بسم الله الرحمن الرحيم

:قال تعالى هُوَ الَّذِي خَلَقَ لَكُمْ مَا فِي الْأَرْضِ (جَمِيعًا ثُمَّ اسْتَوَىٰ إِلَى السماء فسواهن ﴾ سَبْعَ سَمَاوَاتٍ َ وَهُوَ بِكُلِّ شَيْءٍ عَلِيمٌ صدق الله العظيم الآية(29)من سورة البقرة

Dedication

To my motherMy first teacher To my father My hero

To my brothers and sisters To my friends To all those unbelievable persons I am trying to say thank you

Acknowledgements

I would like to Thank and praise worthy Allah who taught me all the knowledge. I Would like also to express my gratitude to my supervisor prof .Mubarak Derar for his supervision and valuable help and fruitful suggestion.This work was completed under his careful guidance for his revision and provision with references

Abstract:

In this work attempts was made to relate temperature change to the change of spectra of some gases which are Bhutan($^{C_4H_{10}}$), Carbon dioxide (CO₂), Carbon Monoxide (CO), Oxygen (O₂), Nitrogen (N₂), Neon (Ne), <u>Fluorine</u>(F₂) and <u>chlorine</u> (CL₂). The spectra of this gas were displayed by USB2000 spectrometer, when their temperature changes from (300 to 337) $^{\circ}$ k considerable change in the spectral intensity was observed. These changes can be explained theoretically by using non-equilibrium statistical distribution by using plasma equation, beside the laws of quantum mechanics and Semi Classical Harmonic Oscillator Model.

المستخلص

في هذا البحث أجريت محاولة لربط التغير في درجة الحرارة إلى التغيير في الطيف لبعض الغازات, وهي البيوتان ()، ثاني أكسيد الكربون (CO₂) النيتروجين, (CO) الأكسجين, ((COأول أكسيدالكربون ،(CO₂) تم تسخين هذه الغازات في (CL₂) .والكلور (F₂) الفلور ،(Ne) النيون تم عرض أطياف من هذه ،((k درجة حرارة في حدود 337-300 النتيجة أظهرت تغيير ملحوظ في .000B200 الغازات عن طريق مطياف شدة الطيف . هذه التغييرات شرحت من الناحية النظرية على اساس عدم الإتزن الإحصائي باستخدام معادلة البلازما وقوانين ميكانيكا الكم التي تربط شدة الإشعاع بالإلكترونات والذرات المثارة و نموذج المتذبذب .التوافقي شبه التقليدي

Table of Contents

No	Subject	Page		
	الآية	i		
	Dedication	ii		
	Acknowledgments	iii		
	Abstract	iv		
	Abstract Arabic	V		
	Table of Contents	vi		
	List of Tables	ix		
	List of Figures	X		
	Chapter One			
Introduction				
(1-1)	Importance of Temperature	1		
(1-2)	The Problem of The Thesis	1		
(1-3)	Literature Review	2		
(1-4)	The Aim of The Thesis	2		
(1-5)	Thesis out line	2		

	Chapter Two		
Atmosphere and atomic spectra			
(2-1)	Introduction	3	
(2-2)	Layer of The Atmosphere	3-7	
(2-3)	Gases in Atmosphere	8-10	
(2-4)	The Ordinary Schrödinger Equation	10-14	
(2-5)	Maxwell- Boltzmann Distribution	15-18	
(2-6)	Line-width Broadening	18-19	
(2-7)	Collision Broadening	19-20	
(2-8)	Doppler Broadening	20-22	
	Chapter Three		
	Literature review		
(3-1)	Introduction	23	
(3-2)	Derivation of Statistical Laws from Plasma Equation	23-35	
(3-3)	Temperature Dependence of the Wavelength Spectrum of a Resonantly Pumped W-OPIC Laser	35-41	
(3-4)	Compensating Bragg Wavelength Drift Due to temperature and Pressure by Applying an Artificial Strain	41-44	
(3-5)	Measurement of Temperature Using line-width Broadening	44-47	
(3-6)	Simultaneous Strain and Temperature Measurement Using a Superstructure Fiber Bragg Grating	47-53	
	Chapter Four		
Relation between Temperature and Atomic Spectra Using Visible Light Spectral Techniques			
(4-1)	Introduction	54	

(4-2)	Materials and methods	54-58
(4-3)	Experiment set up	59
(4-4)	Results	60-75
(4-5)	Theoretical Interpretation	76-94
(4-6)	Discussion	95-96
(4-7)	Conclusion	96
(4-8)	Recommendation	97
	References	98

List of Tables

Table. No	Subject	Page
(3-5-1)	Relation Between Temperature θ & Spectral Line-width	45
(3-5-2)	Relation Between Temperature θ & Spectral Line-width	45
(4-4-1)	spectrum of Bhutan ($C4_4H_{10}$) at different temperatures	60
(4-4-2)	spectrum of Carbon dioxide (CO ₂) at different temperatures	62
(4-4-3)	spectrum of Carbon Monoxide (CO) at different temperatures	64
(4-4-4)	spectrum of Oxygen (O ₂) at different temperatures	66
(4-4-5)	spectrum of Nitrogen (N ₂) at different temperatures	68
(4-4-6)	spectrum of Neon (Ne)at different temperatures	70
(4-4-7)	spectrum of <u>Fluorine(</u> F ₂)at different temperatures	72
(4-4-8)	spectrum of <u>Chlorine</u> (CL_2) at different temperatures	74

List of	Figures
---------	---------

Fig.No	Subject	Page
(2-1)	Layer of The Atmosphere	7
(4-1)	Ocean Optics USB2000 Fiber Optic Spectrometer	55
(4-2)	USB 2000 Spectrometer with Component	57
(4-4-1-1)	Relation Between Wavelength & Temperature of Bhutan	61
(4-4-1-2)	Relation Between Intensity & Temperature of Bhutan	61
(4-4-1-3)	Relationship Between Line width & Temperature of Bhutan	61
(4-4-1-4)	Relationship Between Area & Temperature of Bhutan	61
(4-4-2-	Relation Between Wavelength & Temperature of	63
1)	CO ₂	
(4-4-2-	Relationship Between Intensity & Temperature of	63
2)	CO ₂	
(4-4-2-	Relationship Between Line width & Temperature	63
3)	of CO ₂	
(4-4-2-	Relationship Between Area & Temperature of CO_2	63
4)		
(4-4-3-	Relation Between Wavelength & Temperature of	65
1)	СО	
(4-4-3-	Relationship Between Intensity & Temperature of	65
2)	СО	
(4-4-3-	Relationship Between Line width & Temperature	65
3)	of CO	
(4-4-3-	Relationship Between Area & Temperature of CO	65
4)		
(4-4-4-	Relation Between Wavelength & Temperature of	67

1)	O ₂	
(4-4-4-	Relationship Between Intensity & Temperature of	67
2)	O ₂	
(4-4-4-	Relationship Between Line Width & Temperature	67
3)	of O ₂	
(4-4-4-	Relationship Between Area & Temperature of O_2	67
4)		
(4-4-5-1)	Relation Between Wavelength & Temperature of N_2	69
(4-4-5-2)	Relation Between Intensity & Temperature of N ₂	69
(4-4-5-3)	Relationship Between Line width & Temperature of N_2	69
(4-4-5-4)	Relationship Between Area & Temperature of N ₂	69
(4-4-6-	Relation Between Wavelength & Temperature of	71
1)	Ne	
(4-4-6-	Relationship Between Intensity & Temperature of	71
2)	Ne	
(4-4-6-	Relationship Between Line width & Temperature	71
3)	of Ne	
(4-4-6-	Relationship Between Area & Temperature of Ne	71
4)		
(4-4-7-	Relation Between Wavelength & Temperature of	73
1)	\mathbf{F}_2	
(4-4-7-	Relationship Between Intensity & Temperature of	73
2)	F ₂	
(4-4-7-	Relationship Between Line width & Temperature	73
3)	of F ₂	

(4-4-7-	Relationship Between Area & Temperature of F ₂	73
4)		
(4-4-8-	Relation Between Wavelength & Temperature of	75
1)	CL_2	
(4-4-8-	Relationship Between Intensity & Temperature of	75
1)	CL_2	
(4-4-8-	Relationship Between Line Width & Temperature	75
3)	of CL ₂	
(4-4-8-	Relationship Between Area & Temperature of CL_2	75
4)		