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Chapter 2 

                  Stable Standing Waves and Lyapunov Asymptotic Stability 

In this chapter we give sufficient conditions for the stability of the standing 

waves of least energy for nonlinear Klein-Gordon equations. 

Section (2.1): Nonlinear Klein-Gordon Equations: 
 

We give sufficient conditions for the stability of standing waves of the nonlinear 

Klein-Gordon equation: 

��� − ∆� + � + �(|�|)arg� = 0,      � ∈ ℝ�,        � > 2,                       (1) 

or equivalently the steady-state solutions of the modulated equation: 

��� + 2���� − ∆� + (1 − ��)� + �(|�|)arg� =  0.                             (2) 

We show the stability of the standing waves of lowest energy in the energy norm. They 

are stable with respect to the lowest energy solution set of 

−∆� + (1 − ��)� + �(|�|)arg� =  0.                                   (3) 

The existence of solutions of (3) has already been shown in [42] and [43]. In the 

generality presented and this problem was solved by Berestycki and Lions in [43]. The 

condition for stability is very simple. If we define 

�(�)  =  1/2 �|∇��|� �� + (1 − ��)/2 �|��|� �� + � �(|��|)�� , 

where �� = � and �� is a least energy solution of (3), then: 
 

Theorem (2.1.1)[41]: �(�) is strictly convex in a neighborhood of ��, then ���
 is 

stable. 

Equation (1) arises in particle physics. It models the field equation for spin-0 

particles [44]. The existence of stable standing waves has, until now, eluded any 

rigorous proof. Anderson [45] showed by numerical computation that these equations 

can have stable standing waves. He studied the particular example where (|�|)arg� =

−|�|�� + |�|��, � ∈ ℝ�, and showed numerically that there are both stable and 

unstable standing waves. We have shown in [46] the existence of unstable standing 

waves for this example when ω is close to 1. Here we show that �(�) is strictly convex 
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for some ω and therefore there are stable standing waves. This problem was 

subsequently considered by Lee [44] and others who arrive at the same conclusion, 

heuristically, using the principle of least energy. 

It can be shown that the condition �(�) is convex, is equivalent to the condition 

that the energy of equation (1) �(�, �) restricted to the charge � (�, �) = � (��, ����) 

has a local minimum at (��, ����), where the charge � (�, �) = Im ∫ ���̅�. This 

agrees 

with the physical intuition of the problem [44]. 

The theory of linearized stability does not give a clue to whether there are stable 

standing waves or not. The spectrum of the linearized problem might lie entirely on the 

imaginary axis and therefore one cannot deduce the stability of these waves. 

It is interesting to compare this result of stability with the instability result of the 

ground state, i.e., the least energy steady state solution of equation (1). Berestycki and 

Cazenave [47] showed that for special type of nonlinearities, solutions that are close to 

the ground state blow up in finite time. In [46] we generalized this result to show 

instability, but not necessarily blow up, of the ground state for all nonlinearities that we 

can prove the existence of a ground state for. 

Finally, for the Schrόdinger equation: ��� − �� + �(|�|)arg� = 0. Cazenave and 

Lions [48] showed the existence of stable standing waves for some nonlinearities. 

Berestycki and Cazenave [47] showed the existence of unstable standing waves for 

another type of nonlinearities. 

Notation (2.1.2)[41]: We employ here the standard notation 

��
�(ℝ�) = {�, radially symmetric functions on ℝ� 

‖�‖ = ��|∇�(�)|��� + �|�(�)|����
� �⁄

< ∞ }, 

��
� (ℝ�) = {�, radially symmetric function on ℝ� 

 |�|� = ��|�(�)|����
� �⁄

< ∞ }  

���
�(ℝ�)  =  {radially symmetric, in�initely differentiable functions 

with compact support}, 
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�(�) = �(�) ⟺ |�(�)/�| → 0     as      |�| → 0, 

�(�) = �(�) ⟺ |�(�)/�| is bounded as � → 0. 

Consider the nonlinear Klein-Gordon equation 

��� − �� + � + �(|�|)arg� = 0,    �(0) = ��(0) = 0, � ∈ ℝ�, � > 2.     (4) 

This equation has nontrivial standing waves, �(�, �) = �����(�) provided that 

−∆� + (1 − ��)� + �(|�|)arg� = 0                                (5) 

has a nontrivial solution. 

Definition (2.1.3)[41]: Let 

��(�) = 1/2 �|∆�|��� + � �(1 − ��)/2 �|�|��� + � �(|�|)��� 

where ��(|�|) = �(|�|) and �(0) = 0, 

��(�) ≡ (� − 2)/2 �|∆��|��� + � �(1 − ��)/2 �|�|��� + � �(|�|��)� 

�� ≡ {� ∈ ��
�(ℝ�), ��(�) = 0, � ≠ 0} 

In order that equation (5) has nontrivial solutions it is sufficient that � and � satisfy [43]: 

�: �
�.1     ∃� > 0∋: �(�) < 0                                      

�.2    lim
�→ ��������

�(�)/�� ≧ 0 ,    � < 1 + 4 (� − 2)⁄ .   
� 

Definition (2.1.4)[41]:Let �∗ = {inf� ≧ 0∋ : ∃ �(� − ��)�� 2⁄ + �(�) < 0}. Thus �∗ ∈

[0,1). We shall always take �∗ < � < �. 

Lemma (2.1.5)[41]: For � ∈ (�∗, 1)�� is a �� hypersurface in ��
�(ℝ�) bounded away 

from zero. 

Proof See [46]. 
 

Proposition (2.1.6)[41]: if �� ∈ ��
�(ℝ�) is a solution of (5), and ∫ �(|��|)�� < ∞ , then  

��(��) = 0 
 

Proof. Let ��(�) = ��(� �⁄ ) then 

������ =  ����/2 �|∇��|��� + �� �(1 − �)�/2 �|��|��� + � �(|��|)���,    (6) 

since �� is a solution then ���(��) = 0 ⟹ � �������� /���|��� = 0, but 
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� �������� /���|���

= (� − 2)/2 �|∇��|��� | + �(� − ��)/2 �|��|��� + � G(|��|��) 

therefore ��(��) = 0. 
 

Theorem (2.1.7)[41]: Let �� ∈ (�∗�, 1), � > 2, then 

�(�) = inf
�∈��

��(�) 

is achieved for some � ≠ 0, and 

�(�) �inf
1

�
�|�|��� , ��(�) ≦ 0, � ≠ 0� 

Moreover � satisfies 

−�� + (� − ��)� + �(|�|) arg � = 0.                                      (7) 
 

Proof. First we show the equivalence of both minimization problems. Consider any 

function � ∈ ��
�(ℝ�) such that ��(�) < 0. Let ��(�) =  �(�/�). Then 

��(�) = ����(� − 2)/2 �|∇�|��� + ��� �(1 − ��)/2 �|�|��� + � �(�)���   (8) 

Now for � = 1��(��) =  ��(�) < 0 and for � close to zero ������ > 0. Therefore 

there exist a �� ∈ (0,1) such that ������
� =  0 and 

1/� ��∇���
�

�
�� = ��

���/� �|∇�|��� < 1/� �|∇�|2�� 

Since ��(�) = 1/��∫|∇�|��� +  ��(�)� then 

�(�) = inf
�∈��

��(�) = inf�1/� �|∇�|��� +  ��(�) = 0, � ≠ 0� , 

= inf�1/� �|∇�|��� +  ��(�) ≦ 0, � ≠ 0� 

Next, consider any minimizing sequence ��. Then (∫|∇��|���) is bounded. By �.2 for 

every � > 0 there exist ��(�) > 0 such that �(�) >  −�/2�� − ��(�)����, where 

+4/(� − 2). Since ��(��) ≦ 0, then 

0 ≧ ��(��) = (� − 2)/2 �|∇��|��� + � �(1 − ��)/2 �|��|��� + � G(|��|)��� 

and this implies 
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0 ≧ (� − 2)/2 �|∇��|��� + � �(1 − ��)/2 �|��|��� + ��(�) �|��|������ 

Now by Sobolev embedding ��
�(ℝ�) ↪ ��

�(ℝ�), 2 < � < 2 + 4/(� − 2) and since 

(∫|∇��|���) is bounded we get that ‖��‖ is bounded. Therefore there exist a 

subsequence, also denote it by (��) such that 

��

�
→ �� ∈ ��

�(ℝ�) and �� ⟶ �� ∈ ��    2 < � < 2 + 4/(� − 2), 

since for radially symmetric ��
�(ℝ�) ↪ ��

�(ℝ�) is compact for 2 < � < 2 + 4/(� − 2). 

By lower semicontinuity of weak limits we have: 

��(��) = (� − 2)/2 �|∇��|��� + � �(1 − ��)/2 �|∇��|��� + � �(|∇��|)��� 

≦ lim
�→ �

(� − 2)/2 �|∇��|��� + � �(1 − ��)/2 �|∇��|��� + � �(|∇��|)��� = 0 

And from the above argument the inequalities are equalities and the weak limit is 

strong. Consequently �� ≠ 0 by Lemma (2.1.5), and 

�(�) = inf
�∈��

��(�) = ��(��). 

Finally, to show that �� satisfies Eq. (7) we have by the Lagrange multiplier method 

���(��) = ����(��),                                                  (9) 

or 

−∆�� + (1 − ��)�� + �(|��|) arg �� 

= �(−(� − 2)∆�� + �(1 − ��)�� + ��(|��|) arg ��). 

By Proposition (2.1.6) we have 

(� − 2)/2 �|∇��|��� + � �(1 − ��)/2 �|��|��� + � �(|��|)��� 

= � �(� − 2)�/2 �|∇��|��� + � �(1 − ��)/2 �|��|��� + � �(|��|)����.   (10) 

But 

��(��) = (� − 2)/2 �|∇��|��� + � �(1 − ��)/2 �|��|��� + � �(|��|)��� = 0, 

therefore 

0 =  � �(� − 2)�/2 �|∇��|��� − �(� − 2)/2 �|∇��|����, 
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0 = �(� − 2) �|∇��|��� , 

and this implies that � = 0. 
 

Definition (2.1.8)[41]: Let �� be the solution set of �(�) = inf�∈��
��(�). 

 

Corollary (2.1.9)[41]: �� is also the solution set of 

inf��(�) = �(�),          �� ∈ (�∗�, �) ,       1/� �|∇��|��� = �(�). 

 

Proof: Suppose ∃� such that 1/� ∫|∇�|��� = �(�) and  ��(�) < �(�). Then 

1/���(�) = ��(�) − 1/� �|∇��|��� < 0. 

But by Theorem (2.1.7) 

�(�) = inf�1/� �|∇�|��� , ��(�) ≦ 0, � ≠ 0� 

and this contradicts the above assumption. Therefore 

inf��(�) = �(�),              1/� �|∇�|��� = �(�). 

Now to show that the solution set of this problem is �� we note that ∀� which is a 

minimum we have 

���(�) = ���, or − (1 + �)∆� + (1 − ��)� + (|�|) arg � = 0,         (11) 

and by Proposition (2.1.6) 

(1 + �)(� − 2)/2 �|∇�|��� + � �(1 − ��)/2 �|�|��� + � �(|�|)��� =  0 

⟹ ��(�) = 1/2 �|∇�|��� − (1 + �)(� − 2)/(2�) �|∇�|��� = �(�) 

⟹ ��(�) = 1/� �|∇�|��� − �(� − 2)/(2�) �|∇�|��� = �(�) 

⟹ � = 0 and ∴ ��(�) = 0 ⟹ � ∈ ��. 

Corollary (2.1.10)[41]: Let �� ∈ ��
�(ℝ�) be a sequence such that 1/� ∫|∇��|��� >

�(�) and ��(��) ⟶ �� ≦ �(�) then �� has a strongly convergent subsequence 

�� → �� ∈ ��
�(ℝ�) for some �� ∈ �� and 

����(|��|)� − �(|��|)��� → 0,           �� = �(�) 
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Proof. Since ∫|∇��|���  and ��(��) are bounded, �� is a bounded sequence in ��
�(ℝ�) 

(see the proof of Theorem (2.1.7). �� has a weakly convergent subsequence, also 

denote it by ��, such that 

��
�
→ �� ∈ ��

�(ℝ�),    �� → �� ∈ ��
�,        2 < � < 2 + 4/(� − 2) 

Now 1/�||∇��|��� ≦ lim�→ � 1/� ∫|∇��|��� = �(�)� and ��(��) ≦ lim�→ � ��(��) 

(by the proof of Theorem (2.1.7)), therefore 

��(��) ≦ � lim
�→ �

���(��) − 1/� �|∇�|���� 

or 

��(��) ≦ �� − �(�) ≦ 0 

But from Theorem (2.1.7) we have 

�(�) = inf�1/� �|∇�|��� , ��(�) ≦ 0, � ≠ 0� 

Therefore all inequalities are equalities and the weak convergence is strong. 

Therefore 

� �(|��|)�� → � �(|��|)��      and      �� = �(�) 

Since 1/� ∫|∇��|��� = �(�) and ��(��) = 0 ⟹ �� ∈ �� and ∴ �� → �� ∈

��
�(ℝ�), �� ∈ ��. 

Remark (2.1.11)[41]: This is the only place where radial symmetry is needed. One can 

generalize the above result to include the space ��
�(ℝ�) by using the notion of 

“concentrated compactness” introduced by Lions [49]. In this case the sequence 

�� ∈ ��(ℝ�) of Corollary (2.1.10) will have a subsequence vkn such that ���
�.+���

� ∈

��(ℝ�) is relatively compact in ��(ℝ�) for some sequence ����
�. 

We’ll study the behavior of �(�) = 1/� ∫|∇��|��� as a function of the 

frequency �. 

Lemma (2.1.12)[41]: Let �� < �� be such that [��, ��] ⊂ (�∗, 1), then �(�) and 

∫|��|���(�� ∈ ��) are uniformly bounded in � ∈ [��, ��]. 
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Proof. Since � is continuous in �, �(�) is bounded for � ∈ [��, ��]. Now for 

� ∈ ��, ��(��) = 0. By �.2�(�) ≧ −�����; � < 1 + 4/(� − 2), for � large, and 

�(0) = ���(0) = 0 ⟹ for any � > 0,
�

�
�� + �(�) > −�������, �� = 1 + 4/(� − 2), 

� �
�

2
|�|� + �(|�|)� �� ≧ −�� �|�|������. 

Now because ��(��) = 0, and by Sobolev embedding 

(� − 2)/2 �|∇��|��� + �(1 − �� − ��)/2 �|��|��� − �� ��|��|����
�

≦ 0 

for a small. 

This implies that ∫|��|��� is uniformly bounded for � ∈ [��, ��] ⊂ (�∗, 1). 

Proposition (2.1.13)[41]: a) �(�) is a decreasing function of � ∈ (�∗, 1), b) if �� < ��, 

i) �(��) < �(��) − (��
� − ��

�)/2 ∫����
�

�
�� + �(�� − ��) 

ii) �(��) < �(��) − (��
� − ��

�)/2 ∫����
�

�
�� + �(�� − ��) 

Consequently, �(�) is a continuous function of � ∈ (�∗, 1). 

Proof. a) Let �� < ��, then 

���
����

� = (� − 2)/2 �����
�
�

�� + � �(1 − ��
�)/2 �����

�
�

�� + � ������
����� 

or 

���
����

� = (� − 2)/2 ��∇���
�

�
�� + ��(1 − ��

�)/2� ��∇���
�
�

�� 

�+������
����� − �(��

� − ��
�)/2 ��∇���

��� , 

���
����

� = ���
����

� − �(��
� − ��

�)/2 ��∇���
�

�
�� , 

but ���
����

� = 0 

⟹ ���
����

� = �(��
� − ��

�)/2 ��∇���
�

�
�� < 0 

Therefore 

�(��) = 1/� ��∇���
�

�
�� > inf�1/� �|∇�|��� , ���

(�) ≦ 0, � ≠ 0� , 

since ���
����

� < 0, 



60 
 

⟹ �(��) > �(��) 

b) Again let �� < �� and ��(�) =  ���
(�/�), then 

���
���� = (� − 2)����/2 ��∇���

�
�

��

+ ��� �(1 − ��
�)/2 �����

�
�

�� + � ������
�����, 

���
���� = (� − 2)����/2 ��∇���

�
�

�� − ���(� − 2)/2� ��∇���
�

�
�� 

+�(��
� − ��

�)2 � �����
�

�
��� 

Let 

∆��= (��
� − ��

�)/2 �����
�

�
��,                                         (12) 

then ���
���� = (�(� − 2)�(��)/2)���� − ��(� − 2)�(��)/2 + ∆���, and for 

�� ≡ 1/�1 + 2∆��/(� − 2)�(��)�
�/�

, ���
����

� = 0,            (13) 

∴ �(��) ≦ 1/� ��∇���
�

�
�� = ��

���/� ��∇���
�
�

�� = ��
����(��)       (14) 

But for �� − �� small, |∆��| < �(�� − ��), since ∫|��|��� is bounded. Therefore 

��
��� = 1 − ∆��/�(��) + �(∆��),                                (15) 

and from equation (14) we get 

�(��) ≦ �(��) − (��
� − ��

�)/2 �����
�

�
�� + �(�� − ��),                   (16) 

or 

�(��) ≦ �(��) − (��
� − ��

�)/2 �����
�

�
�� + �(�� − ��).                         (17) 

To show the second part of b) let ��(�) = ���
(�/�), then 

���
���� = (� − 2)����/2 ��∇���

�
�

��

+ ��� �(1 − ��
�)/2 �����

�
�

�� + � ������
����� 

or 

���
���� = (�(� − 2)�(��)/2)���� − ��(� − 2)�(��)/2���,           (18) 



 

where 

since ∫�∇���
�

�
�� =  ��(��

For 

�� ≡ 1

���
����

� = 0 ⟹ �(��) ≦ 1

but for �� − �� small 

∴ �(��) < �(

The continuity of �(�) follows from 

Next we'll need this lemma about strictly 

Lemma (2.1.14)[41]: Suppose 

��, then 

∀� > 0 ∃�(�) > 0∋: |�� − �

a) �� < �� < �, |� − �

 �ℎ(��) − ℎ(�)� (⁄

b) � < �� < ��, |� − �

�ℎ(��) − ℎ(�)� (⁄
 

Proof. The proof is very easy to see geometrically from the picture below.
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∆��= (��
� − ��

�)/2 �����
�

�
��,                        

( �) and ���
����

� = 0. 

1/�1 − 2∆� �/(� − 2)�(��)�
�/�

,

1/� ��∇���
�

�
�� = ��

���/2 ��∇���
�

�
�� = ��

��

��
��� = 1 + ∆� �/�(��) + �(�� − ��)               

(��) + (��
� − ��

�)/2 �����
�

�
�� + �(�� − ��)

follows from equation (17) and (22). 

Next we'll need this lemma about strictly convex functions. 

Suppose ℎ(�) is a strictly convex function in a neighborhood of 

��| = �, 

��| < �/2 

)� (�� − �) ≦ �ℎ(��) − ℎ(�)� (�� − �)⁄ − 1/�

��| < �/2 

� (�� −  �) ≧ �ℎ(��) − ℎ(�)� (�� − �)⁄ + 1/�

The proof is very easy to see geometrically from the picture below. 

 

Fig. 2.1 

                (19) 

���(��)
  (20) 

                (21) 

)              (22) 

unction in a neighborhood of 

�(�) 

�(�) 
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We'll give a proof for the case �� < �� < � and the second part follows by an identical 

argument. Assume that the claim is false. Then there is an �� > 0 and a sequence 

�� ∋ : ����
− ��� = ��, |�� − ��| < �/2, 

�ℎ(��) − ℎ(��)� (�� − ��)⁄ − 1/� < �ℎ����
� − ℎ(��)� ����

− ���� .        (23) 

Pick �� such that ���
< �� < ��, then 

�ℎ(��) − ℎ(��)� (�� − ��)⁄ > �ℎ(��) − ℎ(��)� (�� − ��)⁄ .        (24) 

[since ℎ(�) is convex]. From equation (23) we get 

�ℎ����
� − ℎ(��)� ����

− ��� > �ℎ(��) − ℎ(��)� (�� − ��)⁄� − 1/�.       (25) 

Since �� is bounded it has a convergent subsequence. Also denote it by �� such that 

�� → �� ≧ �� > �� > ���
. Now from Eq. (25) and continuity of ℎ(�) 

�ℎ����
� − ℎ(��)� ����

− ���� ≧ �ℎ(��) − ℎ(��)�/(�� − ��)           (26) 

But since ℎ(�) is strictly convex 

�ℎ(��) − ℎ(��)� (�� − ��)⁄ > �ℎ(��) − ℎ(��)� ����
− ���� ,             (27) 

which contradicts equation (26). Therefore the claim is true. 
 

Theorem (2.1.15)[41]: Suppose that �(�) is strictly convex in a neighborhood of ��, 

then for � close to ��  ∃�(�) > 0, �(��) = 0, such that 

�(�) − �(��) ≧ (�� − �)�� �����
�

�
�� + �(�). 

Proof. Let � < ��, � close to ��. Then from Lemma (2.1.14) and for � < �� < ��, 

��(��) − �(�)� (�� − �)⁄ ≦ ��(��) − �(��)� (�� + ��)⁄ − 1 �(�)⁄        (28) 

and from Proposition (2.1.13) 

��(��) − �(�)� (�� − ��)⁄                                                      

< −(�� + ��)/2 �����
�

�
�� + �(�� − ��)/(�� − ��)      (29) 

From equation (28) and (29) 

��(��) − �(�)� (�� − �)⁄

≦ −(�� + ��)/2 �����
�

�
�� − 1/�(�) + � (�� + ��) (�� + ��)⁄  . 

Let �� → ��, then by continuity of �(�) 
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��(��) − �(�)� (�� − �) ≦⁄ −  �� �����
�

�
�� − 1/�(�) 

or 

�(�) − �(��) ≧ ��(�� − �) �����
�

�
�� + (�� − �)/�(�).     (30) 

For � > ��, from Lemma (2.1.14) and � > �� > ��, we have 

��(�) − �(��)� (� − ��)⁄ ≧ ��(��) − �(��)� (�� − ��)⁄ + 1/�(�),     (31) 

and from Proposition (2.1.13) 

��(��) − �(��)� (�� − ��)⁄                                                  

≧ (�� − ��)/2 �����
�
�

�� + (�� − ��)/(�� − ��).            (32) 

Again from equation (31) and (32) and letting  �� → ��, 

��(�) − �(��)� ≧ −��(� − ��) �����
�

�
�� + (� − ��)/�(�),         (33) 

and this concludes the proof of Theorem (2.1.15). 

Now if we consider the Cauchy problem 

��� − ∆� + � + �(|�|) arg � = 0,             � ∈ ℝ� 

�(0) = �� ∈ ��
�(ℝ�),          ��(0) = �� ∈ ��

�(ℝ�), 

we don't have strong solutions ��(∙) ∈ ��[0, �], ��
�(ℝ�)�, ��(∙) ∈ ��[0, �)��

�(ℝ�)�� for 

the general nonlinearities we are considering but we always have weak solutions 

��(∙) ∈ ���[0, �), ��
�(ℝ�)�, ��(∙) ∈ ���[0, �), ��

�(ℝ�)�� , 

that are weakly continuous in �. Also we don't necessarily have uniqueness, or energy 

identity, but we always can find a weak solution that satisfies the energy inequality 

1/2 �|��(�)|��� + ��(�(�)� ≦ 1 2⁄ �|��|��� + ��(��), 

provided ∫ �(|��|)�� < ∞  (see Strauss [50]). 

Definition (2.1.16)[41]: Define the metric space �= {completion of � ∈ ���
�(ℝ�) with 

the metric 

�(��, ��) = ‖�� − ��‖ + ����(|��|) − �(|��|)���� 
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and define the modulated energy functional of Eq. (2), ��(�, �) = 1 2 ∫|�|���⁄ +

��(�), � ∈ �, � ∈ ��
�(ℝ�). 

��
� ≡ {� ∈ �, � ∈ ��

�(ℝ�); ��(�, �) < �(�), ��(�) > 0}∪ {(0,0)} 

             =  �� ∈ �, � ∈ ��
� (ℝ�); ��(�, �) < �(�), 1 �⁄ �|∇�|��� < �(�)� , 

��
� =  {� ∈ �, � ∈ ��

�(ℝ�); ��(�, �) < �(�), ��(�) < 0, � ≠ 0}       

           = �� ∈ �, � ∈ ��
� (ℝ�); ��(�, �) < �(�), 1 �⁄ �|∇�|��� > �(�)� . 

 

Lemma (2.1.17)[41]: ��
�  and ��

�  are invariant regions under the flow of (2) for the 

solutions that satisfy the energy inequality. 
 

Proof. We'll prove this by contradiction. Let (��, ��) ∈ ��
�  and assume that there exist a 

�� such that ��(��), ��(��)� ∉ ��
� . By lower semi-continuity of ����(�)� there exist a 

minimal �� such that ��(��), ��(��)� ∉ ��
� , i.e. ����(��)� ≦ 0 and ����(�)� > 0 for 

� ∈ [0, ��). Now 

1/� �|∇�(��)|��� ≦ lim
�→ ��
����

1/� �|∇�(�)|��� 

                                                               ≦ lim
�→ ��
����

�1/� �|∇�(�)|��� + ���(�)� , 

therefore 

1/� �|∇�(��)|��� ≦ lim
�→ ��

����(�)� ≦ lim
�→ ��

����(�), ��(�)� �(�) 

and we also have ���(��)� ≦ 0. This contradicts the definition of 

�(�) = inf�1/� �|∇�(�)|��� + ��(�) ≦ 0, � ≠ 0� 

Therefore ��
�  is invariant under the flow of equation (2). Similarly we can show that ��

�  

is also invariant. 
 

Lemma (2.1.18)[41]: Let �(�) be a solution of 

��� − �� + � + �(|�|) arg � = 0, 

�(0) = �� ∈ �,              ��(0) = �� ∈ ��
�(ℝ�), 

that satisfies the energy inequality. Then for every � > 0 there exist �(�) such that if 
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����, ���
� +  ��� − ������

�
�

< �(�), 

then �(�� + 1 �⁄ ) ≦ 1/� ∫|∇�(�)|��� ≦ �(�� − 1 �⁄ )∀�. 

Proof. Fix � > 0 and let �� = �� + 1/�, �� = �� − 1/�, and �(�) = ��(�)��� �� =

��(�)��� ��. Then 

�±�� + 2��±�±� − ∆�± + �1 − �±
� ��±  + ����±�� arg �± = 0, 

�±(0) = ��,        �±�(0) = �� − ��±��. 

The energy inequality of this equation is 

��±
��±(�), �±�(�)� ≦ 1/2 ���� − ��±���

�
�� + 1/2 �|∇��|��� 

+�1 − �±
� �/2 �|��|��� + � �(|��|)��,               (34) 

Or 

1 2 ���±�(�)�
�

��� + ��±
��(�)� ≦ 1 2 ���� − ��±���

�
��� + ��±

(��),       (35) 

but 

��� − ��±���
�

≦ ��� − ������
�

�
+ ������

− �±���
�
�

+ ��±���
− �±���

�
 

                         ⟹ 1 2 ���� − ��±���
�

��� ≦ (�� − �±)� 2⁄ �����
�

�
�� 

+ �(�±, ��)� | ���� − ��±���
�

�� + ���� − ���
�

�
��.         (36) 

Now since �(��) < �(��) < �(��) and 

�(��) ≡ 1 � ��∇���
�

�
��� = 1 � �|∇��|���� + �(�).                        (37) 

If we pick � small enough we have 

�(��) < 1 � �|∇��|���� < �(��),                                    (38) 

��̇±
(��, �� − ��±��) ≦ (�� − �±)� 2 �����

�
�

��� + ��±
����

� + �(�)  

≦ (�� − �±)�� �����
�

�
�� + ���

����
� + �(�)         (39) 

since ���
� − �±

�  � 2⁄ + (�� − �±)�/2 = (�� − �±)��. 

By Theorem (2.1.15) and for � small 
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(�� − �±)�� �����
�

�
�� + �(��) + �(�)                                 

≦ (�� − �±)�� �����
�

�
�� + �(��) + �(�±) ≦ �(�±),     (40) 

and therefore from equation (39) we have the energy inequality 

1 2 ���±�(�)�
�

��� + ��±
��(�)� < �(�±)            ∀� 

⟹ �(�±) < 1 �⁄ �|∇�(�)|��� < �(��)           ∀�                   (41) 

by Lemma (2.1.17) 
 

Theorem (2.1.19)[41]: If �(�) is strictly convex at ��, then the standing waves of 

frequency �� are stable in the following sense: for every � > 0 there exists a �(�) > 0 

such that if ����, ���
� + ��� − ������

�
�

< �(�) then 

inf
�∈���

(�(�(�), �) + |��(�) − ����|�) < � ��� ��� �. 

 

Proof. Assume not. Then ∃ sequence ����
, ���

�, (��) and an �� > 0 such that 

����
, ���

� → ����
, ������

� ∈ � ⊕ ��
�  

and 

inf
�∈���

��(��(��), �)� +|���(��) − ����|� > ��. 

From Lemma (2.1.18), ∃ subsequence also denote it by ���(��)� such that 

�(�� + 1/�) ≦ 1 � �|∇��(��)|���� ≦ �(�� − 1/�), 

 and (∫|��(��)|���) is bounded (by Theorem (2.1.7)). Now as � → ∞  

1 � �|��(��)|���� → �(��)                                      (42) 

from continuity of �(�). From equation (41) we have 

1 2 �|�� ��(��)|���� + ���
���(��)� < �(�� + 1/�), 

therefore ∃ subsequence such that 

���
���(��)� → �� ≦ �(��).                                       (43) 

By Corollary (2.1.10) equation (42) and (43) imply that ∃� ∈ ���
 such that 
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|��(��) − �| → 0 , 

���
���(��)� → �(��). 

Again from equation (41) we have 

�|�� ��(��)|��� = |���(��) − �����(��)|�
� → 0, 

and 

����(|��(��)|) − �(|�|)���� → 0, 

which contradicts the assumption of instability. 

We'll present here two examples where we have stable standing waves. 
 

Theorem (2.1.20)[41]: The equation 

��� − ∆� + � − |�|���� = 0,        � ∈ ℝ�,         � ≧ 3, 

has stable standing waves for 1 < � < 1 + 4/�. 
 

Proof. In order to show the existence of stable standing waves it is sufficient to show 

that �(�) is strictly convex for some interval of �. 

Solution of the equation 

−∆�� + (1 − ��)�� − |��|����� = 0                 (44) 

has the following scaling property: let �(�) = (1 �⁄ )��(� �⁄ ), then 

−���∆� + (1 − ��)�� − ��|�|���� = 0,                     (45) 

and for 

�� = 1 − �� = ����.                                             (46) 

Equation (44) becomes 

−�� + � − |�|���� = 0.                                        (47) 

Now 

�|∇�|��� = ���� �� �|∇��|����  

⟹ �|∇��|��� = (1 − ��)� �|∇��|���        (48) 

where � = �4 − (� − 2)(� − 1)�/2(� − 1). 

Now it becomes easy to see when �(�) ≡ 1/� ∫|∇��|��� is strictly convex, 
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�(�) = (1 − ��)� � �|∇��|���� = (1 − ��)��(0)                        (49) 

⟹ ���(ω) = [−2�(1 − ��)� + 4�(� − 1)��(1 − ��)���]�(0) 

⟹ ���(ω) = −2� [ − 1 +  (2� − 1)��](1 − ��)����(0),          (50) 

since 1 < � < 1 + 4/�, � > 0, 2 � − 1 > 0 . 

Therefore ���(�) > 0 implies − 1 + (2� − 1)�� > 0, 

Moreover �� >  1 for equation (44) to have a solution. Therefore and this set is not 

empty for 1 < � < 1 + 4/�. 
 

Remark (2.1.21)[41]: For 1 + 4/� < � < 1 + 4/(� − 2) we showed that ��� standing 

waves obtained by Theorem (2.1.7) are unstable [46]. 

Another example we'll consider is one which appears in studying spin-0 particles 

in field theory [44]. The potential, i.e. �(|�|) for this model is of the form �(|�|) =

− |�|� 4⁄ + |�|� 6⁄  
 

Proposition (2.1.22)[41]: The equation 

−∆� + (1 − ��)� − |�|�� + |�|�� = 0,        � ∈ ℝ�                        (51) 

has nontrivial solution �� of lowest energy for �� ∈ (13 16,1⁄ ). Moreover as �� 
 

Proof. For equation (51) to have nontrivial solution it is sufficient to have 1 − �� > 0 

and ∃� such that (1 − ��)��/2 + �(�) < 0. Now 

(1 − ��)��/2 − ��/4 + ��/6 < 0 

for some � if 

(1 4⁄ )� − 4(1 − ��)/12 > 0 

⟹ �� >  13/16. 

We show that �(�) → ∞  as �� → 13/16 by contradiction. Assume that �(�) remains 

bounded then by Theorem (2.1.7) ‖��‖ is bounded. This implies that ∃ sequence 

�� → 13/16 and � ∈ ��
�(ℝ�) such that ���

�
���⃑ � ∈ ��

�(ℝ�). Again by Theorem (2.1.7) 

���
(�) ≦ lim���

����
� = lim(��

� − ��
�)/2 �����

�
�

�� + ���
����

�,        (52) 

where ��
� = 13/16. But ���

����
� = 0, therefore 

���
(�) ≦ 0.                                                    (53) 



 

Now ���
(�) > 0   ∀� ∈, � ≠

have that-the convergence is strong. But 

decreasing function, 

�(��)

a contradiction. Therefore �(
 

Theorem (2.1.23)[41]: The equation

��� − ∆� +

has stable standing waves for ω close to 
 

Proof. By Proposition (2.1.22)

�(�) is monotone decreasing function of 

Now it is easy to see that �(

(2.1.19) these standing waves are orbitally stable.
 

Remark (2.1.24)[41]: This particular example was studied numerically by Anderson [

where he showed that for �

for � close to 1 they are unstable and this is precisely what we show in [

Section (2.2): Zhukovskij 
 

Stability of motion in dynamical systems is an old but still active ar

At the close of the 19th century, three types of stability were established for motion in 

continuous dynamical systems, i.e., for

stability [52,53-54] and Poincar
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≠ 0 so from (53) we have that � =  0. By equation

the convergence is strong. But �(�) = 1/2 ∫|��|���  is monotone

( ) > 0 ⟹ 0 = lim
�→ �

�(��) > �(��) > � 

(�) → ∞  as � → 13/16. 

The equation 

+ � − |�|�� + |�|�� = 0,             � ∈ ℝ� 

has stable standing waves for ω close to 13/16. 

(2.1.22) �(�) → ∞  as � → 13/16 and by Proposition 

monotone decreasing function of �. Therefore the graph of �(�) looks like

 

Fig. 2.2 

(�) is strictly convex for � close to 13/16 and by

these standing waves are orbitally stable. 

This particular example was studied numerically by Anderson [

�� close to 13/16 there are stable standing waves and

close to 1 they are unstable and this is precisely what we show in [46].

Zhukovskij Asymptotic Stability: 

Stability of motion in dynamical systems is an old but still active area of studies. 

century, three types of stability were established for motion in 

continuous dynamical systems, i.e., for solutions of differential equations. The Liapunov 

] and Poincaré stability [53,55] or orbital stability are well

equation (52) we 

is monotone 

and by Proposition (2.1.13) 

( ) looks like 

close to 13/16 and by Theorem 

This particular example was studied numerically by Anderson [45] 

close to 13/16 there are stable standing waves and that 

]. 

ea of studies. 

century, three types of stability were established for motion in 

erential equations. The Liapunov 

stability are well-known to 
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the people. But the Zhukovskij stability [53,56] is less known, which was sometimes 

regarded as a special kind of Poincaré stability [57]. 

In [53], these types of stability were discussed with stress on the corresponding 

instability, where these notions of stability were recalled and some examples were given 

to show the differences and relations between these types of stability. However, 

geometric meaning of these differences is still unclear, hence it is necessary to go 

further to make out geometric mechanism of these types of stability. It is found out that 

in case of asymptotic stability, Liapunov asymptotic stability and Zhukovskij asymptotic 

stability are of simple and distinct geometric meaning in terms of omega limit set, and 

the purpose of this section is to demonstrate these observations. 

Consider a continuous dynamical system described by autonomous differential 

equations 

��

��
= �(�),                     � ∈ � ⊂ ��,                                    (54) 

where � is a closed bounded domain in ��, and � ∈ ��(�)(� ≥ 1). 

Denote by �(�, ��), 0 ≤ � < +∞ , the solution of (54) with initial point �� =

�(0, ��). Let o�(��) be the forward or positive orbit passing ��, i.e., o�(��) =

{��(�, ��)|0 ≤ � < +∞ }. In addition, let ��(�) be the open ball with center � and radius 

d. Clearly only bounded orbits are of interest to us, so we shall consider orbits bounded 

in the domain �. 

The well-known Liapunov stability is as follows: 

Liapunov stability. A solution �(�, ��) to system (54) is said to be Liapunov stable 

if, for each � > 0, there exists �(�) >  0, such that for every �� ∈ ��(��) the relation 

‖�(�, ��) − �(�, ��)‖ < � 

holds for � ≥ 0. 

This stability means that if two orbits are near in the beginning then they remain 

near together synchronously for all the time � ≥ 0. 

Based on the Liapunov stability, the well-known asymptotic Liapunov stability 

can be described as the following. 
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Asymptotic Liapunov stability. A solution �(�, ��) to system (54) is said to be 

asymptotically Liapunov stable if, it is Liapunov stable and there exists � > 0 such that 

for every �� ∈ ��(��), one has the relation 

‖�(�, ��) − �(�, ��)‖ → 0      ��   � → ∞  

Zhukovskij stability. A solution �(�, ��) to system (54) is said to be Zhukovskij 

stable if, for any � > 0, there exists �(�) > 0, such that for every �� ∈ ��(��), one can 

find two parameterizations ��, �� of time �, such that 

‖�(��(�), ��) − �(��(�), ��)‖ < � 

holds for � ≥ 0, where �� and �� are homeomorphisms from [0, +∞ ) to [0, +∞ ) with 

��(0) = ��(0) = 0. 

Asymptotic Zhukovskij stability. A Zhukovskij stable solution �(�, ��) to system 

(54) is said to be asymptotically Zhukovskij stable if, for any � > 0, there exists �(�)  >

0, such that for every �� ∈ ��(��), one can find two parameterizations ��, �� of time �, 

such that 

‖�(��(�), ��) − �(��(�), ��)‖ → 0     ��    � → +∞  

where �� and �� are homeomorphisms from [0, +∞ ) to [0, +∞ ) with ��(0) = ��(0) =

 0. 

It is easy to see [53] that (asymptotic) Zhukovskij stability implies (asymptotic) 

Liapunov stability. However the converse is not true, the reader can convince himself by 

constructing some examples. Furthermore, it is not difficult to see that these two types 

of stability are equivalent in case of �(�, ��) being an equilibrium point. 
 

In this section we shall show that the omega limit set of an asymptotically stable 

orbit of autonomous system is just an equilibrium point set. This may be a known fact to 

some people, but for completeness we give a proof here. 
 

Theorem (2.2.1)[51]: If the solution �(�, ��) to system (54) is asymptotically Liapunov 

stable, then the omega limit set �(��) consists of equilibrium points of (54). 
 

Proof. Since the solution �(�, ��) is asymptotically Liapunov stable, for every value ∆� 

small enough, there holds the following relation: 
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lim
�→ �

��(� + ∆�, ��) − �(�, ��)� = 0, 

or 

lim
�→ �

�
�

��
�(�, ��)∆� + O �

��

���
�(�, ��)∆���� , 

               = lim
�→ �

���(�, ��)�∆� + O �
�

��
�(�, ��)∆��� , 

                                        = lim
�→ �

���(�, ��)�∆� + O �
��

��
��(�, ��)����(�, ��)�∆��� , 

                   = lim
�→ �

���(�, ��)� �∆� + O
��

��
��(�, ��)�∆��� 

= 0.                                                          

Since �(�, ��) is contained in the closed bounded domain, of 
��

��
��(�, ��)����(�, ��)� is 

bounded, therefore the above relation holds for arbitrary small ∆�. It follows that for ∆� 

small enough, 

∆� + O �
��

��
��(�, ��)�� ∆�� ≠ 0 

This means that 

lim
�→ �

���(�, ��)� = 0 

Hence �(�, ��) must approach an equilibrium point set. 

From the computational view point, the above theorem indicates a fact that if 

one takes an orbit and calculates its Liapunov exponents that are all negative, then one 

could reasonably expect that this orbit would go to an equilibrium point as t goes to 

infinity thus showing a way to decide whether iterates of a point can reach a zero point 

of a map. 

It can be expected that the omega limit set of a asymptotically Zhukovskij stable 

orbit would be of a simpler structure. In fact, the omega limit set should just be a cycle, 

i.e., a closed orbit. We will demonstrate this observation under a little more conditions. 

To facilitate the ensuing arguments, we introduce a notion of uniform 

asymptotic Zhukovskij stability. 
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Definition (2.2.2)[51]: A solution �(�, ��) to system (54) is said to be uniformly 

asymptotically Zhukovskij stable if, for any � > 0, there exists � > 0, which is 

independent of �, such that for every �� > 0, if �� ∈ ����(��, ��)�, then one can find 

two parameterizations ��, �� of time �, such that 

�����(�), �(��, ��)� − �(��(�), ��)� < � 

holds for � ≥ 0, and 

�����(�), �(��, ��)� − �(��(�), ��)� → 0,       ��   � → ∞  

where �� and �� are homeomorphisms from [0, +∞ ) to [0, +∞ ) with ��(0) = ��(0) =

0. 

Note that this definition is sharply different from the so-called uniform stability 

of equilibrium points, for example, see [58]. 
 

Theorem (2.2.3)[51]: If a solution �(�, ��) to system (54) is uniformly asymptotically 

Zhukovskij stable, then its omega limit set is a periodic orbit. 
 

Proof. Denote by ��(�) the � − 1 dimensional disc: 

��(�) = �� ∩ ��(�), 

where �� is the � − 1 dimensional hyperplane at the point �, and is perpendicular to the 

vector �(�) of (54) at the regular point � (the point where � (�) ≠  0), ��(�) is the ball 

defined as before. 

Now suppose that the orbit �(�, ��) to system (54) is uniformly asymptotically 

Zhukovskij stable. By long tubular flow theorem [59], it is not difficult to see that there 

exists a � < � (� is the number defined as in Definition (54)) and a Poincaré map from 

��(��) into ���(�, ��): 

��: ��(��) → ����(�, ��)� 

for every � > 0. 

Since �(�, ��) is uniformly asymptotically Zhukovskij stable, the relation 

diam ������(�)�� → 0              ��    � → ∞  

holds for every point � ∈ �(�, ��), where diam means the diameter of �����(�)� in 

terms of 



74 
 

diam (�) = max
�,�,∈�

‖� − �‖ 

Let � be an omega limit point of �(�, ��), then there exists a sequence ��  →

∞  (as  � → ∞ ) with ����, ��� ∈ ��(�) and ����, ��� → �. Therefore there exists � > 0 

such that 

‖�(��, ��) − �‖ < � 8⁄ ,                  �� �⁄ (�) ⊂ ����(��, ��)�. 

Since 

diam �������
��� �⁄ (�)�� → 0      �� � → ∞ , 

there exists � > 0, such that 

diam�������
��� �⁄ (�)�� < � 8⁄         for � ≥ �.                       (55) 

On the other hand, by the definition of the asymptotic uniform Zhukovskij 

stability, it is easy to see that there exists a homeomorphism ℎ ∶ [0, ∞ ) → (0, ∞ ) with 

‖�(ℎ(�), �) − �(�, �(��, ��)‖ → 0 as � → ∞ . Furthermore, one can find � > � such 

that 

‖�(��, ��) − �‖ < �/8 

and 

��(ℎ(�� − ��), �) − ���� − ��, �(��, ��)�� < �/8: 

Note that ���� − ��, �(��, ��)� = ��(��, ��)� ∈ ��(�) so one can choose the 

homeomorphism ℎ such that �(ℎ(�� − ��), �) ∈ ��(�). 

It follows that 

‖�(ℎ(�� − ��), �) − �‖                                                                                                          

≤ ��(ℎ(�� − ��), �) − ���� − ��, �(��, ��)�� + ����� − ��, �(��, ��)� − �� 

= ‖�(ℎ(�� − ��), �) − �(��, ��)‖ + ‖�(��, ��) − �‖ < �/4.          

Now for every � ∈ ��/�(�), take �� = max {��, ��}, one gets by Theorem (2.2.3) 

‖�(ℎ(�� − ��), �) − �(ℎ(�� − ��), �)‖ < �/8; 

where ℎ∗ is a homeomorphism from [0, ∞ ) to [0, ∞ ) such that �(ℎ∗(�� − ��), �) ∈

��(�). 

Now it is obvious that 
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‖�(ℎ∗(�� − ��), �) − �‖

≤ ‖�(ℎ∗(�� − ��), �) − �(ℎ(�� − ��), �)‖ + ‖�(ℎ(�� − ��), �) − �‖ 

< � 8⁄ + �/4 < �/2.                                                              

This means that the Poincaré map 

�: �� �⁄ (�) → ��(�) 

satisfies 

� ��� �⁄ (�)� ⊂ �� �⁄ (�) 

It follows from the fixed point theorem that there exists a point �� such that 

����� = ��, 

and the orbit ���, ��� is a periodic orbit. 

Because of the uniform asymptotic Zhukovskij stability of �(�, ��), the orbit 

���, ��� is an omega limit set of �(�, ��), again due to the uniform asymptotic 

Zhukovskij stability of �(�, ��), this periodic orbit is the unique omega limit set of 

�(�, ��). 
 

 


