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ABSTRACT

This study is carried out in order to investigate permutation groups,
Graph theory and Polya's theory of counting with applications together
with the relations between them. The key to this relationship is the
celebrated Burnside lemma. Aimed to explain the aspects of group
theory which are related to them. Moreover numearous groups of
permutations and the cyclic structures of their elements together with the
orbits of those elements are then used methods and scientific means to
enumerate all the possible ways of colourings of a set. This is then used
to prove polya’s enumeration theorem (PET). The most important results
of this study to obtain some applications of permutation groups, Graph

theory and Polya's theory of counting .
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Chapter One
Historical Background And Previous Studies

1.1 Historical Background

As noted earlier, Lagrange’s work of 1770 initiated the study of
permutations in connection with the study of the solution of equations. It
was probably the first clear instance of implicit group-theoretic thinking
in mathematics. It led directly to the works of Ruffini, Abel, and Galois
during the first third of the nineteenth century, and to the concept of a
permutation group. Ruffini and Abel proved the unsolvability of the
quintic by building on the ideas of Lagrange concerning resolvents.
Lagrange showed that a necessary condition for the solvability of the
general polynomial equation of degree n is the existence of a resolvent
of degree less than n. Ruffini and Abel showed that such resolvents do
not exist for n > 4. In the process they developed elements of
permutation theory. It was Galois, however, who made the fundamental
conceptual advances, and who is considered by many as the founder of
(permutation) group theory Galios group. He was familiar with the
works of Lagrange, Abel, and Gauss on the solution of polynomial
equations. But his aim went well beyond finding a method for
solvability of equations. He was concerned with gaining insight into
general principles, dissatisfied as he was with the methods of his
predecessors: also of this century,” he wrote, computational procedures
have become so complicated that any progress by those means has

become impossible [45]



Let an equation be given, whose m roots are a, b, ¢, . . .. There
will always be a group of permutations of the letters a, b, ¢, . . . which
has the following property: (1) that every function of the roots, invariant
under the substitutions of that group, is rationally known [i.e., is a
rational function of the coefficients and any adjoined quantities]; (2)
conversely, that every function of the roots, which can be expressed
rationally, is invariant under these substitutions. The definition says
essentially that the group of an equation consists of those permutations
of the roots of the equation which leave invariant all relations among the
roots over the field of coefficients of the equation—basically the
definition we would give today. Of course the definition does not
guarantee the existence of such a group, and so Galois proceeded to
demonstrate it. He next investigated how the group changes when new
elements are adjoined to the “ground field.” His treatment was close to
the standard treatment of this matter in a modern algebra text [45].

The Polya enumeration theorem (PET) also known as red field
— Polya’s theorem, is a theorem in combinatorics, generalizing
Burnside’s lemma about number of orbits. This theorem was first
discovered and published by John Howared Red field in 1927 but its
importance was over looked and Red field’s publication was not noticed
by most of the mathematical community. In dependently the result was
proved in 1937 by George polya, who also demonstrated a number of its
applications, in particular to enumeration of chemical compounds. The

(PET) gave rise to symbolic operators and symbolic methods in



enumerative combinatorics and was generatized to the fundamental
theorem of combinatorial enumeration [6,10].

Graphs are mathematical structures used to model pair-wise
relations between objects from a certain collection. Graph can be defined
a set V of vertices and set of edges. Where, V is collection of [V| = n
abstract data types. Vertices can be any abstract data types and can be
presented with the points in the plane. These abstract data types are also
called nodes. A line (line segment) connecting these nodes is called an
edge. Again, more Abstractly saying, edge can be an abstract data type
that shows relation between the nodes (which again can be an abstract
data types). In this document, we would briefly go over through how and
what led to the development of the graph theory which revolutionized
the way many complicated problems were looked at and were solved.
Leonhard Paul Euler (1707- 1783) was a pioneering Swiss
mathematician, who spent most of his life in Russia and Germany. Euler
(pronounced as OILER) solved the first problem using graph theory and
thereby led the foundation of very vast and important field of graph
theory. He created first graph to simulate a real time place and situation
to solve a problem which was then considered one of the toughest
problems.

In, 1736 Euler came out with the solution in terms of graph theory.
He proved that it was not possible to walk through the seven bridges
exactly one time. In coming to this conclusion, Euler formulated the

problem in terms of graph theory. He abstracted the case of Konigsberg



beliminating all unnecessary features. He drew a picture consistingof
“dots” that represented the landmasses and the line-segments
representing the bridges that connected those land masses. The resulting
picture might have looked somewhat similar to the figure shown below
[42].

1.2 The Polya Theory And Permutation Groups in (2009)
This study presents a thorough exposition of the Polya Theory in

its enumerative applications to permutations groups. The discussion
includes the notion of the power group, the Burnside's Lemma along
with the notions on groups, stabilizer, orbits and other group theoretic
terminologies which are so fundamentally used for a good introduction
to the Polya Theory. These in turn, involve
the introductory concepts on weights, patterns, figure and configuration
counting series along with the extensive discussion of the cycle indexes
associated with the permutation group at hand. In order to realize the
applications of the Polya Theory, the paper shows that the special figure
series c¢(x) =1+ x is useful to enumerate the number of G-orbits of r -
subsets of any arbitrary set X. Further-more, the paper also shows that
this special figure series simplifies the counting of the number of orbits
determined by any permutation group which consequently
determines whether or not the said permutation group is transitive.
Many people have difficulty in doing some counting problems
probably because sometimes, a situation comes wherein distinct objects

are often considered equal. If a teacher for instance is interested in



knowing the number of families represented by her class, then she will
consider two children to be equal" if and only if they are siblings.
Suppose next we consider the problem of counting nonequivalent
bracelets with two beads of three dire rent colors; red (7 ), blue (b) and
green (g). By simple combinational analysis, there will be exactly 3°=9
possible faces of the bracelets with the above specified colors.

Let us now divide these nine bracelets into groups of bracelets by
considering two bracelets similar if one can be obtained from the other
by rotation. Then we see that b, is rotationally equivalent to b, , hence
both should belong to the same group. Likewise, b; and b; are
equivalent; bs and bg are also equivalent. On the other hand, we see that
b; belongs to a group that contains itself and so does bg .Thus, in the
sense of grouping these bracelets, we are led to have classified six die
rent bracelets that are non-equivalent under rotation.

In this paper, certain enumerative techniques like the one
illustrated above will be developed and used for the solutions of some
counting problems specifically those that call the notion of permutation
groups. A thorough exposition of a powerful tool in the said
enumeration will be the central feature of study from a point of view

first developed by George Polya in 1938.
1.2.1 The Power Group

Consider two permutation groups G; , of order m acting on X =

{X1, X2,... , Xq} and another permutation group G, of order n acting on Y



= {y1, Y2, ... , Ye;. Here, we refer to the sets X and Y as the object set of
G; and G, respectively.
1.2.2 The Cycle Index Polynomial

Let us begin this section by considering the disjoint cycles of a

particular length on every permutation e G.

1.2.3 The Burnside's Lemma

It makes sense to begin this section by studying what it means to
say two objects are the same.
Theorem (1.2.1)

If G is a permutation group, then » defines an equivalence relation.
Lemma (1.2.1)

Orb(x) = Orb(y) ifand only if x , y .

The problem of determining the number of equivalent objects in X
reduces to the problem of counting the number of distinct G-orbits
established by on X induced by G. One way of doing this is simply to
count, that is to compute all G-orbits and enumerate them. However, this
method seems impractical and even more tedious for complex situations.
Fortunately, the Burnside's Lemma which we are going to develop next
gives an analytical formula for such counting of G-orbits. The
Burnside's Lemma is a powerful technique in the counting of G-orbits
induced by a permutation group. This technique which is particularly
ancient when the order of the group is small is considered one of the

essential parts in the development of the Polya Theory.



Theorem (1.2.2) (Burnside's Lemma)

Let G be a permutation group acting on the set X and suppose » is
an equivalence relation on X induced by G. If p 1s
the number of G orbits in X, then,

1
0 =— ¢(7T)j (1.1)
\G\(Z

reG

1.2.4 The Polya Counting Theory
In many instances, the direct application of the Burnside's Lemma
is not practically efficient to permit us to enumerate the distinct G orbits
induced by a permutation group. The difficulty perfectly stems from the
computation of the number of invariance's for a large ordered group. The
Polya's Theorem provides a tool necessary to facilitate this computation.
To formulate and prove Polya's Theorem in an abstract and more
concise manner, it is somehow convenient to require the notion of
functions and patterns as its enumerations are basically performed over
sets whose elements are functions. In the rest of the discussion, we
consider X be a set of elements called places ; and let Y be a set of
elements called figures . Also, we consider the usual permutation group
G acting on X, which we call the configuration group. Moreover, an

element fin ¥ X will be called configuration .
Theorem (1.Y.3) (Polya's Theorem)

The configuration counting series C(x) is obtained by substituting

the figure counting series c(xk) for each indetermi-



nate sk into the cycle index Z(G) of the configuration group. In symbols,
Cix) =Z(G; c(x)) [25].

In combinatorics, there are very few formulas that apply
comprehensively to all cases of a given problem. Polya's Counting
Theory is a spectacular tool that allows us to count the number of
distinct items given a certain number of colors or other characteristics.
Basic questions we might ask are, \How many distinct squares can be
made with blue or yellow vertices?" or \How many necklaces with n
beads can we create with clear and solid beads?" We will count two
objects as 'the same' if they can be rotated or ipped to produce the same
configuration. While these questions may seem uncomplicated, there is a
lot of mathematical machinery behind them. Thus, in addition to
counting all possible positions for each weight, we must be sure to not
recount the configuration again if it is actually the same as another .We
can use Burnside's Lemma to enumerate the number of distinct objects.
However, sometimes we will also want to know more information about
the characteristics of these distinct objects. Polya's Counting Theory is
uniquely useful because it will act as a picture function - actually
producing a polynomial that demonstrates what the different
configurations are, and how many of each exist. As such, it has
numerous applications. Some that will be explored here include
chemical isomer enumeration, graph theory and music theory .This
paper will first work through proving and understanding Polya's theory,

and then move towards surveying applications. Throughout the paper we



will work heavily with examples to illuminate the simplicity of the
theorem beyond its notation.
Definition (1.3.1):

We will first clarify some basic notation. Let S be a finite set. Then
|S| denotes the number of its elements. If G is a group, then |G|
represents the number of elements in G and is called the order of the
group. Finally, if we have a group of permutations of a set S, then |G| is
the degree of the permutation group
1.3.2 The Orbit-Stabilizer Theorem

Also proves the following two theorems.

Theorem . Lagrange's Theorem If G is a Finite group and H is a

subgroup of G, then |H| divides |G|. Moreover, the number of distinct left

i
-

Theorem (1.3.1) Orbit-Stabilizer Theorem

cosets of Hin G is

Let G be a Finite group of permutations of a set S.Then, for any 1

from S,
|G| = |orbe(i)||stabg(i)].
1.3.3 Burnside's Lemma
provides the following theorem.
Theorem (1.3.2) Burnside's Theorem

If G 1s a Finite group of permutations on a set S, then the number

of orbits of G on S 1s



1
E%‘ﬁx (¢)‘ (1.2)
Burnside's Lemma can be described as Finding the number of distinct
orbits by taking the average size of the fixed sets.

Let n denote the number of pairs (¢, i), with ¢ € G, i € S, and ¢ (i) =i.

We begin by counting these pairs in two ways. First, for each particular

¢ in G, the number of such pairs is exactly |[fix(¢)|, as 1 runs over S. So,

n=>|fix()| =D |stab (i) (1.3)

9eG ¢eS
We know that if s and ¢ are in the same orbit of G, then orbg(s) = orbs(t)
and [stabg(s)| = |stabG(t)|. So if we choose ¢ € S, sum over orbs(s), we

have

Z stab (t)‘ = ‘orbG (S)HstabG (S)‘ = ‘G‘ (1.4)

teorbg (s)

Finally, by summing over all the elements of G, one orbit at a time, it

follows

Z ‘ ﬁr(qb)‘ = Z‘stabG (i)‘ = ‘G‘.(numberoforbits) 1.5)

$edG ies
1.3.4 The cycle index

Note that if S 1s a Finite set, a permutation of § is a one-to-
one mapping of S onto itself. If a permutation 7 is given, then we can
split S into cycles, which are subsets of S that are cyclically permuted by
z. If L 1s the length of a cycle, and s is any element of that cycle, then
the cycle consists of

2 L-1
S, TS, TS, ..., T S,

10



Definition (1.3.1)

Let G be a group whose elements are the permutations of S, where
|S| = m. We define the polynomial in m variables x;, x5, ... x,,, with
nonnegative coefficients, where for each ¢ G we form the product

b2 b2

x2x5tx)if by, by, bs,....} is the type of ¢ . Then the polynomial

1
PG(xl,xz,...,xm)=‘E2xf’]xé’2...xi’" (1.6)
¢eG

is called the cycle index of G.
This formula closely resembles Burnside's Lemma. The key difference is
that now we differentiate between cycles of ifferent lengths, and specify
how many of each cycle there are. Later, this will allow us to not only
count the number of different objects we seek, but also have an idea of
what the appearance of each different object is like.

Consider the simple example when G consists of only the identity

permutation. Then the identity permutation is of type {m,0,0, ...} and
thus P, = x/".
Theorem (1.3.1) Polya's Enumeration Formula

Let S be a set of elements and G be a group of permutations of S that
acts to induce an equivalence relation on the colorings of S. The

inventory of nonequivalent colorings of S using colors ¢;, ¢, ..., ¢, 1S

given by the generating function

PG :(icj,icf,m.,icf ) (1.7)

11



where k corresponds to the largest cycle length.

So the inventory of colorings of S using three colors, 4, B, and C.
Theorem . Polya's Fundamental Theorem:

Let D and R be finite sets and G be a permutation group of D. The
elements of R have weights w(r). The functions f € R” and the patterns
F have weights W(f) and W(F), respectively. Then

the pattern inventory is

ZF:W(F) =P, {Z w(r),Z[w(r)]z,Z[w(r)F,...,} (1.8)

reR reR reR
where Pg is the cycle index. In particular, if all weights are

chosen to be equal to unity, then we obtain the number of patterns =
Po(R], R|, [R],..., ) [31].

1.4 An Approach for Counting the Number of Specialized
Mechanisms Subject to- Non Adjacency Constraints in

(2012)

This study presents an improved approach to count the number of

specialized mechanisms subject to non-adjacency constraints from a
candidate kinematic chain. First, the permutation group of the candidate
kinematic chain is found. Next, an inventory polynomial named

kinematic king polynomial (KKP) to count the specialized mechanisms

is modified from the traditional king polynomial related to the count of

moves of a king on a chess. Then, an algorithm to calculate the KKP is
presented by operations on labeled joint adjacency matrix (LJAM).

Finally, two examples are illustrated to verify the approach. A

12



systematized method of creative mechanism design in type synthesis, the
separation of function and structure allows derivation of the necessary
topological structures between links and joints and thus deduction of
possible topological structures by combination. In general, mechanisms
are type synthesized using the following three-step procedure:
identifying the appropriate mechanism type (e.g. the numbers or link and
joint types and necessary design constraints), enumerating the basic
kinematic chains and their required numbers of links and joints, and the
specialization of mechanisms. In this latter, each kinematic chain is
specialized through the assignation of link and joint types to obtain all
possible mechanism configurations. Mechanism specialization has been
the subject of many studies, which have variously based the structural
synthesis of kinematic chains on graph theory, matrices and
combinatorial theory. In some such investigations, generation of
mechanisms during the synthesis and specialization process requires
complex procedures for detection (or computer-aided assignation) and
deletion of isomorphic mechanisms. For checking the correction of the
results of specialized mechanism without isomorphism, the Polya’s
theory is applied to count the number of mechanisms. The basic
concepts of Polya’s theory of enumeration with application to the
structural classification of mechanism were proposed at the first by
Freudenstein in 1967. Then Bushsbaun and Freudenstein synthesized the
kinematic structure of geared kinematic chains and other mechanisms by

using previous work and combinatorial mathematics. In 1991, Yan and

13



Hwang proposed a methodology for enumerating nonisomorphic
specialized mechanisms from a specified kinematic chain using the cycle
index of permutation groups to calculate the number of the synthesized
mechanisms. This method has also been successfully applied in the
number synthesis of general simple joint and multiple joints kinematic
chains. Hwang and in applied the concept of generating function and
permutation group to generate general specialized mechanisms. Yan and
Hung then provided a procedure for generating nonisomorphic
specialized mechanisms to identify and count the number of mechanism
from kinematic chains subject to design constraints. They applied
Polya’s theory and Burnside’s theorem to count the number of
mechanisms with a pair of non-adjacent specialized joints. However, the
method can not be applied to count the number of mechanisms with
arbitrary number of non-adjacent specialized joints. For instance, the
Example 3to count the number of nonisomorphic identified mechanisms,
with two nonadjacent prismatic joints, from the Stephenson-III

mechanism.
1.4.1 Definition of Permutation groups

A permutation p is a bijection (one-to-one and onto) of a finite set
S into itself. For example, the sequence (ay az a;a,) is a permutation of
the set s = (a;,a5a3a,) in which al !(is transformed into) a, a,—a;,
as;—a; and a;—a, In this permutation, a;—a,—»a;—a; forms a cycle,

denoted by [a;,aa3], with a length of three, while a,—a, forms another

14



cycle [a,] with a length of one. The cyclic representation of this
permutation p is denoted by [a; a; as][a4].
1.4.2 Cycle index of Specialized Mechanisms :

If G is a permutation group of set §, then, because each
permutation p in G can be written uniquely as a product of disjoint

cycles, the cycle structure representation of a permutation is

x/'x;%..x ..., where x; is a dummy variable for cycles with a length of

k and by 1s their number. For example, the permutation

p=[1][2 6][3 5][4] has the cycle structure representation X12 X; :

The cycle index [13] of a permutation group denoted by Ci, is the
summation of the cycle structure representations of all the permutations
that make up the group’s elements divided by the number of
permutations (n):

C,(x,Xx,,X;,...) =l x)xDxl? (1.9)
pePG

Thus, the first consists of six cycles with a length of one; the second, of
two cycles with a length of one and two cycles with a length of two; and

the third and fourth, of three cycles with a length of two.
Cl(xl,xz)zi(xf+x12+x§+2x§) (1.10)
1.4.3 Polya’s theory of Specialized Mechanisms :
In the specialization process, once the cycle index has been

calculated as shown in Polya’s theory can be used to calculate the

number of results where T is the allotting type of kinematic pair. For

15



example, if fixed link (F) and link (L) are assigned to the kinematic
chain, then x; =F+L and x, =F Y Substituting x; and x, produces the
results two possible allotments for a fixed link 2L°F, six for two fixed

links 6L°F”, and six for three fixed links 6L°F°.

I, =C(T,T*,T?), (1.11)
I, = %(F + L)+ (F+ L) (F?+ L) +s(F*+L%)°)
=L[°+20F +6L'F*> +6L’F’ +6°F* +2LF° + F°, (1.12)
1.5 Combinatorica: A System for Exploring Combinatorics

and Graph Theory in Mathematica

Combinatorica i1s an extension to the computer algebra system
Mathematica that provides over 450 functions for discrete mathematics.
It 1s distributed as a standard package with every copy of Mathematica.
Combinatorica facilitates the counting, enumeration, visualization,
andmanipulation of permutations, combinations, integer and set
partitions, Young tableaux, partiallyordered sets, trees, and (most
importantly) graphs. Combinatorica users include
mathematicians,computer scientists, physicists, economists, biologists,
anthropologists, lawyers, and high school students .Combinatorica has
been widely used for teaching and research in discrete mathematics
since its initial release in 1990 . The original Combinatorica contained
230 functions, using only 2500 lines of code. Its value lay in the ease

with which one could conduct a large variety of experiments on discrete

16



mathematical objects and visualize the results. It was never intended to
be a high-performance algorithms library such as LEDA , but more as a
mathematical research tool and a prototyping environment for effective
technology transfer" of discrete mathematics and algorithms to a diverse
applications community. Combinatorica received a 1991 EDUCOM
award for distinguished mathematics software. We have recently
completed the rest sign cant revision of Combinatorica since its initial
release over ten years ago . The new package is essentially a complete
rewrite of Combinatorica. Over 80% of the functions have been
rewritten and the package has more than doubled in size to 450 functions
and 6700 lines of code. Feedback from users, advances in graph theory
and combinatorics, faster and more versatile hardware, better versions of
Mathematica, and easier access to color graphics were some of factors
that motivated this rewrite. In this study, we present an overview of the
new Combinatorica along with a summary of lessons learned along the
way. To presents an overview of Combinatorica, including
representative graphics generated by the package, a description of new
features of the revised version. Combinatorica in Action We begin our
introduction to Combinatorica with a brief discussion of its design
philosophy. We encourage the reader to visit www.combinatorica.com
for more information on Combinatorica and related resources such as
algorithm animations, graph database, and Java-based graph editor.

Pemmaraju and Skiena is the de nitive guide to Combinatorica.

1.5.1 Applications of Combinatorica

17



Combinatorica has been widely used for both teaching and
research. The research applications typically fall into one of three types:
(1) mathematical research into discrete structures through
Combinatorica experiments.
(2) employing Combinatorica to perform discrete simulation modeling,
typically by people outside the computer science community.
(3) systematic extensions to Combinatorica for particular applications.
Improved graph data structure. The original Combinatorica used the
adjacency matrix data structure for graphs, for several reasons which
were sound at that time. However, with improvements in technology this
eventually became a bottleneck in performance. The new Combinatorica
uses an edge list data structure for graphs, partly motivated by increased
exigency and partly motivated by the need to store drawing information
associated with the graph. Edge lists are linear in the size of the graph,
and this makes a huge deference to most graph related functions. The
improvement is most dramatic in fast graph algorithms [those that run in
linear or near linear time, such as graph traversal, topological sort, and
ending connected biconnected components. The implications of this
change is felt throughout the package; in running time improvements,
memory savings, increased functionality, and better graph drawings. The
package can now work with graphs that are about 50-100 times larger

than graphs that the old package can deal with [37].
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Chapter Two

Permutation Groups

In all the systems of algebra studied so far in the privies chapter,
namely groups, we have always used one of two operations addition or
multiplication.

This chapter includes some additional groups with a different type
of operations, i.e. composition of mappings. They are the symmetric
group, alternating group together with Cayley's theorem.

2.1 The Symmetric Group
Definition (2.1):

Let X be any finite set

(1)Let o, B : X—X. The composition of a and f denoted by «a [ is
a mapping of X into X defined by

a fB(x)=o(B(x)), VxeX.

(2)A one-to-one mapping of a set X onto itself is called a
permutation of the set X [1,6,8].

Theorem (2.1):

The set S of all permutations of a set X is a group under
composition of mappings.
Proof:

Let o and B be permutations of X i.e. o, B € S. Since « and S are
mappings of X onto X, therefore

aX)=X p(X) =X

19



By composition of mappings this implies that:
af(X) = (X)) =X) =X
Therefore a B 1s mapping of X onto X.
Let a, b € X such that:
(Paja = (Ba)b
By composition of mappings the above equation can be written as:
B(e(a)) = B (a(b))

Since B 1s a one-to-one mapping, we conclude that

a(a) = a(b).
Since « is a one-to-one mapping, therefore
a=b,

This implies that « [ is also a one-to-one mapping. Therefore o S5 and
the set S is closed with respect to the operation of composition of
mappings. Moreover composition of mappings is associative, since by

definition
(afp) v)a=(af)(va)=af (va)
=afv)a) =(a(f7r)a, acX.
This implies that (@8) 7) =a(B 7)

Consider the mapping €: X—X define by
e(a)=a , aeX

By definition € is one-to-one and onto. Therefore € &S.

20



Moreover for each a<S and a&€X,
ae(a) =a(ela)=a(a) =aa
and
(ea)a = €(axa) = axa
This implies that:
Ex=Q€E=q

Therefore € is the identity of S.

To prove that each element of S has an inverse let @ &S. Since a is

a one-to-one mapping of X onto X then the mapping o': X — X defined
by

o'a=biff ab=a 2.1)
for each a€l, is one-to-one and onto, see figure:
X - > X
a.

Thus o' €S. Moreover by equation (2.1)

acd’ (@)= a(a’a) =ab=a= e(a), VacX
and

alam)=a'(ab) =d'a)=b=eb), YheX

Therefore
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ao =alo=e.
Hence o' is the inverse of a.

By definition of a group § is a group under composition of
mappings [8,13].

Definition (2.2):

(1) Let X be any set. The set Sy of all permutations of X is a group
called the symmetric group on X. Moreover every subgroup of S, is
called a group of permutations of X.

(2)If X 1s finite and has, say, n elements, then we can represent X
by {1, 2, ..., n}, and we accordingly denote S, by S,. In this case S, is
called the symmetric group of degree n.

Let f &§,, then f shuffles the elements 1, 2,..., n, and we can

represent f explicitly by writing

1 2 3 .. N
/ :(fa) @103 ---f(n)j
Hence if /(1) = i}, f(2) =13, ... fn) = in, therefore
fi i s ind = {1, 2, ..., 1}

and

Using S, we shall first study permutations of the particular type
described in the following definition [8,1]

Definition (2.3):
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An element a of S, 1s said to be a cycle of length £ if there exist
distinct elements a;, a,, ..., ai, 1<k <n, of X such that:
a(a) =az, a(ay) =a; ..., Yary) = a, alay) = a;
and a(a;) = a; for each element a; of X other then a;, a,, ..., a i.c. for all
a;, k <i <n, where
X={a,ay .., a,)}

Using the above notation for a permutation then

(a] az cee ak ak+1 ---a
o =

a, a;.. a, a., ..a)’[7’8]'

*n

Remark (2.1):

In writing a cycle usually elements fixed by it are omitted.

a a,.. a, a,, ..4,
o= ,
a, a,.. a, a,, ..da

n

Moreover if the cycle

then after omitting elements fixed by it « is designated by
a=(a; a, ...a;)

This designation of « is not unique. Using definition (2.3) and
remark (2.1) therefore if a; € {a;, a, ....ai}, 1<i <k, then the cycles
(@; a,, ...a.q, ..a_)and (a; a, ...a;) are equal permutations of X. Hence
can be written as a cyle starting with any a;, /<i <k .Therefore

o= (a; a ...ay

o= (a, a; ...apa;)
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a=(aga;ay ...arp),[8].

Example (2.1):
If the cycle o €S, is equal to
1 23 4 5 6
“ (3 451 6 2)’
then by definition(2.3) and remark (2.1) above « can be written as
a=(1 35624
Moreover starting with any member of {1, 2, ..., 6} e.g. 2 or 3 «acan be
written in the following respective forms
a=(241356)

or

a=(356241),8]

2.2 Decomposition of a Permutation Into Cycles

And Transpositions:
We start this section with an example.
Example (2.2):
IfS={1I 2 3, 4,5} then

1 2 3 45
T =
354 12

is the permutation such that 7 (1)=3, 7 (2)=5, 7 (3)=4, = (4)=1, = (5)=2.
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Using this we deduce that if we start with any element x €S and apply =
repeatedly we get n(x), = (n (x)), = (7 (7 (x))), and so on. Since S is
finite therefore we must return to x, and there are no repetitions along
the way because 7is 1:1. We can also denote this by

X > n(x) >n(r(x) —=... 9.
Using this in the above example we get

| >3 >4>1,2>5->2.

Using this and definition of cycle above together with composition

of mappings we can write 7 in the following simple cyclic form, i.e. as a
product of cycles.

= (1, 3, 4)(2,5).
Where the cycle (1, 3, 4) is the permutation of S that is mapping 1 to 3, 3
to4and 4 to 1, 1.e.

| >3->4->1,

and similarly the cycle (2, 5) maps 2 to 5 and 5 to 2, i.e.

2552
the same as 7 [8,13]
Example (2.3):
Consider the permutation

(1 234 56738
357 4 281 6

In Ss5. As in example (2.2) above, we rewrite it as a product of

cycles and on omitting 1-cycles, 1.e. elements fixed by f, we have
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f= (1,3,7)(

= (1,3,7)(2,5) 468
= (L3712, 4 86
= (1,3,7)(2,5)(6,8)

2 45 638
5 42 86

Let S, be the symmetric group on the set X and o, 7 &S,. Using
composition of mappings.
(om)x = on(x) =o(r(x), VxeX (2.2)
We demonstrate in the following example how to evaluate the product
G m[5,8]
Example (2.4):

Consider
( 1 2 3 4]
o =
2 41 3

and

(1 23 4j

T =

3 24 1

in S, . Using composition of mappings and by equation (2.2) above
(on)x=o(nx), Vxe{l, 2, 3, 4).

To find the image of x=1, using equation (2.2) above, we first find the
image n(1/)=3 and using this image we find its image under o, i.e.
o(3)=1. Rewriting this using composition of mappings we have

(onm)l=0oc(n(l))=0c(3)=1

Alternatively we can rewrite this in the following form:
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(1 23 4}(1 23 4(1)
2 41 3)\3 24 1
:(1 23 4}[(1 23 41}
2 41 3)|\3 24 1
:(1 23 4}(3):1.
2 41 3

orn(l)=o(z(1)) =03 =1,
ieorm:1—>1

1 23 4\1 23 4
(2 41 3}(3 2 4 J(z)
(1 23 4 12342
2 41 3)|13 24 1
_12342_4
_2413()_’

leorm:2—4.

Hence

Similarly for x=2

Continuing in this manner for x= 3, 4 we get
on:3>3,om:4—>2

Combining the above results and as in example (2.2) we get

on:1->1,2—>4—-5>2,3->3,
_ 1 23 4
1.e.07mr =

1 43 2

Alternatively we can rewrite this in the following form by

substituting for ¢ and & from above. Hence
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1 23 4)\1 23 4 1 23 4
ol = =
2 41 3)3 24 1 1 43 2
Observe that the notation for the product
1 23 4
o7 =
1 43 2
is rather uneconomical. Hence rewriting it as a product of cycles and

omitting 1-cycles, i.e. the elements fixed by oz, we get

m{j ‘2‘}(2 4).8].

Definition (2.4):

Two cycles (a, a, ..a,) and (b, b, ..b)) of S, are said to be
disjoint if the sets {a,,a,, ..,a, }and {b,,b,,....b,} have no elements in
common [8].

Theorem (2.2):

Every permutation of S, is a product of disjoint cycles.
Proof:

Since the identity permutation is a product of 1-cycles (of length
1), we assume that y is not the identity permutation.

Hence start with any symbol a; such that y(a,) # ¢,, and suppose that

y(a,)=a,, y(a,)=a,, y(a;)=a, and so on. Since » is finite we come to

the point where, say, y(a,)equals some one of the symbols «,,a,,...,a,_,
already used. Since y is one to one and every other one of these symbols

is already known to be the image of some symbol of them under the

28



mapping y except a;, therefore we must have y(a,)=a,. Thus y has the
same permutation effect on the symbols a,,a,....,a,as the cycle (
a,,a,,...a,). If by is a symbol other than a,,a,,...,a, and y(b)=b,, we
proceed as above and obtain a cycle (b,,b,,....b,) which is disjoint from (
a,,a,,...,a,) since y is one to one .This implies that y has the same
permutation effect on {a,,a,,....a,,b,,b,,...b,} as (a,,a,,....a,)(b,,b,,...b,).
Continuing like this and since 7 is finite therefore after a finite number

of steps we get y as a product of a finite number of disjoint cycles. After
omitting the 1-cycles, therefore
y =(a,,ay,....a, )(b,,b,,....b,) ... (c,c5,....c,, ) [8,13]
Lemma 2.1:
Disjoint cycles commute.
Proof:
Let o and = be disjoint cycles of S, and suppose that
c =(a,,a,,..,a;)
and
n=(b,b,,...b))
Let
n= {al,az,...,ak,bl,bz,...,bl,cl,cz,...,cm}
={1, 2, ..., n}
and i be an integer s.t: /I<i<n

To prove that ¢ and © commute we have three cases:
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\ief{o={a;a;..a}, ie i=a,, ISr<k
Therefore
(ocn)i= (aja;...ar) (b; b,y ...b) i
= (4,0, ..a,)|(b, b,...b, Ja, |

=(a,a,...a,)a,

ar+1 ,V¢k

a,r=k

since a, & {77} :

Similarly
a, . ,r#zk
(70)i = (b, by..b, \(a,a, ..a,)a, |= (bb, ..b,)
a,,r=k
a,. . rzk
a,,r=k

9

since {o}n{r}=4.
This implies that c 1 =1 ©.
i\ ie{z}={bb,.b}iei=b 1<s<I.

Therefore
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(om)i=(a,a, ...ak)[(b1 b,..b, )bs]

b..i,s#l b..i,s#l

s+l s+l

=(a, a,...a,) _
bI,S:l bl ,S:l
since b, & {c}.

Similarly
(no)i = (b, b,..h, Xa,a, ..a,)b,

= (bb,..b)|(a,a, ..a )b, |= (bb,...b,)b
Since b, ¢ {o }, therefore
b

s

o187l

no (i) =
bl ,S:l

Therefore 6 n =7 G.
i\ ig{ounr}
This implies that oi =i, mi=i. Therefore
(orm)i=(a,a,..a,)(bb,..b))i
= (a,a,..a,)|(b,b, ..b))i]
=(a,a,..a,)i=1i
(mo)i=(bb,...b,)a,a,..a,)i
= (b, b, ..h)|(a,a, ...a,)i]
=(b,b,..b)i=i
This implies that o 7 = 7 o. Therefore o 7 = 7 o for all /< i < n,

1.e. disjoint cycles commute [8,10]
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Note:
Let f €S,. By theorem (2.2)

f =5t

where f ... f, are disjoint cycles. By the above lemma (2.1)
therefore we can also write
f =1 S
where {il,...,i }: {1,2,...,m}
Definition (2.5):
A cycle of length 2 is called a transposition [8].
Lemma 2.2:
Every cycle can be written as a product of transpositions.
Proof:
Let (a, a,...,a;) be any cycle of S, Consider the permutation
(a, a, )Na, a,,)...(a,a,)a,a,).
We have two cases to consider

1- Let a, €{a, a, ..a, }, therefore

A ,i%k
(a, a,...a;)a; =
a,,i=k
Similarly
(ap a)a, a)-(@a)aa) a; =(a, a )4, ai,).(a,a.,)(aq,) q;
=(a;, a;).-(a,a,,)q,

=(a, a,_))..(a,a,,)a;,
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A ,i%k

al ,l:k
This implies that

(a,a,..a,)a, =(a, a, ) a, a, ,)..(a,a,)a,
2-Let be{l, 2,..,n}, such thath ¢ {a, a,..a,} .Therefore such that
(a, ay...a,)b=b
(a, a,,)...(a,a,)b=b
This implies that
(a,a,..a,)b=(a, a,,)..(a,a)b=>b
Using the above two cases therefore
(a, ay..a,)=(a, a, )a, a,,)..(a,a,)a,.a,) (2.3)
In view of this lemma and theorem (2.2) it follows immediately

that every permutation can be expressed as a product of transpositions.

Thus we have [§].
Theorem (2.3):
Every permutation of S, is a product of transpositions.
Example (2.5):
Using equation (2.3) in proof of lemma above, we have:
(1234)=(43)42)41), k=4
A transposition (ij) merely interchanges the symbols i and j and
leaves the other symbols unchanged. Since (i j)(i j)=€, the identity

permutation, it follows that a transposition is its own inverse.
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Moreover this implies that we can insert as many such pairs of
identical transpositions as we wish 1n any decomposition of a
permutation into transpositions without changing it. Clearly, then, a
permutation can be expressed as a product of transpositions in many
different ways [8].

Definition (2.6):
i- A permutation is called an even permutation if it can be expressed
as a product of an even number of transpositions.
i1- A permutation is called an odd permutation if it can be
expressed as a product of an odd number of transpositions
[8,10].
Lemma 2.3:
1/ If o is a product of K transpositions and S is a product of L
transpositions then a3 is a product of K+L transpositions.
2/ The product of two even or two odd permutations is even whereas the
product of an even and odd permutations is odd.
3/ o' is an even (odd) permutation iff o is an even (odd) permutation.
Proof:
1/ If the permutation o can be expressed as a product of K transpositions
and the permutation f can be expressed as a product of L transpositions,

it is obvious that aff is a product of K+L transpositions.
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2/ It follows form (1) above that the product of two even or of two odd
permutation is an even permutation, whereas the product of an odd
permutations and an even permutation is an odd permutation.
3/ Suppose that a is a product of K transpositions, say
a=a,a,..q,.

Then, since S, is a group and a transposition is it own inverse, it is easy
to see that:

all=(a, a,.a,) =a a,..a,'a’ (2.4)

Since ¢; is a transposition therefore

Substituting in equation (2.4) above therefore
a'l=a, a,,.. a,aq,
This implies that o' is an even permutation if and only if a is an even
permutation [8].
Lemma 2.4:
The number of transpositions whose product is a given
permutation of a finite set is either always even or always odd.

Proof:

Let
S={1,2,...n}, n>2
Hence transpositions exist. Our first case is the identity

permutation €. Of course € can be expressed as a product of an even

number of transposition e.g. € =(1 2)(2 1). We show that if:
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e=TT,.T, (2.5)
Where each T; , 1<i<k is a transposition, then &£ must be even. Choose
any integer m, 1<m<n, which appears in one of the transpositions.
Counting from left to right let 7; be the first such transposition. This
implies that 7; fixes m for all 7; ,1<i<j. Since T; , i<, fixes m
therefore ;< .Moreover if j=k then T, =(mx) for some x €S,.
Since 7T; fixes m for all 1<i < j =k therefore

x=€(x)=17T,..T,(x) =m,
contradiction since x # m. Therefore j < k. Moreover by choice of m this
leads to the following cases.
1. If 7, contains m then either

1/ The second elements of the transposition 7,7,

Jj+l

are equal 1.e.
I T, =(m,x)(m,x)=€
i1/ or the second elements of 7,,7,,, are not equal i.e.
T, T,y = (m,x)(m, ) = (yxm) = (my) = (x,)(m, ),
by remark (2.1) and proof of lemma (2.2).

2.If 7., does not contain m then
i/ Either 7,7, have a common element, i.e.

T, T, = (mx)(x,y) = (ymx) = (mxy) = (7,x)(y,m)
by remark (2.1) and proof of lemma (2.2).

i1/ or 7,,7,, have no common element, i.e.

Tj Tj+1 =(m,x)(y,z) = (y,z)(m,x)
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by proof of lemma (2.1).
3. Using the above results therefore 7,7, 1s equal to one of the

following forms.

() T,T,, =<, the identity

(@) T, T, =(x, y)(m, x)
@) T, T, =y, x)(y,m)
W) T, T, =(y,2)(m,x)

Using equation 3(1) above and substituting for 7,7, =e reduce the
number of transpositions in equation (2.5) above by two.

On the other hand using any of the equations 3(ii, iii, 1v) and
substituting for 7,7, will shift the first occurrence of m in equation
(2.5)one step to the right, i.e. to 7. Then as above and by considering
T, T.,we get similar results to those in 3(i-1v) after replacing 7,7, by
T.T.,, leeither 7,7, ,= or m is shifted to 7,,. By contradiction
suppose that

7., T.#€, forall j+3<s<k. (2.6)

Then as before this implies that for each s,j+3<s<k, m is shifted one

step to the right. If s =% then as assumed by equation (2.6)

I, T, =TT, #¢
Therefore as in equation 3(i, 1i, ii1) m is shifted to 7,, contradiction as
proved above. Therefore for some j<s<k,7 T =c. As a result the

transpositions in (2.5) are reduced by two transpositions. Since # is finite
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and m 1is arbitrary this implies that for each m, 1<m<n, 3, 1< j<k such
that 7,7, =e. Therefore
E=€€..€E,
where each € on the right represents a reduction of £ by two. This
implies that & 1s even.
More generally suppose that the permutations a and S are equal
and that
oa=TT,..T,
B=T'T]..T]
By proof of lemma (2.3) therefore
B =T .T)T
since every transposition is its own inverse. Moreover
e=af ' =TT,.T,T..T)T/
Our special case of € above shows that k+7 1s an even number of
transpositions. This implies that x and L are either both even or both
odd.
Lemma 2.5:
Let x,,x,,....x, be independent symbols and p be the polynomial
with integral coefficients defined by

p=T=x), i=le,n, j=l..n
Let € S, and define

a(p)= il:[j(xa(l.) —Xoy) s i=Len, j=1.n
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If 6 = (k,l)is a transposition, then
6(p)=-p
Proof:

Consider the product (x, —x,)(x, —x,) in p. Now k=/and without
loss of generality let « </. Hence, one of the factors in p .is x;, —x;and in

0 (p)the corresponding factor is x, —x,, that 1s, this factor is just
changed in sign under the mapping oof the subscripts. By definition of
p all other factors of p containing x,and x,can be paired to form a
product of the form =*(x, —x,)(x, —x,), with the sign determined by the
relative magnitude of i to k£ and /. But since effect of s is just to
interchange x, andx, it follows that the sign of any such product is
unchanged. Hence, the only effect of O is to change the sign of p by.

changing only the sign of x, —x, and the lemma is established [8,13]
Theorem (2.4):

Every permutation o« can be expressed as a product of
transpositions. Moreover, if « can be expressed as a product of -
transpositions and also as a product of s transpositions, then either » and
s are both even or they are both odd.

Proof:

Suppose that « is a permutation of the set

A={2,..,n}
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From above every permutation is a product of disjoint cycles by theorem
(2.2) and every cycle is a product of transpositions by lemma (2.2).
Therefore suppose that

=By B, =1V Y,
Where each gand y, i=1,..,r, j=12,.,s 1s a transposition. We need to
prove that » and s are both even or that they are both odd. Let x,x,,...,x

be independent symbols and let p denote the polynomial with integral
coefficients defined as above by:
p:E(’“z‘ -x;), i=L.,n, j=Ll.,n
Similarly and for each « €S, define
a(p) =Ty = X) 2 1= Loty j =L
By lemma (2.5) and since « is a product of transpositions and in general
it is fairly clear that
a(p)==*p
with the sign depending in some way on the permutation «. If
=P,y B
then «pcan be computed by performing in turn the r transpositions
B, B,....3. . By lemma above each of these transpositions merely changes
the sign of p. This implies that:
a(p)=(D"p (2.7)
Similarly using the fact that:
aO=Y,7, -7,

therefore
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a(p)=CD'p (2.8)

Hence using equations (1) and (2) above we must have:
D'p=(CED"p,
from which it follows that:
D" =D
This implies that » and s are either both even or they are both odd [8,13]
2.3 Alternating Group:
Theorem 2.5:

If n =2, then the collection 4, of all even permutations of a finite

!

n. .
set of n elements form a subgroup of order By of the symmetric group S,

Proof:
By theorem(1.1) and lemma(2.3) parts(2,3) 4, is a subgroup of S, .
Let B, be the set of odd permutations of s, for, n>2. Let T be
any fixed transposition in §,. Suppose that 7=(1, 2). Define:
Apt4, — B,
by
Ar(a)=al, YaeA,
That is a € 4, is mapped into «(1,2) by A,. Since «ais even, the
permutation «(1,2) is a product of an odd number of transpositions. So

a(1,2) 1s indeed in B,.
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Suppose «, B € 4, such that:
Ar(a) =24, (P)
Then
a(1,2) = B(1,2)
Multiplying both sides by 7' =(1,2), therefore we have « = g. Thus
A, 1S one-to-one.
Finally
T=(12)=T"
If peB, then
pT ' ed,
and
A (pT)=pT T=p
Thus 2, is onto B,. Hence the number of elements in 4, is the same as
the number in B,, since there is a one-to-one correspondence between
the elements of the sets. Since
S,=4,9B,
and
4,NB,=9¢,
This implies that
|4, 1B, =118, =3n! [1,8]
Definition (2.7):
The set 4, of all even permutations of S, is a subgroup of S, . It is

called the alternating group on n symbols. Moreover [S, : 4,]=2 [3,8]
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2.4 Theorem (Cayley's Theorem):
Every group G is isomorphic to a group of permutations. i.e.
isomorphic to a subgroup of S .
Proof:
For each a € G define
0,:G— G by
0. (x)=axeG,VxeG
To prove that 6, € G we prove that it is 1:1 and onto.
Let x,y € G such that
0,(x)=0,(»)
Therefore
ax=ay
This implies that
a'lax = a_lay
1.e. ex =ey
1.e. X=y
Therefore 6, 1s 1:1

let be G, since

aa'b=b,
Let

x=a'b
Therefore

0,(x)=b
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This implies that ¢, is onto. Therefore 6, € S,

Let H=1{0, :aeGj.

Let 6,,6, e H, and x € G. By composition of mappings.
0,0,(x) =0,(6,(x)) =0, (bx) = a(bx) = ab(x) = 6, (x)
Since this true for all x € G, therefore
0.0,=0,cH
Therefore H is closed under composition of mappings. Since eeG,
therefore 6, € H . Moreover
00 =60, =0 cH
Similarly
600,=0,=0, VO, e€H
This implies that 6, is identity of H.
Note that
6,(x)=ex=x,

For all xe G. Hence 6, is the identity mapping of G, i.e. identity of S .

For each aeG, a™' € G and hence 6,.0 . € H such that

0,0 . =6 . =0, identity of H
and
6 _.0,=0_ =0,,identity of H
Therefore 6 ., 1is the inverse of 6_, 1.c.
0,)"'=0_ cH.

Let 0,,6,,6. € H  S,;, this implies that
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0,0,0,)=0,(0,) = 6,40, =0, =(0.6,)0,,

since S; is associative. Therefore H is a group. Since S; is a group,
This implies that A is a subgroup of S .
Define ¢:G - H by

¢(a)=0,,
For each aeG.
Therefore

¢(ab) =6,, = 0,0, = p(a) ().
Therefore ¢ is a homomorphism of G into H. By definition of H, ¢ is
onto.
To prove that ¢ is 1:1, let a,b € G such that

¢(a) = p(b)
This implies that

ea = eb

By definitions of 6, and 6, we have

0.(x)=0,(x), forall xeG.

1.e.
ax=>bx, forall xeG
Therefore
a=b
This implies that ¢ 1s 1:1 and onto. Therefore G is isomorphic to H
[3,8].
2.5 Orbits:

Definition (2.7):
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Let X be any set and G<S,, be a group of permutations of X. If

x € X, then the orbit of x

O, = {y € X :dg € Gsuchthatg(x) = y}

or equivalently
0, ={g(x):Vg e G} [1,3,8].

Lemma (2.6):
If G<S,, then the orbits of G in X partition X.

Proof:

Let I, be the identity permutation of X. For each xe X, x=1,(x)

and so x€O,. This implies that
X=vO,.

xeX
Let x,y € X . Suppose that
0,NO, #¢
by definition(2.7) above this implies that 3dg,,g,€G such that
g,(x) = g,(»). This implies that x = g,"'g,(y). Therefore for any ge G
g(x)=(g(g,'g,))y €Oy.
Therefore O,<O,. Similarly O, <O,. Thus O,=0, whenever,

X — y:

0,NO, #¢. Therefore lemma is true [1,3,8].
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Chapter Three

Graph Theory

3.1 The Basics:

A graph G consists of a pair (V, E), where V is the set of vertices
and E the set of edges. We write V' (G) for the vertices of G and E(G) for
the edges of G when necessary to avoid ambiguity, as when more than
one graph is under discussion. If no two edges have the same endpoints
we say there are no multiple edges, and if no edge has a single vertex as
both endpoints we say there are no loops. A graph with no loops and no
multiple edges is a simple graph. The edges of a simple graph can be
represented as a set of two element sets; for example, {vi,..., v}, {v,,
Vah, Vo, vih {vs, vl (v Vst v st {vs vel, {ve v} is a graph that can
be pictured as in figure below this graph is also a connected graph: each
pair of vertices v, w 1s connected by a path v =v;, v, ,..., v, = w, where

each pair of vertices v; and vy, are adjacent [36] .
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3.2 Definitions and Fundamental Concepts:
Conceptually, a graph is formed by vertices and edges connecting

the vertices.

Example(3.1):

Formally, a graph is a pair of sets (V,E), where V is the set of
vertices and E is the set of edges, formed by pairs of vertices. £ is a
multiuse , in other words, its elements can occur more than once so that
every element has a multiplicity. Often, we label the vertices with letters
(for example: a, b, ¢, . . . or v;, v,, ... ) or numbers /, 2, . .. Throughout
this lecture material, we will label the elements of V in this way [36,37].
Example(3.2):

(Continuing from the previous example) We label the vertices as

follows:
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We have V = {v,, ..., vs} for the vertices and E = {(v;, v,), (v, V5), (Vs
vs), (vs, V4), (vs, v4)} for the edges. Similarly, we often label the edges
with letters (for example: a, b, c,. . . or e;, e,,. .. ) or numbers [, 2, . ..
for simplicity.
Remark(3.1):
The two edges (u, v) and (v, u) are the same. In other words, the pair is
not ordered [36,37].
Example(3.3):

(Continuing from the previous example) We label the edges as

follows:

Vi

€1 €3

Cs

So E = {e;, ..., es}.We have the following menologies:

U

. The two vertices u and v are end vertices of the edge (u, v).
Edges that have the same end vertices are parallel.

An edge of the form (v, v) is a loop.

A graph is simple if it has no parallel edges or loops.

A graph with no edges (i.e. E is empty) is empty.

A graph with no vertices (i.e. V and E are empty) is a null graph.

A graph with only one vertex is trivial.

® Nk wd

Edges are adjacent if they share a common end vertex.
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9. Two vertices u and v are adjacent if they are connected by an edge, in
other words, (u, v) is an edge.

10. The degree of the vertex v, written as d(v), is the number of edges
with v as an end vertex. By convention, we count a loop twice and
parallel edges contribute separately [36,37].

11. A pendant vertex is a vertex whose degree is 1.

12. An edge that has a pendant vertex as an end vertex is a pendant
edge.

13. An isolated vertex is a vertex whose degree is 0.
Example(3.4):

(Continuing from the previous example)

* v, and v;s are end vertices of es.

» e, and es are parallel.

* e3isa loop.

 The graph is not simple.

* ¢; and e, are adjacent.

* v; and v, are adjacent.

» The degree of v; is 1 so it is a pendant vertex.

 ¢;1s a pendant edge.

* The degree of vs is 5.

* The degree of v, 1s 2.

» The degree of v; is 0 so it is an isolated vertex [36,37].

In the future, we will label graphs with letters, for example:
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G = (V,E). The minimum degree of the vertices in a graph G is denoted
0(G) = 0 if there 1is an i1solated vertex in (G). Similarly, we write (G) as
the maximum degree of vertices in G [36,38]..
Example(3.5):
(Continuing from the previous example) 6(G) = 0 and (G) = 5.

Remark(3.2):

In this course, we only consider finite graphs, i.e. V" and E are finite
sets.

Since every edge has two end vertices, we get
Theorem(3.1):

The graph G = (V,E) , where V ={v, ..., v, and E ={e,;, .

.., ey}, satisfies
D d(v,)=2m
i=1

Corollary:

Every graph has an even number of vertices of odd degree.
Proof

If the vertices v;, . . ., vy have odd degrees and the vertices v, . . .
, v, have even degrees, then Theorem

d(vy) + -+ +d(v) = 2n = d(veer) = - = d(v,)

is even. Therefore, k1s even [36,37]..

51



Example(3.6):

(Continuing from the previous example) Now the sum of the
degreesis 1 +2 + 0 +2 + 5 =10 = 2.5, There are two vertices of odd
degree, namely v; and vs [36,37].

A simple graph that contains every possible edge between all the
vertices is called a complete graph. A complete graph with n vertices is

denoted as Kn. The first four complete graphs are given as examples:

The graph G; = (V},E;) 1s a subgraph of G, = (V,,E;) if
1. V; €V, and
2. Every edge of G; is also an edge of G..
3.3 Graph Operations:

The complement of the simple graph G = (V,E) is the simple graph
G = (V,E), where the edges in E are exactly the edges notin G [36,37].
Example(3.7):

The complement of the complete graph Kr is the empty graph with
n vertices. Obviously, G = G. If the graphs G = (V,E) and G' = (V " E')
are simple and V' &V, then the difference graph 1s G — G’ = (V,E"),
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where E" contains those edges from G that are not in G' (simple graph)

[36,37].

Example(3.8):
» »
» /0
G" G:
*——» »
»
G-G"
»

Here are some binary operations between two simple graphs G; =
(Vi,E)) and G, = (V1,E,):
 Theunionis G; UG, = (V; UV, E; UE,) (simple graph).

* The intersection is G; N G, = (V; N V,,E; N E,) (simple graph).
* The ring sum G;® G, is the subgraph of G; U7, induced by the edge
set ;@ E, (simple graph).

Note: The set operation @ is the symmetric difference, i.e. E; @
E,=(E; - E,) U(E,— E;).Since the ring sum is a subgraph induced by
an edge set, there are no isolated vertices. All three operations are
commutative and associative [36,37].

Example(3.9):

For the graphs
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Vi
V2
Vi

€ .
€1 ‘
Vs .
* .
V3
Gy
€1 V4
\% ~
Vi
€7
V2 Gz:
i G] V)
Ve |
Vs .
e have ‘ |
\\Y |
\4i
» . 64
Ve
*
Vi
\%) ‘ |
Gs:
1 G @
€3
Cs
€6 .
»
€7
Ve
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Remark(3.3):

The operations U, N and @ can also be defined for more general
graphs other than simple graphs. Naturally, we have to ’keep track” of
the multiplicity of the edges:

U : The multiplicity of an edge in G; U G, is the larger of its
multiplicities in G; and G,.

N : The multiplicity of an edge in G; N G, is the smaller of its
multiplicities in G; and G,.

® : The multiplicity of an edge in G; ® G, is |m; — m;|, where m;
is its multiplicity in G; and m; is its multiplicity in G,. (We assume zero
multiplicity for the absence of an edge.) In addition, we can generalize
the difference operation for all kinds of graphs if we take account of the
multiplicity. The multiplicity of the edge e in the difference G — G’ is
m; — my; = (m; — my, if my >m, , if m; < m, (also known as the proper
difference), where m; and m, are the multiplicities of e in G; and G,
respectively. If v is a vertex of the graph G = (V,E), then G — v is the
sub graph of G induced by the vertex set V' — {v}. We call this operation
the removal of a vertex [36,37].

3.4 Trees and Forests:

A forest is a circuit less graph. A tree is a connected forest. A sub
forest is a sub graph of a forest. A connected sub graph of a tree is a sub
tree. Generally speaking, a sub forest (respectively sub tree) of a graph is

its sub graph, which is also a forest (respectively tree).

Definition(3.1):
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A connected graph G is a tree if it 1s acyclic, that is, it has no

cycles. More generally, an acyclic graph is called a forest.
Example(3.10):

Four trees which together form a forest:

A spanning tree of a connected graph is a sub tree that includes all

the vertices of that graph. If 7'is a spanning tree of the graph G [37].
Example(3.11):

»
Spanning tree: G:
- »
* L
# Co spanning tree
» »
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The edges of a spanning tree are called branches and the edges of

the corresponding co spanning tree are called links or chords.

Theorem(3.2):
If the graph G has n vertices and m edges, then the following

statements are equivalent:

(1) G s atree.

(i1) There is exactly one path between any two vertices in G and G has
no loops.

(i11) G is connected and m =n — 1.

(iv) Giscircuitlessand m =n — 1.

(v) G is circuit less and if we add any new edge to G, then we will get

one and only one circuit [37].
Remark(3.4):

We can get a spanning tree of a connected graph by starting from
an arbitrary subforest M (as we did previously). Since there is no circuit
whose edges are all in M, we can remove those edges from the circuit
which are not in M. By the sub graph G; of G with n vertices is a
spanning tree of G (thus G is connected) if any three of the following
four conditions hold:

1. G; has n vertices.
2. G, 1s connected.
3. G;hasn — 1 edges.

4. (G, 18 circuitless.
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Actually, conditions 3 and 4 are enough to guarantee that G, is a
spanning tree. If conditions 3 and 4 hold but G; is not connected, then
the components of G; are trees and the number of edges in G; would be

number of vertices — number of components <n — 1 (p ) [37].

3.5 Directed Trees:
A directed graph is quasi-strongly connected if one of the
following conditions holds for every pair of vertices u and v:
1) u=vor
(i1) there is a directed u—v path in the digraph or
(i11) there is a directed v—u path in the digraph or
(iv) there is a vertex w so that there is a directed w—u path and a directed

w—v path.

Example(3.12):

(Continuing from the previous example) The digraph G is quasi-
strongly connected. Quasi-strongly connected digraphs are connected
but not necessarily strongly connected. The vertex v of the digraph G is

a root if there is a directed path from v to every other vertex of G [37].
Theorem(3.3):
For the digraph G with n > [ vertices, the following are

equivalent:

(1) G is adirected tree.
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(i1) G is atree with a vertex from which there is exactly one directed
path to every other vertexof G.

(i11) G 1s quasi-strongly connected but G — e is not quasi-trongly
connected for any arc e in G.

(iv) G is quasi-strongly connected and every vertex of G has an in-
degree of 1 except one vertex whose in-degree is zero.

(v) There are no circuits in G (i.e. not in G,) and every vertex of G has
an in-degree of 1 except one vertex whose in-degree is zero.

(vi) G is quasi-strongly connected and there are no circuits in G (i.e. not

in G,) [37].

3.6 Counting Graphs:

We count the graphs G on m vertices with q edges. Let G denote
the set of graphs G on the vertices M = {1, 2,...,m}!. Sucha Gis a
function from the set X of unordered pairs {1, j} of distinct elements of
M to the set Y= {0, 1}, where G ({1, j}) is 1 or 0, according as {i, j} is
an edge or a non edge of the graph G.
3.7 Acyclic Directed Graphs:

A directed graph with at least one directed circuit is said to be
cyclic. A directed graph is acyclic otherwise. Obviously, directed trees

are acyclic but the reverse implication is not true [38].
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Theorem(3.4):

We can sort the vertices of a digraph topologically if and only if
the graph is acyclic.
Proof.

If the digraph i1s cyclic, then obviously we can not sort the vertices
topologically.
If the digraph G is acyclic, then we can sort the vertices in the following
manner
1. We choose a vertex v which is a sink. It exists

ov)—n G«—G—vandn<«—n— 1.

2. If there is just one vertex v in G, set a(v) «— 1. Otherwise, go

back tostep 1 [38].
3.8 Graph Coloring:

Let’s return now to the subject of assigning frequencies to radio
stations so that they don’t interfere. The first thing that we will need to
do 1s to turn the map of radio stations into a suitable graph, which should
be pretty natural at this juncture. We define a graph G = (V, E) in which
V' is the set of radio stations and xye E if and only if radio station x and
radio station y are within 200 miles of each other. With this as our
model, then we need to assign different frequencies to two stations if
their corresponding vertices are joined by an edge. This leads us to our
next topic, coloring graphs [38].

When G = (V, E) is a graph and C is a set of elements called colors, a
proper coloring of G i1s a function f . V' — C such that if f(x)# f(v)
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whenever xy is an edge in G. The least t for which G has a proper
coloring using a set C of t colors is called the chromatic number of G
and is denoted ¢(G). In Figure 5.14, we show a proper coloring of a
graph using 5 colors. Now we can see that our radio frequency
assignment problem is the much-studied question of finding the

chromatic number of an appropriate graph [38].
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Chapter Four
Polya's Theory of Counting

The Polya enumeration theorem (PET) also known as red field —
Polya’s theorem, is a theorem in combinatorics, generalizing Burnside’s
lemma about number of orbits. This theorem was first discovered and
published by John Howared Red field in 1927 but its importance was
over looked and Red field’s publication was not noticed by most of the
mathematical community. Independently the result was proved in 1937
by George polya, who also demonstrated a number of its applications, in
particular to enumeration of chemical compounds.

The (PET) gave rise to symbolic operators and symbolic methods
in enumerative combinatorics and was generatized to the fundamental
theorem of combinatorial enumeration [6.10].

4.1 Polya’s Theory of Counting

We start our discussion of the theory by some examples which

make easy the following of the development of the theory.
Example (4.1):
A disc lies in a plane. It’s center is fixed but it is free to rotate. It

27

has been divided into n sectors of angle 7 .
Each sector is to be colored Red or Blue.

How many different colorings are there?
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One could argue for 2". Hence if n=4 then the number of
colourings is 2* =16 [11,15]

On the other hand, what if we only distinguish colourings which
can not be obtained from one another by a rotation for example if n=4
and the sectors are numbered 0,1,2,3 in clockwise order around the disc,
then there are only 6 ways of coloring the disc: 4R, 4B, 3R1B, 1R3B and
RBRB. Hence we have two different answers for the number of
colourings of a disc if =4, namely 16 and 6 [11,14].

Now consider an n x n “chessboard” where n > 2. Here we colour
the squares Red and Blue and two colorings are different only if one can
not be obtained from another by a rotation or a reflection.

For n = 2 there are 6 colourings as follows:
Red Red Red Red Blue
Red Red Red Blue Blue

Red Blue Blue Blue

Blue Blue Blue Blue

on the other hand the chessboard has n=4 squares which can be

coloured in 2" =2% =16 different ways which are not necessarily
distinct [11,14].
Referring to these examples and in order to determine the exact

number of colourings justifies Polya's theory of counting.
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The general scenario of the above examples is as follows:
Suppose we have a set X which stands for the set of all colourings of the
set of sectors D. To investigate how Polya's theory handles these
situations suppose G is a group of permutations of X. G will have a

group structure as follows:
Given two members £1-8> €G and as in chapter (2) above the
composition &1 ° &2 is defined by
g, °8,(x)=g,(g,(x), VxeX

Then as above (G, 0) is a group of permutations of X.
Using the above examples for a disc of four sectors 1, 2, 3, 4
,where n=4 ,and a chessboard of four squares 1,2,3,4, where n=2, we

have the following remark [11,15].

Remark (4.1)
(i) Let D =1{1,2,34} be represented by the ordered disc
1] 2
413
or ordered chessboard
1 2
4 3

where both the sectors of the disc and squares of the chessboard are
numbered 1,2,3,4 in clockwise order starting at the upper left of each of

the figures above [11,23].
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(i1) Suppose there are two colours Blue (b) and Red (7). Let X be the set
of all colourings of D, as represented above by a disc or chessboard, by
the two colours Blue (b) and Red (r).Using the order of D in figures
above, then each element x of X will be represented by a sequence of
four elements of the set {b, r} written from left to right such that the
element on the left of x is the colour of sector or square numbered 1 in
figures above. Similarly the following element of x is the colour of
sector or square number 2 in figures above and hence forth from left to
right of x and in clockwise direction of figures above and conversely,
e.g. if x=rbbreX then the corresponding coloured disc and chessboard

are in figures below

o
N

and conversely [11,25].
Example (4.2):

and

N
~N
S

Suppose D is a disc and the number of sectors of D=4. Moreover
suppose we number the sectors of D 1, 2, 3, 4 in clockwise order

starting at the upper left as in the figure below:

o
o

R

Hence
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D={1,2,3,4}
Suppose

G, = {60,61,62,63}

9

where ey, e;, e, e; represent a clockwise rotation of D through 0, 90,
180, 270 degrees respectively. Using the above figures and by definition

Ofe(), e €y €3 WE get

@ €
@ @
¢

1| 2 -/ 2
€;
4 3 1 4

Using the above figures then ¢y, ¢;, e, e; have the following cyclic

W

W

N
\S}
N
+ [
O8] \S]
Il

structures
e, =(D2)3)4), e,=(1 23 4),e,=(13)2 4), e,=(1 4 3 2)
Using the cyclic structures of ey, e;, e,, €3, and as in chapter two,we get
epe, = (MH2)B)E) (D)3 =(D(2)B)(4) =e,
ee,=D2)3)4) 1234 =(1234)= ¢

67



ee, =M2)B)EH) A1 3)2 4)=01A3)2 4= e
e, =(D2)3)E) 1432) =(1432)= e
ee,=(123 4 DG4 =(1234)= ¢
ee= (12341234 =13H2 4= e,
ee,= 1234(13)24) =1432) = e
ee,= (1234)1432)=0) 2) 3) @) =e,
e, =(1 3)2 HM2)B)E) =032 D = ¢
e,e,=(13)24) (1234 =(1432) = e,
e,e,=(13)(24) 13)2 4 =(1)(2)3) (4) = ¢
ee,=(13)24H1432) = (1234)=e
ee, =(1432)DQB)E) = (1432)= e
ee,= (14321234)=(0) () 3) @) =e¢,

e.e,=(1432)13)24 = (1234)=e¢
ee,=(1432)1432) = (13)24) = e,

Using the above results we get the following composition

mappings table of G,.

o €, e, e, €

e, e, e e, e,

€ € € €3 €

e, e, e, € e

€, €, € €, €,

Using this table we get
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Lemma (4.1):
(G}, o) 1s a permutation group of X.
Poof:
By definition each element of G, is a permutation of X. moreover by
table above:

1- G 1s closed under composition of mappings.

2- ©o isidentity of G;.

3- Each element has an inverse.

By composition of mappings G; is associative.

There fore G; is a permutation group of X [11].

Moreover represent elements of X as elements of a sequence from
{r,b}?, where for example the element r7breX is the element where the

colour of /,2,4 is Red and the colour of 3 is Blue see figure:

Red Red

Red Blue

Using the above remark (4.1) and the definitions of members of G; as
rotations we construct the following table where the first column
represents the elements of X and the first row represents the elements of
G;. Moreover each other element is the image of the corresponding

elements of G; and X which are respectively in the same column and
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row with it, e.g. for rbrreX and € € G, and by definition of €, as a

rotation we get the element

e; (rbrr)=e; / -Z\ = fb_:\ =rrrb

as 1n the table below

We observe that X has 2° =16 elements as shown in first column of

table below [11,27]

X e, e, e, e,
rrer rrer rrer rrer rrrer
brrr brrr rbrr rrbr rrrb
rbrr rbrr rrbr rrrb brrr
rrbr rrbr rrrb brrr rbrr
rrrb rrrb brrr rbrr rrbr
bbrr bbrr rbbr rrbb brrb
rbbr rbbr rrbb brrb bbrr
rrbb rrbb brrb bbrr rbbr
brrb brrb bbrr rbbr rrbb
rbrb rbrb brbr rbrb brbr
brbr brbr rbrb brbr rbrb
bbbr bbbr rbbb brbb bbrb
bbrb bbrb bbbr rbbb brbb
brbb brbb bbrb bbbr rbbb
rbbb rbbb brbb bbrb bbbr
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bbbb bbbb bbbb bbbb bbbb

Table (4.1)

We generalize this example in the following theorem [11,27].
Theorem (4.1):

Let D be a disc divided into n sectors. Denote

D ={0,12,...n-1}.

If we have two colours Red and Blue to colour D, and if X is the set

of all colourings of D without transformation, then
| X =27
Moreover the set of permutations of X

G= {eo,e1 yeees€y } ’
where
e, (x)=x+ jmod n,xe X.
Stands for a clockwise rotation of x by 21% ,1s a group [11,26].
Proof:
Obviously | X |= 2Pl = 2
Let %€ €O then by definition of O
(e,0€,)x=e,(e,)(x) = ¢,(x+ jmodn)

=(x+ jmodn)+imodn =y +imodn,
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where ¥ =X+ jmodn By definition of /mod~  y is a rotation of x by an

2r j
angle of n .Similarly z=y+jmodnig a rotation of y by an angle of

2rwi

n . Therefore, z is a rotation of x by

27rj+27ri

2 2
=L (i+j)="Z(i+j)ymodn=e,,,
n n n n ’

Therefore

(¢,0e))(x)=¢, (x),V, eX
This implies that

eoce. =e.

Hence G; is closed under composition of mapping. Moreover
composition of mappings is associative. Furthermore e, is identity of G

since

e, ce, . =e =e =e, . e,

This implies that
(e_/.)_] =e,  €G

Hence each element has an inverse. Therefore G is a group.

Z, the group of integers modulo

Note: we observe that G isomorphic to
n under addition [11].

Example (4.3):
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Suppose D is a chessboard where n=2. If X is the set of all
colourings of D with two colours and without transformation then
IDl=n>=4, |X|=2" =16.
Moreover we number the squares of D 1,2,3,4 in clockwise order

starting at the upper left, see figure below

1 2
4 3
Hence
D ={,2,3,4}
Suppose

G, = {e,a,b,c,p,q,r,s}

where e, a, b, c represent a clockwise rotation through 0, 90, 180,
270 degrees respectively. Using the above figure and by definition of e,
e, ey, e; in example (4.2) therefore

e=ey,a=e;,b=e,, c=e;

Moreover let p, g represent reflections along one of the vertical and
horizontal sides respectively, and r», s represent reflections in the
diagonals 1,3 and 2,4 respectively. Using the above figure and by
definition of e, a, b, ¢, p, q, r, s we get the cyclic structures of these

elements. Since [11].

1

b
-
o]

4 3 4 3
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hence e = (1) (2) (3) (4) is identity permutation.

Since

hencea = (1 2 3 4).
Similarly

[ ]
—

and hence b = (1 3) (2 4).

1 2 2 3
C ¢ =
4 3 1 4
and hencec = (1 4 3 2).
A
PP : - )
4 3 3 4

and hencep = (1 2) (3 4).

1

[

4 3

[ o] v .
e o - S
b

and hence g = (1 4) (2 3).
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e
jre
[ ]
[

and hence r = (1) (2 4) (3).

1 27 3

[ ]

-~

4 ] 3 4 |1

=

and hence s = (1 3) (2) (4).

From example (4.2) above

ep) = e, e; =a, e;=b, e3=c

Moreover G1 = {eo,el,ez,e3}_
Using lemma (4.1) above and the composition of mappings table
of G; we deduce that
ee =e , ea = a, eb = b, ec =c
ae= a, aa=b, ab=c, ac=e
be=b, ba=c, bb=e bc=a
ce =, ca =e, cb =a, cc=b>
Using the cyclic structure of the elements of G, above we get
ep =()2)B)A) 2)(3 49)=(1 2)(3 4 =p
eq =(1)2)B)E)A 4)(2 3)=(1 42 3) =¢
er =(D2)B))D)2 9)3) = D)2 9Y3) =r
es = ()(2)3)4)1 3)(2)(4) =1 3)(2)(4) =s
ap=(1 2 3 4)( 2)(3 4)=(1 3)2)4) ==
ag=(1 2 3 4)(1 4)2 3)=(D)2 4)(3) =r
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ar=(123 402 H3) =(1 2)3 4 =p
as=(1234) (1 3)2)4)=( 492 3)=¢q
bp=(1 3)2 41 2)3 4)=(1 92 3) =¢
bg=(13)2 41 492 3)=( 2)3 4)=p
br=(1 32 4) ()2 9(3) = (1 )24 =s
bs = (1 3)(2 4)(1 3)2)(4) =(D(2 4)3)=r
ep=(14 32)(1 23 4)=()2 93) =r
cqg=(14 32 (1 92 3)=( 3)2)4) =s
cr=(14 32 ()2 493)=(1 92 3)=q
es=(14 32 (1 324 =( 2)3 4)=p
pe =(1 )3 Y2)B)H) = (1 (3 4) =p
pa=(12)3 9 23 49=[DC2 43 =r
pb=(1 2)(3 4)(1 3)2 49)=(1 42 3) =¢q
pe=(1 203 4H(1 4 3 2)=(1 3)(2)4) =s
pp=(1 23 4 (1 23 4) = ()3 H)=e
pqg =1 2)(3 41 492 3)=(1 3)2 49)=>b
pr=(12)3 4 ()2 H3)=(1 2 3 9=a
ps=(12)3 4 (I A =(4 32 =c
ge =(1 4)(2 3)(D)(2)3)4) =(1 492 3)=q
ga=(1 42 3) (1234)=( 324 =s
gb=(1 42 3)(1 3)(2 4)=(1 2)(3 4)=p
ge =(1 92 3)(1 4 32)=(1)2 49)3) =r
gp =(1 4)(2 3)(1 2)(3 4)=(1 3)(2 4)=b
qq =(1 4)(2 3)(1 92 3)=(D2)(3)4)=e
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gr=(1 42 3) (D2 93)=(1 4 3 2)=c
gs =(1 42 3) (1 3)2)4) =(1 2 3 4)=a
re = (D2 4)(3) (D(2)B)H4) =(1)(2 4)(3) =r
ra={MC H3) (12 349=1 492 3) =g
rb=(1)(2 4)3) (1 3)2 4)=(1 3)(2)4)=s
re=(12 93) (1 4 32)=( 2)(3 4)=p
=2 4H3) (1 2)3 )= 4 3 2)=c
rg =(1)2 43)(1 92 3)=(1 2 3 4 =a
rr =02 4)(3) (D2 4)3) =(D)(2)GE)H)=e
rs =(D2 4)(3) (1 3)(2)H4)=(1 3)2 4)=b
se =(1 3)2)(A)(D2)(3)H4) = (1 3)(2)(4) =s
sa=(1 3)2)HA 23 4)=(1 2)3 4 =p
sb=(1 3)2)A)( 3)(2 4) =2 4)(3) =r
sc=(1 3)2)4)(1 4 32)=( 92 3)=q
sp=(1 3))N(A 2)3 49=(12 3 4)=a
sq=(1 3))N(A 42 3)=(1 4 3 2) =c
sr=(1 3)2)A)(D)2 4)3)=(1 3)2 4)=b
ss =(1 3)(2)(4) (1 3)(2)(4) =(D)(2)(3)H)=e

We summarize the above results in the following composition of

mappings table of G».
0 e a p q v s
e e a p q v s
a a b s r )% q
b b c q p S r
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c c e a b r S q p
p p r q s e b a c
q q s p r b e c a
r r q s p c a e b
S S p r q a c b e
Using this table we get
Lemma (4.2):

(G, 0) 1s a permutation group of X
Proof:

By definition each element of G, is a permutation of X. Moreover
by table above

G, 1s closed under composition of mappings.

e 1s identity of G,.

Each element has an inverse.

By composition of mappings G, is associative.

Therefore G, is a permutation group of X [11,27].

Moreover represent elements of X as elements of a sequence from
{r,b}?, where for example the element rrbr €X is the element where the

colour of 7,2,4 1s Red and the colour of 3 is Blue see figure
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Using the above remark (4.1) and the definitions of members of G,
as rotations and reflections we construct the following table, where the
first column represents the elements of X and the first row represents the
elements of G, and each other element is the image of the corresponding
elements of G, and X, which are respectively in the same column and

row

with it, e.g. for rbrreX and € €0, and by definition of €2 as a

rotation we get the element

e; (rbrr)y=e;l =] r r = rrrb

Similarly by definition of ¢ € G,

q(rbrr)=q rpr = |5 p | =rrrb

as in the table below [11,31].
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We observe that X has 2* =16elements as shown in first column of table

below

X e a b c p 0 r S

rrrr rrrr |rrrvr |\rrrr |rrrrv |\rrrr |rrrrv | rrrr |rrrr

brrr | brrr | rbrr |vrbr |rrrb | rbrr |rvrrb | brrr | rrbr

rbrr | rbrr | rrbr |rrrb | brrr | brrr |vrbr |rrrb | rbrr

rrbr | rrbr | rrrb | brrr |vrbrr | rrrb | rbrr | rrbr | brrr

rrvb | rrrb | brrr | rbrr | rrbr | rrbr | brrr | rbrr | rrrb
bbrr | bbrr | rbbr | rrbb | brrb | bbrr | rrbb | brrb | rbbr
rbbr | rbbr | rrbb | brrb | bbrr | brrb | rbbr | rrbb | bbrr
rrbb | rrbb | brrb | bbrr | rbbr | rrbb | bbrr | rbbr | brrb
brrb | brrb | bbrr | rbbr | rrbb | rbbr | brrb | bbrr | rrbb
rbrb | rbrb | brbr | rbrb | brbr | brbr | brbr | rbrb | rbrb
brbr | brbr | rbrb | brbr | rbrb | rbrb | rbrb | brbr | brbr
bbbr | bbbr | rbbb | brbb | bbrb | bbrb | rbbb | brbb | bbbr
bbrb | bbrb | bbbr | rbbb | brbb | bbbr | brbb | bbrb | rbbb
brbb | brbb | bbrb | bbbr | rbbb | brbb | bbrb | bbbr | brbb
rbbb | rbbb | brbb | bbrb | bbbr | brbb | bbbr | rbbb | bbrb
bbbb | bbbb | bbbb | bbbb | bbbb | bbbb | bbbb | bbbb | bbbb

Table (4.2)
Lemma (3.3):
If G is a permutation group of a set X, therefore
O.|S.|=|G|,Vx e X.

X X
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Proof:
For definitions of O, and S, see chapter (2). Moreover fix x eX and
define an equivalence relation ~ on G by
g ~ & i (%) = g, (%)
We prove that ~ is an equivalence relation [11,41].
(i) Let & € G . Since
g(x) = g(x),
this implies that g ~ g. Therefore ~ is reflexive.
(1) Let g; ~g,. This implies that
g (x) = g,(%).
Therefore

g,(x)=g,(x)

This implies that g, ~g;. Therefore ~ is symmetric.
(i11) Let g; ~g», g> ~g3. This implies that
g (%) = g, (x)andg, (x) = g;(x).
Therefore
g (¥)=g5(x)
This implies that g; ~ g;. Therefore ~ is transitive [11,31].

Therefore ~ is an equivalence relation. Let the equivalence classes be

A, 4y 4, We first argue that
|4 =

SX

’ i=1,2,...,m

Fix iand € €4 Then
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he d <> g(x)=h(x) <> (g ' oh)x=x
(g loh)eS «<>hegoS, (4.1

This implies that 4 =8 °5

* . By definition
goS, ={gec=0eS,}
If 0,,0, €S, and

goo, =go0,

Then
0, =(g " 0g)o, =g °(g°0))=¢g °(g°0,)=(g ' °g)T, =0,.
Thus
g S.|=18, (4.2)
and therefore
|4,|=]g S, (4.3)

Using equations (4.1),(4.2) above therefore
A,

]

=S

X

” i=1,2,...,m

0

X

m =

Finally
distinct g (x) [11,31].

since there is a distinct equivalence class for each

Using table (4.1) and the lemma (4.1) above we get the following table.

X Ox Sy
rrer {rrrr} G,
brrr {brrr,rbrr,rrbr,rrrb} {eo}
rbrr {brrr,rbrr,rrbr,rrrb} {eo}
rrbr {brrr,rbrr,rrbr,rrrb} {eo}
rrrb {brrr,rbrr,rrbr,rrrb} {eo}
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table:

Using table (4.2) and the above lemma (4.2) we get the following

bbrr {bbrr,rbbr,rrbb,brrb} {eo }
rbbr {bbrr,rbbr,rrbb,brrb} {eo }
rrbb {bbrr,rbbr,rrbb,brrb} {eo }
brrb {bbrr,rbbr,rrbb,brrb} {eo }
rbrb {rbrb,brbr} {es,e,}
brbr {rbrb,brbr} €€,
bbbr {bbbr,rbbb,brbb,bbrb} {eo }
bbrb {bbbr,rbbb,brbb,bbrb} {eo }
brbb {bbbr,rbbb,brbb,bbrb} {eo }
rbbb {bbbr,rbbb,brbb,bbrb} {eo }
bbbb {bbbb} G
Table (4.3)

X O Sy
rrer {rrrr} G,
brrr {brrr,rbrr,rrbr,rrrb} ler}
rbrr {brrr,rbrr,rrbr,rrrb} les)
rrbr {brrr,rbrr,rrbr,rrrb} ler}
rrrb {brrr,rbrr,rrbr,rrrb} les)
bbrr {bbrr,vbbr,rrbb,brrb) {e,p}
rbbr {bbrr,rbbr,rrbb,brrb) {e,q}
rrbb {bbrr,rbbr,rrbb,brrb) {e,p}
brrb {bbrr,rbbr,rrbb,brrb) {e,q}
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rbrb {rbrb, brbr} fe,br,s)
brbr {rbrb, brbr} fe,br,s)
bbbr {bbbr,rbbb,brbb, bbrb; fe,s)
bbrb {bbbr,rbbb,brbb, bbrb; fe,r)
brbb {bbbr,rbbb,brbb, bbrb; fe,s)
rbbb {bbbr,rbbb,brbb, bbrb; fe,r)
bbbb {bbbb} G,
Table (4.4)
Theorem (4.2):

VX,G

Let G be a permutation group of a set X. If is the number of

orbits of G in X, then [11].

1
Vee=—03|8
o T TS,

xeX
Proof:

X=UoO,

xeX
See lemma (2.6) above in chapter (2). Suppose
X =0,U00, U..UO,

where ©x:0:»-9,, and the distinct an disjoint orbits of G in X.

Therefore
Vig=n
By lemma (3.3) above
[0S, [=1G|
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|G|

S, |

10, |=

This implies that

b
101 |G|

Moreover

> N S A L (4.4)

Since

therefore by equation (4.4)
S, |

'S 'S 'S
2iG) " Z|G| Z|G| | Z|G| -

xeX xe0, xe€0

Therefore.
| S
= =218, I
);( Z):( |G
Therefore
S,
Vo= g TS,
Example (4.4):

Thus in example (4.2) and using the table (4.1), the number of

elements of G, is equal to 4. Similarly and using table (4.1) we find S, |

for each xe X. Hence each of rmr e X, and bbbbe X g fixed by G.
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Moreover each of the elements brrr, rbrr, rrbr, rrrb, bbrr, rbbr, rrbb,
brrb, brbb, bbrb, bbbr, and rbbb € X are fixed by {e,/}, and each of the
elements rbrb, brbr € X is fixed by {ey, e,}. Therefore [11].

Z| S F4+1+1+14+14+14+1+1+14+24+2+14+14+1+1+4

xeX
= 24
Since |G| = 4, this implies that

—><24 6.
4

s | G 1S
Example (4.5):

In example (4.3) and using the table (4.4), the number of elements
of G, is equal to 8. Similarly and using table (4.4) we find | S, | for each
xe X. Hence each of rrrre X , and bbbb € X is fixed by G. Moreover
each of the elements brrr, rrbr, bbrb, rbbb € X are fixed by {e,r}, and
each of the elements rbrr, rrrb, bbbr, and brbb € X, are fixed by {e,s/,
and each of the elements bbrr, rrbb € X are fixed by {e,p}, and each of
the elements rbbr, brrb € X are fixed by {e,g/, and each of the elements
rbrb, brbr € X are fixed by {e,b,r,s/}. Therefore

Z| S E8+242424+24+24+24+2+2+44+4424+24+24+2+8

xeX
=48

Since | G, [=8, this implies that

V —><48 6.
X6 |G|XEX 8
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In what follows we have another look at V', .

Definition (4.1):
For ge<G, define
Fix (g)=1{re X :g(x)=x}
Using this definition we prove
Theorem (4.3): (Burnside’s Lemma):

Let G be a permutation group of a set X. Then

1 .
Vi =EZ|FZX(g)|

geG
Proof:

By theorem (4.2) above

1
VX,G - ‘EZ

xeX

S

(4.5)

X

Define a function 4: XxG —{0,l} by

1 if glx)=x
0 if g(x)#x

By definition of S, this implies that
A(x,g)=1,if geS,
A(x,2)=0 ,iff geG-S,
This implies that
S =D Axg) =) Axg)
gsS, =e

A(x,g) = {

Substituting in equation (4.5) therefore
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Vi =é Y Axg) =é Y Axg) “6)

For a fixed g € G and by definition (4.1) above
D Alx,g) =|Fix(g)

xeX

Substituting in equation (4.5) above therefore

Example (4.6):
Suppose n is a disc with n = 6 sectors. Let
Gs ={ey e}, e e3 ey e5/
where e, e;, e, e; e, es represent a clockwise rotation of D by 0, 60,

120, 180, 240, 300 degrees respectively.

In what follows we find the cyclic structure of the elements of G

. () NAVA
\

Hence ey = (1)(2)(3)(4)(5)(6).

o

Hencee,=(1 2 3 4 5 6).
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(- G

Hence e; = (1 4)(2 5)(3 6).

BVA

(- &%

Hencees,=(1 5 3)(2 6 4).

() &8

Hencees=(1 6 5 4 3 2).
In what follows we prove that G; is closed under composition of

mappings. We have,

eoe, = (D2)B)HGNO)(2)(3)((3)(6) = (D(2)(3)()(5)(6) = ¢,
ege; = (D(2)(3N4)(5)(6)(123456)=(123456)=e¢,
ee, = (1(2)(3N4)(5)(6)(135)(246)=(135)(246)=e,
eoe; = (N(2)B)(H(5)(6) (1 4)(2 5)(3 6) = (1 4)(25)(3 6) = e,
epe, = (1)(2)(3)(4)(5)(6)(153)(264)=(153)(264)=e,
eges = (1)(2)(3)(4)(5)(6)(165432)=(165432)=e;
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ee, =(123456)1)(2)3)4)5)6)=(123456)=e,
ee, =(123456)123456)=(135)(246)=e,
ee, =(123456)135)(246)=(14)25)36)=e,
ee; =(123456)(135)0(246)=(153)(264)=e,
ee,=(123456)153)264)=(165432)=ec,
ee.=(123456)165432)=(1)2)3)4)5)6)=e,
e,e, = (135)(2 4 6)1)(2)3)4)5)6)=(135)246)=e,
ee, =(135)246)123456)=(14)25)36)=e,
e,e, =(135)246)135)246)=(153)264)=e,
e e, =(135)(246)14)25)36)=(165432)=ec,
ee, =(135)(246)(153)(264)=1)(2)(3)(4)5)(6) = e,
e,es=(135)(246)165432)=(123456)=e,
ese, = (1 4)(2 5)(3 6)(1(2)(3)(4)(5)(6)= (1 4)(2 5)(3 6) = e,
e;e, =(135)(246)(123456)=(153)(264)=e,
e;e, = (14)(25)36)(135)(246)=(165432)=e,
ese; = (14)(25)(3 6)(14)(25)(36)=(1)(2)3)(4)(5)(6)=e,
ese, =(14)(25)36)153)(264)=(123456)=e¢,
eses =(14)25)36)165432)=(135)(246)=e,
ejeq = (153)(2 6 4)(D(2)B)NA)(5)6)=(153)(264)=e,
e,e,=(153)(264)123456)=(165432)=ec,
ee, =(153)(264)135)(246)=(D)(2)3)(4)5)(6)=c¢e,
e,e, =(153)(264)14)25)36)=(123456)=e,
ee, =(153)(264)153)(264)=(135)246)=e,
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e,es =(153)264)165432)=(14)25)36)=e,
ece, = (16543 2)(1)2)3)4)5)6)=(165432)=e,
ece, =(165432)123456)=(1)2)3)4)5)6)=e,
ese, =(165432)(135)(246)=(1234506)=e,
ece, =(165432)(14)25)36)=(135)(246)=e,
ece, =(165432)153)(264)=(14)25)36)=e,
eces=(165432)165432)=(153)264)=e,

Using the above results we get the following composition of

mappings table of Gs;.
0 €o € € €3 €y €s
e, e, e, e, e, e, e
e, e, e, e, e, e; e,
) € €3 €y €s €o €
€3 €3 €, €s € €, €,
€y €y €s €o € ) €3
e; e; e, e, e, e, e,

Using this table we get
Lemma (4.4):

(G3,0) 1s a permutation group of X [11].
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Proof:
By definition each element of Gj; is a permutation of X. Moreover

by table above

1- G3 is closed under composition of mappings.

2- ¢, is identity of G;.

3- Each element has an inverse.

4- By composition of mappings Gj is associative

Therefore Gj is a permutation group of X [11,31].

Moreover, and as in remark (4.1) above, we shall represent elements
of X as elements of a sequence from {r,b} where for example the element
rrbbrreX 1s the element, where the colour of 1, 2, 5, 6 1s Red and the

colour of 3,4 is Blue, see figure below [11].

Using the above remark and the definition of members of G; as
rotations we construct the following table where the first column
represents the elements of X, and the first row represents the elements of
G; and each other element is the image of the corresponding elements of

Gsand X, which are respectively in the same column and row with it, e.g.
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for rbrreX and e, € G; and by definition of €, as a rotation we get the

element

e (rbrr)=e; /_2\ = fb_:\ =rrrb

as in the table below [11].

We observe that X has 2° =64 elements as shown in first column

of table below
. € €, €, €3 €, €s
rrrrrr rrrrrr rrrrrr rrrrrr rrrrrr rrrrrr rrrrrr
brrrrr brrrrr rbrrrr rrbrrr rrrbrr rrrrbr rrrrrb
rbrrrr rbrrrr rrbrrr rrrbrr rrrrbr rrrrrb brrrrr
rrbrrr rrbrrr rrrbrr rrrrbr rrrrrb brrrrr rbrrrr
rrrbrr rrrbrr rrrrbr rrrrrb brrrrr rbrrrr rrbrrr
rrrrbr rrrrbr rrrrrb brrrrr rbrrrr rrbrrr rrrbrr
rrrrrb rrrrrb brrrrr rbrrrr rrbrrr rrrbrr rrrrbr
bbrrrr bbrrrr rbbrrr rrbbrr rrrbbr rrrrbb brrrrb
brbrrr brbrrr rbrbrr rrbrbr rrrbrb brrrbr rbrrrb
brrbrr brrbrr rbrrbr rrbrrb brrbrr rbrrbr rrbrrb
brrrbr brrrbr rbrrrb brbrrr rbrbrr rrbrbr rrrbrb
brrrrb brrrrb bbrrrr rbbrrr rrbbrr rrrbbr rrrrbb
rbbrrr rbbrrr rrbbrr rrrbbr rrrrbb brrrrb bbrrrr
rbrbrr rbrbrr rrbrbr rrrbrb brrrbr rbrrrb brbrrr
rbrrbr rbrrbr rrbrrb brrbrr rbrrbr rrbrrb brrbrr
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rbrrrb rbrrrb brbrrr rbrbrr rrbrbr rrrbrb brrrbr
rrbbrr rrbbrr rrrbbr rrrrbb brrrrb bbrrrr rbbrrr
rrbrbr rrbrbr rrrbrb brrrbr rbrrrb brbrrr rbrbrr
rrbrrb rrbrrb brrbrr rbrrbr rrbrrb brrbrr rbrrbr
rrrbbr rrrbbr rrrrbb brrrrb bbrrrr rbbrrr rrbbrr
rrrbrb rrrbrb brrrbr rbrrrb brbrrr rbrbrr rrbrbr
rrrrbb rrrrbb brrrrb bbrrrr rbbrrr rrbbrr rrrbbr
bbbrrr bbbrrr rbbbrr rrbbbr rrrbbb brrrbb bbrrrb
bbrbrr bbrbrr rbbrbr rrbbrb brrbbr rbrrbb brbrrb
bbrrbr bbrrbr rbbrrb brbbrr rbrbbr rrbrbb brrbrb
bbrrrb bbrrrb bbbrrr rbbbrr rrbbbr rrrbbb brrrbb
brbbrr brbbrr rbrbbr rrbrbb brrbrb bbrrbr rbbrrb
brbrbr brbrbr rbrbrb brbrbr rbrbrb brbrbr rbrbrb
brbrrb brbrrb bbrbrr rbbrbr rrbbrb brrbbr rbrrbb
brrbbr brrbbr rbrrbb brbrrb bbrbrr rbbrbr rrbbrb
brrbrb brrbrb bbrrbr rbbrrb brbbrr rbrbbr rrbrbb
brrrbb brrrbb bbrrrb bbbrrr rbbbrr rrbbbr rrrbbb
rbbbrr rbbbrr rrbbbr rrrbbb brrrbb bbrrrb bbbrrr
rbbrbr rbbrbr rrbbrb brrbbr rbrrbb brbrrb bbrbrr
rbbrrb rbbrrb brbbrr rbrbbr rrbrbb brrbrb bbrrbr
rbrbbr rbrbbr rrbrbb brrbrb bbrrbr rbbrrb brbbrr
rbrbrb rbrbrb brbrbr rbrbrb brbrbr rbrbrb brbrbr
rbrrbb rbrrbb brbrrb bbrbrr rbbrbr rrbbrb brrbbr
rrbbbr rrbbbr rrrbbb brrrbb bbrrrb bbbrrr rbbbrr
rrbbrb rrbbrb brrbbr rbrrbb brbrrb bbrbrr rbbrbr
rrbrbb rrbrbb brrbrb bbrrbr rbbrrb brbbrr rbrbbr
rrrbbb rrrbbb brrrbb bbrrrb bbbrrr rbbbrr rrbbbr

94




bbbbrr bbbbrr rbbbbr rrbbbb brrbbb bbrrbb bbbrrb
bbbrbr bbbrbr rbbbrb brbbbr rbrbbb brbrbb bbrbrb
bbbrrb bbbrrb bbbbrr rbbbbr rrbbbb brrbbb bbrrbb
bbrbbr bbrbbr rbbrbb brbbrb bbrbbr rbbrbb brbbrb
bbrbrb bbrbrb bbbrbr rbbbrb brbbbr rbrbbb brbrbb
bbrrbb bbrrbb bbbrrb bbbbrr rbbbbr rrbbbb brrbbb
brbbbr brbbbr rbrbbb brbrbb bbrbrb bbbrbr rbbbrb
brbbrb brbbrb bbrbbr rbbrbb brbbrb bbrbbr rbbrbb
brbrbb brbrbb bbrbrb bbbrbr rbbbrb brbbbr rbrbbb
brrbbb brrbbb bbrrbb bbbrrb bbbbrr rbbbbr rrbbbb
rbbbbr rbbbbr rrbbbb brrbbb bbrrbb bbbrrb bbbbrr
rbbbrb rbbbrb brbbbr rbrbbb brbrbb bbrbrb bbbrbr
rbbrbb rbbrbb brbbrb bbrbbr rbbrbb brbbrb bbrbbr
rbrbbb rbrbbb brbrbb bbrbrb bbbrbr rbbbrb brbbbr
rrbbbb rrbbbb brrbbb bbrrbb bbbrrb bbbbrr rbbbbr
bbbbbr bbbbbr | rbbbbb brbbbb bbrbbb bbbrbb bbbbrb
bbbbrb bbbbrb bbbbbr | rbbbbb brbbbb bbrbbb bbbrbb
bbbrbb bbbrbb bbbbrb bbbbbr | rbbbbb brbbbb bbrbbb
bbrbbb bbrbbb bbbrbb bbbbrb bbbbbr | rbbbbb brbbbb

95




brbbbb | brbbbb | bbrbbb | bbbrbb | bbbbrb | bbbbbr | rbbbbb

rbbbbb | rbbbbb | brbbbb | bbrbbb | bbbrbb | bbbbrb | bbbbbr

bbbbbb | bbbbbb | bbbbbb | bbbbbb | bbbbbb | bbbbbb | bbbbbb
Table (4.5)

Using table (4.5) and the lemma (4.4) above we get the following

table:

X O, Fix g
rrrrrr {rrrrrr} Gs
brrrrr {brrrrr, rbrrrr,vrbrrr, rrvbrr, rrrrbr, rrrrrb} {e,}
rbrrrr {b rrrvr,vbrrrr,rrbrrr,rrrbrr, rrrvbr, rrrrrb} {ey}
rrbrrr {brrrrr ,rbrrrr  rrbrrr vrrbrr  vrrrbr  rrrrvb } {e,}
rrrbrr {b rrrer, rbrrer, rrbrrr, rrrbrr,rrrrbr, rrrrrb} {e,}
rrrrbr {brrrrr ,rbrrrr ,vrbrrr ,vrrbrr , vrrvbr  rrrrrb } {e,}
rrrrrb {brrrrr ,rbrrrr vrbrrr  rrrbrr  vrrrbr , rrrrrb } 1€}
bbrrrr {bbrrrr, rbbrrr,rrbbrr, rrrbbr, rrrrbb, brrrrb} {e,}
brbrrr {brbrrr, rbrbrr, rrbrbr, rrrbrb, brrrbr, rbrrrb} {e,}
brrbrr {brrbrr, rbrrbr, rrbrrb, rrbrrb, rbrrbr} {ey.e5}
brrrbr {brrrbr, rbrrrb, brbrrr,rbrbrr, rrbrbr, rrrbrb} {ey}
brrrrb {brrrrb,bbrrrr, rbbrrr, rrbbrr, rrrbbr, rrrrbb) {e,}
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rbbrrr {rbbrrr, rrbbrr,rrrbbr, rrrrbb, brrrrb, bbrrrr} {e,}
rbrbrr {rbrbrr, rrbrbr, rrrbrb, brrrbr, rbrrrb, brbrrr} {e,}
rbrrbr {rbrrbr, rrbrrb, brrbrr,rbrrbr, rrbrrb, brrbrr} {eg.e;}
rbrrrb {rbrrrb,brbrrr, rbrbrr, rrbrbr, rrebrb, brrrbr) {e,}
rrbbrr {rrbbrr, rrrbbr, rrrrbb, brrrrb, bbrrrr, rbbrrr} {ey}
rrbrbr {rrbrbr, rrrbrb, brrrbr, rbrrrb, brbrrr, rbrbrr} {e,}
rrbrrb {rrbrrb, brrbrr,rbrrbr,rbrrbr, brrbrr} {ey. e}
rrrbbr {rrrbbr, rrrrbb, brrrrb, bbrrer, rbbrrr, rrbbrr} {eo}
rrrbrb {rrrbrb, brrrbr, rbrerb, brbrrr, rbrbrr, rrbrbr | {eo}
rrrrbb {rrrebb, brerrb, bbrrrr, rbbrrr, rrbbrr, rrrbbr} {eo}
bbbrrr {bbbrrr ,vbbbrr , rrbbbr ,rrrbbb ,brrrbb ,bbrrrb } {e,}
bbrbrr {bbrbrr, rbbrbr, rrbbrb, brrbbr, rbrrbb, brbrrb | {ey}
bbrrbr {bbrrbr, rbbrrb, brbbrr, rbrbbr, rrbrbb, brrbrb} {ey}
bbrrrb {bbrrrb ,bbbrrr,rbbbrr ,rrbbbr ,rrrbbb,brrrbb } {e,}
brbbrr {brbbrr, rbrbbr, rrbrbb, brrbrb, bbrrbr, rbbrrb} {e,}
brbrbr {brbrbr, rbrbrb) {ey,e,,e,}
brbrrb {brbrrb, bbrbrr,rbbrbr,rrbbrb, brrbbr, rbrrbb} {ey}
brrbbr {brrbbr, rbrrbb,brbrrb,bbrbrr, rbbrbr,rrbbrb } {e,}
brrbrb {brrbrb, bbrrbr,rbbrrb,brbbrr,rbrbbr, rrbrbb} {e,}
brrrbb {brrrbb, bbrrrb,bbbrrr,rbbbrr, rrbbbr, rrrbbb} {e,}
rbbbrr {rbbbrr, rrbbbr,brrbbb,brrrbb,bbrrrb, bbbrrr} {e,}
rbbrbr {rbbrbr, rrbbrb,brrbbr, rbrrbb, brbrrb, bbrbrr} {e,}
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rbbrrb {rbbrrb, brbbrr, rbrbbr, rrbrbb, brrbrb, bbrrbr} {e,}
rbrbbr {rbrbbr, rrbrbb, brrbrb, bbrrbr, rbbrrb, brbbrr} {e,}
rbrbrb {rbrbrb, brbrbr | {e,,e,,e,}
rbrrbb {rbrrbb ,brbrrb , bbrbrr , rbbrbr , rrbbrb , brrbbr } {e,}
rrbbbr {rrbbbr, rrrbbb, brrrbb, bbrrrb, bbbrrr, rbbbrr} {e,}
rrbbrb {rrbbrb, brrbbr, rbrrbb,brbrrb,bbrbrr, rbbrbr} {e,}
rrbrbb {rrbrbb ,brrbrb ,bbrrbr ,rbbrrb,brbbrr,rbrbbr } {e,}
rrrbbb {rrrbbb ,brrrbb,bbrrrb,bbbrrr,rbbbrr, rrbbbr} {e,}
bbbbrr {bbbbrr, rbbbbr, rrbbbb, brrbbb,bbrrbb, bbbrrb} {e,}
bbbrbr {bbbrbr, rbbbrb,brbbbr, rbrbbb, brbrbbh, bbrbrb} {e,}
bbbrrb {bbbrrb,bbbbrr,rbbbbr, rrbbbb, brrbbbb, bbrrbb {e,}
bbrbbr {bbrbbr, rbbrbb, brbbrb, brbbrb, rbbrbb} {e,,e5}
bbrbrb {bbrbrb,bbbrbr, rbbbrb,brbbbr, rbrbbb, brbrbb} {e,}
bbrrbb {bbrrbb, bbbrrb, bbbbrr, rbbbbr, rrbbbb, brrbbb} {e,}
brbbbr {brbbbr; rbrbbhbrbrbh bbrbrh bbbrbr, rbbbrh) {ey}
brbbrb {brbbrb, bbrbbr, rbbrbb, rbbrbb,bbrbbr} {e,,e;)
brbrbb {brbrbb, bbrbrb, bbbrbrb, rbbbrb, brbbbr, rbrbbb {e,}
brrbbb {brrbbb, bbrrbb,bbbrrb,bbbbrr,rbbbbr, rrbbbb} {e,}
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rbbbbr {rbbbbr, rrbbbb, brrbbb,bbrrbb, bbbrrb, bbbbrr} {e,}
rbbbrb {rbbbrb, brbbbr,rbrbbb, brbrbb,bbrbrb, bbbrbr} {e,}
rbbrbb {rbbrbb ,brbbrb, bbrbbr ,bbrbbr ,brbbrb | {e,,e5}
rbrbbb {rbrbbb, brbrbb,bbrbrb,bbbrbr,rbbbrb, brbbbr} {e,}
rrbbbb {rrbbbb, brrbbb ,bbrrbb,bbbrrb,bbbbrr, rbbbbr} {e,}
bbbbbr {bbbbbr ,rbbbbb ,brbbbb , bbrbbb ,bbbrbb ,bbbbrb } {e,}
bbbbrb {bbbbbr, rbbbbb, brbbbb,bbrbbb,bbbrbb, bbbbrb} {e,}
bbbrbb {bbbbbr, rbbbbb,brbbbb,bbrbbb,bbbrbb,bbbbrb } {e,}
bbrbbb {bbbbbr, rbbbbb, brbbbb,bbrbbb,bbbrbb,bbbbbr} {e,}
brbbbb {bbbbbr,rbbbbb, brbbbb, bbrbbb, bbbrbb,bbbbbr} {e,}
rbbbbb {bbbbbr, rbbbbb, brbbbb, bbrbbb,bbbrbb, bbbbbr} {e,}
bbbbbb {bbbbbb} G,
Table (4.6)

Example(4.7):
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Using the table (4.6) the number of elements of Gj; is equal to 6.
Similarly and using table (4.6) we find | S, | for each x € X . Hence each

of the elements of X is fixed by{e,} . Moreover each of the elements
brrbrr, rrbrrb, rbrrbr, bbrbbr, brbbrb, and rbbrbbeX are fixed by
{ey,e;5}, and each of the elements brbrbr, and rbrbrb €X is fixed by
{€;,€,,€,}- Therefore [11].

The number of elements fixed by e, = 64

The number of elements fixed by €, =2

The number of elements fixed bye, =4

The number of elements fixed by e;= 8

The number of elements fixed by €, =4

The number of elements fixed by e;=2

Using the above results we get the following table

4 e, e, e, e; e, €s

| Fix(g) | 64 2 4 8 4 2

By theorem (4.3) above therefore

X.Gy —
:é(64+2+4+8+4+2)

=l><84:14
6

4.2 Colouring of Cycles of a permutation:
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Suppose D i1s a set of sectors,squares, etc ...,G a permutation
group of D and X the set of colourings of D. Let g € G and x € X such
that x € Fix g.. We shall investigate in what follows the relation between

the colouring of x and the cycles of g. Thus with reference to theorem
(4.1) and example (4.6) let

G={eyey .. e}
be a permutation group of D ={ I, 2, ...., n}, where e,,, m=0,..., m-1 1s
defined by [11].

en (I)=(i+m) mod n
For the sake of brevity we shall write simply (i+m) instead of (i+m) mod
n in what follows. By definition the cycles of ejare (1), (2), ...,(n) since

n=0mod n. Next we find the cycles of e, where o<m<n. let

a, = ged(n,n) and K, = 1/

. By definition of ¢,, the cycle C; ,0<i<n,
of e,, containing the element i € D , is(,i+m,i+2m,..i+(K,—Dm) since n is
a divisor of K,,m and not a divisor of x'm for K'<K,. Moreover C; has
K,, elements for each i. Since a,,K,,=n, this implies that in total, e,, has
an, cycles C,,C,,....,C, . This is because they are disjoint and they
also partition D , see theorem (2.2) chapter two,and therefore they
together contain n elements [11].

Next observe that if a colouring x € X is fixed by e,, then elements
on the same cycle C; must be coloured the same. By contraction suppose

that for some integer 0<»<k, -1 the colour of i+bm is different from the

colour of i+(b+1)m in C;, say Red versus Blue. Since
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e (i+bm)=i+bm+m=i+(b+Dm,
this implies that the colour of i+ (b +1)min e,(x) will be Red and so
e, (x) # x, contracting that x is fixed by ¢, .

Conversely, if x € X such that elements of the same cycle of e,
have the same colour in x then x € Fix(e,, ) since e,, fixes its own cycles
[11].

Using the above arguments we have the following lemma
Lemma (4.5):

Let G be a permutation group of D. If geG and xeX then
x € Fixg iff x 1s obtained by giving all members of a cycle of g in D the
same colour [11.31].

Proof:
As above.

Using D,G and X given in section(4.2) above we have following

example .
Example (3.8):

Suppose we have two colours to use.Since e, has a, cycles
therefore

| Fix(e,)) |=2"

Since a, =gcd(m,n) therefore by applying theorem (4.3) above it
follows that

1 n—1
V)( — _Zzgcd(m,n)
,G .

n m=0
Remark (4.2):
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(1) Using example (3.2), D = {1,2,3,4}. Moreover as in example (4.2) the
sectors of D are numbered in clockwise order. If xe X, then as in
remark (4.1) above x represents a colouring of each member of D by the
colours r (Red) or b (Blue). Let C = {r,b} be the set of colours. Suppose
x € X such that the colour of 1 is r, the colour of 2 1s b, the colour of 3 is
b and the colour of 4 is . Then using remark (4.1) above

x = rbbr.
(2) Using this we observe that x defines a mapping of D into C, i.e.
x:D—C, given by x(1) =r, x(2) = b, x(3) = b, x(4) = r. Similarly and
by remark (4.1) this is true for all x € X . This implies that X, the set of
all colourings of D by the colours » or b, is equal to [11,31].

X ={x:D — C,xisacolouring of D}.
(3) Using this and the above lemma encourages us to extend each
permutation g € Dto a permutation of X such that for every xe X,
g*xeX,1e g*x:D— C, defined by

g*x(d)=x(g"'(d),VdeD.
4.3 Explanation

The colour of g« x at d € D is the colour of the element g~ (d) € D

which is mapped to it by g, since

glg ' (d)=(gg )d =ed =d

Consider example (3.1) with n=4. Suppose that g = e, 1.e. rotate

clockwise by % and that
x(1) =B, x(2) =b,x(3) =r,x(4) =r.
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Then for example and by definition of g« x in part (3) or remark (4.1)

above
grx()=x(g" () =x4=r,
as before.Now associate a weight W with each ¢ € C ,where W is a
symbol which is not necessarily a number.Using this we have the following
definition [11,31].
Definition(3.2):
If x € X then define
W(x)= dlg) W

Example (3.9):
Using example (4.3) and table (4.4), where D ={1,2,3,4}, let xe X
such that x = bbrr. Then by remark (4.1) above
x()=b, x(2)=b, x(3) =r,x(4) = r.
Let w,=R and w, =B . Substituting for x(d),d € D in definition of W(x)
above therefore

W)= W, = I

defl,2,3,4) Wx(d) = Wy Wea

_ _ 2 p2
=w,w,ww, =B"R

Definition (4.3):
(1) If S < X, define the inventory of S, W (S),to be
W(S)=) W(x)

xeS§
(2) If S" < X contains one member of each orbit of X under G

define the pattern inventory PI to be
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PI =W(S")
The problem we discuss now is how to compute the pattern
inventory Pl [11].
Example (3.10):
Using table (4.4) G has six orbits in X. Since S* contains one
member of each orbit of X under G let
S ={X,, Xy 00X}
Moreover D = {1,2,3,4} and x; = rrrr. Using the above remark (4.1) above
therefore x: D — Cgiven by
x()=r,i=1234,
Similarly and using table (4.4) if x, = brrr, therefore
x,()=b,x,(0)=r,i=2,34,
As before if x; = bbrr, therefore
x;(1)=b,x,(2)=b,x;3)=r,x;(4) =r;
If x, = rbrb, therefore
x,()=r, x,2)=b,x,3)=r,x,(4) = b;
If x; = bbbr, therefore
x;(4)=r, x;(i) =b,i =1,2,3.

Finally x4 = bbbb, therefore
x,()=b, i=1234
By definitions of PI and W(S) and W(x) above

PI=W(S)=) W(x)= Z(};{)wa))

‘
xeS§
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Substituting for each w,,.d €D, as in example (4.9) ,and for each

x €S’ therefore
PI=R*+R’B+R’B*+RB*+B"* (4.7)
Using this example and remark (4.1) we conclude the following

Remark (3.3):

Suppose D ={1,2,3,4} i.e. D is of size 4, see remark (4.1). Then

(1) Each term of equation (4.7) above represents a colouring x of D
except the term 2R°B”.

(2) Since 2R’B’=R°B’+B° R’ji.e. a sum of two terms, hence it
represents two colourings of D namely x; x,

(3) The coefficient of each term gives the number of distinct
colourings represented by the term, e.g. 2R°B° means that there are
two distinct colourings using 2 Reds and 2 Blues, which are
represented by R’ and B’ respectively.

(4) The power of each colour in each term represents the number of

times the colour 1s used in that term.

(5) Each term represents an orbit representative x € S .
« Using parts (1,2,5) above and if we substitute R=B=1 in equation

(4.7) above we get the number of distinct colourings of D, i.e.

x| [11]

4.4 Polya’s Theorem:
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Making use of the above examples the problem we discuss below

is how to compute more generally the pattern inventory PI=W(S")
defined above. Hence and using the above remarks the scenario now
consists of a set D (Domain), a set C (colours) and X = {x: D — C} which
is the set of all colourings of D with the colour set C. Suppose G is a
group of permutations of D. Then as in part (3) remark (4.2) above we
can extend each permutation g € G of D to a permutation of X. Hence if
xe€ X and g € G then as in the explanation above
g*x(d)=x(g”'(d)) forall d e D
Using definitions of W(x) and W(S) above therefore

W(S)= Z W(x)= ZH Wi (4.8)

xeS xeS deD
Using this we prove [11,31].
Lemma (3.6):

If x, y are in the same orbit of X under G, then

Wx)=W(y)
Proof:

Suppose that g« x=y ,then by definition of W(x) in the explanation
W(y)= H W) = H W gsia)

deD deD

By definition of g« x above we get

W) =TT, (49)

deD
Substituting in equation (4.8) above where S={x! and since g

'D=D therefore
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W(x)= H) el | R (4.10)

deD

Equating equations (4.9) and (4.10) therefore
W) =W(x)

Note that we can go from (4.9) to (4.10) because as d runs over D,
g '(d)also runs over D since g 'D=D [11,31].
Definition (3.4):
Let G be a permutation group of D and A = D |
1- If g e Ghas K, cycles of length i then we define
ct(g) = x| x5 xi

2- The cycle index polynomial of G, Cgis the defined to be

Note:

(1) if g has no cycle of length i then K; = 0 and x;" =1.Moreover
A
D ik, =A
i=1
(2) x;represents a variable for any i-cycle of g€ G in D [11,37].
Example (4.11):
Using example (4.3) with n=2 we have D = {1,2,3,4} and
e=1)2)3)4) ,a=(1234)
b=(3)2 4),c=(1432)

p=120G4 ,q=>104H32)
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r=[03)2 4) ,s=2)4)13)
Using this and by definition of c#(g) we get the following table:

g |elal|lb|lc|ipl|lq]| r | s

4 2 2 2
ct(Q) | x| X, | x| x| x2 | X3 | xx, | xx,

By definition of C(x,,...,x,) therefore

1 4 2 2 2 2 2
CG(xl,xz,x3,x4):§(x1 + X, FXx; +x, X, +X + XX, + X xz)

_ %(x;‘ +2x, 4327 +2x2x,)
Using the above examples (4.10),(4.11) and remark (4.3) we have
[27,38]
Remark (4.4):

(1)Let X be the set of all colourings of the set D={1,2,3,4} and G
be a permutation group of D. Suppose x € Xand g € G such that g(x)=x,
i.e. xeFix(g) .By theorem (4.5) this implies that each cycle of g of
length i has one colour Red or Blue say. For each such i-cycle ,and as in
part (4) of remark(4.2) above ,this is indicated by R'orB’,
i=1,2,3,4.Since the possibilities of R’ or B’ are equal, therefore in any
calculations we shall replace the variable x; by R'+B’, i.e [27,38].

x=R+B". (4.11)
This 1s justified since if we substitute R=B=1,as in part(6) of remark
(4.2),we get

x;=R'+B'=2
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which is the exact number of all ways of colouring an i-cycle by one of
two colours R or B.
Therefore if we replace x; by R+B, x, by R> + B>, x3 by R’ + B’

xs by R*+B* we get
Co(X)5eneXy) =%[(R+B)4 +3(R* +B*)+2(R+B)*(R* +B*)+2(R* + B")]

=R*+R’B+2R’B*+RB> +B* =PI (4.12)
as in example (4.10) above [27,37].

(2)More generally for the set of colourings X of any set D and a
permutation group G of D and as in the above note in the above
definition of c#(g) each x; represents a variable for the colourings of a
cycle of g € Gin D of length i. Moreover 1f we have two colours R and B
or more, then by lemma (4.5) any i cycle C;is fixed by a g e G iff C; 1s
a cycle of g and all elements of C; have one colour. For each cycle of
g € Gof length i and as in part (1) above this value of x; will represent
all the ways of colouring an i-cycle of g € G with one colour R or B.This
implies that Vx € Fix g all the colourings x; are given by x=R'+ B’

(3)Furthermore, equation (4.12) above i1s the core of Polya's
Theory of counting. Using this equation which relates C;(x,,...,x,)with
PI and where x; are the colouring variables of the i-cycles of the
elements geGin D,i=1,2,3,4, together with example (4.9) we shall
rewrite x; as follows:

"+B'= > wl,i=1234, (4.13)

ceC={R+B}
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where w, =R, w, = B.More generally for any XD, G as in part (2) and

substituting for x; in definition of c#(g) above implies that

cl(g)= xlk‘ xé‘z ...sz = (Zwl)k (Z:wf)k2 ...(Z:wf)kA (4.14)

ceC ceC ceC

Moreover and as in part (1)
x,=R'+B', VxeFix(g),i=123,....A,
for each i-cycle of g . Using this and examples (4.9),(4.10) and by
definitions of W(S) and W(x) above therefore

W(Fixg) =] [ = Q)" Qw)™.Qw)™, (4.15)

deD ceC ceC ceC
where k; is the number of i-cycles in g. We observe that this is also true

1f C has more than two colours.

Using this remark we prove Polya's Theorem [27,37,38].

Polya's Theorem:

pr= CG(ZWC ,zwg,...,zwfj
ceC  ceC ceC
Proof:
Suppose
x ~yiff W(ix)=W(p).
We prove that ~ is an equivalence relation

(1) Let xe X. Since W(x) = W(x) therefore x~x, and hence ~ is a

reflexive relation.
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(i1) If x~y therefore W(x) = W(y), this implies that W(y) = W(x) .
Therefore y~x, and hence ~ is a symmetric relation.
(111) If x~y and y~z therefore W(x) = W(y), and W(y) = W(z),. This implies
that W(x) = W(z). Therefore x~z, and hence ~ is a transitive relation.
This implies that ~ is an equivalence relation. Let x = x,ux,uU..Ux, be the
equivalence classes of X under the relation x~y iff

W) =W(y),Vx,ye X.
By above remark (4.1) part(3) g is a permutation of X .Let g € G .By
Lemma (4.6) if g+ x=y therefore

W(x)=W(y).

By definition of the equivalence classes X,,i =1....,m this implies that g is
a permutation of X; for each i. Therefore G is permutation group of X; for

each i. This implies that G is a permutation group of X. For each X;
denote the restriction of g to X; by g’ ,ie. g =g x. . Similarly denote the
restriction of G to X; by G', i.e. G' = Gy .Let G' have m; orbits in X; . If
xeX; let W(x)=W,, which is a constant for all elements of X; by

definition of X;. By definition of Pl above [11,37].
PI =Y W(x) (4.16)

xeS

Where S* contains one member of each orbit of X under G. From above

G is a permutation group of each X,,i=1..,m .Moreover and since

G' =G, , therefore each X; is a union of m; orbits of G, . This implies
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that S* has m; elements of X; and for each i=1,.,m . Since for each
xeX,, W(x)=W, , therefore substituting in equation (4.16) above

PI :Zm[w[ (4.17)

xeS

By theorem (4.3) and since m; is the number of orbit of G (i.e. G, =G")

in X, therefore i=1,...m

and where g is denoted by g' in X; .substituting in equation (4.17)

therefore

PI =7 w,( Y |Fix(g")
i=1 geG

|G| > Z i‘Fix (gf)\ (4.18)

By definition Fix(g) consists of all the elements of X fixed by g. Since X;

are disjoint and x = x,ux,U..ux, therefore Fix(g) in X consists of all the

elements of Fix(g) in each of X;. Since g in X; is denoted by g’ therefore

we have,

Fix (2) = U fir (2") (4.19)

Since x,...,x, are pairwise disjoint this implies that
‘Fix(g)‘ = ‘QFix(gi)‘ = ZZ’::\ Fix(g")|

where | Fix(g)| and |Fix(g") | represents the number of elements in each

set. If § < X ,then by definition of W(S) above

113



W(S)=>Y W(x)

xe8

Applying this to equation (4.19) therefore

W(Fix(g)) = W(Lmj Fix( gi)j (4.20)
By definition
W(Fix(g)= D W(x)
xeFix(g)

By equation (4.19) and since x,,...,x, are disjoint therefore

W(QFix(gi)j = mz W(x)= Z[ ZW(x)J = Z[ ZWij (4.21)

erFix(gi) i=1 \ xeFix(g") i=1 \ xeFix(g")
since Fix(g')c X, and W(x)=w,Vxe X.Using this together with
equations (4.20) and (4.21) we get. [11,37,38]
w(Fix(g))= Y |Fix(g")
i=1

Using this equation therefore
1

Wi

: 1 <
—ZW(FZX (g))=—ZZ‘le (g)w; (4.22)
‘G geG ‘G geG i=1
By equations (4.18) and (4.22) above therefore
PI = LZ W (Fix (g)) (4.23)
‘G geCG

By definition of ct(g) and equations (4.21), (4.22) in remark (4.3) above
ct(g)=x)'xy xy = (Q w) " (Qwh) . w)
By equation (4.23) in remark (4.4)

W(Fix(g)):(Zwlj (Zwlj ..(ZWAJ = ct(g) (4.24)

ceC ceC ceC
Substituting from equation (4.24) above into equation (4.23) and by
definition (4.4) [11,37,38]
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=l S-S Tt T .

geG ceC ceC ceC

which Complete the proof.

Chapter Five
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Applications
5.1 Beads Necklaces

Using Polya's theory of counting and the results leading to it we

have the following applications.

Example 5.1

As an application of some of the results in Chapter 4 consider

D={1,2,34}, 1.e. a 4 beads necklaces as shown below,

subject to the permutation group

G| } 1234\(1234
:ﬂﬂﬁ: 9 9
P2 12344321

where 7z, represents a horizontal rotation by 0 degree and =, represents a

horizontal rotation by 180 degrees.

Using this therefore

°|G|=2

e m=DR)@) , =0 4H2 3
* [Fix(m)|=4 | Fix(rr,) =0

By Burinside's lemma Theorem 4.3 in Chapter 4 above

1

VX,G:EZHFix(gN

geG
= l(4 +0)=2
2

Using Definition 4.3 part (1) and Example 4.11 in Chapter 4

above we get the following table:
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g T, T,

ct(g) x14 xg

Substituting in Definition 4.3 part (2) we get

PI=C(x,,x,)= th(g)

geG

Therefore
P1=Cc<xl,x2>=§<x:‘ +x2).

Example 5.2

Suppose we have a necklace with K beads as shown below.
Hence the set of all coloured beads 1s given by using the group G of

permutations of the set of K beads p={1,23,..,k} given by

12 ..KY(1 2 3 ..
G= {771 27y } = >
12 .. K)\K K-1 K-2 ..
where =, represents a horizontal rotation by 0 degree and =, represents a

horizontal rotation by 180 degrees.

Using this therefore

° | G| =

o 7.=02)..(K) , m=(1 K@ K-)3 K-2)..
o |Fi(m)|=K , |Fix(r,)|=0, if Kiseven

o |[Fix(r)|=K , |Fix(rm,)|=1, if Kisodd

(1) If K 1s even, by Burinside's lemma Theorem 4.3 in Chapter 4 above,
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= %(K + O)=£

Using Definition 4.3 part (1) and Example 4.11 in Chapter 4 above we
get the following table:

g T, T,

ct(g) xk X

Substituting in Definition 4.3 part (2) we get

PI=C,(x,,x,) = Z 1(g)

geG
Therefore

PI:CG(xlaxz):%(le‘i'szA) (5.1)

(i1) If K 1s odd, by Burinside's lemma Theorem 4.3 in Chapter 4 above,

Vie= |G|Z| Fix(g) |

geG

1 K+1
2( +) 2

Using Definition 4.3 part (1) and Example 4.11 in Chapter 4

above we get the following table:

g T, T,
ct(g) X X, x; 7

Substituting in Definition 4.3 part (2) we get

PI=C.(x,,x,)= Z ct(g)

Therefore
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PI=CG(x],x2):%(x]K+x]x2K%) (5.2)

Using equations (5.1) and (5.2) we get

5 Iif k 1s even
l(x1K+x;%)
PI=Cg(x,x,) = 2
3 if k 1s even
Example 5.3 5(x1 X)X, ) 2),

USiIlg Example 52 abOVC, wuore nunver uf beads 1s K, w¢E have,

Cycle index is (“xi =W j

ceC

Moreover
5 Iif k is even
K
LN e
PI=Cg(x,,x,) = 2
3 if k 1s even
E(M +X1X, /)

Using Remark 4.2 in Chapter *
(1) If K=2 and there is only one colour blue (B) then

x=B , x,=B
Therefore and as above
PI=C,(x,,x,)=1(B* +(B*)')=1x2B* = B’
As in chapter (4) above, example (4.10), P’olya’s enumeration

Theorem and by substituting B = / therefore

PI=C, =1

(i1) If K = 3 and there is only one colour (B) then
PI=C,(x,,x,) = 1(B* + B(B*)')= B’

Substituting B = I, therefore
PI=C,(x,x,)=1

Using (1) and (i1) therefore for any K and only one colour (B) we have
PI=C.(x,x,)=B* =1

Example 5.4
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Using Example 5.2, where number of beads is K and G=1{r,,7,},
we have,

Cycle index 1s (“xi = w! j,

ceC

s I% Iif k 1s even
l(x1K+)CZA)
PI=Cg(x,,x,) = 2
9 if k is even
E(M +X1X, /)

.

Using Remark 4.2 in Chapter 4 above and if there are 2 colours
(Blue, Red) then P’olya’s enumeration Theorem gives

=(B+R) , x,=(B*+R?)
For K = 2 therefore
PI=C,(x,x,) =+((B+R)* + (B> +R*)')
=R*+BR+ B’
As in Example 5.3 above and substituting B=R=1 , therefore
PI=C,(x,x,)=1+1+1=3,
1.e. There are 3 distinct colourings.

Example 5.5
Suppose we have a necklace with 3 beads and a set of 2 bead

colours Blue (b) and Red (r) as shown below,

O

Hence the set of all coloured beads is given by using the group G

of permutations of the set of three beads » ={1,2,3} given by

o-turt-{l 2 023}
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where r, represents a horizontal rotation by 0 degree and =, represents a
horizontal rotation by 180 degrees.

Using this therefore

o |G|=2
e 1,=O2)3) , =m,=01 3)2)
o |Fix(m)|=3 , |Fix(z,)|=1

By Burinside's lemma Theorem 4.3 in Chapter 4 above

1 .
Vie :EZ| Fix(g) |

geG
= %(3 + 1): 2
Using Definition 4.3 part (1) and Example 4.11 in Chapter 4 above

we have the following table:

g T, T,

ct(g) x; X, X,

Substituting in Definition 4.3 part (2) we get P’olya’s enumeration

Theorem gives

1
PI=C,(x,,x,) = Eth(g)

geG

Using Example 5.2 above for K = 3 have
PI=Cy(x,.x,) =+((B+R)’ + (B+R)(B>+ R*)')
:%((B+R)(B+R)2 +(B' +R))
=R’ +2B’R+2BR +B’
As in Example 5.3 above substituting B=R=1, therefore

PI=C,.(x,x,)=14+2+2+1=6,

1.e. There are 6 distinct colourings.
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Example 5.6
Suppose we have a necklace with 8 beads and a set of 2 colours

Blue (B) and Red (R) as shown below,

\/\ /\/\/\f\/\/
O ) )—®)

Hence the set of all coloured beads is given by using the group G

of permutations of the set of 8 beads p={12,....8} given by

12345673 8\(1 2345678
G={r.m}= : :

12345678)\8763543721

where r, represents a horizontal rotation by 0 degree and =, represents a

horizontal rotation by 180 degrees.

Using this therefore

°|G|=2

e 1, =(MR)C)HENO)T)®)

e 7,=(1 82 73 6)4 5

o |Fix(m)|=8 | Fix(7r,)|=0

By Burinside's lemma Theorem 4.3 in Chapter 4 above

1 :
Vio=— 2| Fix(g)|
| G | geG

= %(8 +0)=4
Using Definition 4.3 part (1) and Example 4.11 in Chapter 4 above

we get the following table:

g T, T,

ct(g) xlg x;

Substituting in Definition 4.3 part (2) we get P’olya’s enumeration

Theorem gives
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1
PI=C,(x,,x,) = Eth(g)

geG

Using equation (5.2) in Example 5.2 above and for K = § we have

PI=C,(x,,x,) :%((B+R)8 +(B>+R*)Y (5.3)
since
(B+R)’ =C,B*R° +C;B’'R+C,B°R* +C{B°R* +’ R®
CiB*R*+CiB’R° +CB*R° + C5B R +CB
where
Cl=Cs =1 and R°=B"=1
CP=C)=38 and C5=C} =28
Ci=C¥=56  and C!=170
and

(B> +R*)’ =B*+2B°R* +R*
(B +R*)' =(B*+R*)*(B* +R*)?)
=(B*+2B’R*+R*)(B" +2B°R* +R*
=B*+2B°R*+B*R* +2B°R* +2B°R* +
4B*R* +2B°R° +B*R* +2B’R° +R®
B* +R* +4B°R*> +6B'R* +4B°R° (54)
This implies that
(B+R)* =B* +8B’R+28B°R* +56B°R’ +70B*R* +56B°R’ +
28B°R° +8BR’ +R® (5.5)

in equation (5.3) above we get:
PI=C,(x,,x,)=%(B* +8B'R+28B°R* +56 B°R’ +

70B*R* +56B°R> + 28B*R° +8B R’ +R®
+B* +R* +4B°R*> +6B*R* + 4B’R")
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—1(2B" +2R® +8B'R+32B°R* +56B°R’
+76B*R* +56B°R’ +32B*R° +8B R’
=B*+R*+4B'R+16B°R* +28B°R’
+38B*R* +28B°R* +16B*R° +4B R’

as in Example 5.3 above and substituting B=R=1 therefore
PI=C,(x,x,)=1+1+4+16+28+38+28+16+4 =136,

i.e. There are 136 distinct colourings.
Example 5.7
Using Example 5.2, where number of beads is K, we have,
Cycle index is (xl = Zw;’j,
ceC

. lif k 1s even

Lk )
PI=C,(x,x,) = 2
< if k is even

E(M TX1X) /)
Using Remark 4.2 in Cl.._._. . .__.. .. if there are 3 colours

(Blue, Red, White) then P’olya’s enumeration Theorem gives

=(B+R+W) , x,=(B*+R*+W?)
(1) If K = 2, therefore
PI=Cy(x.x,)=L((B+R+W)* + (B> +R* +W?)")

=B*+R*+W?+BR+BW +RW
As in Example 5.3 above and substituting B=R=W=1, therefore

Pl =C.(x;,x,)=1+1+1+1+1+1=6,

1.e. There are 6 distinct colourings.

(i1) If K = 3, therefore
PI:CG(xl,xz):%((B+R+W)3+(B+R+W)(BZ+R2+W2)) (5.6)

where
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(B+R+W)Y =(B+R+W)YB+R+W)B+R+W)
=(B+R+W)B*+BR+BW +BR +
R*+RW +BW +RW +W?)
=(B+R+W)B*+R*+W?*+2BR+2BW +2RW)

=B +BR>+BW?*+2B*R+2B*W +2BRW +

B*R+R> + RW? +2BR* + 2BRW + 2R*W +
B*W + R*W +W?> +2BRW +2BW? +2RW?

=B’ +R’+W’ +3BR* +3BW* +3B°R +
3B*W +6BRW +3R W’ +3R*W
and
(B+R+W)B* +R* +W*)=B’+BR* + BW* + B°’R+
R+ RW? + B*W + R°W +W°
=B +R’+W>+BR*+BW* +
B’R+B’W +RW* + R°'W
Substituting in equation (5.2) above we get:
PI=C,(x,,x,)=L(B*+ R’ +W> +3BR> +3BW* +
3B°R +3B*W +6BRW +3RW?* +3R°’W + B’ +
R +W>+BR* + BW* + B*R+B*W +RW*> + R°W)
=1(2B +2R’ +2W’ +4BR> +4BW* +
AB’R+4B°W +4RW* + 4R’W + 6BRW)
=B’ +R’+W’ +2BR* +2BW* +2B°R +.
2B*W +2RW? + 2R*W +3BRW
As in Example 5.3 above and substituting B=R=W=1, therefore
Pl=C.(x,x,)=1+1+14+24+2+2+2+2+2+3=18,
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i.e. There are 18 distinct colourings.

5.2 Chemical Compounds

In chemistry, P'olya’s Enumeration Theorem can be used to find isomers of a
given molecule. Two molecules are said to be isomers if they are composed
of the same number and types of atoms, but have different structure. Let us
illustrate this with CsH;,. Figure below shows two chemical isomers that

correspond to the hydrocarbon CsH;.,.

H

T—cy L

s
BT
=T
=T

H H

b—bu g
Figure (1.a) Figure (1.b)

Chemical isomers corresponding to the hydrocarbon CsH;,

Example 5.8:

Cyclobutane 1s a hydrocarbon constructed of 4 carbon atoms arranged
cyclically with 2 hydrogen atoms attached to each carbon, as illustrated in

figure below.
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H—C — C— H
H—C — C — H
H H

Figure : Cyclobutane structure

How many isomers may be obtained by replacing 2 hydrogen
atoms with nitrogen?

Let the 8 bonds to the carbon atoms be our elements in N = {1, 2,
3,4,5,6, 7, 8 and let C = {hydrogen, nitrogen} with the weights
!(hydrogen) = H, !(nitrogen) = N. We can graphically visualize
Cyclobutane as a cube, where the 4 cyclically arranged carbon atoms are
at the center of the cube and each hydrogen atom represents a vertex of
the cube, therefore Gy will be used to discount reflectional and rotational
symmetry. Then P’olya’s Enumeration Theorem
gives

ZGv(H+N, ... H*+ NP
= H*+ H'N + 3H°N*+ 3H’N’ + 7H*N* + 3H’N° + 3H°N°®
+ HN" + N®,
Hence there are 3 possible isomers with 6 hydrogens and 2 nitrogens as

highlighted above.

Example 5.9:
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Continuing with this cyclobutane, how many isomers can be obtained
by replacing 2 hydrogens with oxygen and 3 with nitrogen? Now we have
three colors C = {hydrogen, nitrogen, oxygen} with weights (hydrogen) = H,
(nitrogen) = N, (oxygen) = 0. P'olya’s Enumeration Theorem gives

ZGv(H+N+O,... H+N+ O

= 21—4 [(H+ N+ O)y+8H+N+OyH + N+ O’) + 9(H*+ N*+ O?)* + 6(H*
+ N+ 0*)]

: 21_4 [24H* + 24H'N + 72HN? + 72H°N® + 168H'N* + 72HN®

+ 72H?N°®+ 24HN" + 24N®*+ 24H’0O + 72H°NO + 168H’N*O
+ 312H*N’O + 312H’N*O + 168H’N°O + 72HN‘O + 24N’0O
+ 72H°0O* + 168H°’NO?* + 528H'N*O* + 576 H’'N’O*
+ 528H2N*O* + 168HN°O* + 72N°O°* + 72H°O°
+ 312H*NO’ + 576H’N*O’ + 576 H’N°O° + 312HN*O’
+ 72N°0O° + 168H*O* + 312H’NO* + 528H*N*O*
+ 312HN’O* + 168N*O* + 72H’0O° + 168H’NO’ + 168HN*O’
+ 72N°0° + 72H?*0O° + 72HNO° + 72N*0° + 24HO’ + 24NO’
+ 240°]
= H*+ H'N + 3H°N*+ 3H’N’ + 7H*N* + 3H’N° + 3H°N°®
+ HN"+ N*+ H’O + 3H°NO + 7H°N*O + 13H*N°O
+ 13H’N*O + 7H*N°0O + 3HN°O + N’O + 3H°O?
+ 7TH°NO? + 22H*N*O* + 24H’N’O* + 22H*N*O?
+ 7THN°O* + 3N°O* + 3HO’ + 13H'NO’ + 24H’N*O’
+ 24H*N°O’ + 13HN*O’ + 3N°O° + 7H*O* + 13H’NO*
+ 22H*N*O* + 13HN°O* + 7N*O* + 3H*O’° + 7TH’NO?
+ 7THN*O’ + 3N°O° + 3H*0O° + 3HNO® + 3N*O°
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+ HO’+ NO’ + O°%.
Example 5.10:

Let us find the number of isomers in example 6.7 with 3 hydrogens. Let
us set the weights as follows: !(hydrogen) = H, !(nitrogen) = 1, !(oxygen) = 1.
P’olya’s enumeration Theorem gives
ZGv(H+2,... H*+2)

_ 21_4 [(H+2)*+ 8(H + 2%(H* + 2)* + 9(H> + 2)* + 6(H* + 2)°]

= 21—4 [552 + 1152H + 2112H* + 1920H° + 1488H" + 480H"

+ 216H° + 48H" + 24H?]
=23 +48H + 88H> + 80H? + 62H*+ 20H° + 9H®+ 2H" + H?.

129



Chapter Six
Conclusion And References

Conclusion

-The study link between permutation Groups and Polya’s theory of

counting .

- The study shows some of the applications on necklace with K beads.

- The study shows some of the applications enumeration of chemical

compounds.

- The study uses the colouring after the theory of counting

- The study uses fundamental theorem of combinatorial enumeration.

- The study generalizing Burnside’s lemma about number of orbits.

- In this model of theory selection, social learning even with preferential

attachment does not generally yield significantly better outcomes
than individual learning.

- The one exception occurs when people discount the past here, social
learning enables both the identification of successful theories and
their rapid spread throughout the population.

-This suggests that discounting the past provide a good balance between

retaining what one has learnt through one’s own experience while

being able to respond rapidly to what other’s have learnt.
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