Dedication

To my Mother soul
My Father
My Wife and Sons
My Aunt Alia

Gotpy

Acknowledgemen

Firstly thanks to Got for giving me strength and patience to fulfill this study

I would like to express my deep thanks to My Supervisor Dr. Mohammed Altigani Salih for guidance and useful suggestions.

Aim also thank full for the senior staff of Arab Poultry Production and Processing Company for unlimited help.

My thanks are also extended to my family for moral support and generous help during this study.

LIST OF CONTENTS

Dedication	i
Acknowledgement	ii
List of Contents	iii
Abstract	V
Arabic Abstractv	iii
List of Tables	xi
List of Figures	xiv
List of plates	xvii
List of Appendicesx	cviii
Chapter One: Introduction	1
Chapter Two: Literature Review	4
2.1 Methods of heat dissipation by birds	4
2.2 Effect of heat stress on poultry performance	6
2.3 Effect of heat stress on immune responses and sperm of	ηuality
classification in broiler breeder	9
2.4 Ventilation system of poultry structures	۹٩
Chapter Three: Material and Methods	11
3.1 House dimension	11
3.2 Structural design	11

3.3 The ventilation system	12
3.3.1 Specification of exhaust fans	12
3.4 The cooling system	13
3.4.1 Cooling system operated	13
3.5 Research methodology	14
3.5.1 Ventilation in rehabilitation houses	15
3.5.2 Specification of the exhaust fans in rehabilitation house	15
3.5.3 The cooling in rehabilitation houses	15
3.5.4 Ventilation system operation in rehabilitation houses	16
3.6 Measuring device used in experimental work	16
3.7 Experiment birds	17
3.8 Statistical analysis	17
Chapter Four: Results	22
4.5 Financial analysis of unit cost	23
4.5.1 Marginal profit to hatching egg	24
Chapter Five: Discussion	57
Chapter Sex: Conclusion and Recommendation	61
Reference	64
Appendix	69

Abstract

The present study was conducted to evaluate the improvement of fans and pad evaporative cooling of poultry houses and its effect on Broiler Breeder performance. The Broiler breeder houses used in the study is owned and operated by Arab Poultry Production and Processing Company. The objectives of the study are maintaining better environmental conditions in order to attain the maximum production and therefore increase the rate of economical returns for the company.

Eight closed poultry houses capacity 30.000 birds (3750 birds \house) were used to collected the date during the rearing and the production periods. The rearing period started with one day old chicks and continued for 24 weeks while the production period started at the end of rearing and continued for 40 production weeks. The ventilation and cooling system used in these houses is the exhaust fans and pad evaporative cooling system in which wetted pad banks (12 m length X 0.91 m high) are located along the middle of both side walls of the house while six teen exhaust fans power rate (10,000 m³/h) placed in beginning and end of the house. Due to negative pressure created by the exhaust fans, ambient air is forced through the wetted pads, where it is evaporative cooled and flows the longitudinally through the house towards

the exhaust fans. The cooling performance was observed to be inefficient, the inside temperature was high and adversely effecting in broiler breeder performance. Accordingly, improvement of fans and pad evaporative cooling was done in four houses called Rehabilitated houses, in which the wetted pad bank area was increased (12 m length X 1.90 high) and the banks were located in beginning of both side walls of the house while six exhaust fans power rate (34000 m³/h) are distributed in the end of house. Rehabilitation of poultry houses resulted in significant (P <.01) drop in the inside temperature throughout the rearing and the production period. The drop in temperature was about $4C^0$ during the winter season and $3C^0$ during summer season. Improvement in inside temperature in rehabilitated houses resulted in significant (P<0.01) increase in feed intake for female and male broiler parent stock during the rearing period and consequently this resulted in significant (P<0.01) improvement in body weight for both sexes .The results also lead to significant (P<0.01) drop in mortality and less percentage of culled birds.

In the production period the improvement in inside temperature in rehabilitated houses resulted in significant (P<0.01) increase in feed intake, egg production, egg weight and fertility. And these results lead to significant (P<0.01) drop in the second class egg.

This improvement in ventilation increased the economical rerun by 8.2% per cycle for the rehabilitation houses, and decreased in total costs 4.38% to the non rehabilitation houses .

Arabic Abstract

اجريت هذه الدراسة لتقييم التحسين في مراوح التهوية وخلايا التبريد واثرها في اداء امهات التسمين . الحظائر المستخدمة في التجربة مملوكة وتدار بواسطة شركة انتاج وتصنيع الدجاج العربي . والهدف من التجربة هـو تحسين المقومات البيئية المثلي للطيور لبلوغ اقصى معدلات انتاج لتحقيق اكبر عائد اقتصادى .

ثمانية حظائر مغلقة بسعة ٢٠,٠٠٠ طائر (٢٥٠٠ طائر للحظيرة) استخدمت في الدارسة لجمع النتائج خلال فترة الرعاية والانتاج . فترة الرعاية تبدا من عمر يوم واحد وتنتهي عند عمر ٢٤ أسبوع ثم تبدا بعدها فترة الانتاج والتي تستمر الى ٤٠ أسبوع انتاجي . نظام التهوية والتبريد المستخدم في هذه الحظائر هو نظام مراوح الشفط والوسائد المسامية المبللة والتي بالابعاد (١٢ متر طول و ١٩٠٠ متر عرض) موضوعة في وسط كل جانب من الحظيرة بالاضافة الى عدد 1 مروحة شفط تعمل بمعدل ١٠٠،٠٠ متر "ساعة/ للمروحة موزعة على جانبي بداية ونهاية الحظيرة .

خـ لال الضغط السالب الذي تحدثه مراوح الشفط يدخل الهواء الجاف من خلال الوسائد المسامية المبللة ليتم تبريده ثم ينساب في مسار طولي نحو مراوح الشفط الموزعة على جانبي بداية ونهاية الحظيرة. لوحظ ضعف التهوية وعدم فاعلية التبريد داخل الحظيرة

والمتمثلة في ارتفاع درجات الحرارة وعدم تجانس التهوية الامر الذي اثر سلبا على اداء امهات التسمين.

وقفا لذلك تم تحسين مراوح التهوية والوسائد المسامية المبللة (خلايا التبريد) في اربعة حظائر اطلق عليها الحظائر المؤهلة وذلك بزيادة مساحة الخلايا المسامية لتصبح بالابعاد (١٢ متر طول و ١٠٩١ متر عرض) مع تغيير مكان الخلايا بوضعها على جانبي العنبر وفي البداية بدلا من الوسط. كما تم استبدال مراوح الشفط بمراوح تعمل بمعدل 70.00 متر ساعة/المروحة تم تركيبها في نهاية العنبر اظهرت النتائج التي تم جمعها خلال مرحلتي الرعاية والانتاج فروق (10.00) معنوية معنوية

في درجات الحرارة الداخلية للحظائر حيث اظهرت الحظائر المؤهلة انخفاض في درجات الحرارة الداخلية هذا الانخفاض كان بمعدل ٤ درجات مئوية خلال موسم الشتاء ومعدل ٣ درجات مئوية خلال موسم الصيف وذلك عند مقارنة الحظائر المؤهلة بالحظائر الغير مؤهلة . هذا التحسين الذي حدث في درجات الحرارة الداخلية والتهوية للحظائر المؤهلة احدث فروقات معنوية (P<0.01) في زيادة معدل استهلاك العلف خلال فترة التربية والدي بدوره ادى لزيادة كبيرة في وزن الجسم مع انخفاض معدلات النفوق والاستبعاد . كما ادى هدا التحسين الى احداث فروقات معنوية (P<0.01) خلال مرحلة الانتاج في ارتفاع معدلات استهلاك الاعلاف ونسب انتاج البيض ووزن البيض مع ارتفاع نسب الاخصاب وانخفاض في معدلات البيض المبعد والنفوق .

هذه التاثيرات الايجابية ادت الى زيادة المردود الاقتصادى بالنسبة للحظائر المؤهلة بمقدار ٨٠٢ عن الحظائر الغير مؤهلة كما ادت الى انخفاض التكلفة الكلية للانتاج بمقدار ٤٠٣٨ الحظائر المؤهلة .

List of Table

Table No.	Description	<u>Page No.</u>
Table (4.1)	Temperature inside the rehabilitated ar	nd non
	Rehabilitated houses during rearing (Ja	anuary – Jane)
	And production Period (July- April) in	comparison
	To outside temperature	20
Table (4.2)	Accumulative feed consumption of fen	nale broiler
	Breeders during rearing period in the re	ehabilitated
	And the non-rehabilitated houses	2٧
Table (4.3)	Accumulative feed consumption of mal	le broiler breeders
	During rearing period in the rehabilitated	d and the
	Non-	rehabilitated
houses	Y 9	
Table (4.4)	Body weight of female broiler breeders	s during rearing
	period in the rehabilitated and the non-	
	Rehabilitated houses	٣١
Table (4.5)	Body weight of male broiler breeders of	during rearing
	period in the rehabilitated and the non-	
	Rehabilitated houses	3٣

Table (4.6)	Mortality (%) of female broiler breeders during rearing	
	period in the rehabilitated and the non-	
	Rehabilitated houses	.30
Table (4.7)	Mortality (%) of male broiler breeders during rearing	
	period in the rehabilitated and the non-	
	Rehabilitated houses	.3٧
Table (4.8)	Culls (%) in rearing of female broiler breeders	
	In rehabilitated and the non-rehabilitated houses	۳۹.
Table (4.9)	Culls (%) in rearing of female broiler breeders	
	In rehabilitated and the non-rehabilitated houses	.4١
Table (4.10)	Accumulative feed consumption of broiler	
	Breeders in rehabilitated and non-	
	Rehabilitated houses during production	
	Period (2564weeks)	.4۳
Table (4.11)	Hen day egg production (H.D) of broiler breeders	
	in rehabilitated and non-rehabilited	
	Houses	.4٥
Table (4.12)	Egg weight (gm) of broiler breeders rehabilitated	
	And non-rehabilitated houses	.47
Table (4.13)	Second class eggs of broiler breeder in	

	Rehabilitated	and	non-rehabilitated
houses ٤٩			
Table (4.14)	Fertility % of broi	ler breeders re	ehabilitated and
	Non-rehabilitated	houses	51
Table (4.15)	Mortality % of broi	ler breeders in	n rehabilitated
	And non-rehabilitate	ed houses dur	ing production
	Period		5٣
Table (4.16)	Total hatching eggs	in rehabilitate	d and the
	Non-rehabilitated h	ouses	50
Table (4.17)	Total cost of product	tion in non-rel	nabilitated
	Houses		5٦

List of Figures

Figure No.	<u>Description</u>	Page No.
Figure (4.1)	Temperature inside the rehabilitated	and non
	Rehabilitated houses during rearing (January-June)
	And production period (July-April) in	n comparison
	to outside temperature	2٦
Figure (4.2)	Accumulative feed consumption of fe	emale
	Broiler breeders during rearing period	od in
	The rehabilitated and non-rehabilitated	ated houses2^
Figure (4.3)	Accumulative feed consumption of n	nal
	Broiler breeders during rearing period	d in
	The rehabilitated and non-rehabilita	ated houses3.
Figure (4.4)	Body weight (gm) of female broiler b	oreeders
	During rearing period in the rehabilit	ated and
	Non-rehabilitated houses	3٢
Figure (4.5)	Body weight (gm) of male broiler bro	eeders
	During rearing period in the rehabilit	ated and

Figure (4.6)	Mortality (%) of female broiler breeders during	
	Rearing period in the rehabilitated and	
	Non-rehabilitated houses	3٦
Figure (4.7)	Mortality (%) of male broiler breeders during	
	Rearing period in the rehabilitated and	
	Non-rehabilitated houses	3٨
Figure (4.8)	Culls (%) of female broiler breeders during	
	Rearing period in the rehabilitated and	
	Non-rehabilitated houses	4
Figure (4.9)	Culls (%) of male brioler breeders during	
	Rearing period in the rehabilitated and	
	Non-rehabilitated houses	4۲
Figure (4.10)	Accumulative feed consumption of broiler	
	Breeders in rehabilitated and non-	
	Rehabilitated houses during production	
	Period	4٤
Figure (4.11)	Hen day egg production (H.D) of broiler breeder	

Non-rehabilitated houses......35

In rehabilitated and non-rehabilitated

	Houses4	٦
Figure (4.12)	Egg weight (gm) of broiler breeders in	
· , ,	Rehabilitated and non-rehabilitated houses	1٨
Figure (4.13)	Second class eggs of broiler breeders in rehabilitated	
	And non-rehabilitated houses5	; •
Figure (4.14)	Fertility % of broiler breeders in rehabilitated	
	and non rehabilitated houses5	۲
Figure (4.15)	Mortality % of broiler breeders in rehabilitated	
	And non-rehabilitated houses5	5 £

List of Plates

<u>Plates No</u>	<u>Description</u> <u>P</u>	age No
Plate (1)	Cooling pad placed in non-rehabilitated	
	Houses	1^
Plate (2)	Cooling pad placed in rehabilitated Houses	1^
Plate (3)	Cooling pad dimension in non-rehabilitated	
	Houses	19
Plate (4)	Cooling pad dimension in rehabilitated House	es19
Plate (5)	Exhaust fans placed in non-rehabilitated hous	es2*
Plate (6)	Exhaust fans placed in rehabilitated houses	2.
Plate (7)	Fans in non-rehabilitated houses	21
Plate (8)	Fans in rehabilitated houses	21

List of Appendices

Appendices No	<u>Description</u>	Page No
Appendices (I)	Variable rearing (female &	
male)69		
Appendices (II)	Variable egg production	٧.
Appendices (IV)	Variable second class egg	7٢
Appendices (V)	Variable egg weight	7٣
Appendices (VI)	Variable feed consumption	7٤
Appendices (VII)	Variable fertility	70
Appendices (viii)	Variable inside temperature	7٦
Appendices (ix)	Weather climate date of Khartoum	77