Chapter 6
Transfer Principle with Measure invariance and Laplace Transform

Identities

A new decomposition of the Ornstein-Uhlenbeck operator and a substructure of
the standard Dirichlet structure on Wiener space, with applications to stochastic
analysis on Poisson space and infinite-dimensional analysis for the exponential density
are shown. In particular we show the measure invariance of transformations having a
quasi-nilpotent covariant derivative via a Girsanov identity and an explicit formula for

the expectation of Hermite polynomials in the Skorohod integral on path space.

Section (6.1): Wiener and Poisson Space:

The stochastic calculus of variations on the Wiener space, cf. [164], [165], makes
use of the following ingredients: a gradient operator, its adjoint the divergence
operator, and the Ornstein-Uhlenbeck operator which is obtained as the composition of
the divergence with the gradient. The Ornstein-Uhlenbeck operator is a number
operator on the Wiener chaotic decomposition and it allows to define Sobolev spaces
and distributions on the Wiener space, cf. [166]. On the other hand, the connection with
the It6 calculus is obtained via the divergence operator which extends the I1t6 integral,cf.
[167]. An important tool in this analysis is the Meyer inequalities, cf. [168] which give
equivalence between the norms defined with the gradient and the norms defined on
Sobolev spaces with the Ornstein-Uhlenbeck operator. The question whether an
analogous formalism exists on Poisson space has been investigated in e.g. [169],[170],
[171]. In [170], a Fock space isomorphism using the Poisson and Wiener multiple
stochastic integral is considered. This leads to a gradient defined by finite differences,
which is not a derivation operator, and whose adjoint coincides with the compensated
Poisson stochastic integral on square-integrable predictable processes. However, this
isomorphism is not an isometry for the LPnorm, except for p = 2, and apparently it
does not allow to transpose to the Poisson space case the analysis constructed on the

Wiener space, in particular for p # 2. Another approach, initiated in [169] is to define a
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gradient by shifting the jump times of a standard Poisson process on the positive real
line. The adjoint of this operator also extends the compensated Poisson stochastic
integral. It has been shown in [172], [171] that there is a discrete chaotic decomposition
on Poisson space on which the composition of this gradient with its adjoint acts as a
number operator noted L. In this approach, the trajectories of the Poisson process are
considered as sequences of independent identically distributed exponential interjump
times.

We consider the o-algebra Fgenerated by a countable collection of independent
identically distributed exponential random variables on the Wiener space, and call a
Poisson functional any Wiener functional which is measurable with respect to F. The
Ornstein-Uhlenbeck operatoron the Wiener space appears to be an extension of the
number operator Ldefined in[171] for Poisson functionals. We deduce results in infinite
dimensional analysis for the exponential density, such as the hypercontractivity of the
semigroup associated toL, the construction of distributions, and an algebra of test
functions on the Poissonspace. We introduce a random unitary operator y of the
Cameron-Martinspace which allows to define a new gradient on Wiener space by
composition with the Gross-Sobolev derivative. This gradient is related to the
conditional gradient given Fon the Wiener space and to the derivative obtained by
shifting the Poisson process jump times, and its adjoint extends the compensated
Poisson stochastic integral. Several results in Malliavin calculus concerning the existence
and smoothness of densities of Poisson functionals, as well as the Meyer inequalities,
are derived on the Poisson space using the operators that are defined above. We
devoted to the extension to higher orders of differentiation of the equivalence of norms
obtained. We obtain in this way the continuity of the gradient and divergence operators
on Sobolev spaces of Poisson functionals. We deal with the independence of Poisson
functionals. From the existing criterion on Wiener space, cf. [173], we deduce necessary
and sufficient conditions for the independence of discrete multiple Poisson stochastic
integrals. Those integrals are defined with the Laguerre polynomials as stochastic

integrals of deterministic discrete time kernels, and the conditions for independence are
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expressed in terms of the supports of those kernels. We study the infinite-dimensional
diffusion process associated to the operator £ and show that it gives another example

of a process whose hitting probabilities can be estimated in terms of capacities.

The following definitions can be found in [166]. Let (W;L?*(R,);u) be the
classical Wiener space, and let (hy)k=o be an orthonormal basis of L*(R,), which will

remain fixed throughout this work. We note respectively Dand 8 the Gross-Sobolev

derivative and its adjoint on the Wiener space. Recall that (S(hk)) is a system of
keN

independent gaussian normal random variables, and for F = f (S(ho), ...,S(hn)),f €

CP(R™1Y),DF € L>(W) @ L*(R,) is defined as

k=n
DF = 2 0uf (8Cho)s . 8Cha) ) .
k=0

The Ornstein-Uhlenbeck operator on the Wiener space is denoted by —£ = 2. It is self
adjoint with respect to pand satisfies to L =46D. Let fn(gn) represent the Wiener
multiple stochastic integral of a symmetric function in the completed symmetric tensor
product L?(R,)°". We have LI,(g,) =nl,(g,)n €N, and any square integrable

functional Fon (W, i) can be decomposed as a series
F=) Lg)gn € PR)™,  keN.
n=0

Let P denote the algebra of polynomials in (S(hk)) , which is dense in L2(W, p).
k=0

For k€Nand p>1, let D,, be the completion of Punder the norm |[|F|,,; =

k
Ha+@#

, and let D, _,be the dual space of D, . Let Dy, = Ny i D, . The
LP(W,u)

dual of Dgis Do = Up i Dy -
We shortly describe the method that will be used in the next sections. Let us

write down the usual integration by parts formula on Wiener space:

E[F6(w]=E [(EF' ”)LZ(R+)]’
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foru € Dom(S) and F € Dom(ﬁ). Consider also a random operator

X L2(Ry) - L2(Ry)
such that y is unitary,u-a.s. This operator can be viewed as an isometry from L*(W) ®
L*(R)) td?(W) ® L2(R,). Let us apply the above integration by partsto F and yu,
with F € Dom(D) and u € L2(W)L?(R,) such that yu € Dom(3).

We have from the properties of y:
E[F§oxW]=E [(ﬁ F,)(u)LZ(R+)]
= E[(x" o DF,u)L*(R,))],

x*being the adjoint of y. We will show that it is possible to choose ysuch thatd o
x extends the stochastic integral with respect to a compensated Poisson process
defined on the Wiener space. It will appear that x* o D is closely related to a gradient
defined on Poisson space by shifts of the Poisson process jump times, cf. [169], [171].

Moreover, we have

and

from the fact that y is a.s. unitary. As a consequence, any result in Malliavin calculus

X o ﬁF||L2(R+) = ||ﬁF||L2(R+)u —a.s.

that involves the norm of the gradient Dor the Ornstein-Uhlenbeck operatorZwill be
valid on Poisson space and interpreted in terms of the stochastic calculus of variations
for the Poisson process, using the compensated Poisson stochastic integral and the
derivation with respect to shifts of the jump times.

A characterization of the standard Poisson process on the positive real line is
that it is a jump process with jumps of fixed size 1 and independent identically
distributed exponential interjump times. We intend here to construct a Poisson process,
or equivalently countable collection of exponential random variables on the Wiener

space. We will make use of the fact that the half sum of two independent normal
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random variables has a x?law with 2 degrees of freedom, i.e. an exponential
distribution.

Let

§(h,.)2 + 6(h 2
- (hak) 2(2k+1) k>0,

then (13 )ksois a family of independent exponentially distributed random
variables,hence it represents a Poisson process (N;);so. This does not require the
system(hy)k=oto be complete in L2(R,). Let T}, = f:'g_lti,k > 0, represent the k-th

jump time of (N;)sot. We have

Ny = z L7001 t €R,.
k=1

Note that this construction does not preserve the filtrations generated by the Poisson
and Wiener processes, i.e. the filtrations generated by (N;) ;s and the Brownian motion

(Bp)s00n (W, ) are not comparable. We define an application Z : W — RNby

E(w) = (ti)ken 1 — @.s. €Y
Denote by Bthe range of Z, endowed with the largest o-algebra that makes

Zmeasurable, and let P be the image measure of u by =:
P=Epu
and define an operator @ : LP(B,P) —» LP(W, u) by
OF =FoZ
where Fis a polynomial functional on B, i.e. F((xk)k € N) = f(xg, ..., Xp), M E
N, fpolynomial. The operator @ can be extended as an isometry from

LP(B,P)tol?(W,u),p > 1. The dual of® : L?2(B,P) —» L*(W,n)is 0*:L>(W,pu) -
L?(B, P),given by

0*F = @ 1E[F|F], F € L2(W,p).

We call F the o-algebra on W generated by =. In the sequel, LP(W,T,mp) will be
identified with LP (B) forp > 1.
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Definition (6.1.1)[163]:(Poisson space). The space (W,T,u“c) is called the Poisson

space.We call a Poisson functional any random variable on (W, F, u|F). Let

Pr ={f(zg, ..., Tn) ¢ f pol ynomial n € N}
denote the set of polynomial Poisson functionals.
We recall, cf. [171] that Pr is dense in LZ(W,T,H|F) and that there exists a
discrete chaotic decomposition of the space L? (W, T,u|p) of square-integrable Poisson

functionals.This decomposition uses discrete multiple stochastic integrals defined with

the Laguerre polynomials

i=k

Li(x) = Z (k) (_'x)i x€Ry, k€N,

i i!

i=0

which are orthonormal with respect to the exponential density. Let H = [?(N) be the
Hilbert space of square-summable sequences, and let (e;)yeny denote the canonical
basis of H. For n > 1, we define the discrete multiple stochastic integral of asymmetric

function f"on N™as a linear mapping I,,: H" —>L2(W,T,H|F), first on elementary

functions:

I, (e,i’fl °..0 e,zzd) =ny! ... ng! Ly, (ti,) o Ly (Try)
whereny + -+ nyg = n,ky # --- # k; € N. The mapping I,,is extended to any element
of the completed symmetric tensor product H°"by density, since the linear functional
I, satisfies to an isometry formula, cf. [163]. Moreover, integrals of different orders are

orthogonal. As a result, any Fin L? (W, F, ,u|F) has the orthogonal decomposition

F= Zln(fn)fk € HOk; keN
n=0

with the conventions H® = R and I, = Iz. The following proposition says that the
Poisson random variable I,,(f;) is a multiple Wiener integral of order 2n, and givesits
expression in the Wiener chaotic decomposition. For simplicity, the development is only
written for f,, = e;". Let C¥ = n!/(k! (n — k)!),0 < kn,n € N.

Proposition (6.1.2)[163]:The Wiener chaos expansion of I,,(e;") is given by
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on _( 1)" 02i o po2n=20)) - 2i\1/2
I(e; 12n (ns3 om0 chy(c2) ™",

Proof.The proof relies on the following relation between the Hermite and Laguerre

polynomials, cf. [174]:

k=n
2 2 —1 n
niLy (x -2 )=(2n) kZOCL‘HZk(x)HZn_Zk(y)J(ZkM(2n—2k>!

and on the definition of the multiple Wiener integral with the Hermite polynomials,cf.
[167]. Here, Hi(x) is the k-th normalized Hermite polynomial, defined by the

generating series

o Ha(0)
ZV m—eXP(Vx—J/Z/Z) v, x €ER

Denote by L the number operator on the discrete chaotic decomposition, that is L is a

n=0

linear operator with
Lln(gn) = nln(gn)gn € H°", n €N,
so that the domain of £ is made the following Poisson functionals:
Dom(£) = {Z (i) ) Pl (I3 < oo},
n=0 n=0

and L leaves invariant the space Prof polynomial Poisson functionals. The operatorL is
the infinite dimensional generalization of the operator x02+ (1 —
x)0,,onC*® (R),whose eigenvectors are the Laguerre polynomials.

We now define Sobolev spaces of Poisson functionals. We call ]D)If;kthe

completion of the algebra P of polynomial Poisson functionals under the norm

IFllpz, = |+ £)%2F] F € Py,

LP(B)

p> 1,k €Z, andlet

ﬂu))pk, D%, = ﬂ D7,
D,k
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The next proposition says that the o-algebra Fgenerated by the Poisson functional is
L~ 1-stable. We refer to [175] for the notion of £~ -stable ¢ -algebra.

Proposition (6.1.3)[163]:The operators Land 2/2 commute with the conditional

expectation with respect to F:
E[LF|F]| = 2LE[F|F]F € Dom(L), p > 1,k €Z,
Hence £/2is an extension of £. The norms ||-||Dpkand ||-||kaare equivalent on P, and
, b

DZis an algebra. Moreover,

E[|F]: D, > DL, p=1keL
is continuous.
Proof: Proposition (6.1.2) gives
E | H; (8(ha)) Hy (8 Chaies) )| 7]
Lo @DY? S
_ ) (=1/2)D WL(HD/Z (tp)i and j even,

0 otherwise.

Hence
B2y (5 o bl
(i4—j)!E|}:< ((8Cha0) H (6(h2k+1)))| ¢l
= G+ NG LE [Hy (800 Hy (8| ]
= 2+ NILE [H; (8(hyi0) ) Hy (8(hzes) )| 7|

= 2LE[ T j(h3} © hhsr )]
for any i,j,k € N. It follows that if il,..,i4,j1,,ja EN, ki # - # kgandF =

Dll °il
H ll+Jl ( 2k; © h2kl+1)'

LFlf Z 1_[1”“1 Dll ;l’élﬂ) E [f’iipﬂp (h;fp ° h;l:p+1)| TP”T

p=1 l#p
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d

=2 1_[ [Ill+Jl Oll ;lzil+1)| TI]LE [Il +ip (h;ilfp ° h;fp+1)| Tp]
1 l+p

=
1l

<
1l

= 2LE

—

F|F],
Hence
E[LI,(g)|F] = 2LE[,(g:)|F], gn € L2(Ry)™

This implies that 2L1,,(f,) = LI,(f,), f, € H™.The equivalence of norms follows from
the LP-multiplier theorem, with the fact that D% is an algebra, since forp,q,7 > 1 such

that1/r =1/p + 1/q and k € Z, there exists a constant C, 4 ;. such that

k/Z(FG)

|G +2/2)

k/2

L"(w)

< Coque ||+ £72)°F|| |1+ ﬁ/z)k/2F||Lq(W) F,G € Py,

LP w) |

cf. [166]. The continuity of E[-|F] can be established as follows. For p > landk € Z,

there exists a constant Cp, ;. such that
IELF1Flpz, < CoillELFIF ]I,

= Cou |1 +2)" EFIT]”LP(W)

= Cyie||E(1 + f,)k/zFIT] [

< Cp,kllFllerk F € P.

LP(w)

Another consequence of this proposition is that Lis self-adjoint with respect to u¢.
Being the restriction of 2/2 to Poisson functionals, £ shares several properties with £.
The theorem below can be interpreted as a result in infinite-dimensional analysis for the
exponential density, since Lis the infinite dimensional generalization of the operator
whose eigenvectors are the Laguerre polynomials, which form anorthonormal sequence
for the measure e ™ 1,5 3dx.

Theorem (6.1.4)[163]:(Hypercontractivity). Let p > 1 and t > 0. There exists g > p such
that

lexp(—tL)F ([ acs) < IFllLpg) F € L1(B).
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Proof.Since exp(—tL) = exl(—tf,/Z)on L>(W,F,uz), we can apply to Poisson
functionals the existing hypercontractivity theorem on Wiener space, which says that

forany t > 0 thereis ¢ > p such that
lexp(=t£/2) F|| 4, < IFllpanyF € LIW).

Example of a generalized Wiener functionals which is a Poisson functional.
From [172], Proposition (6.1.2), we have the following Wiener chaos expansion

for the distribution

T = 216 ( f ho(t)dB,, j hl(s)st> eD,, r>1,
0 0

where § is the Dirac distribution at 0 in R?:

1 NS 1
— f o2k o2n—2k
T= g ((7) W’ZO K-k M )

nz0

Hence from Proposition (6.1.2), Tis the limit in D;_r,r > 1, of a sequence of
polynomial Poisson functionals.

We end this section with two definitions. In [171], a gradient operator has been
defined for Poisson functionals as a directional derivative in the directions of H = [2(N),
or equivalently by shifts of the Poisson process jump times. We recall this definition with
a different interpretation.

Definition (6.1.5)[163]:We define D : L>(W, u) —» L*(W,F, iz )®H by

O Fl(E+¢€h)—F
(DF,h)HzliOrr[i ](g ) h € H,F € Pz
£

IfF € Prwith F = f(1, ..., T,), then
k=n
DF = — Z akf(TO, ey Tn)l{k} .
k=0

The operator D:LZ(W, T;M?) - LZ(W, 9-",;1|T)®H is closable and its expression in the

discrete chaotic decomposition is written as follows, cf. [171]:
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k=n-1

|
Diln(f) = ) le(hCuliiD)] €N, fu € EO)™

k=0
Finally, we define for later use an operator i that turns a discrete-time process in to a
continuous-time process, using the Poisson process itself.
Definition (6.1.6)[163]:If f : N — R™is a function of discrete variable, we define a d-
parameter process i(f) by

()t s ta) = fF(Nezy oo, Nez )y, oo, tg € R
The operator iis easily extended to stochastic processes of discrete d-dimensional
parameter. If n=d =1, let j: L?(W)®L?*(R,) - L>(W)®I?(N) denote the dualof
i: P(W)RI?(N) » L2(W)®L?(R,), i.e. j is a random operator such that

(i(U), U)LZ(R+) = (u'j(v))lz(N) H— a.s.

foru € L2 (W)QI*(N),v € L>(W)®L?(R,). We have explicitely

jw) = Z 1y kaHv(s)ds.

k=0 Tk

In this section, we define an extension to Wiener functionals of the above
gradient operator D, taking into account the conditional gradient given F, cf. [172] for
this notion. This new gradient has the following properties: its adjoint coincides with the
compensated Poisson stochastic integral under certain conditions, and by composition
with its adjoint it yields the Ornstein-Uhlenbeck operator on the Wiener space. It is
expressed by composition of the Gross-Sobolev derivative Don the Wiener space with a
random unitary operator which is defined below. The n-th jump time of the Poisson
process (N¢)cg, defined on (W, 1) is denoted by T;, = e 1r,,n>0.

Definition (6.1.7)[163]:For u-a.s.w, we define an operator y : L*(R;, R?) - L>(R,) by
v = iz §(hai) o + 6 (hare ) horsn kaHu(l) (s)ds
V2

T
k=0 k Tk

+_8(h2k)h2k+1 _'S(h2k+1)h2k
Tk

Tk+1
f u@(s)ds u = (u®,u?) e ¢ (Ry, R?).
Tk
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We are going to show that u-a.s., yis unitary from a certain random sub space
H of I*(R,,R?) i nt oL?(R,).
Definition (6.1.8)[163]:For p-a.s.w € W, we define H to be the random sub space of
L*(R,, R?)of the form
H={i((f.9)): (f,g) € *(N,R?)}.

The operator i was introduced in Definition (6.1.6).
Proposition (6.1.9)[163]:The operator y is unitary from H in to L?(R, ):

X' x =lgand xx* =lpzg,) #—a:s:
and its adjoint is y*: L2(R,) — L*(R,, R?), given by

11

i — 11 Ty [((V, h2i) L2 (R) S (Roge) + (0, g ) L2 (RS (Raesr)

X'v=-—
\/EkEOTk

(W, hops 1) L2 (RE (haye) — (0, hop ) L2 (RS (Roer1) g — ais:
Proof.We have if u = (u®,u®) € (R, R?) and v € CZ(R,):
Qu, U)LZ(R+)
1 T+ 8 (hai) (ha, V)2 (RY) + 8 (Roger) (hox + 1, V)12(R,)

= ﬁ;fﬂ( u®(s)ds

Tk

Tie+1 8 (haier1) (hopes1, VP (R, = 8 (hgpsr) (hox + 1,0)
+ u(l)(s)ds 2k+1) 2k +1 + 2k+1) U2k L2(Ry)
Tk

Tk

= (u,x'v)LI*(R;,R?) u—a:s:
Hence yand y*are adjointu —a:s: It is easy to check that y*y = Igandyy* =
I;2r,) ¢ —a:s:, and the fact that y : H - L*(R,) is unitary follows.
Again, y is easily extended to two dimensional stochastic processes as an isometry y :
L*(W)®L*(R,, R?) - L2(W)®L?(R,), with the properties that

XX = Ieunerw,)and u,v) 2w, = WX v)I*(R, R*) u—a.s.,
u € PW)QL*(R;,R?),v € >*(W)®L*(R,). We now define a gradient D by

composition of D with y*.
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Definition (6.1.10)[163]:We define an operator D: L?(W) — L*(W)®L?(R,, R?) by

- 1 -
DF =—y*o DF F e P.
Noi

Then DF =+/2y o DF,F € P. According to this definition, D is a derivation operator on
the Wiener space.
Proposition (6.1.11)[163]:As a direct consequence of the fact that y is unitary, we have:

e The operators Dand Dcan be extended to the same domains. More precisely,

2
Ly (R4,R?)

2

2||5F| .

= ||DF|| FED,,,u—as.,
hence the operator Dis closable and local.
e Let —L/2denote the Ornstein-Uhlenbeck operator on the Wiener space.

Wehave the following decomposition of £:

=6éD.

N>

Note that the usual decomposition of the Ornstein-Uhlenbeck operator is given
by £ = éD.

We now show that for F € Dom(ﬁ), the second component D@F of DFis
related to the conditional gradient of Fgiven F, cf. [172], whereas its first
component DWFis expressed with the operator Ddefined in Definition (6.1.5) by shifts
of the Poisson process jump times. Denote by H the orthogonal subspace in L2(W) &
L*(R,) of the set

{zDU:U e D}, ZeLl>(W,w}
Let P™ be the orthogonal projection on Hin L?(W) ® L?>(R,). Recall that the
conditional gradient given Fof F € D, ,is defined as D¥F = P¥DF,F € D, 4 ,cf. [172].

Proposition (6.1.12)[163]:The conditional gradient D¥ Fof F € D, ;given F is
DTF =V2x(0,DPF)u — a.s.
Let F € Pxbe a polynomial Poisson functional. We have

DF = i((DF,0)u—a.s.

Proof.Let F = f (S(ho), ...,S(hn)) with f € CZ(R™*1). We have
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DF —V2x(0,D@F) =v2x(D™WF,0),
hence DF — ﬁx(O,ﬁ(z)F) € {ZEU U € ]D)%E,l,Z € Lm(W,u)}. We also have

E|2(x(0,09F),DU) , . | =0 UePs zeLloW,p),

2(R+)
hence ﬁx(O,E(Z)F) = PYDF. The result is obtained by density. For the second part,
we notice that the conditional gradient of a Poisson functional given F is 0 and that a
simple calculation yields y*DU = v2i(DU,0), U € Ps.
The following definition gives the adjoint of D. Let V be the class of processes
defined by
V={uel*(W)Q® L*(R,,R?):

w=(f (. 8C0), .. 8t g (- 6Cho), .. 6(hn))). £ 9 € C2RE), n € N,
Definition (6.1.13)[163]:We define the operator §: L2(W) ® L?(R,, R?) — L*(W) by
A 1 .
o0(v) =—=06 0 y(v), v EeE.
(v) 7 x()

We have the following commutative diagram:

ey B rw) e r®,) EW)QE®R,) L3 2w)
) A x x7 )
W) 5 PW)®ER,R) W) ®ER,R) > W)

Proposition (6.1.14)[163]:The operator § is closable, adjoint of Dand satisfies to

o)

S(u) = f uW(s)d(Ng — s) — tracdDu), ue,

0

where tracdDu) = fooo ﬁﬁl)u(l)(s)ds + fooo 5§Z)u(1)(s)ds.
Let Dom(S) denote the domain of the closed extension of §.

Proof.Recall that by definition, cf. [167], [166], if

v = R0 (8(ho), ., 8(hy) Jwithf; € CX(R™1),i = 0, ..., m, then

1=n

8@) = ) 8(h)f: (8Cho), ., (ha)) = 8:fi (8Cho), -, ().

i=0
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Applying the above formula to yu,u € V, we obtain:

S(w) =6(xw)
5(hyy )% +6(h 2 8(hy)8(h —8(hy )8R
=Zu(1)(Tk+1) (hak) (hak+1) +u(2)(Tk+1) (hor)6(hogr1) (hok+1)0(hok)
ZTk 2Tk
k=0
Trt1

_1 ) S =~ ~
+2Tk f ((Du(”(s),hzk)c?(hzk)+(Du(2>(s),h2k+1)5(h2k+1))ds
T

Tk+1

1 ) S = A
* o f ((DUP(5), hages1)8 (har) = (DuD (5), hie) 8(hzr) ) dis
Tk

1 Tiy1 Try1 S(h, )2 +-8(h )2 Try1
+— u(l)(s)—j u® () —2& 5 2t —j uM(s)ds
Tk Tk Ty
= f u®(s)d(N; — s) —f ﬁz(l)u(l)(s)ds—fﬁgz)u(z)(s)ds.
0 0 0

The operator §is adjoint of Dand closable since x and y*are adjoint and the domain of
Dis dense in L2(W).
Let (F:) 0 be the filtration generated by (N;)soon (W, u).

Corollary (6.1.15)[163]:If u = (u™®,u®) € L2(W) ® L?(R,, R?)is (F,)-predictable,

then §(w) coincides with the compensated Poisson stochastic integral of u®,

[o9)

Su) = f wD($)d(N, — s),

0

and any Poisson stochastic integral has a representation as an anticipative Wiener-

Skorohod integral:

o)

f u®(s)d(N;, —s) =46 ()((u(l), 0)) JV2.

0
Proof.The conditional gradient given F of a Poisson functional is 0, cf. Proposition

(6.1.12),hence from Proposition (6.1.14) the first part of this statement is identical to

210



the Poisson space result that can be found in [172], [169], [49]. The representation

property comes from the relation § = \%S °x.

The above coincidence can occur under weaker conditions, for instance without
predictability requirements. For example, it is sufficient to have (u(l), O) €
VY with u® € L2(W,F, ul¢) ® L2(R,) and

2) ( Zk) =~(1) (1)
u (@) =— ) lip . @®arctap———| D, u(t) t € R,.
£ HO
In this case, DWu® + D@y @ = ¢ u & dt-a.e., and the trace term in (6) vanishes. The
representation property for Poisson stochastic integrals as Wiener-Skorohod integrals

also extends to anticipative integrands in Dom(S). This result differs from the result
obtained via the Clark formula, cf. [176], in that the process \/_)(u that we obtain is not
adapted and its expression is easier to compute.

The first consequence of the above propositions is that the Meyer inequalities on
Poisson space hold for the operators Dand L, given that they are verified for Dand L.

The spaces LP (B, P) and LP (W, F, u|#) are identified via the operator © forp > 1.

Theorem (6.1.16)[163]:For any p > 1, there exist A, B, > 0 such that for any Poisson
polynomial functional F € P,

AP||5F||LP(B,L2(R+))

<lla+ 02, <5 (”DF”Lp piran) ||F||Lp(3)).

Proof.We write the Meyer inequalities, cf. [168], on the Wiener space and make use of
the facts that y is unitary from H to L?(R,), u-a:s: and Lis an extension of 2L.

The difference between this result and the Meyer inequalities on the Wiener
space comes from the fact that on Poisson functionals, D is defined by shifting the jump
times of the Poisson process, and its adjoint extends the compensated Poisson
stochastic integral, whereas Dis defined by shifts of the Wiener process trajectories and

its adjoint extends the I1t6-Wiener stochastic integral.
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We can also define the composition of a Schwartz distribution with a Poisson
functional as a distribution in D¥ . Let S, k € Z, be the completion of the Schwartz

space S(R?) under the norm |¢lls,, = II(1 + [x|* + A)* Pl .

-1
Theorem (6.1.17)[163]:Let F,,...,F € D% such thatdet(((ﬁFi,l~)Fj)L2(]R RZ)) > €
+ 1<i,j=d

Np>1 LP(B, P). Then for k € Zand p > 1, there exists Cp,x > 0 such that
g o Fllp2i < Cpicllplls, € S(RY).
This implies that if T € Sy, T o Fis well defined in D, ,.,p > 1,k € Z.
The proof relies again on the fact that y is unitary and DY c D, given the

Wiener space result in [166]. In the same way, we obtain:

Theorem (6.1.18)[163]:Under the hypothesis of the preceding theorem, the Poisson
functional F = (Fy, ..., F;) has a C®density on R%,

The hypothesis is expressed by perturbations of the Poisson process trajectories.
The following exponential integrability criterion comes from [177] and [178] for the

Gaussian case. It is proved in the same way as Theorem (6.1.16) and (6.1.17).

Theorem (6.1.19)[163]:If F € DY ;,p > 1, is such that ||DF||

D, < oo, then

1°(w,L2(R,R?))
there exists A > 0 such that
E[exp(AF?)] < co.
Denote by (W, u, Dy 4, e) the standard Dirichlet structure on Wiener space, cf.
[172].The Dirichlet form eis defined as €(F,G) = —%E[Ff,G],F,G € Dom(ﬁ). It

admits a carré du champ operator I' defined by I'(F, G) = (ﬁF,ﬁG) Proposition

L2(Ry)’
(6.1.11 )shows that this structure admits v2Das well as Das a gradient, i.e. ['(F,G) =

Z(EF,EG) Moreover, (W,T,ulg:,]]));l,elﬂ));l) is the Dirichlet substructure

L2(Ry)
generated by (7 )ken, cf. [172]. As a substructure, (W,T,ulg:, ]D);l,e |]D)§1) is local,

admits a carré du champ operator, and satisfies the energy image density property:
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Theorem (6.1.20)[163]:If Fi,...,F; € D}, with det ((ﬁFi,ﬁFj) o ) >
' L?(R4,R?) 1<i,j=d

0 p-a.s.,then the law of F = (F,, ..., F;)is absolutely continuous with respect to the

Lebesgue measure on R%.

We give a version of the Meyer inequalities for higher orders of differentiation,
and extend the operators j o i o Dand § o ito Sobolev spaces of H-valuedfunctionals. Let
Prdenote the set of functions u : N = Psuch that u has a finite

support in N. This set is dense in L?(B) ® [2(N).
Lemma (6.1.21)[163]:Define the operator Pt(l):Lz(B) ® I?(N) - L?(B) ® I*(N),t €

R byPt(l)u = ((Pt(l)u)k) , Where
k=0

(Pt(l)u)k = (e7t — 1)DyPouy, + e tPouy, k€N, u € P;.

Then (Pt(l)) is a semi-group, and we have the relation
teR,

pF=PMDF Fe®P;, teR,.

Proof.Let F = I,(f,,),n = 1and f,, € [>(N)™. We have from the expression of Das an

annihilation operator, cf. [171]:

l=n-1
D,P,F =e™™ L(fu(x K, ..., k)
1=0
and
l=n-1
e 'P,D,F =et Z e UL (fu(xk, ..., K)).
1=0
Hence
p=n-1 l=p-1

(e~t — 1)D,P,D,F = Z (e=(P+DEt — g-P1) Z L(fu(x k, ..o  K))
p=1 =0

= Dy P,F — e 'P,D,F,
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or (Pt(l)DF) = DyP,F F € P.From the following equalities, (Pt(l)) is
k tER,

asemigroup.Let u € Pz, k € N, and choose F, € P such that u, = D, F,. We have for
s, t>0:
(p;jgu)k = (Pt(ngFk)k = Dy P, F,.DyP,P,F,
—(p@® _ (p@®p® _(p@®pm®
= (A DPSFk)k = (R™R, DFk)k = (R™R, u)kk € N.
Hence Pt(+13 = Pt(l)Ps(l), fors,t > 0.

Proposition (6.1.22)[163]:Let LM denote the generator of (Pt(l)) . For € Pz, we
t=0

(1), = (1) i
haveLl'Vu = ((L u)k)kEanh
(LOu), = (L+1+DJw, keN.
The duality relation

(i(u), i(L(l)v))

holds, and we have the commutation relation

= (i(L(l)u), i(v))L2(3)®L2(R+) u,v € Pr,

L*(B)®L*(Ry4)
LYD =DL onPs.
Proof.This is a consequence of the above proposition. The duality relation comes from

the equality
E [Tkuk(ll(l)v)k] =E [Tk(L(l)u)kvk] u,v €Pr, kEN,

that can be checked using the explicit expression of L
Eltur (L + I + Dy)vy]
= E[vp L(Truy) + TpUp Vi + T D Vg
= E[vitiLuy + viwe LTy — 2(Dy, Duy) + Trewe vy + Tty Dy |
= E[vg T Luy — viuy + Ty + 20, T Dicuye + U Dy (T v)
= E[t v Luy + v T Dy + T Vx|
= E[tyv(L+ 1+ D )ugl,u,v € Pz, k€EN.

We used here the relation L(FG) = FLG + GLF — 2(DF,DG) F,G € Pg,cf.

L?(R4,R?)

[171], and the fact that I + Dyis adjoint of D,, k € N with respect to P.
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We now aim to construct Sobolev spaces of H-valued functionals, in order to

extendthe Poisson gradient and divergence operators to distributions.

Definition (6.1.23)[163]:We define the norm ||-[Ip, ,csyon P by

s = [ o+ £930) ey

The space]D)p,k(H) is defined to be the completion of Prwith respect to the
norm”'”]mp,k(ﬂ)-

The following extension of Theorem (6.1.16) holds:
Theorem (6.1.24)[163]:For p > 1and k € Z, there exists two constants A, x, B, x >

0 such that for any Poisson polynomial functional F € P¢:

Ap,k”DF”]Dp,k(H) < ||F||]D);§'k+1 < Bpk (”DF”]D)p_k(H) + ||F||LP(B))-

k
Proof.We have (I + L) pF = D(I + L)¥/?F,F € Px. Hence

||DF||1D)p_k(H) = ”l ((IH + L(l))k/ZDF)||LP(B,L2(]R{+))

= ({0 + D) 5,20,

_ k/2
= ||p + £) F”u»p,o(m

= ||[DU + O2F|| )k €Z, p>1.

LP(BL2(Ry)
It remains to apply Theorem (6.1.16) to (I + £)*/?F.
Corollary (6.1.25)[163]:The operator j o i o D can be extended as a continuous operator
jeioD:D}, =Dy, (Hk€EZ p>1.
The operator § o i(- ,0)can be extended as a continuous operator
§0io(-,0):Dy(H) > D), 1kEZ p>1
Proof.We have for u € Prand F € P:

E[FS oo u,00]] = |E (10, 00,DF) o

= |E [(i(u), i(DF))LZ(R+)]|

=E<' Lo+ LYY i (1, + £® _k/ZDF>
(e ) (070,
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< ”u”]D)p,k(H)”DF”]D)q__k(H)
< Cpulltll, won IF I, st
from Theorem (6.1.24) and Proposition (6.1.22), where p,q > 1 are such that

1/p +1/q = 1 and C, k is aconstant. Hence ||S ° i(u)”DT < Cp,kllullm)pk(m. For the
pk—1 ’

second relation, we have
(j ojoDF, u)LZ(B)®12(N) = E[FS o l(U)]
= E[(I + L)*?F(I + £)7%/2§ o i(w)]
< IFlyg 18 i,
< GpillFllps lullpy . u€P;, F P,

Hence||joio DF”DZJ:k_l < Cp.k”F”]D);k'F € Pr.

The main problem that we encounter in the extension of the Meyer inequalities
to the case of higher derivatives lies with the definition of the iterated gradient DDF.In
fact, even for F € Pr, e.g. F = 1o, DF is a random indicator function and DDF can not
make sense as a random variable. To circumvent this difficulty, we choose to take

lli e DXFll 2 (@12 (nt,
where D¥: [?(B) — L?(B) ® H°¥is the k-th iteration of D, for the norm of the iterated

gradient of F € Pr. We are going to give an equivalence of norms betweenthe norm

||-||D§kand the norm defined with i o D¥, forp = 2 and k > 0.
Lemma (6.1.26)[163]:Let F € Pr. We haveforn > 1 and k4, ..., k, € N:
Dkl "'DknPtF = e_ntPtDkl DknF

j=n
+(e—t -1) Z e_thkl Dkn-thDkn—j+1 DknijF'
j=1

Proof.By induction. From Lemma (6.1.21), the result is true for n = 1. Assume that the
relation is verified at the order n > 1. We have for ky, ..., k41 € N:

Dkl "'Dkn+1F = e_ntDklptDkz Dk F

n
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j=n

+Dy, Z e JtDy, -+ Dy,_;_,PtDy,,_; *** Diypy Dij F
j=2

= e ™Dy, P.Dy, - Dy F(e™* — 1)e ™Dy P.Dy, - Dy, F

j=n
+(e_t — 1) Z e_]tDkl Dkn—j—lptDkn—j Dkn+1Dk]'F
j=2

= e_ntDklptDkz Dkn+1F

j=n
+et—1) z e—}tDk1 Dkn—j—1PtDkn—j Dkn+1ijF.
j=2

This shows that the equality is satisfied for anyn > 1.

Proposition (6.1.27)[163]:For k € N, there exists Ay, By > Osuch that for any Poisson
polynomial functional F € Pg,

Aglli o DkFIIiZ(B)®L2(R+k)

<WIFllgz, < Billi e D*F Iz g2ty + IFIIz2a).

Proof. Let us write the discrete chaotic decomposition of F:

F=> Lf,

n=0

which gives

IIFIIHZ,);k = E[F(I + L)*F] = Z(l + ) L (FII3.

n=0

Taking 4, = 1/((k + 1)*)and B, = 1, we have
Ak + 1D <1+n(n—-1)-(n—k) <By(k+1*n > k.

Hence ||F||D;k|s equivalent to

F- (E[IFLL-D) - (L—-(k—1DD(L—-KkDF]+ E[FZ])%.
It remains to show that
E[FL(L =D (L—nDF] = |li e D™ 'Fllfz(py g 2(gner)y, 12 0.
We know that this statement is true for n = 0. Suppose that it is true at the rank n, and
let us show that then it is also true at the rank n + 1.
E[FL(L—=1)(L—(+ 1)DF]
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= E[(i° D"F,i e D™(L— (n+ DDF)2gzp]

=F Z Tkl"'TknDkl'”DknFDkl"'Dkn(L—(n+1)I)F
| K1,-0Kn

il
S

n n

=F Z Tkl"'TknDkl"'Dk F Dki + L Dkl"'Dk F

=
Ky
=
S
1}
ey

1
N

=F z Tkl"'TknDkl"'DknF Dki Dkl'"DknF

~
S
i
2
I
ey

+E Z ks Dhensn Tiey = Thn Diey =+ Dien FDrey ++* Dieyy, F
K1, okn

=E z Tky """ Thnya Diy = Dy I iy *** Dy F

ke, knsq
=F [(l o Dn+1F,i o Dn+1F)L2(]R2+1)] F e :])T,

where we used the relation
i=n
Dlekn(L—(n+1)I)F: ZDkl-I_L Dlek

=1

F,

n

Obtained by differentiating the result of Lemma (6.1.26).

We apply the criterion given in [173] for the independence of multiple Wiener
integral in order to obtain similar results for discrete multiple Poisson stochastic
integrals of the type L,(f,), fn € [?(N)°". The following result allows to characterize the
independence of discrete multiple Poisson stochastic integrals interms of the supports
of their discrete time kernels.

Theorem (6.1.28)[163]:Let f,, € H"and g,, € H*™,m > n. The Poisson functionals
I,(f,) and I,,,(g,n,)are independent if and only if
falky, o k) gm (ks knga, o knam—1) =0, Vkq, o, knym-1 €N

Proof.We have the following orthogonal decompositions for f,, and g,,:
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From Proposition (6.1.2), the random variables I,(f,,) and I,,(g,,) belong respectively

to theZ2n-th and 2m-th Wiener chaos. Denote by onand Jomthe corresponding

kernels.We have I,(f,,) = on(on) and L,,(gm) = Ly (Gam),i-e.

pad _ Nny,...Ng ¢Nq,...N4q
fon = Qs kg Iis, kg
kiE#ky
ni++ng=n

and
A _ myq,.. .mp my,.. .mp
9om = E 1811, UL 11, Jlp
lli"'ilp
my+-+mp=m
with

ny,.Ng\ _ ony ng 7 my,...Mp\ __ omy mp
IZn (fkl, kg ) =1, (ek1 0.0 ekd), Lhm (gll,...,lp ) =1, (el1 0.0 elp .

From Proposition(6.1.2), we find epricitIy

n ll see
fn1, Mg _ ( 1) C d 02iq o o2nq—2iq Y h°2id ° h°2nd—2id
ki,...kq . . \N1/2 "te2ky o2k +1 o2kg o2kg+1

0sizn, 21 (C21 ... Pt

= 2nq 2ng

OSidSTLd

and
i ]p
1 mC 1. . )

My, _ (-1 mp °2J1 o po2M=2j1 o L, h°21p o h°2mp‘21p
ll,...,lp 0211 0211+1 Ozlp ozlp+1

. \1/2
0<ir=m, om (Czh szp )

2m1 Zmp
0<jpsmy

From [173], L,(f,,) is independent of I,,,(g,,) if and only if f5,, ®1 Gon = 0 a.s., i.e

Nqy,..Ng pM1-Mp ~Nq,.., N4 m1, WMy
§ Cksreekea Ply, ol fepkd ®19 oy =0

which means

ml, ,mp _ 0

Nnq,...N4 ml; ,mpfnl, (] ®1

k1,...kq k1i,...kd ..,lp

fork,; # - # kgand l] # - # lp, since
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my,..

Nq,...,N -M
{fklf-..,kdd ®1 gll’m’lp p:kl F o FE kd and ll F o FE lp}

is orthogonal in L(R,)°™*™~2, due to the particular form of fkril.'.'.",'ctdand gzli'_"l;mp.This

condition is equivalent to a,fll,’cl; lelpmp = 0if {kq, ..., kg} N {ll, . lp} # (,or
ki, i k) 9m ke, knsty oo Knem—1) = 0 Vky, .., knym—1 € N.

We study the diffusion process associated with—L, and show that itgives

another example of a process whose hitting probabilities of open sets can be estimateds

in terms of capacities, cf. [179], [180]. We start by introducing capacities on the Poisson

space. The space Bis endowed with the largest topology that makes O < Bopen in B if

Z71(0) is open in W. We can define the capacities Crpon Bas follows:
¢rp(0) =i nfllullpz :07'u > 1P a.s.}
for O openin B, and
crp(4) =1 nfcr,p(O) :0 openand A C 0}
for any subset A of B.

Let (Xt(n)) denote the W-valued n-parameter Ornstein-Uhlenbeck process,
teR}

Xt(n) — e—(t1+---+tn)/2We(;1+1)

1,.“,et‘n’
where W®*Dis the (n + 1)-parameter Brownian sheet defined on a probability space

(Q,4,Q), cf. [181].

Proposition (6.1.29)[163]:Let Yt(") = E(Xt(n)), t € R%. The process Y ™is a B-valued P-
symmetric n-parameter process with continuous paths. Its transition semi-groups
aregiven by

Pl =0texp(—tL)®, tER,, i=1,..,n
Proof.We refer to the definitions in [179]. We know that X™is a u-symmetric n-

parameter process. Let (Tt‘) i = 1,...,n denote its associated filtrations. We have

teRy’
(@) Forany t € ]Rﬁ,Yt(n) € UlsisnTtii since Xt(n) € U1sisnTtii, and the law of Yt(n)is

P since P = Z,pand X has law p.
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(b) Forany1 <i <nandF € L*(B, P), we have foru € R%?and a € R;:
B[PV v 1] = B [OF (X2 v, L]
= e‘aﬁ®F(X15n))
= @‘1e—aﬁ®F(Y1§’”).

Applying the result of [179], [180], we obtain that the process (Yt(n)) is another

teR?}

example of a process whose hitting probabilities can be estimated in terms of capacities:

Theorem (6.1.30)[163]:Let O be an open set in B. For t € R%}, there exists two

constants K;, K, > 0 depending only on t and n € N such that
K1cn2(0) < Q(Els ef0,t]: vV e 0) < K2 (0).
Proof.From [180], there exists 1?1, 1?2 > 0 such that
Ritnz(E71(0)) < Q(3s € [0,6] : YV € 0) < Ryt 2 (E7(0)),
where ¢,,(E71(0)) is the usual capacity on Wiener space, defined as
tn2(E75(0)) =i anIuIIDZ’n: U=1poE p—a.s.}.
We need to show that ¢, ,(0) can be estimated in terms of ¢, ,(E71(0)). We have
Cn2(0) Zinfllullp, ;u=21p°E p—a.s.}
> n2(E7H(0))
>Ki anIuIIDZ,n:E[uIT] >1p0Z% u— a.s.}
>Ki nl{llE[ulT]IlDin:u ED,and E[ulF] =15 E u— a.s.}
=K ¢,,2(0),
with K > 0. The last inequality comes from the continuity of E[-|F] from ]D)p,kto]]));k, cf.

Proposition (6.1.3).

For n = 1, Proposition (6.1.29) shows that the diffusion process associated to

—Lis the B-valuedprocess Y = (E(Xt(l)» . The coordinates of (Y;);cg, are the square
t20

norms ofindependent two-dimensional Ornstein-Uhlenbeck processes, hence they

satisfy thestochastic differential equation
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dv, = 2V, dW, + (1 — V)dt,
where (W,)¢cg,is a brownian motion. In the usual Poisson space interpretation,
thetrajectories of (Y;):so take their values in a space of step functions whose
interjumptimes move according to the square norms of independent 2-dimensional

Ornstein-Uhlenbeck processes.

Section (6.2): Lie-Wiener Path Space:

The Wiener measure is known to be invariant under random isometries whose
Malliavin gradient satisfies a quasi-nilpotence condition, cf. [183]. In particular, the
Skorohod integral §(Rh)is known to have a Gaussian law when h € H = L?(R,, R%)and
Ris a random isometry of Hsuch that DRh is a.s. a quasi-nilpotent operator.Such results
can be proved using the Skorohod integral operator dand its adjoint the Malliavin
derivative Don the Wiener space, and have been recently recovered under simple
conditions and with short proofs in [184] using moment identities and in[185] via an
exact formula for the expectation of random Hermite polynomials. Indeed it is well

known that the Hermite polynomial defined by its generating function
22y O L
eXt—tht/2 = E —H,(x,m), xt€R,
n!
n=0

satisfies the identity
E[H,(X,0%)] =0, 2)
when X =~ V' (0,02)is a centered Gaussian random variable with variance ¢ > 0,and
that the generating function can be used to characterize the gaussianity of X.In [185],
conditions on the  process  (u)ieg,have been deduced for the
expectationE[H, (6 (w), ||u||?)],n = 1, to vanish. Such conditions cover the quasi-
nilpotencecondition of [183] and include the adaptedness of (u;)¢er,, which recovers
the aboveinvariance result using the characteristic function of 6 (w).
On the other hand, the Skorohod integral and Malliavin gradient can also be

defined on the path space over a Lie group, cf. [186], [187], [188]. We prove an
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extension of (2) to the path space case, by computing in Theorem (6.2.11) the
expectation
E[H,(6(w), Iul®)], n=1,

of the random Hermite polynomial H,(8(w), ||u]l?), where &(w)is the Skorohod
integralof a possibly anticipating process (ut)teR+. This result also recovers the above
conditions for the invariance of the path space measure, and extends the results of[185]
and [184] to path spaces over Lie group.

In Corollaries (6.2.14) and (6.2.15) below we summarize our results in the

derivation formula
d 22
~E [eaa(u)—yllullz] = AE[eM0O-2w2t 1 ac@u) (I — Vu) ™ (Du)]

—JE[e0@-2ww/2(( — yu)~ly, D1 oglet,(I — Vu))],  (3)
for Ain a neighborhood of 0, in which D,V respectively denote the Malliavin gradient
and covariant derivative on path space, and det,(I — AVu) denotes the Carleman-
Fredholm determinant of I — AVu. When Vuis quasi-nilpotent in the sense of (17) below
we have det,(I — AVu) = 1, cf. Theorem 3.6.1 of [189], or [190], and the derivative(3)

ValIiSIIeS, WIIiCIl y|EIdS
| A6(u)——||lu 2|
E e ( ) 2 ” ” - 11

for Ain a neighborhood of 0, cf. Corollary (6.2.12). If in addition {(u, u)is a.s. constant,

this implies

E[en@] = o5 ) e R,

Showing that § (u)is centered Gaussian with variance [|u|?.
We review some notation on closable gradient and divergence operators, and
associated commutation relations. We derive moment identities for the Skorohod
integral on path spaces. We consider the expectation of Hermite polynomials, we derive

Girsanov identities on path space.

We recall some notation on the Lie-Wiener path space, cf. [186], [187],[188],

[29], and we prove some auxiliary results. Let Gdenote either R%or a compact
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connected d-dimensional Lie group with associated Lie algebra ¢ identified to R%and
equipped with an Ad-invariant scalar product on R% =~ 7, also denoted by(:,). The
commutator in <is denoted by []. Let ad (w)v = [w,v],u,v € 7, with Ade* =
edd 4 e <

The Brownian motion (y(t))teR on ¢ with paths in /,(R,,7)is constructed from
+

(Bt)ter, via the Stratonovich differential equation

{d]/(t) = y(t)©OdB,
y(0) =e,

where e is the identity element in G. Let P(G) = ,(R,,7) denote the space of

continuous G-valued paths starting at e, with the image measure of the Wiener
measureby I : (B)¢er, - (y(t))teR+. Here we take
s={F = f(y(ts), .., y(&)): f € 75 (GM)},

and

n

v= {Euiﬂ-: F, € s u €L2(Ry;9),i=1,..,n,n > 1¢.

i=1
Next is the definition of the right derivative operator D.
Definition (6.2.1)[182]:For F = f()/(tl), ...,y(tn)) € 4f € (G"), we let DF €
L*(Q X R,; ©) be defined as

d n
(DF,v) = %}C (]/(tl)esfotlvsds, ...,)/(tn)egfot Usds) , VE LZ(R_F,/C).

|e=0

For F € ~of theform F = f(y(tl), s y(tn)) we also have

D,F = 2 O (y(t), o) ) Aoy (), 20,

The operator Dis known to be closable and to admit an adjoint § that satisfies
E[F6(v)] =E[(DF,v)], FE€E  vEy 4
cf. e.g. [186]. Let ]D)p,k(X),k > 1, denote the completion of the space of smooth X-

valued random variables under the norm

k
lullp, 0 = ) 1Dl xguen, P € (1ol
=0
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where H = L?(R,,7), and X ® Hdenotes the completed symmetric tensor product of
Xand H.Wealsolet D, , = D, ,(R),p € [1,00], k > 1.
Next we turn to the definition of the covariant derivative on the path space
P(G),cf. [186].
Definition (6.2.2)[182]:Let the operator Vbe defined on u € D, ;(H)as
Vsue = Dguy + 1pg(s)adu, € #® s,t € R,. (5
When h € Hwe have
Vshe = 1o, (s)adhy, s,t €ER,,
andad v € «Q ¢, v € <, is the matrix
((ej’ad(ei)vnlsi,]-sd = (e, [e1,v]))
The operator ad (v)is antisymmetric on ¢ because(:,")is Ad-invariant. In addition if
u=hF,h€H,F €D,,,wehave
D.u; = D;F @ h(t), adu, = Fadh(t), s,t ER,,

1<i,j<d’

and
(e; ® e;, Vsur) = (e; ® ej, Vs (hF)(1))
= (e; ® €, DsF ® h(t)) + 110,(s)F{e; ® ejadh(t)
= (h(t), e;)e;, DsF) + 110,41 (s)F(ej,ad(e)h(t))
= (h(t), e;)}(e;, DsF) + 110,11 (s)F(e;, [e;, h(D)]),
i,j =1,..,d.Inthe commutative case we have ad (v) = 0,v € ¢, hence V= D.

By (4) we have

Vo) (©) = (Vw)v, = f (Veudvds,  tER,,
0

is the covariant derivative of u € zin the direction v € L>(R,; ©), with V,u € L?(R,; ©),
cf. [186] and Lemma (6.2.4) in [192].
It is known that Dand V satisfy the commutation relation
D&(u) =u+ §(V'u), (6)
foru € D, ; (H)such that V'u € D, ;(H ® H), cf. e.g. [186]. On the other hand, the

commutation relation (6) shows that the Skorohod isometry [193]
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E[6(w)é(v)] = E[{(u,v)] + E [trac®&u)(Vv)], u,v €D,,(H),(7)
holds as a consequence of (6), cf. [186] and Theorem (6.2.3) in [192], where

o 0o

trac@u)(Vv) = (Vu, V'v)ygy = j j(Vsut,VIUs>Rd®Rddet,
00

and VIUS denotes the transpose of the matrix Vv, s, t € R,. Note also that we have
Vour = Dgug, s>t (8)
Note that for u € D, ;(H)and v € H we have

(00} (o]

(Vu)kv(t) = f o f (Vtkutvtk_lutk o thutz)vtldtl o dtk , t e R.l_,
0 0

and
trac@uw)® = (Viu, (Vu)*1)
_ f ...j(vjutl,vtk_lutk---vtlutz)dtl---dtk,
o 0
k= 2.

In addition we have the following lemma, which will be used to apply our

invariance results to adapted processes.
Lemma (6.2.3)[182]:Assume that the process u € D, ,(H) is adapted with respect to
the Brownian filtration (%) ek, . Then we have

trac@u)® = trac@u)*1(Du) =0, k > 2.
Proof.For almost all ty,...,tx;1 € Rithere exists i €{1,..,k+ 1}such that t; >
ti+1 modk+1, and (7) yields

Velttinr marer = Deibtinr mares T 10t m)dk+1}(ti)

= Dtiuti+1 md k+1
=0,

since (U¢) e, is adapted.

We close this section with three lemmas that will be used in the sequel.

Lemma (6.2.4)[182]:For any u € D, ; (H)we have
1
(Vwv,u) = E(v,D(u,u)), v EH.
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Proof.We have

(V*u)ut = f(vtus)-l-usds
0

_ j (Dots)Tugdls + f 11051(6) (adus) usds
0 0

[oe)

= f(Dtus)Tusds—f 1[0, (t)ad (us)ugds
0

0
= j (Dtus)Tusds
0

= (D"uw)uy.
Next, the relation D{(u, u) = 2(D*u)u shows that
(Vwv,u) = (V'wu, v)
= (V'wu,v)

—§<v, (u, u)).

Lemma (6.2.5)[182]:For all u € D, ,(H)and v € D, ; (H) we have
k+1

(V*u, D((Vu)*v)) = trac@Vuw)**1Dv) + Z%((Vu)k“_"v, Dtrac@u)'),k € N.
i=2

Proof.Note that we have the commutation relation VD = DV, and as a consequence for

all1 < k < nwe have

oo [o2)

(V'u, D((Vu)kv)) = f j (vtkutk+1’ Dtk+1 (Vtk—1utk V1—“0ut11‘7t0)>dt0 ety
0 0

[oe) [oe)

— T

- f o f (Vtkutk+1’ Vtk_lutk o Vtoutlvto)dto o dtk"‘l
0 0

[ee] [ee]
+_f "'f<VIkutk+1'Dtk+1(vtk—1utk"'Vtout1)vto>dt0"'dtk+1
0 0
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k-1

= trac@Vuw)**1Dv) + Of Of

i=0

<Vfk,ufk,+1‘ V1—“k+1ufk+2 Vti+1u’fi+2 (Vtink+1uti+1)vti—1ufi V1—“0u’—“1 vto>dt0 Aty

= trac@Vu)*'Dv) +Zk 1 —Lf f

Ve, <Vtkutk+1’ Vfk+1u1-“k+2 Vti+1u’3i+2D'fk+1uti+1)’ Vti—1uti Vlfout1vto>dt0 Aty
k-1 1
= trac@Vw)**1Dv) + Z m((Vu)iv, Dtrac@u)*+17t),

Lemma (6.2.6)[182]:For all u € D,,(H)and v € D, ;(H) such that [|Vull o q.ngm <
1we have
(V*u, D((I — Vu)~"tv))
=trac@u)( —Vu) 1(Dv) — (I —Vu) 1v,D1 oglet,(I — Vu))

Proof.By Lemma (6.2.5) we have

(V'u, D(U = V) ™)) = > (V" D((V)")))
n=0
[e%9) o n+1l
= ) trac@Vu)"*'Dv) + ((Vu)"*1~ty, Dt rac@u)t)

=trac@u)(I — Vu)~1(Dv) + Z %z((Vu)"v, Dtrac@u)’)

=trac@u)(l — Vu)~1(Dv) + Z%((I — Vu)~lv, Dt rac@u)?)
i=2
=trac@u)( —Vu)"1(Dv) — (I —Vu) u,D1 oglet,(I — Vu)),
Since det,(I — AVu) satisfies

det, (I — AVu) = exp(—zﬂ%lt rac(&u)‘),(‘))

cf. [194], which shows that
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Pl .
D1oglet,(I — AVu) = _ZTt rac@u)'.
i=2

The following moment identity extends Theorem (6.2.1) of [184] to the path

space setting. The Wiener case is obtained by taking V= D.

Corollary (6.2.7)[182]:Let u € D, , (H) such that (u, u) is deterministic and
trac@uw)* =trac&@uw)**(Du) =0, a.s., k=>2. (10)
Then §(u) has a centered Gaussian distribution with variance (u, u).

In particular, under the conditions of Corollary (6.2.1), 6(Rh) has a centered
Gaussian distributionwith variance (h,h) when u = Rh,h € H, and Ris a random
mapping with values in the isometries of H, such that Rh € N,51D,,(H)and
trac@Rh)* = 0, k > 2. In theWiener case this recovers Theorem 2.1-b) of [183], cf.
also Corollary (6.2.2)of [62].

In addition, Lemma (6.2.3) shows that Condition (10) holds when the process u is

adapted with respect to the Brownian filtration.

Next we prove Proposition (6.2.1) based on Lemmas (6.2.4), (6.2.5) and Lemma

(6.2.9) below.

Proposition (6.2.8)[182]:For anyn = land u € D, 41 ,(H), v € D44 1(H) we have
E[)"8(v)] = nE[§(w)™ (u, v)]

ZZ( EI6G0™ H((V)~2v, D(w, w)]

PN

For n = 1 the above identity (11) coincides with the Skorohod isometry (7).

(1D

S(u)k <t racVu)**1Dv) + Z ((Vw)*~tv, Dt rac@u)’ ))

i=2

When (u,u)is deterministic, u € D,,(H), and trace (Vu)* =0 as., k =2,
Proposition (6.2.8) yields
E[sw)™'] = n(u,w)E[)"™'], n=1,

and by induction we have
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(2m)!
2Mm!

and E[§(w)*™*'] = 0,0 < 2m < n, while E[§(w)] = 0 for all u € D, ;(H), hence the

E[s(w)*™] = (wuy™0<2m<n+1,
following corollary of Proposition (6.2.8).

Proof. Let n>1and u€D,1,(H). We show that for any n>1and

U € Dyyq1,(H), v € Dpyqs(H), we have

n!
(n—k)!

E[6(w)"6(v)] = Z E[5)" *((Vw)* v, u) + (V'u, (VW 'w)N]. (12)
k=1

We have (Vu)* v € D(ni1)/61 (H), (1) € Diny1)/(n-k+1y1, and by Lemma (6.2.9)
below applied to F = 1 we get
E[6)Y(Vw)iv, DS(wW)] — L H5(w) " H{(Vuw) v, DS (w))]
= E[6(w) ((Vw)iv, u)] + E[ )Y (Vu)v, §(V'w))]
—l )" H(Vw v, w)] — 1 H5 (W) H(Vw) iy, § (V)]
= E[6(w) ((Vw)iv,u)| + E[§)YV'u, D((Vu)'v))],
and applying this formulatol =n —kandi = k — 1 yields
E[6(w)"8()] = E[(v,D§@)™)] = nE[6(W)" (v, DS (w))]

(B8 (V) v, DS = (n — KE[S W)™ " H{(Vw) v, DEw))])

Z:l (n —'k)!
= Z o i!k)! E([§()™*((Vvu)* v, u)] + E[s(w)™(V*u, D((Vw)* v))].
k=1

We conclude by applying Lemmas (6.2.4) and (6.2.5). The next lemma extends the
argument of Lemma (6.2.3) in [184] to the path space case, including an additional
random variable F € D, ;.
Lemma (6.2.9)[182]:Let F € D, ,,u € D,41,(H), and v € D41 ,(H). For all k,i >
0 we have
E[FsW)*((Vw)iv, §(V'w))]| — kE[FS (W) H(V'w) v, §(V'w))]

= kE[FS(W)* " H((vw) " v, u)| + E[6(w)*((Vw)*1v, DF)| + E[FS(w)*(v*u, D((Vw)'v))].
Proof.We have
E[FSW)*((Vw)iv, 5§ (V'w))]| — iE[FS (W)X (V'w) v, §(V'w))]
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= E[(V'u, D(F§(W*(Vw)'v))] — kE[FS(w)* " Y((V'u) v, § (V)]
= kE[FS(W)* X(V*u, (Vu)lv ® DS(w))] — kE[FS(w)*H{(V'w) v, §(V:w)]
+E[6(w)*(V*u, D(F(Vu)'v))]
= kE[FSW) vy, (Vi)'v @ u)] + kE[FS(w)* 1 (V*u, (V) v (V)]
—kE[F§ (W) Y((v'w)™* v, §(vw)] + E[§(w)*(V*u, D(F (Vu)v))]
= kE[FSW)* X (Vw) v, u)] + E[6 (W) *((Vw)*1v, DF)]
+E[FS(wW*(v*u, D((V)'w))],
where we used the commutation relation (6).
The case of the left derivative D' defined as
(DHF,v) = %f(eff?”sdw(tl), ---,esf(f"”sty(tn))l . vERR,),
=0
forF = f(y(tl),---,y(tn)) € 4 f € /5 (G™), can be dealt with by application of the
existing results on the flat Wiener space, using the expression of its adjoint the left
divergence 8 which can be written as
St(w) = 6(Ady.u.)
using the Skorohod integral operator 5 on the flat space R%, cf. [187], [188], and
§13.10f [191].

We extend the results of [185] on the expectation of Hermite polynomials to the
path space framework. This also allows us to recover the invariance results in Corollary
(6.2.10) and to derive a Girsanov identity in Corollary (6.2.12) as a consequence of the
derivation formula stated in Proposition (6.2.13).

It is well known that the Gaussianity of Xis not required for E[H, (X,0?)] to
vanish when ¢?2 is allowed to be random. Indeed, such an identity also holds in the

random adapted case under the form

[ee)

E HTL futdBt,flutlzdt = O, (13)
0

0
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where (ut)teR+is a square-integrable process adapted to the filtration generated
by(Bo)ter,, since Hn(foOo utdBt,walutlzdt)is the n-th order iterated multiple
stochastic integral of u;, - u. with respect to (B;)er,, cf. [195] and [196].

In Theorem (6.2.11) below we extend Relations (2) and (13) by computing the
expectation of the random Hermite polynomial H, (5(w),||lu||?)in the Skorohod
integral 6(u),n = 1. This also extends Theorem (6.2.3) of [185] to the setting of path

spaces over Lie groups.

Corollary (6.2.10)[182]:Let u € ID,, ,(H)such that Vu : H — H is a.s. quasi-nilpotent in
the sense that

trac@uw)® = trac@u)*1(Du) =0, k> 2, (14)
or more generally that (15) holds. Then for any n = 1we have

E[H,(6(w), l[ull®)] = 0.

As above, Lemma (6.2.3) shows that Corollary (6.2.10) holds when the process
(ut)¢er, isadapted with respect to the Brownian filtration, and this shows that (13)
holds for the stochastic integral §(u)on path space when the process (u;)ier,is

adapted.
Theorem (6.2.11)[182]:For any n = Oand u € D, ,(H) we have
E[Hpy1 (S, llull®)]

n—1
SN el Y EXIIE e p )|
1=0 0s2ksn—1-1
Clearly, it follows from Theorem (6.2.1) that if u € D, ,(H)and
(V*u, D((Vu)ku)) = 0, 0<k<n-2 (15)
then we have
E[H, (6, lul®]=0, n=1, (16)

which extends Relation (14) to the anticipating case. In addition, from Theorem (6.2.11)

and Lemma (6.2.4) we have

E[Hp41(6), [[ull®)]
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n-1

S

l=

1K |1, 112K
S(u)t Z GO el trac@(Vu)"_z"‘l(Du))

k! 2k
0<2ksn—1-1

—2k-1

_1\k 2k ™
St Z %% z %((Vu)"'z"'l‘iu,Dtrac(&u)i)

0<2k=<n—-1-1 i=2

n-1

n!
+ZEE

=0

.(17)

As a consequence, Lemma (6.2.3) leads to the following corollary of Theorem (6.2.11),
which extends Corollary (6.3.3) of [185] to the path space setting.
Proof.Step 1.We show that foranyn > 1 and u € D, ,(H) we have
(—1*n!
2 —

0<2k=n-1

57 L8G4 ) G, 6(7)]

(—D*n! e
* G 2k = FIO @ e D). (18)

0<2k=n
ForF € D, and k,[ = 1 we have
[+2k+1 [+1
et 1y _ - T 1+1
——— EIFS@)™1] = —— E[FS(w)'™*!]

Cl+2k+1
N 2k

E[FS(W)*] =

[+1
BR8] - —— Elw, D) F))]

E[F§(w)'*1] - % E[F§(w)' Y (u, D6(w))] l;—kl E[6(w)!u, DF)]

[+ 2k+1
Y

[+ 2k +1
Y

I+ 1) . . [+1
5 EIF6)"™Hu, 8(Vu))] = ——E[6(W)"w, DF)],

I+ 1)

E[Fs(w)"*1] — T

E[FS(wW)" Y u, u)]

(n—-2k)(n—2k+1)
2k

(n-2k)(n—2k+1)
2k

E[FS(u)"2k+1] + E[FS(W)™" 2k 1(u, u)]

_n+1

T E[F5(u)n_2k+1] _

E[F§)"?* N, §(V*w))]

n—2k+1
2k

Hence, taking F = (u, u)¥, we get
E[s§)™*'] = E[{u,D(w)™)]
= nE[§(w)™ Hu, D6 (w))]
=nE[§(wW)™ Yu, u)] + nE[6 ()" Nu, §(Vu))]

E[6(w)™" 2*(u, DF)].
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= nE[§(w)" (u, §(V'w))]

(=Dn! n-2k+1
Z (k— D2 1(n+ 1 - 2k)! (EI8GO™ 242, u)*]
1

1<2ksn+
N (n—=2k+1)(n—2k)
2k

= nE[§(w)"(u, §(V'w))]

(—1)*n! n+1 -
2. (k= DI2F1(n + 1 - 2k)! < 2 PO u)]

1<2ksn+1
(n—=2k+1)(n—-2k)
2k

E[S(u)n_ZR_l(u,u)k+1]>

E[§@)™ 2 Hu, u)(w, §(V'w))]

n—2k+1
2k

B (-D¥(n+ 1)!
B Z k' 2Kk(n + 1 — 2k)!

1<2k=n+1

E[6 (W)™ **u, D{u, u)"])

E[5(u)n—2k+1(u'u>k]

(=1)*n! k1 .
+ 2= 2k = FO " b, 57w

0<2k=n-1

(—=1)*n! e
* Z R 2Fn = 2k L0 " D ),

1<2k=sn

which yields (18) after using the identity (20).

Step 2.For F € D, and k,i = 0, by Lemma (6.2.9) we have
E[Fs(w)*((Vi)tu, §(V*w))] — kE[FS(W)*H{(V'w) 1w, §(Vw))]

= kE[FS)*H(Vw)*  u, u)] + E[6(w)*((Vu)* u, DF)| + E[FSW)*(V*u, D((Vu)'u))].
Hence, replacing k above with [ — i, we get

E[FS(w)! u, §(V*w))] = U E[F{(Vu)'u, §(V*w))]

-1

I ) ) ' .

3 s (R0, 8740)] € DEESG-H (055"
i=0

-1
= D E[F((Vw)'u, §(V*w))] + Z(; ﬁﬁ'[p(g(u)l—i—l(vu)iﬂ(u’ u)]
-1 1
[! . . l! . ,
+) a1 E 8@ THW T, DF)] + > = E[FO0)' 47w, ()]
i=0 =0
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-1
Al
= ' E[{(Vu)"*'u, DF)] +ZmE[F5(u)’ F1(vw) i w, u)]
i=0

-1

+Z = E[a(u)l H(Vw)*tu, DF)] + Z 0z E[Fsw)'"4V'u, D((Vu)'u))]
i=0
-1 Il
= IE[{(Vu)"**u, DF)] + mE[Fé‘(u)l EL(Vw) T, w))

I
o

i
l

l
I
+Z (I—i+ 1)|E[5(”)l VW', DF)] + ZE[FrS(u)l YV u, D((Vu)'u))],

i=1 i=0
thus, letting F = (u, u)*and I = n — 2k — 1 above, and using (18) in Step 1, we get
(—1Dkn!
2 —

0<2k=n-1

E[§ )™ Hu, u)(u, §(Vw)]

_1\k
- GO 5™, D, uy)]

152ksn kel 2%(n — 2k)!
I
B z (=1F k!nzk E[{(Vu)™ 2k, D{u, u)*)]
1<2ks=n
GRS n! o
+ Z k1 2k z n—20k +1)— 0! E[(u, u>k5(u)n—2(k+1)—1((vu)L+1u’ u)]
0<2ksn-2 i=0
C—l)k n—2k-1 ) | |
+ Z I 2K Z =2k =01 E[8(u)™ 25~ {(Vw) ', D, w)*)]
1<2k<n-1 i=1
C—l)k n—-2k—1 ! | |
+ Z k1 2k z (n— 2k _ 1—0)! E[(u, u)k6(u)n—2k—1—1(v*u, D((Vu)‘u))]
0<2k=n—1 i=0

(=Dkn! e
+ 2 kT2 = 2101 C 0@ 2k, D{u, u)*)]

1<2ks<n-1

|
- Z (=DF kgnék E[{((Vu)" 2*u, D{(u, u)*)]

1<2k=<n
(- 1)k+1 n—2k-2 " . i +
) 0s2k=n W Z(; (n—2k+1)-10i! E[6 )" 2k+D=L((Vu) u, D(u, u)k+h)]
(-1 = n! N i )
* 152;1_1 ke 2K ; 2k~ E 6@ TV, D, w))]
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n—2k-1

(—D o |
+ ) e 2 (n—2k Ty £l w8 @)y, D((Vw) )]

0<2ksn-1
(—_1)k+1 NN n n—2(k+1)—i i k+1
o<sz‘ Gk 2T Z G2t D D IS T (', DG )]
_ )k n—-2k
Z K12k Z (n — 2k — [5(u)n_2k_i<(vu)iu,D(u,u)k)]
1<2ksn
(_1)k n—2k-1 ) | |
+ z k1 2k Z (n—2k—1—10) E[(u, u>k5(u)n_2k_L_1(v*u,D((VU)LU)>]
0<2ks<n-1 i=0
_1)k n—2k-1
= Z (k! Z)k Z (n—2k—1-1)! [(u WYk §(w)2k-im vy, D((Vu)‘u))]
0<2k=n-1

where we applied Lemma (6.2.4) with v = (Vu)‘u, which shows that

(u, W ((Vu)* 1y, u) = %(u,u)k ((Vw)u, D{u,u)) = ((Vw)iu, D{u, u)k+1).

2(k+1)

In the sequel we let Dy, ,(H) = Nyp>1 Dy o (H). The next result follows from
Theorem (6.2.11) and extends Corollary (6.2.4) of [185] with the same proof, which is

omitted here.

Corollary (6.2.12)[182]:Let u € Do, ,(H)with E[el®@HIul*/2] < 0o, and such that
Vu : H — His a.s. quasi-nilpotent in the sense of (17) or more generally that (15) holds.

Then we have

E [exp(&(u) —%Ilullz)] =1. (19)
Again, Relation (19) shows in particular that if u € D ,(H)is such that [[ullis
deterministic and (17) or more generally (15) holds, then we have
E[e’®] = e—;llull2
i.e. 5(u) has a centered Gaussian distribution with variance||u/||?.

As a consequence of Theorem (6.2.11) we also have the following derivation

formula.
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Proposition (6.2.13)[182]:Let u € D, (H) such that E[ea|5(“)|+a2”””2] < oo for some

a > 0.Then we have
0
a2
forall 1 € (—a/2,a/2)such that |1]| < Ilvu”_‘%(ﬂ;H@H)'

22
E [e’w(u)_?”"”z] = AE[e*@-2ww/2(y*y, D((I — AVu)'w))],

Proof.From the identity

I (—u/2)k
H,(x, 1) = Z %x”_z", x, U €R, (20)

0<2k=<n

we get the bound

—1)k !
|Hp(x,0%)| < Z (klz)k o —nZk)! [x|" 2 (=a?)* = Hy(Ix],—0?%),

0<2k=<n

hence

E <E

2k , o A ,
> e s (GOl | < B | Y Hy ey (8, — ull?)
n=0 n=0

= E[(|6(u)| + A||u||2)e|/15(u)|+/12||u||2/z]
= E[QZAG(u)+4AZ||u||2]

< oo,
hence by the Fubini theorem we can exchange the infinite sum and the expectation to

obtain

9 2l oA
1 Gl BNV AN ORI D)

n=0
) n-1
AT n! (=1)* [|u||2*
= - T ! * —2k-1-1
n=0 I= 0<2k=n—-1-1

— AE[eM(u)—/'lz(u,u)/Z(v*u'D((I _ /1Vu)‘1u))].
In addition, Relation (17) yields the following result, in which det, (I — AVu) denotes the

Carleman-Fredholm determinant of I — AVu.

Corollary (6.2.14)[182]:Let u € D, ,(H)such that E[ea|5(“)|+a2||“||2] < oo for some

a > 0. Then we have
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d 22
—E [ew(u)—yllullz] = JE[e00-22w0/2¢ 1 3 o@u) (I — V)~ (Dw)]

—AE[e’w(u)"lz(“'“Vz((I — AVu) "'y, D1 oglet, (I — AVw))],
forall 1 € (a/2,a/2)such that |1]| < IIVuIIZo%m;H@H).

Proof.From Lemma (6.2.6) we have

MV*u, D((I — AVu)~1v))

=Atrac@u)(I — AVu)~1(Du) — A{(I — AVu)"*u, D1 oglet,(I — AVu)).
When (17) or more generally (15) holds, Proposition (6.2.13) and Corollary (6.2.14) show
that

0 22
—E [eaa(u)—7||uu2] —0,
for A in a neighborhood of 0, which recovers the result of Corollary (6.2.12).

On the Wiener space we have V = Dand we obtain the following corollary.

Corollary (6.2.15)[182]:Let u € D, ,(H) such that E[ea|5(“)|+a2”“”2] < oo for some
a > 0. Then we have

22 d
aE [eld(u)—jllullz] = _F [eld(u)—lz(u,u)/z ﬁl ogietz (I _ ADu)]

—AE[e’w(u)"lz(“'“Vz((l — ADu) 'y, D1 oglet,(I — ADw))),
forallA € (—a/2,a/2)such that |1] < IIDuIIZ%(Q;H@,H).

Proof.We note that (9) shows that

6 [ee]
ﬁl oglet,(I — ADu) = — Z At rac@u)®

n=2

~2 Z AM(D*u, (Du)™+1)
n=2

—X{D*u, (I — ADu)~1Du)

—Atrac@u)( — ADu) "1 (Duw),

and apply Corollary (6.2.14).
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Section (6.3): Measure-Preserving Transformations on the Lie-Wiener-

Poisson Spaces:

We work in the general framework of an arbitrary probability space(Q, F, u). We
consider a linear space Sdense in L?(Q, F, ), and a closable linearoperator
D:Sw— L*(Q; H),
with closed domain Dom(D) containing S, where H = L?(R,; R%) for some d > 1.We

assume that

(H1)there exists a closable divergence (or Skorohod integral) operator
§:S®H— L2(Q),
acting on stochastic processes, adjoint of D, with the duality relation
E[(DF,u)y] = E[FS(u)], F € Dom(D), u € Dom(d), (21)
where Dom(8) is the domain of the closure of §,
and we are interested in characterizing the distribution of §(u) under a given choiceof
covariance derivative operator V associated to Dand §, cf. (24) below.

The canonical example for this setting is when (Q,u) is the d-dimensional
Wiener space with the Wiener measure u, which is known to be invariant under random
isometries whose Malliavin gradient Dsatisfies a quasi-nilpotence condition, cf.
[198],[199], and Corollary (6.3.7) and Relation (57) below. This property is an
anticipating extension of the classical invariance of Brownian motion under adapted
isometries.

In addition to the Wiener space, the general framework of this section covers
both the Lie-Wiener space, for which the operators Dand § can be defined on the path
space over a Lie group, cf. [200], [201], [202], and the discrete probability space of the
Poisson process, cf. [203], [204], [205]. In those settings the distribution of 6(h) is given
by

E[e®™] = exp f w(ih(D))dt |,  heH = I2(R,;RY),
0

where the characteristic exponent W is W¥(z) = ||z||?/2 on the Lie-Wiener space, and
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Y(z)=e?—z—1, z € C, (22)
in the Poisson case withd = 1.
In order to state our main results we make the following additional assumptions.
(H2)The operator D satisfies the chain rule of derivation
Dy (F) = g'(F)D,F, teR,, g€CiR), FeDom(D), (23)
where D,F = (DF)(t),t € R,.
(H3)There exists a covariant derivative operator
V:L2(Q x R;; RY) - L2(Q X R,; R ® R%)
with domain Dom(V) such that D, 6and r satisfy the commutation relation
D.5(w) = u, + 8(Viu), (24)
foru € Dom(V) such that VIu € Dom(6),t € R,, where fdenote matrix
transposition in R ® R<.
In this general framework we prove in Proposition (6.3.1) below the Laplace transform

identity

%E[em(“)] = AE[e?®((I — 2Vu) " tu,u)] + AE[e* (Vv u, D((I — AVu)~tw))],

for A in a neighborhood on 0, without any requirement on the probability measure u.As
a consequence of Proposition (6.3.1), we derive in Propositions (6.3.6), (6.3.12) and

(6.3.18) below a family of Laplace transform identities of the form

%E[e’w(u)] = E[e*@(W’' (Au),u)] + E |eP® (1 - )LVu)‘lu,Df ‘P()Lut)dt)]
0

+AE[e* (v u, D((I — AVw)~tw))], (25)
which hold on both the Lie-Wiener and Poisson spaces. These identities are obtained
inductively from the integration by parts (21), by removing all occurrences of the
stochastic integral operator din factor of the exponential e we will study the
relations between such identities and quasi-nilpotence and measure invariance in

Corollaries (6.3.7), (6.3.13) and (6.3.15).
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On the Lie-Wiener path spaces as well as on the Poisson space, Relation (25)
involves a covariant derivative operator V, which appears in the commutation relation

(24)of Condition (H3) above between Dand &, and the series

(I - Vu)~! = Z(Vu)”, 1Vull 2 gy < 1 (26)
n=0

cf. (40) below for the definition of the operator (Vu)™on H. The proof of (25) relies on

the relation
(U -V v,u) = W' @W),v)+{U - Vu)‘lv,Df Y(u,)dt), (27)
0

u € Dom(V),v € H, cf. Lemmas (6.3.10) and (6.3.16) below, which holds on both the
path space and the Poisson space, respectively for ¥(z) of the form W(z) = ||z||?/2 or
(22).
Under the condition

(V*u, D((Vu)™u)) = 0, n €N, (28)

Relation (25) reads

:—/1 E[e?®] = E[e®@W(¥ (Aw), u)] + E |e**® (I — 2Vu) 1y, D f ‘P(/lut)dt)] ,(29)
0

for Ain a neighborhood of zero. This is true in particular when (ut)t€R+is adapted with
respect to the filtration (Tt)teR+generated by the underlying process, cf. Lemmas(6.3.8)
and (6.3.14) below, in which case &§(u) is known to coincide with the forward It6-
Wiener, resp. Itd-Poisson, stochastic integral of (u;) g, as recalled.

In Corollaries (6.3.7) and (6.3.15) we apply (29) to obtain sufficient conditions for
the invariance of Gaussian and infinitely divisible distributions on the Lie-Wiener path
spaces and on the Poisson space. In particular, whenever the exponentfooo Y(Au,)dt is

deterministic, A € R, and Vu satisfies (28), Relation (29) shows that we have

a [ee]
aE[e’w(“)] = E[ew(“)]f(ut,‘l”(lut))dt
0
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a co
= E[e’w(u)]af Y(u)dt, AER,
0
which yields
E[e5(u)] = exp j‘l’(ut)dt , (30)
0

i.,e. d(u) is infinitely divisible with Lévy exponentfooo Y(u,)dt. Taking u €
Np=1 LP(R,) to be a deterministic function, this also shows that the duality relation (21)
in Hypothesis(H1)above and the definition of the gradient Vcharacterize the infinitely
divisible law of & (u).
In the Lie-Wiener case we also find the commutation relation
(V*v,(I =Vv) " 1Du—D((I —Vv) tw)) = (I — Vv)"1,D1 oglet,(I — Vv)), (31)

cf. Lemma (6.3.9) below, where

det,(I —Vu) = exp(— Z %t rac(&u)”) (32)

n=2
is the Carleman-Fredholm determinant of I — Vu, cf. e.g. in [206].

In this case, Relations (31) and (32) allow us to rewrite (25) as

d 1
aE[e’w(“)] = AE[e?®(u, u)] + E/le[e’w(“)((l — AVu) Yy, D(u, u))]

+AE[e20@(v u, (I — AVu)~1Du)| — AE[e*@((I — AVu) 1y, 1 oglet,(I — V1)), (33)

cf. Proposition (6.3.6), which becomes

d 1
aE[e’w(“)] = AE[e?®W (u, u)] + E/le[e’w(“)((l — ADw) " u, D(u, u))]

d
-E [e’w(u)ﬁl oglet,(I — /lDu)] - /IE[e’w(u)((I — ADu)"tu, D1 oglet,(I — ADu))], (34)
on the Wiener space, cf. Proposition (6.3.18), in which case we have V= D.

As was noted in [207] the Carleman-Fredholm det, (I — ADu) is equal to 1 when

thetrace

[ee)

trac@u)" = f ---f(VInutl,th_lutn---thutz)Rd@,Rddtl---dtn (35)
0o 0
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vanishes for all n > 2, and Condition (28) can be replaced by assuming quasi-nilpotence
condition

trac@u)® =trac@u)* Du =0, n=2, (36)
cf. Corollary (6.3.7).

In this way, and by a direct argument, (30) extends to the Lie-Wiener space the
sufficient conditions found in [198] for the Skorohod integral §(Rh) on the Wiener
spaceto have a Gaussian law when h € H = L[>(R;, R%) and Ris a random isometry
of Hwith quasi-nilpotent gradient, cf. Theorem (6.3.1) of [198]. Such results hold in
particular when the process (u)cg, is adapted with respect to the filtration (F¢)cg, by
Lemmas (6.3.8) and (6.3.14), and we extend them to the Lie-Wiener space. An example
of anticipating process u satisfying (36) is also provided in (59) below on the Lie-Wiener
space.

The results of this section also admit various finite-dimensional interpretations.
For such an interpretation, let us restrict ourselves to the 1-dimensional Wiener space,

consider an orthonormal family e = (e, ..., e,,) in H = L*(R,, R%) and the sequence

[ee)

Xk = f ek(t)dt, k= 1, e, n,

0

of independent standard Gaussian random variables. We define u to be the process

n

y = Z e(Df (X, X)),  tER,,

k=1

where f;, € CE(R™),k = 1, ...,n. In that case, from (49) below we have

Date = ) D e(Da()fi(Xss o Xo) = (e(), @D, s,tER,,

k=11=1

where

df = (alfk)k,lzl,...,n
denotes the usual matrix gradient of the column vector f = (fi, ..., f,) Ton R™. We
assume in addition that 9,f;, = 0,1 < k <[ < n, i.e. dfis strictly lower triangular and
thus nilpotent. The divergence operator §is then given by standard Gaussian

integration by parts on R™as
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n n n
o(u) = Zxkfk(xl' iy Xn) — Z O fie (X1, oes X)) = Zkak(Xl' oy Xn).
k=1 k=1 k=1
In that case, (28) and (36) are satisfied and (29) reads, letting X, = (x4, ..., X,),

aal f eXp<__(x1 + - +X‘n) +12xkfk(xn)) dxl dxn

n n-1

A
2|fk<xn)| - Z Z WP (O i) 0 (i)

n
1
X exp(—i(xl2 + 4+ x2) + Azxkfk(fn)> dx, - dx, .

k=1
More complicated finite-dimensional identities can be obtained from (34) when dfis not
quasi-nilpotent. On the other hand, simplifying to the extreme, if n = 2 ande.g. f; =

0 and f, (x4, x;) = x4, we explicitly recover the calculus result

1

d 1 d
— f exp()txlx2 — E(xf + x%)) dx,dx, = Zﬂﬁﬁ

oA
R2

=1 j x? exp<)tx1x2 —l(xl2 + x%)) dx,dx, = L, Ae(-1,1),
; 2 (1 —22)3/2

The path space setting is less suitable for finite-dimensional examples as the Lie-
group valued Brownian motion is inherently infinite-dimensional with respect to the
underlying R%-valued Wiener process. To some extent, the same is true of Poisson

stochastic integrals, as they naturally depend on an infinity of jump times.
Indeed, this geometric framework also covers the Poisson distribution the use of
a covariant derivative operator on the Poisson space, showing that the derivation
property of the gradient operators is on the Lie-Wiener space is not characteristic of the
Gaussianity of the underlying distribution. The results of this section can also be applied
to the computation of moments for the I[t6-Wiener and Poisson stochastic integrals
[208]. A different family of identities has been obtained for Hermite polynomials and
stochastic exponentials in §(u) in [209] on the Wiener space and in[210] on the path

space, see also [211] for the use of finite difference operators on the Poisson space.
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We organized as follows. This section ends with a review of some notation on
closable gradient and divergence operators and their associated commutation relations.
We derive a general moment identity of the type (25), and we consider the setting of
path spaces over Lie groups, which includes the Wiener space as a special case. We
show that the general results also apply on the Poisson space. Finally we prove (34)and
recover some classical Laplace identities for second order Wiener functionals in
Proposition (6.3.19).

We close this introduction with some additional notation.

Given X a real separable Hilbert space, the definition of Dis naturally extended

toX-valued random variables by letting

n
DF = Z x; ® DF; (37)
k=1

forF € X ® S c L?(Q; X) of the form

n
F:in®Fi
k=1

X1, Xn €EX,Fy, ..., F, €ES. When D maps Sto S ® H, as on the Lie-Wiener space,
iterations of this definition starting with X = R, then X = H, and successively replacing
Xwith X @ Hat each step, allow one to define

DX ® S — L2(%X ® HO")
for all n > 1, where & denotes the completed symmetric tensor product of Hilbert
spaces. In that case we let ]D)p,k(X) denote the completion of the space X @ S of X-

valued random variables under the norm

k
lello, i = D 1Dl pauguey, P21 (38)
=0

with

Do) = [ | D0,

k=1

and D, = D, x(R),p € [1,0],k > 1. Note that for all p,q > 1 such thatp™' + ¢~ =

land k=1, the gradient operator Dis continuous from ]D)p’k(X) into
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]D)q,k_l(X ® H) and the Skorohod integral operator 6 adjoint of D is continuous from
]Dp,k(H) in to ]D)q,k—l-

Given u € D, 4 (H) we also identify

Vu = ((s, t) — Vtus)s,tER+ EX®H
to the random operator
Vu:H— H
ur— (Vu)v = ((Vu)vs)seR+,
almost surely defined by
(Vv = f(Vtus)vtdt, SsER,, VEH, (39)
0

inwhicha ® b € X @ His identified to a linear operator froma @ b : H — X via
(a ® b)c = a(b,c)y, a®beX®H, c€eH.

More generally, foru € D, ; (H) and v € H we have

(Vu)kv, = j ---j(Vtkusvtk_lutk---thutz)vtldtl---dtk, seR,, (40
0o 0
i.e.
vk =| (s, t) — j ---j(VtkuSVtk_lutk ---Vtutz)dtz e dty, eH®H,
0o 0

S,tER+

k > 1. We also define

Viu = ((s, t) — VIut) EHRXH

S,tER,
where VIut denotes the transpose matrix of V u;in R Q@ RY, s, t € R,, and we
identify V*u to the adjoint of Vu on Hwhich satisfies
(Vwv, hyy = (v, V'u)h)y, v,h € H,

and is given by

(V'w)v, = f (Viu)vedt,  s€eR,, veLl2(W;H) (41)
0
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Although D is originally defined for scalar random variables, its definition extends
pointwise tou € D, 1 (H) by (37), i.e.
D(u) = ((s,t) = Deuy) €eH®H, (42)

t,sERy
and the operators Duand D*u are constructed in the same way as Vu and V*u in(39)
and (41).
The commutation relation (24) shows that the Skorohod [212] isometry

E[6(w)?] = E[(u,u)y] + E[t rac@u)?], u €U, (43)

holds, with
trac@u)® = (Vu, (Vu)* 1), k> 2.

As will be recalled, such operators D,V, §can be constructed inat least three instances,
i.e. on the Wiener space, on the path space over a Lie group, and on the Poisson space

for k = 1. In the sequel, all scalar products will be simply denoted by (-,-).

The results of this section rely on the following general Laplace identity (44) for
the Skorohod integral operator &, obtained in Proposition (6.3.1) using the adjoint
gradient D and the covariant derivative Vunder Conditions (H1), (H2)and (H3) above.
Here we do not specify any underlying probability measure on (), so that the

characteristic exponent W(z) plays no role in this section.
Proposition (6.3.1)[197]:Let u € D, (H)such that for some a > 0we have
E[ea|5(u)|] < o, and the power series (26) of (I — AVu)'u converges in D, ; (H) for

allA € (—a/2,a/2). Then we have

%E[eﬂ5(u)] = AE[eW((1 — AVu) "Ly, u)] + AE[e*@W(V*u, D((I — AVu)™1))], (44)
forallA € (—a/2,a/2).
Proof. We start by showing that for any u, v € D, ; (H) such that the power series of
(I — Vv)~1u converges in D, ; (H)and E[e21¥™!] < oo, we have

E[§(w)e’™] = E[e5¥X(I — Vv)"u, v)| + E[e®@(V*v, D((I — Vv)~1uw))]. (45)

Indeed, Lemma (6.3.2) below shows that
> 1

E[6@)et®] = > —F[6(w)"5(w)]
n=0
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Z = EI8 @ () T v) 4 (7, D) )

k=1n=k
Z E[e5® (V) u, v) + (v, D((V)*w)))]

= E[e5YN(I — Vo)~ u, v)| + E[e®@(V v, D((I — Vv) " w)). |

Hence, applying (45) for u = v we get

]
8@ — 28(u)
(,ME[e W] = E[§(u)e?d®@)]

= AE[eW((I — AVu)Yu, )] + E[e2@(V*u, D((I — AVu)~1w))], (46)

A€ (a/2,a/2).
Finally we prove the next Lemma (6.3.3) which has been used in the proof of
Lemma (6.3.2) below and extends Lemma (6.3.1) in [213] to include a random

variable F € D, ;.

We will describe the applications of Proposition (6.3.1) successively on the Lie-
Wiener path space, on the Wiener space, and on the Poisson space. In order to prove

Proposition (6.3.1) we will need the moment identity proved in the next Lemma (6.3.2).

Lemma (6.3.2)[197]:For any n € Nand F € D, 1,u € D41 ,(H),v € Dy yq1(H), we

have

n

E[FS(W)"8 ()] Z

k=1

k)' E[FS)™ (VW) v, u) + (V'u, (VW) 'v)))]

n

Z k)l E[6w)™ *((Vu)*v, DF)]. (47)

k=0

Proof.We have (Vu)* v € Dyy1y/n1(H), (W) € Diyy1y/(n-k+1)1, and by Lemma
(6.3.3) below we get
E[FsW (Vw)iv, DS(W))] — | HFS (W) = ((Vu) v, DS (w))]
= E[FS(W)Y(Vw)iv, w)] + E[FS(w)((Vw)iv, (V'w))]
—LHFSW) " Y(Vw) v, u)| — L HFS(w) " H(Vw) v, §(V'w))]
= E[FS(Y(Vwiv, w)] + E[F§(w)(V*u, D(Vw'v))] + E[§w)Y(Vw)* v, DF)],
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and applying this formulato !l = n — kand i = k — 1 via a telescoping sum yields
E[FS(uw)"6(v)] = E[F{v,DS(u)™)] + E[6(uw)™(v, DF)]
= nE[F6(w)" Yv,D5(w))] + E[§(w)™(v, DF)]

= Z e f! o (E[F8)™ (V) v, D5(W))] — (n — K)E[FS(wW)™*{(Vu)*v, D5(w))])
k=1

+E[S5(u)™(v, DF)]

Z k)' (E[FS()™*((Vw* v, u)] + E[F§ (W)™ *(V*u, D((Vu)* v))])
k=1
kZ =i E16G0" (V) v, DFY].

Lemma (6.3.2) coincides with the Skorohod isometry (43) whenn = 1.

Lemma (6.3.3)[197]:Let F € Dy, u € Dy41,(H), and v € D41 ,(H). For all il €
Nwehave
E[FsX(Vw)iv, §(Vw)] — L HFS (W) H(V'w) v, §(V'w))]
= L HFsW)"H((Vw) v, u)| + E[6WY(Vw)* v, DF)| + E[F§(w) (V*u, D((Vu)'v))).
Proof.Using the duality (21) between Dand §, the chain rule of derivation (23) and the
commutation relation (24), we have
E[FsX(Vw)iv, 8(V'w)] — L HFS (W) H(V'w) v, §(V'w))|
= E[(V'u, D(FS(W)'(Vw)v))| — L HFS W) H(V'w) iy, (Vw))]
=l HFS(W)" " Y(V'u, (Vwiv ® DS(w))] — L HFS (W) (Vv w) 1o, (Vw)]
+E[6W)'V'u, D(F (Vuw)'v)]
= L HFSW) Y (V'u, (Vwiv @ u)] + L HFS (W) HV'y, (Vw)iv @ §(V*uw))]
—l HF§ ()" H(V'w) ™y, (Vw)] + E[§ )YV u, D(F(Vw)'v))]
= L HFSW) " Y(Vw* v, u)] + E[§)Y(Vw) v, DF)]
+E[FS(W) (V*u, D((Vw)'v))].
In the following sections we will reconsider Proposition (6.3.1) and its consequences in

the Lie-Wiener and Poisson frameworks.
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Let G denote either R%r a compact connected d-dimensional Lie group with
associated Lie algebra § identified to R%and equipped with an Ad-invariant scalar
producton R% =~ G, also denoted by (-,-), with H = L?(R,;G). The commutator in
Gisdenoted by [-] and we let adw)v = [u,v],u,v € G, with Ade* = e?™ u €g.
Here,W(x) = ||x||?/2.

The Brownian motion (y(t))teR on G is constructed from a standard Brownian
+

motion(B;)cr, via the Stratonovich diffierential equation

{d]/(t) = y(t)©OdB,
y(0) =e,

where e is the identity element in G. Let IP(G) denote the space of continuous G-valued

paths starting at e, endowed with the image of the Wiener measure by the mapping! :

(Bo)ter, = (y(t))teR+. Here we take

S={F=fy(t),.y(t)) : fecy@m}

and

n

U=SQH-= {ZuiFi: F, €S, u; € L>(Ry;6),i=1,..,n,n=>1¢.
i=1
Next is the definition of the right derivative operator D, which satisfies Condition (H2).
Definition (6.3.4)[197]:For Fof the form
F=f(yt),....tn)) €S, feCy@, (48)
we let DF € L?(Q X R,; G) =~ L?>(Q; H) be defined by

d tq tn
(DF,v) = f (y(e)e ™%, .y (6)eh" %) | ve2(R,.6).

le=0

For F of the form (48) we also have

D,F = Z 0if (Y (t1), oo, ()10 (1), =0, (49)
i=1

The operator D is known to admit an adjointdthat satisfies Condition (H1), i.e.

E[FS(v)] = E[(DF,v)], FE€eS, vel*(R,,G),(50)
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cf. e.g. [200]. The operator D is linked to the Malliavin derivative D with respect to the
underlying linear Brownian motion (Bt)teR+, cf. (51) below, and to its adjoint &,via the

relations

(h,DFy = (h,DF) +§ fad(h(s))dsf).F , hE€H, (51)
0

cf. e.g. Lemma (6.3.4) of [214], and

§(hF) = §(hF) -6 jad(h(s))dsﬁ.F , heH,
0

which follows from (51) by duality. When (ut)teR+is square-integrable and adapted with
respect to the Brownian filtration, §(u) coincides with the Itd integral of u € L?(Q; H)

with respect to the underlying Brownian motion (B¢) g, , i.e.

e

d(u) = j u.dB; .
0
Definition (6.3.5)[197]:The operator V: D, ; (H) +— L? (Q; H® H)is defined as
Vsut = Dsut + 1[0't](s)adllt € g ® g, S,t € R+, (52)

u€D,,(H).
In other words we have

(e; ® e;, Vs(uF)(t)) = (ue, eje;, DsF) + 1o 1 (s)F(ej,ad(e;)uy),
i,j=1,..,d, where (&;);=1,_qis an orthonormal basis of Gand adu € G ® G,u € G,is
the matrix

((ej,ad(e)u;)<ij<a = (e, [es,ul))

The operator ad(u) is antisymmetric on G because (-,")is Ad-invariant. By (52),

1<i,j<d’

Vwv, = f(Vsut)vsds, teR,,
0

is the covariant derivative of u € Uin the direction v € L?(R;;§), with V,u €
L*(R,;G), cf. [200]. Note that if u,is F,-measurable we have

Vtut = Dsut + 1[0,t] (s)adilt = Dsut = 0, s >t. (53)
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It is known that Dand V satisfy Condition (H3) and the commutation relation (24), as
well as the Skorohod isometry (43) as a consequence, cf. [200]. Proposition (6.3.6)
below is a corollary of Proposition (6.3.1) and it yields (33) on the Lie-Wiener path

space.

Proposition (6.3.6)[197]:Let u € D, ,(H)such that E[e®®@I] < oo for some a > 0. We

have

:—AE[eM(u)] = AE[(u, uye®®] + %)LZE[eM(”)((I — AVW) "y, D(u, u))]
+AE eV, (I — AVw) ~1Du)| — AE[eW((I — VW) ~tu, D1 oglet,(I — AVw))], (54)

ford € (a/2,a/2)such that |1]| < ||Vu||ﬁ)io’1(H).
Proof.Let u € D, ;(H) and v € D, ,(H) such that IVllpe, e < 1, andE[ezW“)'] <
oo, From Relation (45) above and Lemma (6.3.10) below we have
E[6(w)e’®] = E[e5®((I — V)" u, v)] + E[e®@(V*v, D((I — Vv)~w))]

= E[(u, v)ed@] + %E[e‘s(”)((l — Vv) 1w, D(v, v))| + E[e®@(V v, D((I — Vv)~w))].
As a consequence of Lemma (6.3.9) below, this yields
E[6(w)e’™] = E[(u, v)e?™] + %E[e‘s(”)((l — Vv) "1, D(v, v))]

+E[eS@(V'y, (I — Vv) " Du)| — E[e®((I — Vv)~*u, D1 oglet, (I — Vv))]. (55)
Next, taking v = Auwith 1| < IIVuII]I_,):Ol(H)in (55), we get

9
AW = A8(w)
aAE[e W] = E[§(u)e?d™@)]

= AE[(u, u)e?®] + %AZE[e’w(“)((I — AVu) " tu, D(u, u))]

+AE[e*W(Vu, (I — AVw) "1 Du)]
—AE[e*W((I — AVu)~1u, D1 oglet, (I — AVW))],
which yields (54).
When the operator Vu : H+— His quasi-nilpotent in the sense of (36),

Proposition(6.3.6) shows that

aa—/lE[eM(“)] = AE[(u, uye®] + %)LZE[e’w(“)((I — AVu)~tu, D(u,u))], (56)
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which is (29) with W(x) = ||x]|?/2.
In particular we have the following result, cf. Theorem (6.3.1) of [198] on the

commutative Wiener space.

Corollary (6.3.7)[197]:Let n > 1and u € D, ;1 ,(H) such that (u, u ) is deterministic and
trac@uw)® = trac@u)*1(Du) =0, a.s., k=2. (57)

Then §(u) has a centered Gaussian distribution with variance (u, u).

Proof.Proposition (6.3.6) and Relation (56) show that when (u,u)is deterministic

andu € D, ;(H),

aa—/lE[eM(”)] = A(u,u)E[eM(u)], A ER,

under Condition (57), which implies
E[eld(u)] — elz(u,u)/zl 1ER,
from which the conclusion follows.
Condition (57) holds in particular when the process (u;):er,is adapted,

according to the next Lemma (6.3.8) which follows from (53).

Lemma (6.3.8)[197]:Assume that the process u € D, ; (H)is adapted with respect to the
Brownian filtration (F;)eg, - Then we have
trac@u)® = trac@u)**(Du) =0, k > 2. (58)
Proof.For almost all t,...,tx41 € R, there exists i € {fi,...,k + 1}such thatt; >
t;y1nod k + 1, and (53) yields
Vit modkr1 = DeUt; modk+1 + 1ot mod k411 (i)
= D¢ ut;, ;mod k+1
=0,

since Uy, mpdak+11S Fr,, nodk+1-Measurable because (uy)ier,is Ft-adapted, and this
implies (58) by (35).

An anticipating example for Corollary (6.3.7) can be constructed by considering
two orthonormal sequences (ey)renand (fx)ren that are also mutually orthogonal in
H,and such that the sequence (ey)rey € Eis made of commuting elements in G,

while(ey)xey Mmay not commute with (fi)ren- We let
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" = EAkek € Dy, (H) (59)
k=0

where (Ay)ken is a sequence of a(6(f;) : k € N)-measurable scalar random variables,

satisfying
Z:IA,CI2 =1, a.s.
k=0

Then we have ||u|ly =1, a.s.,

Vi, U, = Z ex(t3) ® D, Ay + 1j,1(t2) z Arade(t3)

k=0 k=0
- Z (DA, fider(ts) ® filts) + 1o, (ts) Z Acade,(ts), b, ts € R,
k,l=0 k=0
and
De g, = Z ex(t;) ® Dy, Ay = Z (DA, fler(ty) ® fi(t),  tit, €R,,
k=0 k,1==0
hence

oo
Vu, Ve u = f Ve, ue, Ve, up, dt,
0

o)

= f(thut3 + 1[0,t3](tz)ad(tz)adut3)(Dt1ut2 + 1[0,t2](t1)adut2)dt2
0

oo
= j D¢, us, Dy, ue, dt,
0

= D (DA XD A ) fy ey () ® filt)

p.q.k,1=0
=0, t,t; ER,,
since [utz,uts] = 0,t,,t3 € R,. Similarly we have Vut3Dt1u =0,ty,t; € Ry, and this
shows that (58) holds.
Next we state and prove Lemma (6.3.9) which has been used in the proof of

Proposition (6.3.6) and corresponds to the commutation relation (31).
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Lemma (6.3.9)[197]:Let u € D, 1(H) and v € D, ,(H) such that IVllpg, ) < 1.

Then we have

(V*v,D((I — Vo)~ tw)) = (V*v, (I — Vw)"1Du) — ((I — Vv)"1, D1 oglet, (I — Vv)). (60)

Proof.By the commutation relation V,D, = D;V,,s,t € R, forall1 < k <n we have

(V*u, D((Va)*v)) = f j (VE e, Dey,, (Ve ot Vegte, Ve ity - dy,

+j j< utk+1’Dtk+1(Vtk U Vtouﬁ)vto>dto e dbpys
0 0

k-1

= trac@Vu)**1Dv) + Of Of

i=0

<Vtk,ufk,+1‘ v’:k+1ufk+2 Vti+1u’:i+2 (Vtink+1uti+1)vti—1ufi V1—“0u’—“1 vto>dt0 Aty

= trac@Vu)***Dv) +z:k+ 1 —lfoo foo
i=0 0

<Vti<vzku’:k+1’ Vfk+1u1-“k+2 Vti+1u’:i+2D'fk+1uti+1)’ Vti—1uti Vtout1vto>dt0 Aty
k-1
= trac@Vw)**1Dv) + Z k_l_—l((Vu)lv Dt rac@u)*+1-t),

which shows that

k+1
(V*u, D((Vu)*v)) = trac@Vuw)**Dv) + Z % ((Vw)**1=ty, Dt rac@u)?),

k € N. This yields

(V'u, D((I — Vv)~tu)) = E(V*U,D(Vv)ku)
k=0

oo oo k+1
1
= Z trac@Vv)**1Du) + Z Z —{((Vv)**1 "y, Dt rac@v)™)
k=0 k=0 n=2n
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= %((1 — Vv) "'y, D(v,v))

+(V*v, (I —Vv)"1Du) + Z%(([ — V) tu, Dtrac@v)™)
n=2

=(V*'v; (I = V) 1Du) — (I — Vv) " u, D1 oglet,(I — Vv)), (61)

where we used the relation

- 1
Dloglet,(I —Vv) = —z;Dt rac@v)",
n=2

that follows from (32).
Next we prove Lemma (6.3.10) which has been used in the proof of Proposition

(6.3.6), and corresponds to (27) on the path space with W(x) = ||x||?/2.
Lemma (6.3.10)[197]:For any u € D, ; (H)with ||Vu||L2(Ri) < la.s., we have
1
(I -V tv,u) = (u,v) + E(U — Vu) v, D(u,u)), v € H.
Proof.We first show that

(Vwv,u) = %(v,D(u,u)), uebh,; veEH. (62)

Indeed we have

(V'wu, = j(Vtus)Tusds
0

[oe)

= f(Dtus)Tusds+f 1[0, (t) (adus) Tugds
0

0

= f(DtuS)Tusds—f 1j0,s1()ad (us)usds
0 0

= f(Dtus)Tusds
0

= (D*u)uy,

hence by the relation
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[oe)

Dt(“—:“) = f Dt<us;us)Rdd5
0

o)

= ZJ(DJuS)uSds
0

= 2(D"w)uy,

we get
i 1
(V u)ut = EDt(ulu>) te R+) (36)
and by integration against v(t)dt we find that
1
(Vwv,u) = (V'wu,v) = ((D"wu,v) = §<U,D(u,u))- (64)
In addition, (62) easily extends to all powers of Vu as
1
(Vu)™v,u) = E((Vu)"‘lv,D(u,u)), n=>1. (65)

Hence for any u € D, 1 (H) such that IVullp,, , )y < 1 we have

(I = Vu)~lv,u) = 2((Vu)"v,u)
n=0

= (u,v) + %Z((Vu)"_lv, D{u,u))

[oe}

N =

= (u,v)+ ((Vu)™v, D(u, u))
0

= (u,v) +%((1 — Vu) v, D{u, u)).

Conditions for the Skorohod integral on path space to have a Gaussian
distribution have been obtained from (47) and Corollary (6.3.7). In this section we show
that the general framework also includes other infinitely divisible distributions as we
apply it to the Poisson space on R, with W(x) = e* — x — 1.

Let (N)¢er, be a standard Poisson process with jump times (Ty)x>1, and Ty =
0,generating a filtration (F;).cg,0n a probability space (Q,F,,P). The gradient
D defined as
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n
~ af
BeF == Y Uorg (O (T . Ty, (66)
Xk
k=1
for
FeS={F=f(T,..T,): f€CLRM},
has the derivation property and therefore satisfies Condition (H2). In addition, the
operator D has an adjointSthat satisfies (21) and Condition (H1), cf. [203], [204],
[205],and §7.2 of [215]. Moreover, 5 coincides with the compensated Poisson stochastic

integral on square-integrable adapted processes (U¢)ter,, i-e.

e

S(u) = j u d(Ne — t),

0

The next definition of the covariant derivative Vin the jump case, cf. [216], is the

counterpart of Definition (6.3.5). Here we let

n
‘U={ZuiFi: FiES,uiEccl(R+),i=1,...,n, n=>1;.

i=1
Definition (6.3.11)[197]:Let the operator V be defined as
vsut: = Esut - utl[o't](s), S, t e R+, u e U, (67)
where u; denotes the derivative of t — u; with respect to t.

In other words, given a vector field u € U of the form u = }}I*; F;h; we have

n
Voue = ) W(ODF - Fly@®1oq(s),  steR,
i=1

and

(Vu)v, = f v.Vu,ds, teR,,
0

is the covariant derivative of u € Uin the direction v € L?(R;), cf. [216]. The
operator Ddefines the Sobolev spaces ]'D')p,land ]]A)')p,l(H),p € [1, o], respectively by the
Sobolev norms

IFli5,, = IFllr) + || DF|| Fes,

LP(Q,H)’

and
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p/z 1/p

[ee)

”u”]ﬁ)p_l(H) = ”u”Lp(Q,H) + ||5u||Lp(Q'H®H) +E f tlutlzdt ,
0

u € U, with
Doy () = [ B ).
p=1

In addition, the operators V, §and D satisfy the Skorohod isometry (43) under the form

o0 ©o

f f ’ﬁsuﬁtusdsdt], u € Dy, (H),

0 0

E[6w?] = E[wu)y] + E

and the commutation relation
D.S(w) =u, +5(Vouw), teR,,
which is the commutation relation (24) in Condition (H3), for u € ]]332’1(H) such
that V,u € D, (H),t € Ry, cf. Relation (53) and Proposition (6.3.3 )in [216].
As a consequence of Proposition (6.3.1) we have the following result, which
yields (25) in the Poisson case with W(x) = e* —x — 1.
Proposition (6.3.12)[197]:Let u € D,;(H) such that the power series (I-—

AVu)~1u converges in D,,(H), and

s}
n=2

and E[ea|§(u)|] < oofor some a > 0. Then we have

o)

[ utls, de <o, 7€ (-as2.0/2)

!
0

n

ol

d ~ ~
ﬁE[e/w(u)] — E[elé‘(u)<elu _ Lu)]

+E

e ((1 — /Wu)_lu,ﬁ f (e’luf — Au; — l)dt)]
0

+AE [e/lﬁ(u) (W*u‘ D (([ — Avu)_lu)>] ,

-1

ford € (—a/2,a/2)such that |A| < ||Vu|| o (QuHBH)'
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Proof.We apply Proposition (6.3.1) and Lemma (6.3.16) below.
As a consequence of Lemma (6.3.14) below, when (u;)cg,is adapted with

respect to the Poisson filtration(F;) cr,, we have
(V*u,D ((1 - )ﬁu)_lu)) =0,
in which case Proposition (6.3.12) yields

%E[elg(u)] — E[elg(u)<elu _ 1,u>]

+E e (1 _}ﬁu)‘lu'jjf(elur — Au, — 1)dt)], (68)
0

which is (29) on the Poisson space.

The next consequence of Proposition (6.3.12) is the Poisson analog of Corollary
(6.3.7). It applies in particular to adapted process by Lemma (6.3.14) below.
Corollary (6.3.13)[197]:Let (u;);cr, be a process in ]]’5)00,1(H) that satisfies Condition (69)
below,i.e. (V*u, D ((Vu)ku)) =0,k > 1, and assume thatfooo(ut)idt is deterministic for

alli > 1 and such that

o0}
n

~

oo
> = Ml de < o,

n=2 '0

S

A€ (—=a/2,a/2), and E[eamu)'] < oo for some a > 0. Then §(u) has an infinitely
divisible distribution with cumulants {0, fooo(ut)idt,i > 2}.

Proof.Proposition (6.3.12) and Relation (68) show that

aE
oA

as n goes to infinity, which yields

[e)lg(u)] — (elu _ Lu)E[elg(u)],

E[e?®] = exp j(elur — M —1)dt |, 1€ (-a/2,a/2)
0

from which the conclusion follows.

The next lemma is the Poisson analog of Lemma (6.3.9) on the Lie-Wiener space.
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Lemma (6.3.14)[197]:Let u,v € ﬁw,l(H)be two processes adapted with respect to the

Poisson filtration (F¢)ter,, such that (Vu)nu € D,,(H),n = 1. Then we have

(V'u,D ((ﬁu)kv)) =0, k € N.

(69)

Proof.The proof of this lemma differs from the argument of Lemma (6.3.9) due to the

fact that here, Dsu,and V,u,defined by (66) and (67) no longer belong to D, ,, and

D does not commute with V. We have
Vau, = Dgu, =0, s>t

since (U¢)iep,is Fi-adapted. Hence for all k=1 we have, with

conventionf:f(s)ds = 0fora > b,

(V*u,D ((Wu)k_lv))

0 00 (o] oo
= f f Vtk_lutthk f "'f Utovtk_zutk_l o Vtoutldtodtl o
0 0 0 0
0o
= -]- -]- Vtk_lutk f "'j Dtkvtovtk_zutk_l b Vtoutldtodtl b
0 0 0 0

[o9)
+ f f Utoﬁtk_lutkﬁtk f i f vtk_zutk_l b vtoutldtodtl b
0 0 0 0

oo to tk tz
= -]- -]- (Dtkvto) -]- cee f Vtk_lutk b Vtoutldtl A dtkdto
0 0 to to

the

dt,

dt,

dt,

[o9) oo
+] Uto -]- Vtk_lutthk f e f Vtk_zutk_l e Vtoutldtl b dtkdto
0 0

= f Utof f v’tk_lutkﬁtk f o f vtk_zutk_l "'vtoutldtl o dtkdto
0 0

since
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ik t2

J- ee j Vtk-zutk_1 ...Vtoutldtl ...dtk_l

to to
isFy,-measurable, cf. e.g. Lemma (6.3.2 )in [215].

Examples of processes satisfying the conditions of Corollary (6.3.13) can be
constructed by composition of a function of R, with an adapted process of measure-
preserving transformations, as in the next consequence of Corollary (6.3.13), cf. also
(70) below.

Corollary (6.3.15)[197]:Let T > 0and 7 :[0,T] + [0,T] be an adapted process of

measure-preserving transformations, such that 7, € ]]500,1, t € R,, with

o0 In T
> 1zt <o
0

n=2
A€ (—a/2,a/2), for some a>0. Then for all f € CL([0,T]),5(f o7)has same

distribution as the Poisson stochastic integral §(f).

Proof.We check that f o 7 € D, ; (H) by (23) and

00 T oo T T
An n
Z n! f”fn(‘[t)”]mmdt = E oy f”f,”gof”’[?”Lzm)dt
0 — 0 o

n=2 n=2
T o)
! D A n—1
o [ 1Delly, de p Sl
0 ’ n=2 '

< ®,
A € (—a/2,a/2), hence Corollary (6.3.13) can be applied as the condition E[earg(u)'] <
oo follows from |S(f o T)| < fllo(T + Np).

As a consequence of Corollary (6.3.15) the mapping T,, +— ©(T;,) preserves the
Poissonmeasure, see e.g. Theorem (6.3.10.) of [217] for the classical version of the
Girsanov theorem for adapted transformations of jump processes.

As an example of a process to which Corollary (6.3.15) can be applied, we can

take

T = tlpo 7, (©) + 2t — T L(q, 1, /247721 (F)
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+QT + Ty — 2011, j241/2,71(0) + tL(yry,00) (E), (70)

t eER, forsome T > 0.
The following Lemma (6.3.16) has been used in the proof of Proposition (6.3.12),
is the analog of Lemma (6.3.10) in the Lie-Wiener case and corresponds to the Poisson

space version of the general identity (27). We note that

o0}

(V*u)ut = f uVougds

0
[00] co

= f usDtusds—fususds
0 t

[oe)

1, 11~
=§ut +§thusds
0

1, 1
= Eut +§Dt(u,u),

forallu € @2,1(H), which corresponds to (63) on the Lie-Wiener space, and implies
- 1 1
(Vu)v,u) = Sswu) +5w, D),  veEH,

Provided u € L?(R,) N L*(R,) a.s., cf. (62) on the Lie-Wiener space. In the next lemma
we show that this relation can be extended to all powers of Vuas in (72) below,

although the extension is more complex to obtain than (65) in the path space case.
Lemma (6.3.16)[197]:Let u € D, ; (H) such that

[o'e) oo
> [l de < o
0

n=2

and ||Vu|| < 1. We have

L®(Q;H®H)
(1= Fu) " 00 = (e = 1,v) + (I — Tu) "0, D f (e —u, — 1)dt),  (71)
0

vEH.

Proof.We begin by showing that for all n € N and uE]pDv)z,l(H) such that u €

Nznt2 [F(R,) a.s. we have
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© n+1 ©

1 i~ .
f ”+1vsds+zﬁ((Vu)n+1 lv,Df utdt), v € H. (72)

i=2 0

1

((Vu)nv,u) = m

Foralln = 1 we have

=, n ~ ~ ~
(V u) uto = f "'f utnvtoutlvtlutz o th_lutndtl o dtn, (73)
0 0

and we will show by inductionon 1 < k < n + 1 that we have

k ) )

vu)" ! Vo g, ¥ D dt,d

( u) Uty = ; to tnoiYtnp1—iPtnia- Lutn+2 by dtpya—
i=2 0

0o oo
+ f f utn+1 kvtoutl ’ﬁtn—kutrwl—kdt1 dtn"'l_k ’ (74)
0 0

T =

which holds for k =1 by (73), and yields the desired identity for k = n + 1. Next,
assuming that the identity (74) holds for some k € {1, ...,n}, and using the relation
v{tn—kutn+1—k = ﬁtn—kutn+1—k - 1[0'tn+1—k] (tn—k)utnﬂ—k' tn-to tnt1-k € Ry,

we have

k © ©
vu)" ! Voup, -V D dt, - d
( u) uto - ; tn- Lutn+1 i tnt1-i tn+2 —i tnt2—i
0 0
I
k vZ v/

futn+1—kvt0ut1 Vtn—kutn+1—kdt1 dtn"'l_k
iy v n i
VioUt th—iu'tn+1—iDtn+1—iu'tn+2—idt1 dtn+2_l

Veolte, = Ve, D¢, dty - dtyy-k

k
utn+1 k —k—1utn—k utn+1—k

o'
k v
f utn+1 kutn+1 kvtoutl th—l—kutn—kdtl dtn"'l_k

Ve dty - dtyio

L S LDtn+1 lutn+2 i
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v v n k+1
Vtoutl th—k—lutn—thn kutn+1 kdt1 dtn"'l_k

e

~ ~ k !
Vtoutl R th_k_lutn_k f (ut +1) dtdtl R dtn_k

th—k

0
oo oo
1 v v D i
- F Vtoutl Vtn—iutn+1—iDtn+1—iutn+2—idt1 dtn+2_i
J 0 0

_r k+1 T &
* (k+ 1)! | Uty Vegley th—k—lutn—kdtl e dtny_g
0

1 =, \ntl-i~ : « \n—k
= ZE(V u) th wsds + 1),(V u) uftt,
1=2 0
which shows by induction for k = n that
1 n+1 1 o
=. \N =, \ntl-i~ :
(T)"e = g™ + Z‘E(V %) th wids, teR,,  (75)
1= 0

and (72) follows by integration with respecttot € R,.

Next, by (72), forallu € D, ;(H),v € Handn € N, by (75) we have

((1 — Vu)_lv,u) = Z((Vu)nv,u)

%) oo n+l1
1 n+il-i  ~
_ - n+1
M
n=0 n=0 i=

1 1 [
:(eu_l,v)+25((I—Vu) v,Dfuédt)

i=2 0

=(e*—1,v)+ ((I — Vu)_lv,ﬁ j (e™t —u; — 1)dt),
0

Which shows (1).

We also have the following moment identity, which is the Poisson analog of

Proposition (6.3.1) in [210], cf. also Lemma 1 of [211] for another version using finite

difference operators.
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Corollary (6.3.17)[197]:Foranyn = 1,u,v € D4 ,(H)and F € D, ; we have

[ee)

FS(u)"‘kf ué‘vsds]

0

n

E[F6)"(v)] = Z (2)E

k=1

n k
+2 n! ZlE
EFAY il
~ (n—k)'Lai!
n

FS(u)™* ((Vu)k_iv, D f uéds)]
0

i=2

£ e B 5o @B (@) )
k=1

+ LE[
(n—k)!

NgE

Sk ((Vu)kv, EF)] .

&
1]

0

Proof.This result is a consequence of Lemma (6.3.2) associated to Relation (75).

We consider the case where G = R%and (y(t)) = (Bp)ter, is astandard R?-

valued Brownian motion on the Wiener space W = Cy(R,, R%), in whichcase Vis equal

to the Malliavin derivative D defined by

n
D.F = Z 1061(00:f (Be,, s Be,),  tER,, (76)
i=1

for Fof the form
F = f(B,,,B¢,), (77)
feCy,(R"X), ty, ... t, ER,,n>1. Let § denote the Skorohod integral operator

adjointof D, which coincides with the It6 integral of u € L2(W; H) with respect to

Brownian motion, i.e.

e

) =jutdBt,

0

When u is square-integrable and adapted with respect to the Brownian filtration. As a
consequence of Proposition (6.3.6) we obtain the following derivation formula, which

yields (34).

Proposition (6.3.18)[197]:Let u € D, ,(H)such that E[ea|5(u)|] < oofor some a > 0.
We have

266



0 < 2 1 < ~ -1 =
~.y 0 ~
—AE [e’w(u)ﬁl ogletz(l — ADu)]

—AE [elg(u) (I — )lﬁu)_lu,ﬁl ogletz(l — Aﬁu)] ,(78)

foru € Dy, ,(H)such that E[ea|5(u)|] < oo for some a > 0and 1 € (—a/2,a/2) such

1

that || < HB”MM(H)’

Proof.We apply Proposition (6.3.6) with V= D, and use the equality

9 _ C _
ﬁl oglet,(I — ADu) = — Z A1t rac(eDu)n
n=2

[oe)

= _ 2 A1 (D*u, (ﬁu)n_l)

n=2
=—A(D"u, (I - Aﬁu)_lﬁu), A€ (—a a), (79)
that follows from (32),
Next we show how (8) can be used to recover some known results on the

Laplace transform of second order Wiener functionals of the form
8p) +8(8(¢))
where ¢ € L?(R,) and ¢ € L?(R3), cf. e.g. [218].
Proposition (6.3.19)[197]:Let ¥ € L2(R,)and ¢ € L?(R%) such that Pl 2(rz) < 1. We
have

g [e3(¢)+§3('g(¢))] _ 1 o2 W.0-0)) (80)

Proof.We let u; = %S(gb(-, t)), t € R,, and we start by showing that

1

\/detz (1 —2Du)

Since Du = ¢ /2 is deterministic, by Proposition (6.3.6), Relation (78) we have

E[e5(u)] — (81)

2
E[S(u)em(”)] = AE[(u,u)em(u)] + %E [em(u) ((1- Aﬁu)_lu,ﬁ(u,u))]
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+AE[e?3W] (D*u, (I — ADu)” Du)
= AE [{(1 = ADu) " (1 = D), uy e*3@ | + 22E [P0 ((1 — 2Du) " u, (Du)u)|
+AE[e?3@] (D*u, (I — ADu)” Du)
= AE [{(1 = 2Du) " 'u,u) e + 2E[e*30] (D*u, (1 — 2Du)” Du)
= AE[((I — 2w)~'Du, §(w))e?®)] + 2AE[e?®)] (1 — ADu)™ Du,Du),  (82)
Since
ugu, = 8(Duy)8(Du,) = 8 (Du8(Du,)) + (Dug, D) = Duyb(u,) + (Dug, Duy).
Hence by repeated application of (82) we get

0 % . A
_ AsW)] = A8(w)
37 E [e ] E [6 (we ]

(D*u, ((I — Aﬁu)_lﬁu)n ((1 — )lﬁu)_lﬁu))

NgE

= 20E[e0®)]
=0

= ZAE[e’lg(“)] (D*u, (I — ZAﬁu)_lﬁu)

S

10 —~
= _iﬁl ogletz(l — ZADu),

and (81) holds. Next, since Du € L?*(R3%)is deterministic and u = S(ﬁu), from(61) we
have, for ¥ € L2(R,),

E[g(lp)e/lg(d)ﬂg(u)] = E[Mw + u’lp>e/13(¢)+3(u)]
+%E [e@wm(u) (1 — Du) ", D(AW + u, A + u»]
= M, )E[e?P@+0W] 4 E[(w, )’ W +W] 4 AE[MW+0W (1 — Du)~1yp, D, u))]
+%E #3143 (1 — Du) ™", D, uy)]
= A, P)E[eB@*T] 1 2 ((1 - Du) ™ o, (Du)) E[e5W+30)
FE[(u,)e D8] 4 [oA001456) (1 - Du) 'y, (Du)u)]
= A%, (1 — Du) "' y) B[P0+ 4 | [e20)+500 (1 — Du) )]
= 2@, (I = Du) ) E[eP@1+30] 4 | [e28W+50) (1 — Du) ™y, §(Du))|

hence by inductiononn > 1,
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[oe)

0 N _ _ . o =1\
ﬁE[e/w(w)m(u)] — AE[e)ld(l/)HS(u)]Z(_l)n (p, (I — Du) 1 ((1 — Du) 1Du) V)

n=0
= A, (I — 2Du) ') [e?BWI+8],
which yields (80).
Finally we remark that the formulas can be applied to the Skorohod integral 5 on
the Wiener space when it is used to represent the Poisson stochastic integral S(u) of a

deterministic function by Proposition (6.3.1) of [205].
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