Chapter 3

Moment Identities and Random Hermite Polynomials
We recover and extend the sufficient conditions for the invariance of the Wiener
measure under random rotations given. As an application we recover, under simple
conditions and with short proofs, the anticipative Girsanov identity and quasi-invariance

results obtained for quasi-nilpotent shifts on the Wiener space.

Section (3.1): Skorohod Integrals on the Wiener Space:

In [61], sufficient conditions have been found for the Skorohod integral 6 (Rh) to
havea Gaussian law when h € H = L?(R,, R%) and Ris a random isometry of H,

usingan induction argument.

We state a general identity for the moments of Skorohod integrals, which will
allow us in particular to recover the result of [61] by a direct proof and to obtain a
recurrence relation for the moments of second order Wiener integrals.

We refer to [62] and [63] for the notation recalled in this section. Let
(Bt)ter, denote a standard R? -valued Brownian motion on the Wiener space
(W, wwith W = Cy(R,, R?). For any separable Hilbert space X, consider the Malliavin
derivative Dwith values in H = L2(R,, X ® R%), defined by

n
D.F = Z 110,100 (B, ., Be,), t € R,,,
i=1

for F of the form
F=f(B.,..,B:,), (1D
f € Cy(RY,X),ty, ...ty € Ry,n = 1. Let D, , (X) denote the completion of the space

of smooth X-valued random variables under the norm
k

lulloy o = ) ID%lpgguen, P> 1,
=0

where X @ H denotes the completed symmetric tensor product of Xand H. For
all p,g > 1suchthatp™t+q'=1andk =1, let
§:Dp (X)X QH) » Dy p-1(X)
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denote the Skorohod integral operator adjoint of
D : Dpe(X) > Dyyr (X @ H),
with
E[(F,6W)x] = E[(DF, wyxgu],  F € Dp(X), u€Dyy(X @ H).
Recall that §(u) coincides with the 1t6 integral of u € L2(W; H) with respect to

Brownian motion, i.e.

e

6(u) = f u,dBy,

0

When u is square-integrable and adapted with respect to the Brownian filtration.

Each element of X @ His naturally identified to a linear operator from H to X via
(a ® b)c = a(b,c), a®beXRH, c EH.
For u € D, ,(H) we identify Du = (D;ug)ser, to the random operator Du: H —

H almost surely defined by
(Dw)v(s) = f (Du)vdt, sER,  veL2W;H),
0
and define its adjoint D*uon H @ Has
(D*Wv(s) = f (Diu)vdt, seR,, veL*W;H),
0

where D}u, denotes the transpose matrix of D, usin R? @ RC.
Recall the Skorohod [64] isometry

E[6(w)?] = E[{(u,u)y] + E[t rac@u)?], u € Dy, (H), (2)
with

trac@u)® = (Du, D*u)ygu

= j -]- <Dsut, D_;I-ut)Rd®]RddS dt,
00
and the commutation relation
DS(u) = u+ 6(D*u), u € D,,(H). 3)
First we state a moment identity for Skorohod integrals, which will be proved.
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Corollary (3.1.1)[60]:Let n = 1and u € D,,;1 ,(H) such that (u, u)y is deterministic and

k
1 ) )
trac@u)**t + ZT((Du)"“u,D trac@uw)')y =0, a.s., 1<k<n (4

=2

Then §(u) has the same first n + 1 moments as the centered Gaussian distribution with

variance (u, u)y.

Proof. The relation D{(u,u) = 2(D*u)u shows that
1
((D*"wu,u) = ((D*w)* u,u) = E(u, (D 2D(uu)) =0, k=2, (5

when (u, u) is deterministic, u € D, ; (H). Hence under Condition (4), Theorem (3.1.3)

yields

n+1

E [(S(u)) ] = n(u, u)yE [(6(u))n_1],

and by induction
2m)!
E [(6(u))2m] - %(u,u)z’, 0<2m<n+1,

and E [(S(u))

We close this section with some applications.

bn+1]

=0,0 < 2m < n, while E[§(w)] = 0 forallu € D, ; (H).

(i) Random rotations
As a consequence of Corollary (3.1.1) we recover Theorem (3.1.3)-b) of [61], i.e.
6(Rh) has a centered Gaussian distribution with variance (h, h)y when
u = Rh,h € H,and Ris a random mapping with values in the isometries of H,
such that Rh € Ny5q D, (H) and trace (DRh)**1 = 0,k < 1. Note that in [61]
the condition Rh € Npsq k=2 Dy i (H) is assumed instead of Rh € N5 Dy, ,(H).
(ii) Second order Wiener integrals
Letd = 1. The second order Wiener integral I,(f;) of a symmetric function
fo € H® H = L?(R%) can be written as I, (f3) = 6 (w) withu, = §(f,( 1)), t €
R,. Its law is infinitely divisible with Lévy measure
1 X 1 —x
v(dy) = 1550 kZ Tyle %dy + 150} Tyle “dy, (6)
;aR>0 <0

k;ak

when f, is decomposed as
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1 [o'e]
f2= 52 arhy & hy
k=0

in a complete orthonormal basis (hy) ey Of H. Letting
ggkﬂ)(sl t) = j f2(s,t)f2 (81, t2) -+ fo(tre—1, b f2 (Ege, 1) -+ Aty -+ dity,,
Rk

we have trace (Du)**! = S g(k+1)(s, t)ds dt, and using the relation

5(f1)0(g1) = L(fi ® g1) +{f1. 9)u, fi,91 €H,

we get

(DW*tu,u)y = j 5(f2 C, t1))f2(t1: t2) - fa(tk—1, tk)5(f2 C, tk)) e dty e diy,

Rk-1

- fIz(fZ(.'tl)®f2("tk))f2(t1:tz)"'fz(tk—1:tk)dt1"-dtk

Rk-1

f f2(to, t1) f2(t1, t2) -+ fo (tk—1, ti) f2 (Ei, to)dtg -+~ dity

Rk—l
= Iz(ggkﬂ)) + trac@u)**?,

hence Theorem (3.1.3) below vyields the recurrence relation

(L))" = Z( E[(())" (1(g5°) + 2t rac@u)*1)]

-1

=2 _OZ_ j g8 (s, 0ds deE[(1(£) ]

-1

S

k 1)k+1 l »
+k OZ k)'(k+1)| k) “H1E [(Iz(fz))k ]
n-1 k (—=1)k+1-Ip .
+k OZ k)'(k+1)| ‘ ) [12((1—1)f2+g§ K >) 1]'

for the computation of the moments of second order Wiener integrals, by polar-

isation of (I, (fz))n_kl2 (ggn_k“)).
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In the sequel, all scalar products will be simply denoted by(-,").
We will need the following lemma.
Lemma (3.1.2)[60]:Let n > 1 and u € D44 ,(H). Thenforall1 < k <n we have

E [(5(u))""‘<(pu)k-1u, DS(u))] —(n—-k) [E(6(u)) (Du)ku,D6(u))]

n—-k—-1
(

k
=E (6(u))n_k (((Du)k‘lu, u) + trac@u)**! + Z%((Du)k_iu, Dt rac(eDu)‘))] .
i=2

Proof. We have (Du)*'u € Dgyi1)/k1(H), 6(W) € Dini1)/m-r+1)1(R), and using
Relation (8) we obtain

E [(6w)" (0w u, Do (w))]
= E[(6)" (0w u,u + 5(D*w)]

—E [(5(u))""‘<(Du)k-1u, )| +E [(5(u))""‘<(Du)k-1u, 5(Dw)]

Ivl

—E [(5(u))""‘<(pu)k-1u, )| + E [(D"u, D ((5(u))”"‘(Du)k-1u)

= E[(6)" (0w u,w)]| + E[(6@))" (D*u, D(Dw)* )
+E [(0"u, (Du)*'u) ® D(a(u))”"‘]

= E[(6@)" ™ (@) u,u) + (0w, D(DW* )]

n—k—1

+(n— E|(5@)" ™ (D"u, (Dw)* 1) ® D5wW))]

= £ [(60)" U@ 1w, u) + (0w, D(Dw*w))]

n—-k—-1

+(n— KE|(5@)" ™ ((Du)u, Dsw)].

Next,

tk—1

(D, DEOW ) = [+ [(D],_ e Doy (Dry ke, = Degte, D, ity
0 0

(o0} oo

— t

- -]- b -]- (Dtk_lutk, Dtk_zutk_l oo DtoutlDtkut())dtO i dtk
0 0
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+ f f( tie—s Ytir Dy, (Dtk_zutk_l Dtout1)uto>dt0 e dty,
0 0

k-2 ®©
=trac@u)**! + f f
i=0 o 0
(Dtk LYty Dyug,_, = Dy ey, (DtiDtkuti+1)Dti—1uti Dtout1uto)dt0 e diy
k—2 © o
k+1 1
=trac@u) +2 S
lak—1
i=0 0 0
(Dtl (Dtk LUty Dy ugy_, - Dti+1uti+2Dtkuti+1> Dy, ug, - Dtoutlut()) dtg - dty
k—
=trac@u)k+! + Z ((Du)‘u D trac@u)* ).
i=0

Theorem (3.1.3)[60]:Foranyn > 1 and u € D41 ,(H) we have
“ |
n+1 n:
E [(S(u)) ] = ;m

K
E (6(u))n_k (((Du)k‘lu, u)y + trac@u)k*tt + z%((Du)k‘iu, Dt rac(eDu)i)H,>] @)
i=2

Where

trac@u)t! = j f(Dtk Ut Doy, Uty DegUe, Do U Ipagpradto -+ dig.

For n = 1 the above identity coincides with the Skorohod isometry (2).

In particular we obtain the following immediate consequence of Theorem
(3.1.3). Recall that t rac@u)* = 0,k > 1, when the process u is adapted with respect

to the Brownian filtration.

Proof. We decompose

E [(5(u))"“] = E[(u,D(6(w)")] = nE [(5(u))”‘1<u,p5(u)>]

Z k), [(6(u))n_k((Du)k_1u,DS(u))]—(n—k)E[(6(u))n_k_1(Du)ku,Dd(u)D,

as a telescoping sum and then apply Lemma (3.1.2), which yields (7).
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Finally we state some other consequences of Theorem (3.1.3).

Corollary (3.1.4)[60]:Let n = 1 and u € D1 ,(H), and assume that

1 ) )
trac@u) ! + Z?((Du)k“u,D trac@u)?) =0, 1<k<n. (8)
i=2
Then we have

n

E[(6a)"™"] = Z k)'E[(5(u)) ((Dw*u,u)).

Corollary (3.1.5)[60]:Let n > 1land u € D,, ;1 ,(H) such that (u, u) is deterministic. We

have

E [(5(u))"“] = n(u, wWE(5w))"

+Z(

Section (3.2): Girsanov Identities on the Wiener Space:

k
(S(u)) (t rac@u)**tt + Z % ((DW*'u,Dtr ac(eDu)‘))] .
i=2

It is well known that the Hermite polynomial

L (—u/2)*
H,(x,u) = 2 %x”—z", x €R (9)

0<2ksn

With parameter u € R and generating function

etx_tzﬂ/z = Z FH‘n(xr .u)l X, t € ]:R’ (10)

Satisfies the identity

E[H,(X,02)] = H,(X,02)e™*/2%)dx =0, n=>1, (11)

\/_
Where X =~ N'(0,02%) is a centered Gaussian random variable with variance 62 > 0,
since
o (2n)! (—a%/2)*
H X E XZn—Zk
E[H,(X,0%)] = kL (2n — 25! [ ]

k=0
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n

> () otk =0

k=0

(2n)!
- n!

From the even Gaussian moment E[X?™] = (¢2/2)™(2m)!/m!,m > 0.

The identity (11) holds in particular when X is written as the stochastic integral

X = Of £(s)dB,

of a deterministic real-valued function fwith respect to the standard Brownian motion
2 2 _ (% 2
(B)ter,and 02 is the constant a2 = [ "|f(s)|*ds.

It is well known, however, that the Gaussianity of X is not required for
E[H,,(X,0?)] to vanish when o?is allowed to be random. Indeed, such an identity also

holds in the random adapted case under the form

o)

E|H, jutdBt,jlutIZdt =0, (12)
0 0

Where (ut)t€R+is a square-integrable process adapted to the filtration generated

by(B¢)ter,, due to the fact that

© o © tn t2
2 —
Hn f utdBt ,f |ut| dt — n! utn utn_l f utldBtl M dBtn )
0 0 0 0 0

is the n-th order iterated multiple stochastic integral of u; ---u, with respect
to(By)ter,, cf. [66] and [67].

We prove an extension of (12) to the random case, by computing in Theorem
(3.2.3) below the expectation

E[H, (6w, llul®], n=1,

of the random Hermite polynomial H,(8(uw), ||u]|?), where §(u) is the Skorohod
integral of a possibly anticipating process (ut)tE]R+ . In particular we provide
conditionson the process (u;)¢er, for the expectation E[H,(5(w), lull®»)],n=1, to

vanish. Suchconditions cover the quasi-nilpotence condition of [68] and include the
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adaptedness of (u;)¢er,, Which recovers (12) as a particular case since §(u) coincides

with the It integral when (u;)cg, is adapted.

Indeed, it is well known that in the adapted case, (12) and (10) can be used for the proof

of the (adapted) Girsanov identity

(00} [o9)

1
E|exp futdBt—Eflutlzdt =1,
0

0

Under the Novikov type condition
T
1
E |exp §f|ut|2dt < oo,

0
Similarly we recover, under simple conditions and with short proofs, the anticipating
Girsanov identity obtained in [68] for quasi-nilpotent anticipative shifts of Brownian
motion. This also simplifies the proof of classical results on the quasi-invariance of
Euclidean motions [70], and on the invariance of random rotations.

The results of this section can be formally summarized by the derivation formula
2
aiE [eta(u)—%lluhz] _ tE[ew(u)—tZ(u,u)/Z(D*u'D(IH _ tDu)‘lu)], (13)
t

For t in a neighborhood of 0, cf. Relation (23) below, where Dand § respectively denote

the Malliavin gradient and Skorohod integral, showing that

1
E|exp (66 =5 Iull?)| = 1,
Provided(D*u, D(I; — tDu) " tu) = 0,

For t in a neighborhood of 0, cf. Corollary (3.2.2) below for a formal statement.

We refer to [72] and to Appendix B in [70] for the notation recalled in this
section. Let(B;).cg,denote a standard R%-valued Brownian motion on the Wiener
space (W, P) with W = Cy(R,, R%). For any separable Hilbert space X, consider the
Malliavin derivative D with values in H = L?(R,, X ® R%), defined by

n
DtF = Z 1[O,ti](t)aif(Bt1, ...,Btn), t e R.l_,
i=1
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For F of the form
F = f(B,,,B¢,), (14)
f €CyY (R, X),ty,...,t, € Ry,n > 1. Let D, , (X) denote the completion of the space

of smooth X-valued random variables under the norm

k
lulloyc0 = Y 1Dl xguen, P> 1,
=0

Where X @ H denotes the completed symmetric tensor product of Xand H. For
allp,g > 1suchthatp ™t +gq ' =1andk > 1, let
0 :Dp (X QH) » Dy p_1(X)
denote the Skorohod integral operator adjoint of
D: ]Dp,k(X) - ]D)q,k—l(X & H),
With
EI(F,6()x] = E[(DF, wyxgnu],  F € Dpy(X), u€Dyy(X @ H).
For u € D, ,(H) we identify Du = (Dyug)ser, to the random operator Du: H —

Halmost surely defined by the relation
(Dw)v(s) = f (Du)v,dt, sER,, ve2(W,H),
0

inwhicha @ b € X @ H is identified to a linear operatora @ b : H —» X via
(a® b)c = a(b,c)y, a®beXR®H, ceH.
The adjoint D*u of Duon H @ H is given by

(D*wWv(s) = f(D:ut)vtdt, s€eR,, veELW,H),
0

Where D:ut denotes the transpose matrix of Dyu,in R @ R%. We will use the
commutation relation
DS(u) =u+d8(D*u), u€Dy,(H). (15)
Finally, recall that Du : H — H is a quasi-nilpotent operator if
trac@uw)k =0, k=2, (16)

where the trace of (Du)¥ is a.s. given for all k > 2 by
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[e e} (o]
trac@u)* = f ---f(D;rk_lutk, Dy, Uty De,Ue, Do U, Jpagradty -+ dity.
0o 0

In the sequel we will drop the indices in the scalar products and norms in R ® R4, H,

and H @ H, letting in particular ||u|| = ||ull;.

In Theorem (3.2.1) below we extend Relations (11) and (12) by computing the
expectation of the random Hermite polynomial H,,(§(w), ||ul|?) in the Skorohod
integral 6(u),n = 1. This result will be applied to anticipating Girsanov identities onthe
Wiener space. In the sequel, all scalar products in Hand in H @ H will be simply

denoted by (-,-), with ||h||?> = (h,h)y, h € H.

Lemma (3.2.1)[65]:For all k > Oand u € D, ;1 ,(H) we have
e
(D*u, D((Du)*u)) = trac@u)**? + z m((Du)iu, D trac@u)k*+17b).
i=0

Proof.From [69] ,we have

(D*u, D((Dw*w)) = (D*u, (D **) + (D*u, D(Dw)*u)
k-1
= trac@u)*? + ZO #((Du)iu, D trac@u)k+1 ),

As a consequence of Lemma (3.2.1), if Du : H — His a.s. quasi-nilpotent in the senseof

(16) then it satisfies (18). This leads to the following corollary of Theorem (3.2.3) below.

Corollary (3.2.2)[65]:Let u € D, ,(H) for some n>1, such that Du:H — H is
a.s.quasi-nilpotent or satisfies (18). Then we have
E[H,(6(w), l[ull®)] = 0.
Recall that when the process (ut)teR+is adapted with respect to the Brownian
filtration we have trace (Du)* = 0,k > 2, cf. [70], and therefore Condition (18) is
satisfied. This recovers (12) in the setting of adapted processes since in this case §(u)

coincides with the 1t6 integral of u € L?2(W, H) with respect to Brownian motion, i.e.

e

() =futdBt. a7

0
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Theorem (3.2.3)[65]: Foranyn > 0 and u € D,,;1 ,(H) we have

n—1

n! =D Jlull® | ok
Bl (GG, ] = Y TE[S@! ) s (0w, D(0w 2 ) .
=0 0<2ks<n—-1-1
Clearly it follows from Theorem (3.2.1) that if u € D,, ,(H) and
(D*u, D((Du)*w)) = 0, 0<k<n-2 (18)
then we have
EH, (), lull®]=0, n=1, (19)

which extends Relation (12) to the anticipating case.

Proof.Step 1.We show that foranyn > 1 and u € D, ;4 ,(H) we have

FlHna (0@, [ulD] = ) (~DF [5G0 ), 5(D"w)]

n!
k' 2k(n — 2k — 1)!E

; 1;571(_” ey PO D)), 20
For F € D, and [,k > 1 we have
EIFSG0™1] = — 2 L EFS(u)!*1] — L E[FS ()]
= T BIFa ()] — o Elfu, D(6G)'F))
= %E[m(mm] — %E[Fﬂu)l‘l(u, DS(w))] — l;—klE[rS(u)l(u, DF)]
=2 ptpsot+ 2 prrs ot )
- l(l;( D E[F§w)'™Yu, §(D*w))] — l;—klE[S(u)Nu, DF)],
i.e.

n—-2k)(n—2k+1)
2k
n+1 n-=2k)(n—-2k+1)
— n—2k+171 _
= E[F&(u) ] T
n—2k+1
2k

Hence, taking F = (u, u)¥, we get

E[6(w)™'] = E[(w, D5(w)™)]

E[FS(u)"2k+1] + E[FS(w)™" 2= 1(u, u)]

E[F§)"?*"Nu, §(D*w))]

E[6(w)™" 2*(u, DF)].
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= nE[§(w)" Xu, D& (w))]
= nE[6(w)™ Yu,u)] + nE[6§ (W)™ Yu, §(D*u))]
= nE[6§(w)" Xu, §(D*w))]

n!
(k—1D'!2k1(n+ 1 - 2k)!

DGk

1<2k=<n+1

<E15(u)n—2k+1(u,u>k]

(n—-2k+1)(n—2k)
+ 2k

= nE[§(w)" Nu, §(D*u))]

E[5(u)n—2k—1(u'u)k+1]>

! 1
- Z 2" (k - 1)! zk—ln(n +1 - 2k)! (n;{ E[6G™ T w w)']
1<2k=n+1

n—-2k)(n—2k+1)
B 2k

n—2k+1
2k

E[8 )" Hu, u)*(u, §(D*w))]

E[6 (W)™ %*{(u, D{u, u)k>])

(n+1)!

Mot 1= 2 o

=— > D
1<2k=n+1
|

k!zk(n__ka__ 1)!E[S(u)n_zk‘l(u,u)k(u,S(D*u)ﬂ

+ ) D
0<2k=n-1

n! B
+ ) D e E6G™ G D),

1<2ks<n

which yields (20) after using (9).

Step 2.For F € D, and 0 < i <[ we have
E[Fs(w)Y(Dw)'w, §(D*w))]| — IE[FS (W) H(D*w) 1w, §(D*w))]
= E[(D*u, D(FS(W)!(Dw)'w))] — LE[FS (W) " H{(D*w) " u, §(D*w))]
= IE[F§(W)'"YD u, (Dw)'u ® DS(w))] — IE[FS (W) H(D*w)* 1w, §(D*w))]
+E[6)YD*u, D(F(Dw)'w))]
= IE[F§(w)"YD*u, (Dw)'u ® DS(w))] + LE[FS (W) XD u, (Du)'u @ §(D*w))]
—IE[Fs)"Y(D*w)* 1 u, §(D*w)] + E[6 W) D*u, D(F (Dw)'w))]
= IE[F§W) " H((Dw) ™ 1w, u)] + E[6 (W) ((Dw)*u, DF)]
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+E[F§(w) (D*u, D((Dw)'u))].
Hence, replacing [ above with | — i, we get

E[FS(w)Xu, §(D*w))] = I E[F{(Dw)'u, §(D*u))]

-1
+; (l i' l)' E[F(S(‘l,t)l-l((Du)lu’ 8(D*U)>] - (l - l)E[FS(u)l_l_l((D*u)l+1u, (S(D*u)>]

-1
Il
= D E[F((Dw)'w, §(D*w))] +Zm5[m(u)l S1(Du) o, u)]
i=0

-1
I " l L
+LZ( E[5(U)l (D), DF)] + z = E[F5(u)l (D*u, D((Du) u)>]
-1
= I'E[{((Dw)"**u, DF)] + ZLE[Fd(u)l—i—l<(Du)i+1u W]
' ’ L(-i-1)! :

-1

+z( - E[5@)H((Dw DF)]+Z

i=0

0= E[Fa(u)l {D*u, D((Dw)'w))]

-1
— 1 E[{(Dw)"* ', DF)] +2(z— [F&(w)!==1((Du)* 1, w)]
i=0

1)!

+Z—(z . 1),E[6(u)’ (D), DF)]+Z(1 JE[F8)' 40w, D((Dw)'u))],

Thus letting F = (u, u)*¥and | = n — 2k — 1 above, and using (20) in Step 1, we get

ElHny (0G0, ] = > (D s EI5G0™ 7 ), 50" )

0<2ksn-1
k ' n—2k k
+1<;<n(—1) k!2"(n—2k)!E[5(u) (w, D{u, u)*)]
n!
- Z (—DF 2k E[{(Dw)™ ?ku, D(u, u)*)]
0<2k=n
(_1)k n—2k-2 l
Kok , k §(q)n-2(k+ D =i i+1
+052kzsn_1 ki 2k ZO (n—Z(k+1)—i)!E[<“’“> S(w) (Dw)*1u, u)]
( 1)kn 2k-2
n—2k-i k
+o<2k2<n_1 ki 2¥ 2 cerren U O CORTI
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n—-2k—-1

(—D* . i
* Z K12k Z (n—Zk i)!E[(u,u)I‘(S(u)" 2k=i=1(p*y, D((Du)'n))]

b DR EI5G)™ , D, )]

k! 2k
0<2ksn

I
= Z (— 1)’<k|2'k [((Du)™ ?Fu, (u, u)*)]

0<2k=<n

n—-2k-2

—1 k+1
B Z (A(c n i)! 2K Z n— Z(k gy LGOS CORTE ]

0<2ksn-1

n—-2k—-1

1 k
(klz)k 2 Gz E100™ 0w, D, )]

0<2k=sn

n—-2k-1

(—1)* n! kit i
* Z k! 2k ; (n—2k_1_l-)!E[<u'u>"5(u) 2k==1(p*y, D((Dw)'u))]

0<2k=n-1

n—-2k—-1

-1)* n! , '
o (k!lz)" D) 2k =1 = L w8 D", D(@w) )

0<2k<n-1

Where we applied the relation

. 1 .
(u, uY((Dw)*'u,u) = 5 (u, uY* ((Dw)*u, D{u, u))

=L (Wi D, w)
T 2(k+1) T

= m((Du)fu, D{u, u)*+1),

Which follows from D(u,u) = 2(D*u)u and the derivation property of the gradient

operator D.

The next proposition is an immediate consequence of (19), using the generating
function (10). In comparison with Proposition (3.2.1) of [70] we do not require
assumptions on the inverse mapping (Iy — Du)~'and we show that quasi-nilpotence of
Ducan be replaced by the weaker condition (18), while working under a stronger

integrability condition. Let D, , (H) = Ny2q Dy 2 (H).

Corollary (3.2.4)[65]:Assume that u € D, ,(H) with E[e/6@1+IuI*/2] < o5, and that

Du : H — H is a.s. quasi-nilpotent, or more generally that (18) holds. Then we have
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E [exp(&(u) —%IluHZ)] =1. (21)

Proof.From (9) we have the bound

|H,(x,02)| < CLY_n lx|" "2k (—a*)* = H,(|x|, 0%)
na - k! 2k (n—2k)! n ’ ’
0s2ksn
hence
B H, (0G0, )| < | Y —Hy (186, ~[ull?)
n=0 ) n=0 )

= E[eP@I+Iul?/2] < oo,

Consequently, by Theorem (3.2.3) and the Fubini theorem we have

E[exp(s60) ~ 3 llull) = 1+ E iﬁfzm(a(u), ||u||2>]

=1+ ;mmﬂm(a(ux )] = 1.

This shows in particular that if u € Dy, ,(H)is such that |lu|lis deterministic

and Du : H — His a.s. quasi-nilpotent, or more generally (18) holds, then we have

1

E[es®] = ezlhl®
i.e. 5(u) has a centered Gaussian distribution with variance |[u||?, cf. Theorem (3.2.1) of
[68] and Corollary(3. 2.2) of [69].
More generally, Corollary (3.2.5) below states an anticipative Girsanov identity
(22) that recovers Proposition (3.2.1) of [70] under simpler hypotheses, namely without
requirements on the smoothness and integrability of (I; — Du)~. In the sequel,

foru € D, ,(H) we let

1
Ay = exp(800) - 5 ull?),

and we denote by T, the transformation of Wdefined by

t

T,w(t) = w(t) + f ug(w)ds, t eR,, w€eEW.
0
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Corollary (3.2.5)[65]:Assume that u € Dy, ,(H) with E[e£(|‘5(u)|+”“”2/2)] < oo for
somee > 1, and that Du : H = His a.s. quasi-nilpotent, or more generally that (18)
holds. Then the transformation Tu : W — W satisfies the Girsanov type identity

E[F o T,Ay] = E[F], (22)

for all bounded random variables F.

[e] 1
Proof.For all exponential vectors Ay = elo f(t)dBt_EHfHZ,f € L?(R,), we have
AsoTyA, = oJo F(©)dBe~f5° fOu®)at—If12 A,
= ST WGl Gl ~(f )
= Au+f'
hence by Corollary (3.2.5) we have
E[A; o TyAy| = E [Ausf] = 1,
and we conclude by density of the linear combination of exponential vectors Ay, f €
L*(R,), in LZ(W).
In particular, if Tu : W — Wis invertible, then by Corollary (3.2.5) it is absolutely

continuous with respect to the Wiener measure, and
dT,; P
ap v
We refer to Corollary (3.2.2) of [70] for sufficient conditions for the invariability

of Tu: W - W.

The conditions imposed to obtain the Girsanov identity for Euclidean motions
written as the sum of a rotation and a quasi-nilpotent shifts as in Theorem (3.2.2) of [70]
can be simplified similarly.

Finally we sketch the proof of the formal identity (13) stated in the introduction,

) 2
P [ef‘“”)‘?”””z] = tE[et0-t*ww/2(p*y D(I,; — tDu) " u)). (23)

Proof.We have

) 21 et

~E [ew(u) lu ] = ) ElHna (3G, Iull®)]
n=0
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[oe)

X

=0

S l 1 k 2k
Z = Z (k!) ”u” — i (D"u, D((Dw" 21" 1u))]
0<2k=n-1-1

l PRY 2k
— tE Z QO Z Z (kll) ”u” ——(D*u, D((DW)™" 2ku)>]

L1 n=0 0<2k=sn

=0
k k

n=0 0<2ksn

=tE |e

k k
- Z (1) |u||2

Z t"(D"u D((Du)"u»]

n=0
= tE[et@-t*@w/2(p*y p(I,; — tDu) ™ u)].

In a similar way, from Theorem (3.2.1) of [69] we get

o)

%E[ew(u)] _ Z ;_7:15 [(5(u))”+1]
n=0

(o 9]

=Ztnz(n1k)l ((6( )" OW W + (0w, D(DW* 1))

n=0 1

XL

n=0

t"(((Du)ku u) + (D*u, D((Dw*w)))

= tE[e®®™ ((u, (I — tDu) Yu) + (D*u, D((Iy — tDw)w)))],
hence

%E[ew(“)] = tE[e®™ ((u, (I — tDu) " u) + (D*u, D((Iy — tDw)~*w)))].
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