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Chapter 5 

                   Stability of Standing Waves with Bound States 

For the case when the frequency is equal to the critical frequency �� we show 

strong instability for all radially symmetric standing waves  ������(�). We show similar 

strong stability results for the Klein–Gordon–Zakharov system. We consider a 

Hamiltonian system which is invariant under a one-parameter unitary group. We give a 

criterion for the stability and instability of bound states for the degenerate case. 

Section (5.1): Nonlinear Klein-Gordon Equation and Klein-Gordon-

Zakharov System: 
 

We study the strong instability of standing wave solutions �����(�) for the 

nonlinear Klein-Gordon equation of the form 

��
�� − ∆� + � = |�|����, (�,�) ∈ ℝ × ℝ � ,                               (1) 

Where  � ≥ 2,1 < � < 1 + 4/(� − 2),− 1 < � < 1, and � ∈ ��(ℝ � ) is anontrivial 

solution of 

− ∆� + (1 − ��)� − |�|���� = 0, � ∈ ℝ � .                              (2) 

We also study the same problem for the Klein-Gordon-Zakharov system 

��
�� − ∆� + � + �� = 0, (�,�) ∈ ℝ × ℝ � ,                              (3) 

��
����

�� − ∆� = ∆(|�|�), (�,�) ∈ ℝ × ℝ � ,                              (4) 

Where  � = 2,3,�� > 0 is a constant. The system (3)-(4) describes the interaction of a 

Langumiur wave and ion acoustic wave in a plasma. The complex valued function 

� denotes the fast time scale component of electric field raised by electrons, and the 

real valued function n denotes the deviation of ion density (see [101, 102, 103]). 

From the result of Ginibre and Velo [104], the Cauchy problem for (1) is locally 

well-posed in the energy space  � ∶= ��(ℝ � ) × ��(ℝ � ). Thus, for any (��,��) ∈

� there exists a unique solution ��⃗ ≔ (�,���) ∈ �([0,�max);�) of (1) with ��⃗(0) =

(��,��) such that either �max = ∞ (global existence) or �max < ∞ and 

lim�→ �max
‖��⃗(�)‖� = ∞ (finite time blowup). Moreover, the solution �(�) satisfies the 

conservation laws of energy and charge: 
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����⃗(�)� = �(��,��),    ����⃗(�)� = �(��,��), � ∈ [0,�max), 

Where 

�(�,�) =
1

2
‖�‖�

� +
1

2
‖∇�‖�

� +
1

2
‖�‖�

� −
1

� + 1
‖�‖���

���,                        (5) 

�(�,�) = Im � �����

ℝ �

.                                                     (6) 

Let �� ∈ ��(ℝ � ) be the ground state (the least energy solution) of (2).We refer 

to [105, 106] for the existence of ��, and to [107] for the uniqueness of ��. The 

stability of standing waves ������ for (1) has been studied bymany authors. First, we 

consider the orbital stability of ������. Shatah [108] proves that ������is orbitally 

stable if  � < 1 +
�

�
  and  �� < |�|< 1, where 

�� = �
� − 1

4 − (� − 1)(� − 1)
.                                                (7) 

Shatah and Strauss [109] prove that ������ is orbitally unstable when � < 1 +
�

�
 and 

|�|< ��or when � ≥ 1 +
�

�
 and |�|< 1. Here, we say that astanding wave solution 

����� is orbitally stable for (1) if for any � > 0 there exists � > 0 such that if (��,��) ∈

� satisfies ‖(��,��) − (�,���)‖� < �, then the solution �(�) of (1) with ��⃗(0) =

(��,��) exists globally and satisfies 

sup
���

inf
�∈ℝ ,�∈ℝ �

���⃗(�) − �����(·+  �),�ℝ �(·+  �)��
�

< �. 

Otherwise, ����� is said to be orbitally unstable. 

Next, we consider instability of ������ in a stronger sense. Berestycki and 

Cazenave [110] prove that the ground state standing wave ������ for (1) isvery strongly 

unstable (see Definition (5.1.1) below) when the frequency � = 0 (see also [111]). 

Shatah [112] proves that the ground state standing wave ������for nonlinear Klein-

Gordon equations with general nonlinearity is strongly unstable (see Definition (5.1.2) 

below) when � = 0 and � ≥ 3. Recently, the authors [113] prove that the ground state 

standing wave ������for (1) is very strongly unstable when |�|≤
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�(� − 1)/(� + 3) and � ≥ 3. Here, we give the definitions of very strong instability 

and strong instability. 
 

 

Definition (5.1.1)[100]: (very strong instability)We say that ����� is very strongly 

unstable for (1) if for any � > 0 there exists (��,��) ∈ �such that ‖(��,��) −

(�,���)‖� < � and the solution �(�) of (1) with ��⃗(0) = (��,��) blows up in finite 

time. 
 

Definition (5.1.2)[100]: (strong instability)We say that ����� is strongly unstable for (1) 

if for any � > 0 there exists (��,��) ∈ �such that ‖(��,��) − (�,���)‖� < � and the 

solution �(�) of (1) with ��⃗(0) = (��,��) either blowsup in finite time or exists globally 

and satisfies limsup�→ � ‖��⃗(�)‖� = ∞ . 

Note that, by the definitions, if ����� is very strongly unstable then it is strongly 

unstable, and that if ����� is strongly unstable then it is orbitally unstable. 

Before stating our main results, we recall instability results for the nonlinear 

Schrödinger equation 

���� + ∆� + |�|���� = 0, (�,�) ∈ ℝ × ℝ � .                              (8) 

Let � > 0 and �� ∈ ��(ℝ � ) be the ground state of 

− ∆� + �� − |�|���� = 0, � ∈ ℝ � .                                    (9) 

It is known that for any � > 0 the standing wave solution ������ for (8) is orbitally 

stable when 1 < � < 1 + 4/�, and it is very strongly unstable when 1 + 4/� < � <

1 + 4/(� − 2) (see [110, 114]). Moreover, for the critical case � = 1 + 4/�, for any 

� > 0 and any nontrivial solution � ∈ ��(ℝ � )of (9), it is known that the standing wave 

����� is very strongly unstable for (8) (see [115]). For general theory of orbital stability 

and instability of solitary waves, we refer to Grillakis, Shatah and Strauss [116, 117]. 
 

Can we refine further this instability result? Namely, can we prove in certain 

cases that standing wave ������ for (1) is very strongly unstablein the sense of 

Definition (5.1.1)? The result of Cazenave [118] gives an answer of this question for the 

restricted range for the exponent � of nonlinearity 1 < � ≤ 5 for � = 2 and 1 < � ≤

�/(� − 2)for � ≥ 3. Cazenave proves that any global solution �(�) of (1) is uniformly 



127 
 

bounded in �, i.e.,sup���‖��⃗(�)‖� < ∞ , if 1 < � ≤ 5 and � = 2, and if 1 < � ≤

�/(� − 2)and � ≥ 3. Therefore, for this range of the exponent �, Theorem (5.1.11) 

below together with the result of Cazenave gives us a very strongly instability result in 

the sense of Definition (5.1.1) for ground state standing waves ������of (1). Using an 

argument in Merle and Zaag [118], we can extend the result of Cazenave and prove the 

uniform boundedness of global solutions of (1) in �when 1 < � < 1 +
�

(� ��)  
 and  

� ≥ 2. The following Lemma holds. 
 

Corollary (5.1.3)[100]:In addition to the assumptions in Theorem (5.1.1), let 1 < � ≤

1 + 4/(� − 1)if � = 2,3, and that 1 < � < 1 + 4/(� − 1)if � ≥ 4. Then, the ground 

state standing wave ������ for (1) is very strongly unstable in the sense of Definition 

(5.1.1). 
 

Remark (5.1.4)[100]:Let us mention that when the exponent � of nonlinearity is in the 

range 1 + 4/(� − 1) < � < 1 + 4/(� − 2) we were unable to give better instability 

results than those in Theorem (5.1.1) for ground state standing waves ������of (1) for 

large frequencies |�|> �(� − 1)/(� + 3). The very strong instability result for small 

frequencies |�|≤ �(� − 1)/(� + 3) and � ≥ 3 is given in [113]. The following 

theorem is an important contribution of Kenji Nakanishi on the very strong instability in 

this area for large � and large frequencies  �. 
 

This way, we have the entire picture for the very strong instability of ground 

state standing waves. 

For the critical frequency � = ��in the case 1 < � < 1 + 4/�, we canprove a 

much more general instability result for standing waves which arenot necessarily related 

to the ground state. 
 

For the existence of infinitely many radially symmetric solutions of (2), we refer 

to [119]. As mentioned above, a similar result of Theorem (5.1.14) below is known for 

the nonlinear Schrödinger equation (8) in the critical case � = 1 +
�

�
 without assuming 

the radial symmetry of solution of (9) and the restrictionon space dimensions � ≥ 2 

(see [115]). 
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The proofs of Theorems (5.1.11) and (5.1.14) are based on using local versions of 

the virial type identities. To prove strong instability of the ground state for the case 

� = 0  and � ≥ 3, Shatah in [112] considers a local version of the following identity 

�

��
Re � � ·∇�������

ℝ �

= ������⃗(�)�, 

��(�,�) ≔ −
1

2
‖�‖�

� + �
1

2
−

1

�
� ‖∇�‖�

� +
1

2
‖�‖�

� −
1

� + 1
‖�‖���

���
.             (10) 

Since the integral in the left-hand side of (10) is not well-defined on theenergy space �, 

one needs to approximate the weight function � in (10)by suitable bounded functions. 

To control error terms by the approximation, initial perturbations are restricted to being 

radially symmetric and the decay estimate for radially symmetric functions in ��(ℝ � ): 

‖�‖��(|�|��) ≤ ���(� ��)/�‖�‖��(11) 

(see [106]) is employed. The assumption � ≥ 2 is needed here. In the case � = 1, we 

expect similar very strong instability results for the standing waves. This kind of 

approach has been also used for blowup problems of the nonlinear Schrödinger 

equation (8) (see, e.g., [120, 121, 122, 123, 124, 125, 126]). 

In the proof of Theorem (5.1.11) for the case � ≥ 1 + 4/�, we use a local 

version of the virial identity 

−
�

��
Re �{2� ·∇� + ��}������

ℝ �

= ���(�)�,                           (12) 

Where 

�(�) ≔ 2‖∇�‖�
� −

�(� − 1)

� + 1
‖�‖���

���
.                               (13) 

Namely, instead of the left hand side of (12), which is not well defined inthe energy 

space �, we use (26) with conveniently chosen weights. 

Note that (12) follows from (10) and 

1

2

��

���
‖�(�)‖�

� =
�

��
Re � �������

ℝ �

= − �����⃗(�)�, 

��(�,�) = − ‖�‖�
� + ‖∇�‖�

� + ‖�‖�
� − ‖�‖���

���
,                            (14) 
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and that the functional � appears in the virial identity for the nonlinear Schrödinger 

equation (8): 

��

���
‖��(�)‖�

� = 4���(�)�.                                            (15) 

The case � < 1 + 4/�is more delicate. Here we use a local version of the 

identity 

−
�

��
Re �{2� ·∇� + (� + �)�}������

ℝ �

= ����⃗(�)�,                        (16) 

Where � ≔ 4/(� − 1) − �and 

�(�,�) ≔ − �‖�‖�
� + �‖�‖�

� + (� + 2) �‖∇�‖�
� −

2

� + 1
‖�‖���

���
�         (17) 

(cf. [109]). Note that 

�(�,�) = �(�) + ���(�,�) 

                    = − 2(� + 1)‖� − ���‖�
� + 2(� + 2)(� − ��)(�,�) 

− 2���(�,�) − 2{1 − (� + 1)��}‖�‖�
�,                                (18) 

and that 1 − (� + 1)�� > 0 if |�|> ��, and correspondingly 1 − (� + 1)�� = 0 if 

|�|= ��. Again instead of the left hand side of (16) we use (27) with conveniently 

chosen weights. 

Next, we consider the Klein-Gordon-Zakharov system (3)-(4). The well-posedness 

of the Cauchy problem for (3)-(4) in the energy space is studied by Ozawa, Tsutaya and 

Tsutsumi [127]. Here, the energy space �is defined by � = ��(ℝ � ) × ��(ℝ � ) ×

��(ℝ � ) × �̇��(ℝ � ). When � = 3 and �� ≠ 1, it is proved in [127] that for any 

(��,��,��,��) ∈ � there exists a unique solution u ≔ (�,���,�,���) ∈ �([0,�max) ;�) 

of (3)-(4)with initial data u(0) = (��,��,��,��) satisfying the conservation laws of the 

energy ��u(�)� = ��u(0)� and the charge ��u(�)� = ��u(0)� for all� ∈ [0,�max), 

where �is defined by (6) and 

�(�,�,�,�) =
1

2
‖�‖�

� +
1

4��
�

‖�‖
�̇��
�  

+
1

2
‖∇�‖�

� +
1

2
‖�‖�

� +
1

4
‖�‖�

� +
1

2
� |�|����

ℝ �

.              (19) 
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The case � = 3 and �� = 1 is treated in [128, 129], where the global small data 

solutions result is presented. For the case � = 2 by using the idea of Ozawa, Tsutaya 

and Tsutsumi [127] we can prove the local well -posedness of the Klein-Gordon-

Zakharov system (3)-(4) in the energy space � for all �� > 0. 

We study instability of standing wave solutions 

���(�,�),��(�,�)� = �������(�),− |��(�)|�� 

for (3)-(4), where − 1 < � < 1,� = 2,3, and �� ∈ ��(ℝ � ) is the ground state of 

− ∆� + (1 − ��)� − |�|�� = 0, � ∈ ℝ � .                            (20) 

By a similar method as in the proof of Theorem (5.1.11) for the case � ≥ 1 +
�

�
 together 

with an argument in Merle [124] for the Zakharov system, we have the following. 
 

Remark (5.1.5)[100]:It is known (see [102]) that the negative initial energy ��u(0)� 

implies that the solution u(�) of (3)-(4) either blows up in finite time or blows up in 

infinite time, namely the solution exists globally and satisfies the asymptotic condition 

limsup�→ � ‖u(�)‖� = ∞ . Since the energy 

�(���,�����,− ��|��|�,0) > 0 

for � close to 1, the result in [102] is not applicable to Theorem (5.1.1). 
 

Next, we consider the very strong instability of �������,− |��|�� for (3)-(4). 

Since the second equation (4) of the KGZ system is massless, it seems difficult to obtain 

the uniform boundedness of global solutions for (3)-(4) similar to Lemma (5.1.15) below. 

Therefore, for the standing wave �������,− |��|�� we do not deduce a very strong 

instability similar to the instability result in Corollary (5.1.3) of Theorem (5.1.11) below. 

However, using the method in [113], we obtain the following very strong instability 

result for small frequencies. 
 

Remark (5.1.6)[100]:In Theorem (5.1.18) below, the case � = 0 is proved by Gan and 

Zhang [130]. 
 

We prove Theorems (5.1.11) and (5.1.14) and Lemma (5.1.15) below for the 

nonlinear Klein-Gordon equation (1). The proof of Theorem (5.1.16) below is given. We 
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devoted to applications to the Klein-Gordon-Zakharov system (3)-(4), and we prove 

Theorems (5.1.17) and (5.1.18) below. 
 

We start with a convenient choice of the weight functions, as follows. 

Let Φ ∈ ���[0,∞ )� be a non-negative function such that 

Φ (�) = �
� for 0 ≤ � ≤ 1,
0 for� ≥ 2,         

� Φ �(�) ≤ 0   for 1 ≤ � ≤ 2. 

For � > 0, we put 

Φ �(�) = Φ �
�

�
� , ��(�) =

1

�� ��
� �� ��Φ �(�)��

�

�

.                  (21) 

Then, Φ �and  �� satisfy the following properties. 
 

Lemma (5.1.7)[100]:For � > 0, we have 

Φ �(�) = �, ��(�) = �, 0 ≤ � ≤ �,                         (22) 

��
� (�) +

� − 1

�
��(�) = Φ �(�), � ≥ 0,                       (23) 

�Φ �
(�)(�)� ≤

�

��
, � ≥ 0,   � = 0,1,2,                              (24) 

��
� (�) ≤ 1, � ≥ 0.                                                              (25) 

 

Proof. Properties (22)-(24) follow from the definition (21). We show (25). Integrating by 

part implies 

��� ����(�) = � ��� ��Φ �(�)��

�

�

= �� Φ �(�) − � �� Φ �
� (�)��

�

�

. 

Thus, by (23), we have 

��
� (�) = Φ �(�) −

� − 1

�
��(�) =

1

�
Φ �(�) +

� − 1

���
� �� Φ �

� (�)��

�

�

. 

Since Φ �(�) ≤ � and Φ �
� (�) ≤ 0  for � ≥ 0, we have (25).  

 

Lemma (5.1.8)[100]:Let �(�) be a radially symmetric solution of (1), and put 

��
� (�) = 2 Re � �����������

ℝ �

+ Re � Φ ��������

ℝ �

,                         (26) 
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��
� (�) = ��

� (�) + �Re � �������

ℝ �

,                                          (27) 

where � ≔ 4/(� − 1) − �. Then, there exists a constant �� > 0 independent of � such 

that 

−
�

��
��

� (�) ≤ ���(�)� +
�(� − 1)

� + 1
� |�(�,�)|�����

|�|��

+
��

��
‖�(�)‖�

�, (28) 

−
�

��
��

� (�) ≤ ����⃗(�)� +
�(� − 1)

� + 1
� |�(�,�)|�����

|�|��

+
��

��
‖�(�)‖�

�         (29) 

for all � ∈ [0,�max). 
 

Proof. We multiply the equation (1) by ����� �����and by Φ ��� respectively, and have 

−
�

��
2Re � �����������

ℝ �

= � ��
� +

� − 1

�
��|���|���

ℝ �

 

                  + � ��
� −

� − 1

�
��|∇�|���

ℝ �

− � ��
� +

� − 1

�
��|�|���

ℝ �

 

+
2

� + 1
� ��

� +
� − 1

�
��|�|�����

ℝ �

,                      

and 

−
�

��
Re � Φ ��������

ℝ �

= − � Φ �|���|���

ℝ �

−
1

2
� ΔΦ �|�|���

ℝ �

 

+ � Φ �|∇�|���

ℝ �

+ � Φ �|�|���

ℝ �

− � Φ �|�|�����

ℝ �

.    

By (23) in Lemma (5.1.7), we have the identity 

−
�

��
��

� (�) = 2 � ��
� |∇�|���

ℝ �

−
� − 1

� + 1
� Φ �|�|�����

ℝ �

−
1

2
� ∆Φ �|�|���

ℝ �

. 

The inequality (28) follows from Lemma (5.1.7). Finally, (29) follows from (28),(14) and 

(18).  
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First, we consider the case � ≥ 1 + 4/�. We define the functional 

��(�) =
1

2
‖∇�‖�

� +
1 − ��

2
‖�‖�

� −
1

� + 1
‖�‖���

���,                           (30) 

and consider the following constrained minimization problem 

��
� = inf{��(�) ∶� ∈ ��(ℝ � )\ {0},�(�) = 0}                              (31) 

and the set 

ℛ �
� = {(�,�) ∈ � ∶(� − ��)(�,�) < ��

� ,�(�) < 0},                        (32) 

Where � and � are the energy and the charge respectively, and the functional � is 

defined by (13). 

Note that 

(� − ��)(�,�) = ��(�) +
1

2
‖� − ���‖�

�,                              (33) 

�(�) = �2������� /2�(� ·)��
���

.                                        (34) 
 

Lemma (5.1.9)[100]:Let � ≥ 2,1 + 4/� ≤ � < 1 + 4/(� − 2)and � ∈ (− 1,1). Then, 

we have the following. 

(i) ��(�) −
�

� (���)
�(�) > ��

� for all � ∈ ��(ℝ � ) satisfying �(�) < 0. 

(ii) The minimization problem (31) is attained at the ground state ��of (2). 

(iii) �(��,����) ∈ ℛ �
�  for all � > 1. 

 

Proof.(i) We put 

��
� (�) ≔ ��(�) −

1

�(� − 1)
�(�) 

= �
1

2
−

2

�(� − 1)
�‖∇�‖�

� +
1 − ��

2
‖�‖�

�.              (35) 

Note that 1/2 − 2/�(� − 1) ≥ 0 by the assumption � ≥ 1 + 4/�. Let � ∈

��(ℝ � ) satisfy �(�) < 0. Then, we have � ≠ 0, and there exists �� ∈ (0,1) such that 

�(���) = 0. By (31), we have ��
� ≤ ��(���) = ��

� (���) < ��
� (�).(ii) For the case 

� > 1 + 4/�, see [131], and for � = 1 + 4/�,see [125].(iii) By (33), we have 

(� − ��)��(��,����)� = ��(���) 

= �� �
1

2
‖∇��‖�

� +
1 − ��

2
‖��‖�

�� −
����

� + 1
‖��‖���

���. 
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Since ��(��) = ���
� ,����(���)|��� = 0and ���

���(���)�
���

< 0, we have (� −

��)��(��,����)� < ��
� for all � > 1. Similarly, we have �(���) < 0for all � > 1. 

Hence, we have �(��,����) ∈ ℛ � 
� for all � > 1.  

 

Lemma (5.1.10)[100]:Suppose that � ≥ 2,1 + 4/� ≤ � < 1 + 4/(� − 2)and 

� ∈ (− 1,1). If (��,��) ∈ ℛ �
� , then the solution �(�) of (1) with ��(0) =

(��,��) satisfies 

−
1

�(� − 1)
���(�)� > ��

� − (� − ��)(��,��), � ∈ [0,�max).              (36) 

 

Proof. First, we show that ���(�)� < 0 for all � ∈ [0,�max). Suppose that there exists 

�� ∈ (0,�max) such that ���(��)� = 0 and ���(�)� < 0 for � ∈ [0,��). Then, by Lemma 

(5.1.9) (i) and (35), we have 

1

2
−

2

�(� − 1)
‖∇�‖�

� +
1 − ��

2
‖�(�)‖�

� > ��
� > 0, � ∈ [0,��). 

Thus, we have �(��) ≠ 0. Therefore, by (31), we have ��
� ≤ ����(��)�.While, since 

(��,��) ∈ ℛ �
� ,� and � are conserved, and by (33), we have ����(��)� ≤ (� −

��)���⃗(��)� < ��
� . This is a contradiction. Hence, we have ���(�)� < 0 for all 

� ∈ [0,�max). From this fact, Lemma (5.1.9) (i) and (33), we obtain (36).  
 

Theorem (5.1.11)[100]:Let � ≥ 2,1 < � < 1 + 4/(� − 2),� ∈ (− 1,1)and ��be the 

ground state of (2). Assume that |�|≤ ��if � < 1 + 4/�, where thecritical frequency 

��is given by (7). Then, the standing wave ������ for the nonlinear Klein-Gordon 

equation (1) is strongly unstable in the sense of Definition (5.1.2). 

Proof.for the case � ≥ � + �/� .Let � > 1 be fixed and denote 

� ≔
�(� − 1)

2
���

� − (� − ��)��(��,����)��. 

Then, by Lemma (5.1.9)(iii), we have � > 0. Suppose that the solution �(�)of (1) with 

��⃗(0) = �(��,����) exists for all � ∈ [0,1) and is uniformly bounded in �, i.e., 

�� ≔ sup
���

‖��⃗(�)‖� < ∞ .                                                 (37) 

Since �(�) is radially symmetric in � for all � ≥ 0, we define ��
� (�) for �(�) by(26). By 

(11) and (37), we have 
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� |�(�,�)|����� ≤ ‖�(�)‖
�� (|�|��)
��� ‖�(�)‖�

�

|�|��

 

≤ ���(� ��)(���)/�‖�(�)‖
��
���

≤ ���
���

��(� ��)(���)/� 

for all � ≥ 0 and � > 0. Note that we assume � ≥ 2. Thus, there exists �� > 0 such 

that 

sup
���

�
�(� − 1)

� + 1
� |�(�,�)|����� +

��

��
�

‖�(�)‖�
�

|�|���

� < �. 

Thus, by Lemmas (5.1.8) and (5.1.10), we have 

�

��
���

� (�) 

≥ − ���(�)� − �
�(� − 1)

� + 1
� |�(�,�)|����� +

��

��
�

‖�(�)‖�
�

|�|���

� 

≥ 2� − � = �                                                 

for all � ≥ 0. Therefore, we have lim�→ � ���
� (�) = ∞ . On the other hand,there exists a 

constant � = �(��) > 0 such that ���
� (�) ≤ �‖��⃗(�)‖�

� ≤ ���
�for all � ≥ 0. This is a 

contradition. Hence, for any � > 1, the solution �(�)of (1) with ��⃗(0) = �(��,����) 

either blows up in finite time or exists forall � ≥ 0 and lim sup�→ � ‖��⃗(�)‖� = ∞ . This 

completes the proof of Theorem (5.1.11) for the case � ≥ 1 + 4/�. _ 

Next, we consider the case where � < 1 + 4/�. For this case, we needa 

different variational characterization of the ground state ��of (2) from that for the case 

� ≥ 1 + 4/�. We define the functional 

��
� (�) = �(1 − ��)‖�‖�

� + (� + 2) �‖∇�‖�
� −

2

� + 1
‖�‖���

���
�, 

and consider the constrained minimization problem 

��
� = inf{��(�) ∶� ∈ ��(ℝ � )\ {0},��

� (�) = 0}                           (38) 

and the set 

ℛ �
� = {(�,�) ∈ � ∶(� − ��)(�,�) < ��

� ,��
� (�) < 0},                    (39) 

where � = 4/(� − 1) − � > 0. Note that 



136 
 

��
�(�) = �2���� ��� �(� ·)��

���
, � =

� + �

2
=

2

� − 1
.               (40) 

 

for the case � < � + �/� .Let � > 1 be fixed and define 

�� = (� + 2)���
� − (� –��)��(��,����)��, 

�� = � �����(��,����)� −
��(� + 2)

1 − ��
��

� �, 

and � = �� + ��. Then, by Lemma (5.1.12)(iii) below, we have �� > 0. Moreover, by 

Lemma (5.1.12)(ii) below and (42), we have 

��(� + 2)

1 − ��
��

� = ��‖��‖�
� < ����‖��‖�

� = ����(��,����)�. 

Thus, we have �� > 0and � > 0. Suppose that the solution �(�) of (1) with ��⃗(0) =

�(��,����) exists for all � ∈ [0,∞ ) and is uniformly bounded in �.Since �(�) is radially 

symmetric in � for all � ≥ 0, we define ��
� (�) for �(�) by(27). As in the proof of Theorem 

(5.1.11) for the case � ≥ 1 + 4/�, there exists  �� > 0 such that 

sup
���

�
�(� − 1)

� + 1
� |�(�,�)|����� +

��

��
�

‖�(�)‖�
�

|�|���

� < �. 

Thus, by Lemma (5.1.8), we have 

�

��
���

� (�) ≥ − ����⃗(�)� − �, � ≥ 0. 

Here, recall that we assume |�|≤ ��, so we have 1 − (� + 1)�� ≥ 0. Thus,by (18) and 

Lemma (5.1.13) below, we have 

− ����⃗(�)� 

≥ − 2(� + 2)(� − ��)���⃗(�)� + 2������⃗(�)� + 2{1 − (� + 1)��}‖�(�)‖�
� 

≥ − 2(� + 2)(� − ��)���⃗(�)� + 2������⃗(�)� + 2{1 − �� − ���}
� + 2

1 − ��
��

�  

= 2� 

for all � ≥ 0. Therefore, we have (�/��)���
� (�) ≥ �for all � ≥ 0, and lim�→ � ���

� (�) =

∞ . The rest of the proof is the same as in the proof ofTheorem (5.1.11) for the case 

� ≥ 1 + 4/�, and we omit the details.  
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Lemma (5.1.12)[100]:Let � ≥ 2,1 < � < 1 + 4/�and � ∈ (− 1,1). Then, we have the 

following. 

(i) 
����

� ��
‖�‖�

� > ��
� for all � ∈ ��(ℝ � )satisfying ��

� (�) < 0. 

(ii) The minimization problem (38) is attained at the ground state ��Of(2). 

(iii) �(��,����) ∈ ℛ �
� for all � > 1. 

 

Proof.First, we note that 

��(�) −
1

2(� + 2)
��

� (�) =
1 − ��

� + 2
‖�‖�

�,                                   (41) 

ℛ �
� = inf�

1 − ��

� + 2
‖�‖�

�: � ∈ ��(ℝ � )\ {0},��
� (�) = 0�.                     (42) 

(i) Let � ∈ ��(ℝ � ) satisfy ��
� (�) < 0. Then, we have � ≠ 0, and there exists �� ∈ (0,1) 

such that  ��
� (���) = 0. By (38), we have 

ℛ �
� ≤

1 − ��

� + 2
‖���‖�

� <
1 − ��

� + 2
‖�‖�

�. 

(ii) Note that ��
� ≥ 0 by (42). Let ���� ⊂ ��(ℝ � ) be a minimizing sequence for (38). By 

considering the Schwarz symmetrization of �� , we can assume that ���� ⊂ ����
� (ℝ � ). 

We refer to [105] for the definition and basic properties of the Schwarz symmetrization. 

By (42),we see that ����is bounded in ��(ℝ � ). Moreover, by ��
� ���� = 0 and 

theGagliardo-Nirenberg inequality, we have 

(� + 2)�∇���
�

�
+ �(1 − ��)����

�

�
 

                                         =
2(� + 2)

� + 1
����

���

���
≤ �����

�

�����
�∇���

�

�
, 

where � = (� − 1)�/2. Since � < 1 + 4/�, we see that � < 2 and that ���� is 

bounded in ��(ℝ � ). Therefore, there exist a subsequence of ����(we still denote it by 

the same letter) and � ∈ ����
� (ℝ � ) such that �� ⇀ � weakly in��(ℝ � ) and �� ⇀

� strongly in ����(ℝ � ). Here, we used the fact that theembedding ����
� (ℝ � ) ↪

����
� (ℝ � ) is compact  for 2 < � < 2 + 4/(� − 2) (see[106]). Next, we show that � ≠

0. Suppose that � = 0. Then, by ��
� ���� = 0and the strong convergence �� → 0in 
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����(ℝ � ), we see that �� → 0 in ��(ℝ � ). On the other hand, by ��
� ���� = 0 and the 

Sobolev inequality, wehave 

(� + 2)�∇���
�

�
+ �(1 − ��)����

�

�
=

2(� + 2)

� + 1
����

���

���
 

≤ � �(� + 2)�∇���
�

�
+ �(1 − ��)����

�

�
�

(���)/�

. 

Since �� ≠ 0, we have ����
�� ≥ � for some � > 0. This is a contradition.Thus, we see 

that � ∈ ��(ℝ � )\ {0}. Therefore, by (41) and (42), we have 

��
� ≤

1 − ��

� + 2
‖�‖�

� ≤ lim inf
�→ �

1 − ��

� + 2
����

�

�
= liminf

�→ �
������ = ��

� , 

and ��
�(�) ≤ liminf�→ � ��

� ���� = 0. Moreover, by (i), we have ��
� (�) = 0.Therefore, 

� attains (42) and (38). Since w attains (38), there exists a Lagrange multiplier � ∈

ℝ  such that 

��
� (�) =

�

2(� + 2)
(��

�)�(�).                                             (43) 

That is, � satisfies 

− (1 − �)Δ� + (1 − ��) �1 −
�

� + 2
�� � − (1 − �)|�|���� = 0            (44) 

in ���(ℝ � ). First, we show that � < 1. Suppose that � ≥ 1. Then, by (44) and 

��
� (�) = 0, we have 

0 = (1 − �)‖∇�‖�
� + (1 − ��) �1 −

�

� + 2
�� ‖�‖�

� − (1 − �)‖�‖���
��� 

           =
(1 − �)(� − 1)

2
‖∇�‖�

� +
�(� − 1)(1 − ��)

2(� + 2)
�� − 1 +

4

�(� − 1)
�‖�‖�

� 

≥
2(1 − ��)

� + 2
‖�‖�

� > 0.                                                                                

This is a contradition. Thus, we have � < 1. Since we have 

1 − � > 0, (1 − ��) �1 −
�

� + 2
�� > 0 

in (44), by [131], we have � ·∇� ∈ ��(ℝ � ). Therefore, by(43), we have 

0 = ��
� (�) = �2���� ��� �(� ·)��

���
= 2〈��

� (�),� ·∇� + ��〉 

          =
�

� + 2
〈(��

�)�(�),� ·∇� + ��〉=
�

� + 2
�����

� ��� �(� ·)��
���
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where � = (� + �)/2. Moreover, by ��
� (�) = 0, we have 

�����
� ��� �(� ·)��

���
 

= ��(1 − ��)‖�‖�
� +  (� + 2)� �‖∇�‖�

� −
2

� + 1
‖�‖���

���
� 

= − 2�(1 − ��)‖�‖�
� < 0.     

Thus, we have � = 0. Therefore, � satisfies ��(�) = 0 and ��
� (�) = 0, where 

��
� (�) ≔ 〈��

� (�),�〉= ‖∇�‖�
� + (1 − ��)‖�‖�

� − ‖�‖���
���

. 

Since ��attains 

inf{��(�) ∶� ∈ ��(ℝ � )\ {0},��
�(�) = 0} 

(see, e.g., [113]), we have ��(��) ≤ ��(�). On the other hand,��satisfies ��
� (��) =

0, we have ��
� = ��(�) ≤ ��(��). Hence, ��attains(38). 

(iii) The proof is similar to that of Lemma (5.1.9) (iii), and we omit it.  
 

Lemma (5.1.13)[100]:Suppose that � ≥ 2,1 < � < 1 + 4/�and � ∈ (− 1,1). 

If(��,��) ∈ ℛ �
� , then the solution �(�) of (1) with ��⃗(0) = (��,��) satisfies 

1 − ��

� + 2
‖�(�)‖�

� > ��
� , � ∈ [0,�max). 

 

Proof.The proof is similar to that for Lemma (5.1.10). We omit the details.  
 

 

Theorem (5.1.14)[100]:Let � ≥ 2,1 < � < 1 + 4/�and � ∈ ��(ℝ � )be any 

nontrivial,radially symmetric solution of (2) with � = ��. Then, the standing wave 

solution ������ of (1) is very strongly unstable in the sense of Definition (5.1.1).The 

same assertion is true for � = − ��. 
 

Proof.Let us first note that identity (18) contains the reason that in Theorem (5.1.14) we 

can allow any radially symmetric solutions of (2), unlike the case of Theorem (5.1.11) 

where we can treat only the ground state of (2). Namely, when � = ��we have 

1 − (� + 1)��
� = 0, and therefore the identity (18) does not contain the norm ‖�‖�

�. 

Let us recall that inTheorem (5.1.11) we control this norm by using the variational 

characterization of the ground state. 



140 
 

Let � ∈ ��(ℝ � )\ {0}be a radially symmetric solution of (2) with � = ��. Let 

� > 1 and put 

� = ������(�,����)� − (� + 2)(� − ���)��(�,����)�. 

Since ���
� (�) = 0, we have (� − ���)��(�,����)� = ���

(��) < ���
(�) for� > 1. 

Moreover, we have �����(�,����)� = ��
���‖�‖�

� > ��
�‖�‖�

�for � > 1.Thus, we have 

� > ���
�‖�‖�

� − (� + 2)���
(�) = −

1

2
���

� (�) − {1 − (� +  1)��
�}‖�‖�

�. 

By [131], we have � ·∇� ∈ ��(ℝ � ). Therefore, by (40) and by ���
� (�) = 0, we have 

���
� (�) = 2〈���

� (�),� ·∇� + ��〉= 0. 

Moreover, since (� + 1)��
� = 1, we have � > 0. Suppose that the solution �(�) of (1) 

with ��⃗(0) = �(�,����) exists for all � ∈ [0,∞ ) and is uniformly bounded in �. Since 

�(�) is radially symmetric in � for all � ≥ 0, we define ��
� (�) for �(�) by (27). As in the 

proof of Theorem (5.1.11) for the case � ≥ 1 + 4/�,there exists  �� > 0 such that 

sup
���

�
�(� − 1)

� + 1
� |�(�,�)|����� +

��

��
�

‖�(�)‖�
�

|�|���

� < �. 

Thus, by Lemma (5.1.8), we have 

�

��
���

� (�) ≥ − ����⃗(�)� − �, � ≥ 0. 

Moreover, by (18) and (� + 1)��
� = 1, we have 

− ����⃗(�)� 

≥ − 2(� + 2)(� − ���)���⃗(�)� + 2�������⃗(�)� + 2{1 − (� + 1)��
�}‖�(�)‖�

� 

≥ − 2(� + 2)(� − ���)���⃗(0)� + 2�������⃗(�)� = 2�                          

for all � ≥ 0. Therefore, we have (�/��)���
� (�) ≥ �for all � ≥ 0, and lim�→ � ���

� (�) =

∞ . On the other hand, there exists a constant � = �(��) > 0 such that ���
� (�) ≤

�‖��⃗(�)‖�
� ≤ � for all � ≥ 0. This is a contradiction. Therefore, for any � > 1, the 

solution �(�) of (1) with�(0) = �(�,����) either blows up in finite time or exists for all 

� ≥ 0 and limsup�→ � ‖��⃗(�)‖� = ∞ . Finally, by Lemma (5.1.15) below, if �(�) exists for 

all � ≥ 0,then sup���‖��⃗(�)‖� < ∞ . Hence, �(�) blows up in finite time. This completes 

the proof.  
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Lemma (5.1.15)[100]:Let � ≥ 2 and 1 < � < 1 + 4/(� − 1). If ��⃗ ∈ �([0,1),�) is 

aglobal solution of (1), then sup���‖��⃗(�)‖� < ∞ . 
 

Proof.By Proposition (5.1.3) and Lemma (5.1.5) in [118], we have 

sup
���

‖��⃗(�)‖� < ∞ ,                                                    (45) 

sup
���

� ‖��⃗(�)‖�
� ��

���

�

< ∞ .                                      (46) 

By (46) and the conservation of energy �, we have 

�� ≔ sup
���

� ‖��⃗(�)‖���
���

��

���

�

< ∞ .                                 (47) 

Note that the estimates (45), (46) and (47) hold true for 1 < � < 1 + 4/(� − 2). In 

what follows, we use an argument in Merle and Zaag [118].First, for � = (� + 3)/2, we 

show 

sup
���

‖�(�)‖� < ∞ .                                                   (48) 

Indeed, by (47) and the mean value theorem, for any � ≥ 0 there exists �(�) ∈ [�,� + 1] 

such that 

����(�)��
���

���
= � ‖�(�)‖���

�����

���

�

≤ ��.                              (49) 

Since 2 < � < � + 1, it follows from (45) and (49) that sup�������(�)��
�

< ∞ . 

Moreover, for any � ≥ 0, we have 

‖�(�)‖�
� − ����(�)��

�

�
= �

�

��
‖�(�)‖�

���

�

�(�)

 

                                                  ≤ � � � |�(�,�)|���|���(�,�)|�� ��

ℝ �

���

�

 

                                                   ≤ � � �‖�(�)‖
�(���)
�(���)

+ ‖���(�)‖�
����.

���

�
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Since 2(� − 1) = � + 1, by (46), (47) and sup�������(�)��
�

< ∞ , we have(48). Next, by 

the Gagliardo-Nirenberg inequality, we have 

‖�(�)‖��� ≤ �‖�(�)‖�
���‖∇�(�)‖�

�, 

where 

1

� + 1
= � �

1

2
−

1

�
� +

1 − �

�
. 

Since we assume  � < 1 + 4/(� − 1), we have (� + 1)� < 2. Thus, by (48), there exists 

a constant  �� > 0 such that 

2

� + 1
‖�(�)‖���

���
≤ �� +

1

2
‖∇�(�)‖�

�, � ≥ 0. 

Moreover, by the conservation of energy �, for any � ≥ 0 we have 

‖��⃗(�)‖�
� = 2����⃗(0)� +

2

� + 1
‖�(�)‖���

���
 

                 ≤ 2����⃗(0)� + �� +
1

2
‖∇�(�)‖�

�, 

which implies ‖��⃗(�)‖�
� ≤ 4����⃗(0)� + 2��. This completes the proof.  

We conclude this section with the proof of Theorem (5.1.16) below. 
 

Theorem (5.1.16)[100]:(due to Kenji Nakanishi) Let � ≥ 2,1 + 4/� ≤ � < 1 +

4/(� − 2),|�|< 1and ��be the ground state of (2). Then, the standing wave 

������ for the nonlinear Klein-Gordon equation (1) is very strongly unstable in the 

sense of Definition (5.1.1). 
 

Proof.(due to Kenji Nakanishi). Following the proof of Theorem (5.1.11), take the 

radially symmetric solution �(�,�)(� = |�|) startingfrom ��(0),���(0)� =

�(��,����) with � > 1, and assume by contradiction that it exists for all � ≥ 0. Then 

Cazenave’s estimate (46) implies that there exists � < 1 such that for all � > 0 

� � |���|� + |∇�|� + |�|�����

ℝ �

���

�

≤ �.                                 (50) 

Hence for any positive integer �, there exists �� ∈ [�− 1,�] such that 
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��|���|� + |∇�|� + |�|���|����

ℝ �

≤ �. 

By Lemmas (5.1.8), (5.1.9) and (5.1.10), there exists � > 0 such that for any � > 1 

and � > 0 we have 

�

��
��

� (�) ≥ 2� − ��(�), ��(�) ∶=
�(� − 1)

� + 1
� |�|����� +

�

��
‖�(�)‖�

�

|�|��

, 

where ��
� is defined by (26). Here and below � is a positive constant, which may depend 

only on � and �. Integrating in �, we get 

��
� ������ − ��

� ���� ≥ 2� − � ��(�)��

��� �

��

, 

since ���� − �� ≥ 1. Notice that (50) is enough to control the error term �� uniformly in 

�. To see this, let �(�,�) ∈ �� (ℝ �) satisfy �(�,�) = 1 when|�|≤ 2 and |�|≥ 1, and 

�(�,�) = 0 if |�|≥ 4 or |�|≤ 1/2. For any � > 1 and � > 4, let �(�,�) = �(� − �,

�/�)�(�,|�|). Then we have 

�|���|� + |���|� + |�|�����

ℝ �

 

                                                ≤ ����� � �|���|� + |∇�|� + |�|�����

ℝ �

���

���

≤ 8����� �. 

Hence the Sobolev embedding ��(ℝ �) ⊂ ����(ℝ �) implies that 

� � |�|�������

|�|��

���

���

≤ � � � �2���
� ��

���

���

�

���

� |�|�������

�����

 

                   ≤ ���(���)(� ��)/��(���)/�. 

Therefore choosing � sufficiently large, we obtain 

��
� ������ − ��

� ���� ≥ � 

for all �≥ 4, which contradicts the global bound 
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��
� ���� ≤ �� � �|���|� + |���|� + |�|���|����

ℝ �

≤ ���. 

 

 

Theorem (5.1.17)[100]:Let � = 2,3,� ∈ (− 1,1),��be the ground state of (20), 

and�� ≠ 1if � = 3. Then, the standing wave �������,− |��|�� of KGZ system (3)-(4) is 

strongly unstable in the following sense. For any � > 1, the solution �(�)of (3)-(4) with 

initial data u(0) = (���,�����,− ��|��|�,0) either blows up in finite time or exists 

globally and satisfies limsup�→ � ‖u(�)‖� = ∞ . 

Proof.Let � > 1 and put 

��� = (� − ��)(��,����,− |��|�,0), 

                          � = ����� − (� − ��)(���,�����,− ��|��|�,0)�, 

Where �and �are defined by (19) and (6), respectively. In the same way as in Lemma 

(5.1.9) (iii), we see that � > 0. Suppose that the solution �(�) of (3)-(4) with u(0) =

(���,�����,− ��|��|�,0) exists globally and satisfies � ≔ sup���‖u(�)‖� < ∞ . Note 

that since the initial data is radially symmetric, the solution u(�) is also radially 

symmetric for all � ≥ 0. Following Merle [124], we introduce the function �(�) ≔

− (− ∆)�����(�), and for � > 0 we consider the function 

���(�) = ��
� (�) +

1

��
� � Ψ ��(�)���(�)��

ℝ �

, 

where ��
� (�) is defined by (26) and Φ �and Ψ �are given by (21). Note that 

since ���(�) ∈ �̇��(ℝ � ), we see that �(�) ∈ �̇��(ℝ � ) and ‖���‖�̇�� = ‖∇�‖�.By the 

same computations as in Lemma (5.1.8), we have 

−
�

��
���(�) = 2 � Ψ �

� |∇�|���

ℝ �

+
1

2
� Φ �(�� + 2|�|��)��

ℝ �

 

                                                −
1

2
� ∆Φ �|�|���

ℝ �

+
1

2��
� � �Ψ �

� −
� − 1

�
Ψ �� |∇�|���

ℝ �

. 

By Lemma (5.1.7), we have 
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� Ψ �
� |∇�|���

ℝ �

≤ ‖∇�(�)‖�
�, 

                              −
1

2
� ∆Φ �|�|���

ℝ �

≤
��

��

‖�(�)‖�
� ≤

����

��
, 

� �Ψ �
� −

� − 1

�
Ψ �� |∇�|���

ℝ �

≤ ‖∇�(�)‖�
� = ‖���(�)‖�̇��. 

Moreover, we have 

� Φ �(�� + 2|�|��)��

ℝ �

 

= � � Φ �(� + |�|�)���

ℝ �

− � �|�|���

ℝ �

+ �(� − Φ �)|�|���

ℝ �

 

                       ≤ �‖� + |�|�‖�
� − �‖�‖�

� + � (� − Φ �)|�|���

|�|��

, 

and by (11) we have 

1

2
� (� − Φ �)|�|���

|�|��

≤ �‖�(�)‖�� (|�|��)
� ‖�(�)‖�

� 

                                               ≤
��

�� ��
‖�(�)‖

��
� ≤

����

�� ��
. 

Therefore, we have 

−
�

��
���(�) ≤ ����(�)� +

����

��
+

����

�� ��
(51) 

for all � ≥ 0, where we put 

��(�,�,�,�) = 2‖∇�‖�
� −

�

2
‖�‖�

� +
�

2
‖� + |�|�‖�

� +
1

2��
�

‖�‖
�̇��
� . 

Note that 

(� − ��)(�,�,�,�) −
1

2�
��(�,�,�,�) 
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=
1

2
‖� − ���‖�

� + �1 −
1

�
�

1

4��
�

‖�‖
�̇��
� + �

1

2
−

1

�
� ‖∇�‖�

� +
1 − ��

2
‖�‖�

� 

≥ �
1

2
−

1

�
� ‖∇�‖�

� +
1 − ��

2
‖�‖�

�.                                                

Using this inequality, in the same way as in Lemmas (5.1.9) and (5.1.10), we see that 

− ���u(�)� ≥ 2����� − (� − ��)�u(0)�� = 2�                         (52) 

holds for all � ≥ 0. Therefore, taking �� > 0 such that 

����

��
� +

����

��
� �� < �, 

by (51) and (52), we have (�/��)����
(�) ≥ �for all � ≥ 0, and lim�→ � ����

(�) = ∞ . The 

rest of the proof is the same as in the proof of Theorem (5.1.11) for the case � ≥ 1 +

4/�, and we omit the details.  
 

Theorem (5.1.18)[100]:Let � = 3,�� ≠ 1,|�|<
�

√�
 and ��be the ground state of(20). 

Then, the standing wave �������,− |��|�� of the KGZ system (3)-(4) is very strongly 

unstable in the following sense. For any � > 1, the solution u(�) of (3)-(4) with the initial 

data u(0) = (���,�����,− ��|��|�,0) blows up in a finite time. 
 

Proof.Let � > 1. Suppose that the solution �(�) of (3)-(4) with 

u(0) = (���,�����,− ��|��|�,0) exists globally. By the assumption|�|< 1/√3, we 

can take � such that 2��/(1 − ��) < � < 1. For such an �, we consider a function 

defined by 

�� (�) =
1

2
�‖�(�)‖�

� +
�

��
�

‖�(�)‖
�̇��
� �. 

Note that since �(0) = − ��|��|� ∈ ��(ℝ �) ∩ ��(ℝ �) ⊂ �̇��(ℝ �) and ��� ∈

� �[0,∞ );�̇��(ℝ �)�, we see that � ∈ �� �[0,∞ );�̇��(ℝ �) ∩ ��(ℝ �)�. Then, we have 

�

��
�� (�) = Re〈�(�),���(�)〉�� +

�

��
�

〈�(�),���(�)〉�̇�� 

                                   = Re〈�(�),���(�) − ���(�)〉�� +
�

��
�

〈�(�),���(�)〉�̇��, 

and 
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��

���
�� (�) = ‖���(�)‖�

� +
�

��
�

‖���(�)‖
�̇��
� − ‖∇�(�)‖�

� − ‖�(�)‖�
� 

             − �‖�(�)‖�
� −  (1 + �) �|�(�,�)|��(�,�)��

ℝ �

. 

Thus, we have 

��

���
�� (�) + 2(1 + �)(� − ��)�u(0)� − 2���u(0)� 

                                = (2 + �)‖���(�) − ���(�)‖�
� + �2 +

1 − �

2�
�

�

��
�

‖���(�)‖
�̇��
�  

+ ��,� ��(�),�(�)�,       

where we put 

��,� (�,�) = � �‖∇�‖�
� + �1 − �� −

2

�
��� ‖�‖�

� +
1 − �

2�
‖�‖�

��. 

Here, we define 

��(�,�) =
1

2
‖∇�‖�

� +
1 − ��

2
‖�‖�

� +
1

4
‖�‖�

� +
1

2
� |�(�)|��(�)��

ℝ �

, 

���,�
� (�,�) = ����(��,��� �)�

���
 

              = ‖∇�‖�
� + (1 − ��)‖�‖�

� + �‖�‖�
� + (1 + �) �|�|����

ℝ �

, 

��,�
� (�,�) = 2�����(�(���)/� �(·/�),�(·/�)�

���
 

=
2 − �

�
‖∇�‖�

�
2 + �

�
(1 − ��)‖�‖�

� 

+
3

2
‖�‖�

�
2 + �

�
� |�|����

ℝ �

,                                   

and put 

��,�
� (�,�) = ��(�,�) −

1

2(1 + �)
��,�

� (�,�) 

                                                  =
�

1 + �
�

1

2
‖∇�‖�

� +
1 − ��

2
‖�‖�

� +
1 − �

4�
‖�‖�

��, 
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��,�
� (�,�) = ��(�,�) −

�

2(2 + �)
��,�

� (�,�) 

                 =
�

2 + �
�‖∇�‖�

� +
1 − �

2�
‖�‖�

��, 

� = 1 −
2��

(1 −  ��)�
.              

Then, we have 0 < � < 1 and 

��,� (�,�) = 2(1 + �)���,�
� (�,�) + (2 + �)(1 − �)��,�

� (�,�). 

Moreover, in a similar way as in Lemmas (5.1.3) and (5.1.4) in [113], we can prove 

that ��,�
�

��(�),�(�)� ≥ ���for all � ≥ 0 and �= 1,2. Therefore, we have 

��,� ��(�),�(�)� ≥ {2(1 + �)� + (2 + �)(1 − �)}��� 

             = 2 �1 + � −
��

1 − ��
� ��� 

for all � ≥ 0. Moreover, since we have ��� = (1 − ��)‖��‖�
�, putting � = min{2 +

�,2 + (1 − �)/2�}, we have 

��

���
�� (�) ≥ � �‖���(�) − ���(�)‖�

� +
�

��
�

‖���(�)‖
�̇��
� � 

+ 2(1 + �)���� − (� − ��)�u(0)�� + 2���u(0)� − 2��‖��‖�
� 

for all � ≥ 0. Since � > 2,(� − ��)�u(0)� < ���and ����(0)� > ��‖��‖�
� for all 

� > 1, by the standard concavity argument, we see that there exists �� ∈ (0,∞ ) such 

that lim�→ ���� �� (�) = �. This is a contradiction. Hence, for all � > 1, the solution u(�) 

of (3)-(4) with u(0) = (���,�����,− ��|��|�,0) blows up in finite time.  

This completes the proof. 

Lemma (5.1.19)[219]:For � > 0, we have 

Φ �(�) =
2(1 + �)

�
, ��(�) = �, 0 ≤ � ≤ �,                     (53) 

��
� (�) +

� + �

��
��(�) = Φ �(�), � ≥ 0,                            (54) 

�Φ �
(�)

(�)� ≤
�

��
, � ≥ 0,   � = 0,1,2,                                           (55) 

��
� (�) ≤ 1, � ≥ 0.                                                                            (56) 
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Proof.Properties (53)-(55) follow from the definition (52). We show (56). Integrating by 

part implies 

�
2(1 + �)

�
� �

�� �

� ��(�) = � �
2(1 + �)

�
� �

(�� �)

� Φ �(�)��

�

�

 

                                                 = �
�(�� �)

� Φ �(�) − � �
�(�� �)

� Φ �
� (�)��

�

�

. 

Thus, by (54), we have 

��
� (�) = Φ �(�) −

2 + �

��
��(�)

=
�

2(1 + �)
Φ �(�) +

2 + �

2(1 + �)�
�(�� �)

�

� �
�(�� �)

� Φ �
� (�)��

�

�

. 

Since Φ �(�) ≤
�(���)

�
and Φ �

� (�) ≤ 0 for � ≥ 0, we have (56).  

Lemma (5.1.20)[219]:Let ������ be a radially symmetric sequence of solutions of (1), 

and put 

��
� ���� = 2 Re � ���������

��������

ℝ
�(�� �)

�

+ Re � Φ ������
��������

ℝ
�(�� �)

�

,              (57) 

��
� ���� = ��

� ���� + �Re � �����
��������

ℝ
�(�� �)

�

,                                         (58) 

where � ≔
������+ 2

�(�− 1)
. Then, there exists a constant �� > 0 independent of � such that 

−
�

���
��

� ���� ≤ � �������� +
2(1 + �)

2 + �
� ������,����

���
���

������

+
��

�� ��������
�

�
,          (59) 

−
�

���
��

� ���� ≤ � �������⃗����� +
2(1 + �)

2 + �
� ������,����

���
���

������

+
��

��
‖��(��)‖�

�            (60) 

for all �� ∈ [0,�max). 
 

Proof.We multiply the equation (1) by ������
������and by Φ ������respectively, and have 
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−
�

���
2Re � ���������

��������

ℝ
2(1+ �)

�

= � ��
� +

2 + �

��
�� ����

���
�

���

ℝ
2(1+ �)

�

 

                  + � ��
� −

2 + �

��
��|∇��|����

ℝ
2(1+ �)

�

− � ��
� +

2 + �

��
��|��|����

ℝ
2(1+ �)

�

 

+
2

2 + �
� ��

� +
2 + �

��
��|��|������

ℝ
2(1+ �)

�

,                                            

and 

−
�

���
Re � Φ ������

��������

ℝ
2(1+ �)

�

= − � Φ � ����
���

�

���

ℝ
2(1+ �)

�

−
1

2
� ΔΦ �|��|����

ℝ
2(1+ �)

�

 

+ � Φ �|∇��|����

ℝ
2(1+ �)

�

+ � Φ �|��|����

ℝ
2(1+ �)

�

− � Φ �|��|������

ℝ
2(1+ �)

�

.    

By (54) in Lemma (5.1.7), we have the identity 

−
�

���
��

� ���� = 2 � ��
� |∇��|����

ℝ
2(1+ �)

�

−
�

2 + �
� Φ �|��|������

ℝ
2(1+ �)

�

−
1

2
� ∆Φ �|��|����

ℝ
2(1+ �)

�

. 

The inequality (59) follows from Lemma (5.1.7). Finally, (60) follows from (59),(14) and 

(18).  

First, we consider the case � ≥ 1. We define the sequence  functional 

���
(��) =

1

2
‖∇��‖�

� +
1 − ��

�

2
‖��‖�

� −
1

2 + �
‖��‖���

���,                         (61) 

and consider the following constrained minimization problem 

���

� = inf����
(��) ∶�� ∈ �� �ℝ

2(1+ �)

� � \ {0},�(��) = 0�                        (62) 

and the set 

ℛ ��

� = �(��,��) ∈ � ∶�� − ����(��,��) < ���

� ,�(��) < 0�,                 (63) 

where �and �are the energy and the charge respectively, and the functional � is 

defined by (13). 
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Note that 

�� − ����(��,��) = ���
(��) +

1

2
��� − ������

�

�
,                             (64) 

�(��) = �2�����
��

2(1+ �)

� /2��(� ·)��
���

.                                          (65) 

 

Lemma (5.1.21)[219]:Let � > 0 and �� ∈ (− 1,1). Then, we have the following. 

(iv) ���
(��) −

�

�(���)(���)
�(��) > ���

� for all �� ∈ �� �ℝ
2(1+ �)

� � satisfying �(��) < 0. 

(v) The minimization problem (62) is attained at the ground state of the 

sequence ���
of (2). 

(vi) � ����
,������

� ∈ ℛ ��

� for all � > 1. 

 

Proof.(i) We put 

���

� (��) ≔ ���
(��) −

1
2(1+ �)

�
�

�(��) 

= �
∈ − 1

4(1+ ∈)
�‖∇��‖�

� +
1 − ��

�

2
‖��‖�

�.             (66) 

By the assumption � ≥ 1. Let �� ∈ �� �ℝ
2(1+ �)

� �satisfy �(��) < 0. Then, we have �� ≠

0, and there exists �� ∈ (0,1) such that �(����) = 0. By (62), we have ���

� ≤

���
(����) = ���

� (����) < ���

� (��). 

(ii) For the case � ≥ 1, see [6] and see [19]. 

(iii) By (64), we have 

�� − ���� �� ����
,������

�� = ���
�����

� 

= �� �
1

2
�∇���

�
�

�

+
1 − ��

�

2
����

�
�

�

� −
����

2 + �
����

�
���

���

. 

Since ���
����

� = ����

� ,�����
�����

��
���

= 0and ���
����

�����
��

���
< 0, we 

have�� − ���� �� ����
,������

�� < ���

� for all � > 1. Similarly, we have � �����
� <

0 for all � > 1. Hence, we have �(���
,������

) ∈ ℛ ��

� for all � > 1.  
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Lemma (5.1.22)[219]:Suppose that � > 0and �� ∈ (− 1,1). If (����,����) ∈ ℛ ��

� , then 

the sequence of  solutions  ������of (1)with ��� (0) = (����,����) satisfies 

− � �������� > ���

� − �� − ����(����,����),     �� ∈ [0,�max).       (67) 

 

Proof. First, we show that � �������� < 0 for all �� ∈ [0,�max). Suppose that there exists 

����
�

∈ (0,�max) such that � �������
�

� = 0 and � �������� < 0 for �� ∈ �0,����
�

�. 

Then, by Lemma (5.1.9) (i) and (66), we have 

∈ − 1

4(1+ ∈)
‖∇��‖�

� +
1 − ��

�

2
��������

�

�
> ���

� > 0, �� ∈ �0,����
�

� . 

Thus, we have ������
�

≠ 0. Therefore, by (62), we have ���

� ≤ ���
�������

�
�.While, 

since (����,����) ∈ ℛ ��

� ,�and �are conserved, and by (64), we have  ���
�������

�
� ≤

�� − ���� �������⃗����
�

� < ���

� . This is a contradiction. Hence, we have� �������� < 0 for 

all �� ∈ [0,�max). From this fact, Lemma (5.1.9) (i) and (64), we obtain (67).  

Lemma (5.1.23)[219]: Let � > 0 and �� ∈ (− 1,1). Then, we have the following. 

(�)
����

�

���
‖��‖�

� > ���

� for all �� ∈ �� �ℝ
2(1+ �)

� �satisfying ���

� (��) < 0. 

(ii)The minimization problem (38) is attained at the ground state of the sequence 

���
of (2). 

(iii)� ����
,������

� ∈ ℛ ��

� for all � > 1. 

 

Proof.First, we note that 

���
(��) −

1

2(� + 2)
���

� (��) =
1 − ��

�

� + 2
‖��‖�

�,                                  (68) 

ℛ ��

� = inf�
1 − ��

�

� + 2
‖��‖�

�: �� ∈ �� �ℝ
2(1+ �)

� � \ {0},���

� (��) = 0�.              (69) 

(i) Let �� ∈ �� �ℝ
2(1+ �)

� � satisfy ���

� (��) < 0. Then, we have �� ≠ 0, and there exists 

�� ∈ (0,1) such that ���

� (����) = 0. By (38), we have 

ℛ ��

� ≤
1 − ��

�

� + 2
‖����‖�

� <
1 − ��

�

� + 2
‖��‖�

�. 
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(ii) Note that ���

� ≥ 0 by (69). Let �(��)�� ⊂ �� �ℝ
2(1+ �)

� � be a minimizing sequence for 

(38). By considering the Schwarz symmetrization of �� , wecan assume that �(��)�� ⊂

����
� �ℝ

2(1+ �)

� �. We refer to [2] for the definition and basic properties of the Schwarz 

symmetrization. By (69), we see that the sequence�(��)��is bounded in �� �ℝ
2(1+ �)

� �. 

Moreover, by ��
� �(��)�� = 0 and the Gagliardo-Nirenberg inequality, we have 

(� + 2)�∇(��)��
�

�
+ ��1 − ��

���(��)��
�

�
 

                                           =
2(� + 2)

2 + �
�(��)��

���

���
≤ ��(��)��

�

�����
�∇(��)��

�

�
, 

where � = 1 + �. Since � ≥ 1, we see that � < 2 and that the sequence�(��)�� is 

bounded in �� �ℝ
2(1+ �)

� �. Therefore, there exist a subsequence of �(��)��(we still denote 

it by the same letter) and � ∈ ����
� �ℝ

2(1+ �)

� � such that (��)� ⇀ � weakly in�� �ℝ
2(1+ �)

� � 

and (��)� ⇀ �strongly in ���� �ℝ
2(1+ �)

� �. Here, we used the fact that the embedding 

����
� �ℝ

2(1+ �)

� � ↪ ����
�

�ℝ
2(1+ �)

� � is compact for 2 < � < 2(1 + �) (see[30]). Next, we 

show that � ≠ 0. Suppose that � = 0. Then, by ���

� �(��)�� = 0 and the strong 

convergence (��)� → 0 in ���� �ℝ
2(1+ �)

� �, we see that (��)� → 0 in�� �ℝ
2(1+ �)

� �. On the 

other hand, by ���

� �(��)�� = 0 and the Sobolev inequality, we have 

(� + 2)�∇(��)��
�

�
+ ��1 − ��

���(��)��
�

�
=

2(� + 2)

2 + �
�(��)��

���

���
 

≤ � �(� + 2)�∇(��)��
�

�
+ ��1 − ��

���(��)��
�

�
�

(���)/�

. 

Since (��)� ≠ 0, we have �(��)��
�� ≥ � for some � > 0. This is a contradition.Thus, 

we see that  � ∈ �� �ℝ
2(1+ �)

� � \ {0}. Therefore, by (68) and (69), we have 

���

� ≤
1 − ��

�

� + 2
‖�‖�

� ≤ lim inf
�→ �

1 − ��
�

� + 2
�(��)��

�

�
= liminf

�→ �
���

�(��)�� = ���

� , 
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and ���

� (�) ≤ liminf�→ � ���

� �(��)�� = 0. Moreover, by (i), we have ���

� (�) =

0.Therefore, �attains (69) and (38). Since � attains (38), there exists aLagrange 

multiplier � ∈ ℝ  such that 

���

� (�) =
�

2(� + 2)
����

� �
�

(�).                                             (70) 

That is, � satisfies 

− (1 − �)Δ� + �1 − ��
�� �1 −

�

� + 2
�� � − (1 − �)|�|�� = 0            (71) 

in ��� �ℝ
2(1+ �)

� �. First, we show that � < 1. Suppose that � ≥ 1. Then, by (71) and 

���

� (�) = 0, we have 

0 = (1 − �)‖∇�‖�
� + �1 − ��

�� �1 −
�

� + 2
�� ‖�‖�

� − (1 − �)‖�‖���
��� 

           =
(1 − �)�

2
‖∇�‖�

� +
���1 − ��

��

2(� + 2)
�� − 1 +

4

��
�‖�‖�

� 

≥
2�1 − ��

��

� + 2
‖�‖�

� > 0.                                                                                 

This is a contradition. Thus, we have � < 1. Since we have 

1 − � > 0, �1 − ��
�� �1 −

�

� + 2
�� > 0 

in (71), by [6], we have �� ·∇� ∈ �� �ℝ
2(1+ �)

� �. Therefore, by(70), we have 

0 = ���

� (�) = �2�����
��� �(� ·)��

���
= 2 〈���

� (�),�� ·∇� + ��〉 

        =
�

� + 2
〈����

� �
�

(�),�� ·∇� + ��〉=
�

� + 2
������

� ��� �(� ·)��
���

 

where � = �� +
2(1+ �)

�
� /2. Moreover, by ���

� (�) = 0, we have 

������

� ��� �(� ·)��
���

 

= ���1 − ��
��‖�‖�

� +  (� + 2)� �‖∇�‖�
� −

2

2 + �
‖�‖���

���� 

= − 2��1 − ��
��‖�‖�

� < 0.     

Thus, we have � = 0. Therefore, � satisfies ��(�) = 0 and ���

� (�) = 0, where 

���

� (��) ≔ 〈���

� (��),��〉= ‖∇��‖�
� + �1 − ��

��‖��‖�
� − ‖��‖���

���. 
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Since ��attains 

inf����
(��) ∶�� ∈ �� �ℝ

2(1+ �)

� � \ {0},���

� (��) = 0� 

(see, e.g., [23]), we have ���
����

� ≤ ���
(�). On the other hand, the sequence 

���
 satisfies ���

� ����
� = 0, we have ���

� = ���
(�) ≤ ���

����
�. Hence, the sequence 

���
 attains (38). 

(iii) The proof is similar to that of Lemma (5.1.9) (iii), and we omit it.  
 

Lemma (5.1.24)[219]: Suppose that � > 0 and �� ∈ (− 1,1). If(����,����) ∈ ℛ ��

� , then 

the sequence of the solutions ������of (1) with ������⃗(0) = (����,����) satisfies 

1 − ��
�

� + 2
��������

�

�
> ���

� , �� ∈ [0,�max). 

Proof of Theorem 1 for the case � ≥ �.Let � > 1 be fixed and denote 

� ≔
(�� − 1)

�
����

� − �� − ���� �� ����
,������

��� . 

Then, by Lemma (5.1.9)(iii), we have � > 0. Suppose that the sequence of solutions 

������ of (1) with ������⃗(0) = � ����
,������

� exists for all �� ∈ [0,1) and is uniformly 

bounded in �, i.e., 

�� ≔ sup
����

�������⃗�����
�

< ∞ .                                                 (72) 

Since the sequence ������ is radially symmetric in �� for all �� ≥ 0, we define ��
� ���� for 

������ by(57). By (11) and (72), we have 

� ������,����
���

��� ≤ ‖��(��)‖�� (|��|��)
��� ��������

�

�

������

 

≤ ���
2+ �

2 ���(��)�
��

���
≤ ���

������
2+ �

2
�(���)/� 

for all �� ≥ 0 and � > 0. there exists �� > 0 such that 

sup
���

�
2(1 + �)

2 + �
� ������,����

���
��� +

��

��
� ��������

�

�

�������

� < �. 

Thus, by Lemmas (5.1.8) and (5.1.10), we have 
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�

���
���

� ���� 

≥ − ����(��)� − �
2(1 + �)

2 + �
� ������,����

���
��� +

��

��
� ��������

�

�

�������

� 

≥ 2� − � = �                                                                    

for all �� ≥ 0. Therefore, we have lim��→ � ���
� ���� = ∞ . On the other hand, there exists 

a constant � = �(��) > 0 such that ���
� ���� ≤ ��������⃗�����

�

�
≤ ���

� for all �� ≥ 0. This is 

a contradition. Hence, for any � > 1, the sequence of solutions ������of (1) with 

������⃗(0) = � ����
,������

� either blows up in finite time or exists forall �� ≥ 0 and 

lim sup��→ � �������⃗�����
�

= ∞ . This completes the proof of Theorem(5.1.1) for the case 

� ≥ 1.  

Next, we consider the case where � ≥ 1. For this case, we needa different 

variational characterization of the ground state of the sequence ���
of (2) from that for 

the case � ≥ 1. We define the sequence of the functional 

���

� (��) = ��1 − ��
������

�

�
+ (� + 2) �‖∇��‖�

� −
2

2 + �
‖��‖���

����, 

and consider the constrained minimization problem 

���

� = inf����
(��) ∶�� ∈ �� �ℝ

2(1+ �)

� � \ {0},���

� (��) = 0�                   (73) 

and the set 

ℛ ��

� = �(��,��) ∈ � ∶�� − ����(��,��) < ���

� ,���

� (��) < 0�,            (74) 

where � = 2(1− ∈) > 0. Note that 

���

� (��) = �2�����
��� ��(� ·)��

���
, � =

� + �
2(1+ �)

�
�

2
=

2

�
.          (75) 

Proofof Theorem 1 for the case � <
�+ ��

�+ �
.Let � > 1 be fixed and define 

�� = (� + 2) ����

� − �� –���� �� ����
,������

��� , 

�� = � ���� �� ����
,������

�� −
��

�(� + 2)

1 − ��
� ���

� �, 
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and � = �� + ��. Then, by Lemma (5.1.12)(iii) below, we have �� > 0. Moreover, by 

Lemma (5.1.12)(ii) below and (69), we have 

��
�(� + 2)

1 − ��
� ���

� = ��
� ����

�
�

�

< ����
� ����

�
�

�

= ��� �� ����
,������

�� . 

Thus, we have �� > 0 and � > 0. Suppose that the sequence of solutions ������ of (1) 

with ������⃗(0) = � ����
,������

� exists for all �� ∈ [0,∞ ) and is uniformly bounded in 

�.Since the sequence ������ is radially symmetric in �� for all �� ≥ 0, we define ��
� ���� 

for ������ by (58). As in the proof of Theorem (5.1.1) for the case � ≥ 1, there 

exists �� > 0 such that 

sup
����

�
2(1 + �)

2 + �
� ������,����

���
��� +

��

��
� ��������

�

�

�������

� < �. 

Thus, by Lemma (5.1.8), we have 

�

���
���

� ���� ≥ − � �������⃗����� − �, �� ≥ 0. 

Here, recall that we assume ���� ≤ ����
�
, so we have 1 − (� + 1)��

� ≥ 0. Thus, by (18) 

and Lemma (5.1.13) below, we have 

− � �������⃗����� 

  ≥ − 2(� + 2)�� − ���� �������⃗����� + 2���� �������⃗����� + 2�1 − (� + 1)��
����������

�

�
 

≥ − 2(� + 2)�� − ���� �������⃗����� + 2���� �������⃗����� + 2�1 − ��
� − ���

��
� + 2

1 − ��
� ���

�  

= 2� 

for all �� ≥ 0. Therefore, we have ��/�������
� (��) ≥ �for all �� ≥ 0, 

andlim��→ � ���
� ���� = ∞ . The rest of the proof is the same as in the proof of Theorem 

(5.1.11) for the case � ≥ 1 , and we omit the details. 

Theorem (5.1.25)[219]: Let � > 2and � ∈ �� �ℝ
�(�� �)

� �be any nontrivial,radially 

symmetric solution of (2) with�� = ����
�
. Then, the sequence of the standing wave 
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solutions �
��∑ ����

�
�
�� � ���

�  of (1) are very strongly unstable in the sense of Definition 

(5.1.1).The same assertion is true for�� = − ����
�
. 

Proof.We know that identity (18) contains the reason that in Theorem (5.1.14) we can 

allow any radially symmetric solutions of (2), unlike the case of Theorem (5.1.1) where 

we can treat only the ground state of (2). Namely, when the sequence �� = ����
�
we 

have 1 − (� + 1)����
�

�
= 0, and therefore the identity (18) does not contain the 

sequence of norms ‖��‖�
�. Let us recall that inTheorem (5.1.11) we control this norms 

by using the variational characterization of the ground state. 

Let � ∈ �� �ℝ
2(1+ �)

� � \ {0} be a radially symmetric solution of (2) with the 

sequence �� = ����
�
. Let � > 1 and put 

� = �����
�
� �� ��,�����

�
��� − (� + 2) �� − ����

�
�� �� ��,�����

�
��� . 

Since �����
�

� (�) = 0, we have �� − ����
�
�� �� ��,�����

�
��� = �����

�
(��) <

�����
�
(�) for� > 1. Moreover, we have ����

�
� �� ��,�����

�
��� = ����

�

�
��‖�‖�

� >

����
�

�
‖�‖�

�for � > 1.Thus, we have 

� > �����
�

�
‖�‖�

� − (� + 2)�����
�
(�) = −

1

2
�����

�

� (�) − �1 − (� +  1)����
�

�
� ‖�‖�

�. 

By [6], we have �� ·∇� ∈ �� �ℝ
2(1+ �)

� �. Therefore, by (40) and by �����
�

� (�) = 0, we have 

�����
�

� (�) = 2 〈�����
�

� (�),�� ·∇� + ��〉= 0. 

Moreover, since (� + 1)����
�

�
= 1, we have � > 0. Suppose that the sequence of 

solutions  ������ of (1) with ������⃗(0) = � ��,�����
�
�� exists for all �� ∈ [0,∞ ) and is 

uniformly bounded in �. Since the sequence ������ is radially symmetric in �� for all 

�� ≥ 0, we define��
� ���� for ������ by (58). As in the proof of Theorem (5.1.11) for the 

case � ≥ 1,there exists �� > 0 such that 
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sup
����

�
2(1 + �)

2 + �
� ������,����

���
��� +

��

��
� ��������

�

�

�������

� < �. 

Thus, by Lemma (5.1.8), we have 

�

���
���

� ���� ≥ − � �������⃗����� − �, �� ≥ 0. 

Moreover, by (18) and (� + 1)����
�

�
= 1, we have 

− � �������⃗����� 

≥ − 2(� + 2) �� − ����
�
�� �������⃗����� + 2�����

�
� �������⃗����� + 2 �1 − (� + 1)����

�

�
� ��������

�

�
 

≥ − 2(� + 2) �� − ����
�
�� �������⃗(0)� + 2�����

�
� �������⃗����� = 2�                                         

for all �� ≥ 0. Therefore, we have ��/�������
� (��) ≥ �for all �� ≥ 0, 

and lim��→ � ���
� ���� = ∞ . On the other hand, there exists a constant � = �(��) > 0 

such that ���
� ���� ≤ ��������⃗�����

�

�
≤ �for all �� ≥ 0. This is a contradiction. Therefore, for 

any � > 1, the sequence of the  solutions ������ of (1) with ��(0) = � ��,�����
�
�� 

either blows up in finite time or exists for all �� ≥ 0 and limsup��→ � �������⃗�����
�

= ∞ . 

Finally, by Lemma (5.1.15) below, if the sequence ������ exists for all �� ≥ 0,then 

sup�����������⃗�����
�

< ∞ . Hence, the sequence ������ blows up in finite time. This 

completes the proof.  
 

Lemma (5.1.26)[219]:Let0 < � <
�(���)

�
. If ������⃗ ∈ �([0,1),�)is aglobal solution of (1), 

then  sup����‖������⃗(�)‖� < ∞ . 

We have the following (see[35]). 

Proof.By Proposition (5.1.3) and Lemma (5.1.5) [118], we have 

sup
����

�������⃗�����
�

< ∞ ,                                                      (76) 

sup
����

� ‖������⃗(�)‖�
� ��

����

��

< ∞ .                                               (77) 

By (77) and the conservation of energy �, we have 
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�� ≔ sup
����

� ‖������⃗(�)‖���
�����

����

��

< ∞ .                                         (78) 

Note that the estimates (76), (77) and (78) hold true. In what follows, we use an 

argument in Merle and Zaag [118].First, for � = (4 + �)/2, we show 

sup
����

��������
�

< ∞ .                                                        (79) 

Indeed, by (78) and the mean value theorem, for any �� ≥ 0 there exists ����� ∈

���,�� + 1� such that 

�� ��������
���

���

= � ‖��(�)‖���
�����

����

��

≤ ��.                               (80) 

Since 2 < � < 2 + �, it follows from (76) and (80) that sup���� �� ��������
�

< ∞ . 

Moreover, for any �� ≥ 0, we have 

��������
�

�
− ��� ��������

�

�

= �
�

��
‖��(�)‖�

���

��

�����

 

                                                  ≤ � � � �����,����
���

�������,������� ��

ℝ
�(�� �)

�

����

��

 

                                         ≤ � � �‖��(�)‖
�(���)
�(���)

+ ‖����(�)‖�
����.

����

�

 

By (77), (78) and sup���� ��� ���������� �

�

< ∞ , we have(79). Next, by the Gagliardo-

Nirenberg inequality, we have 

��������
���

≤ ���������
�

���
�∇�������

�

�
, 

where 

� =
2(1 + �)

2 + �
. 
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Since we assume � < 2, we have � <
�

���
. Thus, by (79), there exists a constant �� > 0 

such that 

2

2 + �
��������

���

���
≤ �� +

1

2
�∇�������

�

�
, �� ≥ 0. 

Moreover, by the conservation of energy �, for any �� ≥ 0 we have 

�������⃗�����
�

�
= 2��������⃗(0)� +

2

2 + �
��������

���

���
 

                        ≤ 2��������⃗(0)� + �� +
1

2
��������

���

���
, 

which implies �������⃗�����
�

�
≤ 4��������⃗(0)� + 2��. This completes the proof.  

We conclude with the proof of Theorem (5.1.16). 
 

Theorem (5.1.27)[219]:(due to Kenji Nakanishi) Let � > 2,���� < 1and ���
be the 

ground state of (2). Then, the sequence of the standing waves �
��∑ ����

�
�� � �

���
for the 

nonlinear Klein-Gordon equation (1) are very strongly unstable in the sense of Definition 

(5.1.1). 

For the critical sequence of frequency �� = ����
�
in the case1 < 1 + � < 1 +

4/
�(���)

�
, we can show a much more general instability result for the sequence of the  

standing waves which are not necessarily related to the ground state[35]. 

Proof.(due to Kenji Nakanishi). Following the proof of Theorem (5.1.11), take the 

radially symmetric the sequence of solutions �����,����� starting from 

���(0),���
��(0)� = � ����

,������
� with � > 1, and assume by contradiction that it 

exists for all �� ≥ 0. Then Cazenave’s estimate (77) implies that there exists � < 1such 

that for all � > 0 

� � ����
���

�

+ |∇��|� + |��|�������

ℝ
�(�� �)

�

���

�

≤ �.                              (81) 

Hence for any positive integer �, there exists �� ∈ [�− 1,�] such that 
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� �����
���

�

+ |∇��|� + |��|�����
�����

ℝ
�(�� �)

�

≤ �. 

By Lemmas (5.1.8), (5.1.9)and (5.1.10), there exists � > 0 such that for any � > 1 

and�� > 0 we have 

�

���
��

� ���� ≥ 2� − ������, ������ ∶=
2(1 + �)

2 + �
� |��|������ +

�

��
��������

�

�

������

, 

where ��
�  is defined by (57). Here and below � is a positive constant, which may depend 

only on (1 + �)and 
�(���)

�
. Integrating in ��, we get 

��
� ������ − ��

� ���� ≥ 2� − � ���������

��� �

��

, 

since ���� − �� ≥ 1. Notice that (81) is enough to control the error term �� uniformly in 

�. To see this, let ����,�� ∈ �� (ℝ �) satisfy ����,�� = 1 when���� ≤ 2 and |�|≥ 1, and 

����,�� = 0 if ���� ≥ 4 or |�|≤ 1/2. For any � > 1 and � > 4, let �����,�� =

���� − �, �/�������,|�|�. Then we have 

� ����
���

�

+ |����|� + |��|������

ℝ �

 

                ≤ ���
(�� �)

� � � ����
���

�

+ |∇��|� + |��|�������

ℝ
�(�� �)

�

���

���

≤ 8���
(�� �)

� �. 

Hence the Sobolev embedding ��(ℝ �) ⊂ ����(ℝ �) implies that 

� � |��|���������

������

���

���

≤ � � � �2���
�(�� �)

�
��

���

���

�

���

� |��|��������

�����

 

                ≤ ��
���

�(�� �)

�
���/�

�(���)/�. 

Therefore choosing � sufficiently large, we obtain 

��
� ������ − ��

� ���� ≥ � 

for all �≥ 4, which contradicts the global bound 
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��
� ���� ≤ �� � �����

���
�

+ |����|� + |��|�����
�����

ℝ
�(�� �)

�

≤ ���. 

Theorem (5.1.28)[219]:Let � = 2,�� ∈ (− 1,1), the sequence ���
be the ground state 

of (20), and�� ≠ 1if � = 2,. Then, the sequence of the standing 

waves��
��∑ ����

�
�� � �

���
,− ����

�
�

� of KGZ system (3)-(4) are strongly unstable in the 

following sense. For any � > 1, the sequence of solutions ������of (3)-(4) with initial 

data ��(0) = �����
,�������

,− �� ����
�

�

,0�either blows up in finite time or exists 

globally and satisfies limsup��→ � ��������
�

= ∞  ( see [35],Remark) 

Since the energy 

� �����
,�������

,− �� ����
�

�

,0� > 0 

for � close to 1, the result in [4] is not applicable to Theorem (5.1.1). 
 

Now, we consider the very strong instability of the sequence 

����∑ ����
�
�� � ����

,− ����
�

�

� for (3)-(4).( see[35])  Since the second equation (4) of the 

KGZ system is massless, it seems difficult to obtain the uniform boundedness of global 

solutions for (3)-(4) similar to Lemma (5.1.2) below. Therefore, for the sequence of the 

standing waves ��
��∑ ����

�
�� � �

���
,− ����

�
�

�we do not deduce a very strong instability 

similar to the instability result in Corollary (5.1.3) of Theorem (5.1.11) below. Using the 

method in [23], we obtain the following very strong instability result for small 

frequencies [35]. 

Proof.Let � > 1 and put 

����
= �� − ���� ����

,������
,− ����

�
�

,0� , 

                              � =
2(1 + �)

�
�����

− �� − ���� ���� ,�������
,− �� ����

�
�

,0��, 

where �and �are defined by (19) and (6), respectively. In the same way as in Lemma 

(5.1.9) (iii), we see that � > 0. Suppose that the sequence of solutions ������ of (3)-(4) 
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with u(0) = �����
,�������

,− �� ����
�

�
,0� exists globally and satisfies � ≔

sup�����u�����
�

< ∞ . Note that since the initial data is radially symmetric, the solution 

u���� is also radially symmetric for all �� ≥ 0. Following Merle [17], we introduce the 

function ����� ≔ − (− ∆)�����
�����, and for � > 0 we consider the function 

������� = ��
� ���� +

1

��
� � Ψ ����������������

ℝ
�(�� �)

�

, 

where ��
� ���� is defined by (57) and Φ �and Ψ �are given by (21). Note that 

since ���
����� ∈ �̇�� �ℝ

�(�� �)

� �, we see that ����� ∈ �̇�� �ℝ
�(�� �)

� � and ����
��

�̇��
=

‖∇�‖�.By the same computations as in Lemma (5.1.8), we have 

−
�

���
������� = 2 � Ψ �

� |∇��|����

ℝ
�(�� �)

�

+
1

2
� Φ �(�� + 2|��|��)���

ℝ
�(�� �)

�

 

                       −
1

2
� ∆Φ �|��|����

ℝ
�(�� �)

�

+
1

2��
� � �Ψ �

� −
2 + �

��
Ψ �� |∇�|����

ℝ
�(�� �)

�

. 

By Lemma (5.1. 7), we have 

� Ψ �
� |∇��|����

ℝ
�(�� �)

�

≤ �∇�������
�

�
, 

−
1

2
� ∆Φ �|��|����

ℝ
�(�� �)

�

≤
��

��
��������

�

�
≤

����

��
, 

� �Ψ �
� −

2 + �

��
Ψ �� |∇�|����

ℝ
�(�� �)

�

≤ �∇������
�

�
= ����

������
�̇��

. 

Moreover, we have 

� Φ �(�� + 2|��|��)���

ℝ
�(�� �)

�
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= � � Φ �(� + |��|�)����

ℝ
�(�� �)

�

− �
2(1 + �)

�
|��|����

ℝ
�(�� �)

�

+ � �
2(1 + �)

�
− Φ �� |��|����

ℝ �

 

≤
2(1 + �)

�
‖� + |��|�‖�

� −
2(1 + �)

�
‖��‖�

� + � �
2(1 + �)

�
− Φ �� |��|����

������

,     

and by (11) we have 

1

2
� �

2(1 + �)

�
− Φ �� |��|����

������

≤ ���������
�� ��������

�
��������

�

�
 

                                               ≤
��

�
�� �

�

��������
��

�
≤

����

�
�� �

�

. 

Therefore, we have 

−
�

���
������� ≤ �� �������� +

����

��
+

����

�
�� �

�

(82) 

for all �� ≥ 0, where we put 

��(��,��,�,��) = 2‖∇��‖�
� −

1 + �

�
‖��‖�

� +
1 + �

�
‖� + |��|�‖�

� +
1

2��
�

‖��‖
�̇��
� . 

Note that 

�� − ����(��,��,�,��) −
2 + �

2(1 + �)
��(��,��,�,��) 

=
1

2
��� − ������

�

�
+ �

2 + �

2(1 + �)
�

1

4��
�

‖��‖�̇��
� + �

1

2(1 + �)
� ‖∇��‖�

� +
1 − ��

�

2
‖��‖�

� 

≥ �
1

2(1 + �)
� ‖∇��‖�

� +
1 − ��

�

2
‖��‖�

�.                                                                            

Using this inequality, in the same way as in Lemmas (5.1.9) and (5.1.10), we see that 

− �� �������� ≥ 2� �����
− �� − �������(0)�� = 2�                         (83) 

holds for all �� ≥ 0. Therefore, taking �� > 0  such that 

����

��
� +

����

��

�� �

�

< �, 
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by (82) and (83), we have (�/���)����
(��) ≥ �for all �� ≥ 0, and lim��→ � ����

���� = ∞ . 

The rest of the proof is the same as in the proof of Theorem (5.1.11) for the case � ≥ 1, 

and we omit the details.  

Theorem (5.1.27)[219]:Let � = 2,�� ≠ 1,���� < 1/√3  and the sequence  ���
be the 

ground state of(20). Then, the sequence of the standing 

waves����∑ ����
�
�� � ����

,− ����
�

�

� of the KGZ system (3)-(4) are very strongly unstable in 

the following sense. For any � > 1, the sequence of solutions  ������of (3)-(4) with the 

initial data ��(0) = �����
,�������

,− �� ����
�

�

,0�blows up in a finite time. 

 

Proof.Let � > 1. Suppose that the sequence of solutions ������ of (3)-(4) with 

��(0) = �����
,�������

,− �� ����
�

�

,0� exists globally. By the assumption ���� <

1/√3, we can take �  such that 2��
�/�1 − ��

�� < � < 1. For such an �, we consider a 

function defined by 

�� ���� =
1

2
���������

�

�
+

�

��
� �������

�̇��

�
�. 

Note that since �(0) = − �� ����
�

�

∈ ��(ℝ �) ∩ ��(ℝ �) ⊂ �̇��(ℝ �) and ���
� ∈

� �[0,∞ );�̇��(ℝ �)�, we see that � ∈ �� �[0,∞ );�̇��(ℝ �) ∩ ��(ℝ �)�. Then, we have 

�

���
�� ���� = Re 〈������,���

������〉�� +
�

��
�

〈�����,���
�����〉�̇�� 

                                   = Re 〈������,���
������ − ���������〉�� +

�

��
�

〈�����,���
�����〉�̇�� , 

and 

��

���
� �� ���� = ����

�������
�

�

+
�

��
� ����

������
�̇��

�

− �∇�������
�

�
− ��������

�

�
 

             − ��������
�

�
−  (1 + �) �������,����

�
����,������

ℝ �

. 

Thus, we have 
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��

���
� �� ���� + 2(1 + �)�� − �������(0)� − 2������(0)� 

                             = (2 + �) ����
������ − ����������

�

�

+ �
3� + 1

2��
� �

�

��
� ����

������
�̇��

�

 

+ ���,� �������,������,       

where we put 

���,� (��,�) = � �‖∇��‖�
� + �1 − ��

� −
2

�
��

�� ‖��‖�
� +

1 − �

2�
‖�‖�

��. 

Here, we define 

���
(��,�) =

1

2
‖∇��‖�

� +
1 − ��

�

2
‖��‖�

� +
1

4
‖�‖�

� +
1

2
���������

�
��������

ℝ �

, 

����,�
� (��,�) = �����

(���,��� �)�
���

 

                     = ‖∇��‖�
� + �1 − ��

��‖��‖�
� + �‖�‖�

� + (1 + �) � |��|�����

ℝ �

, 

���,�
� (��,�) = 2 ������

(�(���)/� ��(·/�),�(·/�)�
���

 

=
2 − �

�
‖∇��‖�

�
2 + �

�
�1 − ��

��‖��‖�
� 

+
3

2
‖�‖�

�
2 + �

�
�|��|�����

ℝ �

,                                   

and put 

���,�
� (��,�) = ���

(��,�) −
1

2(1 + �)
���,�

� (��,�) 

                                                  =
�

1 + �
�

1

2
‖∇��‖�

� +
1 − ��

�

2
‖��‖�

� +
1 − �

4�
‖�‖�

��, 

���,�
� (��,�) = ���

(��,�) −
�

2(2 + �)
���,�

� (��,�) 

               =
�

2 + �
�‖∇��‖�

� +
1 − �

2�
‖��‖�

��, 

� = 1 −
2��

�

�1 − ��
���

.                     
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Then, we have 0 < � < 1 and 

���,� (��,�) = 2(1 + �)����,�
� (��,�) + (2 + �)(1 − �)���,�

� (��,�). 

Moreover, in a similar way as in Lemmas (5.1.3) and (5.1. 4) in [23], we can prove 

that  ���,�
�

������,������ ≥ ����
for all �� ≥ 0 and �= 1,2. Therefore, we have 

���,� �������,������ ≥ {2(1 + �)� + (2 + �)(1 − �)}����
 

             = 2 �1 + � −
��

�

1 − ��
�� ����

 

for all �� ≥ 0. Moreover, since we have ����
= �1 − ��

�� ����
�

�

�

, putting � =

min�
����

��
�, we have 

��

���
� �� ���� ≥ � �����

������ − ����������
�

�

+
�

��
� ����

������
�̇��

�

� 

+ 2(1 + �) �����
− �� − �������(0)�� + 2������(0)� − 2��

� ����
�

�

�

 

for all �� ≥ 0. Since � > 2,�� − �������(0)� < ����
and ������(0)� > ��

� ����
�

�

�

for 

all � > 1, by the standard concavity argument, we see that there exists �� ∈ (0,∞ ) such 

that lim��→ ���� �� ���� = �. This is a contradiction. Hence, for all� > 1, the sequence of 

solutions  ������ of (3)-(4) with ��(0) = �����
,�������

,− �� ����
�

�

,0�blows up in 

finite time.  

This completes the proof. 

Section (5.2): One-Dimensional Nonlinear Schrödinger Equation with 

Multiple-Power Nonlinearity: 

We consider the stability and instability of standing waves for the following 

nonlinear Schrödinger equation: 

��� + ��� + �(�) = 0, � ≥ 0,� ∈ R,                                 (84) 

Where �(�) = ∑ ��|�|������
���   with �� ∈ R and 1 < �� < ⋯ < �� < ∞ . Equation (84) 

arises in various regions of mathematical physics. 
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The unique local existence of (84) is well known. That is for any �� ∈ ��R, there 

exists a positive constant �and a unique local solution � ∈ ���[0,��); ��(R)� ∩

���[�0,�)�;���(R)� of (53) with �(0) = ��. Furthermore, �(�) satisfies the two 

conservation laws ‖�(�)‖�� = ‖��‖�� and ���(�)� = �(��), where �(�) ≔
�

�
‖��‖�� −

∫ �(|�(�)|)��
R

and �(�) = ∫ �(�)��
�

�
. For details, see, e.g., [133], [134] and [135]. 

We say that the solution of (84) is a standing wave if it has a form �(�,�) =

������(�), where � > 0. Here ��is a solution of the following equation: 

��� − �� + �(�) = 0, � ∈ R,� ∈ ��(R)\{0}.                          (85) 

The existence and uniqueness of the solution of (54) is well known: Set 

�∗ = sup�� > 0: there exists � > 0,    s.t.
1

2
��� − �(�) < 0�, 

then for any � ∈ (0,�∗), there exists a solution ��of (54). Further the solution is 

unique up to a translation and a phase change ([136]). We study how the stability of 

standing waves depends on frequency � in the multiple power nonlinearity case. 

Stability and instability of standing waves is defined as follows. 
 

Definition (5.2.1)[132]:A standing wave ��(�) = ������ is said to be stable if for 

all � > 0 there exists � > 0 with the following property; for any 

�� ∈ ��(R) satisfying ‖�� − ��‖��(R) < �, the solution �(�)of (84) with �(0) = �� can 

be continued to a solution in 0 ≤ � < ∞  and it satisfies the following condition 

sup
�����

inf
�,�∈R

��(�) − �����(∙− �)�
��(R)

< �. 

Otherwise, ��is called unstable. 
 

Remark (5.2.2)[132]: We note that the conception of stronger stability which does not 

involve the translation 

sup
�����

inf
�∈R

��(�) − ������
��(R)

, 

Cannot be used in studying the stability of (84). It is because if �(�,�) = ������(�) is a 

solution of (84), then by a simple calculation, we observe that 

��(�,�) = ���������������(� − 2��) is also a solution. It is not hard to see that 
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��(�,0) can be taken arbitrary near �(�,0)by taking � small, and if � is not zero, then 

��(�)always goes away from �(�)(see [137]). 

Recently, many authors have been studying the problem of stability and 

instability of standing waves for nonlinear Schrödinger equations (see, e.g., [138, 

136,139, 140, 141, 142, 143, 144, 137, 145, 146]). 

At first, we will introduce the results in the single power case �(�) =

�|�|���� with � > 0 and � > 1. For this case, if 1 < � < 5, then �� is stable for 

every � ∈ (0,∞ ), and if 5 ≤ �, then ��is unstable for every � ∈ (0,∞ )(see [138], [147] 

and[146]). For the single power case, (84) has scaling invariance, and using it, one can 

verify the stability. Note that the stability of standing waves is independent of the 

frequency o in the single power case. Although it is not the case with the double power 

nonlinearity. In this case, there is no scaling invariance in (84),so the problem to 

investigate the stability of standing waves becomes more complicated. 

Although, when �(�) = ��|�|����� + ��|�|�����, Ohta [148] proved the 

following theorem. 
 

Theorem (5.2.3)[132]: (Ohta [148]). Let 1 < �� < ��. 

(I) Let ��,�� > 0. 

(I.1) If �� ≤ 5, then ��is stable for any � ∈ (0,∞ ). 

(I.2) If �� ≤ 5, then ��is unstable for any � ∈ (0,∞ ). 

(I.3) If �� < 5 < ��, then there exist positive constants ��and ��such that ��is 

stable for any � ∈ (0,��), and unstable for any � ∈ (��,∞ ). 

(II) Let �� > 0,�� < 0. 

(II.1) If �� ≤ 5, then ��is stable for any � ∈ (0,�∗). 

(II.2) If �� > 5, then there exist positive constants �� and �� such that �� is 

unstable for any � ∈ (0,��), and stable for any � ∈ (��,�∗). 

(III) Let �� < 0,�� > 0. 

(III.1) If �� ≥ 5, then ��is unstable for any � ∈ (0,∞ ). 
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(III.2) If �� < 5, then there exists a positive constant �� such that ��is stable for 

any � ∈ (��,∞ ). Furthermore if �� + �� > 6, then there exists a positive 

constant ��such that ��is unstable for any � ∈ (0,��). 
 

Theorem (5.2.3) shows that, in the double power case, the stability of standing 

waves can change when the frequency � varies. In Theorem (5.2.3), there are gaps 

in(I.3) (for � ∈ [��,��]), (II.2) (for � ∈ [��,��]) and (III.2) (for � ∈ [0,��]in the case 

of �� + �� < 6 and for � ∈ [��,��]in the case of �� + �� > 6). It seems difficult to 

verify whether the standing wave ��is stable or not if the equationdoes not have scaling 

invariance. Our first target is to fill these gaps. 

Our main results are the following. 

Remark (5.2.4)[132]: Since �� > 0 for the cases (84) and (86), we observe that �∗ =

∞ .On the other hand, since �� < 0 for the case (54), we have �∗ < ∞ . 
 

Remark (5.2.5)[132]: There are still gaps in the cases of Theorem (5.2.12 (iii). However 

Ohta [148] showed, when �� < 0,�� > 0 and �� = 2,�� = 3,��is stable for 

any � ∈ (0,∞ ). So, in Theorem (5.2.12)(iii), the condition �� + �� > 6 is needed, 

althoughit may be not optimal. 

In the single power case, the stability of standing waves does not change by 

�,and in the double power case, stability of standing waves change at most once. So,the 

natural question arises: if the equation has more powers, then could we getstanding 

waves that change its stability more than once? The next theorem gives examples of 

standing waves that change its stability, by �, two and three times. 
 

Remark (5.2.6)[132]: The conditions in Theorem (5.2.13) are for only technical reasons. 

Our motivation was to show there are equations whose standing waves change its 

stability several times when the frequency �varies. 
 

We first summarize three lemmas needed for the proof of Theorems (5.2.12) and 

(5.2.13). 
 

Lemma (5.2.7)[132]: (Grillakis, Shatah and Strauss [144]). Set 
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�(�) = ‖��‖�
� = �|��(�)|���

�

�

. 

If ��(�) > 0, then ��(�) = ������ is stable, and if ��(�) < 0, then �� is unstable. 

For the case ��(0) = 0, Comech and Pelinovski proved the following theorem. 
 

Theorem (5.2.8)[132]: (Comech and Pelinovski [149]). Let ������be the standing wave 

solution of (84). Assume that ��(�∗) = 0and ���(�∗) ≠ 0for some �∗ ∈ (0,�∗).Then 

there is a positive number � such that for any � > 0, there exists �� = ��(�,�) < ∞  and 

a pair of functions (�,�) ∈ ���[0,��];(0,�∗)� × ���[0,��];��(R)�,such that 

�(�) = �� ∫ ���������
� ���(�) + �(�)�is a solution to (84) and such that 

|�(0) − �∗|< �,��(�)�
��(R)

≤ 0 and |�(��) − �∗|> �. 

The following lemma is a direct consequence of Theorem (5.2.8). 
 

Lemma (5.2.9)[132]:If ��(�∗) = 0and ���(�∗) ≠ 0, then ��∗
is unstable. 

 

Proof. Because ��is an even real valued function, ����is an even real valued function 

and ����is an odd real valued function. It follows that ���� ⊥ ����and ���� ⊥ ���in 

��(R). Now, note that the tangent space of the orbit ������(∙+ �)��,� ∈ R�is spanned 

by ����∗
and ���∗

. So by Theorem (5.2.8), 

�(�) = exp�� � �(�)��

�

�

� ���(�) + �(�)� ~��∗
+ ����∗

. 

Therefore �(�), which was initially close to the orbit, leaves the �-tubular neighborhood 

of the orbit in finite time.  
 

Lemma (5.2.10)[132]: (Iliev and Kirchev [137]). Suppose �(�) = ∑ ��|�|������
��� , then 

we have 

��(�) =
1

��(ℎ)
�

∑ ��(ℎ�� − ���)�
���

�∑ ��(ℎ�� − ���)�
��� �

�/�
��

�

�

, 

where �� =
����

�
,�� =

��������

����
,�� =

���

����
,�(�) = �� − ∑

���

����
�

��� ���/��
��� and ℎ = ℎ(�) is 

a positive number satisfying �(ℎ) = 0,��(ℎ) < 0 and �(�) > 0 for all � ∈ (0,ℎ). 
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Remark (5.2.11)[132]: Function ℎ(�) can be defined as 

ℎ(�) ≔ sup{ℎ > 0|�(�) > 0 for all� ∈ (0,ℎ)}. 

Recall the definition of �∗. Since � ∈ (0,�∗), we have ��ℎ(�)� = 0. Further,by 

�(�) > 0 ⇔ � > �(�) ≔ �
2��

�� + 1
�������/�

�

���

, 

we see that 

ℎ(�) = sup{ℎ > 0|� > �(�)for all� ∈ (0,ℎ)}.                          (86) 

So we have that ℎ(�)is a monotone increasing function. Furthermore by (3), 

for �� > 0, ℎ(0) = 0 and for �� < 0,ℎ(0) > 0. Also for �� > 0,lim�→ � ℎ(�) =

∞  and for �� < 0,lim�→ �∗ ℎ(�) < ∞ . 
 

Theorem (5.2.12)[132]:Let �(�) = ��|�|����� + ��|�|�����. 

(i) Suppose ��,�� > 0 and 1 < �� < 5 < ��. Then there exists �� > 0 such that for 

� ∈ (0,��),��is stable, and for � ∈ [���,∞ )�,��is unstable. 

(ii) Suppose �� > 0,�� < 0and 5 < �� < ��. Then there exists �� > 0 such that for 

� ∈ (0�,��]�,��is unstable, and for � ∈ (��,�∗),��is stable. 

(iii) Suppose �� < 0,�� > 0,
�

�
< �� < �� < 5 and �� + �� > 6. Then there exists 

�� > 0 such that for � ∈ (0�,��]�,��is unstable, and for � ∈ (��,∞ ) then ��is 

stable. 

Proof. By Lemmas (5.2.7) and (5.2.9), we have only to check the sign of ��(�) given by 

lemma (5.2.10). 

In the case � = 2,��(�) can be written as 

��(�) =
ℎ(����)/�

2��(ℎ)
�

�(ℎ,�)

����1 − �
�� � + ���1 − �

�� �ℎ������
�/�

��,

�

�

 

where (ℎ,�) ≔ ���1 − �
�� � + ���1 − �

�� �ℎ�����. Because − ℎ(����)/�/2��(ℎ)is 

always positive and we only care about the sign of ��, it suffices to consider 

�(ℎ) = �
�(ℎ,�)

����1 − �
�� � + ���1 − �

�� �ℎ������
�/�

��.

�

�

 

By a simple calculation, we have 
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��(ℎ) =
��(�� − ��)

2(�� + 1)
ℎ������� × �

�1 − �
�� ���(ℎ,�)

����1 − �
�� � + ���1 − �

�� �ℎ������
�/�

��

�

�

, 

where ��(ℎ,�) ≔ − ��1 − �
�� � − ���1 − �

�� �ℎ����� and � = �� + 2��(�� − ��). 

Now define 

�(�) =
1 − �

�� 

1 − �
�� 

. 

Then, �(�) is a monotone decreasing function in (0,1) and �(�) satisfies 

��

��
< �(�) < 1, ∀� ∈ (0,1).                                         (87) 

Part (i). In this case, we have �� > 0,�� < 0 and � > 0. Put 

���,��
≔ �−

����

����
�

�/(�����)

, ���,��
≔ �−

���

����
�

�/(�����)

. 

Taking ℎ = ���,��
��/(�����) for � > 0,�(ℎ,�)can be rewritten as �(ℎ,�) =

���1 − �
�� �{�(�) − ���/��}. From (56), if � < 1, i.e.ℎ < ���,��

, then �(ℎ) > 0, and if 

� > ��/��, i.e. ℎ > ���,��
(��/��)�/(�����), then �(ℎ) < 0. In the same way, we see 

that if ℎ < ���,��
, we have ��(ℎ) < 0. 

Now, ���,��
< ���,��

(��/��)�/(�����) always holds since �� < ��. Also 

if 7/3 ≤ ��, then by a simple calculation we have ���,��
< ���,��

(��/��)�/(�����) ≤

���,��
. Since �����,��

� > 0,�����,��
(��/��)�/(�����)� < 0 and �is a monotone 

decreasing function at ����,��
,���,��

(��/��)�/(�����)�, there exists an �� > 0 such that 

if � ∈ (0,��), then ��‖��‖� < 0. So, by lemmas (5.2.7) and (5.2.9), we have the 

conclusion. 

For the case 1 < �� < 7/3, it suffices to prove that, if ���,��
≤ ℎ, then �(ℎ) < 0. 

If ℎ ∈ ����,��
,���,��

(��/��)�/(�����)�, there exists a solution of �(�∗) − ���/�� = 0, 

since � ∈ (1,��/��)and �(�) decreases from 1 to ��/��. Furthermore if � ∈ (0,�∗),

�(ℎ,�)is positive and if � ∈ (�∗,1), it is negative. Also because the denominator of the 

integrand of � is monotonically decreasing function, we see that ∫ �(ℎ,�)��
�

�
<

0 implies �(ℎ) < 0. Now we note that 
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� �(ℎ,�)��

�

�

=
����

�� + 1
+

����

�� + 1
ℎ�����, 

and 

����

�� + 1
+

����

�� + 1
ℎ����� < 0 ⇔ �−

����(�� + 1)

����(�� + 1)
�

�/(�����)

< ℎ. 

Therefore, since 

�−
����(�� + 1)

����(�� + 1)
�

�/(�����)

< ���,��
⇔ �� < ��, 

we see that �(ℎ) < 0 for ���,��
≤ ℎ. 

Part (ii). In this case we have �� < 0,�� > 0 and ℎ(0) = 0,ℎ(�∗) < ∞ .Since the 

signs of ��,�� are opposite from part (i), we see that if ���,��
> ℎ, then �(ℎ) < 0, and if 

���,��
(��/��)�/(�����) < ℎ, then �(ℎ) > 0. Also by a simple calculation we see that 

���,��
(��/��)�/(�����) < ℎ(�∗). 

First if 0 ≤ � ≔ �� + 2��(�� − ��), then ��(ℎ,�) will be always negative. 

Consequently, since �� < 0,�� > 0 will always hold. So we have the conclusionin this 

case. 

Next if � < 0, then we see that 

��(ℎ,�) < 0 ⇔ − ��(�) < ��ℎ�����. 

Since �(�) < 1, if ℎ > (− �/��)�/(�����), then ��(ℎ,�) < 0 and ��(ℎ) > 0 follows.By a 

simple calculation, we see that (− �/��)�/(�����) < ���,��
. So, for ℎ ∈ ��0,���,��

��,�is 

negative, and for ℎ ∈ ����,��
,���,��

(��/��)�/(�����)�,��is positive,and for ℎ ∈

������,��
(��/��)�/(�����)��,ℎ(�∗)� ,�is positive. From this, we have the conclusion. 

Part (iii). In this case we have �� < 0,�� > 0,� < 0, and ℎ(0) > 0. Since thesigns 

of ��,�� are the same as in part (ii), we see that if ���,��
> ℎ, then �(ℎ) < 0,and if 

���,��
(��/��)�/(�����) < ℎ, then �(ℎ) > 0. Now, since ℎ(0) > 0, we wish to make 

���,��
 larger than ℎ(0). By a simple calculation we see that if �� + �� > 2,i.e. 

�� + �� > 6, then ℎ(0) < ���,��
 holds. 
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Next, observing ��(ℎ,�), we see that if ℎ < (− ���/����)�/(�����), then ��(ℎ) >

0. Now, if  �� > 7/3, by a simple calculation we see that 

���,��
(��/��)�/(�����) < (− ���/����)�/(�����). 

So, for ℎ ∈ ��0,���,��
��,�is negative, and for ℎ ∈ ����,��

,���,��
(��/��)�/(�����)�,��is 

positive, and for ℎ ∈ ������,��
(��/��)�/(�����)��,ℎ(�∗)� ,�is positive. This gives us the 

conclusion.  
 

Theorem (5.2.13)[132]: 

(a) Let �(�) = ��|�|�� + |�|�� − |�|��, let �� > 0 be sufficiently small. Then there 

exist five real numbers 0 < �� < �� < �� < �� < �� such that for � ∈

(0,��) ∪ (��,��),�� is stable, and for � ∈ (��,��),�� is unstable. 

(b) Let �(�) = ��|�|�� + |�|�� − ��|�|�� + |�|���, let �� > 0 be sufficiently small 

and �� > 0 sufficiently large. Then there exist six real numbers 0 < �� < �� <

�� < �� < �� < �� such that for � ∈ (0,��) ∪ (��,��),��is stable, and for 

� ∈ (��,��) ∪ (��,∞ ),�� is unstable. 
 

Proof. We will not consider the point where ��(�) = 0, sowe will only use Lemmas 

(5.2.7) and (5.2.10), and will not use Lemma (5.2.9). 

Part (a). Since �� > 0and �� ≔ − 1 < 0, we have ℎ(0) = 0 and ℎ(�∗) <

0.Furthermore, calculating ℎ(�∗)from the definition, we see that ℎ(�∗) > 1. 

By Lemma (5.2.10), 

��(�) = �

�

�
��(ℎ − �) −

�

�
(ℎ� − ��) +

�

�
(ℎ� − ��)

�
�

�
��(ℎ − �) −

�

�
(ℎ� − ��) +

�

�
(ℎ� − ��)�

�/�
��

�

�

. 

Set 

�(ℎ,�) ≔
1

2
��(ℎ − �) −

1

4
(ℎ� − ��) +

2

5
(ℎ� − ��). 

Then we have 

�(ℎ,�) > 0 ⇔
��

2
−

1

4
(ℎ� − ℎ� + ��) +

2

5
(ℎ� + ℎ�� + ℎ�� + ��) > 0. 

So, by setting 
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� ≔
��

2
−

3

4
ℎ� +

2

5
ℎ�, 

��(ℎ) ≔
��

2
−

3

4
ℎ� +

8

5
ℎ�, 

we see that � ≤ � ≤ ��. Therefore if �(ℎ) > 0, then �(ℎ,�) > 0 for ∀� ∈ (0,ℎ),and if 

��(ℎ) < 0, then �(ℎ,�) < 0 for ∀� ∈ (0,ℎ). 

Now, �(ℎ)is positive near ℎ = 0 and ��(ℎ) takes negative values for someℎ ∈

(0,1)when �� is small. So, we see that there exist ℎ� < ℎ� < ℎ� < 1 such that for 

ℎ ∈ (0,ℎ�),�� > 0 and for ℎ ∈ (ℎ�,ℎ�),�� < 0. 

Next, we will show that for ℎ = 1,�� > 0. 

�(1,�) =
��

2
(1 − �) −

1

4
(1 − ��) +

2

5
(1 − ��) 

    =
��

2
(1 − �) +

3

20
+ �� �

1

4
−

2

5
�� 

> 0.                                                  

So, there exist two numbers ℎ� and ℎ� such that 

ℎ� < ℎ� < 1 < ℎ� < ℎ(�∗) and ��(ℎ) > 0 for ℎ ∈ (ℎ�,ℎ�). 

Part (b). In this case, we only have to calculate �and ��as in Part (a). 
 

Remark (5.2.14)[132]: We can make an example of standing waves that change its 

stability exactly 2� − 1 times when the frequency �varies, by considering 2�-power 

nonlinearity. In fact, by taking 

�(�) = ��|�|�� + �(− 1)��
��(����)��� �����/��|�|��� ��

��

���

, 

and if �is sufficiently large and �� is sufficiently small, we see that �(ℎ)changesits sign 

as frequency �varies in the same way as Theorem (5.2.12) and Theorem (5.2.13).This is 

possible because we can set �� > 0and ��� > 0, so that ℎ(0) = 0 andℎ(∞ ) = ∞ . This 

makes computation simpler because we do not have to consider the situations like in 

the proof of part (iii) of Theorem (5.2.12) (for example, the situation ℎ(0) < ���,��
). 
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Section (5.3): Hamiltonian PDEs in the Degenerate Cases: 

 

In this section, following a celebrated in [151] by Grillakis, Shatah and Strauss, 

we consider the abstract Hamiltonian system of the form 

��

��
(�) = ���(�),                                                   (88) 

Where � is the energy functional on a real Hilbert space �, and � ∶�∗ → �∗is a skew-

symmetric operator. Here, �is another real Hilbert space and � ∈ �(�,�) ∩ ��(�,�∗)for 

some interval �. equation (88) can be considered as a generalization of nonlinear 

Schrödinger equations(NLS) and nonlinear Klein–Gordon equations (NLKG). We assume 

that �is invariant under aone-parameter unitary group {�(�)}�∈ℝ . We consider the 

stability and instability of bound state solutions �(��)��
of (88), where � ∈ ℝ and 

�� ∈ �.We assume that the linearized Hamiltonian 

��
��(��):= �(��) − ����(��) 

has one negative eigenvalue, where �is the invariant quantity which comes out from 

the Noether’s principal due to the symmetry �(�). 

In [151], it is proved that if ���(�) > 0 (resp. < 0), then the bound state 

�(��)��
is stable (resp.unstable), where 

�(�) ≔ �(��) − ��(��). 

Further, Theorem (5.3.2) of [151] claims that “bound states are stable if and only if �is 

strictly convex in a neighborhood of ω”. However, as pointed out by Comech and 

Pelinovsky [152], their argument seems to be not correct for the case ���(�) = 0. Our 

aim of this section is to recover this criterion,i.e. investigate the stability and instability 

for the case ���(�) = 0. 

For the case ���(�) = 0, Comech and Pelinovsky [152] showed that if 

���(��) ≤ 0 in a one-sidedopen neighborhood of �, then the bound state �(��)��
is 

unstable. Their proof is based on the observation that in the case ���(�) = 0, the 

linearized operator ���
��(��)has a degenerate zero eigenvalue which leads to a 

polynomial growth of perturbations. They showed the instability by considering (88) as a 

perturbation of the linearized equation around ��. Recently, Ohta [153] gave another 
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proof for the instability of bound states for the case ���(�) = 0,����(�) ≠ 0. His proof 

is based on [151] and [154] which uses a Lyapunov functional to “push out” the 

solutions from the neighborhood of the bound states. However, [153] assumes 

��(0) = �and this assumption preven this result to apply to the NLKG equations. 

We follow the work of [151,154,153] and extend the results of [151] and [153]. 

We show that, if ���(�)is strictly convex in a neighborhood of �, then the bound is 

stable and if �(��) − �(�) − (�� − �)��(�) < 0 in � < �� < � + �or � − � < �� <

� for some � > 0, then the bound state is unstable. For the meaning of assumption 

“�(��) − �(�) − (�� − �)��(�) < 0”, consider the following three conditions. 

(A) ∃� > 0 s.t. ∀� ∈ (0,�)(resp. ∀� ∈ (− �,0)), ���(� + �) < 0. 

(B) ∃� > 0 s.t. ∀� ∈ (0,�)�∀� ∈ (− �,0)�,�(� + �) − �(�) + ���(�) < 0. 

(C) ∃{��}s.t.�� → 0 and ���(� + ��) < 0. 
 

Then, we have (A)⇒(B)⇒(C) and (C) is equivalent to “� is not convex in the 

neighborhood of �”. Therefore, our assumption, which is condition (B), do not cover the 

case “� is not convexin the neighborhood of �”, but the gap can considered to be small. 

If ���(�) = 0and ����(�) ≠ 0,then we have (A). So, our result covers the result of [153]. 

The only natural case which we cannot treat in our theorem is the case � is linear in a 

one-sided open neighborhood of �. In this sense we have almost proved the criterion 

“bound states are stable if and only if �(�) is strictly convex”. 

The proof is based on a purely variational argument. We note that our result 

almost covers the result of [152] but not completely. The case � is linear in the 

neighborhood of � is excluded by our theorem, which in this case can be covered by 

[152]. However, our proof requires less regularity for �, which is � ∈ �� and does not 

need an assumption for nonlinearity . 

We give an application of our theorem for the single power NLKG equations and 

double power nonlinear Schrödinger equations. For the one dimensional NLKG with 

|�|����,1 < � < 2, ourresult seems to be new. Further, we remark our result covers all 

dimensions in a unified way. 
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We formulate our assumptions and the main results in a precise manner. We 

prepare some notations and lemmas for the proof of the main results. In particular, we 

construct a curve �(�) on the hyper-surface ℳ = {�(�) = �(��)}, which crosses the 

set of the bound state. Then, we calculate ����(�)�and ���(�)�, where � is a 

functional which we will use for the instability. This curve �(�) corresponds to the 

degenerate direction of the energy functional � in the hyper-surface ℳ. We calculate 

�� and � for general � in a neighborhood of �� under some restrictions on the value of 

��. The restrictions give us a good estimate for the “nondegenerate” directions and 

enables us to use the results. We give an applications of the main theorem for NLKG and 

NLS equations. 
 

Let �,�and � be real Hilbert spaces such that 

� ↪ � ≃ �∗ ↪ �∗,� ↪ � ≃ �∗ ↪ �∗, 

where all the embeddings are densely continuous. We identify �with �∗naturally. We 

denotethe inner product of �, the coupling between �and �∗and the coupling between 

�and �∗allby 〈·,·〉. The norms of �and �are denoted as ‖·‖�and ‖·‖�, respectively. Let 

� ∶� → � be a skew-symmetric operator in such a sense that 

〈��,�〉= − 〈�,��〉,   �,� ∈ �. 

Further, we assume ��|�:� → �and ��|�:� → �are bijective and bounded. The operator 

�can be naturally extended to ��:�∗ → �∗by 

〈���,�〉≔ − 〈�,��〉,     � ∈ �∗,� ∈ �. 

Let �(�)be a one parameter unitary group on �and let ��(0)is the generator of �(�). 

We denote the domain of ��(0)by ����(0)� ⊂ �. As �, we cannaturally extend �(�)to 

��(�):�∗ → �∗by 

〈��(�)�,�〉≔ 〈�,�(− �)�〉, � ∈ �∗,   � ∈ �. 

We assume ��(�)(�) ⊂ �for all � ∈ ℝ . For simplicity, we just denote ��(�)as �(�). We 

further assume that �and �(�)commute. 

Let � ∈ ��(�,ℝ ). We consider the following Hamiltonian PDE. 

��

��
(�) = �����(�),                                                     (89) 
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where ��is the Fréchet derivative of �. We say that �(�)is a solution of (58) in an 

interval �if � ∈ �(�,�) ∩ ��(�,�∗)and satisfies (89) in �∗for all � ∈ �. We assume that 

�is invariant under �, that is, 

�(�(�)�) = �(�), � ∈ ℝ ,   � ∈ �. 

We assume that there is a bounded operator � ∶� → �∗such that �∗ = �and 

the operator � is an extension of �����(0). We define �: � → ℝ by 

�(�) ≔
1

2
〈��,�〉, � ∈ �.                                           (90) 

Then, we have �(�(�)�) = �(�)for � ∈ �. Indeed, for � ∈ ����(0)�, we have 

�

��
�(�(�)�) = 〈��(�)�,��(0)�(�)�〉 

                            = 〈��(�)�,���(�)�〉= 0. 

For general � ∈ �, we only have to take a sequence �� ∈ ����(0)�,�� → �in �. 

Further, formally � conserves under the flow of (58). Indeed, 

�

��
���(�)� = 〈��(�),�������(�)�〉 

                       = 〈��(0)�(�),����(�)�〉 

                             = � �

��
�

���
���(�)�(�)� = 0. 

We now assume that the Cauchy problem of (581) is well-posed in �. 
 

Assumption (5.3.1)[150]:(Existence of solutions). Let � > 0. Then, there exists �(�) > 0 

such that for all�� ∈ � with ‖��‖� ≤ �, we have a solution �of (89)in �0,�(�)�with 

�(0) = ��. Further,� satisfies ���(�)� = �(��)and ���(�)� = �(��)for � ∈ �0,�(�)�. 

We next define the bound state, which is a stationary solution modulo symmetry 

�(�). 
 

Definition (5.3.2)[150]:(Bound state). By a bound state we mean a solution of (89)in 

ℝ with the form 

�(�) = �(��)�, 

where � ∈ ℝ and � ∈ �. 

Remark (5.3.3)[150]:If �(��)� is a bound state and � ∈ ���(0)�, then it satisfies 
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��(��)�(0)� = ���(�(��)�). 

Thus, by �(��(�)�) = �(�)��(�) and the definition of �, we have 

��(�) − ���(�) = 0.                                                  (91) 

On the other hand, if � ∈ � satisfies (60), then �(��)� is a bound state. 
 

Definition (5.3.4)[150]:(Stability of bound states). We say the bound state �(��)� is 

stable if for all � > 0there exists � > 0 with the following property. If ‖�� − �‖� <

�and �(�)is a solution of (58) given in Assumption (5.3.1), then �(�) can be continued to 

a solution in [0,∞ )and 

sup
���

inf
�∈ℝ

‖�(�) − �(�)�‖� < �. 

Otherwise the bound state �(��)� is said to be unstable. 
 

Assumption (5.3.5)[150]:(Existence of bound states). Let �� < ��. We assume that 

there exists a �� map(��,��) → �,� ↦ �� such that 

(i) �(��)��is a bound state. 

(ii) �� ∈ �(��(0)�),���� ∈ �(��(0)�),��
� �� ∈ ����(0)�, 

��(0)��,����,��(0)����,��
� �� ∈ �. 

(iii) ��(0)�� ≠ 0,���� ≠ 0 and 〈��(0)��,����〉= 0. 
 

Remark (5.3.6)[150]:By the fact that ��(0)�� ∈ �, we have ��� = �����(0)�� ∈ �. 
 

Remark (5.3.7)[150]:In 〈��(0)��,����〉= 0is actually not an assumption. Indeed, 

suppose � ↦ �� does not satisfy 〈��(0)��,����〉= 0. Then, set ��� = ���(�)���, 

where 

�(�) = − �
〈��(0)��,����〉

���(0)���
�

� ��.

�

�

 

Then, ���satisfies 〈��(0)���,�����〉= 0. 

Set 

��(�) ≔ �(�) − ��(�),    � ∈ �, 

�(�) ≔ ��(��),                                                                       (92) 

where ��is given in Assumption (5.3.5). 
 

Remark (5.3.8)[150]:Condition (91)is equivalent to ��
� (�) = 0. 
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We further assume that the linearized Hamiltonian ��
��(��) satisfies the 

following spectral condition. 
 

Assumption (5.3.9)[150]:(Spectral conditions for the bound states). For � ∈ (��,��), 

we assume the following. 

(i) ker ��
��(��) = span{��(0)��}, 

(ii) ��(��) has only one simple negative eigenvalue − � < 0, 

(iii) inf�� > 0�� ∈ ����
��(��)�� > 0, 

where ����
��(��)� ⊂ ℝ is the spectrum of ��

��(��). 

Grillakis, Shatah and Strauss [151] proved the following theorem. 
 

Theorem (5.3.10)[150]:Let Assumptions (5.3.1), (5.3.5)and (5.3.9) be satisfied. Then, if 

���(�) > 0, the bound state �(��)�� is stable and if ���(�) < 0, the bound state 

�(��)��is unstable. 

We investigate the case ���(�) = 0. 

We denote �(�) ∼ �(�)if �and �satisfy 

0 < liminf
|�|→ �

�(�)/�(�) ≤ limsup
|�|→ �

�(�)/�(�) < ∞ .                      (93) 

We assume 

�(� + �) − �(�) − ���(�) ∼ ����(� + �) − ��(�)�.                  (94) 

This is a technical assumption which we need in the proof. 
 

Remark (5.3.11)[150]:If � ∈ ��and �(�)(�) ≠ 0 for some 2 < � ≤ �, then the 

assumption (94)is satisfied. Let �(� + �) = ���/|�|, then �  does not satisfy 94). 

However, this assumption seems to be natural. 

We now state our main results. 
 

Remark (3.3.12)[150]:For Theorem (5.3.2) below, we can remove the condition 

��|�,��|� are bijective and bounded.Further, we only need � ↦ ��to be ��. We only use 

these conditions for Theorem (5.3.3) below, which is concerned with the instability. 

Therefore, we can treat the case � = ��, which appears for ��� type equations and 

��� type equations. 
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Remark (5.3.13)[150]:If ���(�) > 0 (resp. < 0), then the assumption of Theorem 

(5.3.2)below (resp. Theorem (5.3.3) is satisfied. Therefore, Theorems (5.3.2) and (5.3.3) 

below are extension of Theorem (5.3.10). 
 

Remark (5.3.14)[150]:The assumption 〈����,�����
� ����〉= 0 is technical. However, 

for the ��� and ���� cases, this is satisfied when as far as the real-valued standing 

waves are concerned. 
 

Corollary (5.3.15)[150]:Let Assumptions (5.3.1), (5.3.5)and (5.3.9)be satisfied. Let � ≥

4 be an even integer. Assume that� ∈ ��in an open neighborhood of � and assume 

�(�) = ⋯ = �(���)(�) = 0, �(�)(�) > 0. 

Then �(��)��is stable. 
 

Corollary (5.3.16)[150]:Let Assumptions (5.3.1), (5.3.5)and (5.3.9)be satisfied. Further, 

assume there exists � > 0 such that 〈����,�����
� ����〉= 0 for |�|< �. Let � ≥ 3 be 

an integer. Assume that � ∈ ��in an open neighborhood of � and 

���(�) = ⋯ = �(���)(�) = 0, 

�(�)(�) < 0 (� ∶����),   �(�)(�) ≠ 0 (� ∶���). 

Then �(��)��is unstable. 
 

We assume Assumptions (5.3.1), (5.3.5), (5.3.9), (94) and ���(�) = 0. Note that 

by differentiating (92) with respect to �, we have 

��(�) = ��
� (��) − �(��) = − �(��),                              (95) 

���(�) = − 〈���,����〉.                                                         (96) 

Further, differentiating the equation ��
� (��) = 0 with respect to �, we have 

��
��(��)���� = ���.                                             (97) 

We will use these relations in the following. Set 

��(�) ≔ �(� + �) − �(�) − ���(�),                            (98) 

��(�) ≔ ��(� + �) − �(�).                                              (99) 

Recall that in (94), we have assumed ��(�) ∼ ���(�). Further, since we are assuming 

���(�) = 0,we have ��(�) = �(�)as � → 0. 
 

Lemma (5.3.17)[150]:Let � > 0 sufficiently small. Then, there exists �(�):(− �,�) →

ℝ  such that �(�) ∼ ��(�) and 
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�(���� + �(�)�����) = �(��),                                 (100) 

for |�|< �, where we have used “∼” in the sense of (93). 
 

Proof.Set 

�(�,�) = �(���� +  ������). 

Then, �(0,0) = �(��) and ���|�����(�,�) = ‖���‖�
� = 0 by Remark (5.3.6). 

Therefore, by the implicit function theorem, there exist � > 0,� > 0 and � ∶(− �,�) →

(− �,�) such that �(�)satisfies (100) for |�|< �. Further, by (100), we have 

�(�)�‖�����‖�
� + �(�)�(�����)� = − �(����) + �(��) 

                                                                  = ��(� + �) − ��(�) 

                                          = ��(�), 

where we have used (95) and (99). Since 

�(�)�‖�����‖�
� + �(�)�(�����)� = �(�)�‖���‖�

� + �(1)�as� → 0, 

we have the conclusion.  
 

We now define a curve on the neighborhood of ��. Let � > 0 as in Lemma 

(5.3.17). For |�|< �, set 

�(�) ≔ ���� + �(�)�����. 

We next calculate the value of ����(�)�. 
 

Lemma (5.3.18)[150]:Let � > 0 as in Lemma (5.3.17). Then for |�|< �, we have 

����(�)� − ��(��) = ��(�) + ����(�)�, � → 0. 
 

Proof.By the definition of ��, we have �� = ���� + ��. Using this and the Taylor 

expansion,we have 

����(�)� = ������(�)� + ����(�)� 

                                             = ����(���� + �(�)����� ) + ��(��) 

                                        = ����(���� ) + ��(��) + �(�(�)�) 

= �(� + �) − ���(�) + ����(�)�, � → 0.           

Here, we have used ���(�)� = �(��)for the second equality,����
� (����) = 0 for the 

third equality and �(�) = �(�),����(�)� = �����(�)� = ����(�)�as � → 0 for the 

last equality. Therefore, by (98), we have the conclusion.  
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We define a tubular neighborhood of ��. Set 

�� ≔ �� ∈ �� inf
�∈ℝ

‖� − �(�)��‖� < �� , 

��
� ≔ {� ∈ ��|�(�) = �(��)}.                 

 

Lemma (5.3.19)[150]:Let � > 0 sufficiently small. Then for � ∈ ��, there exist 

�(�),�(�),�(�) and �(�) such that 

���(�)�� = ���(�)� + �(�) + �(�)�����(�), 

and 

〈�(�),��(0)����(�)〉= 〈�(�),������(�)〉= 〈�(�),�����(�)〉= 0 

Further, � and �are ��. 
 

Proof.Set 

�(�,�,�) = �
〈�(�)� − �(�),��(0)����〉

〈�(�)� − �(�),������〉
� . 

Then, we have �(��,0,0) = 0 and 

��

�(�,�)
= ����(�,�,�)�

�,���,�
,                                      (101) 

where 

���(�,�,�) = 〈��(0)�(�)�,��(0)����〉,                                  

���(�,�,�) = − 〈���(�),��(0)����〉+ 〈�(�)� − �(�),��(0)������〉, 

���(�,�,�) = 〈��(0)�(�)�,������〉,                                        

���(�,�,�) = − 〈���(�),������〉+ 〈�(�)� − �(�),��
� ����〉. 

Therefore, 

� ��

�(�,�)
�

����,�����

= �
‖��(0)��‖�

� 0

0 − ‖����‖�
� � , 

is invertible. Thus, there exist functionals �(�)and �(�) defined in the neighborhood of 

�� such that ���,�(�),�(�)� = 0. Since, �� ↦ ���is a �� map, we see that �is ��. 

Therefore, � and � are ��. For � ∈ ��, define �(�(�)�) = �(�) − �and �(�(�)�) =

�(�). Finally, define 

�(�) = 〈���(�)�� − ���(�)�,�����(�)〉������(�)�
�

��
, 

�(�) = ���(�)�� − ���(�)� − �(�)�����(�).                   
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Therefore, we have the conclusion.  

Let � > 0 as in Lemma (5.3.19). Set 

�(�):= ���(�)��,      � ∈ ��. 
 

Remark (5.3.20)[150]:By the uniqueness of the solution of � = 0, we have 

���(�)� = 0,   ���(�)� = �, 

���(�)� = 0,   ���(�)� = 0. 

We next show that the Fréchet derivatives of � and �are in �. 
 

Lemma (5.3.21)[150]:Let � > 0 sufficiently small. Let � ∈ ��. Then, ��(�),��(�) ∈ �. 
 

Proof.By differentiating ���,�(�),�(�)� = 0 with respect to �, we have 

�(�) �
��(�)

��(�)
� = − �

��− �(�)���(0)����(�)

��− �(�)�������(�)

�,                        (102) 

where �(�) = ���,���,�(�),�(�)��
�,���,�

. Since �(�)is invertible in �� for sufficiently 

small � > 0 and ��(0)����(�) ∈ �,������(�) ∈ �by Assumption (5.3.5), we have the 

conclusion.  
 

Remark (5.3.22)[150]:As the proof of Lemma (5.3.21), by differentiating (102) with 

respect to �, we see that ���(�)� ∈ �and ���(�)� ∈ �for � ∈ �� and � ∈ �. 

Let � > 0 sufficiently small. We now introduce the following functionals � and 

� defined in ��, which we use to show the instability theorem. 

�(�) ≔ 〈�(�),���������(�)〉, 

�(�) ≔ 〈����(�)
� (�),���(�)〉.    

 

Remark (5.3.23)[150]:� and �are well-defined in �� for sufficiently small � > 0. Indeed, 

��(�) = �����− �(�)�������(�) + 〈��(0)�(�),���������(�)〉��(�) 

+ 〈�(�),�����
� ����(�)〉��(�).  (103) 

So, by Assumption (5.3.5) and Lemma (5.3.21), we have ��(�) ∈ �and ���(�) ∈ �. 

Therefore, the definitionof �makes sense. 
 

Remark (5.3.24)[150]:Let � be the solution of (58), then 

�

��
���(�)� = − ���(�)�.                                              (104) 
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Indeed, first, since �(�(�)�) = �(�), for � ∈ ���(0)�, 

0 = 〈��(�),��(0)�〉= − 〈��,���(�)〉. 

Therefore, formally, we have 

�

��
���(�)� = 〈��(�),��〉= 〈��(�),����(�)〉= − 〈��(�),���(�)〉= − �(�). 

By Lemma (5.3.4) of [151], we have � ∘ � ∈ �� for � ∈ �(�,�) ∩ ��(�,�∗). Therefore, 

the formal calculation is justified. 
 

Remark (5.3.25)[150]:� and �are invariant under �, that is 

�(�(�)�) = �(�), 

 �(�(�)�) = �(�). 

Indeed, the invariance of � follows from the invariance of �and �. The invariance of 

� follows from the invariance of � and �. More precisely, since �(�(�)� + ℎ) =

�(� + �(− �)ℎ), we have��(�(�)�) = �(�)��(�). So, we have 

�(�(�)�) = 〈��(�(�)�),���(�(�)�)〉= �(�)��(�),��(�)��(�) = �(�), 

where we have used the fact �and �(�)commutes. 

We now calculate the value of �along the curve �. 
 

Lemma (5.3.26)[150]:Let � > 0 sufficiently small. Assume 〈��,�����
� ��〉= 0. Then, for 

|�|< �, we have 

���(�)� = ��(�) + ����(�)�, � → 0. 
 

Proof.First, we calculate ������(�)�
� ��(�)�. 

������(�)�
� ��(�)� = ����

� (���� +  �(�)�����) 

                                                   = �(�)����
�� (����)����� + ���(�)�. 

Next, we calculate �����(�)�. Recall that ���(�)� = �(�) = ���� + �(�)����� and 

we assumed 

− 〈���,����〉= ���(�) = 0, 

and 〈��,�����
� ��〉= 0. So, we have 

〈��(0)���(�)�,���������〉= �(1),   � → 0, 

              ���(�)�,�����
� ���� = �(1),   � → 0. 

Therefore, by (103), we have 
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�����(�)� = ������ + �(1),    � → 0. 

Combining these calculations, we have 

���(�)� = �(�)〈����
�� (����)�����,������〉+ ���(�)� 

= �(�)‖�����‖� + ���(�)� 

= ��(�) + ����(�)�,   � → 0,                    

where we have used the relation ����
�� (����)������ = �����. 

The following lemma is well known. For example see [153]. 
 

Lemma (5.3.27)[150]:There exists �� > 0 such that if � ∈ � satisfies 〈�,�′(0)��〉=

〈�,����〉= 〈�,���〉= 0, then 〈��
��(��)�,�〉≥ ��‖�‖�

� . 

By a continuity argument and Lemma (5.3.27), we can show the following 

lemma. 
 

Lemma (5.3.28)[150]:There exists �� > 0 such that for |�|< ��, if � ∈ � satisfies 

〈�,��(0)����〉= 〈�,������〉= 〈�,�����〉= 0, then 〈��
��(��)�,�〉≥

�

�
��‖�‖�

� . 

 

We assume Assumptions (5.3.1), (5.3.5), (5.3.9),(63) and ���(�) = 0. We first 

estimate �(�) which is given in Lemma (5.3.19). 
 

Lemma (5.3.29)[150]:Let � > 0 sufficiently small. Let ∈ ��
�. Let �(�)as in Lemma (5.3.1) 

and �(�),�(�) and � as in Lemma (5.3.19). Then, there exists a constant � > 0such 

that 

|�(�)|≤ �����(�)�‖�(�)‖� + ‖�(�)‖�
� �. 

 

Proof.We first calculate �(�). By Lemma (5.3.19) and (59) (definition of �), we have 

�(��) = �(�) 

          = �����(�)� + �(�) + �(�)�����(�)� 

               = � ����(�)�� + ���(�) + �(�)�����(�)� 

+ 〈�����(�) + ���(�)�������(�),�(�) + �(�)�����(�)〉 

= �(��) + �(�)������(�)�
�

�
+ ���(�)�〈������(�),�(�)〉 

                                   +  �(�)���(�)�〈������(�),�����(�)〉+ ���(�)� 

                                +  �(�)〈��(�),�����(�)〉+ �(�)��������(�)�, 
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Therefore, we have 

− �(�)�‖���‖�
� + �(1)� = ���(�)�〈������(�),�(�)〉+ ���(�)�,�(�) → 0. 

Thus, we have the conclusion.  

Next, we show that under a restriction of the value of ��we get a good estimate 

for �(�) and �(�). 
 

Lemma (5.3.30)[150]:Let � > 0 sufficiently small. Let � ∈ ℝ . Suppose � ∈ ��
�and 

��(�) − ��(��) ≤ �����(�)� +
��

10
‖�(�)‖�

� , 

where ��is given as in Lemma (5.3.27). Then, ‖�(�)‖�
� = � �����(�)�� as �(�) → 0. In 

particular, �(�) = � �����(�)��as �(�) → 0. 

 

Proof.Suppose there exists  �� ∈ ��
�,�� → ��in �, s.t. 

��(��) − ��(��) ≤ ���(��) +
��

10
‖��‖�

� , 

and ‖��‖�
� = ����(��), where �� = �(��),�� = �(��),�� = �(��)and �� → ∞ . 

Then, we have ��(��) = �(‖��‖�
� ). Further, by Lemma (5.3.17), (94) and assumption of 

contradiction, we have 

�(��) ∼ ��(��) ∼
��(��)

��
=

‖��‖�
�

����
=

��
�/�(��)

����
�/�

‖��‖� = �(‖��‖�),    � → ∞ , 

where we have used “∼” in the sense of (93). Thus, by Lemma (5.3.8), �� = �(‖��‖�
� ). 

Now, by Taylor expansion and Lemma (5.3.19), 

��(��) − ��(��) = ����(��) + �� + ��������
� − ��(��) 

= ����(��)� − ��(��) + 〈��
� ��(��)�,�� + ��������

〉 

                                          +
1

2
〈��

����(��)���,��〉+ �(‖��‖�
� ),    � → ∞ . 

Further, by Lemma (5.3.18) and ��
� (��) = 0, we have 

����(��)� − ��(��) = ����(��)� = �(‖��‖�
� ), 

〈��
� ��(��)�,��������

〉= �(‖��‖�
� ),   � → ∞ ,                

and by ��
� = ����

� + ��,〈������
,��〉= 0 and �(��) = �(‖��‖�)as � → ∞ , we have 

〈��
� ��(��)�,��〉= 〈�����

� ��(��)� + ��(��),��〉 
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                                            = 〈�����

� ��(��)� + �(��)������
,��〉 

           = �(‖��‖�
� ),    � → ∞ . 

Therefore, by Lemma (5.3.28), we have 

��(��) − ��(��) =
1

2
〈��

����(��)���,��〉+ �(‖��‖�
� ) 

            ≥
��

4
‖��‖�

� + �(‖��‖�
� ) 

≥
��

8
‖��‖�

� ,             

for sufficiently large �. This contradicts to the assumption. Therefore, we have the 

conclusion. 
 

Theorem (5.3.31)[150]:Let Assumptions (5.3.1), (5.3.5), (5.3.9)and (94) be satisfied. 

Assume that �is strictly convex in anopen neighborhood of �. Then �(��)��is stable. 
 

Proof.Let � ∈ ��
�. Suppose, ��(�) − ��(��) < ����(�)� +

��

��
‖�(�)‖�

� . Then,by 

Lemma (5.3.30), we have ‖�(�)‖�
� = ����(�)�as �(�) → 0. Now,  

��(�) − ��(��) = ������(�)� + �(�) + �(�)�����(�)� 

= ���(�) + 〈��
� ����(�)�� ,�(�)〉+

1

2
〈��

��(��)�(�),�(�)〉 

+ � �����(�)��.                      

Using ��
� = ����

�� + �,���(�)� = � �����(�)��and ‖�(�)‖� = � �����(�)�
�/�

�, 

〈��
� ����(�)�� ,�(�)〉= 〈����(�)

� ����(�)�� + �(�)����(�)�,�(�)〉 

                           = ��(�)〈��
�������(�)������(�),�(�)〉 

                  + �(�)���(�)�〈����,�(�)〉 

= � �����(�)��.                 

Since we have assumed that � is strictly convex in an open neighborhood of �,��(�)is 

strictly increasing in an open neighborhood of 0 (if ��(�) is not increasing, then � would 

not be convex,if ��(�) is constant, then � would not be strictly convex). So, we have 

��(�) − ��(��) ≥ ��(�)����(�)� +
��

4
‖�‖�

� , 
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for a constant � > 0. 

Now, suppose that there exist a sequence of solutions �� and �� > 0 s.t. 

�� → ��in �and inf�∈ℝ ‖��(��) − �(�)��‖� = ��/10. Take 

�� ≔ ��(��)/�(��)��(��). 

Since ��(��)/�(��) → 1, we have ‖�� − ��(��)‖� → 0 and ��(��) − ��(��) → 0. 

Thus,�(��),�(��) and �(��) converge to zero. This implies 

inf
�∈ℝ

‖��(��) − �(�)��‖� → 0. 

This is a contradiction.  

We next show Theorem (5.3.32). We first calculate �. 
 

Lemma (5.3.32)[150]:Let � > 0, sufficiently small. Let � ∈ ��
� and ��(�) − ��(��) < 0. 

Further, assume 〈������(�),���������(�)〉= 0. Then 

�(�) = ����(�)� + � �����(�)�� . 

 

Proof.By Taylor expansion, 

�(�) = � ����(�)� + �(�)� + � �����(�)�� 

= ����(�)� + 〈����(�)
�� ����(�)�� �(�),��� ����(�)��〉 

+ 〈����(�)
� ����(�)�� ,���� ����(�)�� �(�)〉+ � �����(�)�� 

                           = ����(�)� + 〈����(�)
�� ����(�)�� �(�),��� ����(�)��〉 

+  � �����(�)�� ,   �(�) → 0,                 

where we have used ‖�(�)‖�
� = � �����(�)�� and ����(�)

� ����(�)�� = �����(�)��. 

Now, by (72), 

��� ����(�)�� = ������(�) − 〈�����(�),������(�)〉�� ����(�)�� 

                           + 〈������(�),���������(�)〉�� ����(�)�� 

+ � �����(�)�� ,   �(�) → 0, 

where we have used Lemma (5.3.17). Now, by〈������(�),���������(�)〉=

0,〈�(�), �����(�)〉= 0 and (97), we have 
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〈����(�)
�� ����(�)�� �(�),��� ����(�)��〉= 〈����(�)

�� �����(�)��(�),������(�)〉 

− 〈�����(�),������(�)〉〈�(�),����(�)
�� �����(�)��� ����(�)��〉+ � �����(�)�� 

                                                               = � �����(�)�� ,    �(�) → 0, 

where we have used ‖�‖� = � �����(�)�
�/�

�and �� ����(�)��is a linear 

combination of ������(�) and ��(0)����(�) because of (102). Therefore, we have the 

conclusion.  
 

Theorem (5.3.33)[299]:Let Assumptions (5.3.1), (5.3.5), (5.3.9) and (94) be satisfied. 

Assume there exists � > 0 such that �(� + �) − �(�) − ���(�) < 0in 0 < � < � or 

− � < � < 0. Further, assume〈����,�����
� ����〉= 0. Then �(��)��is unstable. 

 

Proof.By the assumption of Theorem (5.3.33), we have ��(�) < 0 in a one-sided open 

neighborhood of 0. Therefore, by Lemma (5.3.18), we can take the initial data from 

�(��), where���(��)� < �(��) and �� → 0. Suppose, ��stays in ��
�. By the 

conservation of �and �, we have 

�����(�)� − ��(��) = �� �����(�)�� + � ��� �����(�)��� , 

and by Lemma (5.3.32), 

���(�)� = �� �����(�)�� + � ��� �����(�)��� . 

Then, since ���(�) ∼ ��(�), we have 

��(��) − �����(�)� ≤ ������(�)�����(�)��, 

for some constant � > 0. Thus, we have 0 < � < �����(�)�� for arbitrary �. So, � has 

the same sign. Suppose � > 0. Then, 
��

��
���(�)� > ����(�)� > �. Thus, � is 

unbounded. However, this is contradiction. For the case � < 0 we have the same 

conclusion.  

We consider the following single power nonlinear Klein–Gordon (NLKG) 

equation. 

��� − ∆� + � − |�|���� = 0,(�,�) ∈ ℝ �,                               (105) 
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where � ≥ 1 and 1 < � < ∞  for � = 1,2 and 1 < � < 1 + 4/(� − 2) for � ≥ 3. To put 

(74) onto our setting, set � = ��
�(ℝ �) × ��

� (ℝ �),� = ��
�(ℝ �) × ��

�(ℝ �) and 

� = ���
�(ℝ �)�

�

, where �� 
� and �� 

� are subspaces of �� and �� which consist with radial 

functions. Then define �and �as 

� = �
0 1

− 1 0
� , 

                                                  �(�) =
1

2
�|�|� + |��|� + |�|� −

1

� + 1
�|�|��� . 

Then, � ∶� → �is skew symmetric, and �|�:� → �,�|�:� → � are bounded and 

bijective.Further, �is ��. Let � = (�,�)�, where � means transposition. Then NLKG 

equation is rewritten as 

�

��
� = ���(�) 

in �∗. Further, in this case, we take (�) = ����, where � is the identity matrix. So, we 

have(�) = Im ∫ ����. From the results of Ginibre and Velo [155], it is known that NLKG 

equation is locally well-posed and �and � are conserved (i.e. Assumption (5.3.1) is 

satisfied). For, �� < 1, let ��be the unique positive radial solution of 

0 = − ∆�� + (1 − ��)�� − ��
� . 

Then, ������ is the solution of (105). It is well known that � ∈ �(ℝ �), where �(ℝ �) is 

the Schwartz space (see for example Chapter B of [156]). Further, by scaling, we 

have  �� = (1 − ��)�/(���)���(1 − ��)�/�)��. Therefore, it is easy to check � ↦

��satisfies Assumption (5.3.5).Further, Assumption (5.3.9) is also well known to be 

satisfied (see for example [157]). 

Now, since (1 − ��)�/(���)���(1 − ��)�/�)��, we can calculate � directly. 

Since  �(��) = � ∫ ��
� , we have 

���(�) = − �1 − �1 +
4

� − 1
− �� ��� (1 − ��)

�

���
�

�

�
��

� ��
�

ℝ �

. 

So, we see that for the case � > 1 +  4/�, then ���(�) < 0 for all � ∈ (− 1,1)and for 

the case 1 < � < 1 + 4/�, there exists 
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0 < �∗ = �
� − 1

4 − (� − 1)(� − 1)
< 1, 

such that if |�|< �∗, then ���(�) < 0 and if |�|> �∗, then ���(�) > 0. Therefore, in 

these cases we know the stability and instability. These are the results by [158] and 

[159]. 

For the case � = ±�∗, we can show ����(�∗) ≠ 0, so by Corollary (5.3.16), we 

see that in this case, we have the instability. 

We have to remark that for the case � ≥ 2, this result was proved by Ohta and 

Todorova [160] and for the case � = 1,� ≥ 2, one can prove this result by applying 

Comech and Pelinovsky’s result[152] (for the case 1 < � < 2, Therefore, for 1 < � <

2,� = 1, this result seems to be new. Further, our proof, the proof of [160] and the 

proof of [152] are completely different from each other and our proof gives a simple 

and unified proof for the critical case. 
 

We next consider the double power nonlinear Schrödinger equations. 

��� + ���� + ��|�|����� + ��|�|�����,(�,�) ∈ ℝ �, 

where ��,�� ∈ ℝ  and 1 < �� < �� < ∞ . In this case, let � = � = ��
�(ℝ ),� = ��

�(ℝ ),

� = �,�(�) = ��� and 

�(�) =
1

2
�|��|���

ℝ

−
��

�� + 1
� |�|������

ℝ

−
��

�� + 1
�|�|������

ℝ

. 

Then, we are on the setting of our theory. In this case, by the combination of ��,��, it is 

known that there exists some � > 0 such that ���(�) = 0 and ����(�) ≠ 0 (see [161]). 

So, for such � > 0,we can show the instability. 

 


