Chapter 5
Stability of Standing Waves with Bound States

For the case when the frequency is equal to the critical frequency w, we show
strong instability for all radially symmetric standing waves ei“’ctqb(x). We show similar
strong stability results for the Klein—Gordon—Zakharov system. We consider a
Hamiltonian system which is invariant under a one-parameter unitary group. We give a

criterion for the stability and instability of bound states for the degenerate case.

Section (5.1): Nonlinear Klein-Gordon Equation and Klein-Gordon-

Zakharov System:

We study the strong instability of standing wave solutions ei‘"tfp(x) for the
nonlinear Klein-Gordon equation of the form

0fu — Au+u = |ulP 1y, (t,x) e Rx RV, (1D

Where N >2,1<p<1+4/(N—-2),-1<w<1, and ¢ € HI(R") is anontrivial

solution of
—Ap+ (1 - w?)p—lplP"l9p=0, x€RN (2)
We also study the same problem for the Klein-Gordon-Zakharov system
0fu—Au+u+nu =0, (t,x) e R X RV, (3)
cy202n — An = A(Jul?), (t,x) e Rx RV, (4)

Where N = 2,3,cy, > 0 is a constant. The system (3)-(4) describes the interaction of a
Langumiur wave and ion acoustic wave in a plasma. The complex valued function
u denotes the fast time scale component of electric field raised by electrons, and the
real valued function n denotes the deviation of ion density (see [101, 102, 103]).

From the result of Ginibre and Velo [104], the Cauchy problem for (1) is locally
well-posed in the energy space X := HY(RM) x L?(RN). Thus, for any (ug,u;) €
X there exists a unique solution % := (u,d;u) € C([0, T,y ); X) of (1) with 7(0) =
(ug,uy) such  that either T, = o(global existence) or T, < cand
limyy  [[i(t)|lx = ooffinite time blowup). Moreover, the solution u(t) satisfies the

conservation laws of energy and charge:
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E(ﬁ(t)) = E(uOJul)f Q(ﬁ(t)) = Q(uO'ul)f t € [0, Tmix):
Where

1 1 1 1
Ew,v) = ZIIvll3 + 3 IVully + 5l — = lullp2s, (5)

Q(u,v) =1 mf uvdx. (6)
]RN

Let ¢, € HY(RYN) be the ground state (the least energy solution) of (2).We refer
to [105, 106] for the existence of ¢,, and to [107] for the uniqueness of ¢,. The
stability of standing waves ei“’tcl)w for (1) has been studied bymany authors. First, we

consider the orbital stability of e!“t¢,. Shatah [108] proves that e!®t¢,is orbitally

stableif p <1 +% and o, < |w| < 1, where

_ p—1
%= TN -Do-D @)

Shatah and Strauss [109] prove that e!“t¢,, is orbitally unstable when p < 1 +%and

4 . .
|w| < we.or when p > 1 +Nand |w| < 1. Here, we say that astanding wave solution

eiwt<p is orbitally stable for (1) if for any € > 0 there exists § > 0 such that if (uy, u,) €
X satisfies ||(ug, uy) — (@, iwe)|lx < 8§, then the solution u(t) of (1) with u(0) =

(ug, u,) exists globally and satisfies

. SN il (.
sup _inf [[#(®) = e®(p(+ 7). iR+ M)l <&

Otherwise, ei“’t<p is said to be orbitally unstable.

Next, we consider instability of ei‘”tqbw in a stronger sense. Berestycki and
Cazenave [110] prove that the ground state standing wave ei‘"tqbw for (1) isvery strongly
unstable (see Definition (5.1.1) below) when the frequency w = 0 (see also [111]).
Shatah [112] proves that the ground state standing wave ei“’t(pwfor nonlinear Klein-
Gordon equations with general nonlinearity is strongly unstable (see Definition (5.1.2)
below) when w = 0 and N > 3. Recently, the authors [113] prove that the ground state

standing wave ei“’tcl)wfor (1) is very strongly unstable when |w]|<
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\/(p —1)/(p+3)and N = 3. Here, we give the definitions of very strong instability

and strong instability.

Definition (5.1.1)[100]: (very strong instability)We say that e!®!@is very strongly
unstable for (1) if for any &€ > 0 there exists (uy,u;) € Xsuch that||(uy, u,) —
(¢, iwp)||x < € and the solution u(t) of (1) with %(0) = (ug,u,) blows up in finite

time.

Definition (5.1.2)[100]: (strong instability)We say that e!“*¢ is strongly unstable for (1)
if for any € > 0 there exists (1, u;) € Xsuch that ||(ugy, uy) — (@, iwe)||lx < € and the
solution u(t) of (1) with #(0) = (uy, u,) either blowsup in finite time or exists globally
and satisfies 1 i mup_||u(t)||lx = .
Note that, by the definitions, if ei“’t(p is very strongly unstable then it is strongly
unstable, and that if ei“’t<p is strongly unstable then it is orbitally unstable.
Before stating our main results, we recall instability results for the nonlinear
Schrédinger equation
i0,u+ Au+ |ulP~lu =0, (t,x) € Rx RV, (8)
Let w > 0 and ¢, € H(R") be the ground state of
—Ap + wp — |p|P g =0, x€RV, (9)
It is known that for any w > 0 the standing wave solution ei“’tqbw for (8) is orbitally
stable when 1 <p <1+ 4/N, and it is very strongly unstable when1+4/N <p <
1+ 4/(N —2) (see [110, 114]). Moreover, for the critical case p = 1+ 4/N, for any
w > 0 and any nontrivial solution ¢ € H1(RM)of (9), it is known that the standing wave
e'®ty is very strongly unstable for (8) (see [115]). For general theory of orbital stability

and instability of solitary waves, we refer to Grillakis, Shatah and Strauss [116, 117].

Can we refine further this instability result? Namely, can we prove in certain
cases that standing wave ei“’t¢w for (1) is very strongly unstablein the sense of
Definition (5.1.1)? The result of Cazenave [118] gives an answer of this question for the
restricted range for the exponent p of nonlinearity 1 <p<5forN=2and 1<p <

N/(N — 2)for N > 3. Cazenave proves that any global solution u(t) of (1) is uniformly
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bounded in X, i.e.,supsollu(t)|lxy <oo, if 1<p <5 and N=2, and if 1<p <
N/(N — 2)and N > 3. Therefore, for this range of the exponent p, Theorem (5.1.11)
below together with the result of Cazenave gives us a very strongly instability result in
the sense of Definition (5.1.1) for ground state standing waves ei“’t(pwof (1). Using an

argument in Merle and Zaag [118], we can extend the result of Cazenave and prove the

4

oD and

uniform boundedness of global solutions of (1) in Xwhenl<p <1+
N = 2. The following Lemma holds.

Corollary (5.1.3)[100]:In addition to the assumptions in Theorem (5.1.1), let 1 <p <
1+4/(N—-1)if N=2,3,andthat 1 <p <1+4/(N — 1)if N > 4. Then, the ground
state standing wave ei‘”tqbw for (1) is very strongly unstable in the sense of Definition
(5.1.1).

Remark (5.1.4)[100]:Let us mention that when the exponent p of nonlinearity is in the
range 1+4/(N—1) <p <1+4/(N —2) we were unable to give better instability

results than those in Theorem (5.1.1) for ground state standing waves ei“’tgbwof (2) for

large frequencies |w| > \/(p —1)/(p + 3). The very strong instability result for small

frequencies |w| S\/(p— 1)/(p+3) and N >3 is given in [113]. The following
theorem is an important contribution of Kenji Nakanishi on the very strong instability in
this area for large p and large frequencies w.

This way, we have the entire picture for the very strong instability of ground
state standing waves.

For the critical frequency w = w.in the case 1 <p <1+ 4/N, we canprove a
much more general instability result for standing waves which arenot necessarily related
to the ground state.

For the existence of infinitely many radially symmetric solutions of (2), we refer
to [119]. As mentioned above, a similar result of Theorem (5.1.14) below is known for
the nonlinear Schrédinger equation (8) in the critical case p =1 + %without assuming

the radial symmetry of solution of (9) and the restrictionon space dimensions N > 2

(see [115]).
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The proofs of Theorems (5.1.11) and (5.1.14) are based on using local versions of
the virial type identities. To prove strong instability of the ground state for the case
w =0 and N = 3, Shatah in [112] considers a local version of the following identity
d _ _

—Re f x - Vududx = NKl(u(t)),

dt
RN

1

1 1 1 1
Ky v) = 5 Il + (5 = ) 9l + 5 el = B3 (10)

Since the integral in the left-hand side of (10) is not well-defined on theenergy space X,
one needs to approximate the weight function x in (10)by suitable bounded functions.
To control error terms by the approximation, initial perturbations are restricted to being
radially symmetric and the decay estimate for radially symmetric functions in H1(RY):
||W||L1(|x|2m) < Cm_(N_l)/ZHW”Hl(ll)
(see [106]) is employed. The assumption N > 2 is needed here. In the case N = 1, we
expect similar very strong instability results for the standing waves. This kind of
approach has been also used for blowup problems of the nonlinear Schréodinger
equation (8) (see, e.g., [120, 121, 122, 123, 124, 125, 126]).
In the proof of Theorem (5.1.11) for the case p > 1+ 4/N, we use a local

version of the virial identity
d
_ERG f{Zx -Vu + Nu}o,udx = P(u(t)), (12)
]RN

Where

N(p - 1) p+1

PGo) = 20Vull == "l (13)

Namely, instead of the left hand side of (12), which is not well defined inthe energy
space X, we use (26) with conveniently chosen weights.

Note that (12) follows from (10) and

L o =L [ woadx = -k, (@)
5 7z 1@z = —Re | udiuidx = —K,(U(®)),
]RN
Ky () = 1113 + 1Vull3 + el — ullZ2, (14)
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and that the functional P appears in the virial identity for the nonlinear Schrodinger

equation (8):

dZ
77 Iru®l13 = 4P (u(®)). (15)
The case p <1+ 4/Nis more delicate. Here we use a local version of the
identity
d _ -
—ERe f{Zx -Vu + (N + @)u}oudx = K(u(t)), (16)

RN
Where a :=4/(p — 1) — Nand

2
K(wv) = —allvl} + allull + G+ 2 {Ivulf — 5 Z5) A7)

(cf. [109]). Note that
K(u,v) = P(u) + aK,(u,v)
= =2(a+ D|lv—iwull3 + 2(a + 2)(E — wQ)(u, v)
—2awQ(u,v) — 2{1 — (a + Dw?}|ull3, (18)
and that 1 — (a + 1)w? > 0 if |w| > w,, and correspondingly 1 — (a + Dw? = 0 if
|w| = w,. Again instead of the left hand side of (16) we use (27) with conveniently
chosen weights.

Next, we consider the Klein-Gordon-Zakharov system (3)-(4). The well-posedness
of the Cauchy problem for (3)-(4) in the energy space is studied by Ozawa, Tsutaya and
Tsutsumi [127]. Here, the energy space Yis defined by Y = HY(RM) x L2(RN) x
L>(RY) x H~Y(RY). When N =3 and ¢y # 1, it is proved in [127] that for any
(ug, uq, ng, 1) €Y there exists a unique solution u := (u, d;u,n,d:n) € C([0, Tmy);Y)
of (3)-(4)with initial data u(0) = (uy, uy, ng, n,) satisfying the conservation laws of the
energy H(u(t)) = H(u(O)) and the charge Q(u(t)) = Q(u(O)) for allt € [0, Ty ),
where Qis defined by (6) and

1
H(w,v,mv) = S 1l + 5 VI

4cg
1 2 1 2 2
42 7l + 3l + 5 il + |u| ndx. (19
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The case N =3 and ¢y =1 is treated in [128, 129], where the global small data
solutions result is presented. For the case N = 2 by using the idea of Ozawa, Tsutaya
and Tsutsumi [127] we can prove the local well -posedness of the Klein-Gordon-
Zakharov system (3)-(4) in the energy space Y for all ¢, > 0.
We study instability of standing wave solutions
(U (6, ), 16, (£, %)) = (6" (), —| b0, (0)I?)

for (3)-(4), where —1 < w < 1,N = 2,3, and ¢, € H*(R") is the ground state of

—Ap+(1—wdDep—|pl?¢p=0, x€eRN (20)
By a similar method as in the proof of Theorem (5.1.11) for the casep > 1 +%together

with an argument in Merle [124] for the Zakharov system, we have the following.

Remark (5.1.5)[100]:It is known (see [102]) that the negative initial energy H(u(O))
implies that the solution u(t) of (3)-(4) either blows up in finite time or blows up in
infinite time, namely the solution exists globally and satisfies the asymptotic condition
li mup_ellu(t)|ly = oo. Since the energy
H(A¢,, iwp,, —2%|¢,]%,0) > 0

for A close to 1, the result in [102] is not applicable to Theorem (5.1.1).

Next, we consider the very strong instability of (ei“’tqbw,—lqbwlz) for (3)-(4).
Since the second equation (4) of the KGZ system is massless, it seems difficult to obtain
the uniform boundedness of global solutions for (3)-(4) similar to Lemma (5.1.15) below.
Therefore, for the standing wave (ei“’tqbw,—ld)wlz) we do not deduce a very strong
instability similar to the instability result in Corollary (5.1.3) of Theorem (5.1.11) below.
However, using the method in [113], we obtain the following very strong instability

result for small frequencies.

Remark (5.1.6)[100]:In Theorem (5.1.18) below, the case w = 0 is proved by Gan and
Zhang [130].

We prove Theorems (5.1.11) and (5.1.14) and Lemma (5.1.15) below for the

nonlinear Klein-Gordon equation (1). The proof of Theorem (5.1.16) below is given. We
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devoted to applications to the Klein-Gordon-Zakharov system (3)-(4), and we prove

Theorems (5.1.17) and (5.1.18) below.

We start with a convenient choice of the weight functions, as follows.

Let®d € Cz([O, 00)) be a non-negative function such that

N for0<r<li,

<D(r)={0 ®'(r)<0 forl<r<2.

for = 2,
Form > 0, we put
-
@ —dD(L) ) = —— [ %10, (5)d 21
m(r) - m ’ lpm r _TN_l S m S S. ( )
0
Then, ®,,and 1, satisfy the following properties.
Lemma (5.1.7)[100]:For m > 0, we have
®,,(r) =N, Yy (r) =7, 0<r<m, (22)
, N-1
Y (r) + Tlpm(r) =, (1), r =0, (23)
|CD(k)(r)| <t .50 k=012 (24)
m — mk: = Y ) Ly &
Ym(r) <1, r = 0. (25)

Proof. Properties (22)-(24) follow from the definition (21). We show (25). Integrating by
part implies
r r
Nr¥—Yy (r) = stN‘chm(s)ds =rNo,,(r) — f sVNd! (s)ds.
0 0
Thus, by (23), we have

.

N-1

>y jsNCD;n(s)ds.
0

N-1 1
Y (1) = @ (1) —Tl,bm(r) = Nq)m(r) +5

Since @,,(r) < N and ®,,(r) < 0 forr = 0, we have (25).

Lemma (5.1.8)[100]:Let u(t) be a radially symmetric solution of (1), and put

I} (t) = 2Re j Y0, ud, udx + Re f d,, ud udx, (26)
RN RN
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13(t) = IL(t) + aRe j ud udx, (27)
RN

where a := 4/(p — 1) — N. Then, there exists a constant C, > 0 independent of m such

that
1 ) +1
o (t)<P(u(t))+ [ e opan+ i@ @8
|x|=zm
2 = ) +1
——1 2(1) < K(a (t>)+ f e, )P dx+—||u<t)||2 (29)
|x|zm

forallt € [0, Ty )-

Proof. We multiply the equation (1) by ¥,,,d,-u and by ®,,u respectively, and have

——2Re jzpma ud;udx = jz,bm ¢m|atu| dx
, N-1 ) , N-1 )
+ [ = ulvuldx = [+ = plulax
RN RN

e fwm Tl

and

d 1
—ERe demuatﬂdx:— jd)mlatulzdx—z jAdDmluIde
RN RN RN

+ fCDm|Vu|2dx+ fcbmlulzdx— fCDmlulp“dx.
RN RN RN

By (23) in Lemma (5.1.7), we have the identity

p—1

1
p+1 mlulp“dx—z jACDquIde.

RN

The inequality (28) follows from Lemma (5.1.7). Finally, (29) follows from (28),(14) and
(18).

——I1 () =2 fz/)mIVuI dx — ——
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First, we consider the case p = 1 + 4/N. We define the functional

1 — w?
2

1 1
Jo ) = S1IVul} + = 2 Ml (30)

and consider the following constrained minimization problem
di, =1inf/,(W) : u € H'(RY)\ {0}, P(w) = 0} BD)
and the set
RL ={(w,v) € X: (E—wQ)(u,v) <d},P(u) <0}, (32)
Where E and Q are the energy and the charge respectively, and the functional P is
defined by (13).

Note that
(F ~ 00)(,v) = Ju ) + 5 lv — iwul, (33)
P(u) = ZGALD(AN/Zu(A-))b;l. (34)

Lemma (5.1.9)[100]:Let N > 2,1+ 4/N<p <1+ 4/(N —2)and w € (—1,1). Then,

we have the following.

(i) ]a)(u) -

1
N(p-1)

P(u) > dlforallu € H(RN) satisfying P(u) < 0.

(i) The minimization problem (31) is attained at the ground state ¢,,of (2).
(iii) A(¢y,, iwp,) € RL forall A > 1.

Proof.(i) We put

1
dl(u) =J,(w) — mP(U)
1 2 1-w’
o R [T R ICAR €

Note that 1/2—2/N(p—1)>=0 by the assumption p=>1+4/N. Let ue
HY(RV) satisfy P(u) < 0. Then, we have u # 0, and there exists ; € (0, 1) such that
P(A;u) = 0. By (31), we have d} <], u) =JL(Au) <JL(w).(i) For the case
p>1+4/N,see[131],and forp =1+ 4/N,see [125].(iii) By (33), we have

(E = 0Q) (Mo, iwpe)) = Jo(Adw)

p+1

1 1 — w? A
= ) <§ IV, 15 + > ”¢w“%> o4l II%IIﬁIi.
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Since ]w(¢w) = d({ua)]_]w(ld)w)l/lzl = Oand a)%](u(l¢w)|/1=1 <0, we have (E -
wQ)(A¢y, iwgy,)) < difor all A > 1. Similarly, we have P(A¢,) < Ofor all 2 > 1.

Hence, we have A(¢,,, iwg,,) € R forall1 > 1.

Lemma  (5.1.10)[100]):Suppose that N =>2,1+4/N<p<1+4/(N - 2)and
w€(=1,1). If (uguy) €ERL, then the solution u(t)of (1)with (0)=

(ug, u,) satisfies

__r L
N @®) > d — E - oo u), ¢ €[0Ty, (36)

Proof. First, we show that P(u(t)) < 0 for all t € [0, T,ux ). Suppose that there exists
t; € (0,T,,y) such that P(u(tl)) =0 and P(u(t)) < Ofort € [0,t;). Then, by Lemma
(5.1.9) (i) and (35), we have

1 2 1 — w?

————||Vull? Iz >dL >0, t €[0,t,).
5 N(p_l)ll ullz + > lu(®)|l5 @ [0,¢;)

Thus, we have u(t;) # 0. Therefore, by (31), we have dl S]w(u(tl)).WhiIe, since
(up,uy) € RL,Eand Q are conserved, and by (33), we have]/,(u(t;)) < (E —

wQ)(ﬁ(tl))<d({). This is a contradiction. Hence, we haveP(u(t))<O for all

t € [0, Ty ). From this fact, Lemma (5.1.9) (i) and (33), we obtain (36).

Theorem (5.1.11)[100]:Let N > 2,1<p <1+ 4/(N —2),w € (—1,1)and ¢, be the
ground state of (2). Assume that |w| < w,if p < 1+ 4/N, where thecritical frequency
w.is given by (7). Then, the standing wave ei“’tqbw for the nonlinear Klein-Gordon
equation (1) is strongly unstable in the sense of Definition (5.1.2).

Proof.for thecasep > 1 + 4/N.Let 1 > 1 be fixed and denote

Np-1
5= 22D 41— (k- 0Q) (Ao iw8,)))

Then, by Lemma (5.1.9)(iii), we have & > 0. Suppose that the solution u(t)of (1) with
Uu(0) = A, iwg,) exists for all t € [0,1) and is uniformly bounded in X, i.e.,
My = supu(®)|lx < oo. (37)

t=0

Since u(t) is radially symmetric in x for all t > 0, we define I},(t) for u(t) by(26). By
(11) and (37), we have
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lu(t, x)|P+dx < [[u(®)]For. o [ (®)]I3

L% (|x|zm)
|x|zm

—(N=1)(p— 1 1 —(N-1)(p-

< cm~WN-D 1)/2||u(t)||2t < CMfJf m~-(N-1D(-1)/2
for all t = 0 and m > 0. Note that we assume N > 2. Thus, there exists my > 0 such
that

N(p-1)
sup| ——

C
up{ L= [ e nP i+ Sl | <.

0
[x]zmq

Thus, by Lemmas (5.1.8) and (5.1.10), we have

d 1
Elmo (t)

N(p-1 Co
> —P(u(®)) - % f S L e L0

lx|2mg
>26—6=96

for all t = 0. Therefore, we have 1 i m,4, I,lno(t) = 0. On the other hand,there exists a
constant C = C(my) > 0 such that Iy, () < C|[u(t)|l; < CMfor all t = 0. This is a
contradition. Hence, for any A > 1, the solution u(t)of (1) with % (0) = A(¢,,, iwg,,)
either blows up in finite time or exists forall t = 0 and 1 i nsup,_,o||U(t)||x = 0. This
completes the proof of Theorem (5.1.11) forthe casep =1+ 4/N. _

Next, we consider the case where p <1+ 4/N. For this case, we needa
different variational characterization of the ground state ¢, of (2) from that for the case

p =1+ 4/N. We define the functional

K8(w) = a1 = o)l + (e + 2) {Ivuly -~ Il
and consider the constrained minimization problem
dg, =inf], (W) : u € H'(RM\ {0}, K5 (w) = 0} (38)
and the set
R ={(w,v) €EX: (E—wQ)(uv) <d K3w) <0}, (39)

wherea = 4/(p — 1) — N > 0. Note that
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a+N_ 2
2 p-1

kS =20y, (Fu@))| . B= (40)

for thecasep <1 + 4/N.Let A > 1 be fixed and define
& = (a + 2){d, — (E - wQ) (M0, iwd,))},

62 - a{wQ(;{(¢wl lw¢w)) - Z(Q—:_)Z)dg};

and § = 6; + 6,. Then, by Lemma (5.1.12)(iii) below, we have §; > 0. Moreover, by
Lemma (5.1.12)(ii) below and (42), we have

2 2
—;g?ﬁg;ld WA Pull} < 220?913 = 0Q(A(Py, iwd,,)).

Thus, we have §, > 0and & > 0. Suppose that the solution u(t) of (1) with1(0) =
A, iwd,,) exists for all t € [0, 0) and is uniformly bounded in X.Since u(t) is radially
symmetric in x for all t > 0, we define I2,(t) for u(t) by(27). As in the proof of Theorem

(5.1.11) for the case p = 1 + 4/N, there exists mgy > 0 such that

N —
sup % j lu(t, x)l”“dx+—||u(t)||2 < 4.
=0 |xl2m,

Thus, by Lemma (5.1.8), we have
——F (O =-K@®)-6 t=0.

Here, recall that we assume |w| < w,, so we have 1 — (a + 1)w? > 0. Thus,by (18) and

Lemma (5.1.13) below, we have

—K(U@®))
> —2(a+2)(E — wQ)(@®)) + 22w (d(0)) + 2{1 — (e + Dw?}Hu®)II3
—Ka+2XE—wam@)+mm@GH0)+M1—w2—awﬂftiidg

=24
for all t > 0. Therefore, we have (d/dt)I5, (t) = 8for all t = 0, and 1 i g,e, I, (t) =
. The rest of the proof is the same as in the proof ofTheorem (5.1.11) for the case

p =1 +4/N, and we omit the details.
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Lemma (5.1.12)[100]:Let N > 2,1 <p < 1+ 4/Nand w € (—1,1). Then, we have the

following.

2> dOforallu € H*(R)satisfying K3 (u) < 0.

(i) The minimization problem (38) is attained at the ground state ¢, 0f(2).
(iii) A(¢y,, iwg,) € RO forall A > 1.

Proof.First, we note that

Jo (W) BCT)) K (u )_ || 115, (41)
Ro =i n‘{la—-l_wzz llull3: u € HY(RM)\ {0}, K (w) = 0}- (42)

(i) Let u € HY(RY) satisfy K3 (u) < 0. Then, we have u # 0, and there exists 1, € (0,1)

such that K2(4,u) = 0. By (38), we have
1— 2 2
RY < A
<l < —

(ii) Note that d2, > 0 by (42). Let {w;} € H*(R") be a minimizing sequence for (38). By

llull3.

considering the Schwarz symmetrization of u;, we can assume that {u]} c H},,(RM),
We refer to [105] for the definition and basic properties of the Schwarz symmetrization.
By (42),we see that {ulis bounded in L*(RY). Moreover, by K(u;) =0 and
theGagliardo-Nirenberg inequality, we have

(@ + 2|V + a1 — w®)|y];

2(0( +2) ” ||p+1 p+1-6
U;

o1 Il = Cllwll; 721,
where 8 = (p —1)N/2. Since p<1+4/N, we see that 6 <2 and that {u]} is
bounded in H*(RYN). Therefore, there exist a subsequence of {uj}(we still denote it by
the same letter) and w € H},;(RY) such that u; = w weakly inH'(R") and u; —
w strongly in LPT1(RM). Here, we used the fact that theembedding H},;(RY) &
LI ,(RN) is compact for 2 < q <2+ 4/(N — 2) (see[106]). Next, we show that w

0. Suppose that w = 0. Then, by K(?)(uj) = Oand the strong convergence u; — 0in
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LP*1(RN), we see that u; > 0 in H*(R"). On the other hand, by K3(u;) = 0 and the

Sobolev inequality, wehave

2 2 2(a+2)
(@ + 2)||Vy[|, + a1 = )|, = 1 ey

p+1
p+1

(p+1)/2
<C{@+flvyl, +att - oDyl

Since u; # 0, we have ||uj||H1 > (C for some C > 0. This is a contradition.Thus, we see

that w € H1(RM)\ {0}. Therefore, by (41) and (42), we have

2

m <1—w
©7 a+2

and K3(w) <1liminf,, K3 (u;) = 0. Moreover, by (i), we have K3(w) = 0.Therefore,

Y w? 2 L.
”W”% <lI lj_rgonm”uf”z =1 }_}Hgonﬂw(uj) =dY,

w attains (42) and (38). Since w attains (38), there exists a Lagrange multiplier n €

R such that

T

2y K (43)

Jow) =
That is, w satisfies

—(1=nAw + (1 — w?) (1 - aL+2") w—1-nwPlw=0 (44)

in H1(RM). First, we show thatn < 1. Suppose that 1 > 1. Then, by (44) and

K3 (w) = 0, we have

a
0= (L= mITwl3 + (1 = @) (1 = —n) Iwll3 = (L = Iwl]

_A-me-1 ,  ap-1DA-w?) 4 "

= Il + s 1 sl
2(1 — w?) "

=5z Iwl>0.

This is a contradition. Thus, we have n < 1. Since we have

1-1n>0, (1—w2)(1—Ln)>0

a+ 2
in (44), by [131], we have x - Vw € HY(R"). Therefore, by(43), we have
0= KS(w) = 200, (Fw(2 )| _ = 200,w),x - Vw + pw)
=1

n : __m
= — (K3 W), x - Vw + w) = — = GKS (Fw()|

(44 =1
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where B = (a + N)/2. Moreover, by K3(w) = 0, we have

9,K9 (ABW(A -))|A=1

2
= @21 — @) Wil + G+ 2 IVwllf 5 Il

= —2a(1 - w?)|w|l3 < 0.
Thus, we have = 0. Therefore, w satisfies J'(w) = 0 and K2 (w) = 0, where

K3 W) = (i, w),w) = IVull3 + (1 = w®)llull3 = lullpi;.

Since ¢, attains

i nfJ, (W) : w € H'(RV)\ {0}, K (u) = 0}
(see, e.g., [113]), we have ], (¢,) < J,(W). On the other hand,¢,satisfies K2(¢,) =
0, we have d? = J,(w) < J,(¢,). Hence, ¢, attains(38).

(iii) The proof is similar to that of Lemma (5.1.9) (iii), and we omit it.

Lemma (5.1.13)[100]:Suppose that N >2,1<p<1+4/Nand w€ (—1,1).

If(ug, uy) € RY, then the solution u(t) of (1) with %(0) = (ug, u,) satisfies
1— w?

a+2

lu@®llz >dg,  t €[0Ty
Proof.The proof is similar to that for Lemma (5.1.10). We omit the details.

Theorem  (5.1.14)[100]:let N >2,1<p<1+4/Nand ¢ € H'(RV)be any
nontrivial,radially symmetric solution of (2) with w = w.. Then, the standing wave
solution ei“’ctq) of (1) is very strongly unstable in the sense of Definition (5.1.1).The

same assertion is true for w = —w,.

Proof.Let us first note that identity (18) contains the reason that in Theorem (5.1.14) we
can allow any radially symmetric solutions of (2), unlike the case of Theorem (5.1.11)
where we can treat only the ground state of (2). Namely, when w = w.we have
1— (a+ 1)w? = 0, and therefore the identity (18) does not contain the norm ||u/|3.
Let us recall that inTheorem (5.1.11) we control this norm by using the variational

characterization of the ground state.
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Let ¢ € HY(RN)\ {0}be a radially symmetric solution of (2) withw = w,. Let
A >1and put

§ = aw.Q(A(p, iw.p)) — (@ + 2)(E — w.Q)(A(¢p, iwcp)).
Since J, (¢) =0, we have (E— wCQ)(/l((p,ingo)) = Jo,(A9) <], (@) ford > 1.

Moreover, we have wCQ(A(go, ia)cgo)) = w22?||@ll3 > w?||@ll3for 2 > 1.Thus, we have

1
§ > awéllell; = (a+2)], (¢) = —§K80(<p) —{1—(a+ Dw?}lell3.

By [131], we have x - Vo € H*(R"). Therefore, by (40) and by J;,_(¢) = 0, we have

K3, (@) = 2(J; (@), x - Vo + Bo) = 0.
Moreover, since (a + 1)w? = 1, we have § > 0. Suppose that the solution u(t) of (1)
with 1(0) = A(@, iw.) exists for all t € [0,00) and is uniformly bounded in X. Since
u(t) is radially symmetric in x for all t > 0, we define I2,(t) for u(t) by (27). As in the

proof of Theorem (5.1.11) for the case p = 1 + 4/N,there exists my > 0 such that

N —
sup & j lu(t, x)|p+1dx+—||u(t)||% < 6.
t20 xlme

Thus, by Lemma (5.1.8), we have

a1,%10(t) >—-K(u())-6  t=0.

Moreover, by (18) and (a + 1)w? = 1, we have
—K(4(@®))
—2(a + 2)(E — 0,Q)(U(®) + 2awQ(@®)) + 2{1 — (a + D} lu(®)ll3
> —2(a + 2)(E — 0.Q)(1u(0)) + 2aw.Q(u(r)) = 26

for all t > 0. Therefore, we have (d/dt)I3, (t) = 8for all t > 0, and 1 i p,e, I, (t) =
. On the other hand, there exists a constant C = C(my) > 0 such that I,zno(t) <
Cllu(®)||%4 < C for all t = 0. This is a contradiction. Therefore, for any 1 > 1, the
solution u(t) of (1) withu(0) = A(¢, iw.¢@) either blows up in finite time or exists for all
t = 0andlimup_el|u(t)||x = 0. Finally, by Lemma (5.1.15) below, if u(t) exists for
all t = 0,then supsol|t(t)||x < 0. Hence, u(t) blows up in finite time. This completes

the proof.
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Lemma (5.1.15)[100):let N >2and 1<p<1+4/(N—1). If ue C([0,1),X)is

aglobal solution of (1), then sup.so||u(t)]|x < 0.

Proof.By Proposition (5.1.3) and Lemma (5.1.5) in [118], we have

stgopllﬁ(t)llz < o, (45)
t+1
sup [ (s lfds < o (46)
t
By (46) and the conservation of energy E, we have
t+1
= sup [ 17)I5ds < oo @7)
t

Note that the estimates (45), (46) and (47) hold true for 1<p <1+4+4/(N —2). In
what follows, we use an argument in Merle and Zaag [118].First, forr = (p + 3)/2, we

show

s gopllu(t)llr < oo (48)

Indeed, by (47) and the mean value theorem, for any t > 0 there exists 7(t) € [t,t + 1]

such that

t+1

fuee)IP:: = f lu()IEids < ;. (49)

Since 2<r<p+1, it follows from (45) and (49) that suptzo||u(r(t))||r<oo.

Moreover, for any t = 0, we have
t
T r d r
lu@IIF = [lu(z®)]| = s lu(s)l7ds
T(t)

t+1

< Cf flu(s, x) |7 0su(s, x)|dx ds
t RN
t+1

< [ (NG + lsu(s)13)ds.

t

141



Since 2(r — 1) = p + 1, by (46), (47) and supt20||u(T(t))||r < oo, we have(48). Next, by
the Gagliardo-Nirenberg inequality, we have

@ llp+1 < Cllu@IF°IIVuOII3,

1 _0(1 1>+1—9
p+1 \2 N r

Since we assume p <14 4/(N — 1), we have (p + 1)8 < 2. Thus, by (48), there exists

where

a constant C, > 0 such that

2 p+1 1 )
—— lu@®llpir < G +35IVu®Il3 =0

Moreover, by the conservation of energy E, for any t = 0 we have

2
Ol

li®N% = 2E(@(0)) + "

. 1
< 2E(1(0) + C; + 5 IVu(®I3,

which implies [|(t)11% < 4E(%(0)) + 2C,. This completes the proof.

We conclude this section with the proof of Theorem (5.1.16) below.

Theorem (5.1.16)[100]:(due to Kenji Nakanishi) Let N>2,1+4/N<p<1+
4/(N —2),|w| < 1land ¢,be the ground state of (2). Then, the standing wave
ei“’tcpw for the nonlinear Klein-Gordon equation (1) is very strongly unstable in the

sense of Definition (5.1.1).

Proof.(due to Kenji Nakanishi). Following the proof of Theorem (5.1.11), take the
radially ~symmetric solution u(t,r)(r = |x|) startingfrom (u(O),atu(O)) =
A, iwd,) with A > 1, and assume by contradiction that it exists for all t > 0. Then

Cazenave’s estimate (46) implies that there exists M < 1 such thatforallT > 0
T+1
f j|atu|2 + |Vul? + |u|?dxdt < M. (50)
T RN

Hence for any positive integer j, there exists T; € [j — 1, j] such that
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f |0,ul? + [Vul? + Iulzdx|t=T]. < M.
RN

By Lemmas (5.1.8), (5.1.9) and (5.1.10), there exists § > 0 such that for any m > 1

and t > 0 we have

d N(p-1) C
TR 228 -Ra@, R ==L [ Pt + SO,

|x|=zm
where I} is defined by (26). Here and below C is a positive constant, which may depend

only on p and N. Integrating in t, we get
Tjy2

1%1(7}4_2)—1,1,1('1})225—[ R,,(D)dt,
Tj

since Tj,, — T; = 1. Notice that (50) is enough to control the error term R,, uniformly in
j. To see this, let x(t,7) € C*(R?) satisfy y(t,7) =1 when|t| < 2and |r| =1, and
xt,r)=0if |t| =4 or |[r| <1/2. Forany m>1and T > 4, let v(t,r) = y(t — T,

r/m)u(t, |r]). Then we have

f|atv|2 +10,v|? + |v|?drdt

RZ
T+4
<Cm'~VN f f|atu|2 + [Vul? + |u|?dxdt < 8Cm*~NM.
T—4 RN
Hence the Sobolev embedding H'(R?) c LP*1(RR?) implies that
T+2 o T+2
f f lulPHidxdt < CZ f (ij)N_l f |lu|P+idrdt
T-2 |x|z2m j=0T1-2 rz2jm

< Cm~ - DW-1/2p1(p+1)/2,
Therefore choosing m sufficiently large, we obtain
B(T42) ~ 1(T) 2 8

for all j = 4, which contradicts the global bound
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I3 (T;) < Cm fla,:ul2 + |0, ul? + |u|2dx|t=T]. < CmM.
RN

Theorem (5.1.17)[100]:Let N = 2,3,w € (—1,1), ¢, be the ground state of (20),
andc, # 1if N = 3. Then, the standing wave (ei“’tgbw, —|gbw|2) of KGZ system (3)-(4) is
strongly unstable in the following sense. For any A > 1, the solution u(t)of (3)-(4) with
initial data u(0) = (A¢,, liwg,, —1%|d, 1%, 0) either blows up in finite time or exists
globally and satisfies | i mup,_,e|lu(t)|ly = oo.
Proof.Let A > 1 and put

dy = (H — 0Q) (b0, iwdy, —|d0l?, 0),

§ = N{d, — (H — wQ) (A, liwd,, —A2|¢,, |2 0)},
Where Hand Qare defined by (19) and (6), respectively. In the same way as in Lemma
(5.1.9) (iii), we see that § > 0. Suppose that the solution u(t) of (3)-(4) with u(0) =
A, liwg,,, —2%| P, |%, 0) exists globally and satisfies M := sup.sollu(t)|ly < . Note
that since the initial data is radially symmetric, the solution u(t) is also radially
symmetric for all t > 0. Following Merle [124], we introduce the function w(t) =

—(—A)"t9mn(t), and for m > 0 we consider the function

Ta®) = (D) + [ wanawar,
0 RN

where I} (t) is defined by (26) and ®,and ¥,,are given by (21). Note that
since 9,n(t) € H-1(R"), we see that w(t) € H*(RM) and ||d,n||z-1 = ||Vw||,.By the

same computations as in Lemma (5.1.8), we have

d . 1
—Elm(t) =2 f‘{’,’HIVuIde+§ j @, (n? + 2|ul|*n)dx
RN

]RN
1 1 N-1
_= fAcpm|u|2dx+—2 f (‘P,’n——LPm>|VW|2dx.
2 2¢4 ) r
R

RN

By Lemma (5.1.7), we have
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j W, [Vul?dx < Va3

1 M2
fACD lul?dx = IIu(t)Ilz < )
2 m

RN 2

, N-1 ) )
[ (0 === ) IPwl2dx < VW3 = 100D 5.
RN

Moreover, we have

f ®,,(n? + 2|ul*n)dx
RN

=7 f d,,(n+ |u|?)?dx — f Nlu|*dx + f(N — @) |ul*dx
RN RN RN

< Nlln + [ul?l2 = Nllull? + j(zv—cbm)|u|4dx,
|x|zm

and by (11) we have

f (N = @) |ul*dx < Cllu(®) | oo (i zm e (OI13
|x|zm
4

C,M
— lu@®llf: < v

Therefore, we have

d . _ CLM?
— = In(®) < P(u(®) + 71112 +

forallt = 0, where we put

i s N N 1
PQu,v,n,v) = 20IVullz = 5 el + = lIn + [ul*lI2 + 5

2
7z 7l

Note that

(H - wQ)(w,v,n,v) — %Is(u, v,n,v)
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1 ] 5 1\ 1 ) 1 1 5 — w? 5
= 3l = il + (1= ) gz IV + (5 = ) 19l + =
1 1 , 1- w? 5
> (5 = ) IVl + == llul?
Using this inequality, in the same way as in Lemmas (5.1.9) and (5.1.10), we see that
—P(u(®)) = 2N{d, — (H — wQ)(u(0))} = 26 (52)
holds for all t = 0. Therefore, taking m; > 0 such that
M, C,M*
1 22 + ZN_l < 5,
my  m

by (51) and (52), we have (d/dt)],, (t) = &for all t > 0, and 1 i BL,e Ly, (t) = 0. The
rest of the proof is the same as in the proof of Theorem (5.1.11) for the case p > 1 +

4 /N, and we omit the details.

Theorem (5.1.18)[100]:Let N = 3,¢, # 1, |w| < %and ¢, be the ground state of(20).

Then, the standing wave (ei“’tgl)w,—lqbwlz) of the KGZ system (3)-(4) is very strongly
unstable in the following sense. For any A > 1, the solution u(t) of (3)-(4) with the initial
datau(0) = (¢, Aiw,,, —A?|¢,|?, 0) blows up in a finite time.

Proof.let A1 >1. Suppose that the solution wu(t) of (3)-(4) with
u(0) = (A, liwg,,, —A?|¢, 1% 0) exists globally. By the assumption|w| < 1/v/3, we
can take a such that 2w?/(1 — w?) < a < 1. For such an @, we consider a function

defined by

1 a
I,(®) = =3 lu@®l3 + = InON1%-1 ;.
2 cH
Note that since n(0)=-2%|¢,|? € (R NL*(R®) c H '(R¥and dnE€

C ([0, 0); H‘l(]R3)), we see thatn € C* ([O, 0); H1(R3) n LZ(]R3)). Then, we have
d
ala(t) = Re(u(t), 0pu(t))2 + ﬁz(n(t), on(t)) -1
Co

= Re(u(t), d,u(t) — iwu(D) 2 + %(n(t), (D)1,
0

and
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d? 2, @ 2 sy 2
757 [a®) = 19N + = 192 OF-1 — IVu@®IF - I3
0

—alln@®|3 - 1+ a) flu(t,x)lzn(t,x)dx.
]R3
Thus, we have
dZ
FIa(t) +2(1+ a)(H — Q) (u(0)) — 20Q(u(0))
_ p ] ) 1—a\ «a p )
= 2 + (@ ~ iwu® + (2 + ) 10l

+Koo (), (1)),

where we put

2

w 1 1
Il + 5 Il +5 [ uGOPrGds,
R3

2

1
Jou,n) = EIIVuH% +

K3 o (u,m) = 03, (A, )| __

= [[Vull3 + (1 — 0?)[ull3 + allnll3 + (1 + a) f lul?ndx,
R3

Ko (u,n) = 20,], A4~ D/*u(-/2),n(-/D)],_,

2—a

+
IIVullz—(l — w?)lull3

3 2+a
+5lInll —— flulzndx,
2 a
R3
and put

](}),a (u: Tl) = Jw (u, ‘I’l) - K(}),a (u, ‘I’l)

21+ a)

vl + 22 g+ 2
“1+a i T iz g
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]Z),a(u: n) =](u(u!n) - 2(2 + a) K(%,a(u'n)
a l1—-«a
— \v; 2 2}’
vl + —= i
9 -1 2w?
- (1- wda

Then, we have 0 < 8 < 1 and

Kpaw,n) =200+ a)0/5,(u,n) + (2 + a)(1 — 0)J2 o(u,n).
Moreover, in a similar way as in Lemmas (5.1.3) and (5.1.4) in [113], we can prove
that](f;'a(u(t),n(t)) > d,forallt > 0andj = 1,2. Therefore, we have

Kpo(u@®),n(@®)) =20+ a0+ 2+ a)(1—-0)}d,

w? .
=2 1+0(—1_w2 d

for all t > 0. Moreover, since we have d, = (1 — w?)||¢, |3, putting f = mi n{2 +

a,2+ (1 —a)/2a}, we have
2 a
22 la®2F {”atu(t) —iwu@®l3 + P |I6tn(t)llﬁ,-1}

+2(1 + a){d, — (H — wQ)(u(0))} + 20Q(u(0)) — 2w?||¢p,, lI3
for all t>0. Since > 2,(H—wQ)(u(0)) <dy,and wQ(u(0)) > w?|l¢,I3for all
A > 1, by the standard concavity argument, we see that there exists T; € (0, o) such
that 1 i m,r,_¢ Io(t) = a. This is a contradiction. Hence, for all 4 > 1, the solution u(t)
of (3)-(4) with u(0) = (A¢,,, liw,,, —A?|¢p,|?, 0) blows up in finite time.

This completes the proof.
Lemma (5.1.19)[219]:For m > 0, we have
2(1+¢)

D,,(r) = — Yy (r) =7, 0<r<m, (53)

P+ (1) = B (), 720, (59
|c1>,(,’f)(r)| s%, r>0 k=012, (55)
W) <1, =0 (56)
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Proof.Properties (53)-(55) follow from the definition (52). We show (56). Integrating by

part implies

()P P

0
-
2(1+€)
=1 ¢ Q) - <I>£n(8)ds
0
Thus, by (54), we have
2+¢€
Y (1) = O (1) —7¢m(r)
-
) + 220! (s)ds
= —CI)m r 2(1+€) € m )
2(1+¢) 20 +e)r ¢ 4

Since ®@,,(r) < 2(1+6) nd ®,,(r) < 0forr > 0, we have (56).

Lemma (5.1.20)[219]:Let un(tj) be a radially symmetric sequence of solutions of (1),

and put
I,ln(t]-)=2Re f Ym0ty O Up dx; + Re Dot O U dX;, (57)
2(1+€) 2(1+€)
R € R €
B(y) = (o) + aRe | undy (59)
2(1+€)
R €

_22 2
where a = %. Then, there exists a constant C, > 0 independent of m such that

d 2(1+e C
() =P ((6) + [ fual )+ (59)
|xj[zm
d 2(1+e) C
—d—tjlﬁl(tj)ﬂ( 2 (6)) + 5 j i (G %)y + S a3 (60)
|xj[=m

forall t; € [0, Typy).

Proof.We multiply the equation (1) by ¥,,,0,u,and by ®,,,u,, respectively, and have
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d . , 2+e€ 2
——2Re f z/}marunat].undxj = f Um +?1/)m |6t].un| dx;

dt;
2(1+€) 2(1+€)
R e R €
, 2+¢€ ) , 2+¢€ )
+ Ym = —— Pm|Vun|"dx; — Ym + ——Pmlunl®dx;
2(1+€) 2(1+€)
R e R €
2 2+¢€
+ o+ —— Y lu,|*tedx;,
—— | T mlualted,
2(1+€)
R €
and
d L 2 1 5
—ERe @munatjundxj = — d,, |6t].un| dx; — 5 AD, |uy|*dx;
J 2(1+6) 2(1+6) 2(1+6)
R € R € R ¢

+ j@mIVunlzdxj+ fcbmlunlzdxj— jcbmlunl“edxj.

2(1+€) 2(1+€) 2(1+€)
R € R € R €

By (54) in Lemma (5.1.7), we have the identity

d c 1
- dy tnlty) =2 j VmlVinlPdx; = 572 j Pttt = J ARy, || *dx;
2(1+e) 2(1+€) 20+0)
R e R ¢ R

The inequality (59) follows from Lemma (5.1.7). Finally, (60) follows from (59),(14) and
(18).

First, we consider the case € = 1. We define the sequence functional

2

1 [OF 1
]wj(un) = Ellvun”% + 2 ’ ”un”% - Z__I_(:_”unlléigi (61)

and consider the following constrained minimization problem

2(1+€)

di, =i nf{]wj(un) 1, € H (RT) \ {0}, P(u,) = o} (62)
and the set

Ry, = {n V) € X 1 (B — Q) (tn, v) < d, P(uy) < 0}, (63)
where Eand Qare the energy and the charge respectively, and the functional P is

defined by (13).
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Note that

(64)

1
(E - (‘)jQ)(un'Um) :]wj(un) + E ”vm - i(‘)j

(65)

P(un) = 20,),,, <,12(1: %/ 2u, (A .)>

A=1

Lemma (5.1.21)[219]:Let ¢ > 0 and w; € (—1, 1). Then, we have the following.

2(1+€)

(iv) Joo, (un) — P(uy) > d} forallu, € H! (R : )satisfying P(u,) < 0.

2(1+e)(e 1)
(v) The minimization problem (62) is attained at the ground state of the

sequence qbwjof (2).
vi) 2 (fo iw;bo, ) € R forall 2> 1.

Proof.(i) We put

1
dfluj(un) = ]wj(un) - mp(un)
€

2

= o vl + D 3. (66
4‘(1+E) TLZ 2 Un 2" ( )

+€)
By the assumption € > 1. Let u,, € H?! (]RT>satisfy P(u,) < 0. Then, we have u, #
0, and there exists A; € (0,1) such that P(A;u,) = 0. By (62), we have d}ui <

]wj(j-lun) :](})j(llun) <](})]~(un)-
(ii) For the case € > 1, see [6] and see [19].

(iii)) By (64), we have

(E - w;Q) (A (¢0, iw,-d)wj)) = Ju, (A0,

= )2 G ||v¢wj||z 41 _Zw

].2 2
0, ]) - 5= w0
Since  J,, (gbwj) = diy 01w, (Aqbwj)|/1=1 = 0Oand 6/12]0)]. (A¢wj)|/1=1 <0, we

have(E — ij) (A (qbwj,ichpwj)) < d}vjfor all A > 1. Similarly, we have P (Ad)wj) <

0 forall A > 1. Hence, we have A(qbwj, iw]-d)wj) € iR}D].for allA > 1.
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Lemma (5.1.22)[219]:Suppose that e > 0and w; € (—=1,1). If (Up_1,Up41) € Ri)j, then

the sequence of solutions u, (¢;)of (1)with @, (0) = (u,_1, Uns1) satisfies

=P (un(t;)) > db; = (E = 0jQ) tn-1,Uns1), 1 € [0,Ty).  (67)
Proof. First, we show that P (un(tj)) < 0forall t; € [0, Tpay ). Suppose that there exists
(¢), € (0,Tpny) such that P (un(tj)l) =0 and P (un(tj)) <O0fort; € [O, (tj)l).

Then, by Lemma (5.1.9) (i) and (66), we have

€ — 1 — w?
Do)l > i, >0, gefo(s),).

\Y%

Thus, we have un(tj)l # 0. Therefore, by (62), we have dlj S]w]. (un(tj)l).While,
since (Up_1,Up41) € R}U]., Eand Qare conserved, and by (64), we have ]w,- (un(tj)l) <

(E — a)jQ) (ﬁ(tj)l) < d({)j. This is a contradiction. Hence, we haveP (un(tj)) < 0 for
all t; € [0, Typy ). From this fact, Lemma (5.1.9) (i) and (64), we obtain (67).

Lemma (5.1.23)[219]: Let € > 0 and w; € (—1,1). Then, we have the following.

2(1+€)

—w?
) 10(:)2’ lunll3 > dg}.for allu, € H! <]R{T)satisfying K(?)].(un) < 0.

(ii)The minimization problem (38) is attained at the ground state of the sequence
qbwjof(z).

(jii) A (qbwj, iwj%j) € RY forall 2> 1.

Proof.First, we note that

2

Joo;(Un) = ) = —2 5 iz, (68)

2(a +2) “’J

:Rg,:inf{ 5wy € P (R )\{0} K, (un)—o} (69)

2(1+¢€)

(i) Let u, € H? <R . )satisfy K(f’)j(un) < 0. Then, we have u, # 0, and there exists

A1 € (0,1) such that K(g}.(/llun) = 0. By (38), we have

1 — w? — w?
0 ] 2 J 2
T — IAunllz < 712 llunl3.
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2(1+€)
(ii) Note that d? ;2 0 by (69). Let {(un) } c H! (R E ) be a minimizing sequence for
(38). By considering the Schwarz symmetrization of u;, wecan assume that {(un)j} c

2(1+€)

H., (]RT> We refer to [2] for the definition and basic properties of the Schwarz

2(1+€)
symmetrization. By (69), we see that the sequence{(un) }ls bounded in L? (R E )

Moreover, by K(?,((un)j) = 0 and the Gagliardo-Nirenberg inequality, we have

(@ + [V |[: + a(1 = wf) || o), |

2(a + 2) 2+€ 2+€—-0

S wa), | 19, 12

where 8 =1+ €. Since € > 1, we see that < 2 and that the sequence{(u,);}is

< |Gl

24+e

2(1+€)

bounded in H* (R E ) Therefore, there exist a subsequence of {(un)j}(we still denote

2(1+€)

2(1+€)
it by the same letter) and w € H},, (]RT) such that (u,); = w weakly inH* <]RT>

2(1+€)

and (u,); — wstrongly in L€ (R E ) Here, we used the fact that the embedding

2(1+€) 2(1+¢)
H., (IRT> S L‘iad (R E ) is compact for 2 < q < 2(1+¢€) (see[30]). Next, we

show that w # 0. Suppose that w = 0. Then, by K(?)j((un)j) = 0 and the strong

2(1+€) 2(1+¢)

convergence (u,); = 0in L**€ (R e ) we see that (u,); = 0 inH! <]R . ) On the

other hand, by K(f’)j((un)j) = 0 and the Sobolev inequality, we have
Z(a + 2)

2+€

(a + D[V, I, + a(1 = )|l = 5 1 un),

2 (2+E)/2

< ¢ {(a +2)|[van);l; +a(1 - wf)ll(unnllz}

Since (u,,); # 0, we have ||(un)j|| , = C for some C > 0. This is a contradition.Thus,

2+€

we see that w € H? (R € )\{0} Therefore, by (68) and (69), we have

. _1-wf , . 1-wf s .
do; < ——— lwllz <1imi nf——- | un),|[, = l}j{l}onﬂwl-((un)]’) =dy,
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and K(?,j(w) <limnf,e K(?)j((un)]-) = 0. Moreover, by (i), we have ng(w) =
0.Therefore, wattains (69) and (38). Since w attains (38), there exists alagrange

multiplier n € R such that

Ty ) = 5= (K8, ) (). (70)

That is, w satisfies

—(1—n)Aw+(1—w})(1—aL+2n)w—(1—n)|w|€w=0 (71)

2(1+€)
in H™1 (]R{T) First, we show thatn < 1. Suppose that n = 1. Then, by (71) and

K(f’)j(w) = 0, we have

o
0= =mIwl + (1= w}) (1= —n) IWli3 - (L = mlwli3e

(1—n)e ae(1— w?) 4
=———||Vwl3 —{ -1 }
7 Ivwllz + 2@t U1 Iwll3
20 -wf)
—_— 0.
> 2L lwll >
This is a contradition. Thus, we have 1 < 1. Since we have
1-n>0, (1- 2)(1—— )>0

2(1+e€)

in (71), by [6], we have x; - Vw € H?! (]R e ) Therefore, by(70), we have

0 = K3 (W) = 203J,, (zﬁwu .))|A=1 = 2(Ji,, (W), %; - Vw + fw)

N
+ 2

= - Z ’ (KS,) (w),x; - Vw + pw) =

0K, (ABW(A '))L

where 8 = (a + Z(HE)) /2. Moreover, by K2 (W) = 0, we have

0,K3, (Aﬁw(l .))|A=1

2
= (1= o)Wl + (@ +2)* {Iowll3 — = Iwlizre]
= —2a(1 - w}?)lwli3 < 0.

Thus, we have n = 0. Therefore, w satisfies J'(w) = 0 and Kaz)j(w) = 0, where

K£j(un) = (](Z)j(un);un> = Ilvun”% + (1 - wjz)llun”% - ”un”%ig
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Since ¢, attains

2(1+€)

i, ) € 1 (R \ (00,3, () = 0]

(see, e.g., [23]), we have ]w]. (cpwj) < ]w].(w). On the other hand, the sequence
b, satisfies Kaz)j (gbwj) = 0, we have dg)j =]wj(w) < Jo; (gbwj). Hence, the sequence
qbw]. attains (38).

(iii) The proof is similar to that of Lemma (5.1.9) (iii), and we omit it.

Lemma (5.1.24)[219]: Suppose that e > 0and w; € (—1,1). f(up_1, Up4q) € 722)1., then

the sequence of the solutions un(tj)of (1) with u,,(0) = (Uy_1, Up41) satisfies

1— 2

w; 2
—— (), >4, €0 mo.

Proof of Theorem 1 for the case € > 1.Let A > 1 be fixed and denote

_ @{di’i — (E — ij) </1 ((pwj, iwj¢wj)>}.

€
Then, by Lemma (5.1.9)(iii), we have § > 0. Suppose that the sequence of solutions

d:

un(tj) of (1) with u,,(0) = A(¢wj,iwj¢wj) exists for all ¢; € [0,1) and is uniformly
boundedin X, i.e.,

M, = supl (s, < (72)

J

Since the sequence u,(t;) is radially symmetric in x; for all ¢; > 0, we define I},(t;) for

un(tj) by(57). By (11) and (72), we have

Jun (87, 5)| " dg; < ”un(tk)”lf;’%lxklzm)”un(tj)nz

|xj|=m

_2te 2+€
<Cm 2 |

[un(@)]l,,2

forallt; = 0 and m > 0. there exists my > 0 such that

< CM12+Em_(%)(€_1)/2

2(1+¢) 2+ C 2
s 2850 [ (o) + 2 o)l <o

|xj|2m0

Thus, by Lemmas (5.1.8) and (5.1.10), we have
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d
d_tj171no (tj)

2(1+¢€ C
> —P(un(0) ~ | ot [l ) g + S 6)
0

|xj|=mq
>26—6=6
for all t; = 0. Therefore, we have li Moo I,ln0 (tj) = co. On the other hand, there exists
a constant C = C(m,) > O such that I}, (¢;) < C||u_’(1:)||2 < CM?forall t; > 0. This is
- 0 mo\Yy ) = n\%/lly = 1 j = Y-
a contradition. Hence, for any 1 > 1, the sequence of solutions un(tj)of (1) with
u,(0) = A(qbwj,iqubwj) either blows up in finite time or exists forall t; = 0 and
li rrsupt]._m”u_n)(tj)”X = oo, This completes the proof of Theorem(5.1.1) for the case

e > 1.
Next, we consider the case where € > 1. For this case, we needa different

variational characterization of the ground state of the sequence qbwjof (2) from that for

the case € > 1. We define the sequence of the functional

2
K3, un) = a(1 = 0Py} + (@ + 2 {19unll3 = 5 328},

and consider the constrained minimization problem

2+
a9, =i 0, () : uy € Y (R)\ (0}, K8, () = 0] (73)
and the set

where @ = 2(1—€) > 0. Note that
o+ ()

K i) = 2040, (P, 19)| . p=—l =2 ()

Proofof Theorem 1 for the case p < 11+—+36.Let A > 1 be fixed and define

5, = (a+2) {dgj — (E - w;Q) (A (%,-, iqubw,-))};

w?(a+2) 0 }

6, =a {w]-Q ()L (qbw]., ichl)w].)) — w;

— w2
1w]
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and § = 6; + §,. Then, by Lemma (5.1.12)(iii) below, we have §; > 0. Moreover, by
Lemma (5.1.12)(ii) below and (69), we have

wj Z2(a +2)

T o, = o ||¢“’ ” < Yoj ”%j”z = ;¢ (A (¢wj’i“)f¢wj)>'

Thus, we have §, > 0and § > 0. Suppose that the sequence of solutions un(tj) of (1)
with u,,(0) = /1(¢wj,iqubwj) exists for all t; € [0,00) and is uniformly bounded in
X.Since the sequence un(tj) is radially symmetric in x; for all t; = 0, we define Iﬁl(tj)

for un(tj) by (58). As in the proof of Theorem (5.1.1) for the case € = 1, there

exists my > 0 such that

2(1+¢€) 2+ ¢ 2
sup| ———— j [un (87, %) dej+m_%”“n(ti)“z

|xj|2m0

Thus, by Lemma (5.1.8), we have
—12 () 2 K (T(5)) -8, =0
Here, recall that we assume |w;| < (w;) , so we have 1 — (a + 1)w} = 0. Thus, by (18)
and Lemma (5.1.13) below, we have
K ((t))

> —2(a + 2)(F - 0;0) (w(t)) + 2000 (wi(t)) ) + 2{1 = (@ + D} Jun (),

> ~2(a + D)(E - 0,0) (Ti(t)) + 200, (W(1)) + 2(1 — w} ~ aw?) 2=,

- wf

=28
for all t;=0. Therefore, we have (d/dtj)l,zno(tj) > 6for all t; >0,
andl i Moo I,Zno(t]-) = 0. The rest of the proof is the same as in the proof of Theorem

(5.1.11) for the case € = 1, and we omit the details.
2(1+€)
Theorem (5.1.25)[219]: Llet € > 2and ¢ € H! (R € )be any nontrivial,radially

symmetric solution of (2) withw; = (a)j)c. Then, the sequence of the standing wave
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solutions ei(2f=1(“’f)ctf)<p of (1) are very strongly unstable in the sense of Definition

(5.1.1).The same assertion is true forw; = —(wj)c.

Proof.We know that identity (18) contains the reason that in Theorem (5.1.14) we can

allow any radially symmetric solutions of (2), unlike the case of Theorem (5.1.1) where

we can treat only the ground state of (2). Namely, when the sequence w; = (a)j)cwe
2

have 1 — (a + 1)(a)j)c = 0, and therefore the identity (18) does not contain the

sequence of norms ||u,||3. Let us recall that inTheorem (5.1.11) we control this norms

by using the variational characterization of the ground state.

2(1+¢€)

let ¢ € H? (R )\{0} be a radially symmetric solution of (2) with the

sequence w; = (a)j)c. Let A > 1 and put

6= a(wj)CQ (A ((p, i(a)j)cgo)) —(a+2) (E - (a)j)CQ) (A ((p, i(a)j)cfp)>.
Since ]{wj)c((p) =0, we have (E - (a)j)CQ) ()L (go,i(a)j)c<p)) =](wj)c(l<p) <
](wj)c(go) forA > 1. Moreover, we have (a)j)cQ (A ((p,i(wj)cfp)> = (wj)j/12||<p||§ >
(w]-)illfpllgfor A > 1.Thus, we have
5> a(w) gl — (@ + 2, @) = 58, ) @) = {1 = @+ D(w)}}lIgl
By [6], we have x; - Vg € H! <R@> Therefore, by (40) and by]{wj)c((p) = 0, we have
K(woy), (@) = 20, ) @)% - Vo + pg) = 0.

Moreover, since (a + 1)((»]-): =1, we have § > 0. Suppose that the sequence of
solutions un(tj) of (1) with u,(0) = )L(go,i(a)j)cq)) exists for all t; € [0,00) and is
uniformly bounded in X. Since the sequence un(tj) is radially symmetric in x; for all

t; = 0, we definel;,(t;) for u,(t;) by (58). As in the proof of Theorem (5.1.11) for the
;> 0, we definel2,(¢;) for u,(¢;) by (58). As in th f of Th ( ) for th

case € > 1,there exists my > 0 such that
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2(1+e€ C
sup (2 s ) f |un(tj,xj)|2+6dxj + m—%”un(tj)uz <é.

tjEO

|xj|=mq

Thus, by Lemma (5.1.8), we have

ditjl,gno(tj) > -k () -6 =0
Moreover, by (18) and (@ + 1)(w;)" = 1, we have
K (@(4))
> —2(a+2) (E - (0),0) (@ () + 20() @ (@(1)) + 2{1 = (@ + D(@):} lun (&)1
> —2(a +2) (E = () Q) (@ (0)) + 2a(w;) . (W (t)) = 26
for all ¢ >0. Therefore, we have (d/dt;)I% (t) = 68for all t; >0,
and1i @ 12, (t;) = . On the other hand, there exists a constant C = C(m,) > 0
such that 12, (&;) < C|[T;(t))||", < Cfor all t; > 0. This is a contradiction. Therefore, for
any 1> 1, the sequence of the solutions u,(t;) of (1) with u,(0) = A ((p,i(wj)c(p)
either blows up in finite time or exists for all ¢; > 0 and 1 i mup || ()], = co.
Finally, by Lemma (5.1.15) below, if the sequence u,(t;) exists for all ¢; > 0,then
suptj20||ﬁ(tj)||x < . Hence, the sequence u,(tj) blows up in finite time. This

completes the proof.

4(2+€)
€

Lemma (5.1.26)[219]:Let0 < € < . If u,, € C([0,1),X)is aglobal solution of (1),
then s up, 2ol (D)l < oo.
We have the following (see[35]).

Proof.By Proposition (5.1.3) and Lemma (5.1.5) [118], we have

sup||i ()|, < oo, (76)
tjEO 2
tj+1
supf 1%, (s)|%ds < oo. (77)
tjEO 4
]

By (77) and the conservation of energy E, we have
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tj+1

cf=mmj'ma@mﬁws<w. (78)
tj

thO ‘

Note that the estimates (76), (77) and (78) hold true. In what follows, we use an

argument in Merle and Zaag [118].First, forr = (4 + €)/2, we show

fug)”u”(tf)”r < oo, (79)
]'Z

Indeed, by (78) and the mean value theorem, for any t; = 0 there exists T(t]-) €
[t]-, ti + 1] such that
tj+1

[« (e@)]" = | tuntodlizeds < c. (80)

tj

Since 2 <r<2+e, it follows from (76) and (80) that SUP;>0

[u ()] <.

Moreover, for any t; = 0, we have

tj
T d
lun (DI, ~ [Juen (+(2) | = ‘f — llun(s)lFds
(t)
t]'+1
SCf j |un(s,x]-)|r_1|65un(s,x]-)|dxj ds
tj RM
tj+1

<C [ (@I + MosunI3)ds.

t

By (77), (78) and SUP ;>0

|ua (2(1))
Nirenberg inequality, we have

1-6 0
len (&)1, < Clln (I [Vun (811

wre < 9, we have(79). Next, by the Gagliardo-

where

2(1+¢)
6= .
2+¢€

160



Since we assume € < 2, we have 8 < i Thus, by (79), there exists a constant C, > 0

such that

2 2 1 2
2 I < G Gl o

Moreover, by the conservation of energy E, for any t; = 0 we have

— 2 — 2 2+
[ (&)1, = 2E@ @) + 55— lun(&)Il; ..
2+¢€
. 1
< 2B(T () + Co + 5 [un(8) 115

which implies ||u_n’(t])||)2( < 4E(u_n’(0)) + 2C,. This completes the proof.
We conclude with the proof of Theorem (5.1.16).

Theorem (5.1.27)[219]:(due to Kenji Nakanishi) Let € > 2,|a)j| < land qbwjbe the

ground state of (2). Then, the sequence of the standing waves ei(zf=1wftf)¢wjfor the
nonlinear Klein-Gordon equation (1) are very strongly unstable in the sense of Definition
(5.1.1).

For the critical sequence of frequency w; = (w]-)cin the casel <1+e<1+

2(1+€)
€

4/

standing waves which are not necessarily related to the ground state[35].

, we can show a much more general instability result for the sequence of the

Proof.(due to Kenji Nakanishi). Following the proof of Theorem (5.1.11), take the

radially —symmetric the sequence of squtionsun(t-, xj|) starting  from

<un(0), atjun(O)) = A(d)wj,iqubwj) with A > 1, and assume by contradiction that it

exists for all t; = 0. Then Cazenave’s estimate (77) implies that there exists M < 1such

that forallT > 0

T+1
2
j j |6t].un| + [Vuy|* + |uy|*dx;dt; < M. (81)
T 2(1+€)
R €

Hence for any positive integer j, there exists Tj € [j — 1, j] such that
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2
|6tjun| + [V, |* + |u, | dx; <M.

2(1+6) tj=Tj
R €

By Lemmas (5.1.8), (5.1.9)and (5.1.10), there exists § > 0 such that for any m > 1

andt; > 0 we have

d 2(1+6) C 2
T n(t) 226 = Rn(4),  Rm(f) = ——— f [un|?*€d; + — [[un ()],

|xj|=m

where I} is defined by (57). Here and below C is a positive constant, which may depend

only on (1 + €)and 2(1:6). Integrating in t;, we get
Tjyz
(Tyea) = (1) 2 26 = [ Ru(5)ds
Tj

since Tj;, — T; = 1. Notice that (81) is enough to control the error term R;, uniformly in
j. To see this, let )((tj,r) € C°(R?) satisfy )((tj,r) =1 when|tj| <2and|r| =1, and
)((t]-,r) =0 if |t]-| >4 or |[r|<1/2. For any m>1land T > 4, let vm(t]-,r) =

)((tj -T, r/m)un(tj, Irl). Then we have

2
f |6t].vm| + 10,0 |* + |vp, |2dr dt;
R2

T+4
_(2+€) (2+e)

2
<Cm 2 f f |6tjun| + [Vuy|* + |uy|*dx;jdt; <8Cm™ 2 M.

T-4 2(1+e€)
R €

Hence the Sobolev embedding H(R?) c L?*€(R?) implies that
T+2 o T+2
. 2(1+€)_1
f f lu,|**edx;dt; < CZ f (2/m) e f lu, |**€dr dt;
T-2 |xjlzm j=0T-2 r=2/m

2(1+€)

< cm~< G2y ez,

Therefore choosing m sufficiently large, we obtain
[(Ty) — 15(T) 2 6

for all j = 4, which contradicts the global bound
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I+(T;) < Cm f |6tjun|2 + [0, up | + |uy |*dx; < CmM.

2(1+€) tj=Tj
R €

Theorem (5.1.28)[219]:Let € = 2, w; € (—1,1), thesequenc d)wjbe the ground state
of (20), andcy# 1lif €=2,, Then, the sequence of the standing
waves(ei(2?=1wjtj)¢wj;—|¢wj|2) of KGZ system (3)-(4) are strongly unstable in the
following sense. For any A > 1, the sequence of solutions uj(tj)of (3)-(4) with initial
data u,(0) = <A¢wj,/1iwj¢wj, —A? |¢wj|2,0>either blows up in finite time or exists
globally and satisfies 1 i muptjqoo”un(tj)”}, = oo ( see [35],Remark)

Since the energy

H <A¢wj,liqubwj, WY |¢w,.|2 , o) >0
for A close to 1, the result in [4] is not applicable to Theorem (5.1.1).

Now, we consider the very strong instability of the sequence
(ei(z?ﬂwftf)qbwj, — |¢w].|2) for (3)-(4).( see[35]) Since the second equation (4) of the
KGZ system is massless, it seems difficult to obtain the uniform boundedness of global
solutions for (3)-(4) similar to Lemma (5.1.2) below. Therefore, for the sequence of the
standing waves (ei(z?“("ftf)gbwj, — |qbwj|2>we do not deduce a very strong instability

similar to the instability result in Corollary (5.1.3) of Theorem (5.1.11) below. Using the
method in [23], we obtain the following very strong instability result for small
frequencies [35].

Proof.Let A > 1 and put

&w]- = (H - ij) (¢wj'iwj¢wjl - |¢w]-|2:0>;

2(1+
s=2+e)
€

~ 2
{dwj — (H - w,Q) (Aq)j Aiwide,, —% ¢y 0)}
where Hand Qare defined by (19) and (6), respectively. In the same way as in Lemma

(5.1.9) (iii), we see that § > 0. Suppose that the sequence of solutions un(tj) of (3)-(4)
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2
with  u(0) = (A¢wj,/1iqubwj, —A? |¢wj| ,0) exists globally and satisfies M :=
suptjz()”u(tj)”Y < oo, Note that since the initial data is radially symmetric, the solution

u(tj) is also radially symmetric for all ¢; = 0. Following Merle [17], we introduce the

function W(tj) = —(—A)‘latjn(tj), and for m > 0 we consider the function

- 1
() =1h(6) + = [ wn(e)ow(s)d;,

whereI,ln(tj) is defined by (57) and ®,,and W, are given by (21). Note that

2(1+€) 2(1+e€)

since 9;;n(t;) € H™* (R c ), we see that w(t;) € H™? (R € ) and ”at"n”H-l

||[Vw]|,.By the same computations as in Lemma (5.1.8), we have

d . 1
TS m(tj) =2 f Wy [ Vu, [2dx; + 5 f @, (n* + 2|uy,|*n)dx;
J 2(1+6) 2(1+6)
R € R €

1 , 1 , 2+e€ ,
_E j Ad)mlunl de +2_Cg j <qu—Tl-pm>|VW| dx]'.
2(1+e) 2(1+e)
R € R €

By Lemma (5.1. 7), we have

WV, |2dx; < ||Vun(tj)“2'

2(1+€)
R €
1 C 2 C 1\42
- j Aq)m|un|2dij—m12 [un ()] < ;nz '
2(1+€)
R €
, 2+ € z
(- 2w ) 19wl < ow ()] = [[agn(s)] -
2(1+€)
R €

Moreover, we have

., (n* + 2|uy,|*n)dx;

2(1+€)
R €
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2(1+€ 2(1+e€
=7 f D (n + |uy?)?dx; — f (e )lun|4dxj+ f( ( - )—¢m>|un|4dxj

2(1+€) 2(1+€) RN
R € R €
2(1+¢€) 2(1+¢) 2(1+¢)
< S P - Sl [ (T o)l

|xj|=m

and by (11) we have

1 2(1+e€) 2 2
L ¢m> 1) < Clltn(6) [ oy 1 ()
|x j|=m
C Cc,M*
< é ”un(tj)”:l = sz
m z m 2
Therefore, we have
d . _ C,M?*  C,M*
_d_tjlm(tj) <P (un(tj)) + ;nz + nzlzzi (82)

forall t; = 0, where we put

+ € 1+¢€
llu, Iz +

ﬁ(un' Vm, N, Vm) = ZIIVHnH% -

1
I+ [unl 113 + 5= 1vmll-1.
2¢§

Note that
24+¢€
2(1+¢€)

1 . 2 2 +e€ 1 2 1 wjz
=3 [[vm = twjun||; + <m>4_c§ Vil + (m) IV, |13 + T”un”%

(H - ij)(un; Uy N, Vm) - ﬁ(un: Uy, Vm)

2
> (3 ) 1Vuall3 + 2 3
=2a+ o/t 2 tn

Using this inequality, in the same way as in Lemmas (5.1.9) and (5.1.10), we see that

=P (un(t))) = 2N {doy, = (H — Q) (un(0))} = 26 (83)

holds for all t; = 0. Therefore, taking m; > 0 such that

CM, C,M*
2 2+€ < 6'
my e

1
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by (82) and (83), we have (d/dt;)],,, (t;) = &for all t; > 0, and 1i Moo I, () = 0.
The rest of the proof is the same as in the proof of Theorem (5.1.11) for the case € > 1,

and we omit the details.
Theorem (5.1.27)[219]:Let € = 2,¢, # 1, |w;| < 1/v/3 and the sequence po;be the

ground state of(20). Then, the sequence of the standing
waves(ei(z?”wjtj)d)wj; - |¢wj|2) of the KGZ system (3)-(4) are very strongly unstable in
the following sense. For any A > 1, the sequence of solutions un(tj)of (3)-(4) with the
initial data u,, (0) = <Agbwj,/1iqubwj, -2 |qbwj|2 , 0)b|ows up in a finite time.

Proof.let A > 1. Suppose that the sequence of solutions un(tj) of (3)-(4) with
u,(0) = (Aqbwj,)tiwjgbwj, —A? |qbwj|2 , 0) exists globally. By the assumption |a)j| <

1/4/3, we can take @ such that ijz/(l — wjz) < a < 1. For such an a, we consider a

function defined by
1 2 «a 2
1(6) = 3 { @I + S 1)1 .
Note that since n(0) = —A2 |¢w,-|2 e LM(R3®) n L*(R3) c H~1(R3) and Orn €

C ([0, 0); H‘l(]R3)), we see thatn € C* ([O, 0); H1(R3) n LZ(]R3)). Then, we have
a(t ) Re (un(t ) at]un(t ))Lz + (n(t ) at]n(t ))H—

= Re (u, (¢;), atjun(t]) iwjun(6)),2 + (n(t ), at]n(t N1,

and

f—;fa(tf>=||6f,-un<tf)||§ = oun@)] -, = 171 = lhan()I

2 2
~alln(®)ll; ~ @+ @) [ fun(y ) n(6)d;.
3

Thus, we have
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dZ
d—tjzla(tj) +2(1+ ) (H — Q) (un(0)) — 2w;Q(u,(0))

=Q2+a) ||at].un(tj) — iw,-un(tj)”z <3a ! 1) ||6t,n(t )”
Koo (un(tj);n(tj))'

where we put

2 2 @ 2
Keatn ) = @ {1Vl + (1= @F = = 02 ) lunll3 + =~ IInl3}.

Here, we define

2

w 1 1
Nl + 5 1% +5 [ )]
]R3

1
]a)]-(unrn) = E ”vun”% +
K3 Cuny 1) = Oy, (i, A7)
A=1
= Vgl + (1 = 0?3 + alinll? + (1 + @) f lunl?nd;,

K3, a(tn, 1) = 2 adwj(a(l-“>/“un(-/l),n(-//l)| et

24+a
(1 - o) lual3

3 2+a
2 2
5 IB= [ g P,
R3
and put

](})j,a(unr n) = ]a)]- (un: ‘I’l) wj a(unr ‘I’l)

2(1+a)

e 2+ 2 2 2 g2
T 1t l2VHnl2 2 Nallz T iz

](%)j,a(un'n) = ]a)j(unJ n) -

Kaz)j,a (unr n)

22+ a)
= {1Vl + == a3},
20}
0=1 T o\
(1 — w; )a
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Then, we have 0 < 8 < 1 and
Kepya Gt 1) = 2(1+ @8]} o (1) + (2 + @) (1 = 0)]3, ¢ ().
Moreover, in a similar way as in Lemmas (5.1.3) and (5.1. 4) in [23], we can prove

that ](f)j'a (u(tj),n(tj)) > dwjfor allt; = 0and j = 1, 2. Therefore, we have

Ky (1 (8), (7)) = 21+ @)6 + (2 + ) (1 — 6)}d,,

w?
— _ J j
_2<1+a 1—a).2>dwf

J

2
H 3 — 2 H —
for all t; = 0. Moreover, since we have dwj = (1 - a)j) ||¢(Uj||2’ putting £ =

n {%}, we have
216062 {n(6) =ty + 5 Jor )]

+2(1 + @) {do, = (H = 0;Q) (un(0))} + 20,0 (1 (0)) — 207 ||¢wj||z

forallt; = 0. Since g > 2, (H - w]-Q)(un(O)) < &wnand wnQ(un (0)) > w]-z ”qbw].”zfor

all A > 1, by the standard concavity argument, we see that there exists T; € (0, ) such

thatli M7, -0 Ia(tj) = . This is a contradiction. Hence, for allA > 1, the sequence of

solutions un(tj) of (3)-(4) with u,(0) = (A(bwj,ﬁiqubwj, —A? |¢w].|2,0>blows up in
finite time.

This completes the proof.
Section (5.2): One-Dimensional Nonlinear Schrédinger Equation with
Multiple-Power Nonlinearity:

We consider the stability and instability of standing waves for the following
nonlinear Schrodinger equation:

Uy + Uy, + f(w) =0, t>0,x€R (84)

Where f(u) = Y7L, ajlulpf_lu with a; € Rand 1 < p; <--- < py, < 0. Equation (84)

arises in various regions of mathematical physics.
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The unique local existence of (84) is well known. That is for any u, € H!R, there
exists a positive constant Tand a unique local solution u € C([O, T); Hl(R)) N
c1([0,T); HY(R)) of (53) with u(0) =wu,. Furthermore, u(t) satisfies the two

conservation laws [|u(t)|l,2 = |lupll,2 and E(u(t)) = E(u,), where E(v) := % Vel 2 —

fR F(lv(x)|)dxand F(s) = fosf(a)da. For details, see, e.g., [133], [134] and [135].
We say that the solution of (84) is a standing wave if it has a form u(t,x) =
ei“’t<pw(x), where w > 0. Here ¢, is a solution of the following equation:

Oxx — 0@+ f(@) =0, x €R @€ H R)\{0}. (85)

The existence and uniqueness of the solution of (54) is well known: Set
1
w* = sup{w > 0:there exist> 0, s.t.za)s2 —F(s) < 0},

then for any w € (0,w"), there exists a solution ¢ ,of (54). Further the solution is
unique up to a translation and a phase change ([136]). We study how the stability of
standing waves depends on frequency w in the multiple power nonlinearity case.

Stability and instability of standing waves is defined as follows.

Definition (5.2.1)[132]:A standing wave u,(t) = e'“t¢p, is said to be stable if for
all € > 0 there exists 6 > 0 with the following property; for any
Uy € H'(R) satisfying [|uy — Vwllyrr) < 6, the solution u(t)of (84) with u(0) = u, can
be continued to a solution in 0 < t < oo and it satisfies the following condition

. __if .
R (FOREICeR MR

Otherwise, u,is called unstable.
Remark (5.2.2)[132]: We note that the conception of stronger stability which does not

involve the translation

- _ 6
b i@ = eP0ull
Cannot be used in studying the stability of (84). It is because if u(x,t) = e!®t¢p, (x) is a

solution of (84), then by a simple calculation, we observe that

Ue(x, t) = ellwt-ex=c*t), (x _ 2¢t)is also a solution. It is not hard to see that
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u.(x,0) can be taken arbitrary near u(x, 0)by taking ¢ small, and if c is not zero, then
u.(t)always goes away from u(t)(see [137]).

Recently, many authors have been studying the problem of stability and
instability of standing waves for nonlinear Schrédinger equations (see, e.g., [138,
136,139, 140, 141, 142, 143, 144, 137, 145, 146]).

At first, we will introduce the results in the single power case f(u) =
alulP~lu with a > 0and p > 1. For this case, if 1 <p <5, then u, is stable for
every w € (0,), and if 5 < p, then u,is unstable for every w € (0, o0)(see [138], [147]
and[146]). For the single power case, (84) has scaling invariance, and using it, one can
verify the stability. Note that the stability of standing waves is independent of the
frequency o in the single power case. Although it is not the case with the double power
nonlinearity. In this case, there is no scaling invariance in (84),s0 the problem to
investigate the stability of standing waves becomes more complicated.

Although, when f(u) = a;|ulP*™u + a,|ulP>~1u, Ohta [148] proved the
following theorem.

Theorem (5.2.3)[132]: (Ohta [148]). Let 1 < p; < ps,.
() Letay,a, > 0.

(1) If p, < 5, then u,is stable for any w € (0, ).

(1.2) If p; <5, then uis unstable for any w € (0, ).

(1.3) If p; < 5 < py, then there exist positive constants w;and w,such that uis

stable for any w € (0, w;), and unstable for any w € (w,, ).
() Letay > 0,a, < 0.
(I.1) If p; < 5, then u,,is stable forany w € (0, w*).
(1.2) If p; > 5, then there exist positive constants wzand w, such thatu, is
unstable for any w € (0, w3), and stable for any w € (w4, ™).
() Letay < 0,a, > 0.

(I.1) If p, = 5, then u,is unstable for any w € (0, o).
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(.2) If p, < 5, then there exists a positive constant wg such that u,,is stable for
any w € (ws, ). Furthermore if p; + p, > 6, then there exists a positive

constant wgsuch that u,is unstable for any w € (0, wg).

Theorem (5.2.3) shows that, in the double power case, the stability of standing
waves can change when the frequency w varies. In Theorem (5.2.3), there are gaps
in(1.3) (for w € [wq, w,]), (11.2) (for w € [w3, w,]) and (111.2) (for w € [0, ws]in the case
of p; + p, < 6 and for w € [wg, ws]in the case of p; + p, > 6). It seems difficult to
verify whether the standing wave u,,is stable or not if the equationdoes not have scaling
invariance. Our first target is to fill these gaps.

Our main results are the following.

Remark (5.2.4)[132]: Since a, > 0 for the cases (84) and (86), we observe that w* =

©0.0n the other hand, since a, < 0 for the case (54), we have w* < co.

Remark (5.2.5)[132]: There are still gaps in the cases of Theorem (5.2.12 (iii). However
Ohta [148] showed, when a; <0,a, >0 and p;=2,p, =3,u,is stable for
any w € (0,). So, in Theorem (5.2.12)(iii), the condition p; + p, > 6 is needed,
althoughit may be not optimal.

In the single power case, the stability of standing waves does not change by
w,and in the double power case, stability of standing waves change at most once. So,the
natural question arises: if the equation has more powers, then could we getstanding
waves that change its stability more than once? The next theorem gives examples of

standing waves that change its stability, by w, two and three times.

Remark (5.2.6)[132]: The conditions in Theorem (5.2.13) are for only technical reasons.
Our motivation was to show there are equations whose standing waves change its

stability several times when the frequency wvaries.

We first summarize three lemmas needed for the proof of Theorems (5.2.12) and

(5.2.13).

Lemma (5.2.7)[132]: (Grillakis, Shatah and Strauss [144]). Set
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I@) = lpol = f |90 ()2 dx.

If I'(w) > 0, then u,, (t) = e, is stable, and if I'(w) < 0, then u,, is unstable.

For the case I'(0) = 0, Comech and Pelinovski proved the following theorem.

Theorem (5.2.8)[132]: (Comech and Pelinovski [149]). Let ei“’tfpwbe the standing wave
solution of (84). Assume that I'(w,) = 0and I"(w,) # Ofor some w, € (0,w*).Then
there is a positive number € such that for any § > 0, there exists t; = t;(6, &) < o and
a pair of functions (w,p) € CY([0,t];(0,w"))x C*([0,t,]; HX(R)),such that

.t 1 I
u(t) = etlow(t)at ((pw(t) + p(t))is a solution to (84) and such that

|0(0) - w.| <,

p(t)“Hl(R) < 0and|w(t;) —w,| > e.
The following lemma is a direct consequence of Theorem (5.2.8).
Lemma (5.2.9)[132]:If I'(w.) = Oand I""(w,) # 0, then u,, _is unstable.

Proof. Because ¢, is an even real valued function, d,¢,is an even real valued function
and d,.¢,is an odd real valued function. It follows that d,, ¢, L d,¢,and d,¢, L i@,in
H*(R). Now, note that the tangent space of the orbit {ei5<pw (€ +y)|s,y € R}is spanned

by 0,¢«,and i@, . So by Theorem (5.2.8),

t

u@ = expl i [ 0@dr | (Pucey + () ~p0. + 00,
0

Therefore u(t), which was initially close to the orbit, leaves the e-tubular neighborhood
of the orbit in finite time.
Lemma (5.2.10)[132]: (lliev and Kirchev [137]). Suppose f(u) = 7L, ajlulpf"lu, then
we have

Yjz1¢i(hY —s)

h
I'(w) = 1 f ds,
w'(h) 2 (X, d;(hY — qu))3/2

-1 (5-p; 2a; 2a; (p, .
where g, = 2= ¢ = a( p’),d- ==L W(s) = ws — m 4 s(p1+1)/2and h=h(w)is
J 2 ' pj+1 T pi+1 J=1lpi+1

a positive number satisfying W (h) = 0,W'(h) < 0 and W(s) > 0 forall s € (0, h).
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Remark (5.2.11)[132]: Function h(w) can be defined as
h(w) :=suplh > 0|W(s) > 0for akle (0,h)}.

Recall the definition of w*. Since w € (0, w*), we have W(h(a))) = 0. Further,by

m

2a;
W(s)>0e w>V(s) = 2 I g(p-1)/2
eed D +1
j=1
we see that
h(w) = sup{h > 0|lw > V(s)f or akle (0,h)}. (86)

So we have that h(w)is a monotone increasing function. Furthermore by (3),
fora; >0, h(0) =0 and for a; <0,h(0) > 0. Also for a, >0,]lig,.,h(w) =
oo and fora,, < 0,11 1y_,,* h(w) < .

Theorem (5.2.12)[132]:Let f(u) = aq|ulPr™ u + a,|ulP>~u.

(i) Suppose a;,a; > 0and 1 < p; <5 < p,. Then there exists w; > 0 such that for
w € (0, wq),u,is stable, and for w € [w4, ), u,is unstable.

(ii) Suppose a; > 0,a, < 0and 5 < p; < p,. Then there exists w, > 0 such that for
w € (0, w,], u,is unstable, and for w € (w4, w*), u,is stable.

(iii) Suppose a4 < 0,a, > O,g <p; <pp<5and p; +p, > 6. Then there exists
w3 > 0 such that for w € (0, w3], u,is unstable, and for w € (w3, ©) then u,is
stable.

Proof. By Lemmas (5.2.7) and (5.2.9), we have only to check the sign of I'(w) given by
lemma (5.2.10).
In the case m = 2,I'(w) can be written as
pG=po/4 ¢ H(h,s)
2W'(h) ) (dy(1—s%) + dz(l_-SQz)hqz—q1)3”2ds’

where (h, s) = C1(1 — sql) + c2(1 — qu)hqz‘ql. Because ~ —hG~PU/4 12" (R)is

I'(w) =

always positive and we only care about the sign of I, it suffices to consider

1

H(h,s)
F(h) = 3/2
jwdl—ﬂﬂ+dﬂl—ﬂﬂwrﬁ)/

0

By a simple calculation, we have
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F'(h) =

1 ~
a;(p2 — p1) ha2—a1-1 x f (1-s%)H(n,s) s

2(p2 + 1) (dy(1 = s%) + dy (1 — %) haz=a:)*/*

0

where H(h,s) == —1(1 —s"1) — ¢, (1 = s™)h%" % and r = ¢; + 2d;1(q2 — q1).

Now define
1—sh
I(s) = %
Then, I(s) is a monotone decreasing function in (0,1) and I(s) satisfies
%< I(s) <1, Vse (1) (87)
2

Part (i). In this case, we have ¢; > 0,c, < 0 and r > 0. Put

A _ 191 1/(a2-q1) B _ rq, 1/(a2-q1)
pLp2 T\ €243 ’ PPz " _C2q2 :

Taking h=Ap1,p2a1/(q2_q1)for a>0,H(h,s)can be rewritten as H(h,s) =

01(1 — sqz){l(s) —aq,/qz}. From (56), ifa < 1,i.e.h < A then F(h) > 0, and if

P1,02’
a>qq/q,, i.e. h > Apl,pz(ql/qz)l/(qz‘%), then F(h) < 0. In the same way, we see

thatif h < By, ,,,, we have F'(h) < 0.
Now, A, , <Ay 5 (q2/q)Y@"%) always holds since q; <gq,. Also

if 7/3 < p1, then by a simple calculation we have 4, ,, < Apl,pz(qz/ql)l/(qz‘%) <

By, p,- Since F(A )>O,F(Apl,pz(qz/ql)l/(qz‘ql))<0 and Fis a monotone

P1,P2
decreasing function at (Apl.pz'Apl.pz (qz/ql)l/(QZ‘ql)), there exists an w; > 0 such that
if w € (0,w,), then d,ll¢,ll?> <0. So, by lemmas (5.2.7) and (5.2.9), we have the
conclusion.

For the case 1 < p; < 7/3, it suffices to prove that, if B, ,,, < h, then F(h) < 0.

If he (A Apl,pz(qz/ql)l/(qz“h)), there exists a solution of I(s*) — aq,/q, =0,

P1,D2’

since a € (1,q9,/q9,)and [(s) decreases from 1 to q,/q,. Furthermore if s € (0,s"),

H(h, s)is positive and if s € (s*, 1), it is negative. Also because the denominator of the
integrand of Fis monotonically decreasing function, we see that folH(h, s)ds <

0 implies F(h) < 0. Now we note that
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1

€14, C2q> _
H(h,s)ds = h427491,
_f ( S) 5 q1 +1 q> +1
0
and
1/(q2-q1)
c c c +1
191 n 24> Riz- < () (_ 191(q2 )) <h

G1+1 g, +1 c2q2(q1 +1)

Therefore, since

1/(q2—4q1)
c +1
(_ 191(q2 )) <By , & @ <da

C2q2(q1 + 1)
we see that F(h) < 0 for By, ,,, < h.
Part (ii). In this case we have ¢; < 0,c, > 0and h(0) = 0, h(w*) < 0.Since the

signs of ¢y, ¢, are opposite from part (i), we see that if A > h, then F(h) < 0, and if

P1,D2

Apl,pz(qz/ql)l/(q'ﬁ’“h) < h, then F(h) > 0. Also by a simple calculation we see that

Ap,p,(@2/q)" 0279 < h(w").

First if 0 <7r:=c; +2d,(q, —qy), then H(h,s) will be always negative.
Consequently, since a, < 0,F' > 0 will always hold. So we have the conclusionin this
case.

Next if r < 0, then we see that

H(h,s) <0 e —rl(s) < c,h%2741,
Since 1(s) < 1,if h > (=r/c;)/@2~99) then H(h,s) < 0 and F'(h) > 0 follows.By a

simple calculation, we see that (—r/cz)l/(qz“h) <Ay, p,- SO, for h € (O,A ],Fis

P1,P2

negative, and for hE€ [Azf,l,pz,/lpl,p2 (qz/ql)l/(qz‘%)],F’is positive,and for h €
[Apl,pz (q2/qy) "/ @2—a), h(w*)) , Fis positive. From this, we have the conclusion.

Part (iii). In this case we have ¢; < 0,c, > 0,7 < 0, and h(0) > 0. Since thesigns

of c¢1,c, are the same as in part (ii), we see that if A > h, then F(h) < 0,and if

P1,02

Apl,pz(qz/ql)l/(qz_ql) < h, then F(h) > 0. Now, since h(0) > 0, we wish to make

A larger than h(0). By a simple calculation we see that if q; +q, > 2,i.e.

P1,P2

p1+p, > 6,thenh(0) < A holds.

P1,D2
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Next, observing H (h, s), we see that if h < (—rq,/c,q,)*9279) then F'(h) >

0. Now, if p; > 7/3, by a simple calculation we see that

Apl,pz (QZ/ql)l/(qz_ql) < (—qu/cz qz)l/(qZ—lh)_

So, for h € (0,4, ,. | Fis negative, and for h € [Apl,pz,Apl,pz(qz/ql)l/(qz“h)],F’is

P1,P2

positive, and for h € [Apl,pz(qz/ql)l/(qz“h)),h(w*)),Fis positive. This gives us the
conclusion.

Theorem (5.2.13)[132]:
(a) Let f(w) = aq|ul?u + |u|®u — |ulBu, let a; > 0 be sufficiently small. Then there
exist five real numbers 0 < w; < w, < w3 < wy < ws such that for w €
(0, w1) U (w4, ws), u,, is stable, and for w € (w4, w3), u, is unstable.
(b) Let f(u) = aq|ul?u + |u|%u — az|u|®u + |u|*®u, let a; > 0 be sufficiently small
and a3 > 0 sufficiently large. Then there exist six real numbers 0 < w; < w, <
w3 < wy < wg < wg such that for w € (0, w;) U (w4, ws), u,is stable, and for

W € (w2, w3) U (wg, ), U, is unstable.

Proof. We will not consider the point where I'(w) = 0, sowe will only use Lemmas
(5.2.7) and (5.2.10), and will not use Lemma (5.2.9).

Part (a). Since a; > 0and a; :=—-1<0, we have h(0) =0 and h(w*) <
0.Furthermore, calculating h(w™*)from the definition, we see that h(w*) > 1.

By Lemma (5.2.10),
h
I'(w) =f 3/2ds.
1 13 3 1pa 4
q (Eal(h—s)—z(h —s)+1ht—s ))

%al(h—s) —i(h3 —s%) +§(h4 —s%

Set
1 1 2
H(h,s) == Eal(h —5) _Z(h3 —s3) +§(h4 —sh).

Then we have

a;

H(h,s)>0& >

1 2
Z(hz—hs+sz)+§(h3+hzs+h52+s3) > 0.

So, by setting
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—_ = _h2 —_h3
G—2 4h 5h,
~ a3, 8 .
G(h)—2 4h +5h,

we see that G < H < G. Therefore if G(h) > 0, then H(h,s) > 0 for Vs € (0, h),and if
G(h) <0, then H(h,s) < 0 for Vs € (0, h).

Now, G (h)is positive near h = 0 and G(h) takes negative values for someh €
(0,1)when a; is small. So, we see that there exist h; < h, < h; < 1such that for
h € (0,hy),I' > 0andforh € (hy,, h3),I' <O0.

Next, we will show thatforh = 1,1I' > 0.
HLs) =2 (1 —5)—2(1—s%) +2(1 - sH
,S) = > s 2 s z s

> 0.
So, there exist two numbers h, and hs such that
h; < hy, <1< hs <h(w*)andI'(h) > 0for h € (hy, hs).
Part (b). In this case, we only have to calculate Gand Gas in Part (a).

Remark (5.2.14)[132]: We can make an example of standing waves that change its
stability exactly 2m — 1 times when the frequency wvaries, by considering 2m-power

nonlinearity. In fact, by taking

2m

f@ = aslul*u + Z(—1)1'N‘((2m-f)(2m+1-1')/2)|u|21+zu,

j=2

and if Nis sufficiently large and a, is sufficiently small, we see that F (h)changesits sign
as frequency wvaries in the same way as Theorem (5.2.12) and Theorem (5.2.13).This is
possible because we can set a; > 0and a,,, > 0, so that h(0) = 0 andh(o) = oo. This
makes computation simpler because we do not have to consider the situations like in

the proof of part (iii) of Theorem (5.2.12) (for example, the situation h(0) < Ap. p,)-
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Section (5.3): Hamiltonian PDEs in the Degenerate Cases:

In this section, following a celebrated in [151] by Grillakis, Shatah and Strauss,

we consider the abstract Hamiltonian system of the form

du
T O =JEW, (88)
Where E is the energy functional on a real Hilbert space X, and J : X* — Y"is a skew-
symmetric operator. Here, Yis another real Hilbert space and u € C(I,X) n C*(I,Y*)for
some interval I. equation (88) can be considered as a generalization of nonlinear
Schrédinger equations(NLS) and nonlinear Klein-Gordon equations (NLKG). We assume
that Eis invariant under aone-parameter unitary group {T(s)}scg. We consider the
stability and instability of bound state solutions T(wt)g, of (88), where w € Rand
¢, € X.We assume that the linearized Hamiltonian
Sw(Pw): = E(¢y) — wQ" ()

has one negative eigenvalue, where Qis the invariant quantity which comes out from
the Noether’s principal due to the symmetry T(s).

In [151], it is proved that if d"”"(w) > 0 (resp. < 0), then the bound state
T(wt) 4, is stable (resp.unstable), where

d(w) = E(¢pn) — 0Q(¢y).

Further, Theorem (5.3.2) of [151] claims that “bound states are stable if and only if dis
strictly convex in a neighborhood of w”. However, as pointed out by Comech and
Pelinovsky [152], their argument seems to be not correct for the case d''(w) = 0. Our
aim of this section is to recover this criterion,i.e. investigate the stability and instability
for the case d”’ (w) = 0.

For the case d''(w) =0, Comech and Pelinovsky [152] showed that if
d" (@) < 0 in a one-sidedopen neighborhood of w, then the bound state T(wt)y, is
unstable. Their proof is based on the observation that in the case d''(w) = 0, the
linearized operator /S, (¢,)has a degenerate zero eigenvalue which leads to a
polynomial growth of perturbations. They showed the instability by considering (88) as a

perturbation of the linearized equation around ¢,,. Recently, Ohta [153] gave another
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proof for the instability of bound states for the case d”(w) = 0,d"'(w) # 0. His proof
is based on [151] and [154] which uses a Lyapunov functional to “push out” the
solutions from the neighborhood of the bound states. However, [153] assumes
T'(0) = Jand this assumption preven this result to apply to the NLKG equations.
We follow the work of [151,154,153] and extend the results of [151] and [153].

We show that, if d’’(w)is strictly convex in a neighborhood of w, then the bound is
stable and if d(@) —d(w)—(@—w)d' (W) <0 in w<D<wt+eor w—e<d<
w for some € > 0, then the bound state is unstable. For the meaning of assumption
“d(@) — d(w) — (@ — w)d'(w) < 0”, consider the following three conditions.

(A) 3e > 0s.t. VA € (0,&)(resp. VA € (—¢,0)),d"(w + 1) < 0.

(B) 3¢ > 0s.t. VA € (0,)(VA € (=¢,0)),d(w + 1) — d(w) + Ad'(w) < 0.

(C) 3{A,}st A, > 0andd"(w + 4,) < 0.

Then, we have (A)=(B)=(C) and (C) is equivalent to “dis not convex in the
neighborhood of w”. Therefore, our assumption, which is condition (B), do not cover the
case “d is not convexin the neighborhood of w”, but the gap can considered to be small.
If d""(w) = 0and d"""(w) # 0,then we have (A). So, our result covers the result of [153].
The only natural case which we cannot treat in our theorem is the case d is linear in a
one-sided open neighborhood of w. In this sense we have almost proved the criterion
“bound states are stable if and only if d(w) is strictly convex”.

The proof is based on a purely variational argument. We note that our result
almost covers the result of [152] but not completely. The case dis linear in the
neighborhood of w is excluded by our theorem, which in this case can be covered by
[152]. However, our proof requires less regularity for E, which is E € C? and does not
need an assumption for nonlinearity .

We give an application of our theorem for the single power NLKG equations and
double power nonlinear Schrodinger equations. For the one dimensional NLKG with
[ulP~u, 1 < p < 2, ourresult seems to be new. Further, we remark our result covers all

dimensions in a unified way.
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We formulate our assumptions and the main results in a precise manner. We
prepare some notations and lemmas for the proof of the main results. In particular, we
construct a curve ¥ (A1) on the hyper-surface M = {Q(u) = Q(¢,,)}, which crosses the
set of the bound state. Then, we calculate Sw(lI/(A))and P(W(/l)), where P is a
functional which we will use for the instability. This curve ¥ (1) corresponds to the
degenerate direction of the energy functional E in the hyper-surface M. We calculate
S, and P for general u in a neighborhood of ¢, under some restrictions on the value of
S, The restrictions give us a good estimate for the “nondegenerate” directions and
enables us to use the results. We give an applications of the main theorem for NLKG and

NLS equations.

Let X, Yand H be real Hilbert spaces such that
XoH=H X" YoH=H oY~
where all the embeddings are densely continuous. We identify Hwith H*naturally. We
denotethe inner product of H, the coupling between Xand X*and the coupling between
Yand Y*allby (-,-). The norms of Xand Hare denoted as ||||xand |||, respectively. Let
J : H > H be a skew-symmetric operator in such a sense that
(Ju,v) = —(u,Jv), u,v € H.

Further, we assume J|x: X — Yand J|,:Y — Xare bijective and bounded. The operator
Jcan be naturally extended to J: X* — Y*by

Ju,v) = —(u,Jv), ueX ,vey.
Let T(s)be a one parameter unitary group on Xand let T'(0)is the generator of T(s).
We denote the domain of T'(0)by D(T’(O)) c X. As ], we cannaturally extend T'(s)to
T(s): X* = X*by

(T(Hu,v) = (u, T(—s)v), u€eEX, veXx.

We assume T(s)(Y) c Yfor all s € R. For simplicity, we just denote T(s)as T(s). We
further assume that Jand T (s)commute.

Let E € C2(X,R). We consider the following Hamiltonian PDE.

du = JE' 89
E(t)_] u(t), (89)
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where E'is the Fréchet derivative of E. We say that u(t)is a solution of (58) in an
interval Iif u € C(I,X) N C1(I,Y*)and satisfies (89) in Y*for all t € I. We assume that
Eis invariant under T, that is,
E(T(s)u) = E(u), SsER, uelx.
We assume that there is a bounded operator B : X —» X*such that B* = Band
the operator B is an extension of J71T'(0). We define Q: X — Rby

Q(u) = %(Bu,u), u€X. (90)
Then, we have Q(T(s)u) = Q(u)foru € X. Indeed, foru € D(T’(O)), we have
d
gQ(T(S)u) = (BT(s)u, T'(0)T(s)u)
= (BT (s)u,JBT(s)u) = 0.

For generalu € X, we only have to take a sequence u, ED(T’(O)),un - uin X.

Further, formally Q conserves under the flow of (58). Indeed,

d
2 Q®) = (Bu®,JE'(w(®))
= (T"(O)u(®), E'(w()))

ds

E(T(s)u(t)) = 0.

s=0

We now assume that the Cauchy problem of (581) is well-posed in X.

Assumption (5.3.1)[150]:(Existence of solutions). Let u > 0. Then, there exists T(u) > 0

such that for alluy € X with ||uylly < u, we have a solution uof (89)in [O,T(,u))with

u(0) = uy. Further,u satisfies E(u(t)) = E(ug)and Q(u(t)) = Q(uy)fort € (0, T(,u)).
We next define the bound state, which is a stationary solution modulo symmetry

T(s).

Definition (5.3.2)[150]:(Bound state). By a bound state we mean a solution of (89)in

Rwith the form

u(t) = T(wt)o,
where w € Rand ¢ € X.

Remark (5.3.3)[150]:If T (wt)¢ is a bound state and ¢ € D(T(O)), then it satisfies
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wT(wt)T(0)¢p = JE'(T(wt)¢p).

Thus, by E(T'(s)u) = T(s)E'(u) and the definition of Q, we have

E'(¢p) — wQ'(¢) = 0. (91)
On the other hand, if ¢ € X satisfies (60), then T (wt)¢ is a bound state.
Definition (5.3.4)[150]:(Stability of bound states). We say the bound state T(wt)¢ is
stable if for all € > Othere exists § > 0 with the following property. If |[uy — ¢llx <
dand u(t)is a solution of (58) given in Assumption (5.3.1), then u(t) can be continued to
a solution in [0, c0)and

supi nflu(t) —T(s)dllx <e.

o<t

Otherwise the bound state T'(wt)¢ is said to be unstable.

Assumption (5.3.5)[150]:(Existence of bound states). Let w; < w,. We assume that
there exists a C3 map(w,, w,) = X, w — ¢, such that
(i) T(wt)ep,is a bound state.
(ii) ¢, € D(T'(0)*), 8,6, € D(T'(0)%), 050, € D(T'(0)),
T'(0)p, 0P T'(0)0y P, 02, EY.
(iii) T"(0)¢p,, # 0,0,0, # 0and (T'(0)¢,,, 0,P,) = 0.
Remark (5.3.6)[150]:By the fact that T'(0)¢,, € Y, we have B¢, = J"1T'(0)¢,, € X.

Remark (5.3.7)[150]):In (T'(0)¢,,, 3, b.) = Ois actually not an assumption. Indeed,
suppose w — ¢, does not satisfy (T'(0)¢,, 0, P,) = 0. Then, set @, = T(s(w))e.,,

where

[{T(0)¢,. 0,0,
2 Tl

Then, ¢, satisfies (T’ (0)@,,, 3,P,) = 0.

Set

s(w) =

du.

SoW) =EW) —wQ), u€eXx,
d(w) = Sy (¢e), (92)

where ¢, is given in Assumption (5.3.5).

Remark (5.3.8)[150]:Condition (91)is equivalent to S/, (¢) = 0.
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We further assume that the linearized Hamiltonian S, (¢, ) satisfies the

following spectral condition.

Assumption (5.3.9)[150]:(Spectral conditions for the bound states). For w € (w,, w5),
we assume the following.

() kerSy(d,) =spa(T’(0)p,},

(i) S, (¢,) has only one simple negative eigenvalue —u < 0,

(iii) i nfs > 0|s € o (S5 (¢))} > 0,
where o(S/;(¢,)) < Ris the spectrum of S, (¢,,).

Grillakis, Shatah and Strauss [151] proved the following theorem.

Theorem (5.3.10)[150]:Let Assumptions (5.3.1), (5.3.5)and (5.3.9) be satisfied. Then, if
d"(w) > 0, the bound state T(wt)¢,, is stable and if d"'(w) < 0, the bound state
T (wt),is unstable.
We investigate the case d’'(w) = 0.
We denote f (1) ~ g(A)if fand gsatisfy
0 <Iimnff(2)/g(d) <1 Hr_l)(l)lpf (D/g@A) < oo (93)

We assume
d(w+2) —d(w) —2d"(w) ~ A(d' (w + 1) — d'(w)). (94)

This is a technical assumption which we need in the proof.

Remark (5.3.11)[150]:If d € C"and d"(w) # 0 for some 2 <m <mn, then the
assumption (94)is satisfied. Let d(w + 1) = e /1 then d does not satisfy 94).
However, this assumption seems to be natural.

We now state our main results.

Remark (3.3.12)[150]:For Theorem (5.3.2) below, we can remove the condition
Jlx,J |y are bijective and bounded.Further, we only need w — ¢, to be C%. We only use
these conditions for Theorem (5.3.3) below, which is concerned with the instability.
Therefore, we can treat the case J = d,, which appears for KdV type equations and

BBM type equations.
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Remark (5.3.13)[150]:If d"'(w) > 0 (resp. < 0), then the assumption of Theorem
(5.3.2)below (resp. Theorem (5.3.3) is satisfied. Therefore, Theorems (5.3.2) and (5.3.3)

below are extension of Theorem (5.3.10).

Remark (5.3.14)[150]:The assumption {(¢,11,] 103¢,+21) = 0 is technical. However,
for the NLS and NLKG cases, this is satisfied when as far as the real-valued standing

waves are concerned.

Corollary (5.3.15)[150]:Let Assumptions (5.3.1), (5.3.5)and (5.3.9)be satisfied. Let n >
4 be an even integer. Assume thatd € C™in an open neighborhood of w and assume
dw) = =d®D(w) =0, d™(w) > 0.
Then T (wt)¢,,is stable.
Corollary (5.3.16)[150]:Let Assumptions (5.3.1), (5.3.5)and (5.3.9)be satisfied. Further,
assume there exists € > 0 such that {(¢41,] 102Pe+2) = 0for |A] < &. Let n = 3 be
an integer. Assume that d € C™in an open neighborhood of w and
d"(@) = =d"D(w) = 0,
d™(w) < 0 (n: even), d™(w) # 0 (n: odd).

Then T (wt)¢,,is unstable.

We assume Assumptions (5.3.1), (5.3.5), (5.3.9), (94) and d''(w) = 0. Note that

by differentiating (92) with respect to w, we have

d'(w) = S4,(¢e) — Q(Pw) = —Q(dy), (95)
d"(w) = =(B¢w, 0w Pw)- (96)
Further, differentiating the equation S;,(¢,,) = 0 with respect to w, we have
S0 (90)00Pw = By 97)
We will use these relations in the following. Set
n1(1) =d(w+ 1) —d(w) — Ad" (w), (98)
n,(1) =d'(w+ 1) — d(w). (99)

Recall that in (94), we have assumed 71,(41) ~ An,(1). Further, since we are assuming

d"(w) = 0,we have n,(1) = 0(1)as 1 - 0.

Lemma (5.3.17)[150]:Let & > O sufficiently small. Then, there exists o(1):(—¢, &) =
R such that (1) ~ n,(1) and
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Q(¢w+/'l + U(A)B¢w+l) = Q(¢w): (100)
for || < &, where we have used “~” in the sense of (93).
Proof.Set
F(o,2) = Q(¢u+1+ 0Bdyia).
Then, F(0,0) = Q(¢,) and 0,F|s=3=0(0, 1) = ||Bd,ll%5 =0 by Remark (5.3.6).
Therefore, by the implicit function theorem, there exist € > 0,§ >0 and o : (—¢,&) =
(=8, 6) such that o(4)satisfies (100) for |A1]| < &. Further, by (100), we have
gD (I1Bpwallfi + e(DQ(BPw12)) = —Q(Dw+2) + Q(¢e)
=d'(w+ 1) —d(w)
= 772 (A),
where we have used (95) and (99). Since
dD(IBow+all + c(DQBdw+2)) = a(D (1B lIF + 0(1))ast - 0,
we have the conclusion.
We now define a curve on the neighborhood of ¢,. Let € > 0 as in Lemma
(5.3.17). For || < &, set
Y(A) = bp+at U(A)B¢w+)l-

We next calculate the value of Sw(W(A)).

Lemma (5.3.18)[150]:Let € > 0 as in Lemma (5.3.17). Then for |A| < &, we have
Sw(‘IJ(A)) — S, () =11 (1) + 0(7]1(&)), 1-0.
Proof.By the definition of S,, we have S, =S, + 4Q. Using this and the Taylor
expansion,we have
So(P) = Spia(PD) + 2Q(F(D)

= Swi1(@wiar + 0(DBdy42) +2Q(Py)

= Spi1(Pwir) +2Q(dy) + 0(a(1)?)

=d(w+21) —Ad'(w) +o(n, (D), 21-0.
Here, we have used Q(‘P(A)) = Q (¢ )for the second equality,S,, . ,(¢d,12) = 0 for the
third equality and (1) = o(A),O(Aa(A)) = O(Anz(l)) = 0(n1(A))as A — 0 for the

last equality. Therefore, by (98), we have the conclusion.
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We define a tubular neighborhood of ¢,,. Set
N, = {u € X| influ — T(s)pullx < e},
= {u € N.|Qw) = Q(¢,)}.

Lemma (5.3.19)[150]:Let & > O sufficiently small. Then for u € N, there exist

o

0(w), Aw), w(i) and a(w) such that
T(O@)u = ¥(AwW) +ww) + aWBduraw,
and
W), T'(0)Pp+aa)? = (W), 0y, Pwraa)) = W), By iaay) =0
Further, A and @are C?.

Proof.Set
_({T(Ou—¥(A4),T'(0)depra)
6@ o) = (g yaupnt )
Then, we have G(¢,,0,0) = 0 and
aG
TG (G, G’A))i,j=1,z’ (101)
where
Gll(uf 9,/1) = (T,(O)T(e)urT’(0)¢w+A>r
G12(w,0,4) = =01 ¥ (4), T'(0)p44) +(T(O)u — ¥ (4),T'(0)04Pesa)
GZl(ul 91 A) = (T'(O)T(G)u, aw¢w+A>;
G2 (1, 0,4) = —(0)¥(A),04Pu+4) +(T(O)u — ¥ (A), a(f)(PwM)-
Therefore,
96 _ (||T'(o>¢w||é 0 >
6(9,/1) U=, 0=A=0 0 _llaw¢w||12-1 '

is invertible. Thus, there exist functionals 8 (u)and A(u) defined in the neighborhood of
¢, such that G(u, 6(w), A(w)) = 0. Since, w’ > ¢,is a C> map, we see that Gis C2.
Therefore, A and @ are C2. For u € N,, define 8(T(s)u) = 8(u) — sand A(T(s)u) =
A(u). Finally, define
-2
a(u) = (T(H(u))u - lIU(A(U)):B¢a)+/l(u)>”B¢(u+A(u)”H ’

wu) = T(B(u))u - lIJ(/l(u)) — a(UW)BPyia)-
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Therefore, we have the conclusion.
Let € > 0 as in Lemma (5.3.19). Set
M(u):= T(H(u))u, u € N,.
Remark (5.3.20)[150]:By the uniqueness of the solution of G = 0, we have
o(¥() =0, A(¥W) =4,
w(P() =0, a(¥(1) =0.
We next show that the Fréchet derivatives of 8 and AareinY.

Lemma (5.3.21)[150]:Let € > O sufficiently small. Let u € N,. Then, 8'(u),A'(u) €Y.

Proof.By differentiating G(u, H(u),/l(u)) = 0 with respect to u, we have

9’(u) _ T(_g(u))T,(0)¢w+/l(u)>
H(u) <A’(u)> - ( T(_H(u))aw¢w+/l(u) ' (102)

where H(u) = (Gi,j(u, H(u),/l(u))) . Since H(w)is invertible in N, for sufficiently
,2

ij=1
smalle >0 and T'(0)@y4aw) E Y, 00w Pw+aw) € Yby Assumption (5.3.5), we have the
conclusion.
Remark (5.3.22)[150]:As the proof of Lemma (5.3.21), by differentiating (102) with
respect to u, we see that 8" (u)w € Yand A” (u)w € Yforu € N, and w € X.
Let € > 0 sufficiently small. We now introduce the following functionals A and
P defined in N, which we use to show the instability theorem.
A@) = (MW, ] 0w Pw+aa),
P(w) = (Sys pqy W), JA' (W)).
Remark (5.3.23)[150]:A and Pare well-defined in N, for sufficiently small € > 0. Indeed,
AW) = ] T(=0(1))uPuraco + (T OMW),J 0 Posa0)0’ ()
HM@W), ]~ 05 w+aa)A (W). (103)
So, by Assumption (5.3.5) and Lemma (5.3.21), we have A'(u) € Yand JA'(u) € X.

Therefore, the definitionof Pmakes sense.

Remark (5.3.24)[150]:Let u be the solution of (58), then

d
EA(u(t)) = —P(u(t)). (104)
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Indeed, first, since A(T(s)u) = A(u), foru € D(T(O)),
0=(A"(w), T'(0)u) = —(Bu,JA'(u)).

Therefore, formally, we have

%A(u(t)) = (A'(W), u) = (A’ (W), JE' W) = —(E'(w),JA' (W) = —P(w).
By Lemma (5.3.4) of [151], we have Aocu € C' foru € C(I,X) N C*(1,Y*). Therefore,
the formal calculation is justified.
Remark (5.3.25)[150]:A and Pare invariant under T, that is
A(T(s)u) = A(w),
P(T(s)u) = P(u).
Indeed, the invariance of A follows from the invariance of Mand A. The invariance of
P follows from the invariance of S and A. More precisely, since A(T(s)u+ h) =
A(u+ T(—s)h), we haveA'(T(s)u) = T(s)A'(u). So, we have
P(T(s)u) = (S"(T(s)u),JA (T(s)w)) = T(s)S"(w),JT(s)A"(u) = P(w),
where we have used the fact Jand T'(s)commutes.
We now calculate the value of Palong the curve ¥.
Lemma (5.3.26)[150]:Let £ > 0 sufficiently small. Assume (¢, ] *02¢,) = 0. Then, for
|| < &, we have
P(lP()L)) =n,(1) + o(nz(/l)), A—-0.
Proof.First, we calculate S;)M(LP(A))(W()L)).
S;)M(W(A))(W(A)) = Sp+a( w2+ 0(D)Bdy12)
= 0(W)Sy2(Dwi)BPwia + 0(ac()).
Next, we calculate ]A’(llf(/l)). Recall that M(W(A)) =¥Y(A) = ¢pysa + ()B4 and
we assumed

—(B¢w, 00 ey) = d"(w) =0,
and (¢, 103¢,) = 0. So, we have
(T (OM¥ ()] 0ubwrz) = 0(1), 10,
M(PD),] 05 ¢w+a = 0(1), 1 0.
Therefore, by (103), we have
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JA'(P(D) = 0,pepss +0(1), 1-0.
Combining these calculations, we have
P(¥(D) = 0111 (Pus) Bbuws, Ouburn) + 0(a(D)
= c(DIIBdually +0(a(D)
=12(A) +0(n2.(D), 210,
where we have used the relation S, 1 ($4,+1) 00 P w2 = BPwia-
The following lemma is well known. For example see [153].
Lemma (5.3.27)[150]):There exists ko > 0 such that if w € X satisfies (w,T'(0)¢,,) =
(W, 8,0,) = (W, Bo,) = 0, then (Si (¢, )w, w) = kqllwll%.
By a continuity argument and Lemma (5.3.27), we can show the following

lemma.

Lemma (5.3.28)[150]:There exists &, > 0such that for |A| <¢g, if w € X satisfies

(W, T' (0 purs1) = (W, 0B us2) = (W, Bdsa) = 0, then (Sij (¢o)w, w) = ~kollwll3.
We assume Assumptions (5.3.1), (5.3.5), (5.3.9),(63) and d"'(w) = 0. We first

estimate a(u) which is given in Lemma (5.3.19).

Lemma (5.3.29)[150]:Let £ > O sufficiently small. Let € N2. Let a(A)as in Lemma (5.3.1)
and a(u),w(u) and A as in Lemma (5.3.19). Then, there exists a constant C > Osuch

that
la@w)] < C(o(AW)lIw@llx + Iw@lI3).
Proof.We first calculate Q(u). By Lemma (5.3.19) and (59) (definition of Q), we have
Q($.) = QW)
= Q(¥(Aw)) + ww) + a(WB¢yraw)
=@ (¥(4w)) + Qww) + ¢@)B ysaw)
+(Bbw+aa) + 0(AW)B2Puiay, ww) + a(WBd 4 a))
= Q(¢) + € W||Bburacl,, + 0(AGD) (B 1 400, W)
+ () (AW))(B*busawwy Bbwraw) + Qww)
+ a(W){(BWW), Bpora) + ¢W?Q(Bburaw),
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Therefore, we have

—a)(IBoy lI7 + 0(1)) = 0(AW)){B*Pu+aqw, ww)) + Q(w(w)), A(u) - 0.
Thus, we have the conclusion.
Next, we show that under a restriction of the value of S,,we get a good estimate

forw(u) and a(u).
Lemma (5.3.30)[150]:Let £ > O sufficiently small. Let a € R. Suppose u € N2and
() = 5u(90) < ama(AG) + 15 W,
where kyis given as in Lemma (5.3.27). Then, |lw(w)||4 = O (nl(A(u))) as A(u) - 0. In
particular, a(u) = 0 (171 (A(u)))as A(u) - 0.
Proof.Suppose there exists u,, € N2, u, = ¢, in X, s.t.

k
Sw(ttn) = Su($w) < am () + 75 Iwallk,

and ”Wn”.g( = Cnnl(/ln): where w, = w(uy), 4, = A(uy), a, = a(uy)and C, - .
Then, we have 17; (4,,) = o(Jlwy||%). Further, by Lemma (5.3.17), (94) and assumption of

contradiction, we have

y 2 1/2 A
M) _ Iwally _ y (1/’;) Iwallx = o(llwnllx), n— oo,
Ay A Cy nCr

a(Ay) ~ n(4y) ~

where we have used “~” in the sense of (93). Thus, by Lemma (5.3.8), a;,, = 0(|lw,,||3).

Now, by Taylor expansion and Lemma (5.3.19),
SoWn) = S (@) = S (¥ (4n) + Wy + @nBPoia,) = Su(bw)
= So(Y(4)) = S (P0) + (St (P (An)), Wy + @B in,)
4 SHE U)W w) + 0lwlld), - oo
Further, by Lemma (5.3.18) and S.,(¢,,) = 0, we have
So(P(4n)) = Su(de) = 0(1:1(4n)) = o(lwnll3),

(So(Y(40)), anBduia,) = ollwnll3), n — oo,

and by S, = S; 11 + AB, (B¢ 44,,Wn) = 0 and 0(4,) = o(|[wyllx)as n — o, we have

(Sey(P(An), wn) = (Sty4a, (P (A0) + BY(Ay), wy)
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- w+An(lp(An)) + U(An)B¢w+/ln Wn)

= o(llwnll%), n— oo,

Therefore, by Lemma (5.3.28), we have

1
Se(Un) — S () = E(S(Z(qj(/ln))wn; wp) + O(HWn”g()

k
2~ Iwall + oCllwy 13

_ ko

§ ”Wn”X;

for sufficiently large n. This contradicts to the assumption. Therefore, we have the

conclusion.

Theorem (5.3.31)[150]:Let Assumptions (5.3.1), (5.3.5), (5.3.9)and (94) be satisfied.

Assume that dis strictly convex in anopen neighborhood of w. Then T (wt)¢,,is stable.
Proof.let u € N2. Suppose, S,(u) — Se(de) < 71 (A(W)) + % lw@)||2. Then,by
Lemma (5.3.30), we have |[w(w)||% = 0(n,(u))as A(w) - 0. Now,
S0 W) =S4 (¢a) = Suo(P(AW) + ww) + a(WBwaa))
= maA(w) + (5% (P(A)) W) + 7 (S Iww), w(w))
+o (m(4@w))-
Using S, = S.}45 + B,a(Aw)) = 0 (n,(4@)) Jand lw@)llx = 0 (n(4@w)""*),
(S (#(4@) ), W) = (St sy (¥ (A@)) + 4@ BY (4@)), w(w))
= 0AW)(S4 (Pew+aw))BPw+aq W)
+AW)a(AW) )(B* P, w(w))
= o (m(4@w))).

Since we have assumed that d is strictly convex in an open neighborhood of w,n,(1)is
strictly increasing in an open neighborhood of 0 (if 7, (4) is not increasing, then d would

not be convex,if n, (1) is constant, then d would not be strictly convex). So, we have

k
Su() = Su(dw) 2 AW, (AW) + 7 Iwli,
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for a constant ¢ > 0.
Now, suppose that there exist a sequence of solutions u, and t, > 0 s.t.
U, = ¢y,in Xand i nfcgllu,(t,) — T(s)d,llx = €,/10. Take
vn = /Q(¢0)/Q(wn)tn (£r).
Since \/Q(¢e,)/Q(uy) = 1, we have ||v, — u,, (t,)llx = 0 and S, (v,) — Se (¢,) — O.

Thus,A(v,), w(v,) and a(v,) converge to zero. This implies

Sie?gﬂun(tn) - T(S)d)(u”X - 0.

This is a contradiction.

We next show Theorem (5.3.32). We first calculate P.

Lemma (5.3.32)[150]:Let £ > 0, sufficiently small. Let u € N2 and S,,(u) — S,,(¢,) < O.

Further, assume (0, +aw)») 0w Pw+aw)) = 0. Then
P(u) = 1,(4(0) + o (n2(Aw))).
Proof.By Taylor expansion,
P(u) = P (¥(Aw) + w)) + o (n(Aw))
= 12(AW) + (S ac (P(4@) ) waw), s 4" (¥ (4W)))
S teac (P(40)),JA" (¥(A@W)) ww)) + o (n2(Aw)))
= 12(A00) +(Siy 00 (P(AGD) )W), J 4" (¥ (4w)))
+0 (nZ(A(u))), Aw) = 0,

where we have used |lw(u)||% = o (nz(/l(u))) and S;)+A(u) (W(A(u))) = (772 (A(u))).

Now, by (72),
]A, (W(A(u))) = aoo¢oo+A(u) - (B¢(u+A(u)i aw¢w+/1(u)>9’ (W(A(u)))
+(aw¢w+/1(u)']_1a(u¢w+/l(u)>/1’ (W(A(u)))

+0 (n,(A@W)), A@w) >0,
where we have used Lemma (5.3.17). Now, by(0y®wiaw)) 0uPuwraw)) =
0,{(w(u), Bdy+aa)) = 0and (97), we have
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(Streaco (P(4G0) ) wn),JA (¥ (A@))) = (5151 a0 (Do 460 )W, Dot a0
~(Bburs auy» Our P W, Sl 40 (Para)8 (¥ (4@) ) + 0 (n2(4w)))
= 0 (nz(4w)), A —0,
where we have used [wllx =0 (n:(A@w)"*)and 6" (¥(4@w))is a linear
combination of dg, e+ a(w) and T'(0) P4y because of (102). Therefore, we have the

conclusion.

Theorem (5.3.33)[299]:Let Assumptions (5.3.1), (5.3.5), (5.3.9) and (94) be satisfied.
Assume there exists € > 0 such that d(w + 1) —d(w) — Ad'(w) < 0in 0 < A< gor

—& < A< 0. Further, assume{® 1 1,] 102 ¢p4+2) = 0. Then T(wt) ¢, is unstable.

Proof.By the assumption of Theorem (5.3.33), we have 1,(4) < 0 in a one-sided open
neighborhood of 0. Therefore, by Lemma (5.3.18), we can take the initial data from
Y(4), whereS(‘l’(An)) < S(¢,)and A, - 0. Suppose, u,stays in N2. By the

conservation of Eand Q, we have

So(un(®) = 50 @) = 11 (4(n®)) +0 (1 (4(n(02))),

and by Lemma (5.3.32),

P(u(t)) =n, (A(un(t))) +o0 (le (A(un(t)))).

Then, since An, (1) ~ n,(1), we have
S0 (@) = Su(Un(®)) < C|A(un ()P (un (1))

for some constant C > 0. Thus, we have 0 < § < |P(un(t))| for arbitrary t. So, P has

)

the same sign. Suppose P > 0. Then, %(un(t)) > P(un(t)) > §. Thus, Ais
unbounded. However, this is contradiction. For the case P < 0 we have the same
conclusion.

We consider the following single power nonlinear Klein—Gordon (NLKG)
equation.

Uy — Au+u — [ulP~tu =0, (x,t) € RY, (105)
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whered > land1<p<owford=1,2and1<p<1+4/(d—-2)ford = 3.To put
(74) onto our setting, set X = H}R?) x L[2(R%),Y = L2(R%) x H}(R%) and

2
H= (L%(Rd)) , where H}and L% are subspaces of H! and L? which consist with radial

functions. Then define Jand Eas
(0 1
1=(5 o)
BW) = [ + 17 + 2 = — [
2 p+1 '
Then, J: H — His skew symmetric, and J|x:X = Y,J|y:Y = X are bounded and
bijective.Further, Eis C?. Let U = (u,v)!, where t means transposition. Then NLKG

equation is rewritten as

dU— E'(U
i = JE'(U)

in Y*. Further, in this case, we take (s) = eI, where I is the identity matrix. So, we
have(u) =1 mf uu;. From the results of Ginibre and Velo [155], it is known that NLKG
equation is locally well-posed and Eand Q are conserved (i.e. Assumption (5.3.1) is
satisfied). For, w? < 1, let ¢, be the unique positive radial solution of
0=—-Ad, + (1 — w?)p, — L.

Then, e!®tg,, is the solution of (105). It is well known that ¢ € S(R%), where S(R%) is
the Schwartz space (see for example Chapter B of [156]). Further, by scaling, we
have ¢, = (1 — w)YP V¢ ((1— w?)¥?)x). Therefore, it is easy to check w =
¢, satisfies Assumption (5.3.5).Further, Assumption (5.3.9) is also well known to be
satisfied (see for example [157]).

Now, since (1 — w?)YP V¢ ((1—w?)¥?)x), we can calculate d directly.

Since Q(¢,,) = w [ P2, we have
4" () = — (1 - (1 + % - d) w2> (1= wypiz Rjd 2.

So, we see that for the case p > 1+ 4/d, then d""(w) < 0 for all w € (—1,1)and for
thecase 1 <p < 1+ 4/d, there exists
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0<w, = p_1 <1
“Ela-@-ne-n° "

such that if || < w,, then d”(w) < 0 and if |w| > w,, then d" (w) > 0. Therefore, in
these cases we know the stability and instability. These are the results by [158] and
[159].

For the case w = tw,, we can show d"’'(w,) # 0, so by Corollary (5.3.16), we
see that in this case, we have the instability.

We have to remark that for the case d > 2, this result was proved by Ohta and
Todorova [160] and for the case d = 1,p = 2, one can prove this result by applying
Comech and Pelinovsky’s result[152] (for the case 1 < p < 2, Therefore, for 1 <p <
2,d =1, this result seems to be new. Further, our proof, the proof of [160] and the
proof of [152] are completely different from each other and our proof gives a simple
and unified proof for the critical case.

We next consider the double power nonlinear Schrédinger equations.

iUy + 0, + aq|ulPr~u + a,|ulPz 1y, (¢, x) € R?,
where a;,a, € Rand 1 < p; < p, < . In this case, let X =Y = H}(R),H = LA(R),
] =1i,T(s) =e® and

1 aq aq
E — Zd _ f p1+1d _ -]- p1+1d .
() =5 [ Tl =~ [ et -~ [ jupsia
R R R

Then, we are on the setting of our theory. In this case, by the combination of a4, a,, it is

known that there exists some w > 0 such that d""(w) = 0 and d"""(w) # 0 (see [161]).

So, for such w > 0,we can show the instability.
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