas(5.3.2),(5.3.4) and(5.3.5) in hand, we are ready to
prove the main result .

Theorem (5.3.6)[34]: For any nonnegative nonincreasing sequences {A,,}_; and
{u,}N_,, every sequence of vectors F = {f,}¥_, in H,, whose frame operator FF* has
spectrum {A,,}_, and which satisfies ||f,||> = u, for all n can be constructed by the
following process:

A.  Pick eigensteps {{4, }%21}:= , as in Definition (5.3.1).
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B. Foreachn =1,...,N, consider the polynomial:

P(x)—l_[(x Jum)- (43)

Take any f; € H,, such that ||f1||2 = ,u1 For each n=1,...,N — 1, choose any f, .,

such that
2 ) Pn+1(x)
P,. =—1 —A)—,
|| n,/lfn—i—l” xl_rg(x ) Pn(x)

for all 1 € {Ay.,}%_;, where P,.; denotes the orthogonal projection operator onto the
eigenspace N (Al — F,F;") of the frame operator F, F; of F, = {f;; }.-,. The limit in (44)
exists and is nonpositive.
Proof. (=) Let {1,,}_; and {u,}Y_;n=1 be arbitrary nonnegative nonincreasing
sequences, and let
F = {f,}_, be any sequence of vectors such that the spectrum of FF*is {1,,}¥_, and
If, |l =, for all n =1,...,N. We claim that this particular F can be constructed by
following Steps A and B.

(44)

N
In particular, consider the sequence of sequences {{An;m}zz 1} i defined by letting

M
{An;m}m= , be the spectrum of the frame operator F, ;" of the sequence F, = {f;};i_, for

alln=1,..,N and letting A,.,, = 0 for all m. We claim that {{A,,}%_,}}_, satisfies
Definition(5.3.1) and therefore is a valid sequence of eigensteps. Note conditions (i) and
(ii) of Definition (5.3.1) are immediately satisfied. To see that {{Am}%zl}ﬁzo satisfies
(iii), consider the polynomials p, (x) defined by(43) for all n = 1, ..., N. In the special

case where n = 1, the desired property (iii) that {0}¥_; = {4, m} , from the fact that

the spectrum {/11,-m}m=10f the scaled rank-one projection F,F = f1 fi" is the value

lf1I?> = p, along with M — 1 repetitions of 0, the eigenspaces being the span of f; and
its orthogonal complement, respectively. Meanwhile if n=2;:::; ; N, Theorem (5.3.3)
gives that

Py (x)
lim X — —ns -
X—An_ 1m( n 1m) —1(x)

implying by Lemma(5.3.4) that {An 1m} = {Anm}
holds since forany n = 1, ..., N we have
M

n n
z An;m = Tr(FnFn*) = Tr(Fn*Fn) = Z”fn”z = z.uri'
m=1 n=1 n=1

: : M N : .
Having shown that these particular values of {{An;m}m_ 1} can indeed be chosen in
1), _

||Pn_1'ln 1;mfn ||2£0 Vm = 1; ,M

_, 8 claimed. Finally, (iv)

Step A, we next show that our particular F can be constructed according to Step B. As the
method of Step B is iterative, we use induction to prove that it can yield F. Indeed, the
only restriction that Step B places on fiis that ||f;]|*> = u;, something our particular
fisatisfies by assumption. Now assume that for any n=1,..,N —1 we have already
correctly produced {f;};_,
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By following the method of Step B; we show that we can produce the correct f,,.; by
continuing to follow Step B. To be clear, each iteration of Step B does not produce a
unique vector, but rather presents a family of f,,,; to choose from, and we show that our
particular choice of f, . lies in this family. Specifically, our choice of f,,,;must satisfy
(44) for any choice of A € {An;m}ranl the fact that it indeed does so follows immediately

from Theorem(5.3.3). To summarize, we have shown that by making appropriate choices,
we can indeed produce our particular F by following Steps A and, concluding this
direction of the proof.

(<) Now assume that a sequence of vectors F = {f;, }»_,has been produced according to

N
Steps A and B. To be precise, letting {{An.m} 1} be the sequence of eigensteps

chosen in Step A, we claim that any F = {f, }}_; constructed according to Step B has the
property that the spectrum of the frame operator E, F,; of F, = {f;}}_; |s{)tn;m}m= ) for all

n =1,...,N. Note that by Lemma (5.3.2), proving this claim will yield our stated result
that the spectrum of FF*is {1,,}¥_, and that ||f,||> = u, for all n =1,...,N. As the
method of Step B is iterative, we prove this claim by induction. Step B begins by taking
any f; such that ||f;]]*> = u;. As noted above in the proof of the other direction, the
spectrum of F; F;' = ffi" is the value yu; along with M — 1 repetitions of 0. As claimed,

these values match those of {Al;m}Zzl to see this, note that Definition(5.3.1) (i) and (iii)

give {0}M_, = {Ao;m}Zzl C {/11;m}Z=13nd SO Ay = 0for all m=2,...,M, at which
point Definition (5.3.1) (iv) implies A, ; = ;.

Now assume that for any n=1,...,N — 1, the Step B process has already produced
E, = {f;}*_,such that the spectrum of F,E; is {An;m}Zzl . We show that by following

Step B, we produce an £, such that F,,; = {f;}?_, has the property that {ANH;m}Z:l
is the spectrum of F, 1 F,,,. To do this, consider the polynomials p,, (x) and p,, .1 (x),
defined by (43) and pick any f,, ., that satisfies(44), namely

lim (% = A 2220 = —lpa fo|| ¥m=1,.., M. (45)

X—An:m pn(x)

. M
Letting {Anﬂ;m}m:l denote the spectrum of F,,,F,.;, our goal is to show that

{inﬂ;m}Z:l = {Ans1m}, _,- Equivalently, our goal is to show that pp1(x) = Prs1(x)
where p,, 11 (x) is the polynomial

ﬁn+1(x) = 1(X n+1 m)
Since p, (x)and Pnyq1 are the characteristic polynomials of E,E; and F, (F; 1,
respectively, Theorem(5.3.3) gives:

: X 2 .
lim,_,; (x A, m)p;‘:(lx()) = ||pn;,1n;mfn+1|| vm=1,..,M: (46)
Comparing (45)and (46)gives:
i _ np1G0) — Bn+1(0) B _
llrnx_”ln:m (X Ansm % x_l}}{l’l (X Anim pn (x) vm=1..,.M:

implying by Lemma(5.3.5) that p,, .1 (x) = p,4+1(x), as desired.
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As discussed a two-step process for constructing any and all sequences of vectors
F={f}Y_, in H, whose frame operator possesses a given spectrum {A,,}_ and
whose vectors have given lengths {u,}"_, . In Step A, we choose a sequence of
. M N M
eigensteps {{An;m}mz 1} . In the end, the nth sequence {4}

n=0
spectrum of the nth partial frame operator F,E,, where FE, = {f;};_, . Due to the
complexity of Definition (5.3.1), it is not obvious how to sequentially pick such
eigensteps. Looking at simple examples of this problem, such as the one discussed in
Example(5.3.8) below, it appears as though the proof techniques needed to address these
questions are completely different from those used throughout this section. As such, we
leave the problem of parametrizing the eigensteps themselves for future work. In this
section, we thus focus on refining Step B.
To be precise, the purpose of Step B is to explicitly construct any and all sequences of
vectors whose partial-frame operator spectra match the eigensteps chosen in Step A. The
problem with Step B of Theorem(5.3.6) is that it is not very explicit. Indeed for every
n=1,..,N—1, in order to construct f,,.; we must first compute an orthonormal

eigenbasis for E,E;, . This problem is readily doable since the eigenvalues {An;m}Tanl of

E,E; are already known. It is nevertheless a tedious and inelegant process to do by
hand, requiring us to, for example, compute QR-factorizations of A,,.,,1 — E, F;” for each
m=1,..,M. This section is devoted to the following result, which is a version of
Theorem(5.3.6) equipped with a more explicit Step B; though technical, this new and
improved Step B is still simple enough to be performed by hand, a fact which will
hopefully permit its future application to both theoretical and numerical problems.
Theorem(5.3.7)[34]: For any nonnegative nonincreasing sequences {A,,}_, and
{u, }N_, , every sequence of vectors F = {f,}_, in H,, whose frame operator FF* has
spectrum {A,,}_, and which satisfies ||f,||> = u,, for all n can be constructed by the
following algorithm:

N
A. Pick eigensteps {{An;m}:_l} as in Definition(5.3.1).

—+/n=0

. will become the

B. Let U; be any unitary matrix, U; = {ul,.m}Z=1 , and let f; = \/gyuy, . For each
n=1,..,N—1:
B.1 Let V, be an M x M block-diagonal unitary matrix whose blocks correspond to the
distinct values of{/ln;m}:=1 with the size of each block being the multiplicity of the
corresponding eigenvalue.

. . M M
B.2 Identify those terms which are common to both{A,,,} _. and {A,i1m} _,-
Specifically:
(i) Let I, < {1,.., M} consist of those indices m such that 4,,.,, < 4,., forall m <m

and such that the multiplicity of 4,,.,,as a value in {Aﬁ;m}mzl exceeds its multiplicity as a
M

m=1

value in {4, 11,4}
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(i) Let T, < {1, ..., M}consist of those indices m such that A, 1., < A,41., for all
, e g . . M .
th <m and such that the multiplicity of ,,,as a value in {2,414} ._, exceeds its

multiplicity as a value in {An;m}gzl
The sets I, and T,, have equal cardinality, which we denote R,,. Next:

(iii) Let mr; be the unique permutation on {1, ..., M} that is increasing on both I,, and I;
and such that

nl, € {1,...,I,} for all m € I,. Let [], be the associated permutation matrix []; &,
orlnm

(vi) Let mT7;, be the unique permutation on {1, ..., M}that is increasing on both 7, and

T¢ and such that
m, (m) €{1,..,R,} for all m €7,. Let [[5 be the associated permutation matrix

[7, 6 = 87, (M)
B.3 Let v,,w, bethe R,, X 1 vectors whose entries are
v (TL’ (m)) _ ‘ M e, (Anm =2, ,1.4) 1z (TL’T (m))
" fn l_[T'flEIn(/ln;m_)Ln+1;n71) Wn
vmel,meT,.

1/2
l_ImEIn Antim _An+1;n;1)

nmETn An+1m An+1;n71)

B4 foi1 = U, 17, [ ] where the M X 1 vector[ 0] is v,, padded with M — R, zeros.
B5 U,;1 = H,n[ n 0] [17, where W, is the R, X R, matrix whose entries
are:

I/Vn(ﬂ'.ln (m), T["];L (Th)) = l;vn (T[In (m)wy, (T, (m))

n+1L;m—An;m

Conversely, any F constructed by this process has {1,,}}_, as the spectrum of FF*and

£, 11?2 = w, forall n.
Moreover, for any F constructed in this manner and any n = 1, ..., N, the spectrum of the
frame operator F, F, arising from the partial sequence F, = {f;;}3_, is {An;m}zzl, and the
columns of U,, form a corresponding orthonormal eigenbasis for F, F;
Before proving Theorem(5.3.7), we give an example of its implementation, with the hope
of conveying the simplicity of the underlying idea, and better explaining the heavy
notation used in the statement of the result.
Example(5.3.8)[34]: We now use Theorem (5.3.7) to construct UNTFs consisting of 5
vectors in R?. Here, ; = A, = A3 =3and puy = pp = u3 = py= _pus = 1. By
Step A, our first task is to pick a sequence of eigensteps consistent with definition (5.3.1),
that is, pick {411 ,2 1.2, A3} {221 04 2.2, 223} {31 0 A 3.2, Asi3} and{Ay.1, 4 40, 44,5} that
satisfy the interlacing conditions:

{0,003 E {411,212, 413} E {421,422, 423} E {31, A 32, 43,3} E {441, A 42, Aa3} E
{5'5'5} (47)

3°3°3
as well as the trace conditions:

Ma+ Ao+ M3=1, A, 450,453 = 2,31, A 35, A3.3 = 3,41, A 4.2, A4.3. (48)
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Writing these desired spectra in a table:

n 0 1 2 3 4 5
5
An;B 0 3
An;Z 0 %
Awi O :
3

the trace condition (48) means that the sum of the values in the nth column is}.} =1 p,' =
n, while the interlacing condition (47) means that any value 4,, ,,, is at least the neighbor
to the upper rightd, ;1.,+1 and no more than its neighbor to the rightd, 1, . In
particular, for n = 1, we necessarily have 0 = 4,,,, 1,2 __0;1=0and0=_0;3 _

~1;3 _ _0;2=0implying that _1;2 = 1;3 = 0. Similarly, for n = 4, interlacing requires
that 5

3=52 41 5;1=53

and 53

= 53 42 52=5

3implying that_4;1= 4;2=5

3. That is, we necessarily have:

n 0 1 2 3 4 5
A 0 0 ? ? ? 3
A2 0 0 ? ? 3 =
At 0 ? ? ? 3 3
Applying this same idea again forn=2andn=3gives0=_1;3 __2;3_ _1;2=0and5
3=_42__3;1__4,1=53,
and so we also necessarily have that _2;3=0,and 3;1=5
3:
n 0 1 2 3 4 5
Ap:3 0 0 0 ? ? —:
An:2 0 0 ? ? > -
a0 ? ? s

Moreover, the trace condition (26) atn=1gives1= _1;1+ 1;2+ 1;3= 1;71+0+0
andso 1;1 = 1. Similarly, the

trace conditionatn=4gives4=_4;1+ 4,2+ 4;3=5

3+53

+ 4;3andso _4;3=2

3:
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n 0 1 2 3 4 5
A3 0 0 0 ? 2 3
A2 0 0 ? ? 2 3
.-'1”'_ 1 U 1 .? ; 1‘ —:

Wl

_ 2
=z
3

1
E]

o 3 3 1 S o i E " i

-

Figure 1: Pairs of parameters (X; y) that generate a valid sequence of eigensteps when
substituted into (27). To be precise, in order to satisfy the interlacing requirements of
Definition 1, x and y must be chosen so as to satisfy the 11 pairwise inequalities
summarized in (28). Each of these inequalities corresponds to a half-plane (a), and the set
of (x; y) that satisfy all of them is given by their intersection (b). By Theorem 7, any
corresponding sequence of eigensteps (27) generates a3 _ 5 UNTF and conversely, every
3 _ 5 UNTF is generated in this way. As such, x and y may be viewed as the two
essential parameters in the set of all such frames. In particular, for (x; y) that do not lie on
the boundary of the set in (b), applying the algorithm of Theorem 7 to (27) and choosing
U =V, =V,=V;=V, =lyields the 3_5 UNTF whose elements are given in Table 1.
The remaining entries are not fixed .Inparticular ,welet A3.;be come variable x and note
that by the trace condition

3=231+ A35+ A33 =x + A3, + 3 and so A3, = %—x. Similarly letting
/12;2 =Yy gIVES /12;1 = 2 — y
n 0 1 2 3 4 5 (49)

An;3 0 0 0
An;2 0 0

W N W N W N
w| U1 w| v1w| Ul

We take care to note that x and y in (49) are not arbitrary, but instead must be chosen so
that the interlacing relations (49) are satisﬁedz. In Earticulag, we have:

{431, 43,2, 433} E{A41, da2 a3} €2 X <553 — xf EL ;

{A21, 22,2, 23} E A3, 432,433} €2 0<x<y<3-x<2 -y <3

A2 A3 E{Ag1 Aop gz} €20 Sy <1<2-y. (50)

By plotting each of the 11 inequalities of (50) as a half-plane (Figure 1(a)), we obtain a
5-sided convex set (Figure 1(b)) of all (x,y) such that (49) is a valid sequence of
eigensteps. Specifically, this set is the convex hull of (0, %),( ) ( ( ) and (0

We note that though this analysis is straightforward in this case, it does not eaS|Iy
generalize to other cases in which M and N are large.
To complete Step A of Theorem (5.3.7), we pick any particular (x,y) from the set
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depicted in Figure 1(b).For example, if we pick (x,y) = (0,3) then (46) becomes:
n 0 1 2 3 5
(51)

n3 0 0
An;2 0 0
An;1 0 1

Wl W[ = o
Wl w| b o
Wl LW L1 w ny B
W] U1 W] U1 Ul

We now perform Step B of Theorem 7 for this particular choice of eigensteps. First, we
must choose a unitary matrix U;. Considering the equation for U,,,,; along with the fact
that the columns of Uywill form an eigenbasis for F, we see that our choice for U;merely
rotates this eigenbasis, and hence the entire frame F, to our liking. We choose U; = I
for the sake of simplicity. Thus

1
fi= \/H—1u1;1 = [0]
0

We now iterate, performing Steps B.1 through B.5 for n = 1to find f,and U,, then
performing Steps B.1 through B.5 for n = 2 to find fzand U, and so on. Throughout this
process, the only remaining choices to be made appear in Step B.1. In particular, for
n = 1 Step B.1 asks us to pick a block-diagonal unitary matrix V;whose blocks are sized
according to the multiplicities of the eigenvalues {A;.,4;,,4;.3} ={1,0,0}. That
is, consists of a 1 X 1 unitary block—a unimodular scalar—and a 2 x 2 unitary block.
There are an infinite number of such V;’s, each leading to a distinct frame. For the sake of
simplicity, we choose V; = I. Having completed Step B.1 for n = 1, we turn to Step

B.2, which requires us to consider the columns of (51) that correspond to n =1 and
n=2:

n 1 2

: 0 (52)
n;3 0 1

An;2 0 3

An;1 1 g

In particular, we compute a set of indices I; S {1, 2,3} that contains the indices m of
{A1.1, 4.2, 4133 = {1,0,0} for which (i) the multiplicity ofA,,, as a value of
{1, 0,0} exceeds its multiplicity as a value of {A;.1,45.5,4;3} = {3, ,0}and (i) m
corresponds to the first occurrence of A, as a value of {1, 0, 0}; by these criteria, we
find I, = {1, 2}.
Similarly 3; if and only |f m indicates the first occurrence of a value A,., whose
multiplicity as a value of {3, ,0} exceeds its multiplicity as a value of {1,0,0}, and
soJ; = {1, 2}. Equivalently, Iland J;can be obtained by canceling common terms from
(52), working top to bottom; an explicit algorithm for doing so is given in Table 2.
Continuing with Step B.2 for n = 1, we now find the unique permutation
wl1:{1,2,3} = {1,2,3}that is increasing on both I; = {1,2} and its complement
If = {3} and takes I;to the first R; = |I;| = 2 elements of {1,2,3}. In this particular
instance, I happens to be the identity permutation, and so I, =1I. Since J; =
{1,2} = I, we similarly have that 77, and II; are the identity permutation and matrix,
respectively.
For the remaining steps, it is useful to isolate the terms in (52) that correspond to I;and
Iy

B2= A= 0, Y2 = A2
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Br=A1=1 1= A1 = ; (53)
In particular, in Step B.3, we find the R; X 1 = 2 X 1 vector v;by computing quotients
of products of differences of the values in (53):

[ (1)]2 — B1yDB1-Y1) — (1‘2)(1‘%) — 4 (54)
V1 T Gih» a0 9
[ (2)]2 — B2-y1)(B2-y2) — (0_%)(0_%) =5 (55)
V1 - B2fD  (0-D 9
2 v5
yielding v; = [jg] . Similary, we compute w; [f] according to the formulas
2 3
2 _ (V1—ﬁ1)(y1_/g ) _ (5—1)(5—0) _5
[Wl(l)] - 1-v2) 2= 3(%_%3) s (56)
2 _ (Vz—ﬁﬂ(yz_/g ) _ (1—1)(1—0) 1
[W]_(Z)] - 2-v1) 2= 3(%_%3) s (57)
Next, in Step B.4, we form our second frame element f, = U1V117,T1 [%1]
1 0 olft o ojfr o of[3] [3
f2=010010010§=§
0 0 1llo 0 1llo 0 1l 0
As justified in the proof of Theorem(5.3.7), the resulting partial sequence of vectors
1 2
3
F=1fi 1=]0 g
0 O
has a frame operator F,F, whose spectrum is {1;.1,4;.5,453} = g% 0}. Moreover, a

corresponding orthonormal eigenbasis for F,F;is computed in Step B.5; here the first
step is to compute the R; X Ry = 2 X 2 matrix W; by computing a pointwise product
of a certain 2 x 2 matrix with the outer product of v;with wy:

= B o e (R R

_ |r1-p1 r2-h1 1 _ |z 2 3v6 3v6| _ |V6e 6
Wy = 1 i @ [ v, (2) [Wl(l) 41 (2)] - [g 3 ] @ 5 ﬁ - i E
Y1-p, Y2-B2 3v6  3v6 NG

Note that W;is a real orthogonal matrix whose diagonal and subdiagonal entries are
strictly positive and whose superdiagonal entries are strictly negative; one can easily
verify that every W, has this form. More significantly, the proof of Theorem(5.3.7)
guarantees that the columns of

U,
v5o_1 o
T w0 0 1 0Jf1 0 oJft 0 0]|s v °’[ft 0 o
o [ [ 15 L] =t o oflo 1 ofjo 1 of|lx v ,llo 10
i 71001001001[%6“)01
= 0 0 1
5 1
3
vava|
0 0 1
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form an orthonormal eigenbasis of F,F;. This completes the n = 1 iteration of Step B;
we now repeat this process for n = 2,3,4. Forn = 2, in Step B.1 we arbitrarily pick
some 3 x 3 diagonal unitary matrix //,. Note that if we wish our frame to be real, there
are only 2% = 8 such choices of V. For the sake of simplicity, we choose V, = I in this
example. Continuing, Step B.2 involves canceling the common terms in

n 1 2

An;3 q 2

/1”;2 3 3

An;l % %

Tofind I, = J, = (2) and so

0 1 0
[1,-1T,- ] o ¢
h T 0 0 1

In step B.3. we find that v, = w, = [1]. Step B.4 and B.5
Then give that F; = [f; f, f;] and U; are

LA

1 3 N NG NG 0

F3:O 55|, Us= 1 5 0
3 V6 V6 6

0 0 0 0 0 1

The columns of U; form an orthonormal eigenbasis fcs)r the partial frame operator F;F3
with corresponding eigenvalues {43.1, 3.5, A3.3} = {5,2,0}. For the n = 3 iteration,
we pick V; = 1 and cancel the common terms in

n 3 4
2

An;3 9} 3
Ani2 3 5
; S 3
Anit 3 5
3

To obtain I; = [2,3] and 75 = [1,3] implying

In step B.3, we then compute the R; x 1 =2 X 1 vectors vz and ws in a manner
analogous to
(54), (55),(56) and (57)

L V5
_|ve |3
vg—\/—, W3 = 2 |
V6 3

Note that in Step B.4, the role of permutation matrix H}; is that it maps the entries of v,
onto the I; indices, meaning that v,lies in the span of the corresponding eigenvectors
{u3;m}m613
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V5 1 . (1
T s NN 1 0 00 0o 1(|ve
A (R PN A (A N
& V6 V6 V6
o 0 1 N Lo |
V5 1 07 ~Z
—_ —_ 0 1
V6 6 —| |V5
- - 0 \/g 6
6 6 —| [V5
o o 1 Il N

In a similar fashion, the purpose of the permutation matrices in Step B.5 is to embed the
entries of the 2 x 2 matrix W5 into the I; = {2,3} rows and 73 = {1, 3} columns of a
3 X 3 matrix:

wa, 0
Us = UsVs TT, [0 (|1 75 =
\/g 10 |\/§ 10|
NG 1 0 o0 0 1|1l — % 1 0 0
1% et oofft 0 of1 0 0 1|=
NN o o 1llo 1 ollw 0 1 0
0 o0 1 0 0
oL
NG N
LB
6 V6
0 0
\/g 1 6 66
7 Y TA-l: L _¥
1 \/g 6 6 6
— — 1 5
V6 vel = 0 V5
V6 6

For the last iteration n = 4, we again choose V, = I in Step B.1. For Step B. 2, note
that since

n 4 5
2 5
An;3 3 §
An;Z % g
An;1 5 5
3 3

we have I, = {3} and 7, = {1}, implying
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0 0 1 1 0 0
M,=[t 0 of,Mzp=0 1 0
0 1 0 0 0 1

Working through Steps B. 3, B.4 and B.5 yields the UNTF:

1 2 L _1 1 15 5]
| 3 V6 6 6 } 6 3 V6
_ o N O N _|[_¥5 5 1
F—F5—|0 3 \/g 6 6|' U5— —? g ﬁ (58)
SR oo
Lo 0o o0 & & | 5w

We emphasize that the UNTF F given in (58) was based on the partic_:ular choice of
eigensteps given in (51), which arose by choosing (x,y) = (Oé) in (49). Choosing
other pairs (x,y) from the parameter set depicted in Figure 1(b) yields other UNTFs.
Indeed, since the eigensteps of a given F are equal to those of U F for any unitary
operator U, we have in fact that each distinct (x, y) yields a UNTF which is not unitarily
equivalent to any of the others. For example, by following the algorithm of
Theorem(5.3.7) and choosing U; = IandV, =1 in each iteration, we obtain the
following four additional UNTFs, each corresponding to a distinct corner point of the
parameter set:

1 § 0 =3 _él
F=|O g 0 g £|for(xy)—(§§)
[0 0111% _%J
13 5 735 =% |
B T
0o 0 2 2 o |
1 0 0 % —% }
F=]|0 1 % —§ %for(xy) ( )
° 01 glgl gjj
1 3 %35 "3 |
o 22T -0
o0 o L 2]

Notice that, of the four UNTFs above, the second and fourth are actually the same up to a
permutation of the frame elements. This is an artifact of our method of construction,
namely, that our choices for eigensteps, U;, and {V, }Z1determine the sequence of frame
elements. As such, we can recover all permutations of a given frame by modifying these
choices.

We emphasize that these four UNTFs along with that of (58) are but five examples from
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the continuum of all such frames. Indeed, keeping x and y as variables in (49) and
applying the algorithm of Theorem (5.3.7)—again choosing

0

JG)E+3-3)e-%-%  [Goama=moame =D
fy = Vi-y Vi-y
JyBy—DQ2+3x-3y)2-x—y) . VG =3y)(4—3x - 3y)(y —x)
. Ja-»2-» Yy@ -y
4
[ _JG-39By-DE-3x-3y) JE-30G-3) -0 +3x—3y)
12JC =390 —y) 12JC =390 —y)
Gy -DE -G -DC+3x-3y)  JxE-3)Q2-x-y)(4—3x-3y)
432 -3x)(1—-y) 432 -3x)(1-y)
_| /@ -30yGx —30@#-3x—3y) V¢ -302-yGE -3 -0 +3x-3y)
12,/2 =301 -»2-y) 12,/2 =301 -2 -y)
_JoyGy-DH-02+3x-3y) Jx2-»NG-3y)2-x—y)
4/32-300-y)2-) 432 -3001 -
\/Sx(z +3x —3y)(4 + 3x — 3y) N \/5(4 -3x)(y—x)2—-x—-y)
6J/(2—30y(2—y) 232 =-30)y(2-y)
fs
[ J@-39By-DR-x-y)@-3x-3y) J(@4-30)GE-3))@-x2+3x-3y)
12,/ (2 -3x)(1 —y) 12,/ (2 -3x)(1 —y)
_VABy-DO-0@+3x-3y) VxE-3)2-x—y)(4~3x—3y)
432 -3x)(1—y) 4,/32-3x)(1—y)
_| Y@ -30yBy - D@2 —x—y)(4—3x—3y) N V@& =32 -G -3y)(y —x)(2 + 3x — 3y)
12,/2 =301 -y -y) 12,/ -3x)(1 - y)
_VyBy DO -0C+3x-3y) Vx2-y)E-3y)2 —x —y)(4—3x —3y)
4/32 =301 -2 -y) 4,/32 =3x)(1 - )
\/Sx(Z +3x —3y)(4—3x — 3y) N \/5(4 -3y -x)2—-x—-y)
6y/(2 = 3x)y(2—y) 2\/3(2-30)y(2~y)

Table 1: A continuum of UNTFs. To be precise, for each choice of (x,y) that lies in the
interior of the parameter set depicted in Figure 1(b), these five elements form a UNTF for
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R3, meaning that its 3 x 5 syntgesis matrix F has both unit norm columns and orthogonal
rows of constant squared norm 7 . These frames were produced by applying the algorithm

of Theorem 7 to the sequence of eigensteps given in (49), choosing U; = 1 and I, =1
for all n. These formulas give an explicit parametrization for a 2-dimensional manifold
that lies within the set of all 3 X 5 UNTFs. By Theorem(5.3.7), every such UNTF arises
in this manner, with the understanding that (x,y) may indeed be chosen from the
boundary of the parameter set and that the initial eigenbasis U; and the block-diagonal
unitary matrices V, are not necessarily the identity.

Uy =1 and V, =1 in each iteration for the sake of simplicity—yields the frame
elements given in Table 1. Here, we restrict (x, y) so as to not lie on the boundary of the
parameter set of Figure 1(b). This restriction simplifies the analysis, as it prevents all
unnecessary repetitions of values in neighboring columns in (49). Table 1 gives an
explicit parametrization for a two-dimensional manifold that lies within the set of all
UNTFs consisting of five elements in three-dimensional space. By Theorem(5.3.7), this
can be generalized so as to yield all such frames, provided we both (i) further consider (X,
y) that lie on each of the five line segments that constitute the boundary of the parameter
set and (ii) throughout generalize V,, to an arbitrary block-diagonal unitary matrix, where
the sizes of the blocks are chosen in accordance with Step B.1.

Having discussed the utility of Theorem(5.3.7), we turn to its proof.

Proof of Theorem(5.3.7).

(&) Let {1, }2_,  and {p,}Y_,-1 be arbitrary nonnegative nonincreasing sequences
and take an arbitrary sequence of eigensteps {{An;m}ﬁzl}ﬁzo in accordance with
Definition(5.3.1). Note here we do not assume that such a sequence of eigensteps actually
exists for this particular choice of {1,,}¥_, and {u,}"_, if one does not, then this
direction of the result is vacuously true.
We claim that any F = {f, }'_, constructed according to Step B has the property that for
alln = 1,...,N, the spectrum of the frame operator E,E;of E, = {f,,}Y_, is {An;m}ﬁzl 1,
and that the columns of U,form an orthonormal eigenbasis for F,E,. Note that by
Lemma(5. 3.3), proving this claim will yield our stated result that the spectrum of FF* is
{4, M_, and that ||f,lI* = u, for all n=1,...,N. Since Step B is an iterative
algorithm, we prove this claim by induction on n. To be precise, Step B begins by letting

U, = {ulim}rMn=1 and f; = v/ii;uy,1. The columns of U;form an

01 I :={1,.., M}
02 7M.={1,.., M}
03 Form=M,..,1

N | {ﬂn+1;m}me%(1w)

05 M7V = 1M"\{m}

06 7 M=D .= 7\ (1} Where m’ = max {m" es™ =2 = ﬂn;m}
07 else

08 LMY=
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09 FMV =g

10 endlf

11 end for

12 I, =1V

13 7, =1

Table 2: An explicit algorithm for computing the index sets I,and T, in Step B.2 of
Theorem(5.3.7) orthonormal eigenbasis for F; F; since Uy is unitary by assumptlon and

N Uy. m=1
FiFiuy,, = (u1;m,f1)f1 = (ul;m'\/ H1u1,-1)\/ HilUq;1 = <H1u1;m;u1;1){gl ul m =1

forallm =1,..., M. As such, the spectrum of F, F;consists of p; and M — 1 repetitions
of 0. To see that this spectrum matches the values of {1;.,,}n_,, note that by
Definition(5.3.1), we know {1;,,, }%_; {interlaces on the trivial sequence

{om¥_y = {0} _; In the sense of (3) implying A;,,, = 0 for all m > 2; this in hand,
note this definition further gives that ;.1 = XM _; A1, = ;. Thus, our claim indeed
holds for n = 1.

We now proceed by induction, assuming that for any given n = 1,..., N — 1 the process
of Step B has produced E, = {f,;}Y_; such that the spectrum of F,E; is {A,.,,}_,and
that the columns of U,, form an orthonormal eigenbasis for E, E,. In particular, we have
F,E;U, = U,D,where D, ,is the diagonal matrix whose diagonal entries are {4,,.,, }41_;.
Defining D,,,;analogously from {An+1;m},’”n=1, we show that constructing f,,,1 and U,, ;4
according to Step B implies F, .1 F, 11U, 41 = U, 41D, 1Where U, ,4is unitary; doing such
proves our claim.

To do so, pick any unitary matrix ¥, according to Step B.1. To be precise, let Kn denote
the number of distinct values in {1,,.,,}%_,,and forany k = 1,...,K,, let L, ;. denote
the multiplicity of the kth value. We write the index m as an increasing function of k and
|, that is, we write {A,.n Y1 8 Apm, l)}k 1k kwhere m(k, D) < m(k, 1) if k <k or
ifk=kandl <l WeletV,bean M x M block -diagonal unitary matrix consisting of K
diagonal blocks, where for any k =1,...,K, the kth block is an L, X L, ,unitary
matrix. In the extreme case where all the values of {4,.,,}¥_,are distinct, we have that
I7,is a diagonal unitary matrix, meaning it is a diagonal matrix whose diagonal entries are
unimodular. Even in this case, there is some freedom in how to choose V,; this is the only
freedom that the Step B process provides when determining f,, 4. In any case, the crucial
fact about V,is that its blocks match those corresponding to distinct multiples of the
identity that appear along the diagonal of D,,, implying DV, =V, D,,.

Having chosen V,, we proceed to Step B.2. Here,we produce subsets I,and 7, of
{1,..., M}that are the remnants of the indices of {4,,.,,, M _,and {Ans1m }%zl, respectively,
obtained by canceling the values that are common to both sequences, working backwards
from index M to index 1. An explicit algorithm for doing so is given in Table 2. Note that

for eachm = M,..., 1 (Line 03), we either remove a single element from both I and
:I;L(m) (Lines 04—06) or remove nothing from both (Lines 07-09), meaning that I,,: = I,Sl)
and 7;,: = 7;(1) have the same cardinality, which we denote R,. Moreover, since
{}L,Hl;m},Mn=1 interlaces on {An;m}ﬂzl, then for any real scalar A whose multiplicity as a
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value of {An;m},anl is L, we have that its multiplicity as a value of {Anﬂ;m}%:l is either
L—,Lor L+ 1. When these two multiplicities are equal, this algorithm completely
removes the corresponding indices from both I,,and J,,. On the other hand, if the new
multiplicity is L —1 or L+ 1, then the least such index in I,or 7,is left behind,
respectively, leading to the definitions of I,0r 7, given in Step B.2. Having these sets, it
is trivial to find the corresponding permutations ml, and w7, on {1,...,M}and to
construct the associated projection matrices [[; and ]y, .

We now proceed to Step B.3. For the sake of notational simplicity, let {ﬁr} *, and
{y, ) denote the values of {A,.}mer, » @nd {Any1,mImer, respectively. That is, let
Brlnmy = Anim forallm € L,and v (m) = Ant1;m forallm € 7.

Note that due to the way in which I,and J,and 7, were defined, we have that the values of
{Brjnm) = Aum  and {y, fgl are all distinct, both within each sequence and across the
two sequences. Moreover, since{d, .} _ , and {An+1.m Imez, are nonincreasing while

nl, and wd,nare increasing on I, and 7, respectively, then the values {,Br}r 1 and

{yr} ", are strictly decreasing. We further claim that {yr} ", interlaces on {ﬁr . To
see this, consider the four polynomials:
M

M
Pn (X) = H(x - An;m)» pn+1(x) = n(x - An+1;m) ,b(X) =
m=1 m=1

R, Ry
ﬂ(x -8 b= ﬂ(x -%). (59)

Since {ﬁr}r 1and{yr}r"1 were obtalned by canceling the common terms from

{ﬂnm}m 1and{Ay 1 1;m¥m=1, We have that p,y;(x)/pn(x) = c(x)/b(x) for all x ¢

{lnm}m 1- ertlng any r=1,...,R, as r = wl,(m) for some m € I,;, we have that

smce {Anm}m 1 E {An+1m}m 1 applylng the “only if” direction of Lemma(5.3.5) with
“p(x)” and “q(x)” being p, (x) and p,+1 (x) gives

| ) e
Jim (x = Br b()_xl‘fﬁm(" Pum) S Gy

Since (60) holds for all r =1,...,R,, applying “if” direction of Lemma(5.3. 5) with
“p(x)” and “q(x)” being b(x) and c(x) gives that {yr} " indeed interlaces on {ﬁr}r 1"
Taken together, the facts that {f, ”1and{yr rnl are distinct,strictly decreasing and

interlacing sequences implies that the R, X 1 vectors v,and w,are well-defined. To be

precise, Step B.3 may be rewritten as finding v,(r),w,(#*) =0 for all r,7 =
1...,R, such that

< 0,(60)

M, B, —v:) . vy — Be)
2 _1r=1 312 — r=1
s TP 7y KSR A K

Note the fact that the S,’s and y,’s are distinct implies that the denominators in (61) are
nonzero, and moreover that the quotients themselves are nonzero. In fact, since {ﬁr} n,is
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strictly decreasing, then for any fixed r, the values {£, — B} # r can be decomposed
into r — 1 negative values {5, — 5;}+=1 and R,, — r positive values {8, — f5; ,‘ oy
Moreover, since {ﬂr}fgl = {yr}fgl, then for any such r, the values {8, — y« r'=1 can be
broken into r negative values{f, — yf}fgl and R, = rin (39) isindeed positive values
{B— v,00’R,00"=r+1. With the inclusion of an additional negative sign, we see that the
quantity defining[v, (r)]*> in (61) is indeed positive. Meanwhile, the quantity defining
[w, (¥)]? has exactly + —1 , negative values in both the numerator and denominator,
namely {y; — B: ; 1 and {y; —v#}i_ 1respectlvely

Having shown that the v,and w, of Step B.3 are well-defined, we now take f,,,; and
U, +18s defined in Steps B.4 and B.5. Recall that what remains to be shown in this
direction of the proof is that U, is a unitary matrix and that F,,, = f;}?21 satisfies
F,1F+1U, 41 = U, 11D, 1. To do so, consider the definition of U, ,,and recall that U, is
unitary by the inductive hypothesis, 1,, is unitary by construction, and that the
permutation matrices [[; and [[; are orthogonal, that is, unitary and real. As such, to
show that U, ;4 IS unitary, it suffices to show that the R, X R,, real matrix W, is
orthogonal. To do this, recall that eigenvectors corresponding to distinct eigenvalues of
selfadjoint operators are necessarily orthogonal. As such, to show that I, is orthogonal,
it suffices to show that the columns of W, are eigenvectors of a real symmetric operator.
To this end, we claim

(Dnst,, + vnv )Wy = WoDp gy Wi Wy (r,r) = LVr = 1,..,Ry,  (62)

where D,,, and D,,,, are the R, X R, diagonal matrices whose rth diagonal entries
are given by g, = An;nl-nl ) andy, = 4, izl respectively. To prove (62), note that for
any,r=1,...,R, ,

(Dt + a0 )W |, ) = (Do, Wo ) (r, ) + (0o vg W) (r, ) B, Wy, (7)) +

R, 7 7
v, (1) Zr; v, (T‘)VVn (r, r) (63)
Rewriting the definition of W, from Step B.5 in terms of {,Br} L and {y, }r 1 gives
(NWa ()
/4 =Dl 64
(r,F) = 2 (64)

Substituting (64) into (63) glves

[(Dn, + v W] = B, 22220 4y () B0, (7) L0

Ry ()]’
= 0w ) (5 + 272, 2. ©)
Simplifying (65) requires a polynomial identity. Note that the difference Hf (7
- HR” (x — Bz) of two monic polynomials is itself a polynomial of degree at most
R, — 1, and as such it can be written as the Lagrange interpolating polynomial
determined by the R, distinct points {ﬁr}r n
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Rn

Ry
[ﬁww%Lk~M—2]Imw% (mg;

=1
rir

ZHr 1([3 Vr)l—[( x—B), (66)

Recalling the expressmn for £v (r)]*given |n (61) (66) can be rewritten as

[]w—ﬁ»—[]@—no—[]h(ﬂ][]@—mo (67)

r=1 =1

T?&T

Dividing both sides of (67) byH ", (x — B;) gives

=) e )] .
" L IG=-8)~ ;m'vﬂf{ﬁr}r:l(%)

r#F
For any 7 = 1,...,R,, letting x =y, in (68) makes the left-hand product vanish,
yielding the identity:
_yhe [
1=3", (V;—ﬁ;)’vr =1,..,R, (69)
Substituting (69) into (65) and then recalling (64) gives

[(D,, + v, v )W, |(F,7) = v, (r)wn(r)( - +1) y, 2O @ oy (r,F) =

Y#—Br
(W Dryr,, ) (1) (70)
As (70) holds for all r,7 = 1,..., R,we have the first half of our claim (62). In particular,
we know that the columns of W, are eigenvectors of the real symmetric operator D,,;; +

Ry
v, v which correspond to the distinct eigenvalues {y, },_;
As such, the columns of W, are orthogonal. To show that W, is an orthogonal matrix, we
must further show that the column}s? of W, have unit norm, namely the second half of
(62). To prove this, at any x & {Br}ri1 we differentiate both sides of (68) with respect to
x to obtain
R, Ry G—vi)|(vi=B;) <Ry [va (r’)]2 Ry,
2l [H:z; =Br)| (x—=Bz) — Zr’=1(x_—m vx & {B: 12y (71)
Forany # = 1,...,R,, letting x = y; in (71) makes the left-hand summands where 7 # 7
vanish; by (71), the remaining summand where 7 # #can be written as:

2 (i =vy) \a2
— r#t — [HRn (yf_yr)] (yf_ﬁr) — }’en [‘Un (T‘)] (72)
Wiy S Gi—Br) :zi (i#=Br)” (vi=Br) r=1 (Vr'—ﬁ;)ZI

r#f

We now use this identity to show that the columns of w,have unit norm; for any + =
1,...,R,, (64) and (72) give
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R, Ry .
;N 2: 7 \12 _ E vn(f)wn(f) _ . 1 —
(WnTVI/n)(r,r) = 2 1[%(7’,7’)] = L <—Vr — 5, > = [Wn(r)]2 NI =1.

Having shown that w,, is orthogonal, we have that U, ., is unitary.

For this direction of the proof, all that remains to be shown is that F, ., + Fy+1U, 41 =
U,+1D,41. To do this, we write

Fop1 + Fov1 = E, + E' + f,11fn+1 and recall the definition of U, ,4:

* * * r Wn 0
Fop1 + FoeiUnir = (B, + B+ friafs)Un 1_[1 [0 1] 1_[ B

Fo+ BT T =+ fen G T [ 3L 073)

To simplify the first term in (73), recall that the inductive hypothesis gives E, + U, =
U,D, and thatV, Was constructed to satisfy D,,V,, =V, D,,, implying

B+ B U IT [0 8] 05, = UV D, TG [ 3T, = Ua¥s TTE T, D, TTE)

v ] HT,, (74)
To continue simplifying (74), note that [17, Dy [17, is itself a diagonal matrix: for any
mMMm=1,...,M, the definition of the permutation matriXH1 given in Step B.2 gives

1_[ 1_[ (m,Mm) = (D, 1_[ 1_[ Om) =D,5_- :{ }k“*'“l_f(m) m=ri
we L0 .

That is, HInD H1n is the diagonal matrix whose first R, diagonal entries {8,}.", =
{A,. il )(r)}r .match those of the aforementioned R, x R,diagonal matrix [17, ,and

whose remaining M — R,, diagonal entries {xnml_l( )}manH the diagonal of an (M —
R,) x (M — R,) diagonal matrix [17 .

L, D, I1i, = [0 Dn " (75)
Substituting(75)into(74)
E, + E UV, TTF [ ]HT v, I1 [0 B “\(/)Vn (1)] M, =
Dn Wy 0
vt o™ by, | T (76)

Meanwhile, to S|mpI|fy the second term in (73), we recall the definition of f, . ;from Step
B.4:

Dnin
O L TR A 3 A L IR A b 9 IO

Substituting (76) and (77) into (73), simplifying the result, and recalling (62) gives

. nln [W O
For1 + FariUnia | 1_[ [0 ”_[

By introducing an extra permutation matrix and its inverse and recalhng the definition of
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U, 41, this simplifies to
. T w, 0 T Dn;In 0
Fus + Eialpald 010" T =00 T [o ™, [T | ®)

We now partition the {/1n+1;m},Mn=1 of D, into 7,and 7, and mimic the derivation
(75), writing D, ,qin terms of D, q;7,and D, q;7;°. Note here that by the manner in
which I, and J;were constructed, the values of {4, }¢;c are equal to those of
{An+1;m }7e, as the two sets represent exactly those values which are common to both
P 1 _aand{A, 1. ¥ 1. As these two sequences are also both in nonincreasing
order, we have D,,,;c = D, 4,7, and so

s Do T, = o e = [0 b rt] 79)
Substituting (79) into (78) vyields F,.; + Fy+1U,41 = U,41D,,, completing this
direction of the proof.
(=) Let {Am},anland{un},’lee any nonnegative nonincreasing sequences, and let
F = { £,}Y_, be any sequence of vectors whose frame operator FF*has {1,,}¥_, as its
spectrum and has IIntIZ = for all n=1,...,N. We will show that this F can be
constructed by following Step A and Step B of this result. To see this, for any n =
1,...,N, let F, = { fz}3_, and let {A,.,,} _, be the spectrum of the corresponding frame
operator F, F,. Letting A,.,,: = 0 for all m, the proof of Theorem(5.3.2) demonstrated that
the sequence of spectra {{A,..,,}m_; N_o necessarily forms a sequence of eigensteps as
specified by Definition (5.3.1). This particular set of eigensteps is the one we choose in
Step A.
To be precise, let U;be any one of the infinite number of unitary matrices whose first
column uy.qsatisfies f; = Vujuq.q
We now proceed by induction, assuming that for any given n = 1,...,N — 1, we have
followed. Step B and have made appropriate choices for {V;}?_] so as to correctly
produce F, = { f;}5_,; we show how the appropriate choice of V, will correctly produce
fns+1. TO do so, we again write the nth spectrum {A,,.,,}_; in terms of its multiplicities

kn .
as {Aumaie) ey Ll’;’; "Forany k =1,...,K,, Step B of Theorem (5.3.2) gives that the
norm of the projection of f,,,; onto the kth eigenspace of F, F," is necessarily given by

2
Pn;ln;m (k,1)fn+1 || = - limx—%n;m (k1) (x - An;m (k,l)) P:;:—EJEJ)C)' (80)

where B, (x)and P, (x)are defined by(69).Note that by picking [ =
1, Ap;m (k,1yrepresents the first appearance of that particular value in {{4,,, W _, . Assuch,
these indices are the only ones that are eligible to be members of the set I,,found in Step
B.2. Thatis, I, € {m(k,1): k = 1,...,K,}. However, these two sets of indices are not
necessarily equal, since I,, only contains m’s of the form m(k,1) that satisfy the
additional property that the multiplicity of A, as a value in {4,.,}4_, exceeds its
multiplicity as a value in {d,;1.m}m=1.TO be precise, for any given
k=1,....K,,if m(k,1) €l; then A, ) appears as a root of p, ,;(x) at least as
many times as it appears as a root of p,, (x), meaning in this case that the limit in (80) is
necessarily zero. If, on the other hand, m(k, 1) € I, then writing ; (m(k,1)) as some
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r € {1,..., R, } and recalling the definitions of b(x) and c(x) in (69) and v(r) in (71), we
can rewrite (80) as

R
2 . Ppi1(x) . c(x) H;Z ([)’r—y;)
1Pusg, froa | = tima, G = B) 5057 = =N, = ) 505 = — 1= =
" F=1\PT 7P

Fe#r
[v, ()] (81)
As such, we can write f,, . where each

K R R 1
fn+1 = Zkil Pn;/ln;m(k_l) fn+1 = Zril Pn;ﬁr fn+1 = Zrzl Un (T) %Pniﬁr fn+1 =

1
ZmEIn Uy (T[In (m))mpn:ﬁn1n(m)fn+1 (82)
1
W P”iﬁnln (m)fn+

eigenbasis Un: = {{i,,,, Ym=1 for E,E; that has the property that for any k = 1,..., K,

both {un;m(k,l)}fzfand{ﬁn;m(k,l)}fzf span the same eigenspace and, for every m(k,1) €
1

1has unit norm by (81). We now pick a new orthonormal

L, has the additional property that i, ., 1) = mm;ﬁmn (D) fn+1-AS such
becomes

fn+1 Zmeln Un (T[In (m))an;m = ﬁn Zmeln Un (T[In (m))6m = ﬁn Zmeln Un (r)67-[1‘n1(r) =
Uninlr=1Rnvnrdr=Un/n7vno. (83)

Letting Vnbe the unitary matrix V, = U;;U,, the eigenspace spanning condition gives that
V, is block-diagonal whose kth diagonal block is of size L, X L, ;. Moreover, with this
choice of V,,,(61) becomes

*7T vn le
forr = UaUr O, T [ = U T, [ ]
meaning that f,,; can indeed be constructed by following Step B.
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Chapter 6
Shift-Type and Quasianalytic with Compression of Contractions

The norm estimates in the Factorization Theorem of this paper are sharpened to
their best possible form by essential improvements in the proof. As a consequence we
obtain that if the residual set of a contraction covers the whole unit circle then those
invariant subspaces, where the restriction is similar to the unilateral shift with a similarity
constant arbitrarily close to 1, span the whole space. Furthermore, the hyperinvariant
subspace problem for asymptotically non-vanishing contractions is reduced to these
special circumstances.

In this setting the commutant {T}" of T is identified with a quasianalytic
subalgebra F(T) of L ( T) containing H*. Conditions are given for the cases when F(T)
is a Douglas algebra, a pre-Douglas algebra, or a generalized Douglas algebra.

In this chapter it is shown that for every operator T € L,(H) there exists an operator T;
€ Li(H) commuting with T . Thus, the hyperinvariant subspace problems for the two
classes are equivalent. The operator T, is found as an H*. Function of T .The existence
of an appropriate function, compressing n(T ) to the whole circle, is proved using
potential theoretic tools by constructing a suitable regular compact set on T with
absolutely continuous equilibrium measure.

Section(6.1): Invariant Subspaces of Contractions

One of the greatest achievements of the Sz.-Nagy-Foias theory of Hilbert space
contractions is the functional model constructed in the completely non-unitary case. We
use this model operator to prove a factorization theorem for asymptotically non-
vanishing, absolutely continuous contractions. Namely, it is shown that if the spectral-
multiplicity function of the unitary asymptote of the contraction T is at least n(€ N U
{X0}) on the Borel set y c T, then the natural embedding: ] f - x, f of the Hardy space
H?(®, )over the n-dimensional Hilbert space &, into the function space Xy L2(®,) can
be factored into the product ] = ZY, where Y intertwines the unilateral shift S, on
H?(®,) with T, and Z intertwines T with the unitary operator M,,, y of multiplication by
the independent variable ony, L*(®,). Furthermore, the norms of the linear
transformations Y and Z can be arbitrarily close to 1. This statement is sharpening of the
main result in [14], where the norm conditions on Y and Z were weaker. This sharpening
requires essential improvements in the proof given in [14].

In this Section we give a brief summary of the unitary asymptotes of contractions, with
their representation in the functional model. The Factorization Theorem is formulated in
this Section. The first step in its proof is the construction of a vector-sequence in the
space K of the minimal unitary dilation, which is pointwise orthonormal, and which is
transformed by a canonical intertwinerto a sequence which is also pointwise orthonormal.
This is carried out in this Section relying on the connection of the defect fields. The
results of Section make possible to approximate the previous vectors in Kby vectors in
the space &, of the minimal isometric dilation. The proof of the Factorization Theorem is
completed in this Section .

It turns out in the Section that the ranges of the possible intertwiners Y span the whole
space & of the contraction T . In the particular case n = X0 even the ranges of two
intertwiners Y and Y span §. As a consequence we obtain that if the unitary asymptote of
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T is of infinite spectralmultiplicity on the whole circle T, then we can find two invariant
subspaces of T which span the whole space $ ,and where the restrictions of T are similar
to the infinite-dimensional unilateral shift; furthermore, the similarity constants can be
chosen arbitrarily close to 1. Thus in this case we have a lot of information on the
structure of , in particular, T has plenty of invariant subspaces. It can be surprising that
the hyperinvariant subspace problem for asymptotically non-vanishing contractions can
be reduced to this particular situation, as shown in this Section .
The Banach space of the bounded linear transformations from the Hilbert space 2 to the
Hilbert space B will be denoted byL(2, B). The C*-algebra of bounded linear operators
acting on 2 is denoted by L(2) = L(2, A).
Let T be a contraction acting on the Hilbert space $ (thatis T € £($ ) and ||T|| < 1). For
every x € &, the decreasing sequence {T"x}, is convergent. Hence, by the polar identity
the sequence {(T"x, T"y)}, is also convergent (x,y € $ ). The functional wr (x,y) :=
lim, (T"x, T"y) is linear in x, conjugate linear in y, and bounded by 1. Thus, there exists
a unique operator At on $ such that Ay x,y = wq (x,y) holds for all x,y € $ . Since
wr (x,x)=> 0(x€e9 ), it follows that 0 < Ap < I . Furthermore, the relation
wr (Tx, Ty) = wr(x,y) yields T*Ar T = Ar , whence ||A1T/2 Tx| = ||A1T/2x||(x €EH)
1 1
follows. Introducing the transformation Xf:$ — &f:= (AL 9 )",x » Alx, we
obtain that there exists a unique isometry Vyon the space &1 such that X{ T = V; X{. The
isometry V; is called the isometric asymptote of the contraction T . It is clear that the
canonical intertwining transformation X{ has dense range. Let Wy denote the minimal
unitary extension of Vyacting on the Hilbert space K1 , determined uniquely up to
isomorphism (see [19]). The operator Wy is the unitary asymptote of the contraction
The transformation X; : § - K;,x+~ X{x intertwines T with Wy : X T = Wy X; .
Furthermore,

2
IXrhll? = [1X#hi[2 = JAY*h[|” = (Arh, h) = lim||T"h||?

is true, for every h € $ . Thus, the nullspace kerX; coincides with the set of vectors
whose orbits converge to zero under the action of T . The contraction T is called
asymptotically non-vanishing if ker X; = & .

The pair (X, Wr ) has an important universal property. For an operator A acting on a
space 2 and an operator B acting on a space 3B, the intertwining set 7' (A, B) consists of
the (bounded linear) transformations Y : 2 — B satisfying the equation YA = BY. The
commutant of A is defined by {A} := T(A,A). Now, it is true that for any unitary
operator G acting on a Hilbert space ®, and for any transformation Y € 7(T, G), there
exists a unique transformation Z € 7(W;,G) such that Y = ZX; . Furthermore, the
commutants and spectra of T and Wi are closely related. For these properties and their
extension to larger classes of operators we refer to [13] and [15]. (See also [1] for the
study of isometric asymptotes, called isometric extensions there.

The unitary asymptote of the contraction T can be identified with the *-residual part of its
minimal unitary dilation U acting on the Hilbert space K. We recall from [19] that the
subspace £ = ((U — T )$) is wandering, and the orthogonal sum M(8) :=®j__., UL
is reducing for U. The *-residual part R, T is the restriction of U to its reducing subspace
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R.T:= KO M(L). Let us consider the transformation X;: $ — R, T,h~— Ph,
where P, denotes the orthogonal projection in & onto the subspace K,7 . Since R;Xp =
X; T and X;h = lim, ||T"h||(h € $) hold by [19], it can be easily verified that the pair
(X1 ,R,7) is equivalent to (X;,W;), that is there exists a unitary transformation
Z € T (Wy,R,p)suchthat X; = ZX;.

The unitary asymptote has a particularly useful representation in the Sz. —Nagy-Foias
functional model of completely non-unitary (c.n.u.) contractions. We recall the
construction of the model operator given in [19]. Let €, €, be (separable) Hilbert spaces,
and let {€, €,,0(A4)} be a purely contractive analytic function defined on the open unit
disc D. It is known that the radial limit®({) = lim,_;_y, ©(r{) exists in the strong
operator topology for almost every ¢ on the unit circle T. Hence @ can be considered also
as a measurable function defined almost everywhere on T, and taking values in L(€, €,).
We can extend O to the whole circle T defining its value by 0 on the exceptional set of
measure zero.The defect operator functions associated with @ are defined b

1
AQ):=1-0(()0()*and 4,(¢):=(1-0()O()* ({ € T).
Let us consider the spaces L?(€), L2(€,) of vector-valued functions, defined with respect
to the normalized Lebesgue measure m on T, and the Hardy subspaces H?(€), H?(G,).
Setting
R:=L*(C,) @ AL*(€))~ K, =H*(C.) D (AL*(€))~
G = {0u @ Au:u € L>(€)} 6, = {0u ® Au:u € H*(€)}
the model space $ = $ (0) isgivenby $ := K, © G, . Let U*
denote the operator of multiplication by ¢ on L?(€,) @ L?(€). The subspaces &, ® are
reducing for U, while &, ®, are invariant for U*.
The model operator T = S(0) is defined by T := P, U.|$, where P, denotes the
orthogonal projection onto $ in &, U, := U*|K, is the minimal isometric dilation of T,
while U: = U*|K, is the minimal unitary dilation of T .
Let us consider the restriction R, of U* to the reducing subspace K, :=
(4,1%(€,))and the transformation X, € ©(T , X, ) defined by
Xr(u®v):= —4u+0vudveESP).
Since multiplication by the unitary operator-valued function
—4.(¢) 0(9)
FO=log) a@)cLE®O  (eD
transfers the subspace &, into .7, we obtain that the pair (X, R; ) is equivalent to the
pair (X7 ,R.T), and so to the pair (X7, Wy ). (See [12] ) The great advantage of this
representation of the unitary asymptote lies in the fact that the intertwining mapping Xy is
multiplication by an operator-valued function.
Let T be an absolutely continuous (a.c.) contraction on the Hilbert space $, that is we
assume that the (spectral measure of the) unitary component of T is a.c. with respect to
the normalized Lebesgue measure m on the unit circle T. The minimal unitary dilation U
of T is a.c. by [19]. It follows that the *-residual part R, is also a.c., and then so is the
unitary asymptote W, of T . The a.c. unitary operator W; on the (separable) Hilbert space
K7 is uniquely determined—up to unitary equivalence—by its spectral-multiplicity
function (see [4]), which we will call the asymptotic spectral-multiplicity function of the
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contraction T , and denote by uy . We recall that u; is a measurable function defined on
the unit circle T, and taking values in the set N U {0, R,} of countable cardinals. It is
determined by the decreasing sequence of Borel sets:
pT, :={¢ € T:ur ({) =n}(neNU{RD.
The set pr := pr is the support of the spectral measure of Wy and is called the residual
set of the a.c. contraction T . For its role in the study of T we refer to [17].
The Factorization Theorem establishes intertwining relations between the contraction
T and unilateral shifts, exploiting the fine structure of W; encoded in the spectral-
multiplicity function ur .
For any cardinal number 1 <n <X, ,let ®, be a fixed Hilbert space of dimension n.
Let us consider the Hilbert space L?(®,,) of vector-valued functions. The o-algebra of
Borel subsets of T will be denoted by By. For any a € By, M, , is the multiplication by
x(Q) = ¢on the space L?(6,, a) := x,L*(6,). Clearly, M, , is an a.c. unitary operator
with spectral multiplicity function ny,. (Here and in the sequel y, stands for the
characteristic function of the set w.
It is known that the Hardy space H?(®,,) of analytic vector-valued functions, defined on
D, can be identified with the subspace L% (®,) of L?(®,), consisting of the functions
with zero Fourier coefficients of negative indices (see [19, Section V.1]). Let S, be the
multiplication by x(¢) = { on H%(®,); S, is clearly a unilateral shift of multiplicity
n.For any a € By, let us consider the natural embedding
Joo t HA(6,) = L2(6,,a), [ v x.f, of H*(6,) into L*(6,,a). If m(a) = 0 then
[*(®,,a) and J, , reduce to zero. If m(a) > 0 then J, , is one-to-one, ||/, || = 1, and
JnaSn = My, o, o - (See [9]. For the sake of brevity, we introduce the notation
MT,n = Mn,pT,n and]T,n = ]n,pT,n (1 =n < NO)
in connection with the a.c. contraction T . The Factorization Theorem states that Jr,can
be factored into the product of two mappings intertwining S, and M;, with , with a
control on the norms of the intertwiners.
The core of the proof of the Factorization Theorem (Theorem(6.1. 1)) is its verification in
the functional model. So let us give a purely contractive analytic function {C, €,, (1)},
and let us consider the model operator T = S(0) € L($ = $(O)) constructed at the end
of this Section .
Since Wy is unitarily equivalent to R, , we obtain that the asymptotic spectral-
multiplicity function
ur of T coincides with the function rank 4,({ ) (¢ € T). Thus
{pT,n ={{ € T:rank A,({) = n}
holds forevery 1 <n <X,
First we want to show that there exists a sequence {u; @ v, }o<i<,In the dilation space K,
which is pointwise orthonormal on the set pr,and whose transformed sequence
{(—Au; + OV, }g<i<p in R.r is also pointwise orthonormal on prn- In order to do so we
have to make a closer look at the defect functions.
We recall from [19] that the defect operator D, of a contractive transformation A €
L(®,,) is the positive contraction defined by D, := (I — A*A)/? € L(®). The
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closure of its range is the defect space D, of A. Let Dy- and Dy« be the analogous
objects connected with the adjoint A. It is easy to check that A*D,- = D,A".

For any { € T, let A(¢) and D({) be the defect operator and the defect space of 0({),
respectively. Let 4,(¢) and D,(¢) stand for the analogous objects connected with the
adjoint transformation ©({)*. All these operator fields and subspace fields are
measurable; see [14]. Notice that the direct integrals

ffa(ib*(()) @ D) dm({) and f:B D.(¢)dm({) can be viewed as subspaces in the
space & of the minimal unitary dilation U, and in R, , respectively.
The following statement is an improvement of [14]. (Its version formulated in the more
general setting considered in [14] can be proved in a similar way. We note that only the
pointwise orthogonality of the system {k;}; below was shown in [14].)
Proposition(6.1.1)[12]: For every cardinal number 1 < n < X, , there exist sequences
{u; }o<i<n and {v; }p< <, Of measurable vector fields in
[eeprn D.(0) and] ;e r D(S), respectively, such that
1) {w Q) D vi(Q)}o<icn forms an orthonormal system in D,({) @ D({) for every
{ € pT,n’ and
(i)  {ki(:=—-4.Duw; () + O0()v;(D}o<i<n 1S also an orthonormal system in
D.({)forevery ¢ € pr,, .
Proof. Let F:T — L(C, @ €) be the unitary operator-valued, measurable function
introduced in Section 2. The equation @({)*A,({) = A({)O()* vyields F({)D.({) c
D.(0) @ D) (¢ €T). Let us consider the isometry-valued, measurable transformation
field F,($): D.(¢) = D.(¢) @ D(¢) defined by Fy()w: = F(w = =4.(Hw D 6(0)
w( €eT,w € D,(()). It is easy to see that the adjoint transformation field F,({)" :
D.(¢) D) - D.() is defined by Fy($) (u @ v) = —A.( )u + O()v.
Since dim®.({) = n holds for every { € pr, , we can give measurable vector fields
{ki}ozi<nin Tleepr D(§) so that {k;({)}o<i<nforms an orthonormal system for each
{ € pr, (see [5]). Then the measurable vector fields {u;}¢<<,and {v;}o<;<n, defined by
u;(Q) @ vi(9) := Fy($)k:i(Q) (0 =i <n{ €pry),
satisfy all the required conditions.
The vector functions (or vector fields) {u; @ v;}; provided by Proposition (6.1.1) are
contained in the space K of the minimal unitary dilation. We want to approximate them
with functions from the space K. of the minimal isometric dilation U,. Hence we have to
approximate measurable vector-valued functions by analytic ones. For any u,u €
L*(€,) the measurable function [, @] is defined by [w, @]({): = (w({),4({)) ({ € T).
The norm-function of u € L?(E,) is denoted by [u], that is [u]({) := [[u(D)Il ({ € T).
We recall from [14] that if u € L?(€,) is a unimodular function, that is [u] = 1, then for
every 0 < n < 1 there exists a function u# € L?(€,)such that [u*] = 1and [u*,u] =7
For the approximating purposes, mentioned above, we need the following lemma.
Lemma(6.1.2)[12]: Let u @ v € L*(C,) @ L*(C) = L*(€, @ €) be a function with
the property that its norm-function [u @ v] = 1. Then, for every 0 < n < 1, there exist
a function u* € H?(E,) and a measurable complex function 1 on T such that u* @

Yyv =1and |[u* @ Yv,u ®v]| =n.
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Proof. Let us give an arbitrary 0 < n < 1, and let us choose positive numbers n; and ¢
satisfying the conditions
n<ni<n <landn?-— 2¢(1 +2&)7! >n. (1)
Let us consider the decomposition T = £; U 35, where
Br :={¢ € T:[[u(DIl = n}and B, :=T \ B;.
Givenany e, € €, with  |le,|| = 1, the function u, € L?(G,) is defined by

(@) = { OO i}fzzeeﬁfil )
Since [u;] = 1, by [14] there exists a function uf € L?(E,) such that
m < uf, wll < ufl = 1. 3)

Let us give a positive n, so that n; <n, < 1. Applying [14] for u @ v, we obtain a
function uf @ vi € H?(G, @ €) = H?(G,) @ H?(C) with the properties

m <|uf @viudvll<uf ®vi= 1 (4)
For every { € f3,, we have
@Il = @ = lu@I»HV* = 1@ -n9)"* >0 (5)
Let us consider the decomposition
v () = P2(v(Q) + w((), where w({) L v({) (§ € Bo). (6)
It is clear that the function
2(0) = lv@II7*wE (D), v(D)) (€ € B2) (7)

is measurable. We want to show that the norm of w({) is as small as we wish if n, is
sufficiently close to 1.
In view of (4) and applying the Cauchy-Schwarz inequality we infer that.

N2 < | (3D ®u (@), u(d) ® v < Kub (), @M + [uf (D), v({)]
< 1w Ol Nu@ll + lluf ONvON =:k(©)

< (Ilef I + 1 OQIDY2Au @I + lvOIHY? =1 (8)
holds for every ¢ € T. Taking the decomposition of the ordered pairs

(g OIL IO = k@O UL @D + (@), b(D),)

we obtain that

IbOI? < 1a®),bDII* =1-k(D? <1-n3,

whence

[uf (DIl =kOIvOIl + b 2 nallv@ll = (1 =nDY? (e
follows. Applying (5) we conclude that

v (DNl = n(1 —nP)V? = (1 —nH)'/? 9)
is true for every ¢ € f3,. Let us assume that 7, is so close to 1 that
(1 =3V = (@ =nH? >0 (10)

is fulfilled. One can easily derive from (8) that

lvf DINvON = (w5 (), v < 1—n, (( T).
It follows by (5)—(7) and (9) that

12 (v (DIl = Kwi (D), v/ v DIDI = [[vE (DIl = (1 = n)(A —n)~1/2

>, (1 =n)V? = (1 =nHY? = (1 = n)(1 —nf)~/? (11)
holds for every ¢ € ,. Choosing n, sufficiently close to 1 we can ensure that
(=) =@ =D = A =)@ =n})2>0 (12)

Applying (6), (11) and (12) we obtain
105 (0) = Y (Dv(OII* = lvE (DI = I (Dv(DII?
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< llvf OII> = ANl = (1 =n) (1 = n)~H?)?

< WO —n2)(1 = nf)~H?

< 2(1 —n)(1 —n{)~? (§ € B,) (13)
Therefore, assuming that the positive number n, satisfies the conditions n; < 1, <
1, (10), (12) and

2(1=n)(1 —n{) 1?2 < g (14)
we conclude by (13) that
1v$() — Y (Dv DIl < ¢ (15)

holds for every ¢ € £,.
Let us give ¢4, @, € H™ with absolute value

lo1| = xB1 + exBa, lp2| = exBi + xBa (16)
and let us introduce the functions
0 for{ € ,[)’1,

W= oud +pnd € HEmd FO={, o  ore e
For every { € B, we have '

4(Q) B Y@@ = (@2 (€) +02(Huf()) DO,
and so

1-e<|a@)®PQuE@)|<1+e (€ B) (17)
readily follows by (3), (4) and (16). Furthermore,
(@) B P, u@) ® v())] =

I(fg)(()(uf(é), lu(@llw (D)) + @2 (OF (), u(@) = nf — ¢ € B1)
is clearly true by (2)-(4) and (16). On the other hand, for every { € 3, , we have

(@) @ BEO(E) = 91 uf(€) B 0) + 92D (1 () B V(D)

+(0@ 2OV - D))
Hence, applying (15) together with (3), (4) and (16), one can easily verify that
1-2¢e<[[a) @ PvEIl < 1+2¢ ¢ € B2) (19)

and
(@) ® P(v(D),ulQ) ® v(D)| 2 n, —2e 2 nf —2¢ (¢ € p2) (20)
Notice that 1 — 2e > n? — 2e > 0 by (1). In virtue of (17) and (19) there exists an
outer function ¢ € H” with the property
lpl = [u © yYv].
Defining u® € H?(E,) and the measurable function v by u” := @ i and ¢ := @11,
the equation [u* @ Ywv] = 1 is clearly fulfilled. Finally, the relations (17)—(20) and (1)
readily imply that
[(u* () @ Y(v(]), ul) @ v(D) = (m, — 28) ()]
> —28)(14+2e) 1 >7
is true for every ¢ € T. Thus the proof is complete.
Since we shall work with vectors approximating an orthonormal system, we need a
statement which describes how perturbation of an isometry on elements of an
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orthonormal basis affects the norm and the lower bound of the operator. Such a statement
is the content of the following lemma taken from [14].
Lemma (6.1.3)[12]: Let 1 <n < X, be a cardinal number, let {g;}o<<, be an
orthonormal basis in the Hilbert space ®,,, and let { f;}o< <, be an orthonormal system in
a Hilbert space . Let us give constants 0 < § < ¢ <1 and a sequence {6;}o<i<,Of
positive numbers satisfying the condition Yy, 67 < 62 Forany0 < i <n,let f* €
be a vector of the form £* = ¢,f; + s;, where ¢ < |¢;] < 1 and IIs; Il < 6; .
Then there exists a uniquely determined transformation A € £L(®,,,J) such that Ag, =
fi# holds, for every 0 < i < n. Furthermore, for this transformation A we have
c— 38 <AA) < Al £1+6.
Now we are ready to prove Theorem (6.1.1) for the model operator T = S(0).
Proposition(6.1. 4)[12]: The statement of Theorem(6.1.5) is true for the c.n.u.
contraction T = S(0).
Proof: Let us fix a cardinal number 1 <n < K, ,and let us assume that m(pT,n) > 0.
Recall that pT,n = {{ € T:rankA4,({) = n}. For simplicity, we shall use the notation
y := pT,n.Letus give an arbitrary € > 0.
Let {u;}o<i<n and {v;}o<i<, be measurable vector-valued functions obtained by applying
Proposition(6.1.1). We extend these functions to the whole circle T in the following way.
Given any orthonormal system {e,;}o<i<nin ®., let u;({) :=e,; and v;({) := 0, for
every (€ T\yand 0 < i < n. Itisclear that u; @ v, € & forevery 0 < i <n.
Furthermore, {u;({) @ v;({)}o<<» forms an orthonormal system for every { € T, and
{k:()) == =4.(OQw () + 0DV (D}osicn © D.(0) (21)

is also an orthonormal system for every { € y .
Let us give constants 0 < § < ¢ < 1 and a sequence {6; }o<i<n Of positive numbers with
the propertyY <<, 67 < 62. Applying Lemma (6.1.2) we obtain that, for every 0 < i <
n, there exist uf € H?(€,) and a measurable complex function 1; on T such that

N < |[uf D yYv,u; vi]| < [Uf 691/11'”1'] =1 (22)
holds with 7, := max(c, (1 — 6?)1/2). Then uf @ y,v; € &, is clearly true for every
0 < i < n.Inview of (22), these functions can be written in the form

ul (O ® Y;(Dv; () = ¢;(Dw; () ® v; () +1:({) B s5:() (23)
where

c<n; <|cg(| < €T,0<i<n) (24)
and

()@ s (I = 1= (DI <1-nf < 6 (( €T,0<i<n).(25)

Let us fix an orthonormal basis {g;}o<i<n IN ®,,. Given any ¢ € T, in virte of (23)-
(25),Lemma (6.1.3) implies the existence of a uniquely determined transformation
() € L(G,,E, @ €) satisfying the condition

D(0)g; = uf () B Y (Hvi(Q) forevery 0 < i < m;
furthermore,

c—6<A@E) <Dl 1+ 6. (26)
We shall write ypg; for the constant function in H?(®,) with value g; . Since
@ (xrg; ) = uf @ Y,v; is a measurable vector-valued function for every 0 <i < n, it
follows that the bounded transformation-valued function @ is measurable (see [5]). The
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transformation M(®) of multiplication by & maps L?(®,)into &, and clearly
M(®)H?(®,) < K,.Letus consider the restriction
Y, := M(®)\H?*(6,) € LIH*(6,), K,).
It is evident that
Y.S, = U.Y,and Y, (xrg;) = uf @ ¥;v;(0 < i <n). (27)
Let P, € L(K,,$) stand for the transformation defined by P,x := P,x (x € ],),
where P, is the orthogonal projection onto $ in &,. We know from [19] that

B.u, = TP, (28)
Now the transformation Y € L(H?(®,,), $) is defined by

Y := PY,. (29)
The relations (27)—(29) result in that

Ys, =TY. (30)
Furthermore, in view of (26) we obtain that

IYII < 1Yyl < ll®@ll, <1456. (31)

Let us consider the vector-valued functions

hi = Y(xr9) ESand kf:=X; h, e K7 (0 <i<n). (32)
Let &, be the reducing subspace of K.7 generated by the vectors e k#}o<i<n,and
let us consider the restriction &,, := R, |K.,. Let 0, € L(&.r,K,.,) stand for the
transformation defined by Q,x:= Q,x (x € K.;),where Q, is the orthogonal
projection onto K., in&,p.
Then clearly

Q,%.s = R.,0, and Q.ki = Xy kf(0<i<n). (33)
Introducing the transformation X, : &, — &,; defined by
X,(u®v):= -Ad4u+60v uUdv € K,),
we can see from the equation 84 = 4,0 that ker X, > ®_.. Consequently
k? = XT P+(uf D lpivi) = X-l‘(ul# D 1/%'”1’)
=—-Auf+ 0@y;v) (0 <i<n). (34)

We infer by (21) and (23) that for any 0 < i < n the function k/ is of the following form
on the sety:
lgs)(i) = ¢ (ki ($) + y:i(9), where yi({) := =4 * ({)ri({) + O()si(¢) ( € v).
Recalling that the operator F () in this Section is an isometry, it follows by (25) that

Iy ON < 1@ @ s < 8 (€ y,0< i<n). (36)
Taking into account that {k;({)}o<<n IS an orthonormal system for { € y , Lemma
(6.1.3) yields by (35), (36) and (24) that, for any { € y , there exists a (unique)
transformation ¥ ({) € L(©,,, €,)such that

Y()g: =k¥ Q) forevery0 <i<n; (37)
furthermore,

c -6 AW <IPDI=1+ 6. (38)
Forany { e T\ y letusset ¥({) := 0 € L(G,,E,). It can be easily verified, as before
for ¢@.that the bounded function ¥ is measurable. The transformation M(¥) of
multiplication by ¥ maps L?(®,,,y ) into &,; let us consider the mapping
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Z+ = M(W)\LZ((ﬁn;Y) € LL2(®n;Y)'§*+
It is evident that

Z.(xy 9:) =x, ki forevery0 <i<n. (39)
We infer by (38) that
c—86< AZ) <zl €1 +6. (40)
Since Z_ has dense range by (39), we obtain that Z_ is invertible, and so (40) yields
12520 < (c = &) (41)
Taking into account that Mr,, = M, , we can see that
Z,Mp, = R.,Z,. (42)
Now, the transformation Z € L($, L*(®,,,y )) is defined by
Z:=77'0:Xr . (43)
The intertwining relations X; T = R, X; , (33) and (42) yield that
ZT = My, Z. (44)

Taking into account that the mappings Q. and X, are contractions, it follows from (41)
that
I1ZIl < (c =&~ (45)

Choosing the constants § and c sufficiently close to 0 and 1, respectively, it can be
achieved that 1+ § < 1+ eand (¢ — §)"! <1+ ¢ hold. Hence, by the inequalities
(31) and (45) we conclude that

IY||< 1+ eand ||Z]| <1+e. (46)
Finally, in view of (32), (33), (39) and (43) we have for any 0 < i < n that

ZY(xng:) = Zh; = Z7' QuXp hy = 27 Qukf = 27" x K

=Xy9: = jn,y (xrgi) = It (xrg: )- (47)
Since ZY and J;,, intertwine S,, with My, equalities (47) imply

ZY = Jrn (48)
The relations (46) and (48) show that the mappings Y and Z possess all the required
properties.
Now we complete the proof of the main result.
Theorem(6.1.5)[12]: LetT be an a.c. contraction on the Hilbert space $. For every
cardinal number
1<n <RN,, and for every &> 0, there exist transformations Y € 7°(S,,T) and
Z €T (T, My,) satisfying the conditions:
(i) ZY =]r,,and
(i) JIYl<1+eglZll< 1+e.
Notice that if m(pr,,) = 0then Jr, = 0, and so the transformations Y =0 and Z =0
evidently possess the required properties. The statement of the previous theorem becomes
nontrivial when m(pr,) > 0.
Proof. Let T be an a.c. contraction on the Hilbert space $. Let us give a cardinal number
1 <n <X, and a positive .
The contraction T can be decomposed into the orthogonal sumT =T, & T., where T, is
an a.c. unitary operator and T, is a c.n.u. contraction. It is known (see e.g. [4]) that
T, = Wy, is unitarily equivalent to the orthogonal @,eyM,, , where a; := pT,
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andM,, = Mmk (k €eN). Let Q, € T(®reyNMak,Tu) be a unitary transformation;
then

0:=0,®DIET ((@MQJCJBTC,TU@TC}
keN
is also unitary. Given an arbitrary 0 < ¢ < 1, for every k € N, let 9, € H be an outer
function with absolute value |9,| = cxay, + xr\a, , and let us consider the c.n.u.

contraction T, = S(9;).

By [19] there exists an affinity @, € 7' (T, M,, ) satisfying the conditions

1=l <@ <c?t (keN).
The c.n.u. contraction T := (@yenTy) D T, is unitarily equivalent to a model
operator T =S(®) by [19], let Q € T(T,T,T) be a unitary transformation. Then the
affinity

has the properties
QT =TQand1 =@l <llQ7"ll < ¢ (49)
Clearly, uT, = ya, holds for every k € N, and so the asymptotic spectral-multiplicity
functions of the contractions T and T coincide: py = s
Therefore
MT,n = MT,n and ]T,n = ]T,n (50) .
Given an arbitrary 0 < § < 1, Proposition(6.1.4) provides us with mappings Y €
T(S,,T)and Z € T (T, My,) satisfying the conditions
ZY = Jppand ||V <146,||Z]| <1+ (51)
Then Y := QY € T(S,,T),Z := ZQ~! € I(T,M;,,), and we conclude by (49)-(51)
that
Zy = 7Y = Jtn = Jrn
and
lYil< 1+ 354, 1Z]l < (1 4+ &)c?!
Choosing & and c sufficiently close to 0 and 1, respectively, we can ensure that 1 + § <
1+ecand (1+ &)ct<1+e.
The proof is complete.
We supplement the statement of Theorem (6.1.5) by showing that every factorization of
any embedding J, . through intertwining mappings with the contraction T is necessarily
attached to the set pr ,,.
Proposition (6.1.6)[12]: Let T be an a.c. contraction on the Hilbert space $. Let us give a
cardinal number 1 < n <X, and a Borel set @ on the unit circle T. If there exist
transformations Y € £ (S,,T) and Z € L (T , M, ,) with the property ZY =], ., then a
is a.e. contained in pr, ,thatinm(a \pr, ) = 0.
Proof. By the universal property of (X, Wy) there exists a unique transformation
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LeL (Wp,M,,)suchthat Z = LX; .Since Wy and M, , are unitaries it follows that
L el (Wr ,M,’;,a) Is also true. Hence the subspace K, := kerL is reducing for W , that
is Wr = W, @ W; in the decomposition K; = K, @ K;. Taking into account that
L& D Z$ D J,.H*(®,) and that (LK, )—reduces M, ., we infer that L has dense
range. Considering the polar decomposition L = V;|L| of L, one can easily check that the
unitary transformation V; :=V,|R, € L(K, L*(6,,a)) intertwines W, with M, , (see
the proof of [19]).
Let us assume that I/ is unitarily equivalent to the model operator
Dren Mg, , Wwhere {B;}ren is @ decreasing sequence of Borel subsets of T. Then it is
easy to verify the following unitary equivalence relations:

WT z1\471,01 @ (@ Mﬁkj = @ Mﬁk ’

keN keN

where the decreasing sequence {aj}iey € Bris defined by a; := a U, for all k €
N if n = R, while in the case n < X, we have

__(a U By for1<k<n,

H = { B U (Br_,Na) forn<k.
(See e.g. the proof of [19].) We conclude that uy ({) = n holds for a.e. { € a, and so
m(a\pr, ) = 0.
If T is an a.c. contraction then, forany 1 < n < X, and € > 0, let y(T, n, €) stand for the
set of those mappings Y € L (S,,, T ) which satisfy the conditions
ZY = Jr,. YlI<1l+eg IZ]| <1+¢

with an appropriate Z € L (T ,Mr,) (depending on Y). We know that J;, is one-to-one,
and then so is every Y € y(T,n, €), whenever m(pr,) > 0. The following proposition
states that the ranges of the transformations in y(T, n, €) together span the whole space of
T . (Though a modified version of this section is contained in [14], we present here a
more streamlined discussion for the sake of completeness.)
Proposition (6.1.7)[12]: Let T be an a.c. contraction on the Hilbert space $, and let us
assume that m(pr,,) > 0 holds for a cardinal number 1 < n < X,.
(@) For every € > 0 we have

/v 12,7 ey nen=$
(b) If n = X, then, for every € > 0, there exist Y,Y € y(T,n, €) such that
YH?(®,) VYH*(6,) = 9.

Proof. It is sufficient to verify the statement for the model operator T = S(0). (See the
analogous reduction in the proof of Theorem(6.1.1).)
For every 0 < i < n, setting an arbitrary vector e,; € €, with |le,;|| <v2/2 a vector-
valued function v; € (AL*(€)) with [v;] <+V2/2 , a non-negative integer k; and an
integer L;, let us consider the vectors

f;:= xkie, € H*(E,) and D; :=
where y({) = ( (¢ € T). It is clear that @i; @ 7,
n).
Fixing a positive ¢, let us give the constants 0 < § < ¢ < 1 and the sequences {J; }o<i<n,

xliv € (AL (€))7,
€E Krand [4; @ 7,]<1(0 <i<
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{n:}o<i<n@s in the proof of Proposition(6.1.4). For every 0 <i < n,one can choose
positive numbers 7j; and ¢; so that
m<f<landn < (1 —g)f —¢ .
Let {uf @ ¥;v;}o<<n © K be asequence satisfying the condition
(m: <N < |[uf D yv,u; P vi]| < [uf &>, wivi] =1 0<i<n)
instead of (22). Since [(1 —&g)(Wf @ yYv,) + @ DD )] <1
and
< A—glfy—& =< |[(1 — & )(uf D yv) +e&@ d0)u Vi]| <1

we infer that

(1 — &)@ (D) D Y:(Dvi(D) + &(@() & 7,(¢))

=6 (D () B v () +7(D D 3:(9)
holds for every { € Tand 0 < i < n, where
c <, < |6 <1land
17:(0) @ 3:(DIl < 1 —nH)/? < §,
We note that the relations (22)—(25) are also valid. The procedure described in the proof
of Proposition (6.1.4) yields transformations Y and ¥ in y(T, n, ) such that
Y(Xrg:) = 1D+(u?E %) lpivi)

and

Y(rrg:) = A — )P (uf ®Yv;) + &P (U @ D)
are true forevery 0 <i <n. Thus

Y(xrg) — (A =&)Y (rpg) = &P(@; @ 9) (0 <i<n).

If n = X, then we can choose the sequence {&i; @ ¥;}¢< <, t0 be total in &, and so (b) is
obviously fulfilled. If n < X, then a sequence of finite sequences

{@” @0}k en)
can be chosen to be total in &.,. Denoting by ¥, (k € N) the resulting transformations in
y(T,n, &), we obtain that the subspaces {YH?(®,)V Y,H?*(®,)}rcy together span the
whole space $, which proves (a).
If pr,, coincides with the whole circle T, or more precisely, if m(pr,,) = 1(= m(T))
then the embedding J,, is an isometry, and so the conditions
ZY = Jrn,  YII<1+ g 1Zl] < 1 +¢
imply that
AY)> 1+t
Therefore, the restriction T |YH?(®,) is similar to the unilateral shift S,, and the
intertwining affinity Y, € £L(S,, T |YH?(6,))), defined by Y,g := Yg, is close to unitary
if € is small. For an a.c. contractionT , forany 1 <n <&, and € > 0, Lat(T,n,¢)
stands for the set of those invariant subspaces Mt of T , where the restriction T [It is
similar to S,,, and the similarity can be implemented by an affinity Q € £ (S,, T |9t)
with the properties
1+ <AQ) < IOl <1+e.
We have seen that
{YH%*(®,):Y € y(T,n,¢&)} c Lat(T,n, €) (52)
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provided m(pr,) = 1. In view of Proposition(6.1.7) and (52) we obtain the following
statement.

Theorem (6.1.8)[12]: Let T be an a.c. contraction on the Hilbert space $, and let us
assume that m(pr,,) = 1 holds for a cardinal number 1 <n < X,.

(@) For every € > 0, the subspaces in Lat(T, n, €) span the whole space $:

\/ Lat(T,n, &) = 9.

(b) If n=R0 then, for every £ > 0, there exist two subspaces M, M € Lat(T,n, <) such
that
MV M = 9.

We recall that the hyperinvariant subspace lattice HlatA of an operator A €
L) consists of those subspaces which are invariant for every operator in the
commutant {A} of A. The hyperinvariant subspace problem asks whether every Hilbert
space operator A € L(2), which is not scalar multiple of the identity, has a proper
hyperinvariant subspace, that is HlatA # {{0}, %} holds. The positive answer is known
only under additional assumptions, for example, in the class of normal operators because
of the Spectral Theorem, or in the class of compact operators by the celebrated
Lomonosov theorem (see e.g. [4]). Existence of proper hyperinvariant subspaces was
proved in [16] under an orbit condition for asymptotically non-vanishing operators of
regular norm-sequence.
Let T be an arbitrary asymptotically non-vanishing contraction on the Hilbert space $. It
is known that T can be decomposed into the orthogonal sum T =T, @ U, of an a.c.
contraction T, and a singular unitary operator U, . Taking into account that the minimal
unitary dilation of T, is a.c., we infer by the Lifting theorem (see [19]) that the
intertwining sets £ (T,,U,)and £ (U, T,) consist only of the zero transformation.
Hence the commutant of T splits into the direct sum of the commutants of T,and U;:
(TY ={T,} @ {U,} , and then the same is true for the hyperinvariant subspace lattices
too: HlatT = Hlat T, @ HlatU, . Thus, in the quest for proper hyperinvariant
subspaces we may assume that the asymptotically non-vanishing contraction T is
absolutely continuous.
Let us consider the residual set p; = pr,0f T . Since pris of positive Lebesgue
measure, there exists a point , € T which is of full density for p; . Replacing T by {,T ,
we may assume that ¢, = 1. (We recall that lim,_.m(E, N pr)/m(E,) = 1 holds
whenever the sequence {E, },—; € By shrinks to 1 nicely, see [18].) Let us consider the
singular inner function 9 € H* defined by

IA) =exp(A +1)/(1 = 1) (1 € D),
and let us form the operator A := J(T). We know from [19] that A is also an a.c.
contraction. Furthermore, by [17] the residual set of A is p, = 9(pr). The following
lemma ensures us that p, essentially covers the whole circle T.
Lemma (6.1.9)[12]: If the point 1 € T is of full density for the set a € B, then
m@d(a)) = 1.
Proof. Notice that 9 is analytic on C\ {1} and

9(e") = exp[—icot(t/2)], teE(0,2m).
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For any integer n € Z, let t,, € (0, 2r) be defined by cot (%’") = 1+ n.2m. Itis clear that

T\ {1} is the union of the disjoint arcs w, := {e* : t, .4 < t <t,}(n €Z), and that
9, = J|w, : w, = T is a continuous bijection for every n € Z. So the set J(a) =
Unez 9, (@ N w,,) is measurable.

Let us consider the complement y = T\9(a) and the Borel sets 8, =9, (y) (n €
N). Taking into account that for any (0 <)t,;1 < 51 <5, <t,(<ty,=m/2) the
inequality

cot(s1/2) = cot(sy/2) = (sins.)7?(sz/2 — $1/2) < 8t;31(52 — 1)

is valid, we can easily infer that

m(B,) = (m@y)/8tiyy  (n € N). (53)
Since the arcs @, := Up—, 0w, = {€":0 < t <t,} (n € N)shrinkto 1 nicely,
lim, o, 2200 (54)

must hold by the assumption. On the other hand, in view of (53) we have

m(@,na) 1 o __1 vy
) voo
1-Z=Emti (meN). (55)

Starting from the inequalities 1/(2s) < cots <2/s (s € (0,m/4)), one can easily
derive that

1/(8n) <t, <1/n (n € N) (56)
The relations (55) and (56) together imply

m@@nn a) _om@) o -2 _m) n_
m(@n) S1- % " MlimankTs1-T000 (e (5)

Tending n to infinity in (57), we conclude that m(y) < 0, that is m(y) = 0. Thus
Lemma(6.1.9) yields that m(p,) = 1. Forevery r € (0,1), weset 9, (1) := 9(rd) (4 €
D).
Since 9, (T) is the norm-limit of polynomials of T , and 9, (T) converges to J9(T) in the
strong operator topology as r tends to 1, we obtain that every operator commuting with T
will commute with A = 9(T) as well. Therefore {T} <, w{A} hence
Hlat T D HlatA

follows. Let us form the inflation B = A®0) of A4 acting on the orthogonal sum $®0) of
infinitely many copies of §. Clearly, Bis an a.c. contraction with m(pg,Ry) =
1. Furthermore, it can be easily verified that

HlatB = {M®): M € HlatA}.
Thus Hlat T contains a sublattice which is isomorphic to HlatB, and so we have arrived
at the following reduction theorem.
Theorem (6.1.10)[12]: If every absolutely continuous contraction B with m(pg, 8y ) =
1 has a proper hyperinvariant subspace, then so does every asymptotically non-vanishing
(non-scalar) contraction T too.

We note that the subspace ker X; of vectors with vanishing orbits is clearly
hyperinvariant for the asymptotically non-vanishing contraction T on §. Hence we may
assume that kerX; , and kerX,- as well, are trivial subspaces. Since kerX,; = $ we
obtain that kerX; = {0}, and so T is a C; -contraction according to the classification in
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[19, Section 11.4]. If kerX;~ = {0} holds true also, that is when T is a C;;-contraction,
then a subset of Hlat T is isomorphic to HlatW; by [19]. (For a more complete
description of the hyperinvariant subspace lattices of C;,-contractions we refer to [19],
[10],[13].) Thus we may assume that kerX,;- = &, and so T is a Cy,-contraction. Then
A = 9(T) is also a Cjy-contraction (see[11]), and so is B = A®0) too. Therefore, we
can concentrate on C;,-contractions.
Section(6.2): Contractions and Function Algebras

Let H be an infinite dimensional, separable, complex Hilbert space, and let £L(#)stand
for the algebra of bounded, linear operators acting on H. With an operator T € L(H) the
following operator algebras can be naturally associated. The set of (analytic) polynomials
p(T) of T is denoted by W, (T), while the set of rational functions q(T) of T with poles
off the spectrum o (T) is denoted by R,(T). The closures of these unital algebras in the
weak operator topology (coinciding with the closures in the strong operator topology) are
W(T) and R(T), respectively. The commutant {T}’ of T consists of those operators C in
L(H), which commute with T: TC = CT. A subspace (i.e., closed linear manifold) M of
H is invariant for T, if Tx € M holds for every x € M. The set Lat T of all invariant
subspaces of T forms a complete lattice. The trivial subspaces {0} and H clearly belong
to Lat T. For a non-empty set A < L(H)f operators, Lat A :=T{LatA: A € A} is the
lattice of common invariant subspaces. Since the operator algebras W(T), R(T),{T}
form an increasing sequence, the corresponding invariant subspace

Lat T = LatW(T),Rlat T := LatR(T),Hlat T := Lat{T}

form a decreasing sequence. The invariant subspace problem (ISP) asks whether Lat T is
non-trivial (i.e., different from {{0},#}) for every operator T € L(H). The
hyperinvariant subspace problem (HSP) asks whether Hlat T is non-trivial for every
operator T € L(H) which is not scalar multiple of the identity. These are arguably the
most challenging open questions in operator theory. Since multiplication of T by a non-
zero scalar does not alter the associated algebras, studying these questions we may
assume that the operator T is a contraction: ||T || < 1. We recall that contractions can be
classified according to the asymptotic behaviour of their iterates and the iterates of
their adjoints. Namely, T is of class Cy- if T is stable, that is lim,_, |[T"x|| = 0 for
every x € H.
The contraction T is of class C;- if, on the contrary, T is asymptotically nonvanishing,
that is lim, ., [[T"x || > 0 for every x € H \ {0}. We say that T is of class C, , if the
adjoint T* of T is of class C; - (j = 0,1). Finally, T is of class C; if T simultaneously
belongs to the classes C;- and C; (i,j = 0, 1).
Every operator T with [|T|| < 1 is obviously a Cy,-contraction. Hence (ISP)and (HSP)
in the class of C,,-contractions are equivalent to the general problems.
On the other hand, (HSP) has been settled affirmatively in the class of C;;-contractions
(see [15]). Taking into account that the subspace {H,(T) :=x € H : lim,_o, ||T"x|| =
0} is hyperinvariant for T (i.e., H, (T) belongs to Hlat T), we can reduce (ISP) and
(HSP) concerning non-Cy,- contractions to the class of C;,-contractions. Our aim in this
note is to get closer to the solution of the (HSP) for C;,-contractions in the cyclic case.
We recall that the operator T € L(H) is cyclic if there exists a vector x € H such that
its orbit {T™ x},—, Spans the whole space H .
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The advantage of considering C;,-contractions is shown by their connection with unitary
operators, described below. If A and B are operators on the Hilbert spaces H and K,
respectively, then the intertwining set L(A4,B) consists of those bounded, linear
transformations Y € L(#,K) which satisfy the condition YA = BY. Setting a
contraction T € L(H), we say that (X, V) is an intertwining pair for T, if VV is a unitary
operator on a separable Hilbert space K and X € £ (T,V). The pair (X,V) is called
contractive, if ||X|| < 1. There exists a contractive intertwining pair (X, V) for T, which is
universal in the sense that given any contractive intertwining pair (X', V") there exists a
unique contractive Y € £ (V,V") such that X’ = YX. Such a universal contractive pair
(X,V) is called a unitary asymptote of T. (Sometimes plainly V is called a unitary
asymptote of T, when the existence of X is tacitly meant.) This pair is uniquely
determined up to isomorphism. Namely, if (X1, V;) and (X,, V) are unitary asymptotes of
T, then there exists a unitary transformation Z € £ (V,V,) such that ZX; = X,.
Let us assume that (X,V) is a unitary asymptote of T. Then, given any intertwining
pair (X', V") for T, there exists a unique mapping Y € £ (V,V") such that X' = YX; in
addition ||Y || = ||X’|| Furthermore, for every C € {T}' there exists a unique D € {V}'
satisfying the condition XC = DX. The transformation y:{T} - {V},C~ D is a
contractive, unital algebra-homomorphism.
We know that || Xh|| = lim,_ ||[T™h|| holds for every h € 7{; hence kerX = H,(T).
Furthermore, we have V, ey V " XH = K. Thus K = {0} exactly when X = 0, and this
happens if and only if T is a C,--contraction. On the other hand, X is injective precisely
when T is of class C;.. (For details we refer to [4] and [24].)
The contraction T can be uniquely decomposed into the orthogonal sum T =T, @ T;,
where T, is a completely non-unitary (c.n.u.) contraction and T; is a unitary operator.
We assume in the sequel that the contraction T is absolutely continuous (a.c.), that is, its
unitary part T;is an a.c. unitary operator. The latter means that the spectral measure of T;
is a.c. with respect to the normalized Lebesgue measure m on the unit circle T. Since the
unitary asymptote V is unitarily equivalent to the x-residual part of the minimal unitary
dilation of T, we infer that V is an a.c. unitary operator. (See [29], or [1] for a direct
proof.) Therefore V is determined up to unitary equivalence by its spectral multiplicity
function 6V : T - NU{0,00}. For any n € N, we consider the measurable set
w(V,n):={C € T:48V ({) =n}. The Borel set w(V) := w(V,1) supports the spectral
measure of V. The residual set of T is defined by w(T) := w(V), and is determined up to
sets of zero Lebesgue measure.
We note that (ISP) is answered affirmatively, actually Lat T has a rich structure with
infinitely many invariant subspaces, if w(T) = T (see [13]).
The definition of another characteristic set associated with the a.c. contraction T € L(H)
relies on the Sz.-Nagy-Foias functional calculus. For any p € [1, o], the Hardy space H?
can be identified with the subspace of functions with vanishing Fourier coefficients of
negative indices in L? := LP (m) (see [9]). The aforementioned calculus for T is the
uniquely determined contractive, unital algebra homomorphism

Or: H® = LK), f— f(T),
which is continuous in the weak- * topologies, and which transforms the identical
function y(&) = ¢ into T (see [34]). We can introduce partial ordering relations on H®
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and L(H)in the following way. For f,g € H*, the relation f < g holds if |f (z)| <
|g ()| for every z in the open unit disc D. For A4,B € L(H) the relation A < B holds if
|Ax|| < || Bx|| for every x € H.

It is easy to see that @ is monotone with respect to these relations. (Note that f < g
yields f = gh with h € H®, ||h||,, < 1.) Setting any decreasing sequence F = {f, }n—1
in H*, let us consider the limit function @ (§) := lim,_ |f,(§)| defined for almost
every{ € T,and the hyperinvariant subspaceH, (T, F) := {x € H : lim, L. ||f,(T)x|| =
0.

We say that the a.c. contraction T is non-vanishing on the Borel set « of T, if Hy(T,F) =
{0} whenever the decreasing sequence F is non-vanishing on a, i.e., whenever {{ €
a: @p (§) > 0} is of positive Lebesgue measure. There exists a largest Borel set with this
property, called the quasianalytic spectral set of T, and denoted by m(T). Notice that
n(T) is determined up to sets of measure zero.

For any Borel subsets a, f of T, it is reasonable to use the notation « € §,a = B or
a # B subsequently in the broader sense that m(a\B) = 0,m(a Ao B) = 0or m(a &
B) > 0, respectively (reflecting the corresponding relations between the characteristic
functions x, and y;, as elements of L”). If m(T) # @, then considering the decreasing
sequence {y"},—; it can be seen that T is a C;--contraction. It was shown in [25] that
n(T) € w(T) always holds; furthermore, n(T) # w(T) implies that Hlat T is non-
trivial. The a.c. contraction T is called quasianalytic, if m(T) = w(T). We conclude that
(HSP) in C;o can be reduced to the quasianalytic case. In this section we study cyclic,
quasianalytic C;,contractions.

Our work is organized as follows. In this Section spectral mapping theorems for the
residual set and for the quasianalytic spectral set are proved, extending and sharpening
earlier results in [25]. The question concerning uniform spectral multiplicity on the
quasianalytic spectral set, posed in [25], is answered negatively.

Cyclic, quasianalytic Cj,-contractions are related to the particular ones, where the
quasianalytic spectral set covers the whole circle T. This special class is the subject of
study in the remaining sections. The commutant {T}' is connected with a quasianalytic
function algebra F(T), located between H* and L. The functional calculus @ is
extended from H® to the broader set F(T). The effect of M~obius transformation is
examined, and spectral relations are proved. Finally, Section deals with characterization
of the cases, when F(T) is a certain kind of generalized Douglas algebra.

Let B denote the o-algebra of Borel sets on T. Assume that w, € By is of positive
measure and h:w, —» T is a Borel measurable function. Consider the Lebesgue
decomposition w, = p,. + Hps of the induced measure py,(w) := m(h™(w)) (w €
Br). Taking the Radon—-Nikodym derivative g, = duy; ,/dm of the a.c. component, the
Borel set w,, is defined by wy, := {{ € T : g,({) > 0}.

The set w, is determined up to sets of zero Lebesgue measure, and is called the properly
essential range of h. We also use the notation pe — ranh := w,.It is known that
lim,_o,m(h~1(D(¢{,r))/r > 0 foralmos every { € wy,and lim,_,o,m(h~2(D({,7))/
r = 0 for almost every { € T\ w,,. (Here D({,r) := {{- e?™ : t € R,|t| <1 /2}.)
Clearly, w,, is contained in the essential range of h, which is the complement of the
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largest open set A on T satisfying the condition u, (A) = 0. If w, = @ (in the broader
sense), then pe-ran h = @.
Let V be an a.c. unitary operator acting on the infinite dimensional, separable Hilbert
space K. Notice that (1,V) is a unitary asymptote of V, and so the residual set w(V) is the
support of the spectral measure of V. The Borel set w (V) has positive measure, since the
space K is non-zero.
The function h € H* is called partially inner, if ||h|l, = 1,|h(0)| < 1, and if the Borel
set 2(h) :={{ € T : |h({)| = 1} is of positive measure.
Lemma(6. 2.1)[13]: Setting VV and h as above, and assuming w(V) < 2(h), let us
consider the operator W := h(V).
(@) Wis an a.c. unitary operator with w (W) = pe — ran(h|w(V)).
(b) If M € LatV and V,ey V"M = K, then
M € LatW and V,eyW™" M = K
Proof. (a): Recall that the operator h(V) given by the Sz. —Nagy- Foias calculus
coincides with the operator yielded by the spectral measure E: By — P(K) of V:
h(V) = fw " hdE.
(Here P(K) stands for the set of orthogonal projections acting on K.) Since h is
unimodular on w(V), it follows that W is unitary. The a.c. unitary operator V' is similar to
a c.n.u. contraction Q (see [29]). Hence W is similar to h(Q). Since the contraction
h(Q) is also c.n.u., we conclude that W is an a.c. unitary operator (see [29]).
Setting hy := hlw(V), the formula E(w) := E(hy'(w)) (w € By) clearly defines a
spectral measure. Since

fT)(dE’ = fTth =W,
we infer that E’ must be the spectral measure of W. The measure y, (W)dm is obviously
equivalent (mutually a.c.) to uy,, . Hence p, is a.c., and so it is equivalent to y,,,,dm.
Therefore w(W) = pe — ranh,,.
(b): It is evident that LatV is contained in LatW. Suppose that the subspace M is
invariant for 7, and the smallest reducing subspace of V containingMis K. If V|M is
unitary, then M is reducing for V, and so M = K. Thus, we may assume that the
restriction V|M is a non-unitary isometry. Let us consider the Wold decomposition
M =M, @ M;, where V, := V|M, is a unilateral shift and V; := V|M; is unitary.
Since M, is non-zero, we infer that T = w (V) < £2(h), and so h is a non-constant inner
function. By the assumption, K=V,nV " M =M, ® M, where M, =
Voen V" M. Taking the corresponding decomposition for W, we obtain that W|M =
W, @& W;, where W, = h(Vy) and W; = h(V;) is unitary; hence V,ezW ™M =
(Vpen W™ M) @ M;. We have to show that V,cy W™ M, = M,. Considering the
functional model of the unilateral shifts, it is enough to verify that \/,,cy h* H"2 = L2,
Setting a: = h(0) € D, let us form the inner function u := b, o h, where b,(z) = (z —
a)/(1 - az) (z € D) is the M obius function, corresponding to a. Let M, and M,
denote the unitary operators of multiplication by u and h, respectively, on the space L?.
In view of the relations M, = b,( M,) and M, = b_,( M,) we can see that Lat M, =
Lat M,,. Taking into account that the subspace L? © (V,ey A" H?) is invariant for M,
and orthogonal to H?, we can reduce the proof to show that \/,,ey " H? = L?. However,
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u has the form wu =yv, where ve€eH® is an inner function. Thus
u"H? o> y" p"v"H? = y*H? holds for every n€N, and so V,yu"H?=1% o
VnEN)Zn H2 = Lz :

The previous proof yields that the measure y;, |[2(h) is a.c. Thus we obtain the following
statement, which can be considered as an extension of the F.&M. Riesz Theorem (see
[9D).

Corollary(6 2.2)[13]: If h € H* is partially inner, then for every Borel set w € By the
condition m(w) = 0 implies m(h™(w) N T) = 0.

We say that the partially inner function h € H* is regular, if for every Borel subset 2 of
0(h) the image h({2) is also a Borel set on T, and for every Borel subset wof h(2) the
condition m(w) > 0 implies m((h|2) 1(w)) > 0. It is easy to check that in that case
pe —ran(h|Q) = h(2).

LetT € L(H) be an a.c. contraction. Let (X, V) be a unitary asymptote of T, the a.c.
unitary operator Vracting on the Hilbert space Ky . The spectral measure of V. is denoted
by E; . Given a partially inner function h € H*we set w(T, h) := w(T) n 2(h). Taking
the spectral subspace Kr, := Ep (w(T,h))Kr , we consider the unitary operator
Ve :=Vr | K7, and the intertwining mapping X7, € L (T, V) defined by X7, x :=
Er(w(T,h)Xr, x (x € H). The operator h(T) is also an a.c. contraction (see the proof
of Lemma (6.2.1).

Theorem(6.2.3)[13]: Under the previous conditions the pair (X7, h(Vr)) is a unitary
asymptote of h(T), and so w(h(T)) = pe — ran(h|w(T, h)).

Proof. For convenience we introduce the notation A := h(T). Let (X4,V,) be a unitary
asymptote of the a.c. contraction A,V, acting on the Hilbert space K,. Since T € {A},
there exists a unique operator T, € {V,;}' such that X,T = T,X,; in addition: ||T,|| <
IT|| < 1. The space K, splits into the orthogonal sum K, = K, @ K; reducing for Ty,
where T, := T,|K, is an a.c. contraction and T, :=T,|K;is a singular unitary
operator. Let P; denote the orthogonal projection onto Kj in Kj. Since the mapping
Xa1x:= P Xy x (x €H) intertwines the a.c. contraction T with the singular unitary
operator T, q, it follows that X, ; = 0. Hence X, is contained in K. Taking into
account that K, is hyperinvariant for T,, we infer that K, = V,,ex V4 " X4 H is included
in K. Thus K, = K, and so T, is an a.c. contraction.

The equation X,T = T,X, yields X,A = X,h(T) = h(T,)X4. Since h(T,) € {V,},it
follows that h(T;) = V,. Regarding the decompositionT, = T'y & T", , where T', is
a c.n.u. contraction and T'', is an a.c. unitary operator, we obtain that h(T,) =
h(T'y) & h(T",), where h(T'y) is a c.n.u. contraction. Taking into account that
h(T,) =V, is unitary, we conclude that T, is an a.c. unitary operator.

Since (X;,Vy) is a unitary asymptote of T and since the contractive mapping X,
intertwines T with the unitary operator T,, there exists a unique contraction Y €
L (Vy,Ty) such that X, = YX; . With respect to the decomposition K = K7 ,,D
K'r , the a.c. unitary operator Vrhas the form Vy = Vy, @ V'y . Then h(Vy) =
h(Vrn) @ h(V'y ), where h(Vr ) is unitary and A(V'; ) is a CO-- contraction. Since
Y|K'r , intertwines h(V'; ;) with the unitary operator h(T},), it follows that Y|K'y , =
0. Clearly
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Y, = YlK’T,h € L (h(Vr ), h(Ty))-
The contractive mapping Xy ,, intertwines A with h(V7,), and (X4,V,) is a unitary
asymptote of A, thus there exists a unique contraction Z € L (V4, h(Vr,)) such that
Xrn =ZX,.Since Y, Z € {V,} and
Xg=YXr = YEr (w(T, W)Xy = YV, Xp = VWZXy,
it follows that Y, Z = I. The transformations Y, and Z being contractive, the equation
Y, Z = I yields that Z is an isometry.
We know also X1, = ZX, = ZYXr , whence ranXr, € ran Z. The subspace M :=
(X7, H) — is invariant for the a.c. unitary operator Vy,. The spectral subspaceXr ,is
hyperinvariant for V; , hence M :=V,ey V4, " M is contained in Kr,. Since the
subspace M @ K'r j, is reducing for V; and contains the range of X , it follows that
M = Krp.If o(T,h) = @, then Ky, = {0}and so ZK, = Kp,.1f w(T,h),®, then
Lemma (6. 2.1) yields that
Krp =Vaenh (Vrp) ™" M.
Since Z intertwines the unitaries V, and h(Vr,), it follows that the subspace ZK, is
reducing for h(Vr,). Taking into account that ZK, contains M, we conclude that
ZK, = Ky, . Therefore Z and Y, are unitary transformations, and so the pair
(X7, h(Vr))—being equivalent to (X4, V,) is a unitary asymptote of A. Applying
Lemma(6. 2.1) we obtain that
w(4) = w(h(Vr,)) = pe —ran(h|w (T, h)).

Notice that if «(T,h) = @, then Ky, = {0}, and since Vr,is a unitary asymptote of
h(T), it follows that h(T) is of class C, In particular, we obtain that h(T) is a Cy--
contraction, whenever T is a C, -contraction.
Theorem(6. 2.3) is an improvement of [25], with a streamlined proof, completely
identifying the unitary asymptote (Xy4, V). The following results extend the statements in
[25].
Theorem(6.2.4)[13]: Under the conditions of the previous theorem we have

n(h(T)) o pe —ran(h|n(T, h)),
where (T, h) := n(T) N 2(h).

Proof: We may assume that = (T, h), @; then T must be a C;.-contraction.

For convenience let us use the notation wq := n(T,h), hy := h|w,y, and w, := pe —
ranhy. Assume that the decreasing sequence F = {f,},—; of H*-functions is non-
vanishing on w,, that is, the set w; := { € w, : @r (§) > 0} is of positive measure. By
Corollary (6.2.2) the measure u,, (w) = m(hy! (w)) (w € By) is a.c., and so it is
equivalent toy,,,dm. Hence w,; = hy' (@) is a subset of m(T) with positive measure.
The decreasing sequence Fo h = {f,, o h},_; does not vanish on m(T), namely
@r.n({) > 0 for almost every { € w;. We conclude that

Ho(h(T), F) = Ho(T,F o h) = {0},
and so m(h(T)) contains w,.
Combining the previous theorems with the fact that the quasianalytic spectral set is
always included in the residual set, we obtain the following result.
Corollary (6.2.5)[13]: Let T € L(H) be an a.c. contraction, and let h € H* be a
partially inner function. If (T, h) = n(T, h), then
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w(h(T)) =n(h(T)) = pe —ran(h|w(T, h)).
This statement provides a tool for the construction of quasianalytic contractions, starting
with some a.c. contractions with non-vanishing quasianalytic spectral sets. Notice also
that if T is quasianalytic and M is a non-zero invariant subspace of T, then the relations
n(T|IM) >2n(T) = w(T) D w(T|M) vyield that the restriction T|M is also
quasianalytic, with the same quasianalytic spectral set as T. Taking cyclic subspaces, we
can get examples for cyclic quasianalytic contractions.
We present example for a quasianalytic contraction with non-uniform spectral
multiplicity function. (see [25].
Example(6 2.6)[13]: Let S € L(F?) be the unilateral shift, defined by Sf := xf .
The F.&M. Riesz Theorem vyields that m(S) = T. Let h be a conformal Riemann

mapping of the open unit disc D onto the simply connected open set G := {re“ : 0 <

3
r<1,0<t<7”}.

Since the boundary dG of G is a Jordan curve, we may infer, by a theorem of
Charath”eodory, that h extends to a homeomorphism from the closed unit disc D~ onto
the closure G~ of G (see [21]). Clearly 2(h) = h™!(a), where a = {e*:0<t <
3m/2}. Since dG is rectifiable, we obtain that h is a regular partially inner function (see
[21]), and sope —ran(h|2(h)) = h(2(h)) = a By Corollary (6.2.5) the analytic
Toeplitz operator h(S) is quasianalytic with m(h(S)) = a. Considering restriction of
h(S) to a cyclic subspace H, we obtain a cyclic a.c. contraction Q € L(H) such that
m(Q) = w(Q) =a _. Let (Xy, V) be a unitary asymptote of Q, where V, € L(K)).
Since Vy,en Vo " XoH = K, it follows that the a.c. unitary operator V, is also cyclic.
Hence V;, is unitarily equivalent to the operator M, of multiplication by y on the space
L*(a) := y, 2.

We know by Corollary(6.2.5) that the a.c. contraction T := Q2 is quasianalytic with
n(T) = T.Let (X;,Vy ) be a unitary asymptote of T. We conclude by Theorem(6.2.3)
that Vy is unitarily equivalent to M2: V; =~ MZ2. On the other hand, it is easy to verify that
M =~ My @ M, ,wherea; = {e: 0<t <m}.

Therefore V; ~ My @ M,, , and so the spectral multiplicity function 6, = 1 + x,, is
not constant on (T) = T.

Let T € L(H) be a Cjp-contraction. Then T is clearly c.n.u., and so it is an a.c.
contraction. Let (X, V) be a unitary asymptote of T,V € L(XK). We say that T belongs to
the class L,(H) if it is also quasianalytic, and if the unitary operator V is cyclic.
Assuming T € Ly(H), the cyclicity of V implies that the commutant {V’}’ is abelian.
Furthermore, the canonical algebra-homomorphism y: {T} — {VY}', defined by y(C)X =
XC, is one-to-one since X is injective.

Hence the commutant {T}' is necessarily abelian too.

We note that V is evidently cyclic when T is. However, V can be cyclic even when T is
not cyclic. Indeed, example was given in [30] for a non-cyclic C;,- contraction T with
defect indices dr = 1 and d;~ = 2 (yielding T € L,(H) by Proposition (6.2.8)).

Let £, (H) denote the subclass, consisting of those operators T € L,(H) which satisfy
the condition m(T) = T. Recall that the contractions in £;(H )have many invariant

subspaces, while the (ISP) is still open in the class £, (H).
- 160 -



The following result shows that the (HSP) in Ly(H) is strongly related to the (HSP) in
Li(H).
Theorem(6.2.7) [13]: If T € Ly(H) and w(T) contains a non-trivial closed arc «, then
there exists a contraction T € £,(3) suchthat {T} = {T},andso Hlat T = HlatT .
Proof. Let 9, be a Riemann mapping from D onto the upper half disc D, := {z € D:
Imz > 0}. By Charath’eodory’s theorem, 9, can be extended to a homeomorphism
between D~ and DI . Setting A, =95t (1),4, = 951(i), and A; = 951 (—1), let us
pick{;, {,, {3 € T so that {;, {5 are the two end points of a, ¢, is an inner point of «, and
the orientation of the triples (44, 1,,43) and ({y, {,, {3) are the same on T. There exists a
unique linear fractional mappingy  such that (&) =4 for j = 1,2,3. Clearly
Y(T) = Tand yY(D) = D. The function 9 := 9y o (P|D~) € H* is a homeomorphism
between D~and D} furthermore, 2(9) = a.
By Corollary (6.2.5), we have

m(A) = w(d) =9(a) =T,:={e: 0<t <m}
for the a.c. contraction A := 9(T). Since m(A) # @ it follows that A is a C;.- contraction.
Furthermore, applying Theorem(6. 2.3) for the adjoint of T we obtain that A* = 9(T*) is
a C,--contraction. (We recall that by definition 9(2): = 9( 2).) Hence the contraction A
is of class Cy. Since the Ces'aro means of the Fourier series of 9 converge uniformly to
9 by Fej’er’s theorem, by the norm-continuity of the functional calculus @, we infer that
A € W(T). On the other hand, 9 is univalent and 9(D) = D, is a Charath’eodory
domain (i.e., a simply connected bounded open set whose boundary coincides with the
boundary of the unbounded component of the complement of its closure). Thus 9 is a
sequential weak-* generator in H* by a result of Sarason (see [14]). Hence there exists a
sequence {p,}n—1 of polynomials such that {p, o9},—; converges to the identical
function y in the weak-+ topology. By the weak-* continuity of &, the operators
pn(A) = (pp,°9)(T) (n € N) weak-+ converge to y(T) = T, and so T € W(A).
Therefore W (T) = W (A4), which yields coincidence of the commutants: {T} = {A}".
Because of the cyclicity assumption, M, (T) is a unitary asymptote of T (with an
appropriate X € L (T,M,(T))). By Theorem(6 2.3) the operator 9(M,) will be a unitary
asymptote of A. Repeating the preceding argument for M, in place of T, we obtain
WM, = WH®M,)). Thus 9(M,) is cyclic together with M,. We conclude that
A € Ly(H)with t(4A) = T,.
Let us define the C;o-contraction T € L(H) by T := A?. By Corollary (6.2.5) we have
n(T) = w(T) = T. By virtue of Theorem(6. 2.3) we know that My = M{_+ is a unitary
asymptote of T . Hence T'is of class £, (H). Moreover, we conclude by [25] that {T} =
{4y ={T1}.
It remains open whether the assumption on the existence of an arc in the residual set can
be removed in the previous theorem. We note that in [27] the (HSP) for arbitrary C;,-
contractions was reduced to the case where (T) = T. Now we have concentrated on the
cyclic case, establishing exact coincidence for the commutants. Analogous reductions
were made also in [6] and [3].
Now we exhibit examples of operators belonging to the class £; (H). We recall that the
defect operator of a contraction T is Dy := (I — T*T)'/?, the defect subspace of T is
Dy = (Dy3)~ and the characteristic function @;: 1D — L(Dy,Ds+) of T is defined by
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Or (2) := [T + zDp+(I — zT*)"1D; ]|Dy . The defect index d; is the dimension of the
defect space D (see [29]).

Proposition(6.2.8)[13]: Let T € L(H) be a C;,-contraction with defect indices satisfying
the condition d;+ =dr +1 < o00.Then T € L, (H), and for any unitary asymptote (X, V)
of T, the restriction V|(XH )~ is a simple unilateral shift.

Proof. Since T is a C;y-contraction, © is an inner and =-outer function, that is ©4({) is
an isometry for almost every { € T and ( @;H?(D7+))~ = H?*(D;). Let us consider the
functional model of T. Let U denote the unitary operator of multiplication by the identical
function y (&) = & on the space L?(Dy+) of vector-valued functions. The model operator
S(07) is defined on the space H(O;) = H*(Dy+) © O:H?*(Dy) by S(07) :=
Pyeo, UIH (Or), where Py g,y is the orthogonal projection onto 3 (@r) in H?(Dy+).
The contraction T is unitarily equivalent to S(0;), that is there exists a unitary
transformation W € L (T,S(07 )). (See [29] for details.) The assumption on the defect
numbers yields that

A7 (Q):=1—-0:(0)Or (O)* is a projection of rank 1 for almost every ¢ € T. Setting
theunitary operator R,;:= U|R.r on the space R,r = A.r L*(Dy+), and the
transformation X, r € L(H (07 ), R.r ) defined by X, rh := A, rh, the pair (X.;W,R.7 )
will be a unitary asymptote of T (see [27]). Since the spectral multiplicity function of
R.ris constant 1 on T, it follows that R, 7 is cyclicand w(T) = T.

By a result of Sz.—Nagy- Foias, the assumptions imply that T is a quasiaffine
transform of the unilateral shift S € L(H?), defined by Sf = xf (see [30]).

Thus there exists a quasiaffinity Y € L(T, S); we recall that Y is injective and has dense
range. Given any decreasing sequence F = {f, };;—1 In H®, which is nonvanishing on T,
the relation H, (S, F) = {0} readily yields (T, F) = {0} since f,(S)Y = Yf,(T) (n €
N). Therefore n(T) = T,andso T € L;(H).

Let S € £(L?) stand for the bilateral shift defined by Sf := xf ; S is the minimal unitary
extension of S. Clearly Y € L (T, S), where Y h := Yh (h € H).

If (X,V) is a unitary asymptote of T, then there exists a unique Z € £ (V,S) such that
ZX =Y .Since V =~ S, we can easily conclude that V|(XH)™ = S.

We note that the previous statement can be extended to C;,-contractions T with d; = oo,
assuming that 4,y (¢) is of rank 1 for almost every { € T., dim ker T* < oo, and that
there exists a non-zero § € H® such that ¥®; = &1 holds with some bounded, analytic
function ¥ : D —» L(Dr+,Dr). Under these conditions T is a quasiaffine transform of S
by a result of Takahashi in [31].

Further examples for operators in £,(#H) can be given by taking cyclic subspaces of
countable orthogonal sums of operators belonging to £, (H).

From now on we assume that T € £, (H). Let (X, V) be a unitary asymptote of T, where
V € L(K) is a cyclic a.c. unitary operator with w (V) = T. The functional calculus for V/,
resulting from the spectral decomposition, is the uniquely determined isometric, unital *-
homomorphism ¢: L — L(K),f — f (V) which is continuous with respect to the
weak-* and weak operator topologies, and which sends the identity function y into V.
The range of ¢ is the abelian commutant {V}'. (See e.g. [5].) Taking the x-isomorphism
p:{V}Y - L®, f (V)— f letus consider the contractive, unital algebra-homomorphism
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V= oy {T} — L%
satisfying the condition y(9(T)) =9 foreveryd € H”.
Lemma (6.2.9)[13]: The map ¥ is independent of the particular choice of the unitary
asymptote (X, V).
Proof. The straightforward proof is left as an exercise.
We use the notation ¥ for the uniquely determined mapping 7 introduced above.
Notice that 7 is injective, since T is of class C;.. The range F(T) of y; is a subalgebra of
L™, containing H*, which we call the functional commutant of the contraction T. We say
that a subalgebra A of L™ is a quasianalytic function algebra, if A contains H*, and if
f () = 0 foralmostevery ¢ € T, whenever f € A\{0}.
Proposition (6.2.10)1[3]: For any T € L;(H), the function algebra F(T) is
quasianalytic.
Proof. Given f € F(T) \ {0}, consider the non-zero operator C € {T} with y; (C) =
f .Let v € H be an arbitrary non-zero vector. Since T is quasianalytic, the vector Xv is
cyclic for the algebra {V'}'; that is, the set {DXv : D € {V}'} is dense in K (see [25]).
Taking into account that V is a cyclic unitary, we infer that Xv must be separating for
{V}. Thus XCv = f (V)Xv # 0,whence Cv # 0 follows. Then f(V)Xv = XCv is also
cyclic for {V}',and so f ({) # 0 for almost every ¢ € T on account of w(V) =T.
Taking the inverse of ; , we obtain the unital algebra-homomorphism &, : F(T) -
L(H), defined by &, (f) = C whenever $7 (C) = f . The mapping @is an extension
of the Sz.-Nagy—Foias calculus @; , with range coinciding with the commutant {T}'. It is
expansive: ||f(T)Il = |If |l for every f € F(T), since y; is contractive. Taking into
account that @, is contractive, we deduce that ||9(T)|| = [|9 || holds for every 9 € H*.
Let us examine the effect of the M"obius transformation on the extended functional
calculus. Given a € D, the formula b,(2) := (z — a)(1 —az)~! defines a regular
inner function in H*, called the M"obius function corresponding to a. Let us consider the
c.n.u. contraction T, := b,(T)and the a.c. unitary operator V, := b, (V). Since
T = b_,(T,) and V = b_,(V,), it follows that W (T) = W (T,) and W(V) = W(V,). We
can see that I/, is also cyclic.
Applying Theorems(6. 2.3) and(6. 2.4) we obtain that (X, V) is a unitary asymptote of
the contraction T, belonging to £, (H),. It is evident that {T} = {Ta}, {V} = {Va}, and
the mapping y is the same for T as for T,. The weak- * continuous *-homomorphism
T, L - L”,f— fob, transforms the identical function y into b,. By the
uniqueness of the functional calculus ¢, for V,, we infer that ¢ o 7, = ¢,, whence
Vg = T_q o @ follows. Thus yr, =@, 0y = T_0@ey =17_,°Pr, and we arrive at
the following statement.
Proposition(6.2.11)[13]:If T € L;(H),then T, = b,(T) € L;(H)(a € D). Furthermore,
F(T) = {fobo fEFM}r, =tacPr and &r, = Oporythat is, f(T,) =
(f o b,)(T) holds for every f € F(T,).
The following statement relates the spectrum of T to the function algebra F(T).
Proposition(6.2.12) [13]: Let us assume that T € £, (H).
(a) The point a € D is in the spectrum o (T) of T exactly when the conjugate b, of the
M obius function b, does not belong to F(T).

-163 -



(b) The spectrum o(T) covers the closed unit disc D~ if and only if F(T) does not
contain the conjugate of any non-constant inner function.
Proof. (a): If a € D \ o(T), then b, (T) is invertible and b, (T)~! € {T}.
Hence b, = bi = 91 (b, (T)™Y) € F(T). Conversely, if b, € F(T), then there exists
C € {T} such that 1 (C) = b,. Since

Y1(Cbe(T)) = ¥1(C) ¥1(ba(T)) = beb, =1
and y¢ is injective, it follows that Cb,(T) =1. Hence b,(T) is invertible, and so
a€eD\a(T).
(b): In view of (a), it is enough to show that if 9 € F(T) holds for some nonconstant
inner function 9 € H*, then b, € F(T) is also true for some a € D.
Let C € {T} be the operator with 7 (C) = 9. By Frostman’s theorem we can find a non-
zero A € D such that |A| < ||C]|~! and the composition b = b, o 9 is a Blaschke product
(see [7]). The function

b=Dbed=9 -HA - W)™ = 7(3)
belongs to F(T), since C; := bz(C) is in {T}'. Clearly, b has the form b = b,n where
a € Dandn € H* is inner. We conclude that b, = bn € F(T).
By the F.& M. Riesz Theorem, the Hardy space H* itself is a quasianalytic function
algebra. Further examples for quasianalytic algebras can be given by the aid of inner
functions. We recall that a function n € H* is inner, if [n({)| = 1 for almost every
¢ € T. Let H” stand for the set of all inner functions. Given any non-empty subset
B c H;” , the algebra

k

D o0 — [o%] k

[B,H*], := ﬁl_[nj:ﬁEH ,{nj}j=1 c B,k €Ny,
j=1

generated by B U H® is clearly quasianalytic. Its norm closure

[B,H*] := ([B,H"]o)"

is called the Douglas algebra, associated with B. By the celebrated Chang—Marshall
Theorem, every closed subalgebra A of L* containing H* is a Douglas algebra (see
[7]). We shall call [B, H*], the pre-Douglas algebra corresponding to B. While all pre-
Douglas algebras are quasianalytic, the non-trivial Douglas algebras don’t have this
property.

Lemma(6.2.13)[13] :The only quasianalytic Douglas algebra is H*.

Proof. Let A be a closed subalgebra of L*, which properly contains H® : A > H®, A #
H®.Then A 5[, H*] = C(T) +H®,

where C(T) stands for the space of continuous functions on T (see [22]). Thus A is not
quasianalytic.

The following theorem characterizes the case when the functional commutant is a
Douglas algebra. We need some notation. Given a contraction T € L(H), let (X,V) be a
unitary asymptote of T. The definition of the positive contraction

Ar = XX € L(H) is independent of the special choice of (X,V); in particular, the
equations

(X*Xh,h) = |IXh]|? = lim,_o|IT"h||?> = lim,,(T*T"h,h) hE€EXH
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show that Az = lim T*™T" in the strong operator topology. (Notice that

the sequence {T*"T"}%_, is decreasing.) The mapping Ly : {T} = L(H),C~ A;Cisa
bounded, linear transformation. If the contraction T is a.c., then
H*(T) := ran®; < W(T).
Theorem( 6.2.14)[13]: For any contraction T € L,(H), the following conditions are
equivalent:
(@ F(T) is a Douglas algebra,
(b) @7 is bounded,
(c) @y is an isometry,
(d) Ly is bounded from below,
(e) Ly isanisometry,
(f)F(T) = H”,
@ {1} = H>(D).
Proof. We know that y;: {T} — L* is an injective, bounded, linear transformation, with
ranyy = F(T). By the Closed Graph Theorem, F(T) is closed if and only if @, is
bounded.
Let (X,V) be a unitary asymptote of T, and let us consider the algebra homomorphism
v:{T} - {V}. For any F € {V}, the operator B = X*FX € L(H) is T-Toeplitz:
T*BT = B.Givenany x,y € H andn,k € N, we have
KFV="Xx, V" Xy)| = |(Bx, )| = {BT*x,T*y)| < [IBIl - IT*x || - IT* yll.
Running k to infinity, it follows that
[((FV "X, V" Xy) < |IBII 11X || - [IXyll = NIBI - IV Xx|l . IV Xyl.
Hence [|F|l =||Bll, and so the mapping I:{V} - L(#),F~ X*FX is a linear
isometry. It can be shown that the range of I" coincides with the set of all T-Toeplitz
operators (see [26]). Since I'oy = Ly , we conclude that @ is bounded (respectively an
isometry) if and only if Ly is bounded from below (respectively an isometry). (We note
that the previous discussions can be carried out for any C;. —contractions.)
Taking into account that the Sz.-Nagy-Foias functional calculus, @ is an isometry for a
contraction T € L, (H), the remaining implications follow from Lemma (6.2.13).
We obtain that if F(T) is a Douglas algebra, then Hlat T = Lat T has an abundant
supply of subspaces. The following sufficient condition can be frequently checked easily.
Proposition(6.2.15) [13]: If T € £, (H)is a quasiaffine transform of the simple unilateral
shift S € L(H?), then F(T) is a Douglas algebra.
Proof. From the proof of Proposition(6 .2.8) we can see that a unitary asymptote of T can
be given in the form (X,S), where S € £(L?) is the bilateral shift, X € £ (T,S) and
(X))~ = H?. Given any f € F(T), let us consider the operator f(T) € {T}. The
equation Xf(T) = f(S)X implies
fH? = f(S)(XH)™ < (Xf (T)H)™ < (XH)™ = H>.
Hence f € H?, and so F(T) = H* is a Douglas algebra.
Proposition (6.2.8) provides contractions satisfying the conditions of the previous
proposition. Now we turn to pre-Douglas algebras.
Theorem(6.2.16) [13]: Let T € £, (H). If F(T) is a pre-Douglas algebra, then R(T) =
{T},andso Rlat T = Hlat T.
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Proof. We may assume that the pre-Douglas algebra F(T) is different from H*. Setting
B:= {n€H”:7€F(T)}, we have [B,H®], =F(T), and #(T)=n(T)"! €
{T} whenever n € B. We have to show that #(T) € R(T), for every non-constant n €
B.
If nis a M obius function of the form
k(z — a)
T](Z) = m(k eET,a € ]D),
then a & o(T) by Proposition(6.2.12) . Exploiting the fact that &, is a unital algebra-
homomorphism, we obtain
A(T) =n(T)™! = k(T — al)™'( — aT) € Ry(T) < R(T).

Observe that n € B,n =nn, (11,n, € H ) implies 1; = in, € F(T). Thus 7(T) €
Ry (T), whenever n € B is a finite Blaschke product.
Let us assume now that n € B is an infinite Blaschke product: n = [];-; b,,, Where
{a,}p-1 €D and X7_;(1—|a,|) < . Here we use the notation by(z) := z and
b,(z) :==—(a/la])(z—a)/(1 —az) for a € D\ {0}. For any N € N, we set By :=

N_1b,, . We know that By € F(T) and By(T) = By(T)~* € R(T). The operator
n(T) is invertible with n(T)™! = 7(T), hence &:= inf{|In(T)x|| : x € I, ||x]| = 1} >
0. Since the sequence {By},=1 is bounded and limy_, By(z) = n(z) for every z € D, it
follows that By (T) converges to n(T) in the weak operator topology, as N tends to
infinity (see [29]). Given any x € 7{, ||x]| = 1, and setting vy = [[n(T)x||"tn(T)x, we
infer
Limian—)oo” BN (T)XH = limN—)ool(BN (T)x, y)l

= [n(T)x, ) = lIn(Dx|| = 6.

Taking into account that || By.1(T)xIl < llby+1 (Tl By (Dxll < [I1By(Dxll (N € N),
we obtain that ||By(T)x|| =& for every N € N. Thus {By(T) '}%-; is a bounded
sequence.
There exists a subsequence {BN]. }i’=1 such that By, (T)~! converges to an operator

C € L(H) in the weak operator topology, and lim;_,, By, (§) =n({) holds for almost
every ( € T (see, e.g., [5]). Then C is necessarily in R(T). Furthermore, BNj (T)

converges to n(T) in the strong operator topology (see [15]), and so the product I =
By, (T)‘lBNj (T) converges to Cn(T) in the weak operator topology, as j — oo. Thus

Cn(T) = I, whence 7(T) =n(T)"! = C € R(T) follows.Now let n € B be an arbitrary
non-constant inner function. For convenience, we use the notation A :=n(T). By
Frostman’s theorem we can find a € D so that 0 < |a| < 47|47, and ba ° b, o
n = b is a Blaschke product. (Here b,(z) : = (z —a)/(1 — az).) Since b(T) = b,(A) €
(T} is invertible, it follows that b € B, and so D := b, (4)~! = b(T) € R(T). The
equation D = (A4 — al)~'(I — aA) readily yields D +al = A~'(I + aD). Taking
into account that

laD|l < lalll AT T — ad™ DI I —aAll <1,
we conclude that (I + aD)™! =Y ,a™D" € R(T), and so we obtain that 7(T) =
A"l = (D +an(l + aD)™! € R(T) holds too.
The following type of function algebras were studied by Tolokonnikov in [32].
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A subalgebra A of L”, containing H”, is called a generalized Douglas algebra, if
feAAreC and |A| > || fllo imply 1/(f — A1) € A. We proceed with a spectral
characterization of the case when the functional commutant is of this kind.
Theorem(6.2.17)[13]: Let T € L{(H). Then F(T) is a generalized Douglas algebra if
and only if &, preserves the spectral radius:r (f (T)) v (f) = |l fll, for every
f € F(T).

Proof. The commutant {T}' is a Banach algebra, and for any C € {T}', the spectrum of C
in {T} is the same as the spectrum of C in L(#). Since y;:{T} — L% is a unital
algebra-homomorphism, we infer that o(f (T)) contains o(f), which is the essential
range of f, forevery f € F(T).Hence r (f (T)) = r (f) = || fll. always holds.

Let us assume that F(T) is a generalized Douglas algebra. Setting f € F(T),

A€CGC A > || fllo, Wwe know that g = 1/(f — A) € F(T). Then

g(f —2) = limplies g(T)(f (T) —Al) =1, and so A is in the resolvent set of f(T).
Thus v (f (T)) < |l flleo-

Let us assume now that @ preserves the spectral radius. Setting f € F(T),

AEGCI|A > || fllw, the relation || fll, = r (f) = r (f (T)) yields that f (T) - Al is
invertible. Its inverse C necessarily belongs to {T}’, and so C = g(T) for some g €
F(T). Since @y is injective, the equality (f (T) — ADg(T) = I implies (f —1)g = 1.
Hence 1/(f — 1) = g € F(T).

In view of Proposition(6.2.12) and Theorem(6.2.14) , the spectrum o(T) is the closed
unit disc D~ when &7 is an isometry, or equivalently, when F(T) is a Douglas algebra.
The next theorem describes the spectrum, when F(T) is a generalized Douglas algebra,
but not a Douglas algebra.

Theorem (6.2.18)[13]: Let T € Ly(H)..If F(T) is a generalized Douglas algebra,
different from H*, then o(T) = T.

Proof. For any a € D, let us consider the operator T, = b,(T), where b,(z) = (z —
a)/(1 —az). By Proposition (6.2.11) we know that T, € £;(H)and F(b,) = {f °
b_,: f € F(T)}. We conclude that F(T,)is also a generalized Douglas algebra,
different from H*. We infer by [32] that yx € F(T,), whence b, = yob, €
F(T) follows. Thus a is in the resolvent set of T in view of Proposition (6.2.12), and so
o(T) c T. On the other hand, y; shrinks the spectrum, as we have seen in the proof of
Theorem (6.2.17). Therefore o(T) 2 o(x) = T.

Example(6.2.19)[13]: Given 0 < § < 1, let us consider the simply connected domain
G={re: V6§ <r<1,0< t <m}

Let 9, be a conformal mapping of D onto G, satisfying the condition 9,(¢) = ¢ for{ =
1,i,—1. Then 9 := 93 will be a regular partially inner function with Q(9) = T, :=
{fe: 0 <t <nm}and pe —ran(¥|T,) = 9(T,) =T.

The simple unilateral shift S € L(H?),Sf = xf belongs to £,(H?). Furthermore,
(J,S) is a unitary asymptote of S, where J : H? — I% f — f is the natural embedding,
and S € L(L*),Sf = xfis the simple bilateral shift. Clearly w(S,9) =T,. Let us
consider the analytic Toeplitz operator T := 9(S) = Ty € L(H?). By Theorem (6.2.3)
the pair (J,,9(S,)) is a unitary asymptote of T, where S, := S|L*(T,) and J, : H? -
(T, f = xe,f -
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In virtue of Theorem(6. 2.4) we can also see that m(T) = T.
Set ¥, := 9|T,. Since the boundary of G is a rectifiable Jordan curve, the mapping
Z: 12 > L2(T),f = (f o9)|9; |M%is a unitary transformation, intertwining S with
9(S,) (see [5] or [23]). Thus 9(S,) is cyclic, and so T € £, (H?).. As in the proof of
Theorem (6.2.7), we obtain that {T} = {S} ={T, : h € H*}. Therefore, for every
A € C\o(T), the inverse (T — AI)~! is an analytic Toeplitz operator, whence
o(T)=9(D)” ={re*:6<r < 1,0 <t < 2m}
can be easily derived.
To identify the functional commutant F (T), let us consider the mapping
y:{TY - {(9(S+)Y,C ~ D, where J,C = DJ,. We know that {T} = {S}’.
Furthermore, for any h € H*, we have h(S) € {T},h(S,) € {9(S,)} and J.h(S) =
h(S.)J., hencey(h(S)) = h(S;).Since ¢:L” - {9(S)Y.f ~ Zf (S)Z* is the
functional calculus for 9(S,), we infer that g € F(T) holds exactly when there exists a
function h € H* such that Zg(S)Z* = h(S,); and then &, (g) =T,. For any f €
L”we have Zg(S)f = (g °9)(fed) 91 V* and h(S)Zf = (RIT)(f o
99 |V2. Thus F(T) =g € L : {g o9, = h|T, forsome h € H*}
We can get further examples by choosing G to be any simply connected domain in D,
whose boundary 0¢ is a rectifiable Jordan curve, satisfying the condition G Nn'T = T,.
Section(6.3): Quasianalytic Spectral Sets of Cyclic Contractions
Let /' be an infinite dimensional separable complex Hilbert space and let £ (H)
denote the set of bounded, linear operators acting on . For an operator T € L (H) let
{T} ={C € L (H):CT = TC} denote the commutant of T, and let Hlat T = Lat{T}
stand for the hyperinvariant subspace lattice of T. The Invariant Subspace Problem
(ISP) asks whether every operator T £ (H) has a non-trivial invariant subspace, that is
if Lat T = {{0}, H'}. In a similar fashion, the Hyperinvariant Subspace Problem (HSP) is
whether every operator T € L (H)\CI has a non-trivial hyperinvariant subspace. These
problems are arguably the most challenging open questions in operator theory. From the
point of view of subspaces one can normalize the operators to have norm at most 1,
hence in what follows we shall only consider contractions. In the present work we shall
show that for a relatively large class of contractions £, (), see its definition below)
the problem (HSP) is equivalent to (HSP) for a special subclass (£; (H)), the members
of which have rich invariant subspace lattice. The reduction will be achieved by
establishing that for every T € £, (H) there is a Ty € L; (H') which commutes with T
.ThisT; will be obtained as a function f(T) of T , where f is a special conformal map
lying in the disk algebra.
The existence of f will be proven via potential theory.
We define some classes of contractions. These concepts were introduced (in the non-
cyclic case too) in [11], where it was shown, among others, that non-quasianalytic
contractions (to be defined below) do have proper hyperinvariant subspaces. Thus, in the
quest for such subspaces one should concentrate on quasianalytic contractions.
Let T € L (H) be a contraction:||T|| <1 We recall that the pair (X,V) is a unitary
asymptote of T ,if
(i) V is a unitary operator acting on a Hilbert space «,

-168 -



(ii) X € L (}H, k) is a contractive mapping intertwining T with V : || X|| < 1,,XT =
VX and

(iii) for any similar contractive intertwining pair (X,V) there exists a unique
contractive transformation Y € £ (x, k) suchthat YV =V Y and X = YX.
For the existence and uniqueness of unitary asymptotes we refer to [4] (see also [10]).
We assume that T is of class C;,, which means that

(@) T is asymptotically non-vanishing: lim,,_,..[|T™|| > 0 for every

0+ x €H and

(b) the adjoint T* is stable: lim,,_,,||(T*)"x|| = 0 forevery x € H.
Then the intertwining mapping X is injective, and the unitary operator V is absolutely
continuous. Let us also assume that V is cyclic:

Va—oV"y =k for some y € k. Then, for some measurable subset « c T of the unit

circle, V is unitarily equivalent to the multiplication operator M, on the Hilbert space
L? (a) by the identity function ¥({)= M, f =xf.f € L*(a).
So from now on we may assume k = L>(a) and Vf = xf,f € L>(a).The set « is
uniquely determined up to sets of zero Lebesgue measure, and is called the residual set
of T, denoted by w(T).
We say that T is quasianalytic on a measurable subset g of T.,if (Xh)({) # O for a.e.
¢ € B whenever 0 # h € H. Taking the union of a sequence of quasianalytic sets,
whose measures converge to the supremum (of measures of all quasianalytic sets), we
obtain that there exists a largest quasianalytic set for T , denoted by = (T).Theset (T)
Is determined up to sets of zero Lebesgue measure, and is called the quasianalytic
spectral set of T . Clearly, m(T). is included in w(T). The contraction T is
quasianalytic, if 7(T) = w(T).
in [13] introduced distinctive classes of quasianalytic contractions. The class Ly(H)
consists of the operators T € L(H) satisfying the conditions:
(i) T is a Cyo-contraction,
(ii) the unitary operator V is cyclic, and
(i) T is quasianalytic.
The subclass £, (H) consists of those operators T € Ly(H), which satisfy also the
additional condition:
(iv) m(T) =T
Every operator T € L;(H) has a rich invariant subspace lattice Lat T ;see[11]. Let us
consider also the class £(H) of those (non-scalar) contractions T € L(H), which are
non-stable (i.e., lim,_||T"x|| > 0 for some x € H), and where the unitary asymptote
V is cyclic. Clearly

Li(H) € Ly(H) c L(F).
We emphasize that from the point of view of invariant subspaces these classes are very
natural.
Namely, we know from [11] that the (HSP) in the class £(H)is equivalent to the (HSP)
in the class £, (). Furthermore, if the (HSP) has positive answer in Z(H), then the
(ISP) has an affirmative answer in the large class of contractions T , where T or T* is
non-stable. As was mentioned earlier, the (ISP) in L;(H) is answered affirmatively.
Actually, a lot of information is at our disposal on the structure of operators in £, (#),
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which may be helpful in the study of the (HSP) in this class; see [12]. It was proved in
[13] that if T € Ly(H) and = (T) contains an arc then there exists T; € L (H)such that
{T} ={T,}Yand so HlatT = Hlat T, .
Therefore, we obtain the following corollary.
Corollary (6.3.1)[1]: The (HSP) in the class £,(#) is equivalent to the (HSP) in the
class L (H).
These results are related to those in [7,6,3,12].
We provide an operator T; in £, (#) n {T} as a function of , using the Sz.-Nagy-Foias
functional calculus; see [19]. We shall apply the spectral mapping theorem established
in [13]. The existence of a function f € H* , satisfying the conditions f(T) € L,(H)
and t(f(T)) = f(n(T)) =T, is based on Theorem(6.3.3) below.
Let m denote the linear Lebesgue measure both on the real line and on the unit circle. A
domain G € c is called a circular comb domain if it is obtained from the open unit disc
D by deleting countably many radial segments of the form {r {: p < r < 1} with some
0< p<land{eT,.
Theorems(6.3.7) and(6.3.2) should be compared to [15]. Here the additional absolute
continuity of the extremal measure is the key to our results.
In this Section the functional calculus within the class £, (#) is discussed, and
Theorem(6.3.1) is proved relying on Theorem (6.3.7). The proofs of Theorems(6.3.7)
and (6.3.2) are given in this Section .
In order to get C;, -contractions, we consider functions in the Hardy class H*  with
specific boundary behavior.
Let M be the o-algebra of Lebesgue measurable sets on T. For a complex function f
defined on the open unit disc D, let 2(f) be the set of those points ¢ € T, where the
radial limit lim,_,_o f(r{) =: f(Q) exists and is of modulus 1: [f({ )| = 1. It can
be easily seen that if f is continuous on D, then 2(f) € M.
For any f € H” the radial limit exists almost everywhere on T by Fatou’s theorem;
see [9].
We recall from [12] that f € H” is a partially inner function, if
@) 1f(® <1=fll. ,and
(i) m(2 (f)) > 0.
Note that (i) implies f [D] ¢ D by the Maximum Principle. Furthermore, Corollary
(6.3.2) of [13] states that m(f ~[w ]) = 0 for every w € M with m(w ) = 0 (recall also
that every set of measure 0 is included in a Borel set of measure zero). Hence, for any
NeMc(f), the measure wM-[0,2n], u(w)= m(f[w]nR) is
absolutely continuous with respect to m.
The properly essential range of the restriction f|, is defined by

pe —ran(flp) :={{ € T: (du /d m)({) > 0}.
Note that the Radon—Nikodym derivative du /dm, and so the Lebesgue measurable set
pe —ran(f|, ) too, is determined up to sets of measure zero. The spectral mapping
theorems in this Section of [13] are formulated in terms of this kind of range.
The properly essential range is just the range of the function under some regularity
conditions.
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We introduce this regularity property of a partially inner function in a somewhat
different (and simpler) manner than in [13]. We say that a function g:02 — T, where
N cT is a measurable subset of T, is weakly absolutely continuous, if , w c
N,m(w) = 0, implies m(g[w]) = 0. The partially inner function f € H* s called
regular, if ], is a weakly absolutely continuous function. The following lemma
shows that this definition is essentially the same as the one given in [11] and [13],
replacing Borel sets occurring there by Lebesgue measurable sets.

Lemma(6.3.2)[1]: Let f € H” be a partially inner function.

(@) Then f is regular if and only if for every measurable set 2 < 2(f) the image set
f [ 2] is also measurable.

(b) If f isregularand 2 € M, 2 c N(f), then pe — ran(f|,) = f(12).

Recall that pe — ran(f]|, ) is determined only up to measure zero, so the equality
pe —ran(f|, ) = f (£ )is also understood up to measure zero.

Proof. (a): We sketch the proof of this known equivalence. Suppose that f is regular, and
let 02e€M, N c(f). Since f|, is the pointwise limit of a sequence of continuous
functions, it follows from Egorov’s theorem that 2 = 0, U ,, where 2; and f [ 2]
are F;-sets and m( £2,) = 0. Hence, by assumption, m(f [2,]) =0 and thus f [2] €
M .

Conversely, if f is non-regular, then m(f [w]) = 0 fails for some w < 2(f) with
m(w) = 0.

There is a non-measurable subset Q2 of flw]. Thus 2= f"1[2]NweM , while
flRl=0¢ M.

(b): The sets w; = f[2] and w, = pe —ran(f]|,) are in M. Let us consider the
measure p occurring in the definition of w,, and let g = du /dm. Since

[y, 94m = p(w\w1) = m((flg) " wz\w1]) = mg = 0
and g({) > 0 for { € w,\w, , it follows that m(w,\w;) = 0. On the other hand, we
have

m((fla) o) = p(o\) = [ gam =0
w1\w2

since g(¢) = 0 for (almost all) { € w;\w,; thus m(w;\w,) = 0by the regularity
condition.
Applying the functional calculus, for an operator in L,(#H) we want to get another
operator in L,(H), which means that the cyclic property should be preserved. Hence,
univalent functions will be considered in the sequel. We recall that f : D — c is called a
univalent function (or a conformal map) if it is analytic and injective. The range
G = f [D] of f is a simply connected domain, different from c. The boundary 9G of G
is a non-empty closed set. It is known that the geometric properties of dG are reflected in
the analytic properties of f . For example 9G is a curve (i.e. a continuous image of the
unit circle) exactly when f belongs to the disk algebra A, and then 9G = f [T] (see
[15]). We recall that the disk algebra A consists of those analytic complex functions on
D, which can be continuously extended to the closure D of D. We focus our attention to
the class

Ay = {f € A: f|p is univalent }
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The following proposition shows that every partially inner function in A; has an almost
injective unimodular component. The cardinality of a set H is denoted by |H|. For
distinct points
{1,{, €T, the open arc determined by {;and ¢,is defined by (¢, = {ei:t; <t < t,},
wheret; <t, <t; +2mand {; = e'1,{, = ez,
Proposition(6.3.3)[1]: Let f A, be a partially inner function.
(@) If £(¢1) = f(¢) = w holds for distinct points {;,{, € 2(f), then for one of the
arcs I = {{¢, or I =g we have m(In 2(f)) = 0and f({) =w forevery (€
1IN 2(f).
(b) ThesetM = {w € T : |[f~! [w]| > 1} of multiple image points on T is countable.
(c) For any Borel subset 2 of Q(f) withm(2) > 0we have f[Q2] =pe —ran(f|,)
if and only if f |,is weakly absolutely continuous.
Proof. Statement (b) is an easy consequence of statement (a).
We sketch the proof of (a), which is based on ideas taken from the proof of the related in
[15].Let S denote the segment joining {; with {,. Then J = f [S] is a (closed) Jordan
curve in D U{w}. Let us consider the opensets G; =G nint] and G, = G Next] ,
where G = f [D]. It is easy to check that D, = f~! [G,],D, = f~![G,] are the
connected components of D\ S, and G; = f [D;],G, = f [D, ]. We may assume that
D, = SU &S, the other case 9D, = S U &E; can be treated similarly. For every
(e&E NN we have

f(Q) € G, N'T = {w}. Since m(f~* [w]) = 0, the statement follows.
Turning to the proof of (c) notice first that Q2(f) is a compact set on T. In view of (b)
the system S = {w; w < (f), w, f(w ) are Borel measurable} is a o-algebra on 2(f)
containing compact sets; hence S consists of the Borel subsets of 2(f).
Setting w; =f[N] and w, = pe —ran(f|,) we know that m(w, \ w;) =0
always holds, and m( w;\ w, ) = 0 whenever f|,is weakly absolutely continuous; see
the proof of Lemma (6.3.2). Assuming that f|,is not weakly absolutely continuous,
there exists a Borel set w < Q2 such that m(w ) =0 and m(w ) >0 for & = f [w].
Applying (b) again, we can see that f,gdm = pu (&) =m((f |p) [« ]) = 0 holds
for g = du /dm, and so m(w, N @) = 0, whence m( w,\w, ) = m(w) > 0 follows.
The following theorem describes the functional calculus within the class L£y(H). It
plays crucial role in the proof of Theorem (6.3.5).
Theorem(6.3.4)[1]: Setting T € L,(H), let f € A; be a regular partially inner function
such that m(mr (T)N QN (f)) > 0. Then Ty = f(T) € Ly(H) and we have =n(T,) =
ALGLIAGIE
Proof. By Proposition(6.3.9) the set M = {w € T: |f ~* [w]| > 1} is countable, hence
m(M) = 0 yields m(f ~1[M]) = 0. Deleting f ~1[M] from the quasianalytic spectral set
(which is determined up to sets of measure zero), we may assume that f is injective on
the seta = w (T)2 (f) € M.We know also that g = f[a] € M, and m(a) >
0,m(f ) > 0. Furthermore,the restriction ¢=f|,—= B is a bijection, and for
anyw c a wehave w€ M ifandonlyif ¢[w] € M, and m(w) = 0 exactly when
m( ¢[w ]) = 0. We use the notation & == (T) = w (T).
Let (X, My) be a unitary asymptote of , with a properly chosen contractive intertwining
mapping X: XT = M; X.Since T is a completely non-unitary contraction, it follows that
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T, = f(T)is also a completely non-unitary contraction (see Chapter Ill in [19]). We
know that T, is quasianalytic and w(T,) = f (see Corollary 5 in [13] and Proposition
6). The condition m( (T, )) > 0 yields T, € C;,and T € C, readily implies T,, € C,.
Furthermore, in [13] the pair (X, ,¢$(M, )) is a unitary asymptote of T,, where X,v =
Xo Xv (v € H) (here y, is the characteristic function of the set a ). We know that
¢(M, ) is an absolutely continuous unitary operator because T, is an absolutely
continuous contraction. It remains to show that ¢ (M, ) is cyclic.
Let us introduce the measure v on

M(B) ={w € M:wcpf}
via

v(w)=m(¢p [ w].

The properties of ¢ imply that v is equivalent to (mutually absolutely continuous
with) the Lebesgue measure on . Let us consider the unitary operator
N, L(L? (v)),N, g = x g, which is unitarily equivalent to M, (see [5]). It is easy to
verify that Z : L?(v),g — g o ¢ is a unitary transformation, intertwining N, with
¢My): ZN, =¢ (M, )Z.
Therefore, ¢(M ,)is unitarily equivalent to M, , and so it is cyclic.
Now we proceed with the proof of Theorem (6.3.5) relying on the statement of Theorem
(6.3.6).
Theorem (6.3.5)[1]: For every operator T € Ly(H) there exists T; € L;(H)
commuting with T : TT; = TyT .
Since the commutants{T} and{T;} are abelian (see e.g.this Section in [13]), the
relation TT, = T,T implies{T} = {T;},and so Hlat T = Hlat T;.
Proof. Let T be a contraction in the class £, (H), and let us consider the quasianalytic
spectral set 2 = m (T) of positive measure. By Theorem (6.3.6) there exist a compact
set 2 c 0 and a function f € A, such that £[D] is a circular comb domain, £~ [T] =
2, and f |z is weakly absolutely continuous. In other words, f is a regular partially
inner function with Q(f) =0 and f[2]=T. Applying Theorem (6.3.6) we
conclude that T, = f(T)E€ Ly (H) and n(Ty) =f[n(MNR (] =f[R]=T,
whence T; € L; (H) follows. Being norm-limit of polynomials of , the operator
T,commutes with T .
First we prove Theorem(6.3.6) applying Theorem(6.3.9).
Theorem (6.3.6)[1]: If 2 is a measurable subset of the unit circle T of positive (linear)
measure, then there are a compact set 2 c 2 and a conformal map f from I onto a
circular comb domain such that f can be extended to a continuous function on the closed
unit disc D, f~1[T] = 2, and m(f [w]) = 0 for every Borel subset w of 2 of zero
measure.
Here, and in what follows, f[A]:= {f(a): a € A} is the range of f when restricted to A4,
and f~1[B]:= {b : f(b) € B} is the complete inverse image of the set B under the map
f . When B = {b} has only one element, then we write f~[b]instead of f~1[{b}].
Theorem (6.3.6) will be derived from the subsequent Theorem (6.3.9). To formulate it
wee need some potential theoretical preliminaries. For all these facts see [16,8] or
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[17].Let K be a compact set on c, and let P(K) be the system of all probability (Borel)
measures supported on K .The potential

py(2) = [ log |z —w|dv (w)
of a measure v € P(K) is a subharmonic function on c, which is harmonic on ¢ \ K .The
(logarithmic) capacity of K is defined by cap(K) = exp(M(K)), where

M(K) = sup fpvdv:v € P(K)}
K

If cap (K) > 0, then there exists a unique measure ui € P(K), called the equilibrium

measure of K, which is maximizing the energy integral:

| bt = e
K
we write px = p,, for short. By Frostman’s theorem there is an F, -subset F of K with

cap(F)=0 such that pgx (z) = M(K) for all z=K\F,and pg (z) > M(K) for all
z € FU (c\ K). The compact set K is called regular, if the potential py is continuous
on c, or equivalently, if the previous exceptional set F is empty.

Proof. Let 2 c T be a set of positive Lebesgue measure, and let 2, c 2 be a
compact subset of positive measure. Applying rotation we may assume that 1 is a
density point of £, ; let 2, be its reflection onto the real axis. The compact set 2, =
2,N1 ;is of positive measure and symmetric with respect to R. Let us consider the
bijective Joukovskii map ¢:D — C\[—1,1], defined by ¢(2) = (z+ 1/2)/2; the
continuous extension to D is also denoted by ¢. Then E = ¢ [ 2, ] is a compact subset
of [—1,1] with positive measure, and 2, = ¢~ ![¢ [2,]] because of the symmetry of
0, .

By Theorem (6.3.9) there is a regular compact subset K of E with an absolutely
continuous equilibrium measure g .Let [a, b] be the smallest interval containing K.
Consider the analytic function

d(z) = expi?@—flog (z —t)dug (t) + log cap(K))
k

on the upper half plane H, = {z € C: 3 z > 0} with that branch of log which is positive
on (0,0). It is easy to see that for every x € R the function ratio @(2)/|® (2)|
converges to exp[ —imug ((x,))] as z - x from the upper half plane. Since
| ®(2)| = exp(— Py (z)) - cap(K) and K is regular, it follows that & can be
continuously extended to the closure of H, in C; ®( o) = 0. We can see that ®(K)
coincides with the lower circle T_ ={z € T:3z < 0}, ®(R\ (a,b)) =[—1,1], and
each component | of (a,b)\ K is mapped by @ onto a radial segment of the form
{r(: p <r<1}withsome0 < p<land (¢e€T_. Itcan be shown also that ®
is univalent; see [1]. Since ®(x) = exp[ —imux ((x,0))] for x € K and py is
absolutely continuous, it follows that sets of measure zero on K are mapped by @ into
sets of measure zero.

Let G, be the domain ®(H,), and G_ its reflection onto the real axis. Since ®(z) is
real for z € R\[a, b], using the reflection principle we can extend & via the definition
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®(z) = @ (2), Iz < 0to a conformal map of the domain C\[a, b] onto the circular
comb domain G = G, U G_U (—=1,1). Then f = & o ¢ is a conformal map from D onto
G, it belongs to the disk algebra, and we have f [2] =T, f [T\{2 ] ¢ D for the compact
set A =¢ '[K]cN If wc isof zero linear measure, then f [w] is also of zero
linear measure. Thus 2 and f have all the properties set forth in the theorem.

Note also that for compact, symmetric 2 the measure of 2\{2 can be made as small as
we wish.

To show Theorem (6.3.9) we need two lemmas.

Lemma(6.3.7)[1]: Let 1< < a1 <{ <ay; <-+<{ < a;. Then for x,y€
[—1,0] We have

{s {s—y
<M (B=/82) <2 (58)
In asimllar manner if1<pB, <y <P, <:<p; <thenforx,y € [-1,0] we have
{(s—x ,{s—y
<Mz (= /57) <2 (59)

Proof. The inequalltles (59) are obtained by taking reciprocal in (58) and switching the
role of B, ,{, and (, a,. Similarly, in proving (58) we may assume without loss of
generality that y < x.
The product in (58) can be written as
Os—X\ __ (1_x a1—x -1 (s+1_x as—x

I 1(Bs—y/a5—y) B (il—y/al—y) s=1 (€s+1—y/m)
(L = 2 can be assumed). Since (t — x)/(t — y) is increasing on (0,0 ), it immediately
follows from the left hand side that the product in question is at most 1. On the other
hand, by the same token the second factor on the right is at least 1, so the product is at
least as large as

(1—x/a1—x > {1—x > l
1=y " a1—y G-y 2

Let 1< a1 << ;< a be positive integers, and let {, € (fS,,a, ) for every
1<s< L
Taking the geometric mean of the products in (58) and (59) of Lemma (6.3.7) it follows
that

1 l |x—{s| ly =3l

2 S HS:l (\/lx_as”x_ﬁsl /\/ly_as”y_ﬁsl) S 2 (60)
for every x,y € [—1, 0]. Multiplying everything by (—1), and changing the notation it
follows that (60) holds also, when «, , 5, are negative integers and x,y € [0,1].Let z
denote the set of integers. Via scaling (multiplying everything by 27" (N € N) and
applying translatlon) we obtain that (60) is true if a,, B, € 27N zforevery1 < s <1

and x,y € [zN 2N] with some j € z satisfying the condition

j/2N < By oor —1)/2V > a. (61)
Given N €N let Iy; =[(j—1)27",j27V] for any j € z. Setting a non-empty set
S c{k € N:k < 2"} of non-consecutive indexes, let us consider the compact set
F = U;esIy; , which can be written in the form F = Ui_[as, bs] with a; < by < a, <
b, <-+< b, (n = 2). The equilibrium measure u; of F is absolutely continuous with

-175 -



respect to the Lebesgue measure m on R, and its density function is given by the
formula

— — l H?=_11|t_rs|
Y(t) = (dpp/dm)(t) nnﬁzlmdt’ teF, (62)

where the numbers 74 € (b;,a,41) (1 <s < n—1) are the unique solution of the
system of equations

Afe+1 2ot |t -]
= < < _
fbk [ v/Te—asle—bs] dt =0, l<k=n-1 (63)

This is a linear system in the coefficients of the polynomial [T°Z1|t — 7.

When n = 1 then the product in the numerator (62) is replaced by 1. For all these see
[18] and [17].

Lemma (6.3.8)[1]: Let 0<n <1/2,j€S, and H a measurable subset of
Iy; (N,S,FandIy; are as before). If

m(H) = (1 - 2n)m(ly; ), (64)

then

1
pr (H) = (1 - 229775) .uF(IN,j ) (65)
Proof. We shall give an estimate of the density function ¥ on Iy ;. Assuming that
Iy; < [a,, b, ], this estimate depends on the position of Iy ; inside [a, , b, ].
Case l. a, ,b, & Iy; ,i.ely; liesinside (a, ,b, ).Forx,y € Iy; we can write
Y _ \/|y—a1| x=bnl 01,-1(x) O1n-1(x) (66)

W) N lx=ail! ly=byl 01,10 0151
where

é=k|x _Tsl

s=k V1% = asallx — by

9k,l (x) =

(810 =6,,1 =1 by definition). Since each factor in this decomposition (66) of
PU(x)/W (y) lies between 1/2 and 2 by (61), it follows that

1

sV =v® = 8Y(®y). (67)
Case II. Precisely one of a, ,b, belongs to Iy;. Then eitherj2 ¥ =b, or (j—1)27N =

a, , say j27N = b, . We shall consider only the situation when 1 < r < n, for the other
options (i.e. whenr = 1 orr = n) are simpler. In this case

M) = = 8, (x)0, (), (68)
where
0,(x) = =01, ()
and

02(x) = 7= B0 (0.
Next we prove that here

T, — b, = 27827N, (69)
If T, —b, = 27N then there is nothing to prove, so let us assume thatt, € [b,,b, +
27N].Fort € [b,,b, + 27N ]the claim (61) gives the bounds
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S(br)<9(t)<49(b) =12 (70)
For k =r Eq. (63) can be written as

Ar+1
t—r1,

\/(t - br )(ar+1 - t)

.6,(t)8,(t)dt = 0,

So
tr Trt _ (%+1 t—1
Jb, o (6Dt = [T ==Zees 0, (1)0, (1)t

by4+27N t—T,
> e 1 (0e()dt.
In view of (70) this gives after division by 6, (b, )8, (b,) the inequality
by+27N
t—1,

f iz | La
J(t—b )(ar+1—t) V(& —b) (a4 —t)16
If we make a linear substitution so that [b, ,b + 2 7N becomes [0,1] and make use
that for 0 < 7 < 2‘8 and lEN the mequallty

T 1

Jy (1 — 16du<f (l = du
holds, we can conclude (69).
Now (69)immediately gives that for x,y € Iy ;

—l'ii'l <29 (71)
Next note that along with (70) the bounds
%) < 9,(x) < 46,) (i =12) (72)

are also true for x,y € Iy; (since (j — 1)27V is not an endpoint of a subinterval of F ),
so (68), (71) and (72) yield for x,y € Iy

Y(x)+/|lx— b, |x—Tr| |y—ar+1|<214
Y/ ly — b, |y Tl lx—aq| T

By reversing the role of x and y and then fixing y to be the center of I; we can

conclude with ¢ = 1/|b -y |Y(©)
1
c2-14 <yYx) < 2" ——,
/br - X ll) 1/br — X

Case lll. a, ,b, € Iy;. Then Iy ; = [a, , b,]. In this case (72) holds only on the right half
Iy ; of Iy;, so we can conclude (73) (with y = (a, + b, )/2) only there. However, an

analogous argument gives that on the left half I ; of I ; we have

x€ly,; . (73)

c2714 _r <yYx) < 0214;
ima, T e
Thus, we have the estimates (68), (73)or(74) fory on Iy ; , depending on the position
of the interval I ; in the set F .
Let now H be a measurable subset of Iy ; with measure m(H) = (1 — 2n)m(Iy,;) and

let Hy = Iy; \ H . Assume that Case Il holds for the interval Iy ;. (In Case Il the same

(74)
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argument can be applied, and in Case | the computations based on (67) are actually
much simpler, giving a better estimate.) Let I*and I~ denote the right half and the left

half of the interval Iy ;, respectively. Then, using (73) on I'*, we can see that

14__1
fHonI+¢(x)dx < fHonI+ c2 mdx

< c212m(Hy)V? < 252 V2m(Iy,)"?
1

15.,,1/2 +)1/2 = p1/2215
< c2bnpt/e2m(I) ne2vc . /b, —x dx
2—14-
= p1/229 [ Cbr_x dx < nl/2229 Ji+ W (x) dx.

Since a similar bound can be given for the integral over Hy N I~ using (74), it follows
that up(Hy )2%°n"?pup(Iy;). Then we conclude that up(H) = (1-—
229012 up(Iy, ) as was to be proved.
Now we are ready to show Theorem (6.3.9).
Theorem(6.3.9)[1]: Let E c R be a compact set of positive Lebesgue measure. Then for
every & > 0, there is a regular compact set K ¢ E such that m(E \ K) < &€ , and py is
absolutely continuous with respect to the Lebesgue measure on the real line R.
Proof. Without loss of generality we may assume that the compact set E of positive
Lebesgue measure is contained in [0,1]. For an N € N and & > 0 let us consider the
finite set
S(E,N,8):={j e Nom(Enly;) = (1 —-8)m(ly,)},
and let
E(N,6):=U {Iy,; : j€S(E,N,86)}.

By Lebesgue’s density theorem almost all x € E belongs to all E(N, 6§ ) for sufficiently
large N,i.e. to

Uii=1 N¥=n(E N E(N, 8)).

Thus
limy ., m(NF-y(E N E(N,8))) = m(E).
Whence
limy_., m(E N E(N,8)) = m(E)
follows.

Let there be given ane € (0,m(E)/4). Set ¢, = ¢ /2" for n € N, and recursively
define the positive integers N; < N, < ---and the closed sets E D E; D E, D ---in the
following manner.
Let N; be so large that

m(E\ E(Ny, &) < &,
and set E; = ENE(Ny, & ). In general, if N,,, E,, have already been defined, then select
a large N,,;1 > N,, so that

m (En \En (Nn+1»8n+1 ) < 8n+1/2Nn '

and let E,.; = E, N E,(N,41,&,41 )- We obtain the sequences {N,};—; and{E,}n-1
The compact subset K of E is defined by K = N;_; E,,.
Setting N, = 0 and E, = E,we have m(E, \ E 1) < &,411/2"" for every n >0,
hence
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[ee] oo

m(E\K) < Z €41 /2" = Z g/2n N0 < ¢

n=0 n=0
in particular m(K ) > 3m(E)/4 > 0. Furthermore, given n€ N for every je€
S(Ey—1,Ny,&,) we have E, NIy ;= E, N1y, ; and so, by the definition of
S(En-1, Ny, &, ),we have m(E, NIy, Dz A =e)my, ). Sincefork =0
gn

M(Enik \ Entis1) S Ensiar [27m+k < g /20t = 2k+1 m(ly, .j)
it follows
m(Knly, ) zm(E, 0y, )= 5 mEnpi\Ensis)
> (1-2e,)m(ly, ). (75)

Setz, € K, and for any k € N let

K, = Kn{z€C27%! < |z—2z)| <27F}.
For every n € N there is an index j, € S(E,_1,N,,&,) such that z, € Iy ; . Since
cap(H ) = m(H )/4 for any Borel subset of the real line, applying (75) we obtain

m(KNn+1) > 1 (1

cap(Ky, ., ) = ~— an) m(ly,; ) =212,

4 T 4\4
Whence
N, +1 - 1
log(1/ cap(Ky,,,)) 2

follows (provided n > 3). Thus
k

2= o5 (1 cap (K1)
and so Wiener’s criterion (see [16, Theorem 5.4.1]) yields that the compact set K is
regular.
It remains to show that the measure uy is absolutely continuous. Let V c K be a set of
measure zero, and let U = K \ V .Forn n € N, let us consider the set

Fn = En—l(Nnign) = U{INn.j : ] € Sn}r
where S, = S(E,_1,N,, &,). We know from (75) that
mUnly, )=mEn Iy, )= (1-=2&)my, ;)
holds for every j € S,,. Then Lemma(6.3.9) implies
Hr, NIy )2 (1- 2293711/2)111?,1 (INn ])
Summing up for j € S,, we get

1
pp, (U) =1 —2%¢;
Since K ¢ F, ¢ R the measure uy is obtained by adding to the restriction s |K the

so called balayage ug |(F,\K) onto K (see [17]). Therefore
1

ue () = pp, (U) =1—2%¢2,

and so
1

ug (V) = 1— pg(U) < 222
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hold for every n € N. By letting n tend to infinity we conclude that (V) =0o.
Corollary(6 3.10)[202]: Let).} 1fk € H” be a partially inner function.

(@)Then Y., fiis regular if and only if for every measurable set Q,_; € 2,_1 - 1fk)
the image set Y1 fi [2,_1]is also measurable.

(b)If Zk—lfk is regular and 2, €M, 0 2 (X5 1fk) then
pe —ran(Qx=1 fi Xi=1fi la,_) = f Zik=1 fie (Qi—1)-

Recall that pe —ran(Z’,zilfk lo,_, ) is determined only up to measure zero, so the
equality pe — ran(Z’,?zllfk lo,_,) = Zz;llfk (12,_1) Is also understood up to measure
zero.

Proof. (a): We sketch the proof of this known equivalence. Suppose that Z}(";l fi 1S
regular, and let 0, €M, Q,_,C Qk_l(Z;”;lfk). Since fZ’,?z'lfk lg,_, is the
pointwise limit of a sequence of continuous functions, it follows from Egorov’s
theorem that 2,_; =0, U2, where 2, and Z}c":’lfk [0,] are F,-sets and
m({2+1) = 0. Hence, by assumption, m(Z’;Zi1fk [2:+1]) =0 and thus
Zk=1fk [Q—1]e€ M.

Conversely, if X}_ 1fk is non-regular, then m(} 7= 1fk [w]) =0 fails for some w c
-Qk—l(Zk—l fi) withm(w ) = 0. ] ,

There is a non-measurable  subset 2,_, of Y filw]. Thus
Doy = TP fi (904100 € M, While 7, fo [01] = 071 € M.

(b): The sets wy, = X}; fi [2k—1] and wpyq = pe —ran(Xi fi lo,_,) are in M. Let
us consider the measure u occurring in the definition of wj,q, and let Z;”;ng =
du /dm. Since

> gedm = @ \0) =m| O fela, ) or\oi] | = mep =0
wit1\wy k=1 k=1

and Y71 gx (Q) > 0 for { € wy,1\wy , it follows that m(wy41\wy) = 0. On the other
hand,we have

' -1 '
m ((2113}1 fi |nk_1) [wk\wk+1]) = p(wp\wi41) = fwk\wk+1 Yi—1grdm =10

since Y7=1 gx (Q) = 0 for (almost all) ¢ € wi\wy41; thus m(w,\wy 1) = 0 by the
regularity condition.

Applying the functional calculus, for the power operator in £,,_;(H) we want to get
another power operator in £,,_;(H), which means that the cyclic property should be
pre§erved. Hence, univalent functions will be considered in the sequel. We recall that
Yieifi :D—>ciscalled a uni\{alent function (o,r a conformal map) if it is analytic and
injective. The range G, = Y7=, fix [D] of X7 fr is a simply connected domain,
different from c. The boundary G, of G, is a non-empty closed set. It is knovyn that the
geometric properties of dG, are reflected in the analytic properties of Y7 fi . For
example dG, is a curve (i.e. a continuous image of the unit circle) exactly when).;, f;
belongs to the disk algebra 4, and then 9G, = X7 fr [T] (see [15]). We recall that the
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disk algebra A consisG,ts of those analytic complex functions on D, which can be
continuously extended to the closure ]]_) of D. We focus our attention to the class
A = {0 fi € A: X1 fi |p is univalent }.

The following proposition (see [1]) shows that every partially inner function in A, has
an almost injective unimodular component. The cardinality of a set H is denoted by |H|.
For distinct points ¢, , ;41 € T, the open arc determined by {,and {,,is defined by
Gelirr = {1t <t <tyqq}, where t, <ty <t +2mand § = e, g = ek,
Corollary(6.3.ll)[202]: ITet Y= fx € A be a partially inner function.

(@) IfZ’,}zlfk (1) =271 fi (&) =w holds for distinct points (v Cies1 €
Q1 (O 1fk) then for one of the arcs I = (eCesq OF I = (ﬁl\(kwe have m(I n

Q1 (k=1 fi)) = 0and YL 1fk(() —Wk forevery ¢ € IN 02— (XF1y fi)-

(b) The set M ={w, € T: | X7 fr [wi]l > 1} of multiple image points on T is
countable.

(c),For any Borel subset Q1 of Qk_l(zzilfk) with m(2,_1;) > 0we have
2k=1fi (1] = pe —ran(Zi=q fi lo,_, ) 1f and only if XL, fi |o,_,is weakly
absolutely continuous.

Proof. Statement (b) is an easy consequence of statement (a).
We sketch the proof of (a), which is based on ideas take,n from the proof in [16]. Let

S denote the segment joining ¢; with {,. Then J = Y%, fi [S] is a (closed) Jordan
curve in D u{w}. Let us con5|der the open sets G, = G,_1 NintJ and Gk+1 = Gk 1N
ext], where Gp— -1 =y 1fk [D]. It is easy to check that D, = Y- 1fk [Gi],

Dyy1 = Y 1fk [Gr+1] are the connected components of D\S, and G, =

Zk—lfk [Dil, Giev1 = k=1 fie [Dies1 ]. We may assume that 9D = S U §i & ; the
other case dD, —5U5k+1<fk can be treated similarly. For every (Efkfkﬂn

Q-1 (X1 fi) we have YiL 1fk () € G, N'T = {w,}. Since m(Tj~ 1fk [wi]) =0,
the statement follows.
Turning to the proof of (c¢) notice first that 0, _; (X7, fr) is a compact set on T. In
view of (b) the system

S ={w;w c (T fi) 0, X7 fi (w) are Borel measurable}
is a g-algebra on le_l(zznzlfk) containing compact sets; hence S consists of the Borel
subsets of 2, _1 = fi)-
Setting  wy, = Xk=q fie [2k—1] and  wy4q = pe —ran(Xi fi lo,_, ) We know that
m( wg41 \ wi) = 0 always holds, and m( w,\ wr41 ) = 0 whenever X3, fi |o,_, IS
weakly absolutely continuous; see the proof of Lemma (6.3.2). Assuming that
Yk=1fk lo,_, is not weakly absolutely continuous, there exists a Borel set w < 2, _;
such that m(w )=0 anq m(w) >0 for & =X7"1fr [w] Applying (b) again, we
can see that X7 fi s fic foo Dt e dm = 1 (@) = m((Eies fic lo, ) [O]) =
0 holds for Y71 gx = du /dm, and sO0 m(wy4 N @) = 0, whence m( wy\wWy41) =
m(a) > 0 follows.
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The following theorem describes the functional calculus within the class £,,_; (H). It
plays crucial role in the proof of Theorem (6.3.5).

Corollary(6.3.12)[202]:Setting T?"" € £,_,(H), let Z}c”:'lfk € A, be a regular partially
inner function such that m(@m (T 1) N0, 1 (2R '1fk)) > 0.Then
T = 30, f T € L, (3) and we have m(T25Y) = SPs fi [=(T*)n
D1 Q=1 )]

Proof. By Proposition 6 the set M ={w, €T: | X 1fk [Wk]l > 1} is countable,
hence m(M) =0 vyields m(X™,f, “'[M]) = 0. Deleting X, f, ~*[M] from the
quasianalytic spectral set (which is determined up to sets of measure zero), we may
assume that Zz;llfk is injective on the set a = w (T** 1) n Qk_l(Z’,Zilfk) € M.We
know also that g = Zﬁilfk [a] € M, and m(a) > 0,m(B) > 0. Furthermore, the

restriction ¢ =X/, fx |« = B is abijection, and for any w € « we have w € M if
and only if ¢[w] € M, and m(w) = 0 exactly when m( ¢p[w]) = 0. We use the
notation @ =m (T?**1) = w (T?"71).
Let (X, My) be a unitary asymptote of , with a properly chosen contractive intertwining
mapping X: XT?"1 = M; X.
Slnce T2"~1 is a completely non-unitary power contraction, it follows that T,
Zk_lf (T?*~1)is also a completely non-unitary power contraction (see [19]). We
know thatT?";! is quasianalytic and w(T2"{!) = B (see [13]). The condition
m(n(T?"1)) > 0 yields T2t € C,,and TZ" ~le C,_, readily implies T2";! €
Cr—1- Furthermore by [13] the pair (X,,¢(M, )) is a unitary asymptote of 2" L
where X,v = y, Xv (v € H) (here y, Is the characteristic function of the set « ) We
know that ¢ (M, ) is an absolutely continuous unitary power operator because T,2";tis
an absolutely continuous power contraction. It remains to show that ¢ (M, ) is cyclic.
Let us introduce the measure v on

M(B) ={w€ M:wcf}

2n1=

via

v(w)=m(¢ D[w].

The properties of ¢ imply that v is equivalent to (mutually absolutely continuous
with) the Lebesgue measure on S . Let us consider the unitary operator N, €
L(L* (v)),N,gx = xgi ,» Which is unitarily equivalent to Mg (see [4]). It is easy to
verify that Z : L>(v) —» L?(a), g, — g, © ¢ is a unitary transformation, intertwining
N, with ¢(M ,): ZN, =¢ (M ,)Z.Therefore, ¢p(M ,)is unitarily equivalent to M,
[1] , and so it is cyclic.

Now we show the following:

Corollary(6.3.13)[202]: For every power operator T?"~t e £ _,(H) there exists
T2l e L, () commuting with T2*~1: 72n-1T2n=1 — TZn-lp2n-1

Since the commutants{T?"~'} and{T2"~'} are abelian (see [13]), the relation
T2n-ip2n=l = p2n-ir2n=1l implies{T?"~1} = (72"}, and so HlatT?"' =
Hlat T?" 1,
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Proof. Let T2"~1 be a power contraction in the class £,,_; (), and let us consider the
quasianalytic spectral set Q2,_; = m (T?"1) of positive measure. By Theorem (6.3.6)

there exist a compact set Qk 1 c 0,1 and a function fk € Ay, such that Y7 1fk [D] is a

circular comb domain, - 1fk ['11‘] = 0,_,,and Zk_lfk | 5,_, isweakly absolutely
continuous. In other words, 7 f; is a regular partially inner function with
Q1 CRer fi) = By and TRy fie [Qe—1]=T. Applying Theorem (6.3.6) we
conclude that Tt =R fi (T 1) € Ly (H) and
n(T7 ) = Zist fio [T DONQy Bt fi)]l = 21 fi [241=T,  whence
Tt € LYJ- fi, (H) follows. Being norm-limit of polynomials of T%"~' , the
power operator T, “Lcommutes with 7211

Corollary(6.3.14)[202]: If 2, _; is a measurable subset of the unit circle T of positive
(linear) measure, then there are a compact set 2,_; € 2,_; and a conformal map

Z’gl;lfk from D onto a circular comb domain such that Z’glylfk can be extended to a

continuous function on the closed unit disc D, 1fk [’11‘] =, and
mQi=, fx [w]) = 0 for every Borel subset w of Qk 1 of zero measure.
Here, and in what follows)." 1fk [A] = {Z 1 fr(@):a eA} is the range of

Zﬁlllfk when restricted to A, and Y- 1fk [B] ={b: X} 1fk (b) € B} is the
complete inverse image of the set B under the map Zk 1fk When B = {b} has only

one element, then we write )7 1fk - [b] instead of Y.}, fx [{b}]

Proof. Let 0,_; c T be a set of positive Lebesgue measure, and let 2, c 2,_; be
a compact subset of positive measure. Applying rotation we may assume that 1 is a
density point of (2, ; let 0, be its reflection onto the real axis. The compact set
Qi1 = 0,N02,, is of positive measure and symmetric with respect to R. Let us
consider the bijective Joukovskii map ¢:ID — C\[—1,1], defined by ¢(2) = (z+
1/z)/2; the continuous extension to D is also denoted by ¢.

Then E = ¢ [, ] is a compact subset of [—1,1] with positive measure, and
D41 = @ o [ 2441]] because of the symmetry of 2, ,, .

By Theorem 4 there is a regular compact subset K of E with an absolutely continuous
equilibrium measure uy .Let [a, b] be the smallest interval containing K. Consider the
analytic function

®(z) = expif— f log (z —t)duk (t) + log cap(K))

K
on the upper half plane H, = {z € C:3 z > 0} with that branch of log which is
positive on (0, ). It is easy to see that for every x € R the function ratio ®(z)/
|® (z)| converges to exp[ —imug ((x,))] as z — x from the upper half plane. Since
| ®(2)| = exp(— Py (z)) - cap(K) and K is regular, it follows that & can be
continuously extended to the closure of H, in C; ®( %) = 0. We can see that ®(K)
coincides with the lower circle T ={z € T:3z <0}, ®(R\ (a, b)) =[—-1,1],
and each component | of (a,b) \ K is mapped by & onto a radial segment of the form
{r(: p <r<1}withsome 0 < p<1land (€ T_ . Itcan be shown also that ®
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is univalent; see [2]. Since &(x) = exp[ —imug ((x,0))] for x € K and px is
absolutely continuous, it follows that sets of measure zero on K are mapped by @ into
sets of measure zero.
Let Gy_,, be the domain ®(H,), and G,_,_ its reflection onto the real axis. Since
®(z) is real for z € R\[a,b], using the reflection principle we can extend & via the
definition ®(z) = ® (z), Iz < 0to a conformal map of the domain,((_j\[a, b] onto the
circular comb domain Gi_; = Gy, U Gy—1_VU (—=1,1). Then Y, fy =Pog is a
conformal map from D onto Gy, it belongs to the disk algebra, and we have
Yt fie [2k—1]1=T, 2% fi [T\{_,]c D for the compactset 2,_; = ¢ '[K]C
Q1 Mwc 2, isof zero linear measure, then X3 fi [w] is also of zero linear
measure. Thus 2,_; and X7, f, h¥™, fr.ave all the properties set forth in the
theorem.
Note also that for compact, symmetric 2,_, the measure of 2, _;\ 2,_,can be made
as small as we wish.
Corollary(6.3.15)[202]: Let 1<, < a, < {41 < Appq <<, < a,. Then for
x,y € [ —1,0] we have

FSILns (/o) <2 (76
In a similar manner, if 1 < B, < {, < Bpy1 <+ < B, < {, then for x,y € [-1,0] we
have

1 l+n—-1 (s4n-1—% ; (s4n-1—Y
2 = Hs+n=2 (ﬁs+n—1_x /.Bs+n—1_y) = 2. (77)
Proof. The inequalities (77) are obtained by taking reciprocal in (76) and switching the
role of Bsin_1 s {san—1 aNd {yp_1, Agyn—1- Similarly, in proving (76) we may assume
without loss of generality that y < x.
The product in (76) can be written as
l[+n—1 ((s+n—1_x as+n—1_x) — (Cn__x/M) l[+n—-2 ((s+n+2_x as+n—1_x)
stn=2 (s+n—1_y Asin—-1—Y (n_y an—y stn=2 (s+n+2_y Astn—-1—"Y
(I = 2 can be assumed). Since (t — x)/(t — y) is increasing on (0, « ), it immediately
follows from the left hand side that the product in question is at most 1. On the other
hand, by the same token the second factor on the right is at least 1, so the product is at
least as large as

(n—X ,an—X 2 {n—x
h—y " an—y =y
Let B,.< a, < <PBiim-1< Qun_1 be positive integers, and let {,,,_1 €
(Bssn-1,%4n—1 ) foreveryn<s+n-1<l+n-1.
Taking the geometric mean of the products in (76) and 77) of Lemma 8 it follows that
1 l4+n—1 |x_(s+n—1| |y_(s+n—1|
2 = stn=1 (\/lx_as+n—1||x_:3$+n—1| /\/ly_as+n—1||y_ﬁs+n—1|> =2 (78)
for every x,y € [—1, 0]. Multiplying everything by (—1), and changing the notation it
follows that (78) holds also, when «, , 5, are negative integers and x,y € [0,1].Let z
denote the set of integers. Via scaling (multiplying everything by 27" (N € N) and
applying translation), we obtain that (78) is true if ag,,_1 , Bsin_1 € 27N z for every

>1
2
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n<s+n—-1<Il+n-1 and x,yE[jZ;Nl,ZLN

condition
jI2N < By oor = 1)/2" > g (79)

Given N €N let Iy; =[(G—1)27",j27V] for any j € z. Setting a non-empty set
Sc{keN:k <2V} of non-consecutive indexes, let us consider the compact set
F = UjesIy; , Which can be written in the form F = U, _,[as4n-1, bsin-1] With
a, <b, <aniq <bpy <-<by, (n =2). The equilibrium measure up of F is
absolutely continuous with respect to the Lebesgue measure m on R, and its density
function is given by the formula

] with some j €z satisfying the

2(n-1)

Y(£) = (dup/dm)(t) = + et Tmll___ gt e F, (80)

T H?ﬁnzz \/lt_as+n—1||t_bs+n—1|
where the numbers t,,,_1 € (bsin—1,a54n) (n < s+ n < 2n) are the unique solution

of the system of equations
J e [zt —toen dt=0, n<k+n<2n-1. (81)
by H?-{-n:z \/lt_as+n—1||t_bs+n—1| X )
2(n—-1

This is a linear system in the coefficients of the polynomial [}, 5 [t — Ts1p—1].

When n = 1 then the product in the numerator (81) is replaced by 1. For all these see
[17] and [16].

Corollary(6.3.16)[202]: Let ¢e>0,j€S, and H a measurable subset of
Iy; (N,S,Fand Iy are as before).If

m(H) = (1-2G - ) m(ly, ), (82)

then

1
e () 2 (1= 22°G — €02 e (I )- (83)
Proof. We shall give an estimate of the density function i on Iy ;. Assuming that
Iy; < [a, ,a, + € ], this estimate depends on the position of Iy ; inside [a, ,a, + €, ].
Casel. a,,a, +¢€ &ly; ,iely; liesinside (a,,a, + €, ).For x,y € Iy; we can write

P (x) ly—ail ,lx=bpl 81,-1(x) 01,—1(x)
= L= L= , 84
Y(») Jlx—all/ly—bnl O1r-107) O01,n-1(y) (84)

where
ls=k|x - Tsl

Hé:k \/lx - as+1||x - bsl

Oy 1 (x) =

(810 = 6,01 =1 by definition). Since each factor in this decomposition (84) of
PU(x)/W (y) lies between 1/2 and 2 by (79), it follows that

1
s VO =YX = 8Y(®y). (85)
Case Il. Precisely one of a, ,a, + €, belongs to Iy;. Then either j2 N =a, +€ or

G—12N=gq, ,say j27N =a, + € . We shall consider only the situation when
1 < r < n, for the other options (i.e. when r = 1 orr = n) are simpler. In this case

[x—1p|

mp(x) = $0;(x)8:; (), (86)

\/|X_(ar +er)|Ix—ar 41l

where
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8, (x) = —.01,11 ()
and
_ 1
92 (X ) N [x—(a,+er)| ' er+1,n—1 (X)
Next we prove that here
1, — (a, +€)=27827N, (87)

If T, — (a, +¢€,) = 27N then there is nothing to prove, so let us assume that T, € [a, +
€ ,a, +€ +2N.Fort€ [a, + €, ,a, +¢€, +27N]the claim (79) gives the bounds

91(a1+6r) < 6;(t) <46;(a, +¢.), i=12. (88)

For k =r Eq. (81) can be written as

r+1 t _
4 .0, ()0, (t)dt = 0,
f \/(t - (ar + Er) )(ar+1 - t) l(t) Z(t) ‘ ’
So
T, —t
. 0, ()0, (t)d
J NI TS) [ ED R
r+1 f— o
. 0, ()0, (t)d
f NI [ ED R
amfz L 8, (1), (t)dt
(t_(ar-l_er))(ar 1_t) ! ? .
J +

In view of (88) this gives after division by 8,(a, + €, )0, (a, + €,) the inequality
ar+er+2_N

] i s 16dt > f s — dt.
\/(t —(a, +€))(a,41 —t) K \/(t —(a, +€.))(a,4, —t) 16

ar+e,

If we make a linear substitution so that [a, + €, ,a, + €, + 2~V ] becomes [0,1] and
make use that for 0 < r < 2‘8 and [ € N the inequality

J, m— =16du < f —=T__ du holds, we can conclude. (87)
u(l —u) u(l—u) 16
Now (87)immediately gives that for x,y € Iy ;
[x—1,]
el < 29 (89)
Next note that along with (88) the bounds
90 < 6,(x) <46,)  (i=12) (90)

are also true for x,y € Iy; (since (j — 1)27V is not an endpoint of a subinterval of F ),
so (86), (89) and (90) yield for x,y € Iy ;

YO VE= @ el _ ol ly=aml _ .,
YOIy — (ar +€,)l ly — 1 {Ix — a4l
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By reversing the role of x and y and then fixing y to be the center of I; we can
conclude with ¢ = \/lar +e. -y |Y©®)

— 1 1
CZ 14 ﬁ < 11)(.7() < C214' ﬁ' X € IN,j . (91)

Case Ill. a, ,a, + €, €Iy;. Then Iy; = [a,,a, + €]. In this case (15) holds only on
the right half I,f,jj of Iy;, so we can conclude (91) (with y = (a, + a, +¢€,)/2) only
there. However, an analogous argument gives that on the left half I ; of Iy ; we have

-14 _1 14 _ 1
c2 — <yYx) <c2 — (92)

Thus, we have the estimates (85), (91)or(92) for ¢ on Iy; , depending on the position
of the interval Iy ; in the set F.

Corollary(6.3.17)[202]: Show that x < a, + 2%!€,.

Proof.

From equations (85) and(92) we have ¢ (x) < c2 —

ar

Since ¢ = \/la, + ¢, —y [ (y) we get yx —a, < 2! Ifz_rl

Squaring we obtain x < a, + 2%1¢,.
Which satisfy the assumption in the proof of Lemma (6.3.7).
Let now H be a measurable subset of Iy ; with measure m(H) = (1 — 2(% —e))ym(ly;)

and let Hy = Iy; \ H . Assume that Case Ill holds for the interval I ;. (In Case Il the
same argument can be applied, and in Case | the computations based on (85) are
actually much simpler, giving a better estimate.) Let I*and I~ denote the right half and
the left half of the interval Iy ;, respectively. Then, using (91) on I, we can see that

1
f Y (x)dx < f c2*
Honi+ Honi+ Vbr —x
1 1/2
< c2"2m(Hy)V? < 2B (2(5 — e)) m(Iy;)

dx

1/2

1
——dx
va, +€. —x

< (% —e)l/22%9 fz/;(x) dx.
It

1 1
< C215 (E _ 6)1/22m(1+)1/2 — (E_ 6)1/2215C f
It

C2—14
) —\/mdx
Since a similar bound can be given for the integral over Hy N I~ using (92), it follows
that up (Ho 3)229(% — )V 2up(ly;).
Then we conclude that ur(H) > (1 — 229(% — )% pp(Iy;)) as was to be proved.
Corollary(6.3.18)[202]: Show that

1

0 (1—229(%—6)7)1uF(1N.j) .

1-229¢2

= p1/2229
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. 1
(“) up(lvy ) < PR

(i) wU)=1)

Proof. (i) In Lemma (6.3.8) and Theorem (6.3.9) if we set F = K and H = U we can
get (i) by devision,

(ii) Since &, = Zi
(iii) Since &, > 0,as n - oo then ux(U) = 1.

The analogue of Theorem (6.3.9) is true for sets of positive measure on the unit circle.

1
— 0,n —» oo or € = 0, We have that HF(INJ' ) = 1-2292
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cl closure 84
UNTF Unit norm tight frames 112
det determinant 117
® Outer product 126
HSP Hyperinvariant subspaceproblem 154
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