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Abstract

The information about the Hilbert transform is often 
scattered in books about signal processing. Their authors 
frequently use mathematical formulas without explaining 
them thoroughly to the reader.

The purpose of this research is to make a more stringent 
presentation of the Hilbert transform but still with the 
signal processing application in mind.

Everybody working in the field of singular integrals and 
integral equations will know that during the last few 
decades an entirely new mathematical field of Cauchy 
principal value integrals and hypersingular integral has 
developed.

Since this is a recent mathematical development, it is not 
always easy for readers including  academics, engineers  
and researchers, to get a grap on.

Hilbert transforms deal with Calderon-Zygmund operators 
and the theory of Calderon-Zygmund operators in  such a 
way that any body will be able to repeat the schedule use 
of  Hilbert transforms. 
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المستخلص

اا فى الكتب التى تتحدث عن المعلومات عن تحويلت هلبرت منتشرة كثير
معالجة الشارات . ويستخدم كتابها الصيغ الرياضية دون شرحها لبقية

القراء . والغرض من ذلك جعل العرض اكثر صرامة مع تحويل هلبرت .
ولكن ل يزال مع تطبيق معالجة الشارات فى العتبار , وكل من يعمل فى

حقل التكامل المفرد والمعادلت التكاملية يرى انه خلل العقود القليلة
اا من القيمة القياسية لتكملت ضضع حقل رياضى جديد تمام الماضية قد و
كوشى بحيثاصبحت جزء ل يتجزأ منه. ومع التطورات الرياضية الخيرة

اا للقراء والمهندسين والباحثين الكاديميين الحصول فليس من السهل دائم
على فهم واتفاق حول نظرية مشغلى كالديرون-سيقموند بطريقة تجعل

  .كل فرد قادر على استخدام جداول تحويلت هلبرت
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Introduction 

Today the signal processing is the fast growing area  and a
desired  effectiveness  in  utilization   of   band  width  and
energy  makes  the  progress  even  faster.  Special  signal
processors[96] have been developed to make it possible
to  implement  the  theoretical  knowledge  in  an  efficient
way.  Signal  processors are nowadays frequently used in
equipment  for  radio,  transportation,  medicine  and
production.

Areal  function  f (t)  and its  Hilbert  transform  ƒƒ (t)  are

related to each other  in such a way that they together
create  a  so  called  strong  analytic  signal[.  The  strong
analytic  signal  can  be  written  with  an  amplitude  and
phase where the derivative of the phase can be identified
as the instantaneous  frequency.
It is easy to see that a function and its Hilbert  transform
also   are  orthogonal[84].  However,  a  function  and  its
energy can be used to measure the calculation  accuracy
of the approximated Hilbert  transform. 

Whenever  we write  (P)  in  front  of  the integral  we  will
mean  that   the  Cauchy  principal  value[35]  of  that
integral (when it exists).
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Hilbert  transform  has  the  advantage  of  not  requiring
derivatives, but the serious disadvantage that it is not a

bounded  operator  from  L1

 to  L1

.  T  o  solve  the

problem,different approaches for gain-phase relationships
in logarithmic frequency domain have been proposed. A
suitable  change  of  variable  can  give  the  bounded
operator.

To solve the problem, different approaches for computing
Hilbert transform have been proposed. 

 The goal of  this research is to present a brief review of
methods  used  to  compute  Hilbert  transform  when  the
signal  is  composed  of  discrete  data,  sampled  at
equidistant or arbitrarily instant. 

Finally  we  study  in  this  research  Hilbert  transform
continuous and discrete with Properties in chapter one and
in chapter tow we have  show  Singular integral equations
with Cauchy's principal value[38] and Hilbert trans form.
Then   the  study  in  chapter   three  is  about
Calderon-Zygmund  operator.   In  chapter  four  we  have
show Some applications of the convolution theorem of the
Hilbert   transform.  The   aim of  chapter  five  is  to  give
information about Hilbert transform application. Lastly in
chapter  six  have  the  numerical  evaluation  of
hypersingular integral[35]. 
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Chapter  1

Properties and Continuous of Discrete Hilbert
Transforms

Sec.(1.1): Hilbert transform

The Hilbert transform defined in the time domain is a

convolution between the Hilbert  transform  1/πt and

function f (t) [7]   

Definition   (1.1.1)  The Hilbert transform  f̂ ( t ) of  a

function f (t)  is defined for all (t)  by 

H ( f̂ ( t ) )= f̂ (t )=
1
π
p∫

−∞

∞
f (τ )
t−τ

dτ ,

    when  the  integral exists.

It  is  normally not  possible to calculate  the Hilbert
transform as an ordinary improper integral because of

the pole τ=t.  However, the ρ  in front of the integral

denotes the Cauchy principal value which expanding
the  class  of  functions  for  which  the  integral  in
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Definition  (1.1.1)  exist.  It  can  be  defined  by  the
following definition [102]. 

Definition (1.1.2)  Let [α‚ β¿  be a real interval and

let  f  be a complex-value of   function defined on

[α , β] . If  f  is unbounded near an interior point  ε

of  [α , β] ,  the integral  of  f  over  [α , β¿  does not

always exist.

However, the two limits

lim
ε→ 0

∫
α

ξ ‒ε

f ( x )dx∧lim
ε→0

∫
ξ‒ ε

β

f (x )dx ,

still may exist, and if they do their sum is called the

improper integral of  f  over [α, β¿  and is denoted

by the ordinary integration  symbol 

                                  

∫
α

β

f (x )dx.

Even if these two limits do not exist, it may happen
that the “symmetric limit”

lim
ϵ−0 (∫

α

ε−ϵ

f ( x )dx+∫
ε+ϵ

β

f (x)dx) ,

exists.   If  it  does,  it  is  called  the  principal  value

integral  of  ƒ  from  α  to  β and  is  denoted  by  the

symbol 

p∫
α

β

f ( x )dx.
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Example  (1.1.3)    An ordinary real function 
1
x  that

is integrated from – a¿ a  can be written as 

ε→0+¿∫
ε

a
1
x
dx ,

δ→0+¿∫
−a

−δ
1
x
dx+lim

¿
¿

∫
−a

a
1
x
dx=lim

¿
¿

and we see that it is not possible to calculate these

integrals separately because of the pole in  x  = 0 .

However, if we apply the Cauchy principal value then
δ  and ϵ  tend zero at the same speed , that is

ε→0+¿(∫
−a

−ε
1
x
dx+∫

ε

a
1
x
dx)=0,

p∫
−a

a
1
x
dx=lim

¿
¿

and the integral converges.

(1.2.)    Mathematical  Motivations  for  Hilbert
transform

In this chapter  we motivate the Hilbert transform in
three different ways. First we use the Cauchy integral
in the complex plane and second we use the Fourier
transform in the frequency domain and the third we

look at the  ±π /2  phase-shift which is basic property

of the Hilbert transform. 

(1.2.1.)    The Cauchy integral 
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The Cauchy integral is figurative way to motivate the
Hilbert  transform. The complex view helps us to relate
the Hilbert  transform to something more concrete and
understandable.[152]

 Consider an integral in the complex z -plane on the 

form 

∮
Γ

❑ f (z )
z−a

dz ,

Which is known as a Cauchy integral. If  f is analytic

and Γ is piecewise smooth closed contour in an open

domain  then  the  Cauchy  integral  theorem  is
applicable as

∮
Γ

❑ f (z )
z−a

dz={2πif (a ) if a inside Γ
0 if aoutside Γ

To get a result when a lies on  Γ   we have to create

a new contour  Γε
'

 where

∮
Γ

❑ f (z )
z−a

dz=2πif (a)(1.1)

If the radius  ε of the semicircle  � tends to zero, the

contribution  from the semicircle Υ ε  to  the integral

along  Γε
'

 approaches   πif (a )  according  to  lemma

(1.2.4)[135] .

Lemma  (1.2.4) If g has a simple pole at  z=a  and is

the circular arc defined by

γ ᵣ : z=a+γeiθ (θ1≤θ≤θ2 ).
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From Lemma (1.2.4)  and from the  definition of 
Cauchy principal value[38,39], we see that 

lim
ε−0

∮
Γε
'

❑ f (z )
z−a

dz=p∫
Γ

❑ f (z)
z−a

dz+ lim
ε−0

∫
γε

❑ f (z)
z−a

dz=2πif (a ) ,

and that the integral of Cauchy principal value is

p∫
Γ

❑ f ( z)
z−a

dz ≡ lim
ε→ 0

∫
Γε

❑ f ( z )

z−a
dz=πif (a ) (1.2 )

where Γε  is  a  non  closed  contour  with  out  the

indentation  γ ε .  By  (2)  we  have   generalized   the

definition  of  Cauchy  principal  value  compared  to
definition (1.1.1).

If f ( z )  is a function that is analytic in an open region

that contain the upper half-plane and tends to zero at
infinity  in  such  a  rate  that  the  contribution  from
semicircle:
γR as R→∞, thenwehave

p∫
−∞

∞
f (ξ )

ξ−x
dξ=πif (x )(1.3)

∣f (z)∣<
C

∣z∣'

for any positive constant C.  The same yields if

∣f (z)∣<C∣e imz∣,

for positive m according to lemma  (1.2.5)[7].

Lemma (1.2.5)   (Jordan's  lemma)  if   m>0∧P /Q  is

quotient of tow polynomials such that
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Degree Q≥1+degree P ,

then  

C p
+¿

lim
p→∞

∫
¿

❑
P (z)
Q(z )

e imzdz=0,

where 
+¿
Cp

¿  is the upper half-circle with radius p.

If we express f ( x )  as

f ( x )=g ( x )−ih(x)

  

on both sides of (3) with arguments on the real x−¿

axis and equating real and imaginary parts we obtain
for the real part 

g ( x )=
−1
π

p∫
−∞

∞
h (ξ)
x−ξ

dξ=−Hh ( x ) ,

and for the imaginary part

h ( x )=
1
π
p∫

−∞

∞
h(ξ )

x−ξ
dξ=Hg ( x )(1.4)

From  definition  (1.1.1)  we  have  that  h ( x )   is  the

Hilbert  transform of  g ( x )  where  H  is  the  Hilbert

transform  operator.  We  also  note  that  g ( x )=H−1h ( x )

with  H−1

 as the inverse Hilbert transform operator.

We  see  that  HRef ( x )=Imf ( x )  which  motivates  the

following definition.
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Definition   (1.2.5)   A  complex  signal f (x)  that

fulfills  the  conditions  preceding  is  called  a  strong
analytic signal. 

Theorem (1.2.6)   For strong analytic signal f (x)  we

have that HRe f (x )=ℑ f ( x ) .  

 (1.2.2) The Fourier transform [60,117]

 The Fourier  transform is important in theory of signal

processing . When a function  f (t)  is real , we only

have to look on the positive  frequency axis  because
it contains the complete information about the wave
form in the time domain .

Therefore ,  we do not need negative frequency axis
and the Hilbert transform can be used to remove it.
This is explained below.

Let us define the Fourier transform F (ω )   of a signal

f (t )  by

F (ω )=∫
−∞

∞

f (t ) e−iωtdt (1.5)

This definition makes sense if f ∈L1

(r), that is if

∫
−∞

∞

∣f (t )∣dt

exists.  It is important to be able to recover the signal 
from its Fourier  transform . To do that

f̃ (t )=
1
2π

∫
−∞

∞

F (t)e−iωt dt

 If  both  f ∧F  belong  to  L1
(R)  then  f (t )  is

16



continuous and bounded for  all  real  t and we have

that f̃ (t )= f (t ) , that is  [60]

f (t )=
1
2π

∫
−∞

∞

F (t ) eiωt dt (1.6)

this result  is a form of Fourier inversion theorem.

Another  inversion theorem [2] is that if  f  belongs to

L1 (R ) , f  is of bounded variation in a neighborhood of

t  and  f of continuous at t  

f (t )= lim
T→∞

1
2π

∫
−T

T

F (t ) e iωtdt

This means that  (1.6) is to be interpreted as a type of

a Cauchy  principal value.[102]  

Further  more  general variants of the  inversion   

theorem exist  for f ∈L1 (R ) .  There is also a theory for 

the Fourier transform when f ∈L2 (R ) .[60]

In this case we define the Fourier transform as

F (ω )= lim
N→∞

∫
−N

N

f ( t)e−iωt dt

The mean limit

F (ω )= lim
N→∞

FN (ω ) ,

is to be interpreted as

lim
N →∞

‖F (ω)−FN (ω )‖₂=0.
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Theorem (1.2.7)  If
f , g∧G,belong ¿L1 (R )∨if f∧gbelong ¿ L2

(R) then

∫
−∞

∞

f (t )g¿ (t )dt=
1
2π

∫
−∞

∞

F (ω )G¿ (ω )dω.

Proof   For a proof refer to

If  f (t ) a real function that can be represented by an

inverse Fourier transform then we have the following
relationship in the time domain

f (t )= f ¿ (t )=
1

2π
∫
−∞

∞

F (ω )e iωt dω

¿
1

2π
∫
−∞

∞

F ¿
(ω)e−iωt dω

¿
1

2π
∫
−∞

∞

F ¿ (−ω )e iωt dω.

This  gives  us  the  relation  F (ω )=F ¿ (−ω )∨F (ω)=F¿
(ω)  in

the  frequency  domain  and  we  see  that  F  for

negative  frequencies  can  be  expressed  by  F¿

 for

positive ones[1].

Theorem(1.2.8): If f (t)  is a real function then

F
[¿ ¿¿ (ω) e−iωtdω+F (ω) e iωtdω ] .

f (t)=
1

2π
∫
−∞

∞

¿

Proof :If  we  apply  the  Fourier  transform  of  a  real

function f (t)  then
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F
¿
¿
¿

f (t )=
1
2π

∫
−∞

0

¿

¿
1

2π
∫
0

∞

F (−ω ) e−iωt dω+
1
2π

∫
0

∞

F (ω) e iωtdω .

¿
1

2π
∫
−∞

0

F ¿ (ω ) e−iωt dω+F (ω) eiωt dω

These  means  that  positive  frequency  spectra  is
sufficient to represent a real signal.

Let  us  define a  function  Z f (ω ) , that  the  zero  for  all

negative  frequencies  and  2F(t)  for  all  positive
frequencies 

Z f (ω)=F (ω)+sgn (ω )F (ω) ,(1.7)

where 

sng (ω)={
1 forω>0
0forω=0

−1forω<0

and  F (ω )  is the Fourier transform of the real function

f (t ) .  We see the relation (1.7) between  F (ω )  and

Z f (ω ) .  The  inverse  transform  of  Z f (ω )  is  therefor

written as

Z f (ω )=
1
2π

∫
−∞

0

F (ω) e−iωtdω=
1
π
∫

0

∞

F (ω )e iωt dω

where Z f (t )  is complex function on the form
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Z f (t )=f (t )+ig (t )(1.8)  

we will show below that g ( t )  is real and from (1.7) 

and (1.8) we have that 

f ( t )+ig ( t )F
⇔
F (ω) ( sgn ) (ω)(1.9)

The definition of Fourier transform tells that 
f (t)F

⇔
F (ω )

and therefore know that  F (ω ) sgn (ω )  is the Fourier  

transform of ig(t) , thus 

g (t ) F
⇔
F (ω ) (isgn(ω)) .

It  is  a  standard result  that  the inverse transform of
−isgn (ω )  equals 1/ (πt ) ,  that is 

g (t )=f
(t )∗1
πt

=
1
π
p∫

−∞

∞
f (τ )
t−τ

dτ=Hf (t )=fˆ (t ) ,

And we see that g(t)  can be written as fˆ (t )  which is

known  as  Hilbert  transform  of  f (t ) .  Further  more

g (t )  is real.

(1.2.3) The ±π /2  phase shift 

The phase shift is interpreted in frequency domain as

a multiplication with the imaginary value ±i , thus

H (ω)={−i=e
−i π

2 ω>o

i=e
i
π
2 ω<o

lim
σ →0

G (ω )=H (ω)

20



Where  g (t )→h ( t )when σ→0 and  the  inverse   Fourier

transform of the impulse response of H (ω) is

h (t )=lim
σ →0

g (t )=lim
σ →0

t

π (σ2
+ t2)

=
1
πt

 A  convolution  between  f (t )  and  the  impulse

response

f̂ (t )=
1
π
∫
−∞

∞
f (τ )
t−τ

dτ ,

where f̂ (t)  is known as the Hilbert transform. Notice

that  this  integral  shall  be   considered  as  a
principal-valued integral.

    Sec.(1.3) Properties of Hilbert Transform: 

In  this  chapter  we  look   at  some properties  of  the

Hilbert  transform.  We  assume  that  F(ω)  does  not

contain any impulses for (ω)  = 0 and that f (t )  is a

real valued function.

So  of  the  formulas  are  to  be  interpreted  in  a
distributional sense[142,62].

(1.3.1)   Linearity

 The  Hilbert  transform  that  is  a  Cauchy
principle-valued function, is expressed on the form

Hf (t )=lim
ε→ 0

1
π

∫
¿ x−t∨¿ ε

❑ f (τ )
t−τ

dτ.

If we write the function.  f (t)  as  c1 f 1 (t )+c2 f 2(t)  where

the Hilbert transform of f 1( t)  and f 2( t)  exists then 
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      Hf (t )=H (

t
c1 f 1(¿)

t ¿
 + c2 f 2 ¿   

τ
c1 f 1(¿)

¿
+c2 f 2(τ )

¿
¿

¿ lim
ε→0

1
π ∫

∣x−t∣>ε

❑

¿

¿c1 lim
ε→ 0

1
π

∫
¿ x−t∨¿ ε

❑ f 1 (t )

t−τ
dτ+c2 lim

ε →0

1
π

∫
¿x−t∨¿ε

❑ f 2(τ )

t−τ
dτ

             = c1H f 1 (t )+c2H f 2 (t )    

this is the linearity property of the Hilbert  transform. 

(1.3.2)   Multiple  Hilbert  Transform  and  Their
Inverses 

The Hilbert transform used twice on a real function but
with altered sign

sgn (n )={
1
0

−1

since the−isgn=H

H={−i
i

H=I

then H 2

 = -1,

With 1  as the identity operator. The Hilbert transform
used four times on the same real function gives us the
original function back

22



H 2H 2

 = H 4

  =  1                                    .(1.11)

A  more  interesting  property  of  multiple  Hilbert
transforms  arises  if  we  use  the  Hilbert  transform 3
times, thus 

H 3H=1⟹H−1
=H 3

This  tell us that it is possible to use multiple Hilbert
transform to calculate the inverse Hilbert transform.

     As  we  seen before the Hilbert transform can be
applied in the time domain by using the definition of
the Hilbert   transform.  In  the frequency domain we
simply multiply the Hilbert transform operator –I sgn

(ω)  to the function  F (ω ) .

By multiplying the Hilbert  transform operator by itself
we  get  an  easy  method  to  do  multiple  Hilbert
transform, that is

H n f (t )F
⇔

(– i sgn(ω)
n )  F (ω ) ,

where n is the number of Hilbert transform.

Example (1.3.7)   We want to calculate the inverse

Hilbert[97]  transform of  the function  f (t)  by  using

multiple Hilbert transform in the frequency domain .

First we have to Fourier transform the function  f (t)

F (ω )=∫
−∞

∞

f (t ) e−iωtdt ,

and then use the Hilbert transform three times in the
frequency domain, that is
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−i sgn (ω)
¿
¿

H 3
=¿

 .

Finally we use the inverse Fourier transform 

H−1 f (t )=
1
2π

∫
−∞

∞

H 3 F (ω ) eiωt (ω)dω.

From above we see that we only have to calculate two
infinite integrals n the frequency domain compared to
three infinite integrals in the time domain.

Another advantage in the frequency domain is that we
formally can choose the number of times we want  to
use the Hilbert transform.

 (1.3.3)Derivatives of the Hilbert Transform

Theorem  (1.3.8)  The  Hilbert  transform  of  the
derivative of a function is equivalent  to the derivative
of the Hilbert transform of function, that is[61]

f̂ (t )H
⇔

d
dt
f̂ (t )(1.12)

              

proof. From Definition  (1.1.1) we have that f̂ (t )

f̂ (t)=
1
π
p∫

−∞

∞
f (τ)
t−τ

dτ.

If we substitute  τ  with  t−s  

d
dt
f̂ (t )=

1
π
p∫

−∞

∞
f (t−s)

s
ds ,

and then apply the derivative of  t  on both sides we
get 
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d
dt
f̂ (t )=

1
π
p∫

−∞

∞
f ' (t−s)

s
ds.

The substitution s=t−τ gives us that

d
dt
f̂ (t )=

1
π
p∫

−∞

∞
f ' (τ )
t−τ

dτ

And the relation in (1.12) is valid .

From the proof above we conclude that the relation
can be used repeatedly.  Let  us  look at  an  example
where we also use of multiple Hilbert transforms, 

    Example  (1.3.9)

By (1.3.2.) we may calculate the Hilbert transform of

the  delta  function  δ (t )  and  its  derivatives.  At  the

same  time  we  get  the  Hilbert   transform
representation   of  the  delta  function.  Consider  the
Hilbert  transform of the delta function

Hδ (t )=
1
πt

(1.13)

.

The derivative of the delta function is calculated to

                               

Hδ’ (t )=
−1

πt2
(1.14)

                                    

And if  we apply the Hilbert transform on both sides
then we get

δ ’ (t )=H ( 1

πt 2 ).

The derivative (5) is
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Hδ’ ’ (t )=
2

πt 3

.

And  when  we  apply  the  Hilbert  transform  on  both
sides we get

δ ” (t )=H (
−2

πt 3
)

.

This procedure can be continued.

(1.3.4)    Orthogonally  properties[112]

A symmetry about the Fourier transform  F(ω)  of a

real  function  f (t)  leads  us  to  the  following

definition[6]

Definition  (1.3.10)     A  complex function is called
Hermitian if its real part is even and its imaginary part
is odd. 

From this we have that the Fourier transform F(ω) of

a real function f (t)  is  Hermitian.

Theorem(1.3.11) A real function f (t)  and its Hilbert

transform  fˆ (t)  are  orthogonal  if  f , fˆ  and  F

belonged to L1 (R )  or if f ∧ f ƒ  belong to L2 (R ) .  [55]

Proof  From  Theorem (5)  we  have that 

∫
−∞

∞

f (t ) fˆ (t )dt=¿

    

¿
1

2π
∫
−∞

∞

F (ω ) (−isgn (ω )F (ω ) )dω
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¿
i

2π
∫
−∞

∞

sgn (ω )F (ω) F¿ (ω)d

sgn (ω ) ¿F (ω)∨¿
2d ,

¿
i

2π
∫
−∞

∞

¿

Where sgn( ω¿  is an odd function and the fact that

F(ω)  is Hermitian gives us that  ∣F (ω)∣
2

 is an even

function. We conclude that

∫
−∞

∞

f (t ) fˆ (t )dt=0,

and  a  real  function  and  its  Hilbert  transform  are
orthogonal.

(1.3.5)  Energy aspects of Hilbert transform 

The energy of a function f (t)  is closely related to the

energy  of  its  Fourier  transform  F (ω ) .  Theorem

f (t )=g (t ) is called the Rayleigh theorem and it helps us

define the energy of f (t )∧F (ω)  as

¿ fˆ (t)∨¿
2dt=

1
2π

∫
−∞

∞

∣F (ω)∣
2
d (ω ) .(1.4)

E f=∫
−∞

∞

¿

Here  it  is  natural  to  assume  that  f ∈L2 (R )  which

means that Ef  is finite. The same theorem is used to
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define the energy of  Hilbert  transform of  f ( t )∧F (ω)

that is

¿−i sng (ω) F (ω )∨¿
2dω,(1.5)

fˆ=¿∫
−∞

∞

∣fˆ (t )∣
2
dt=

1
2π

∫
−∞

∞

¿

E¿

Where 
¿−i sgn(ω)∨¿

2

¿   = 1 except for  ω=0.  But since

F(ω)  does not contain any impulses at the origin we

get  
fˆ=¿E f.

E¿

A consequence of (3.5) is that  f ∈L2
(R)  induces that

fˆ∈ L2 (R ) . The  accuracy  of  the  approximated  Hilbert

transform  operator  can  be  measured  by  comparing
the  energy  in  (3.4)  and  (3.5).  However,  a  minor
difference in energy always exists in real applications
due  unavoidable

truncation errors. 

 (1.3.6)The Hilbert Transform of Strong Analytic
Signal

From  Section  (1.3.2)  we  have   that   the  Hilbert
transform  of  two  multiplied  strong  analytic  signal
z (t)  is

Hz (t )=H ( f (t )+i f̂ (t))= f̂ (t )−if (t )=−iz (t )(1.6)  

From the follows the result of the Hilbert transform of
two multiplied strong  analytic  signals.
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Theorem  (1.3.12)[55]  The product of H ( z1( t)z2(t)) is

identical with the product  of z1 (t )H ( z2(t))  if z1 (t )∧z2(t)

are strong analytic signals.

Proof.  Since  z1 (t )∧z2(t )   are strong analytic signals

then 

H (z1 (t ))z2(t)   =  ( f̂ 1 (t )−i f 1(t ))  ( f 2 (t )+i f̂ 2 (t ) )(1.7)   

               ¿−i ( f 1 (t )+i f̂ 1(t))  ( f 2 (t )+f̂ 2( t))   

¿−i z1 (t ) z2 (t )                       

               ¿ ( f 1 (t )+if ƒ1(t))  ( f̂ 2 (t )−i f̂ 2 (t )) (1.8)

    ¿ z1 (t )H (Z2( t )) ,                                      (1.9)

Where  we  make use of (1.6) in (1.7) and (1.8).

Theorem  (1.3.14.)[97]  The product of  z1( t)z2(t)  is

identical  with  the  product
iH (z1 (t ) ) z2 (t )=iz1 (t )H ( z2(t )) if z2 (t )∧z1(t)  are  strong  analytic

signals.

Proof.   Since  z1 (t )∧z2(t )  are  strong analytic  signals

then 

z1 (t ) z2 (t )=(f 1 (t )+ i f̂ 1(t)) ( f 2 (t )+i f̂ 2(t))

                                              ¿ i ( f̂ 1 (t )−i f̂ 1(t)) ( f 2 (t )+i f̂ 2(t))  

z2(t )
z1 (t ) z2 (t )=i z1 (t )H (¿),

¿ iH ¿
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And the theorem follows.

The  Hilbert  transform  of  the  product  of  two  strong
analytic signals gives us the same result as in (3.9). To
prove this we first need to show that the product of
two strong analytic signals is strong analytic.

Theorem  (1.3.15)   The  product  of  two  strong
analytic signals is strong analytic.

Proof.  Let  
t )
z1¿  and  

t ) 
z2¿ be  analytic  signals  of

complex  variable  (t")  =  t+  it  on  the  open  upper

half-plane. Then 
t )
z1¿  and 

t )
z2¿  is also analytic signal

in the same region. Assume that  
t )
z1¿  and  

t )
z2¿  are

decreasing in such rate at infinity that the discussion

in  Sec.(1.1)  is  true  then  z1( t) and  z2( t) are  strong

analytic  signals.  If  
t )
z1¿  and  

t ) 
z2¿ are  decreasing

sufficiently rabid at infinity then  
t ) 
z1¿ and  

t )
z2¿  have

two decrease faster than one of  
t )
z1¿  and  

t )
z2¿  that

the decreasing with the last rate. From this we have

that  

z1(t )  { z } rsub {2} (t  )
ℜ(z1(t ) { z} rsub {2 } (t  ))=ℑ¿

H ¿
 and  that

(z1(t )  { z} rsub { 2} (t  ))  is  strong analytic signal.
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Theorem  (1.3.16):  H (z1(t )  { z } rsub {2 } (t  ))=¿

−i z1( t )  { z} rsub { 2} (t  )  if   
t )
z1¿  and  

t )
z2¿  are  strong

analytic signals.

Proof  :  Since  
t )
z1¿  and  

t )
z2¿  are  strong  analytic

signals then 

f 2(t)+i f̂ 2(t)
f 1(t )+ i f̂ 1(t)¿

H (z1(t )  { z } rsub {2} (t  ))=H ¿
 

¿H ( f 1 (t ) f 2 (t )− f̂ 1 (t ) f̂ 2 (t ))

     +i f 1 (t ) f̂ 2 (t )+ f̂ 1(t) f 2( t)

¿ f 1 (t ) f̂ 2 (t )− f̂ 1(t ) f 2( t)

−f 1 (t ) f 2 (t )− f̂ 1( t) f̂ 2(t)

      
f 1 (t ) f 2 (t )− f̂ 1(t) f̂ 2( t)

¿−i ¿

+i f̂ 1 (t ) f 2 (t )−f̂ 1 (t ) f̂ 2 (t ) (1.10)

                                            −i ( f 1 (t )+f̂ 1 ( t ) )( f 2 (t )+ f̂ 2 (t ) )

 ¿−i z1 (t ) z2 (t )  

when we make use of theorem (1.8) in (1.10). 

Consequently it possible to apply the Hilbert transform
on product  of  two strong analytic  signals  in  several
different ways, thus
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t
z2 (t )

z1 (t ) z2 (t )=H ( z1(¿)) z2 (t )=z1 (t ) H (¿¿−i z1 (t ) z2 (t ) . )

H ¿

It does not matter on which strong analytic signal we
apply  the  Hilbert  transform.  We  conclude  that  the
Hilbert transform of the product of n  strong analytic
signals from the equation

H zn (t )=H ( z (t ) ) zn−1 ( t )=−iz (t ) zn−1 ( t )=−i zn(t)

(1.3.7)  Analytic signals in the time domain

The  Hilbert  transform  can  be  used  to  create  an
analytic signal from areal signal. Instead of studying
the signal  in  frequency  to  look  at  a  rotating  vector

with  an  instantaneous  phase  φ( t)  and  an

instantaneous amplitude A (t )  in time domain, that is

z (t )=f ( t )+i f̂ (t )=e iφ (t ) .

This  notation  is  usually  called  the  polar  notation
where 

A (t )=√ f 2 (t ) f̂ 2 (t ) ,

And

φ (t )=arcta ( f̂ (t )f (t ))

If we express the phase with Taylor series then

φ (t )=φ (t 0 )+(t−t 0 )φ' (t 0 )+R ,  

Where  R  is  small  when  t  is  close  to  ( t 0 ).  The

analytic signal becomes
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z (t )=A (t ) eiφ ( t )=A (t )e
i (φ (t 0)−t 0φ

'
(t 0) )eit φ

'
(t0)e iR .

And we see that φ'
(t 0)  has the role of frequency if R

is neglected. This  makes it natural to introduce the
nation of instantaneous  frequency, that is

ω (t )=
dφ(t )
dt

.

Example  (1.3.15)  We have a  real  signal  and its
Hilbert transform 

f (t )=cos (ω0 t ) ,

f̂ (t )=sin (ω0 t ) ,  

Together  they  form  an  analytic  signal  where  the
instantaneous amplitude is

A ( t ) √cos2
(ω0t )+sin2

(ω0t )=1.

The instantaneous frequency is easy to calculate form

the phase φ (t )=ω0t ,  that is

ω (t )=ω0.

We see that in this particular case the instantaneous
frequency is the same as the real frequency.

 (1.4)   Numerical  calculations  of  the  Hilbert
transform

The purpose of this research is to study different type
of  numerical  calculation   methods  for  the  Hilbert
transform.

(1.4.1)  Continuous
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(1.4.1.1)  Numerical  integration.

Numerical integration works fine on smooth function
that  decrease rapidly  at  infinity.  When we want   to
calculate the Hilbert transform by Definition (1.1.)  we
are  facing some problems. In numerical  integration
we use finite intervals and it is therefore important to
consider  the  integration  region  to  control  the
calculation  error  This   is  the  reason  why  a  rapid
decrease at infinity is an advantage. Another problem
is that the integrand in Definition 1.1 is infinite when
nominator  vanishes.  However,  by  using  more
integration  grid  point  in  the  numerical  integration
close to this value we get a better approximation.

(1.4.1.2) Hermite polynomials

The  numerical  integration  is  inefficient  when  a
function  decreases  in  a  slow  rate  in  infinity.  It  is
sometimes  better  to  use  a  series  of  orthogonal
polynomials  where  the  function  does  not  have  to
decrease rapid at infinity. In this section we use the
Hermite  polynomials  to  calculate  the  Hilbert
transform.  First  we  need  to  take  a  look  at  the
definition of Hermite polynomials.

The successive differentiation of  the Gaussian pules

e−t2

 generates  the  nth  order  Hermite  polynomial

which is defined by Rodriguess̕ formula as [111]

Hn (t )=(−1)
n e t

2 dn

dt n
e−t2

It is also possible to calculate the Hermite polynomials
by the recursion formula[95]. 

H n (t )=2tHn−1 (t )−2 (n−1 )Hn−2 (t ) ,(1.4 .1)

with n = I,2,3,…and the start condition
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H 0 (t )=1

 Let us also define the weighted Hermite polynomials

that is weighted by the generated function e−t2

 on the

form[95]

gn ( t )=H n ( t ) e−t 2

=(−1)
2 d

n

dt n
e−t2

Theorem  (1.4.16)   If  we  assume that  f (t )∧fˆ (t )

belong to L1  then the Hilbert transform  of  tf ( t)  is

given by the equation 

H (tf (t ))=tfˆ (t )−
1
π
∫
−∞

∞

f (τ )dτ.

The  integral  is  a  constant  defined  by  the  function
f (t ) .  For odd  constant  equal zero.

Proof.   Consider   the  Hilbert transform of tf ( t)

H (tf (t ) )= 1
π
p∫

−∞

∞
τf (τ )
t−τ

dτ.

The insertion of a new variable  s=t−τ   yields

H (tf (t ))=
1
π
p∫

−∞

∞ (t−s ) f (t−s)
s

ds

    

1
π
p∫

−∞

∞
tf (t−s )

s
ds

                    

tH ( f (t ) )− 1
π
∫
−∞

∞

f (τ )dτ ,
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and theorem follows. 

From Theorem (1.4.16)  we have that

t
η

t φn−1(¿)−
1
π
∫
−∞

∞

φn−1
( ¿dη )

H (φn (t ) )=φn (t )=√ 2 (n−1 ) !
n !

¿

−(n−1 ) √ (n−2 )!
n !

φn−2 (t )

where  n=1,2,3…..  .The  first  term  φ0( t)  can  be

calculate by using the Fourier transform on equation
that is

φ0 (t )=π
−1
4 e

−t2

2 F
⇔

√2π
1
4 e

−ω2

2

In  the  frequency  domain  we  multiply  the  Hermite

function  φn( t)  by the Hilbert transform −isn(ω)  and

finally we use the inverse Fourier transform to get the
Hilbert   transform of the Hermit  function, that is

φ0 (t )=φ̂0 (t )=√2π
1
4 ∫

−∞

∞

e
−ω2

2 (−isgn(ω))eiωt dω.

H ¿

Since sgn( e−¿
ω2

2

ω ¿¿
is odd we have

φ̂0 (t )=2√2π
1
4∫

0

∞

e
−ω2

2 sin (ωt )dω,

Which   can  be  used  to  drive  the  rest  of  Hilbert
transform.
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It  has  been found that  the error  is  large for  higher
order of the Hilbert transformed Hermit functions (e.g.
φ̂5(t ) ) when we use the recursive formula .

It is therefore not suitable to use the recursive method
to  calculate  the  Hilbert  transform  for  higher  order
Hermit   functions. 

Another method to calculate  the Hilbert  transform by
the  Hermit  functions   is  to  multiply  the  Hilbert
transformer  by the spectrum of  the Hermit  function
and  use  the  inverse  Fourier  transform.  No  infinite
integrals is needed in the calculations of the Hermit
functions.  Therefore the error does not propagate as
in (44). 

The  series  expansion  of f ( t )  can be written as

f ( t )=∑
n=0

∞

anφn(t)

where 

an=∫
−∞

∞

f ( t )φn (t )dt.

If the series expansion f (t)  is limited at infinity there

will be an error εN (t ) ,  that is

f (t )=∑
n=0

N−1

anφ̂n (t )+εN (t ) .

This  series  expansion can also be used to calculate
the Hilbert transform

Hf (t )=∑
n−0

N−1

anφ̂n ( t )+ε̂N (t )(1.4 .4)
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And  we  see  that  this  kind  of  method  is  useful  for

functions where ε̂N (t )  is small.

To calculate the Hilbert transform of φn( t)  by using the

inverse  Fourier  transform on  the  product  of  Hermit
function   spectra   and  the  Hilbert  transformer  is  a
rather  demanding  method.  However,  the  Hermit
function functions never change and we therefore only
have to calculate their Hilbert transforms once while
an , which depends on f , represent an easy integral

to calculate.

 (1.4.2) Discrete Fourier transform

 To derive the discrete Hilbert transform we need the
definition of the  discrete  Fourier   transform (DFT),
That is

F [k ]=∑
n=0

n−1

f [n ] e
−i 2π

N
kn
, k=0,1,… .. , N−1(1.4 .5)

and the inversion formula

f [n ]= 1
N

∑
k=0

N−1

F [k ]e
i 2π
N

kn
,n=0,1,… ..N−1.(1.4 .6)

Where   k  is  the  discrete  frequency  and  n  is  the
discrete  time.  It  is  easy  to  prove (4.8)  by  inserting
(4.8)  into  (4.7).  Note  that  (4.8)  defines  a  periodic
function with period N. Let us expand (4.7) in its real
and imaginary parts on both sides, thus

F [k ]=Fℜ [k ]+ i Fℑ [k ] ,

And

∑
n=0

N−1

f [n ] e
−i 2π

N
kn
=∑

n=0

N−1

f [n ] cos ( 2π
N

kn)−i∑
N=0

N−1

F [n ] sin( 2π
N

kn)
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The real and imaginary part is now identical as

Fℜ [k ]=∑
n=0

N−1

f [n ] cos ( 2π
N

kn).

Fℑ [k ]=∑
n=0

N−1

f [n ] sin( 2π
N
kn) ,

and we conclude that Fℑ=0  when k=0∧k=N /2.  As we

have seen before the Hilbert  transform of  the delta

pulse δ (t )  give us the Hilbert transformer 1/ (πt )  and

the Fourier transform of Hilbert transformer gives us
the sign shift function

δ (t)H
⇔

1
πt

F
⇔
−isgn (ω)(1.4 .7)

The discrete analogue of Hilbert transform for even  N
is therefore given by 

H [k ]={
−i for k=1,2,…, N /2−1

0 for k=0∧N /2
i for k=N /2+1,…, N−2,N−1,

and H [k ]  can be written on the form

H [k ]=−isgn( N2 −k)sgn (k ) . (1.4.8)

Here we have used the convention that sgn(0) = 0.
The  discrete  frequency  k  is  called  positive  in  the

interval  0<k<N /2  and  negative  in  the  interval

N /2<k<N  and alternate sign at N /2.  

The discrete inverse Fourier transform of the discrete
Hilbert  transform  in  (4.10)  gives  us  the  discrete
impulse response in the time domain, for even N, thus 
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h [n ]= 1
N

∑
k=0

N−1

H [k ]e
i 2π
N

Kn

¿
1
N

∑
k=0

N−1

−isgn( N2 −k )sgn(k )e
i 2π
N

kn

¿
2
N

∑
k=1

N
2

−1

sin( 2π
N

kn), (1.4 .9)

And h [n ]  can be expressed in closed form as

h [n ]= 2
N

sin2( πn2 )cot( πnn ).

The function is given by the cotangent function with

every second sample  (n=0,2,4,… )  erased by  

2
πn/¿

sin2
(¿¿) ,
¿

see Figure 4.2.

The same derivation for odd N is given by 

H [k ]={
−1 for k=1,2,…, (N−1 )

0 for k=0
i for k=N+1/2 ,…. ,N−2,N−1.

It is written on the same closed from as in the even
case with the difference that there is no cancellation

for sgn (N /2−k )  that is 

H [k ]=−isgn( N2 −k)sgn (k )

The  discrete  impulse  response  for  odd  N  of  the

Hilbert transformer in (4.9.)  is given by the discrete

inverse Forier transform of H [k ]  in (4.13), thus
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2π
N
kn

¿
¿

sin ¿

h [n ]= 2
N

∑
k=1

N−1
2

¿

where the closed form of h [n ]  can be expressed as 

h [n ]= 1
N (cot( πnN )− cos (πn)

sin
πn
N ) . As we mentioned before we do

not have the same cancellation for odd N  (4.11) as

for even N   (4.12), instead h [n ]  is changing sign by

odd and even values of n, 

The  discrete  Hilbert  transform  of  sequence  f ƒ [n ] is

defined by convolution on the form 

f̂ [n ]=∑
m=0

N−1

h [n−m ] f [m ] .

If  we instead choose to use the  DFT  algorithm we

then have the following relations 

f [n ]DFT
⇒

F [k ]DFT
⇒

F̂ [k ]=−sgn (N2 −k )sgn (k ) F [k ] DFT−1
⇒

f̂ [n ] ,  

Where  DFT  denotes the discrete Fourier transform,

DHT  denotes  the  discrete  Hilbert  transform  and

DFT−1

 denotes the discrete inverse Fourier transform.

The  discrete  convolution  algorithm  (4.15)  is  faster

than  the  DFT  algorithm(4.16)  because  it  involves

only  a  single  summation.  However  the  DFT
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algorithm may bere placed by a fast Fourier transform

algorithm (FFT ) .  

Example  (1.4.1)  Assume that we want to calculate
the  discrete  Hilbert  transform  of  a  sine-wave
f (t )=cos (2t )withN=10  samples using the DFT  algorithm

according to (4.16) where the sampling frequency is
5/ π  and the signal frequency is  1/π.  First we need

to  calculate  the  discrete  Fourier  transform  (4.7)  of
f (t) . Then we need to use (4.11) (N even) to apply

the inverse discrete Fourier transform on the product

of discrete Hilbert transform operator  H [k ]  in (4.13)

and  discrete  and  the  discrete  Fourier  transform  of
f (t) . The definition of the discrete Fourier transform

of f (t ) .

By using (4.11) we get the Hilbert transform  Hf [n ]  in

the time domain ( Neven¿  

Hf [n ]= 2
N

∑
k=1

N
2

−1

F̃ [k ] sin( 2π
N
kn)

 

¿
1
5∑

k=1

4

(∑
n=0

9

cos( 2π
5
n)e

−i π
5
kn)sin( π5 kn) ,

The fact that this is an harmonic periodic signal (of sin
and cos)   and that  the  sampling rate is  more  than
double the signal frequency gives us the exact answer.
The  implementation  in  computer  code  is  found  in
Appendix A.3.
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Example   (2.4.3)  We want to calculate the Hilbert

transform  of  f (t )=1/( t2+1)  with  N=2  terms  of  the

Hermitian polynomial in (4.6) and use n=20  terms of

the discrete Fourier transfor in (4.7) and (4.11). 

First we need to calculate  φ0( t) ,… ,φ2(t)  by (4.2) and

then φ̂0 (t ) ,…. , φ̂2(t )  as in e Example 4.2. an  is possible

to  calculate  with  a  numerical  integration  method
because  the  integral  converges  sufficiently  rapid  at

infinity. In Figure 4.6  we can see the function  f (t)

and  its  approximated  Hilbert  transform  Hy(t )

compared  to  the  known  Hilbert  transform

Hf (T )=t / (t2+1 ) .  

 (1.4.3) Titchmarsh theorem 

In  analytic  number  theory,   the   Brun-Titchmarch
theorem,  is  an  upper  bound  on  the  distribution  of
prime  numbers  in  arithmetic  progression.  It  states

that,  if π ( x ;q ,a )  counts  the  number  of  primes

congruent to a modulo q with p≤ x ,  then

q
x /¿
¿

φ (q ) log ¿

π ( x ;q ,a )≤
2x
¿

For all q<x . The result was proven by sieve methods

by Montgomery and Vauhan ; an earlier result of Brun
and  Titchmarsh  obtained  a  weaker  version  of  this
inequality  with  an  additional  multiplicative  factor  of

1+ 0(1).If  q  is  relatively small,  e.g.,  q≤ x9/20

,  then

there exists a better bound: 
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8
x /q3 / ¿

¿
φ(q) ln ¿

π ( x ;q ,a )≤
(2+0 (1 ) ) x

¿

This is due to Y . Motohashi (1973). He used a bilinear
structure  in  the  error  term  in  the  Solberg  sieve,
discovered  by  himself.  Later  this  idea  of  exploiting
structures  in  sieving  errors  developed  into  a  major
method in Analytic Number theory, due to H. lwaniec’s
extension to combinatorial sieve.

By  contrast,  Dirichlet’s  theorem  on  arithmetic
progressions gives an asymptotic result, which may be
expressed  in  the  form

π ( x ;q ,a )=
x

φ (q ) log ( x ) (1+0 ( 1
logx ))

 

But  this  can  only  be  proved  to  hold  for  the  more

restricted  range  q< (log x )c for  constant  c:  this  is  the

Siegel-Walfisz theorem.

F(x )  is  the limit  as  z→ x  of  holomorphic function

F(Z)  such  that

∫
−∞

∞

∣F (x+ y )∣
2
dx<K

If f(z) is the holomorphic function such that  for all y,
then there is a complex

-valued  function  F(x)  in  Lp
(R)  such  that  F(x+iy)

→F (x)  in the Lp

 norm as y →0 . Furthermore.

F ( x )= f (x )−ig ( x ) .
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Hilbert  transform  of  f  does  converge  almost

everywhere to a finite function g such that 

∫
−∞

∞ ∣g (x)∣
p

1+x2 dx<∞ .

 (1.4.4) Rie mann-Hilbert problems[80]

One of  the main boundary value problems of analytic
function theory. It can be stated in the simplest case

as follows. Let L be a simple smooth closed contour

that splits the plane into a bounded interior domain
+¿
D¿  and  the  domain  

−¿
D¿  complementary  to  it,

containing  the  point  at  infinity  .  Let  two  functions
G (t )∧g (t )  be given on  L ,  satisfying a (H-condition)

with G(t)≠0  everywhere on L.  It is required to find

two functions ∅
±

(z), analytic in  D± .   Respectively ,

continuous up to the contour except for finitely many

points  t , k , where  they  may  have  discontinuities

satisfying

¿ z−tk∨¿
αk

∣∅ ( z )∣<
A
¿

And satisfying  on L the boundary condition

−¿ (t )+g (t ) ,
+¿ (t )=G (t )∅¿

∅¿

Where the function G (t ) is called the coefficient of the

problem. The integer
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k=indG (t )=
1
2π∫ dargG (t )=

1
2πi∫ d∈G(t)

Is called index of the coefficient G (t ) and  at the same

time the index of the Riemann-Hilbert problem. 

In the case when G (t )∧g (t ) are only continuous, but do

not  satisfy  an  H-condition,  the  results  stated  above
remain valid, except that here the  boundary values of
the solutions exist only as the contour is approached
along  non-tangential  paths,  and  they  are  not

continuous,  but  ∅
± (t )∈Lp for  any  p>o ;if G (t ) is

continuous  and  g (t ) ∈Lp ,  then  ∅
±
(t )∈Lp.  The  most

general  assumption  for  the  coefficient   G (t )  under

which the Riemann-Hilbert problem has been solved is
that it  belongs to the class of measurable functions
with an additional condition on the value of the jump

of the argument; here also g(t )∈Lp.  

Riemann-Hilbert  problems  with  infinite  index  have
been considered, in which simple smooth curves have
been chosen for the contours with one or both ends
going  to  infinity.  The   following  cases  have  been
investigated; (1)apolynomial order of growth, when as

∣t∣→∞  the asymptotic equalities

¿ t∨¿
p

IndG( t) ± ¿

Are satisfied  (0< p<∞)  for  the case one infinite end,

(0< p<1 )  for both ends infinite); and (2) a logarithmic

order of groth, when as ∣t∣→∞ , 

lndG (t ) ± lnα∣t∣,0<α<∞ .
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The  solution  of  the  Riemann-Hilbert  problem  on  a
Riemann  surface,  and  the  equivalent  problem  on
fundamental  domain  of  an   automorphic  function
belonging  to  a  group  of  permutation,  has  been
investigated  for  automorphic  functions  of  this  class.
The  number  of  solutions  or  solvability  conditions
depends on the index, and in certain (singular) cases
also  on  the  genus  of  the  surface  or  on  the
fundamental domain[80]. 

If  in  condition  (*)  G  is  a  matrix  and  ∅
±

and  gare

(n-dimensional)  vectors,  then  there  arises  the  the
Riemann-Hilbert  problem  for  a  component
wise-analytic  vector  .This  is  significantly   more
complicated  than  the  scalar  case  (n=1)  considered
above. 

Chapter 2

Singular Integral Equations

Sec.(2.1) The Fredholm Integral Equation

   The Fredholm integral  equation  [116,121]  of  the

second kind for a function for a function  ∅ ( x ) is an

equation of the type 

f ( x )=∅ ( x )−∫
a

b

K ( x , y )∅ ( y )dy (a≤ x≤b)

where the kernel is of type 

K ( x , y )=
H (x , y )

∣y−x∣
α

        (0 ¿α<1‚ H bounded¿
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It is well known it can be transformed into a Ferdholm
type with a bounded kernel, However, in the important

case α=1 (in which the integral of the equation must

be  considered  as  a  Cauchy  principal  integral)  the
integral  equation  differs  radically¹  from  a  Fredholm
type with a bounded kernel. That is the kernel (with
α =1) becomes infinite at an interior point  x=x0 of

with the interval of integration ( a ,b¿ .  Therefore we

call  this  type  the  singular  integral  equations  with
Cauchy's principal value of an integral.

The purpose of this chapter is to consider this singular
type and solve some general case with use of theory
of analytic function, in particular, with the finite Hilbert
transformations. 

The theory of  Hilbert transform

f (x)≡
1
π
p∫

−∞

∞ ∅( y )

y−x
dy=H , [∅( y )]

Where  p  denotes  the  Cauchy’s  principal  value,
discussed  by  Titchmarsh    in  his  book  on  Fourier
integral. 

The finite Hilbert transform

f ( x )≡
1
π
p∫

−1

1 ∅ ( y )

y−x
dy=[∅( y )]

is  less  well-known,  but  it  is  studied  by  Tricomi,  we
quote some of his results which we use later. Consider

F ( z )∫
−1

1 ∅(t)
t−z

dt

Where z is generally a complex number lying outside
the  segment  (1,1)  on  the  real  axis.  This  transform
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changes a real function  of class L, (p ¿1¿ ,  where L, is

Lebsgue  class  of  p,  into  a  single-valued  analytic
function  which  is  regular  in  the  whole  z-plane  cut
along the segment (-1, 1) of the real axis, vanishes at
infinity, and satisfies the condition

x−iy∨¿
pdx<k

∅ ¿
¿¿

∫
−∞

∞

¿

          (p>1)

For all values of y, k=cons,>0. Then it is shown that

1
2

[∅ ( x+iε )+∅(x−iε)]= 1
2i

[F ( x+ iε )−F (x−iε )] .

In other words, since  F ( x+iε )∧F (x−iε )   are conjugate

complex numbers for ∅  real, we can state that

x−iε
∅ ( x+iε )+∅¿

ℑF ( x+iε )=
1
2

¿
          (−1<x<1 )=0

                         ( x<−1∨x>1 ) ,           

That  is  we have discontinuities  across  the  real  axis
(−1<x<1 ) .

From the above relation 

ℜF ( x+iε )=H x [ℑ F ( y+iε ) ]=T x [∅¿
( y) ]=T x [∅( y )]  

Hence

F ( x+iε )=T x [∅( y )]+ i∅¿ ( x ) (−1<x<1 ) ,

where
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∅¿ ( x )=
1
2

[∅ ( x+iϵ )+∅(x−iε)] ,

H x ,T x  are  the  operator  of  Hilbert  transform,  finite

Hilbert transform respectively and we use the famous
Hilbert relations between the real and imaginary part
of  an analytic function .  From this there follows the

formula which for ∅ continuous can be written

F ( x+iε )=
1
π
p∫

−1

1 ∅( y)
y−x

dy± i∅ ( x )

In the operator form it is well-known formula 

1
x ±iε

=p
1
x
± ix δ ( x ) .

(2.1.2)  Singular  Integral  Equation  of  second
kind with singular kernel.    

 The singular kernel given as

K ( x , y )=
H (x , y )

(x− y )
(2.1)

We can expand this in Taylor series about x as follows

H (x , y )=H ( x , x )+( y−x )H ,
’ ( x , x )+

1
2 !

( y−x )2H”
” ( x , x )+..

So that 

K ( x , y )=
H (x , x )

y−x
+K ¿ ( x , y )(2.2)

               

Where K ¿
(x , y)  is bounded.
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Consequently  the main problem in studying integral
equation  with  kernels  of  type  (2)  is  solving  the
standard equation  

a ( x )∅ ( x ) λp∫
−1

1 ∅ ( y )

y−x
dy=f (x ) (2.3 )

a ( x )=
1

H (x , x)

by  means  of  Laplace  transform.  We  use  the  finite
Hilbert transform here. 

        If we put 

F ( z )=
1
π
∫
−1

1 ∅( y)
y−z

dy

Then  by result of the previous section, we have

F ( x+iε )−F ( x−iε )=2i∅ ( x )

F ( x+i∅ )+F ( x−i∅ )=
2
π
p∫

−1

1 ∅( y )

y−x
dy }

Where we assumed that  ∅ ( x ) is continuous in open

interval (-1,1). Consequently equation (3) assumed the
algebraic form

[a ( x )−λτi ]F ( x+iε )−[a ( x )+λτi ]F ( x−iε )=2if (x ) .

This equation can be simplified by setting

F ( z )=eτ ( z )U ( z )

Provided that the function T ( z)  satisfies the condition

[a ( x )−λτi ]eτ (z+iε)= [a ( x)+ λτi ] eτ( x−iε )

we obtain
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U ( x+iε )−U ( x−iε )=
2if ( x )

a ( x )−λτi
e−τ ( x+iε ) v=

2if(x )

a ( x )+ λτi
e−τ (x−iε)

 

From which, if we consider the geometric mean of the
two expressions for the difference on the  left (which
are equal), it follows that

U ( x+iε )−U ( x−iε )=
2if ( x )

[a2 ( x )+ λ2 τ2 ] 1
2

exp{−1
2

[T ( x+iε )+T ( xiε ) ]}(2.4)

How,  in  order  to  determine  the  function   T(z),   we
observe that from (2.4) we have

T ( x+iε )−T ( x−iε )=log
a ( x )+λτi
a ( x )−λτi

=2i tan−1 λτ
a ( x )

.

Consequently, we can put

T ( z )=
1
π
∫
−1

1
θ(t)
t−z

dt

with         

θ ( x )=tan−1 λτ
a ( x )

.

It follows from this that

1
2i [T ( x+iε )−T ( x−iε )=θ ( x )=tan−1 λτ

a(x ) ]

in accordance with (11).

On the other hand, we have 

1
2

[T ( x+ iε )+T ( x−iε ) ]= 1
π
p∫

−1

1
θ(t)
t−x

dt ,
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Hence, equation (10) becomes now 

U ( x+iε )−U ( x−iε )=
2i

[a2 ( x )+ λ2π2 ] 1
2

e−τ ( x ) f (x)

where 

τ ( x )=
1
π
p∫

−1

1
θ (t)
t−x

dt

And can be satisfied by the function

U ( z )=
1
π
∫
−21

1
e−e ( t ) f (t)

[a2 ( x ) +λ2π ] 1
2

t−z
dt

Finally, we determine  ∅   by using the first equation

view  gives us

2i∅ ( x )=eτ ( x+iε )U ( x+iε )−eτ ( x−iε )U ( x−iε )

¿eτ ( x )+iθ (x)[
1
π
p∫

−1

1
e−τ ( y ) f ( y)

[a2 ( y )+ λ2π2 ] 1
2

dy
y−x

+i
e−τ ( x )f (x)

[a2 ( x )+ λ2π 2 1
2 ] ]

-
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-

a2 ( y )+ λ2π 2
∨¿

¿
1
2

[¿
dy
y−x

−i
e−τ ( x ) f ( x )

[e2 (x )+λ2π2 ] 1
2

¿ ]

e−τ ( y )f ( y)
¿

1
π
p∫

−1

1

¿

eτ (x )+iθ(x)
¿

After making some implications, 

∅ ( x )=
a ( x ) f ( x )

a2 ( x )+λ2π 2 +
λeτ ( x )

[a2 ( x ) λ2π2 ]
p∫

−1

1
e−τ ( y ) f ( y )

[a2 ( y )+ λ2π2 ]
dy
y−x

Where, according to (14) and (13),

τ ( x )=T x [θ ( y ) , ]θ ( y )=tan−1 λπ
a( y)

(2.1.3) Singular Integral is an Integral Operator

In  mathematics,  singular  integrals  are  central  to
harmonic analysis and intimately connected with the
study  of  partial  differential  equations.  Broadly
speaking  a  singular  integral  is  an  integral
operator[161]

T ( f ) ( x )=∫K ( x , y ) f ( y )dy ,

whose kernel function  k :Rn×Rn→Rn

 is  singular along

the diagonal x = y. 

(2.1.4) The Hilbert transform H (f ( x )) .
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The archetypal singular integral operator is the Hilbert
transform H.  It  is  given  by  convolution  against  the

kernel k ( x )=1/ ( πx ) for x∈R . More precisely.

H ( f ( x ))=
1
π

lim
ε→0

∫
∣x− y∣>ε

❑
1

x− y
f ( y )dy.

The most straight forward higher dimension analogues
of  these  are  the  Riesz  transforms⁴,  which  replace
k ( x )=1/ π

With

k i ( x )=
x i

∣x∣
n+1

where i=1,…. ,n∧x i is the i-th component of x∈Rn .  All

of  these  operators  are  bounded  on  Lp

 and  satify

weak-type (1,1) estimates.

(2.1.5)  Singular Integral of Convolution Type  

A singular integral of convolution type is an operator T
defined  by  convolution  with  kernel  K  that  is  locally

integrable on 
¿

n {0
R¿

¿ ,¿
 in the sense that 

T ( f ) ( x )= lim
ε →0

∫
∣y−x∣>ε

❑

K ( x− y ) f ( y )dy.

Suppose that the kernel satisfies:

  (i)The size condition on the Fourier transform of K

K̂∈L∞
(Rn

)

       (ii) The smoothness for some C >0
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∫
∣X∣<2∣ y∣

❑

∣K (x− y )−K (x )∣dx≤C.

Then  be  shown  that  T  is  bounded  on  Lp
(Rn

)  and

satisfies a weak-type (1,1)    estimate.

Property 1. Is needed to ensure that convolution (1)
with  the  tempered  distribution  p.v.  k.  given  by  the
principal value integral 

p.v.K [∅ ]=lim
ε→0

∫
∣x∣>ε

❑

∅ ( x )K ( x )dx

Is a well-defined Fourier multiplier on  L2.

 Neither of

the properties 1.or 2.    Is necessarily easy to verify,
and variety of sufficient conditions exist. Typically in
applications. One also has a cancellation condition 

∫
R1 <∣x∣<R2

❑

K ( x )dx=0, ∀R1R2>0

Which  is  quite  easy  to  check  it  is  automatic,  for
instance,  if  in  addition,  one     assumes  2  and  the
following size condition 

∫
R<∣X∣<2R

❑

∣K (x )∣dx≤C ,

Then it can be shown that 1. follows.

A condition of a kernel K can be used:

(i)  
¿

K∈C1 (Rn
{0 }¿¿

(ii) ∣∇K (x)∣≤
C

xn+1

Observe that these conditions are satisfied for Hilbert
and Riesz transforms.
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Sec.(2.2)  Finite Part Integral and Hypersingular
Kernels

 (2.2.1) Cauchy Type Singular Integral Equations

In general, the solution to the crack problems in the
linear  elastic  fracture  mechanics  often  leads  to  a
system of Cauchy type singular integral equations 

ai
π
∫
c

d ∅i(x )

t−x
dt+∑

j

J

∫
c

d

kij (x , t )dt+bi∅i ( x )=pi (x)

Where c<x<d ,aib i(i=1,2,…..) are real constants  and the

kernel  Κ ij ( x ,t )  are  bounded  in  the  closed  domain

( x , t )∈ [c , d ]× [c ,d ] .

Function  pi ( x ) is  known  and  given  by  the  boundary

condition.  Functions  ∅i(x)  are  the  unknowns  of

problems,  also  called  by  the  density  functions
However, if the unknown density function is chosen to

be  the  placement,  say  ωi ( x ) ,  then  the  order  of

singularity  increases.   Thus,  a  formulation  of
hypersingular integral equations is made.

Shear modulus  G (x )=G0e
βx

  

then the governing a partial differential equation (PDE)
in  terms  of  the  z  component  of  the  displacement

victor 
x , y
ω¿ ) is

∇2ω (x , y )+ β
∂ω(x , y)

∂x
=0 (2.1)

With mixed boundary conditions 

ω ( x ,0 )=0 x∉ [c , d ] .

57



+¿
x ,0¿

¿
σxy ¿

(2.2)

Where  p(x)  is the traction function along the crack

surfaces  (c,  d).  By  a  process  of  Fourier  integral
transform  PDE    can  be  reduced  to  hypersingular
integral equation.     

(2.2.2) Hadamard Finite Part (HFP)

 Integral was first introduced by Jacques Hadamard to
solve some linear     partial differential equation (PDE)
which  can  be  considered  as  a   generalization  of
Cauchy principal value (CPV) integral[2,14].

   

(2.2.3) HFP and Cauchy Principal value Integrals

  HFP integral is a generalization of CPV integral, thus
let  us look at CPV integral first :  

CPV is equations  that involve integrals of the type 

∫
c

d ∅(t)
t−x

dt ,∣x∣<1(2.3)

Is  not  integrable  in  the  ordinary  (Riemann  or

Lebesgue) sense because of the Kernel 1/(t−x )

Is not integrable  over any interval that includes the

point t=x.  Thus, it is regularized by CPV integral:
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∅( t)
t−x

dt+¿

∫
c

x+ε

¿

¿
¿
¿

∅( t)
t−x

dt :=lim
c→ 0

¿

∫
c

d

¿

Where c<x<d. Notice that the ε -neighborhood about

the singular point  x−t must be symmetric, and it is

how  CPV  works  out  for  canceling  off  the
singular(xrity). 

For  the  existence  of  the  CPV  Integral,  the  function
∅(x)  needs to be at least Holder continuous on (c,d)

that  is  ∅ ( x ) ∈C 0,α (c ,d ) .  This  requirement of  regularity

can be easily checked by following manipulation:

∫
c

d ∅ (t )

t−x
dt=lim

c→o { ∫
∣t−x∣≥ ε

❑ ∅ (t )−∅ ( x )

t−x
dt+∅ ( x )}

                       

¿∫
c

d ∅ (t )−∅(x)
t−x

dt+∅ ( x )∫
c

d
dt
t−x

(2.5)

Thus,  for  any  ∅∈Ca ,∝ ,∝>0, the  first  integral  on  the

right  side  is  an  ordinary  Riemann  integral  and  the
second integral is 

∫
c

d
dt
t−s

=log
d−t
x−c

, c<x<d.
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Although Cauchy principal value integral is defined for
an interior  point in (c,d) above,  it  can be evaluated
separately on both sides of the end point:

∫
c

x ∅(t)
t−x

≔ lim
ε→ 0 {∫

c

x−ε ∅(t )
t−x

dt=∅ ( x ) lnε}
where x>c , and 

∫
x

d ∅(t)
t−x

dt≔ lim
ε→0 {∅ (t )

t−x
dt+∅ ( x ) lnε}.

`And  CPV  integral   does  not  work  for  a higher

singularity. For instance, consider ∅ (t )=1∧x=0∈¿

t−x
¿
¿
¿2
¿
∅( t)

¿

∫
c

d

¿

That is ,

∫
c

d
dt
t 2 c<0<d.

Thisintegral  is  not  convergent,  neither  does  the

principal value exist, since

¿
⃓c ,d∨−c , c

∫
¿

¿¿❑
dt
t 2 =lim

c→0 ( 1
c
−

1
d

+
2
ε )
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is not finite. Hadamard  finite part integral is defined

by disregarding the finite part,  2/ε , and keeping the

finite part⁸, i.e 

∫
c

d
dt
t 2 =

1
c
−

1
d

(2.7)

D efinition  (2.2.1)[  (Hadamard  Finite  Part

Integral) 

Let c>0,∧denote

¿
∣c , d∣( x−ε , x+ε

F (c , x )=∫
¿

¿¿¿❑ f (t , x )dt , c<x<d.

Where  the  singularity  at  the  point  t=x. If F (ε , x ) is

decomposed into

F (ε , x )=F0 ( ε , x )+F1 (ε , x ) ,

And 

lim
ε→ 0

F0 (ε , x )<∞. lim
ε→0

F1(E ,x )<∞ .

Then the finite part integral is defined by keeping the
finite part i.e

∫
c

d

f (t , x )dt=lim
ε→0

Fo(ε , x)

Notice   that  HFP  integral   can  be  considered  as
generalization of the CVP integral in the sense that if
the principal value integral exists, then they give the
same result.
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Definition (2.2.2) If  ∅ ( x ) ∈C 1,α ( c , d ) , then 

∫
c

d ∅( t)

(t−x )
2 dt

¿ lim
ε→0 [ ∫

c

x−ε ∅(x )

(t−x)2
dt+∫

x +ε

d ∅(t)

( t− x)2
dt−

2∅ ( x )

ε ](2.8)

Following  observation  may  help  to  understand
Definition 2 for HFP. By a step of integration by-parts ,

the  first  integral  under  the  limit  ε→0  (8)  can  be

written as

t−x

∫
c

x−ε ∅(t)

(t−x)2 dt=
∅(x−ε )

ε
−

c
c−x

+∫
c

x−ε ́∅ ́ (t )
¿ dt. ¿

Similarly,

∫
x+ ε

d ∅(t)

( t−x )
2 dt=

∅(x+ε )
ε

−
d

d−x
+∫

x+ε

d ∅ ́( t)
(t−x )

Thus, the term −2∅(x )/ε  in (8) will kill the singularity

[ ∅ ( x−ε )+∅(x+ε)¿/ε , and  under  the  assumption  that

∅(x)∈C1,∝
(c , d )  Definition 2 indeed takes the finite part

of the integral according to Definition 1. 

Another  direction  of  viewing  to  Definition  2  is  by

taking  direct  differentiation  d ∕ dx   to(5)  with

Leibnitz's  rule, i.e

∅( t)
t−¿

∫
c

d

¿

62



¿ lim
ε→o

d
dx [∫

c

x−ε ∅(t)
t−x

dt+∫
x+ε

d ∅(t )
t−x ]=lim

ε→0 [ ∫
c

x−ε ∅(t)

(t−x)2
dt+∫

x+ε

d ∅(t)

(t−x)2
dt−
∅ (x−ε )+∅(x+ε )

ε ](2.9)

Proposition (2.2.3)    if∅ (x ) ∈C1,∝ (c , d ) ,  then 

∫
c

d ∅( t)

(t−x )
2 dt−

dy
dx

∫
c

d ∅(t)
(t−x)

dt(2.10)

Alternatively. One can define   finite part 

integrals[28,30] by requation(10)∧deduce Definition2as property.

For general HFP integrals can be defined recursively
as follws.

Definition (2.2.4)  (Finite part integral) Let

1+¿=¿ p>1 LP [c ,d ]
L¿

 For any 
1+¿ , c< x<d ,∧n=1,2,3… .
∅∈C n ,∝ (c ,d )∩L¿

∫
c

d ∅(t )

(t−x )
n+1 dt=

1
n
d
dt

∫
c

d ∅( t)

(t−x )
2 dt (2.11 )

with

∫
c

d ∅(t)
t−x

dt≔∫
c

d ∅(t )
t− x

dt

By  means  of  (2.5)  and  the  definition  of  finite  part
integrals, 

 (2.2.4) Hypersingular Kernels

For  the  derivation  of  hypersingular  kernels,  we  use
three basic ingredients    (i)Finite part integrals

  (ii)Identity 
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in
dn

dyn [
1

y−i (t−x ) ]=dn

dn [ 1
y−i (t−x ) ] (2.8 )

 (iii)Plemelj formulas 

∅( t)
t−x

dt+πi∅ ( x ) ,∅∈L1+¿

lim
ε→0

∫
c

d ∅(t)
(t−x )+iε

dt=∫
c

d

¿

The key point of identity, (8) is that it allows one to

switch  the  differentiation  from  
dy

d /¿d /dy ¿ ,  and  vice

versa, HFP integral has been defined and addressed in
previous section,  for  the sake of  completeness ,  we
shall briefly address Plemelj formulas.

(iii)Plemelj Formulas

In general, the Cauchy principal value type of integrals

∫
c

d ∅(t)
t−x

c<x<d

Is evaluated indirectly  by to using complex Function
theory [7, 9]. Define 

∅ ( z )=∫
c

d ∅(t)
t−z

dt.

With z not on the integration  contour. The principal
value is then recovered by sending z to the point x on

the interval (c, d), and the result is different as z→ x

from above and below. Say, define

∅ (x+i∣y∣) .∅
−¿ ( x )=lim

y →0
∅ (x−i∣y∣) .

+¿ ( x )=lim
y→0

¿

∅¿
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Then the limits are

+¿ ( x )=∫
c

d ∅( t)
t−x

dt+iπ∅ ( x ) (2.9 )

∅¿

and

−¿ ( x )=∫
c

d ∅(t)
t−x

dt−i∅π (x)(2.10)

∅¿

Equations  above   sometimes  called  Sokhertski
formulas.  It  is  (2.9)  that  we  will  be  using  in  the
derivation  of  hypersingular    kernels.  Notice  that
∅(x)  can be recovered from Plemelj formulas. i.e

+¿ ( x )−
∅−¿( x)

2πi
∅¿

∅ ( x )=¿

     (2.2.4.1)  Rising of Hypersingular Kernels

To demonstrate how the hypersingular kernels arise,

we go through Fourier transform ω (x , y )

To be expressed as 

ω ( x , y )=
1

√2π
∫
−∞

∞

[∝(ξ)eλ ( ξ ) y ] eixξdξ (2.11)

where

[ λ(ξ)]
2
=ξ2

+iβξ ,                    (2.12)

    to satisfy the far field  boundary condition

lim
y→∞

ω ( x , y )=0.wechoosethe root λ (ξ )
to be the non-positive real

part,
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√ξ4+¿ β 2ξ2

+ξ2−
1
√2

sgn (βξ ) √√ξ4+β2 ξ2−ξ2 (2.13 )

−1
√2

√¿

Where the signum  function sgn(.) is defined as

sgn ( η )={
1,η>0
o ,η=0
−1,η<0

                             (2.14).

     As the limit of 
+¿ istaken ,
y→0¿

+¿
x ,0¿

¿
ω¿

¿
1

√2π
∫
−∞

∞

α (ξ ) e−ixξdξ (2.15)

That  is,

+¿
x ,0¿

¿
ω¿

inverse  Fourier  transform  of  α (ξ ) .  By

inverting Fourier transform one optains 

x ,0+¿ e−ixξ dx
ω¿

α (ξ )=
1

√2π
∫
−∞

∞

¿

+¿
t ,0¿

¿
ω¿

¿
1

√2π
∫
−∞

∞

¿
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Where the first boundary  condition and a change of

dummy variable ( x→t )  have  been applied.

Defining

K (ξ , y )= λ (ξ )e λ (ξ ) y
(2.17)

and  using  the  second  boundary  condition  in  2  one

reaches that for c<x<d

+¿
t ,0¿

¿
ω¿

y→0+¿ G(x)
2π ∫

c

d

¿

lim
¿

¿

+¿
t−0¿

¿
ω¿

y→0+¿ G(x)
2π ∫

c

d

¿

¿ lim
¿

¿

y→0+¿∫
−∞

∞

k (ξ , y ) e (t− x ) ξdξ (2.19)

¿ lim
¿

¿

Let 

+¿
ξ ,0¿

¿
Κ (ξ )≡K ¿

and by a step of decomposition

K (ξ )=[K (ξ )−K∞(ξ)]+K∞ (ξ ) .     (2.20)

One obtains  a closed form expressions of

K∞ (ξ )=−∣ξ∣−
iβ
2

∣ξ∣
ξ (2.21)
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This  K∞ (ξ ) gives rise to quadratic  hypersingular and

Cauchy singular kernels by the following

[∣ξ∣e−∣ξ∣y ] e i( t− x ) ξdξ y→0
→

+¿ −2

(t−x )2
(2.22 )

∫
−∞

∞

¿

i
∣ξ∣
ξ
e−∣i(t−x)ξ∣dξ y→ 0

→

+¿ −2

t−x
(2.23)

∫
−∞

∞

¿

 (2.3.4)  Higher Order Hypersingular Kernels  For
more  general  and  higher  order  of  hypersingular
kernels,  they can be derived by observing that 

kn (t−x , y )∶=
1

2π
∫
−∞

∞

in∣ξ∣
n∣ξ∣
iξ
e−∣ξ∣y+i (t−x )ξ dξ

y−i( y−i (t−x ))−1

dn

dyn
¿

¿√ 2
π

(−i)nℑ¿

¿ (−1 )n√ 2
π

ℑ
dn

dxn
( y−i (t−x ))

−1

t−x+ iy
dn

dxn
¿

¿(−1)
n√ 2

π
ℜ [¿¿−1 ]

thus
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y→0+¿∫
−1

1

kn(t−x , y )∅ (t )dt

lim
¿

¿

t−x+iy
dn

dxn
¿

y→0+¿
(−1)

n√ 2
π∫

−1

1

ℜ [¿¿−1 ]∅ (t )dt

¿ lim
¿

¿

y→0+¿∫
−1

1

(t−x+ iy)−1∅ (t )dt

dn

dxn
lim

¿
¿

¿(−1)
n√ 2

π
ℜ¿

¿−1n√ 2
π

dn

dxn
∫
−1

1 ∅(t )

(t−x )
n+1 dt

¿n!(−1)
n√ 2

π
∫
−1

1 ∅(t)

( t−x)n
dt ,

where the Plemelj formula and the definition of finite
part  integrals  have been used. Note that, when n is
an odd integer,

inξn
∣ξ∣
iξ
e−∣ξ∣y+ i( t− x ) ξdξ

¿

1

√2π
∫
−∞

∞

¿

¿−√ 2
π

ℑ[ d
n

dxn
(t−x+ iy)−1]

Thus we have
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y→0+¿ 1

√2π
∫
−∞

∞

inξn
∣ξ∣
iξ
e−∣ξ∣y +i( t− x ) ξdξ

¿
dt∅(t ) lim

¿
¿

∫
−1

1

¿

¿−√ 2
π

ℑ[ d
n

dxn
(t−x+iy )

−1]−√2π
dn

dxn
∅ ( x ) ,

where the Plemelj formula is used again.

Chapter   3

Calderon-Zygmund Operators

Sec.(3.1): General Calderon-Zygmund Operators
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This  section  study  of  general  Calderon-Zygmund

Operators, that operators given formally as[76]:

T ( f )=∫K ( x , y ) f ( y )dy

For an appropriate kernel k let us quickly review what 

we used in order to show that the Hilbert transform H  

is of weak type (1.1) and strong type (2.2).

First of all we essentially used the fact that the linear 

operator H  is defined on L2

    

This information of linear operator H  was used in two 
different ways. First of  

all the fact that  H is defined on L2

 means that it is defined

on  a  dense  sub  space  of  Lp

 for  every  1≤ p<+∞ .

Furthermore, the boundedness  of the Hilbert transform

on L2

 allowed us to treat the set {∣H (g)∣>⋋ }  where g is

the 'good part' in the Calderon-Zygmund decomposition

of function  f.[1]

Secondly,   we  used  the  fact  that  there  is  a  specific

representation of the operator H  of the form

H (f ) ( x )=∫K ( x.y ) f ( y )dy

Whenever  f ∈L2

 and  has  compact  support  and

x∉ supp ( f ) .  For  the Hilbert  transform we had that,  the

kernel k  is given as:[3]

k ( x.y )=
1

x− y
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We used the previous representation and the formula of

k  to prove a sort of restricted L1

 boundedness of H

on functions which are localized and have mean zero.

This,  in turn, allowed us to treat the 'bad part'  of the

Calderon – Zegmund decomposition of f.  That what we

really need for  k is  a Holder type condition.  Note as

well  that for the Hilbert transform we first proved the

Lp

bounds  for  1<p<2  and  then  the  corresponding

boundedness for 2< p<∞ follwoed by the fact that H  is

essentially self-adjoint.

   Sec. (3.2) Singular kernels and Calderon-Zygmund

Operators

 We  will  now  define  the  class  of  Calderon-Zygmund

operators in such a wa that we will be able to repeat the

schedule used for  the Hilbert  transform.  We begin  by

defining an appropriate class of kernels  k ,  name the

singular  kernels[4].

 Definition(3.1.1).[4]  (Singular  or  Standard

Kernels) A  singular  or  standard  kernel  is  a  function

k :R} × {R} ^ {→C , defined  away   from the  diagonal  x= y ,

which satisfies the decay estimate

−¿
n

∣K ( x , y )∣≲n∣x− y∣¿                               (3.1.1)

For x≠ y and the holder-type regularity estimates
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∣K (x , y1 )−K ( x , y )∣≲n.σ

∣y− y1∣
σ

∣x− y∣
n+σ if ∣y− y1∣<

1
2
∣x− y∣(3.1 .2)

and

∣K (x1, y )−K ( x , y )∣≲n.σ

∣x−x1∣
σ

∣x− y∣
n+σ if ∣x−x1∣<

1
2
∣x− y∣(3.1.3)

for some Holder exponent  0<σ≤1.  

Example  (3.1.2):  let  K :R× R→R  be  given  as:

K ( x , y )=(x− y )
−1

 for

x , y∈R   with  x≠ y .  Then  K  is  a  singular  kernel.

Observe that

 K  is  the  singular  kernel  associated  with  the  Hilbert

transform.

Example (3.1.3): Let  K :Rn× Rn→R  be given as 

x− y
∣x− y∣

¿∣x− y∣
−n

K ( x , y )=Ω¿

Where  Ω :Sn−1→C  is a Holder continuous function :

∣Ω ( x ' )−( y ' )∣≲n , σ∣x '− y '∣
σ
,

for some  0<σ≤1.  Then K  is a singular kernel.

Example  (3.1.4):  Let  K :Rn× Rn→C satisfy  the  size

estimate

y∨¿
−n,

∣K ( x , y )∣ n¿ ∨x−¿

and the regularity estimates:
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y∨¿
−(n+1) ,

y∨¿
−(n+1 ) ,∣∇y K (x , y )≲n∣x−¿

∣∇xK ( x , y )≲n∣x−¿

away  from the  diagonal  x− y ,  then  K is  a  singular

kernel. In particular, the kernel K :Rn→Rn→C  given as:

y∨¿
−n

K ( x , y )=¿ x−¿

is a singular kernel since the gradient of K is of the order

y∨¿
−(n+1 ) .

¿ x−¿

Thus  the  estimates  (3.1.2)  and  (3.1.3)  are  consistent

with (3.1.1) but of course do not follow from it.

Remark (3.1.5): The constant 
1
2  appearing in (3.1.2),

(3.1.3) is inessential. The condition are equivalent with

the corresponding conditions where  
1
2  is replaced by

any constant between zero and one.

We  are  now  ready  to  define  Calderon-Zygmund

operators.

Definition  (3.1.6)  (Calderon-Zygmund  operators)

A Calderon-Zygmund operator (in short CZO) is a linear

operator T : L2
(Rn

)→L2
(Rn

)  which is bounded on L2
(R)

n:

‖T ( f )‖L2Rn≲T.n‖f ‖L2
(R)

n   for all 
Rn

f ∈L2
¿ )
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and such that there exist a singular kernel K for which

we have

T ( f ) ( x )= ∫ Rn k (x , y ) f ( y )d y.

for all  f ∈L2 (Rn )  with compact support  and  x∉  supp

(f ) .

Remark(3.1.7) : Note  that the integral :   

∫k ( x , y ) f ( y )

converge absolutely whenever f ∈L2 (Rn ) has compact 

support and x lies outside the support of f indeed,

R

∣k ( x , y )∣∣f ( y )∣dy≤( ∫
y∉ supp ( f )

❑

∣k ( x , y )∣
2
dy )

1
2 ‖f ‖L2

(¿¿ n)

∫
Rn

❑

¿

≤( ∫
∣x− y∣≥ δ

❑ 1

∣x− y∣
2n dy )

1
2‖ f ‖L2

( Rn
)

By (1), for some δ>0. observe that the integral in the

last estimate converges.

Remark  (3.1.8):  for  any  singular  kernel  k one  can

define T k  by means of

T ( f ) ( x )=∫
Rn

❑

K ( x , y ) f ( y )dy.
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For f ∈L2
(Rn

)  with compact support, and x∉ supp ( f ) . It is

not necessary however that T k is a CZO since it might

fail to be bounded on L2 (Rn ) .

Remark (3.1.9): It is not hard to see that (T) uniquely

determines the kernel K. that is if

T ( f ) ( x ) ∫ k ( x , y ) f ( y )dy= ∫ RnK1 ( , y ) f ( y )dy.

for  all  f ∈L2
(Rn

)  with  compact  support  then  K=K 1

almost everywhere . The opposite is not true. Indeed, for

any bounded function b∈L∞
(Rn

)  the operator defined as

T ( f ) ( x )=b ( x ) f ( x )  is  a  Calderon-Zygmund  kernel  zero.  A

more  specific  example  is  the  identify  operator  which

also falls in the previous class, and is CZO with kernel o.

however, this is the only ambiguity.

If T is a CZO, the definition already contains the fact that

T is defined and bounded on L2
(Rn

) , so we don't need

to worry about that.  The next step is  to establish the

restricted  L1

 boundless for  L1

 functions with means

zero Lemma(3.1.10) : let B=B( z, R) be a Euclidean ball

in Rn

 and denote by B¿

 the ball with the same center

and twice the radius, that is  B¿
=B ( z ,2 R ) .  Let  f ∈L1

(B)

have mean zero, that is ∫ B f =0. then we have that 
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∣T ( f ) ( x )∣≲n,σ
Rσ

∣x−z∣
n+σ ∫ B∨f ( y )∨dy

for all x∉B¿

 we conclude that

‖T ( f )‖L2
(Rn∖ B¿)≲n , σ‖f ‖L2 B.

Proof using the fact  f  has zero mean on B, for  x∉B¿

we can estimate

¿T ( f ) ( x )∨≤ ∫B∨K ( x , y )−K ( x , z )∨¿ f ( y )dy ≤ ∫B
∣y−z∣

σ

∣x− y∣
n+σ∨f ( y )∨dy

≲n , σ
Rσ

∣x−z∣
n+σ ∫B∣f ( y )∣dy.

Integrating  through  Rn
{B¿

¿

 we  also  get  the  second

estimate in the lemma.

The only thing missing in order to conclude the proof of

the  Lp

 bounds for CZOs is the fact that they are self

adjoint as a class. In particular, we need the following.

Lemma(3.1.11): let  T be a CZO. Consider the adjoint

T¿

 defined by means of

∫T ( f ) ḡ=∫ fT (g)(3.1.4 )

for all f , g in L2

. Then T¿

is a CZO.

Proof:  it  is immediate from (4) and the fact that  T is

bounded on  L2

that  T¿

 is also bounded on  L2

 with

the  same  norm.  Now  let  f , g∉L2
(Rn

)  have  disjoint

compact supports. We have 

77



∫T ( f ) ḡ          

¿∬K ( x , y ) f ( y )dy ḡ ( x ) dx

¿∫ f ( y ) ∫ K ( x , y ) y ( x )dxdy (3.1 .5)

Now let  z∉ supp (g)  and  ∅∈Cc
∞
(Rn

)  have support inside

B(0,1) with

∫∅=1

 for  ∈>0 , the functions  ∅∈( y−z )  are supported in

B (z ,∈)  so,  for  small  enough,  the  support  of  ∅∈ is

disjoint from the support of g . By (5) we conclude that

∫∅∈ ( z− y )T¿
(g)( y)dy=∫∅∈(z− y) ∫ K ( x , y ) g (x )dxd

Letting ∈→0  we get

T¿ (g ) ( z )=∫K (x , z) g ( x )dx .

for almost every z∉ supp (g ) .  Since the conditions 

defining singular kernals are symmetric in the variable (

x , y ¿ , the kernel

S ( x , y )≔K ( y , x )

is again a singular kernel, so we are done.

The discussion above leads the main theorem for CZO:

Theorem (3.1.12)[4,5]: Let  T be a Calderon-Zygmund

operator. Then T extends to a linear operator which is of

weak type (1,1) and of strong type (p,p) for all  1<p+∞
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where  the  corresponding  norms depend only  on  (n)

and( σ ¿  and ( p) .

Sec.(3.2)  Pointwise  Convergence  and  Maximal

Truncations

Let  T  be  CZO.  The  example  of  the  Hilbert  transform

suggests that  we should  have the almost  everywhere

convergence.

T ( f ) ( x )=lim
ϵ→ 0

∫
∣x− y∣>∈

❑

K ( x , y ) f ( y )dy ,

at last for nice functions f ∈S (Rn ) because of (3.1).

However, the limit 

lim
ϵ→0

T ϵ (f )(x )

need not even exist and be different from T ( f ) ( x ) . Here 

we can use the trivial

example of the of the operator T ( f ) ( x )=bf (x) . As we have

already observed  this is a CZO operator with kernel 0. 

Thus Tϵ (f ) ( x )=0  for all  ϵ>0  but clearly T ( f )  ≠0  in 

general.

Lemma (3.1.13): the limit  

lim
ϵ→0

T ϵ ( f ) ( x )

exists almost everywhere  for all f ∈S (Rn
)  if and only if 

the limit

lim
ϵ→0

∫
ϵ∣x− y∣<1

❑

K ( x , y ) f ( y )dy ,

79



exists almost everywhere.

proof : First suppose that the limit 
lim
ϵ→0

T ϵ ( f ) ( x )

 exist for all  f ∈S (Rn
) , and let ( (∅ )∈S (Rn )with∅≡1onb (0.1 ) ,

then

lim
ϵ→0

T ϵ (∅ ) ( x )=lim
ϵ→0

∫
ϵ∣x− y∣<1

❑

K (x , y ) f ( y )dy+ ∫
∣x− y∣>1

❑

k ( x , y )∅ ( y )dy.

Observe  that  by  (3.1)  the  second  integral  on  the  right  hands  side

converges absolutely. Since the limit on the left hand side exists we

conclude  that  the  limit  on  the  right  hand  side  exists  as  well.

Conversely, suppose that the limit

lim ¿

Y ∫
ϵ<¿ x− y∨¿1

K ( x , y )dy=Lϵ→ 0

¿

Exists and let f ∈S (Rn ) . We have that

ϵ<¿ x− y
T , (f )=∫

¿∨¿

1¿¿ K ( x , y ) f ( y )dy+∫ ∣x− y∣>1 K (x , y ) f ( y )dy

ϵ<¿ x− y
¿∫

¿∨¿

1¿¿ K (x , y ) f ( y )dy− f ( x )dy+f (x)∫ ϵ<¿ x− y∨¿ 1K (x , y)dy

K ( x , y ) f ( y )dy=:11 (ϵ )+12 (ϵ )+¿13

+ ∫
¿x− y∨¿1

¿

By the same considerations are before  ¿13∨¿  is a positive number

that  doesn't  depend  on  ϵ .  By  the  hypotheses  we  also  have  that

lim ¿∈→0 12 (ϵϵ )=Lf ( x ) .
¿  Finally, for 11 (ϵ )  observe that we have
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¿ x− y∨¿
−(n−1)dy.

∫
0<¿ x− y∨¿1

∣K ( x , y )∣∨x− y∨dy≲n ∫
¿ x− y∨¿1

¿

Dominated convergence implies that 
lim ¿∈→0 11(ϵ)

¿  exists as well.

Thus,  for  specific  kernel  k one  has  an  easy  criterion  to  establish

whether the limit  
lim ¿ϵ→0T ϵ( f )

¿  exists a.e for nice functions  f .  for

example,  for  the  kernel  

y
x−¿
¿

k ( x , y )=¿
 of  the  Hilbert  transform,  the

existence of the limit

lim ¿

∫
ϵ<¿ x− y∨¿1

1
x− y

dy=0
ϵ→ 0

¿

Is obvious. In order to extend the almost everywhere convergence to

the  class  Lp
(Rn

)  we need to  consider  the  corresponding maximal

function.

Definition (3.2.14): Let T be a CZO and define the truncations of T as

before

Tϵ ( f ) ( x )≔ ∫
∣x− y )∨¿ϵ

❑

K ( x , y ) f ( y )dy , xϵ Rn , f Sϵ (Rn
)

The maximal truncations of T is the sublinear operator defined as

T¿ (f ) ( x )= ∣T ∈ (f ) ( x )∣, xϵ Rn
ϵ<0

¿

The maximal truncation of a CZO has the same continuity properties as

T itself.
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Theorem (3.2.15):  let  T be  a  CZO and   T¿  denote  its  maximal

truncation. Then T¿  is of weak type  (1.1) and strong type  (p,p) for

1<p<∞ .

The proof of theorem 8 depends on the following two results.

Lemma  (3.2.16):  Let  S be  an  operator  for  weak  type  (1,1)  and

vϵ (0,1 ) .  Then for every set Ec Rn

with 0<∣E∣<+x  we have that

x
¿
¿

¿S ( f )¿

∫
E

¿

The proof of this lemma is a simple application of the representation of

the Lv

 norm in term of level sets and is left as an exercise.

The  second  result  we  need  is  the  following  lemma  that  gives  a

pointwise  control  of  the  maximal  truncations  of  the  CZO  T by  an

expression that involves the maximal function of  f and the maximal

function of T(f).

Lemma  (3.2.17):  Let  T be  a  CZO  and  0<v≤1.  Then  for  all

f ∈Cϵ
∞
(Rn

)  we have that 

f∨¿
v

T∨¿(x)
M ¿
¿
¿

T¿ (f ) ( x )≲v ,n , σ ¿
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Proof: Let us fix a function 

R
(¿¿n)

f ∈S ¿
 and ϵ>0  and consider the balls

B=B(x ,ϵ /2)  and its  double  B ¿
=B ( x ,ϵ ) .  We decompose  f in the

form

f =fx B¿
+ f (1−x B¿)=: f 1+f 2

Since  supp (f 2 )∩B=θ  and  obviously  f 2∈L2
(Rn

)  has  compact

support we can write

T ( f 2 ) ( x )=∫
Rn

k ( x , y ) f 2 ( y )dy= ∫
∣x− y∣>ϵ

K ( x , y ) f ( y )dy=Tϵ (f ) ( x ) .  (3.6)

Also every w∈B  is not contained in the support of f 2 thus

∣T ( f 2 ) (w )−T ( f 2 ) ( x )∣=∣ ∫
∣x− y∣>ϵ

[K ( x , y )−K (w , y ) ] f 2 ( y )dy∣
¿ x−

w∨¿
σ

¿x− y∨¿
n+σ ∨f ( y )∨dy

¿

≤ ∫
∣x− y∣>ϵ

¿

By (3.6), since  ¿ x−w∨¿
1
2
∨x− y∨¿  for  y in the area of integration

above. By this estimate we get that 
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ϵ
2k

¿
¿

¿n+σ
¿
¿

¿ f ( y )∨¿
¿

¿

∫
2k ∈<¿x− y∨¿2

k+1∈

¿

¿T∈ ( f 2 ) (w )−T ( f 2)(x)∨≲σϵ
σ∑
k=0

∞

¿

¿ x− y∨¿2k+¿1∈

¿ f ( y )∨¿dy

≲σ∑
k=0

∞
1

ϵn

1

2k(n+ σ )∫
¿

¿

≲σ ,n∑
k=0

∞
1

2kσ (M )( f )(x )≲n ,σM ( f )(x)dy

Combining the previous estimates we conclude that for any w∈B .

w
¿∨¿1

¿T∈ ( f ) (x )≤ AM ( f ) ( x )+T (f 2 ) ( x )+¿T ( f 1)¿
                 (3.7)

For some constant A depending only on n and σ .

If T∈ ( f ) (x )=0  then we are done. If ¿T∈ ( f ) (x )∨¿0  then there is

⋋>0 such that ¿T∈ ( f ) (x )∨¿⋋ .  Let B1={w∈B :∣Tf (w )∣>⋋/3 } .

B2={w∈B:∣T f 1 (w )∣>⋋/3 } .

and

B3={ .B1ifM (f )( x)>A−1⋋ /3,
∅, ifM (f )(x)≤ A−1⋋ /3,
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Let w∈B.  Then either w∈B1  or w∈B2  or AM ( f )(x)>⋋/3.  In

the  last  case  B3=B  so  in  every  case  we  conclude  that

w∈B1⋃B2⋃B3  thus B⊂B1⋃B2⋃B3 . However, we have that

∣B1∣
¿ 1
⋋∫

B

∣T (f ) ( y )∣dy ≤
∣B∣
⋋

M (Tf ) ( x ) .

Also, by the (1.1) type of T we get

∣B2∣
¿ 1
⋋∣∣f 1∣∣L

1 (Rn )= 1
⋋∫

B

∣f ( y )∣dy≤
∣B∣
⋋

M (f ) ( x ) .

Finally, if B3=B then ⋋≲n ,σM ( f ) ( x ) .  Otherwise B3=θ  so,

∣B∣≤∣B1∣+∣B2∣≲n ,σ
B
⋋

(M (Tf ) ( x )+M ( f ) ( x )) .

Thus in every case we get that

⋋≲n ,σM (Tf ) ( x )+M (f ) ( x ) ,

Since the previous estimate is true for any ⋋<Tϵ ( f )(x)  we conclude

that

Tϵ ( f )(x)≲n , σM (Tf ) ( x )+M ( f ) ( x ) ,

Which gives the desired estimate in the case v=1. 

For v<1 estimate (3.7) implies that

x
¿
¿
ω
¿
ω
¿

¿Tϵ( f )¿

And integration in w∈B  to get
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x
¿
¿
x
w
¿
¿
¿v
¿
w
¿
¿
¿v

¿T (f )¿

¿∨¿
v
+

1
∣B∣

∫
B

¿

¿T ∈( f )¿

And thus

∞
¿
¿
x
w

¿∨¿
v

¿
w

¿∨¿
v

¿

T (f )(dw ¿)❑

1
v

¿B∨¿∫
B

¿

1
¿

T ( f )(dw ¿)
1
v ¿

¿B∨¿∫
B

¿

1
¿

¿∨¿
v≲n , σ+¿

¿T ∈( f )¿

Note that
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w
¿∨¿

v

¿
f ∨¿

v

¿T ¿(x ) ]

M ¿ .
1
v

T ( f )(dw ¿)≤ ¿

¿B∨¿∫
B

¿

1
¿
¿

And by lemma 9 the last term is controlled by

w
¿∨¿

v

¿

T ( f )(dw ¿)
1
v ≤

1
∣B∣

∨∣f 1∣∨1≤M ( f )(x)

¿B∨¿∫
B

¿

1
¿
¿

Since is of weak type (1.1).gathering these estimates we get

x
¿
¿

f ∨¿
v
(x )

M ¿
¿
¿

T ϵ( f )¿

as we want to show.

We can now give the proof of the fact that maximal truncation of a

CZO is of weak type (1.1) and strong type (p,p) for 1<p<∞ .

Proof: proof of theorem 8. By lemma 10 for v=1 we immediately get

that T¿  is of strong type (p,p) for  1<p<∞ since both M and T are.
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In order to show that T¿  is of weak type (1, 1) we argue as follows.

By lemma 10 we have that

∣{x∈Rn :T¿ (f ) ( x )>⋋ }∣≲n , σ∨{x∈ Rn :M ( f ) ( x )>⋋
2 }∨¿

f ∨¿
v

¿T ¿(x )(x)

x∈Rn: [M ¿ ¿⋋
2

1
v }∨¿

+¿¿

f∨¿
v
(x)

x∈Rn: [M ¿ ¿
1
v ⋋

2 }∨¿

≲ 1
⋋

∨¿ f∣∣L1Rn+¿

Thus the proof will be complete if we show that

∣

f∨¿
v

{x∈Rn : [M (T ¿¿ (x ) ] ¿
1
v ⋋

2 }∣¿ 1
⋋

∨¿ f∨¿1

¿

As we have seen we have that

¿ {x∈ Rn :M (g ) ( x )>4n⋋}∨≤2n
∨{x∈ Rn :M∆ (g ) ( x )>⋋}∨¿ .

Where  M∆  is the dyadic maximal function. Furthermore, using the

calderon-Zygmund decomposition it is not hard to see that

¿ {x∈ Rn :M∆ (g ) ( x )>⋋}∨¿ 1
⋋ ∫

{M∆ (g ) (x )>⋋ }

¿ g (x )dx

Applying the last estimate to 

f∨¿
v

¿T ¿(x )

M ¿
1
v

g (x )=¿

 we get
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∣

f∨¿
v

f∨¿
v

x
¿
¿

¿
1
v
>⋋/2}

¿
f (x )∨¿

vdx
¿T ¿¿

{∨M∆ ¿

{x∈Rn : [M (T ¿¿ (x ) ]
1
v >4n⋋

2 }∣ n , v¿ 1
⋋ v

∫
¿

¿

¿

 

For f ∈C c
∞
(Rn

)  the set 

x
¿
¿

f∨¿
v
¿

T ¿
M ∆¿

{¿

 has finite measure. Thus by lemma 9

we conclude that

x
¿
¿
M∆

¿

f∨¿
v ( x )

1
v

f ∨¿
v
¿

T ¿
M∆ ¿

¿ {x∈ Rn :¿

And thus by (8) that

f ∨¿
v

x∈Rn: [M ¿ )(∣x∣v>⋋ 2 }∨ n , v¿ 1
⋋v

∨¿ f∨¿ Rn
L1
v

¿¿

This conclude the proof.

(3.2.2)  Singular  integral  operator  on  L∞

 and

BMO.
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The theory of  Calderon-Zygmund operators  developed

so  far  is  pretty  satisfactory  except  for  one point,  the

action  of  a  CZO  on  L∞

 ..  Furthermore,  it  is  at  the

moment  unclear  how  to  define  the  action  of  T on  a

general bounded function or even on a dense subset of

L∞ . With a little effort however this can be achieved.

Let us first fix a function 

R
(¿¿n)

f ∈L∞¿
 and look at the formula

T ( f ) ( x )=∫K ( x , y ) f ( y )dy.

As we have already  mentioned several  times,  such  a

formula  is  not  meaningful  through  Rn

.  Indeed  the

integral  above  need  not  converge,  both  close  to  the

diagonal  x= y  since K is singular, as well as at infinity

since K only decay like 
y∨¿

−n

¿ x−¿ , not fast enough to make

the integral above

absolutely convergent. The first problem we have dealt

with  so  far  by  considering  functions  with  compact

support  and  requiring  the  validity  of  (3.6)  only  for

x∉ supp (f ) . A similar solution could work now but we still

have a problem at infinity. Note that we didn't run into

this problem yet since we only considered functions in
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R
(¿¿n)

Lp ¿
 which necessarily possess decay at infinity. This

is  not  necessarily  the  case  for  bounded  functions.

However,  looking at the difference of the values of  T(

f ¿  at  two points  x1 x  with  x1≠ x2 ,  we can formally

write

T ( f ) (x1 )−T ( f ) (x2 )= ∫ [ K (x1 , y ) K (x2, y ) ] f ( y )dy.

Using the regularity condition (3) we see that

¿ x− y∨¿
n+σ

¿ x1−
x2∨¿

σ

¿
¿K (x1 , y )−K (x2 , y )≲n ,σ ¿

when y→∞ . This is enough to assure intgrability in the

previous integral, as long  as x1 , x3∉ supp (f ) . Motivated by

this heuristic we define for f ∈L∞
(Rn

):

¿
Rn

}

T ( f ) ( x )=T ( f xB ) ( x )+∫
¿

[K ( x , y )−K (0, y ) ] f ( y )dy.(3.7)

For some Euclidean ball B so that  0, y∈B . First of all it

is  easy  to  see  that  the  integrals  above  make  sense.

Indeed,  
f

T (¿¿XB)
¿

 is well define since f XB  is in L2
(Rn

) .

On the other hand, the integral in the second summand

converges  absolutely  since  we  integrate  away  from

B∋0, y , f is  bounded  and  K ( x , y )−K ¿0, y¿  behaves  like
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n+σ
−¿
y∨¿

¿

¿¿
 for ∣y∣→+∞ . However, (7) only defines T(f) up to

a constant. Indeed it is easy to see that if B.B '

 are two

different balls containing 0,y the difference in the two

definitions is equal to

∫
B∆ B'

K (0, y ) f ( y )dy

which  is  constant  independent  of  x. .  Thus  we  only

define   T ( f )  modulo  constants.  This  definition  of  T

gives  a  linear  operator  which  extends  our  previous

definition  on  

R
(¿¿n)

L2¿
 or  S (Rn

) .  To  deal  with  the

ambiguity  in  the  definition,  we   have  to  define  the

appropriate space.

Definition (3.2.19)[8]: We say that two functions

f , g∈Rn

 are equivalent modulo a constant c ∈C  such 

that f ( x )−g ( x )=c  almost everywhere on Rn .  This is an 

equivalence relationship f =gmod a  we will identify an 

equivalence class  with a representative of the class, 

much like we do with measureable functions.

Theorem (3.2.20)[8]: Let  T be a CZO. Then for every

f ∈L∞ (Rn )   we have that:
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‖T ( f )‖BMO (Rn )≲n ,σ‖ f ‖L∞ (Rn ).

Proof:  let  B = (z,r) be some ball  in  Rn

.  We need to

show that

f
¿
¿

T ( f )−T ¿
¿
¿

¿B∨¿∫
B

¿

1
¿

And denote 
z ,2√nr
B¿

=B ¿  ). We set

f =f X B ¿+ f X Rn {B ¿
¿
=: f 1+f 2

Since T is of strong type  we have 

‖T ( f 1)‖L2(R n)
≲n , σ‖f 1 ‖L2

(Rn
)
∣B¿∣

1
2

Thus by Cauchy-Schwartz we have 

f 1

¿B∨¿‖T (f 1)‖L2Rn∣B∣
1
2 ≲n ,σ ‖f ‖L∞

¿T (¿)∨≤
1
¿

1
B
∫
B

¿

On other hand for x∈B ,  the ball B ¿

 certainly contains

both x  and z so

¿

R¿K ( x , y )−K ( z , y )

T ( f 2 ) ( x )=T ( f 2XB¿ )+ ∫ ¿ f 2 ( y )dy

≤‖ f ‖
L∞ (Rn )∫∣ y− z∣≥2r

∨K ( x , y )−K ( z , y )dy
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¿x− y∨¿
n+σ dy

¿ x−
z∨¿

σ

¿
≤‖ f ‖L∞(Rn

)∫∣y− z∣≥ 2r¿

1

¿a− y∨¿
n+σ

dy.

‖f ‖
L∞ (Rn) r σ ∫

{∣∞− y∣> r}

¿

R
L∞

(¿¿n)

≲n , σ‖f ‖¿

   

Remembering that  only defines  T up to a constant  (B)

we get 

¿T ( f ) ( x )−c (B )∨¿≲n ,σ‖ f ‖L∞ (Rn )

¿B∨¿∫
B

¿

1
¿

By preposition (3.2.13) this proves the theorem[9].

We will now see that although the space BMO contains

unbounded  functions  like  log ∣x∣ ,  this  in  sense  the

maximum possible  growth for BMO functions. Although

such a claim is not precise in apointwise sense, it can be

rigorously  proved  in  the  sense  of  level  sets.  Indeed,

assuming ‖f ‖BMO=1       

1
∣B∣

∫
B

❑

∣f− f B∣≤1.

For all ball B. Using Chebyshev's inequality this implies 

∣{x∈B :∣f (x )−f B∣¿⋋ }∣≤
∣B∣
⋋

Theorem (3.2.21) 
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Let f ∈BMO (Rn ) . Then for any Euclidean cube Q we have that

∣{x∈Q :∣f ( x )−f Q∣¿⋋ }∣≲ne
−cn⋋/‖f ‖BMO∣Q∣

for all ⋋∈0  where the constant cn>0  depends only on the 

dimension  n.  

Which is of course quite far from the desired estimate.

c (⋋) n ,¿ c−en⋋

This  will  be  achieved  by  iterating  a  local  Calderon-Zygmund

decomtion as follows.

Let us fix a cube Qo  and consider the family B1of 2n

 cubes inside

Qo  which are formed by bisecting each side of  Q. Then define the

second generation  B2  by bisecting the sides of each cube in  B1

and so on. The family of all cubes in all generation will denoted by

B '

. For a level ∧>1 to be chosen later let B ' ' . Be the bad cubes

in B '

, that is the cubes Q∈B '

 such that

¿Q∨¿∫
Q

F (w )dw>A.

1
¿

Where F (w )=∣f (w )−f Q o∣

Finally,  let  B be  the  family  of  maximal  bad  cubes.  Since

¿Qo∨¿ ∫Qo
F (w )dw≤1<A

1
¿

 for the original cube Qo , every bad cube is

contained in a maximal bad cube. As in the global Calderon-Zyfgmund

decomposition we conclude that
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¿Q∨¿∫
Q

F (w )dw≤rn A

A ≤
1
¿

For each cube  Q∈B  where the constant  rn  depends only on the

dimension n . We also conclude that

F(w)≤ A

If  ∞∉∪Q∈ BQ by  the  dyadic  maximal  theorem.  Remembering  the

initial normalization ¿∨f ∣∣BMO=1  we get 

∑
Q∈B

¿Q∨≤
1
A

∑
Q∈B

∫
Q

F (w )dw≤
1
A

∨Qo∨¿

And for Q∈B

∣f Q−f Qo∣=¿
1
Q
∫
Q

[f −f Q o ]∨≤
1
Q
∫
Q

F (w ) sw≤ rn A

Now consider ⋋>rn A  we have

¿ {∝∈Qo :∣( f−f Qo
(∝ )∣¿⋋}∣=¿ {∝∈∪Q∈BQ :∣f (∝ )−f Qo

∣>⋋}∨¿

¿∣{∝∈∪Q∈BQ :∣f (∝ )−f Q∣>⋋ }∣f Q−f Qo
∨}∨¿

¿ {∝∈Q :F (∝ )>⋋ rn A }∨¿

∑
Q∈B

¿

c (⋋−rn A ) ∑
Q∈B

∣Q∣

c (⋋−rn A )
1
A
Qo

However that 

96



c (⋋)≤
c (⋋−rn A )

A

Whenever  ⋋−r n A  suppose  that  N rn A<⋋≤(n+1)rn A .  Since

c (⋋)  is non-increasing and the trivial estimate c (⋋)≤1  we get

rn A−1
A
¿

c (⋋ )≤c (N r n A )≤
c (N rn A )

AN
≤c−N∨nA≤c−(¿−1 ) inA c−en⋋¿

For A=c (say) and ⋋>rn c.  On the other hand, for ⋋<rn  we have

c (⋋)≤1 n¿ c−on⋋

So the proof is complete.

Corollary () Consider the Lp

 version of the BMO norm

p

1
∣B∣

∫
B

¿ f− f B∨¿

¿
¿ f−a∨¿

p

1
B
∫
B

¿
1
p

‖f ‖BMO, p≔¿B¿

p

1
∣Q∣

∫
Q

¿ f−f Q∨¿

¿
¿ f−a∨¿

p

1
Q
∫
Q

¿
1
p

Q ¿
≲n, p ¿¿

Then

‖f ‖BMO≲n , p‖f ‖BMO, p
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Finally, we show how we can use the space  BMO Rn

 as a different

endpoint in the log-convexity estimates for the Lp

 norms.

Lemma  18:  let  0< p<q<∞  and  f ∈Lp (Rn )∩BMO (Rn ) .  Then

f ∈Lp (Rn )  and

n
R¿

¿
¿
p¿
L¿

∣∣f ∣∣Lq (Rn ) p ,q.d
¿ ∣∣f∣∣¿

Proof: Obviously it is enough to assume that  ¿∨f ∣∣BMO≠0  otherwise

there is nothing to prove. Also by homogeneity we can normalize so

that ¿∨f ∣∣BMO=1 . Now from the Calderon-Zygmund decomposition of

¿ f ∨¿
p

¿  at level 1 and denote by B the family of bad cubes as usual.

For each cube Q∈B  we then have

¿ f ∨¿
p≲n=1

f ∨≤
1

¿Q∨¿
∫
Q

¿

¿Q∨¿∫
Q

¿

1
¿

From the John-Nirenberg inequality we conclude that

xQ:∣f ( x )− f Q∣>⋋−¿ f Q∨¿

{¿∣≲n c
−cn⋋∣Q∣

∣{xQ :∣f (x )∣>⋋ }∣≤¿
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For  all  the  bad  cubes  Q∈B  since  we  have  that  ∣f ( x )∣<1  for

x∉∪QEBQ  we get

∣{x∈Rn :∣f (x )>⋋}∣≲n c
−cn⋋

∨¿ f ∨¿Lp

p

 (11)

For all ⋋>1 . On the other hand, since f ∈Lp

 we have

∣{∝∈Rn :∣f (x )>⋋}∣≤
¿∨ f ∣∣Lp

p

⋋p  (12)

We conclude the proof by using the description of the  Lp

 norm in

terms  of  level  sets  and  using  (3.2.12)  for  ⋋>1  and  (3.2.11)  for

⋋>1.

Sec.(3.3)   Calderon-Zygmund  Kernels  and
Operators[64,65]

We denote the diagonal of Rn×Rnby△= {( x , x ): x∈Rn } .

Definition (3.3.21) Let 0<α ≤1 .  A Calderon-Zygmund

Kernel  of  order
α is acontenuous functionΚ : Δᶜ →k such that there exist aC>0∧satisfes :

i. for all(x , y)∈c∆
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                                      ∣K (x , y)∣≤
C

∣x− y∣
n ,

ii. for all x , y , y '∈Rn satisfing∣x− y '∣≤ 1
2
∣x− y∣whenx≠ y

∣K ( x , y )−K (x , y ')∣≤C(∣y− y '∣
∣x− y∣ )

α
1

∣x− y∣
n ,

iii. for all x , x , y '∈Rn satisfing∣x−x '∣≤ 1
2
∣x− y∣whenx≠ y ,

                              ∣K ( x , y )−K (x' y)∣≤C(∣x−x '∣
∣x− y∣)

α
1

∣x− y∣
n ,

We write 
C : (i )

K∈CZ Kα∧normit via∣K∣α=inf {¿ (iii )hold } .

Remark( 3.1.2) (i )the constant
1
2
canbereplaced by anyθ∈(0,1) .

Then the constant C  changes.

(ii) The Euclideannorm∣.∣canbe changed ¿anyother

 norm .  Again ,C changes.

(iii)  When   α=1,∇ yK ( x , y ) ∃almost  everywhere  and

satisfies :

∣∇ yK (x , y )∣≤ C '

∣x− y∣
n+1

 for all ( x , y ) ∈c∆ .

(iv)whenα=1,∇x K (x , y )∃almost everywhere∧satisfies :
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∣∇x K (x , y )∣≤ C '

∣x− y∣
n+1

for all ( x , y ) ∈c∆ .

(v) DefineK ¿ (x , y )= ́K ( y , x ) .Then K∈CZ K α implies K
¿∈CZ K α .

Definition (3.3.23) (Kernel associated to an operator

)
L2 (Rn ).

Let T∈ L¿

Wesay that a Kernel K : c∆→K is associated ¿T if for all f ∈ L2 (Rn ) ,with spt f compact ,

T f ( x )=∫
Rn

.

K ( x , y ) f ( y )d y ( y )

spt f
for almost every x∈c

¿ )[70].

 Remark( 3.3.24) This integral is a Lebesgue integral

for all xCᶜ ( spt f ) .   

Moreover ,this says that Tf can  be represented by this integral  away 

from the support of  f.

Definition  (3.3.25)   (Calderon-Zygmund
operator) .

    A Calderon-zygmund operator of order α  is an 

operator T 
L2

(R2
)

L¿  that is associated to a K

∈CZ K α .wedefineCZOα ¿be the collectionof all

 Calderon−Zygmund operatorsof order α . Also ,
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¿ L2 (Rn )+‖K ‖α
L¿

‖T ‖CZ Oα
=‖T ‖¿

 Remark( 3.3.26 ): (i) T∈CZO α if∧only if T ¿∈CZOα

 
L2 (Rn )withspt f.spt gcompact∧spt f ∩ spt g∅ .then ,

also ,let f , g∈ ¿

(T ¿g , f )= 〈g ,Tf 〉=∫
Rn

.

g(x )(
́́

∫
Rn

.

K ( x , y ) f ( y )d y ( y))d y (x )

                                                                        

∫
Rn

.
́K ( x , y )g (x)

¿
́f ( y )¿

¿∫
Rn

,

¿

¿ since f was arbitrary ,T¿ g ( y )=∫
Rn

.
́K ( x , y )g ( x )d y ( x ) for almost every y∈c (sptg ) .that

is ,T ¿has associatedKernel K¿ .   (ii)

T∈CZO∝ if∧only if T trCZO∝ ,where T
tr is thereal transpose of T.

the associated kernel¿ف ted=¿   

T tr is K tr ( x , y )=K ( x , y ) .

(iii)  the map
CZ Kα the associated kernel ,is not injectiveConsequantly ,. one cannot

defineaCZ O∝ uniquly givena∈CZOα.
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The following is animportant illustration.

Let m∈ L∞ (Rn )∧let T mbe themap↦mf.it is easy ¿ ̌that this is abounded operator on:

L2let K=0onc∆ .∧¿

Let f ∈ L∞ (Rn )with spt f compact.then,whenever x∉ spt f ,Tm f ( x )=m ( x ) f ( x )=0.Therefore

T m f (x )=∫
Rn

.

K ( x , y ) f ( y )d y ( y )d y whenever x∈c ( sptf ) ,which shows the

associated kernel  to T m  is 0.

(3.3.1)Calderon-Zygmundoperat0r in 
One-Parameter Settings 

In this chapter I will start my study of Caldron-Zygmund 
operators in one-parameter setting. The canonical 
example of such an operator is the Hilbert transform, 
which is given by   

Hf ( x)=
p.v
π

∫
R

.
f ( y )

x− y
dy.

In the case of several variables, the canonical example 
becomes Riesz  transforms, which is given by

R j f ( x )=
p.v
C (n)

∫
Rn

. x j− yj

∣x− y∣
n+1 f ( y )dy ∀ j=1,… .. ,n

Note that these generate operators that are of 
convolution type, T(f) =f * K for some appropriate kernel
function K. However, the obvious estimates on the 
kernel give that   

∣k j(x)∣≲
1

∣x∣
n
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And so these kernels are not integrable. However it is 
easy to see that these kernels 

Have an additional property some cancellation, which 
we will make more precise momentarily.  These two 
properties together will  imply that the operator are in 

fact bounded on bounded

R
(¿¿n)

Lp ¿
   when 1<p<∞ . Our 

goal in this section  is to flesh out the details behind this
fact. 
Definition(3.3.27)  We will consider Caldron- Zygmund
operators of the following forms. We will have a 
convolution kernel  K(x) that satisfies the following 
conditions  

(a)   ∣k ( x)∣≲∣x∣
−n

(b) ∫
r<∣x∣<R

.

k ( x )dx=0 for all0<r<R<∞;

(c) ∫
∣x∣> 2∣y∣

.

∣K ( x− y )−K (x )∣dx≲1when∣y∣>0

∣x∣
−n−1

 for condition. It is easy to see that the kernels for

the Hilbert transforms satisfy these conditions. Our goal 
is to prove the following theorem.
Theorem(3.3.28): Suppose that the operator T given 
by:  

Tf (x )=p.v.∫
Rn

.

K (x− y ) f ( y )dy ,

has a kernel k that satisfies (a),(c) above. Then for

1<p<∞ , we have that 

R
R

(¿¿n)

(¿¿n)→Lp ¿

Tf :Lp
¿

with the operator norm

controlled by the constants appearing in the definition of
kernel and the dimension.
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Since the ideas that we need are contained in weaker 
statement, we will also look at the following theorem:
Theorem(3.3.29) Suppose that the theorem given   

Tf (x )=p.v.∫
Rn

.

K̂ (x− y ) f ( y )dy ,

has a kernel k that satisfies conitions(a),(b) above. Then 

for 1<p<∞ , we have that ∣̂k∣  ≲1.  Then for 1<p<0  we 

have that 

R
R

(¿¿n)

(¿¿n)→Lp ¿

Tf :Lp
¿

 with the operator norm controlled 

by the constants appearing in the definition of kernel 
and the dimension.

In this statement of the theorem ∣k̂∣  denote Fourier 

transform of the kernel k. By the imposing the condition 

that ∣K̂∣≲1 , we are supposing that the operator is in 

fact priory bounded on 

R
(¿¿n)

Lp
¿

 as can easy be seen. In 

fact it is a good to show that the conditions on a kernel 
imply that for the function    

Kϵ ( x )={K ( x ):∣x∣≥ϵ
0:∣x∣< .ϵ

Weak  Type  Estimates  for  Calderon-Zygmund
Operators 
In  this  section  we prove a  very  useful  decomposition
theorem for functions.

Theorem(3.3.30). Let f ∈  

R
(¿¿n)

Lp ¿
 and ⋋>0  be given,

then there exists functions (g) and (b) such that    

(i) f =g+b;
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(ii)‖g‖L1
(Rn

)
≤‖f ‖L1 (Rn )∧‖g‖

L∞ (Rn)
≤2n⋋ ;

( iii )b=∑
j

bi were eachbi is supportedona dyadic cubeQ j.∧the
collecdiction

of dyadic cubes {Q j }are disjoint ;

(Iv) ∫
Q j

.

b j ( x )dx=0;

(v) ‖b j‖L1
(Rn

)
≤2n+1⋋∣Q j∣;

(vi)∑
j

∣Q j∣≤
‖ f ‖L1(R n)

⋋
.

Note that if  Q j∈S  that Q' j  ∉S ,  so we have the 

opposite equality 

1
∣Q∣

∫
Q

.

∣f (x )∣dx>⋋

b j ( x )=(−1

∣Q j∣
∫
Qj

.

f ( y )dy) xQ j (x ) .

Now using these observations we have

‖bi‖L1 (Rn )≤2∫
Q j

.

∣f (x )∣dx  

¿2
∣Q j

,∣
∣Q j

,∣
∫
Q j

.

∣f (x)∣dx
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≤2n+1∣Q j∣
1
Q j

, ∫
Q j

,

.

∣f (x)∣dx

¿2n+1∣Qi∣⋋

¿

f ( x ): x ϵ Rn (⋃ jQ j
1

∣Q j
,∣
∫
Q j

.

∣f (x)∣dx : xϵQ j

g (x )={¿

∣g(x )∣=∣ 1

∣Q j∣
∫
Q j

.

∣f (x)∣dx∣≤2n 1

Q j
, ∫
Q j

,

.

∣f (x )∣dx≤2n⋋ .

∣ 1
∣Q∣k

∫
Qk

.

f (x )dx∣≤ 1

∣Qk∣
∫
Qk

.

∣f (x)∣dx≤⋋ .

By the Lebesgue Differentiation theorem we then have 
that

¿
∣f (x)∣≤⋋xϵRn

(⋃ jQ j ¿¿

Combining these tow estimates we see that 

‖g‖L∞ (Rn )≤2n⋋ .

Finally , observe that

∑
j

∣Q j∣≤
1
⋋∑

j
∫
Q j

.

∣f (x )∣dx

¿
1
⋋ ∫

⋃ jQ j

.

∣f (x )∣dx
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L1
(¿Rn

).

≤
1
⋋

‖ f ‖¿

We now turn to show how to use this Theorem to deduce
the following result.

Theorem( 3.3.31)

suppose that K is acalderon−zygmuund kernel asdefiend above∈theoremthen for all fϵ L1 (Rn )∧any

⋋>0wehave

L1
(¿Rn

) .

∣{x ϵ Rn:∣Tf ( x)∣¿⋋ }∣≲
1
⋋

‖ f ‖¿

proof.Fix⋋∧fϵL1 (Rn ) . Apply theCalderon−Zygmund decomposition∈Theorem

¿obtain function g ,b so that f=g+b.Nowobserve that

{xϵ Rn :∣Tf∣>⋋ }⊂{x ϵ Rn :∣Tg∣>
⋋
2 }⋃{xϵ Rn:∣Tb∣>

⋋
2 }     

Now observe that

∣{x ϵ Rn:∣Tf ∣¿⋋}∣≤∣{x ϵ Rn :∣Tg∣>
⋋
2 }∣+∣{x ϵRn:∣Tb∣>

⋋
2 }∣,

we need to find estimates on each of these terms. The 
estimate on the good function is easy since we have

∣{xϵ Rn :∣Tg∣>
⋋
2 }∣≲ ‖Tg‖L2

(R n
)

2

⋋2

                                          ≲ 1

⋋2
‖g‖

L2
(Rn

)

2
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                                           ≲ 1

⋋2
‖ f ‖

L1
( Rn

)

                                            ¿
1
⋋

‖f ‖
L1

(Rn
)

Here, we have used that   T :L2 (Rn )→L2 (Rn )

3.3.31
is bounded.In theestimate wehaveused property (ii )∈theorem ¿

We now turn to understanding the estimate on the bad 

function. Let {Q j }  be the cubes obtained in theorem 

(3.3.31)Let Q j
¿

 denote the cube concentric with Q j  

and having side length 
2√n   times the side length of Q j

. Then we have that

∣{xϵ Rn :∣Tb∣>
⋋
2 }∣=∣(⋃Q j

¿
)⋂{xϵ Rn:∣Tb∣>

⋋
2 }∣+∣(⋃Q j

¿
)
c⋂{x ϵ Rn :∣Tb∣>

⋋
2 }∣.

Consider now the first term above, we then have that

 ∣∪Q j
¿∩{xϵ Rn :∣Tb∣>

⋋
2 }∣≤∣∪Q j

¿∣

                                                      
≤∑

j
∣Q j

¿∣

                                                       
≲∑

j
∣Q j∣

                                                       ≲ 1
⋋

‖f ‖
L1(R

n
)

It only remains to handle the term

∣(∪Q j
¿
)
c
∩{xϵ Rn :∣Tb∣>

⋋
2 }∣
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And for this one we will use the properties of the 
function b. Note that by simple estimates we have

∣(∪Q j
¿
)
c
∩{xϵ Rn :∣Tb∣>

⋋
2 }∣≲ 1

⋋ ∫
(∪Q j

¿
)
c

.

∣T (b )(x )∣dx

≤
1
⋋∑

j
∫

(∪Q j

¿
)
c

.

∣T b j(x)∣dx

Suppose for the moment that we prove          

∫
(∪Q j

¿ )

.

∣T b j(x )∣dx∫
Q j

.

∣b j(x )∣dx

Then we could continue the sum to find 

∣(∪Q j
¿
)
c
∩{xϵ Rn :∣Tb∣>

⋋
2 }∣≲ 1

⋋∑
j

∫
(∪Q j

¿
)
c

.

∣∣T b j(x)∣dx∣

                                                            ≲ 1
⋋∑

j
∫
Q j

.

∣b j(x)∣dx

                                                              ¿
1
⋋∑

j

‖b j‖L1
(Rn

)

                                                               
≲∑

j
∣Q j∣

                                                                ≲ 1
⋋∑

j

‖f ‖
L1

(Rn
)

We now turn to proving (2.2). Here we will use the fact 
that bj has mean value zero  to introduce some 
cancellation into the integral. Let cj denote the center of 
the cube Qj. Observe that

∫
(∪Q j

¿
)
c

.

∣T b j(x )∣dx= ∫
(∪Q j

¿
)
c

.

∣b j ( y )K ( x− y )dx∣dx
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¿ ∫
(∪Q j

¿
)
c

.

∣b j ( y )K ( x− y )−K (x−C j )dy∣dx

x−C j

K ( x− y )−K ¿dx

∫
(∪Q j

¿)
c

.

∣¿ )dy

∣b j( y)∣¿

≤∫
Q j

.

¿

Focus on the inner integral now,

                                   

∫
(∪Q j

¿
)
c

.

∣K ( x− y )−K ( x−C j)∣dx

     

And inspection reveals that this is very  similar to what 
appears in condition (C) on the Calderon-Zygmund 
Kernel. A change of variable, and simple estimates allow
one to show 

∫
(∪Q j

¿
)
c

.

∣K ( x− y )−K ( x−C j)∣dx ≤ ∫
∣x∣≥ 2∣ y−C j∣

.

∣K (x−( y−C j ))−K (x )∣dx≲1.

This then completes the proof of the Theorem (3.3.31) 
With  Theorem 2.2 at our

disposal, it is very easy now to conclude the proof of 
Theorem (3.3.30) Proof of

Theorem 1.2.The hypothesis of the Theorem give that

T :L2 (Rn )L2 (Rn )T : is bounded.

We have proved that in Theorem(3.3.30) that the 
operator
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T :L1 (Rn )→L1,∞ (Rn )

 is bounded too. Now, we apply the Marcinkiewicz 
interpolation Theorem (3.3.30)  conclude that

T :Lp (Rn )→Lp (Rn )when1< p<2.

¿obtain therange 2<p<∞

one simply considers the argumentgiven ,but now for the

adjoint operator.

It is easy ¿ see that the kernel of the adjoin  will still be a 

Calderon-Zygmund Kernel and so everything we have 
said so far applies again. 

(3.3.3) BEHAVIOR NEAR L1 AND L∞

As we have seen, the convolution-type 

Calderon-Zygumund operators are bounded on Lp
(Rn

)  

when 1<p<∞ .  We have also see that the operators 

satisfy a weak-typ bound when p=1. It turns out that we 
can have them be actually bounded if we change the 
target and domains.

Theorem (3.3.32) Let T be a Calderon-Zygmund 
operator as defined above, then we have:

T :H1
(Rn

)→L1
(Rn

)

And

T L∞
(Rn

)→BMO(Rn
)

While we haven’t  introduced the function spaces of
H1

(Rn
)  and BMO(Rn

)  (though we likely will), its useful

to at least have this theorem in mind.
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(3.3.4) The T(b) Theorem

The T(b) theorem provides sufficient conditions for a 
singular integral operators to be Calderon-Zygmund 
operators, that is for singular integral operator 
associated to Calderon-Zygmund kernel to be bounded

on L2

. In order to state the result we must first 

define some terms.

A normalize bump is a smooth function φ  on Rn

 

supported in a ball of radius 10 and centred at the 

origin such that ∣∂α φ(x )∣≤1 , for all multi-indices

∣α∣≤n+2 . Denote by τ r (φ ) ( y )=φ ( y−x )∧φr ( x )=r−n
(x /r )  for all

x  in Rn

  

and r>0 . An operator is said to be weakly bounded if

there is a constant C  such that

∣∫T (τ x (φ r )) ( y ) τ x (Ψ r ) ( y ) dy≤Cr
−n

for all normalized bumps  φ  and Ψ.  A function is 

said to be accretive if there is a constant  C>0  such 

that Re (b ) ( x )≥C  for all x in R. Denote by M b  the 

operator given by a function b.

the T(b) theorem states that a singular integral 
operator T associated to a Calderon-Zygmund  kernel 

is bounded on L2

 if it satisfies all of the following 

three conditions for some bounded accretive functions
b1  and b2 .

(a) M b1T M b2  is weakly bounded.

(b) T b1  is in BMO.
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(c) T1 (b1 )  is in BMO, where T is the transpose operator of 

T. 

Sec.(3.4)The  Hilbert  Transform,  Riesz
Transforms, and The Cauchy Operator 

We  discuss  three  important  examples  that  have
motivated the theory .

(3.4.1) The Hilbert Transform

Definition  (3.4.33).  We  define  a  map

H : y (Rn)→ y , (Rn )by

                                                H (φ )=p.v.( 1
πt )∗φ.

That is 

                   

1
nπ

∗φ

p.v(¿)( y )= lim
∈→0

∫
{x :∣x∣>∈ }

.
1
πx

φ ( y−x )d y (x)

¿

Proposition  (3.3.34) H  extends  to  a  bounded

operator on L2 (R ) .

Proof. We can analyze this convolution via the Fourier
Transform.  For  a  function

φϵ y (Rn ) , the Fourier transform is given by

                                 φ, (ξ )=∫
Rn

.

e−ix.ξdd y ( x ) .

We can extend this naturally to T∈Y , (Rn )by definig
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T .via 〈 ́T ,φ 〉= 〈T ,φ. 〉 for every φ∈ y (Rn ) . so ,whenφ∈ y (R ) ,

〈 p.v.( 1
πx ), φ 〉=〈 p.v. 1

πx
,φ,〉

                                       

¿ lim
ϵ→0

∫
{x :∣x∣>ϵ }

.
1
πx

φ,
(x)d y ( x )

                                       

¿ lim
ϵ→0

∫
{x :ϵ−1 }>∣x∣>∈

.
1
πx

φ(x)d y ( x )

                                        

φ(¿E)( ∫
{x :∈−1 }>∣x∣>∈

.
1
πx

e ixd y ( x ))d y (ξ )

¿ lim
∈→ 0

∫
Rn

.

¿

Now fix      ξ∈ Rn .Then

                

∫ {x:ϵ−1
>∣x∣>∈}

1
πx

eix.ξ d y ( x )=−c ∫ {x :ϵ−1 }>∣x∣>ϵ

1
πx

sin (x. ξ)d y ( x )

                              ¿−2i ∫ {x :ϵ−1 }>∣x∣>ϵ.

sin (x. ξ )d y (x )

                                                                         

¿−2i∫ .
{x :ϵ−1}>∣x∣>ϵ }

sin (x∣ξ∣) sgn (c )d y (x )

                                                                       

¿−
2 i
π
seg (ξ )∫

ε
∣ξ∣

1
ϵ∣ξ∣

sinu
u

d y (u )

.
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         The integral appearing on the right hand side is

uniformly  bounded  on  andϵ ε. thus  by  Dominated

Convergence,

〈 p.v.( 1
πx ) φ,¿ 〉= ∫R−i sgn (ξ )φ(ξ )d y (ξ )∧also for all φϵ y (R ) , Ĥφ (ξ )=−i sgn (ξ )φ¿ (ξ ) . sincethe Fourier transform

is boundedon L2 (R ) ,we extend H ¿ thewhole of  L2 (R )by

Hf (¿ξ)=−i sgn (ξ ) f ¿ (ξ )
defined ¿̂

almost everywhere∈R .then ,this extensionagrees on

y (R )∧byPlancherel Theorem,‖Hf ‖2=‖ f ‖2.

Proposition (3.4.35). H∈CZO1 .

proof .Let K∈CZK1bedefined by

K ( x , y )=
1

π ( x− y ),

when x≠ y.Fix f ∈L2 (R )with spt f compact.Then ,

fix xϵc ( spt f )∧¿∅ . so , there∃asequence

φnϵC c
∞ (R ) such that spt φn∩B ( x , r )=∅∧φn→f ∈L2 (Rn ) . thenfor every

               z∈B ( x ,r ) ,

Hφn ( z )= ∫RK (z , y)φn( y)d y ( y )

  ¿Hφn→Hf∈L2 (Rn ).Covering ( spt f )withcountablymany such balls.
c

 weconclude that
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K ( x , y ) f ( y )d y ( y )

Hf ( x )=∫ .R¿

(sptf ) .therefor H∈CZO1 ..
c

almost everywhere x∈¿

The Hilbert Transform comes from Complex Analysis.

Let    f ∈C c
∞
(R)  and take the Cauchy extension 

¿
f ¿C is

                                

f ( z )=
1

2π i
∫

f ( t )

z−t
d y (t)

❑

 

Where 
¿

z=x+i y ,≠0.It isaneasy that!F is holomorophic onC  R.

but  
¿
C  R isnot connected , so ,

x ±
y→0+¿ f ¿

lim
¿

¿
 i y ¿=

1
2

( f ( x )±i Hf ( x ))

                                       

y→0+¿ F ( x+i y )−F (x−i y)
i

Hf ( x )=lim
¿

¿

And 

                   
y→0+¿ ( x+i y )+F (x−i y)

f ( x )=lim
¿

¿

We have the following Theorem of M.Riesz:

Theorem (3.4.36)[79]  (Boundedness  of  the  Hilbert
Transform).H has a bounded extension to
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Lp (R ) for1< p<∞

y→0+¿
+F ( x± i y ) .

Corollary (3.4 .37 ) . Let F ± ( x )= lim
¿

¿

thenthe decomposition

−¿ is topological∈Lp (R )
+¿+F¿

f=F¿

that is

p
p

‖F ¿

‖F¿¿
‖f ‖p≃¿

Remark(  3.4.38)

+¿ .

when f is real valued ,
1
2
Hf is theimaginary part of F¿

(3.4.2) Riesz  Transforms

Motivated by the symbol side of the Hilbert Transform,
we define operators Rj for

J = 1…, n on   Rn

 .

Definition (3.4.39) (Riesz Transform).define  

Rj : L2 (Rn )→L2 (Rn )by

(R j f )
¿
(ξ)=−i

ξ j

∣ξ∣
f̂ (ξ)

For j = 1….,n
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We  note  that  by  Plancherels   Theorem,  R j is  well
defined and in particular

‖R j f ‖2≤‖f ‖2 .

Proposition( 3.4.40) R j∈CZO1.

Proof. Consider

                                K j ( x )=p.v. cn
x j

∣x∣
n+1

For some  cn>0.Then K j∈ y , (Rn ) . If we canshow that for appropriate cn

                                 K̂ j (ξ )=
−ξ j

∣ξ∣

In y , (Rn ) , by the sameargument as for theHilbert Transform,

                                  R j f=cn ∫ Rn

x j− yi

∣x− y∣
n+1 f ( y )d y ( y )

For all f ∈L2 (Rn )with spt f compact∧for almost every x∈c (spt f ) .

We  compute  the  Fourier  Transform  of

K j . Fixφ∈ y (Rn ) .then

〈 K̂ j , φ 〉= 〈K j , φ
¿〉= lim

ϵ→ 0.

Cn ∫ {x :ϵ<∣x∣<ϵ−1 }

x j

∣x∣
n+1 ∫ R ne−ix.ξφ(ξ )d y (ξ )d y (x ).

For ∈≠0, let

                               Iϵ=Cn ∫ {x :ϵ<∣x∣<ϵ−1 }

x j

∣x∣
n+1 e

−ix.ξ φ(ξ)d y( x)

As before, we show that ∣I ϵ∣is uniforly bounded∈ξ andϵ∧that
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Iϵ→−i
ξ j

∣ξ∣

asϵ→0

As  previously,  write
e−ix.ξ

=cos ( x.ξ )−isin ( x.ξ ) .we only need¿ regard the

Imaginary  part  .  by  a  change  of  variables,  let  w =
ξ
ξ
∧x=∣ξ∣y.then ,

                
Iϵ=−i Cn ∫ {x :

∈
∣ξ∣

<∣x∣<
I

∣ξ∣∈}
yi

∣y∣
n+1

sin ( y.w)d y ( y)

Since the Jacobian  factor of the change of variables is

cancelled by the homogeneity of 
x j

∣x∣
n+1 .

We  change  variables  again,  this  time  to  polar
coordinates.

Let y=rθ , for r>¿θ∈Sn−1. then,

rθ.w
¿

sin (¿ r dr¿¿)dσ (θ)
¿

∫
ξ
∣ξ∣

1
∈∣E∣

¿

Iϵ=−i Cn ∫ Sn−1θ j ¿

   Where dσ is the surfacemeasure onSn−1 . So ,∣I∈∣isuniformly
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bounded since                               

∣∫ξ
∣ξ∣

1
ϵ∣ξ∣

sin (rθ.ω)

r
dr∣

Is uniformly bounded in ϵ ,∣ξ∣  and θ.Furthermore ,

                                                       

∫
E
∣E∣

1
ϵ∣ξ∣

sin (rθ.ω)

r
dr→sgn(θ.ω)

As  ϵ→0∧so

                                                    

Iϵ→−i cn
π
2
∫
Sn−1θ j sgn(ω.ω)dσ (θ) .

Write

                                                    
a j= ∫ Sn−1θ j sgn (θ.ω)dσ (θ).

And let

a=(a1 ,……an )=icn
π
2
∫
S n−1((θ−(θ.ω)ω)+(θ.ω)ω)sgn(θ.ω)dσ (θ).

= 

∫
¿
¿

−i cn
π
2

¿

Because (θ (θ.ω )ω) sgn

(θ.ω ) is odd∈the symmetry withrespect ¿ the
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Hyperplane {ω }
⊥
∧Sn−1is invariant under this symmetry.By rotational

   Invariance,

∫ Sn−1∣θ.w∣dσ (θ )= ∫ Sn−1∣θ1∣dσ (θ) .

And so we define Cn by

Cn
π
2
∫
Sn−1∣θ∣dσ (θ)=1.

Then, it follows that

a j=−iω j=−i
ξ j

∣ξ∣

And the proof is complete.

Theorem(3.4.41) R j is boundedon L
p (Rn )whenever 1< p<∞ .

Corollary (3.4.42)(Application to PDs).let

φ∈ y (Rn ) . Then

,∂i ∂ jφ=−R iR j∆φ∧¿

‖∂i∂ jφ‖p≤C(n, p)‖∆φ‖p

Proof. We note that for all (ξ )=(−i ξi ) (−iξ j ) φ̂(ξ )

                                                   = (−i
iξ i
∣ξ∣ )(−i

i ξi
∣ξ∣ )∣ξ∣

2
φ̂(ξ)

                                                   =

(−i
iξ i
∣ξ∣)(−i

i ξi
∣ξ∣ )(∑j=1

n

ξ j
2 φ̂(ξ ))

                                                   ¿(−i
i ξi
∣ξ∣ )(−i

i ξ i
∣ξ∣ )(−∆φ)

¿
(ω)
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And  by  application  of  the  theorem,  the  proof  is
complete.

 (3.4.3) Cauchy Operator

The  Cauchy  operator  is  an  example  of  an  operator
that is not of the convolution type.

identify Rn≃C . Letφ :R→Rbe aLipschitzmap.that is , there∃an

M>0 suchthat∣φ (t )−φ(s)∣≤M∣t−s∣.By RademachersTheorem

∣Fed96 ,Theorem3.1.6∣, φis diffrentiable almost every where

¿φ,∈ L∞ (R )with∞≤M.Now , let Γ= {t+iφ (t ) : t∈R }

 ⊂C.if f is smooth∈aneighbourhood of Γ∧has compact

          support , thenwhenever≃∉Γ ,define  

        

F ( z )=
1

2πi

∫
f (ω)

z−ω
dω= ∫ R

f (s+iφ ( s ))

z−(s+iφ ( s ))
(1+i φ,

(s))ds

where z=Z (t )+ iα∧Z (t )=t+iφ (t ) . Fix t.Then

lim
ϵ→ 0∓

¿F (Z (t )+iα )=
1
2
f ( z (t ) )+Cf (z ( t ))

(which are the Plemelj formulas-details
where theCauchy operator is given

by 

z (t )=

lim
ϵ→0.

1

2πi
∫ {s :∣z (t)∣− z(s )>ϵ }

f (z (s ))

z (t )−z (s)
z ,(s)ds=

lim
ϵ→ 0.

1

2πi
∫ {ω∈ Γ :∣z−ω∣>ϵ }

f (ω)

z−ω
dω.

Cf ¿

Let f̂ ( s )=f ( z (s ) ) z , (s ) ,
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thencf ( z (t ))=p.v. ∫
{s:∣z (t )−z (s)∣>ϵ}

1
z (t )−z (s)

f̂ (s )ds=T f̂ (t ) .

Theorem (3.4.43)(Coifman, McIntosh, Meyer(1982).
T∈CZO1 .with kernel

                                                    p.v
1

z ( t )−z (s )
∈CZ K 1 .

the hard part of thetheorem is¿ show‖T f̂ ‖2≤C ‖ f̂ ‖2. Asaconsequence ,

Corollary (3.4.44)
( I )C is bounded onL2 (Γ ,∣dw∣)where∣dw∣is the arclengthmeasure ,

(ii ) the  Decomposition

                                         f ( x )=¿  

z (t )+iα
α→0−¿F ¿

α→0+¿F ( z ( t )+iα )+ lim
¿

¿

lim
¿

¿

Is topological in Lp (Γ ,∣dw∣) .

These results have important applications in boundary
value problems, geometric measure theory and partial
differential equations. 

Remark (3.4.45) We emphasize that this operators C
is not of convolution type . Unlike in the previous two
examples, we cannot employ the Fourier transform or
simple techniques.

Sec.(3.5)   Lp boundedness of CZOα operators

The L2 boundedness of CZOα operators comes for free
by definition .It is an interesting question to ask when

T CZOαϵ is aboundedmap ¿ Lq (Rn )¿
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Lp (Rn ) .But first ,wehave the following proposition which

shows that at least

For Hilbert transform, p = q.

Proposition (3.4.46)

suppose theHilbert transform H :Lq (Rn )→Lp (R.) for some p ,q>1 is

bounded.Then p=q.

Proof. Let f ∈Lq (Rn )∧consider the function g ( x )=f (⋋ x ) for⋋<0.

Then,

                                                   ⋋α‖Hf ‖q≤C⋋
β‖f ‖p

 And so α=
−1
q

,β=
−1
p

∧α=β which implies p=q.

As  a  heuristic,  we  cannot  hope  to  prove  Lq to  Lp

boundedness unless p= q.

Definition (3.4.47) (Hormander kernel).

∆
¿∧suppose there

¿
Let K∈ LIoc

1
¿

∃C H>0such that

               

x , y ,

K ¿d y (x)≤CH .
esssup

( y, y ,)∈R2n ∫ {x:∣x− y∣≥2∣y− y ,∣}
¿

Then, K is called a Hormander kernel .

Remark (3.4.48) the number 2 appearing in the set
of  integration is  irrelevant.  This  can be replaced by
any A˃1 at the cost of changing CH
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Lemma( 3.4,49)  

 (i) Every CZKα kernel is Hormander.

(ii) the adjoint  of a CZKα kernel is Hormander.

Proof. The proof of (ii) follows easily from (i) observing

that K∈CZ Kα implies

K ¿∈CZ K α .

We prove (i). Let K∈CZ Kα∧sowehave that

                       ∣K ( x , y )−K (x , y ,)∣≤Cα (∣y− y ,∣
∣x− y∣ )

α
1

∣x− y∣
n

Whenever ∣y− y ,∣≤ 1
2
∣x− y∣∧x ≠ y.so ,

∫ {x:∣x− y∣≥2∣y− y ,∣}(∣y− y ,∣
∣x− y∣ )

α
1

∣x− y∣
n d y (x)

                         =

∑
j=o

∞

∫ {x :2i2∣ y− y,∣≤∣x− y∣∣≤2i+1 2∣∣y− y ,∣}(∣y− y ,∣
∣x− y∣ )

α
1

∣x− y∣
n d y (x )

                         

≤
∣y− y ,∣

α

∣x− y ,∣
α+n∑

j=0

∞

y (B ( y ,2i+1∣y− y ,∣))

We  now  present  the  following  important  and  main
lemma.

Lemma(3.4.50) (Calderon-zygmund
decomposition ).

let f ∈L1 (Rn )∧⋋>0.
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thenthere∃aC (n )>0∧adecompositionof f =g+balmost

everywhereon

Rnwhere gϵ L∞ (Rn )with‖g‖∞≤C (n )⋋ ,∧b=∑
i=1

∞

biwhere

(i ) spt b i⊂Biwith Biaball ,

(ii ) ∫ Bi
∣bi∣d y≤C (n )⋋ y (Bi ) ,

(iii) ∫ Rnbi=0,  

(iv ) {Bi }have the boundedoverlap property

                                      

∑
i=1

∞

xBi
≤C (n ) ,

y (¿Bi)≤C (n )
1
⋋

‖ f ‖1.

(v )∑
i=1

∞

¿

Remark (3.4.51):   

(i) the constant C(n) depends only on the dimension n.

(ii) Note that 

B
(¿¿ i)≤C (n )2‖f ‖1

∑
i=1

∞

‖bi ‖1≤C (n )⋋∑
i=1

∞

y ¿

which shows that

∑
i=1

∞

bi converges∈L1. Hence ,b∈L1 (Rn )with‖b‖1≤C(n)n‖f ‖1.
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(iii )the that!g∈ L∞ (Rn )implies g∈ Lp (Rn ) for all∈∣1,∞∣.∈the

case of p=2,

‖g‖2≤√‖g‖1‖g‖∞≤√(1+C (n ) )
2
C(n)√⋋‖ f ‖1 .

proof of theCalderon−Zygmund decomposition , Recall that M , f isthe

uncentredmaximal function of f onballsof Rn

.Weknow that the set Ω⋋ set

{x ϵRn:M , f (x )>⋋ }is open∧constsnt of finitemeasure by the

Maximal Theorem:

        y (Ω⋋ )≤
C
⋋

‖f ‖1 .

AlsoΩ⋋≠ R
n . Let∈be awhitney coveringof Ω⋋ . Set {Bi=c1 B̂i : B̂i∈ ε }

Where c1 is the constant in the whiney covering

 Lemma (2.3.20) Then, (iv) is proved and 

             

y (¿Bi)=∫∑
i=1

∞

xBi
d y ≤ ∫ C (n ) xΩ⋋

d y ≤C
C (n)

⋋
‖f ‖1

∑
i=1

∞

¿

Which proves (v)?

We can now take

c∈ (0,1 ) (say , c=c1
−1)∧so {c Bi }aremutually disjoint.
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Then construct a partition of unity

φ1 so that∑
i

φi=1onΩ⋋∧φ i=1on

c Bi . Explicitly, 

φi=
xBi

∑
j

xB i

.

Now set,

                                            bi={f φi− f B i
f φ id y onBi

0otheerwise

Since we allow Bi to be closed we (i) is proved and (iii)
is apparent from the construction of bi.

Now, to prove (ii), we note that
∫ Bi

∣bi∣d y ≤2 ∫Bi
∣f∣d y∧¿

                                                   4 Bi∩
cΩ⋋=4c1 B̂i∩

cΩ≠∅ .

then, ∫ 4Bi
∣f∣d y ≤M , f ( z ) y (4 Bi ) for all z∈4 Bi .Choosing z∈

cΩ⋋we

observe that M , f ( z )≤⋋∧so   

                      ∫ Bi
∣bi∣d y ≤2⋋ y (4Bi )≤24n⋋ y (Bi)

Which establish (ii).

Define:

                                   
g={

f on .cΩ⋋

∑
i

( f B i
f φid y ) xBi

onΩ⋋

then, on .cΩ⋋ , f ≤ M
, f ≤⋋almosteverywhere.OnΩ⋋ , by invoking the
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Bounded overlap property, 

∣∑i ( ∫B i
f φ id y ) xBi∣≤C (n ) sui p∣∫ Bi

f φid y∣≤C(n)sui p ∫Bi
∣f∣d y ≤C (n)4n⋋

This completes the proof.

Theorem (3.4 .52 )

EveryT ∈CZO∝ is of weak type (1,1 ) .

We have the following immediate consequence .

Corollary (3.4 .53) letT∈CZOα . then , for all p∈ (1,∞ ) ,T is strong type (p , p ) .

proof . Since T isweak type (1,1 )by the theorem∧¿

          strong type (2,2 )by

definition ,we havethat T is strong type ( p , p ) for p   ∈ (1,2 ) .

Now ,note that T ∈CZO∝ implies that T
¿CZO∝∧soT ¿hasabounded

        extension¿ Lp (Rn ) for 2< p<∞ .

   Theorem (3.4 .54 ) let f ∈L1 (Rn )∩L2 (Rn )∧fix⋋>0.

Weshow that :

                y ({x∈Rn :∣Tf ( x )∣≥⋋})≤ C
⋋

‖f ‖1

With C independent of f and ⋋ . Since we only know 

Tf(x) when x∉ spt f ,weuse  the Calderon-Zygmund  

decomposition to localize .Let f = g +p this 

decomposition  at level ⋋  with the properties of g 
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and b from Lemma (3.3.5.)Since f, g

∈L2 (Rn ) ,wealso haveb∈L2 (Rn ) .

Since b=∑
i=1

∞ b iwith bi=( f φi−mb i f φi ) xBi
wehave that this

seriesconvegres
¿ L2 (Rn ) . So ,Tf=Tg+Tb

And we estimate by Markovs  inequality

L2 (Rn )
¿
L ¿

A= y ({x∈Rn :∣Tg(x )∣>
⋋
2 })≤ 4

⋋2 ∫R n∣Tg∣
2
d y ≤

4

⋋2 ‖T ‖¿

bi

∑
i=1

∞

¿

¿
T (b i )withthe series onthe

Now ,T (b )=T ¿

¿ L2 (Rn)∧∣T (b )∣≤∑
i

T ∣(b i )∣almost everywhere.So ,with

c>1¿be chosen later

B= y ({x∈ Rn:∣Tb(x)∣>
⋋
2 })≤ y ({x∈Rn :∑

i=1

∞

∣Tbi(x )∣>
⋋
2 })

                          

∪
∪

(¿¿ j c Bi)+ y ({x∈Rn
{(¿¿ j c Bi) :∑

j=1

∞

∣Tbi(x )∣>
⋋
2 })

≤ y ¿
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∪

c Bi+
1
⋋

∫Rn
{(¿¿ j c Bi)

¿
y ¿

≤∑
j=1

∞

¿

                         

∪

≤cn
C(n)
⋋

‖ f ‖1+
1
⋋

∫
Rn

{(¿¿ j c Bi)∑
i=1

∞

∣Tbi(x)∣d y

Consequently, it is enough to prove that

                                                

¿
i

su i p ∫ ¿∣Tbi∣d y ≤C(T )‖b i‖1

Since  ‖bi‖1≤C (n)⋋ y (Bi)  which gives 

                                                   

∑
i=1

∞
1
⋋

‖bi ‖1≤C (n)∑
i=1

∞

y (Bi )≤
C (n )2

⋋
‖f ‖1 .

Wenote that for almost everywhere

¿
x∈Rn

{B ¿i , T b i ( x )= ∫Bi
K (x , y )bi( y )dy ( y) .

Let  yi be  the  centre  of  the  ball  Bi  .Since
¿

∫ Rnbi d y=0,almost all x∈Rn
{B ¿i ,

T b i ( x )= ∫Bi
(K (x− y)−K (x− y i))bi( y )d y ( y ) .

We choose c = 2 since 2 ∣y− yi∣≤2 rad Bi≤∣x− y∣∧¿
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¿
i

x , yi
∫

{x:∣x− y∣≥2∣y− y i∣}∣K ( x , y )−K ¿d y (x))d y ( y )

∫ ¿∣T bi∣d y≤ ∫ y∈ Bi
∣bi ( y )∣¿

≤ ∫ Rn∣bi ( y )∣C H(K )d y ( y)≤CH (K)‖bi‖1

Where  CH(K)  is  the  Hormander  constant  associated
with K. Taking an infimum  on the right hand side, we
have 

          

¿
i

∫ ¿∣T bi∣d y≤‖K ‖CZO∝
‖bi‖1.

The sum A + B gives us the desired conclusion with

constant 

L(L2
(¿Rn

))+‖K ‖CZO∝
=C (n)‖T ‖CZO∝

.
‖T ‖¿

C≤C (n ) ¿

for ageneral f ∈ L1 (Rn )let f k→f be asequencewhichconverges∈L1 (Rn )

with each f k∈L2 (Rn ) .Without loss of generality , assume that f k→f

Almost  everywhere  (since  we  can  pass  to  a
subsequence  ).The  weak  type  (1,1)  condition  gives

that T f k is Cauchy in measure and call T̂ f the limit.This∃

Almost everywhere and T̂ f  ∈L1,∞ (Rn ) . Furthermore ,

                                      T̂ ( f ) ( x )= ∫ RnK (x , y ) f ( y )dy ( y)

For almost every x∈c

(spt f) with spt  f  compact.
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Remark (3.4.55). It would also suffice to prove for 
general f  in the previous Theorem by noting

L1 (Rn)∩L2 (Rn ) is dense∈L1 (Rn )∧that T :L1 (Rn )∩L2 (Rn)→L1,∞ (Rn ) isbounded.Since L1,∞ (Rn ) is complete ,

T extends ¿abounded mapT̂ :L1 (Rn )→L1,∞ (Rn ) .

Example (3.4.56). We note that 

                                       H ( x∣0,1∣) ( x )=
−1
π

∈∣x−1
x ∣

Whenever x∉∣0,1∣.

thisexample is of importance becauseH is aCZO, x∣0,1∣∈L1 (R.)but H (x∣0,1∣)∉L1 (R.) .

Sec.(3.4 )    CZO and H1 

A  natural  question  to  ask  is:  what  subspace  of   L1

should we choose so that a CZOαmaps that spaceback into L
1.

Theorem(3.4 .57) letT ∈CZO∝ .then ,T induces abounded operator H
1→L1 (Rn) .

Corollary (3.4 .57) letT ∈CZO∝ .ThenT extends¿ aboundedoperator ¿

L∞ (Rn )¿BM

proof .Let f ∈L1,∞ (Rn )∧g∈H 1 .Then Lg=〈 f , T tr g 〉 is a linear functional

on H 1 satisfing

H1 , L1
(Rn

)
¿
L¿

∣〈 f ,T tr g 〉∣=∣∫ Rn f T tr gd y∣≤‖f ‖∞‖T
tr ‖¿

By duality , there∃a β∈BMOsuch that L=Lβ .Define Tf=β ,with β
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idetified with Lβ

Remark  (3.4.58)   (i)  this  was  originally  proved
directly, without alluding to duality .

(ii )weapply Tf ¿ p−atoms.Let a∈℘p .Then ,

                    〈T , f , α 〉=Lβ (α )=∫ Rn βα  d y.

Let B=B ( y B , rB )=spt α.Then,

〈T , f , α 〉= ∫Rn f T tr
(α)d y.

              

¿
Rn

}f T tr
(α )d y.

¿ ∫ 2B f T
tr
(α)d y+ ∫ ¿

¿
Rn

}f ( y) ( ∫R nK (x , y)α (x)d y (x))d y ( y )

¿b ∫RnT (f x2B)α d y+ ∫ ¿

¿
Rn

}f ( y)(K (x , y )−K ( yB , y ))d y ( y )

∫❑
¿

¿
¿ ∫R nT ( f x2B)α d y+ ∫ Rn¿

 by theapplication of Fubini.So,on B there∃a

constant CB such that β ( y )=¿

 

¿
Rn

}f ( y ) (K ( x , y )−K ( yB , y ) )d y ( y )+CB .
+ ∫ ¿

proof of Theorem3.4 .1 .We show that whenever α∈℘∞ , thenT α∈ L1
(Rn

)

with‖T α‖1≤C (n ,T ) .Weautomaticlly haveT α∈L2 (Rn ) sinceα ∈L∞ (Rn )
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¿ spt α⊂Baball.Then , since‖a‖2≤
1

y (B)
1
2

,

L2 (Rn )
¿

L2 (Rn )
L ¿
L ¿

2(B)
1
2‖T ‖¿

2 (B )
1
2 ‖Tα ‖

L2 (2B )
≤ y ¿

∫ 2B∣Tα∣d y ≤ y ¿

 As in the proof of  Theorem (3.3.25)

                    

¿
Rn

}∣Tα∣d y ≤C (n )‖K ‖CZ Oα
‖a‖1 .

∫ ¿

Since H1⊂L1 (Rn ) ,Tf ∈ L∞ (Rn ) for every f ∈H1 . So , fix f ∈H1
∧pick a

representation : f =∑
j=1

∞

⋋ j a jwhere∑
j=1

∞

∣⋋ j∣≤2‖f ‖H 1witha j∈℘
∞ .This

series convergesalmost everywhere∈L1
¿ f.

             

Thus ,T (∑
j=1

∞

⋋ ja j)=Tf

Almost everywhere . Also

                    

∑
j=1

∞

‖⋋ jT a j‖1≤∑
j=1

∞

∣⋋ j∣C (n ,T )≤2‖ f ‖H 1C (n ,T ) .
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Thus ,∑
j=1

∞

⋋ jT a j converges∈L1
∧hence ,        

⋋ jT a j=¿ (∑
j=1

∞

⋋ ja j)
∑
j=1

∞

¿

HenceTf ∈L1 (Rn )∧‖Tf ‖1≤2C (n ,T ) ‖f ‖H 1.

Propositio(3.4.59
¿ letT ∈CZOα .Then ,T1is defined asa BMO function .

proof.Followseasily ¿ thethat !1∈L∞ (Rn ) ,∧T :L∞ (Rn )→BMO

is bounded .

Remark (3.4.60)
¿computeT1 ,use the formula for Tf oneachball Bfor

f =1.

Corollary (3.4.61 ¿  letT∈CZOα . ThenT mapsH
1
¿H1if∧¿

only if T tr1=0  in BMO .

Before we prove this corollary, we need the following
lemmas.

Lemma( 3.4 .62¿let T∈CZOαwithassociated kernel K∈CZ K α∧a∈℘∞

with spt a⊂B=B ( yB , rB ) . For each j∈ N with j≥1,let C j (B )=2 j+1B {2¿
j B.Then, for all x∈C j (B )

                                           ∣Ta (x)∣≤‖K ‖CZK α
2− j (n+a)rB

−n .

Proof. We compute and use the α regularity of K ,
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∣Ta(x)∣≤‖K ‖CZK α
∫ y∈ B(∣y− y B∣

∣x− yB∣)
α

1

∣x− yB∣
n∣f ( y)∣d y ( y )

           

≤‖K ‖CZ K α
rB
α 1

(2 jr B)
n+1

∫ y∈B∣a( y)∣d y ( y )

And the result follows since 

                                         ∫ y∈ B∣a( y )∣d y ( y)≤1.

Lemma (3.4.63) let m :Rn→C∧B=B ( yB , rB )aball such that

1. ∫ 2B∣m∣
2
d y ≤

c
y (B)

,

2.for every j∈N , j ≥1,∧x∈C j (B )=2 j+1B {2¿
jBwehave

∣m(x)∣≤‖K‖CZ Kα
2− j (n+α)rB

−n .

then,m∈H1
∧‖m‖H 1dosenot exceed aconstsnt dependingonn ,

‖K ‖CZ Kα
∧α>0

The proof is left as an exercise.
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Chapter 4

 Convolution Theorem of the Hilbert Transform

For the Hilbert transform

f̂ ( x )=
1
π
∫
R

❑ f (t)
x−t

dt

A new proof of the convolution formula is given. This 
convolution formula is then applied to calculate some 
Cauchy's  integrals and to solve a nonlinear singular 
integral equation.

Applications of the convolution formulae of Fourier, 
Laplace and Millen transforms are well-known. 
Recently some applications of the convolutions 
formulae for Hanklel. Stieltjes transforms are given for
the Hilbert transform

H∣f∣( x )= f̂ ( x )=
1
π
∫
R

❑ f (t )

x−t
dt ,(4.1)

The convolution theorem has been established in Lp  

spaces is missing in modern text books on integral 
transforms. In this research we give an another proof of 
this theorem and then apply this result to calculate 
some Cauchy integrals of special functions and to obtain
explicit solutions of a nonlinear singular equation.

Sec.(4.1) Convolution Theorem
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Let f , g  be defined on R  and belong 

corresponding to Lp (R ) ,∧Lq (R ) ,1< p ,q<∞, p−1
+q−1

<1.

Then Hilbert transform f̃ ∧ g̃  of f ∧g  exit and belong to

Lp (R )∧Lq (R ) , too. Furthermore fg∈Lr (R )  with r−1
=p−1

+q−1

.

Consequently, the Hilbert transform 
̌fg  of fg  exists 

and belongs to Lr (R ) . Therefore, if we put 

h ( x )=(f ⊗ g ) ( x )=
1
π
∫
R

❑

(f ( x )g (t )+g ( x ) f (t )−f (t ) g (t ) )
dt
x−t

(4.1.2)

then h exists and belongs to Lr (R ) .  Our main result in 

this paragraph is a new proof of the following.

Theorem (4.1.1) The Hilbert transform of h is the 

product  of the Hilbert transforms of f ∧g

ĥ(x )= f̂ ( x ) ĝ (x) .                                        (4.1.3)

Proof.  Let f ∧g belongs to  S, the space of infinitely 

differentiable functions which , together with their 
derivatives, approach zero more rabidly than any power 

of ∣x∣
−1
as∣x∣→∞ .  Applying the Hilbert transform to the 

function h(x )  we obtain

ĥ= f̂ ĝ+ ĝ f̂ + fg.(4.1 .4)   

Applying now the Fourier transform

F∣f∣( x )=∫
R

❑

f (t ) exp (−ixt )dt ,(4.1 .5)

To using the properties

F∣f ƒ∣=−isgnxF∣f∣(4.1.6)

140



And 2 πF∣fg∣=F∣f∣⊙F∣g∣, where

f ⊙ g=∫
R

❑

f (t )g ( x−t )dt (4.1.7)

is the Fourier convolution, we get

                          2π [ ĥ ]=2πF [ f̂ ĝ+ f̂ ĝ+fg ]

     =  -2 πisgn xF [ f ĝ+ gf ƒ ]+F [ fg ]

                                       =  -isgn
x {F∣f∣⊙F∣ĝ∣+F∣f ƒ∣⊙F∣g∣}+F∣f∣⊙F∣g∣

                                       =   -sgn

sgn xF∣f∣⊙F∣g∣
F∣f∣⊙(sgn xF∣g∣)+¿+F∣f∣⊙F∣g∣

x¿

                                         =
(−isgn xF∣f∣)⊙ (−isgn xF∣g∣)=(F∣f̂∣)⊙(F∣ĝ∣)

consequently

ĥ= f̂ ĝ ,

That means h is the convolution of the Hilbert transform.

Since the space S is dense in Lp(R)  and Lq(R) ,where   

Hilbert transform is bounded, formula, first proved to be 

valid on dense subspaces of Lp(R)  and Lq(R)  still holds

for all f ∈Lp (R )∧g∈ Lq (R ) .  Thus Theorem is proved.

Sec.(4.2)  Evaluation of some Cauchy Integral

 Let g= f̂ .  Then formula becomes

h=−f 2
+ f̂ 2

−f̂ f̂ .(4.1 .8)
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But ĥ= f̂ ĝ=−ff ƒ . Therefore, h= f̃ f̃.  Consequently, we 

have 

f̂ 2 ( x )−f 2 ( x )=
2
π∫R

❑ f (t ) f̂ (t)
x−t

dt

The upper formula can be applied to evaluate new 
Hilbert transforms. Namely, if the Hilbert transform of

f  is known, then Hilbert transform of ff ƒ  is 

2−¿ f 2

f ƒ¿

¿
1
2

¿
For 

example, let f ( x )=exp (−∣x∣I 0(x)∈Lp (R ). )  Then

f̂ ( x )=2sinh ( x )K 0 ( x ) . Therefore,

−¿
exp (−∣t∣) sinh (t ) K0 (t ) I 0 (t )

x−t
dt=sinh 2 ( x )K 0

2 ( x )−
1
4

exp (−2∣x∣) I 0
2 ( x ) .

∫
R

¿

¿

Using tables of Hilbert transform one can calculate new
Cauchy integrals by this method.

(4.2.1) A Nonlinear Singular Integral Equation

Consider now a nonlinear singular integral equation 

λf ( x )+
2
π
f (x)∫

R

❑ f ( t )

x− t
dt−

1
π
∫
R

❑ f 2 ( x )

x− t
dt=g ( x ) .(4.1 .11)

This equation can be rewritten in the equivalent form

λf ( x )+( f ⊗ f ) ( x )=g(x )

Applying now the Hilbert transform using Theorem we 
have 
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λ f̂+ f ƒ2=g  

Solving this equation we obtain

f̂ ( x )=
−λ
2
±√ λ

2

4
+ ĝ ( x )

Here √ λ
2

4
+ ĝ(x )  is  a  branch of  the  square  such  that  �

{√ λ
2

4
+ ĝ(x)}≥0.  Let λ=0.  If f ∈Lp (R ) .  Then g∈Lp /2 (R )   and

therefore , ĝ∈Lp /2 (R ). We have

f̂ ( x )=±√ ĝ (x) .

Taking 

f̂ Ω (x )=¿      √ ĝ ( x )     if x∈Ω−√ ĝ ( x ) ,

Otherwise,

where � is any measurable  subset of R. It is not difficult 

to see that f Ω  consist all of solutions of the equation.

Let λ≠0.  We choose

f̂ Ω (x )={−
λ
2
+√ λ

2

4
+ ĝ (x )      if x∈Ω                   (4.1.12)

−λ
2

−√ λ
2

4
+ ĝ(x )     

 otherwise it is easy to see that if f is a solution of 
(4.1.12) , then its Hilbert
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transform has the form (20). But not every f Ω  belongs 

to Lp(R) . We show that  f̂ Ω∈Lp (R ) if and only if

∣Ω∣<∞if R λ<0

                                ∣R/Ω∣<∞   otherwise

(4.1.13)

where ∣Ω∣  is the measure of �. Indeed, let �λ ¿0.   

Then 

‖f ƒΩ‖ᵖ≥∫
Ω

❑

∣−λ
2

+√ λ
2

4
+ ĝ (x )∣dx ≥∣λ2∣

p

∣Ω∣

 Therefore, if f ƒΩ∈ Lp (R ),  then ∣Ω∣  ¿∞ . We prove that  

this  condition is not only  necessary, but also sufficient. 
We have 

‖f ƒΩ‖p
p

=

‖ f̃ Ω‖LP (Ω )
p

+∣2
λ∣ᵖ ∫R /Ω

❑

∣ ĝ (x)

1+√1+4λ−2 ĝ (x)∣
p

dx

≤‖ f̂ Ω‖Lp (Ω )
p +∣2

λ∣
p

‖ĝ‖p<∞ .

Analogously for the case �λ ≥0 .

Therefore all solutions of the equation (14) are  Hilbert 

transforms of −f ƒΩ  having form (20) with the 

condition(21).

(4.2.2)Singular integral operators of convolution

In  mathematics,  Singular  integral  operators  of

convolution type are the singular integral operators that
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arise  on  Rn

 and  T n

 through  convolution  by

distributions; equivalently they are the singular integral

operators that commute with translations. The classical

examples  in  harmonic  analysis  are  the  harmonic

conjugation operator on the circle, the Hilbert transform

on the circle and the real line, the Beurling transform in

the complex plane and the Riesz transform in Euclidean

space.  The  continuity  of  these  operators  on  L2

 is

evident  because  the  fourier  transform  converts  them

into multiplication operators. Continuity on  Lp

 spaces

was  first  established  by  Marcel  Risez.  The  classical

techniques  include  the  use  of  poisson  integrals,

interpolation theory and they hardy-Littewood maximal

function.

(4.2.3) Hilbert transform on the circle

See also: Harmonic conjugate

The theory for  L2

 functions is  particularly simple on

the circle.

Then it has a fourier series expansion

f (θ )=∑nεZ an z
inθ

Hardy space H2

(T) consists of the functions for which

the negative coefficients vanish,  a = 0 for n ¿o . These

are precisely the square-integrable  functions that arise
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as boundary values of   holomorphic  functions in  the

open unit disk. Indeed f  is the boundary value of the

function

F ( z )=∑n≥0an z
n

,

In the sense  that the functions

f r (θ )=F (ℜiθ ) ,

Defined by the restriction of  F to the concentric circles

∣z∣=r , satisfy

‖f r−f ‖2→0.

the orthogonal projection Pof L2 (T )ontoH 2 (T ) is called

the Szego projection

it is abounnded operator onL2 (T )with operator norm

1:ByCauchys theorem

f (ς)
ς−z

dς=¿
1
2π

∫
−π

π
f (θ)

1−e−iθ z
dθ.

F ( x )=
1
2π

∫
∣ς∣=1

π

¿

Thus

F (r e iφ )= 1
2π

∫
−π

π
f (φ−θ)

1−r eiφ
dθ.

where r=1, theintegrand on the ¿hand side hasa
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singuularity at θ=0.The truncated Hilbert transform is

defined by

H ε f (φ )=
i
π
∫ ε≤∣θ∣≤ π

f (φ−θ)

1−r eiφ
dθ=

1
π
∫∣ς−e iθ∣≥ δ

f (ς)

ς−e iφ
dς ,

where δ=∣1−θ iε∣. Sinceis defined asconvolution witha

bounded function , it is abounded operator onL2 (T ) . Now

∫
ε

π

2 R(1−¿eiθ)−1dθ=
i
π
∫
ℇ

π

1dθ=i−
iε
π

.

H ε I=
i
π

¿

If f is polynomial in z then

H ε f ( z )−
i (1−ε )

π
f ( z )=

1
πi

∫∣ς−z∣≥δ

f (ς )−f (z)
ς−z

dς.

By  Cauchy  theorem  the  right  hand  side  tends  to  0

uniformly as ε  and hence δtends¿0 so

H ε f →if

Uniformly for polynomials. On the other hand if u(z) =zit
is immediate that

́H ε f=−u−1H ε(u f́ )

Thus if f is a polynomial∈z−1without constsntterm

H ε f  →if uniformaly .

Define the Hilbert transform on the circle by

H=i (2P−1 ) .
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Thus if   f is a polynomial in trigonometric polynomial

H ε f  →if uniformly

It follows that if f is any L2 function

H ε f  →if In the L2 norm.

This  is  an  immediate  consequence  of  the  result  for
trigonometric polynomial once it is established that the

operators  H ε are uniformly bounded in operator norm.

But on [−π ,π ]

(1−e iθ)
¿[¿¿−1−iθ−1]+ iθ−1 .

(1−e iθ)−1
¿

The first term is bounded on the whole of [−π , π ]  so it

suffices  to  show  that  the  convolution  operators  Sε

defined by

Sε f (φ )= ∫ ϵ≤∣θ∣≤π f (φ−θ)θ−1dθ

Are uniformly bounded. With respect to the orthonormal

basis e ine

Convolution operators are diagonal  and their  operator
norms are given by taking the supremum of the moduli
of  the  Fourier  coefficients.  Direct  computation  shows
that these all have the form

1
π ∣∫

a

b
sin t
t

dt∣
With 0 ¿  a ¿  b.These  integrals are well-known to be

uniformly bounded.
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It also follows that, for a continuous function  f   on the

circle,  H ε f converges uniformly to Hf, so in particular

pointwise.  The  pointwise  limit  is  a  Cauchy  principal

value, written

Hf=P.V.
1
π
∫
f (ζ )

ζ−eiφ
dζ.

If f  is just in L2

  then  H ε f  converges to Hf  pointwise

almost everywhere. In fact define the poisson operators

on L2

 functions by

T r (∑ ane
iφ)=∑ r∣n∣∑ an e

iφ ,

to f in  L2

 as r increases to 1. Moreover, as lebesgue

proved,  T r
f

 also tends pointwise to f at each lebesgue

point of f. on the other hand, it is also known that T r
f

-

H 1  –  r  f  tends  to  zero  at  each  lebesgue point  of  f.

Hence  H 1  – r f  tends pointwise to f on the common

lebesgue  points  of  f  and  Hf   and  there  for  almost

everywhere.

Result of this kind on pointwise convergence are proved

more  generally  below  for  Lp

 functions using  the

poisson  operators  and  the  Hardy-Littlewood  maximal

function  of  f.
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The Hilbert  transform has a natural  compatibility  with

orientation-presrving  diffeomophisms of the circle. Thus

if H is a diffeomorphism on the circle with

H (eiφ )=e ih(θ) , h (θ+2π )=h (θ )+2π ,

Then the operators

H ε
h f (e iφ )= 1

π
∫∣eih−e iφ∣≥ ε

f (e iθ)

eiθ−eiφ
dθ ,

Are uniformly bounded and tend in the strong operator

topology to H. Moreover  if  Vf(z) = f(H(z)), then VH V−1

_H  is  an  operator  with  smooth  kernel,  so  a

Hilbert-Schmidt operator.

In  fact  if  G  is  the  inverse  of  H  with  corresponding

function

(V H ε
hV−1−H ε )=

1
π
∫∣e iθ−eiφ∣≥ ε[ g, (θ )e ig(θ)

eig(θ)−e ig(φ)
−

e iθ

e iθ−e iφ ] f (eiθ)dθ.

Since the kernel on the right hand side is smooth on T

×T , it follows that the operators on the right hand side

are  uniformly  bounded  and  hence  so  too  are  the

operators H ε
h

 .  To see that they tend strongly to H, it

suffices to check this on trigonometric polynomials.  In

the case

H ε
h f (ζ )=

1
πi
∫∣H ( z)−H (ζ )∣≥ε

f (z )
z−ζ

dz=
1
πi
∫∣H ( z )−H (ζ )∣≥ε

f ( z )−f (ζ )

z−ζ
dz+

f (ζ )

πi
∫∣H ( z)−H (ζ )∣≥ε

dz
z−ζ
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In  the  first  integral  the  integral  is  a  trigonometric

polynomial in z and  ζ

And so the integral is a trigonometric polynomial  ζ  It

tends in L2

 to the trigonometric polynomial

1
πi

∫
f ( z )−f (ζ )

z−ζ
dz.

The integral in the second term can be calculated by the

principle  of  the  argument.  It  tends  in  L2

 to  the

constant function 1, so that

lim
ε→ 0

H ε
h f (ζ )= f (ζ )+

1
πi

∫
f ( z )− f (ζ )

z−ζ
dz ,

Where the limit is in L2

.  On the other hand the right

hand side is independent of the diffeomorphism . since

for  the  identity  diffeomorphism,  the  left  hand  side

equals  Hf,  (this  can  also  be  checked  directly  if  f  is

atrigonometric poly nomial ). Finally, letting ε→0,

(VHV−1
−H ) f (e iφ )= 1

π
∫ [ g

, (θ ) e ig ( θ)

e ig (θ )−e ig (φ )
−

e iθ

e iθ−e iφ ] f (e iθ)dθ.

The direct method of evaluating Fourier coefficients to

prove  the  uniform  boundedness  of  the  operator  H ε

dose not generalize directly to LP

 spaces with 1>o>∞ .

Instead a direct comparison of  H ε f  with the poisson
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integral  of  the Hilbert  transform is  used classically  to
prove this . If f has Fourier series

f (eiθ )=∑
n∈ z

ane
inθ ,

It is Poisson integral is defined by

Pr f (e iθ )=∑
n∈ z

anr
∣n∣e inθ=

1
2π

∫
0

2π (1−r2 ) f (e iθ)

1−2rcosθ+r2 dθ=K r⋆ f (eiθ ) ,

Where the Poisson kernel K r  is given by

K r (e iθ )=∑
n∈ z

r
∣n∣e inθ=

1−r2

1−2rcosθ+r2 .

¿ f is∈Lp (T )then the operatorsP r satisfy

K r(¿ e
iθ
)dθ=1.

‖K r‖1=
1
2π

∫
0

2π

¿

Thus operators  Pr have operator norm bounded by 1

on  Lp

.  The convergence statement above follows by

continuity from the result for trigonometric polynomials,
where it is an immediate consequence of the formula for
the Fourier coefficients of Kr .

The uniform boundedness of the operator norm of  H ε

follows because HPr –H1-r is given as convolution by the

function Ψ r  where [7].

ψ r (e iθ)=1+
1−r
1+r

cot (θ2 )K r(e
iθ)≤1+

1−r
1+r

cot( 1−r
2 )K r(e

iθ)

for 1−r ≤∣θ∣≤π ,∧, for∣θ∣<1−r ,
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ψ r (e iθ)=1+
2rsinθ

1−2r cosθ+r 2
.

These  estimate  show  that  the  L1 norms  ∣Ψ r∣ are

uniformly  bounded.  Since  H  a  bounded  operator,  it

follows that the operators H ε  are uniformly bounded in

operator norm on L2(T). The same argument can be used
on Lp(T) once it is known that the Hilbert transform H is
bounded in operator norm on Lp(T).

(4.2.3) Hilbert transform on the real line

See also: Hilbert transform

As in case of the circle,  the theory for  L2 functions is
particularly  easy  to  develop.  In  fact,  as  observed  by
Rosenblum   and Devinatz, the two Hilbert transform can
be related using the Cayley transform.[8].

The Hilbert transform HR on L2(R) is defined by

0,∞
ĤR f=(i X [¿ ]−i X (−∞,0 ]) f̂

Where the fourier transform is given by

f (t )=
1

√2π
∫
−∞

∞

f ( x ) e−itx dx.

Define  the  hardy  space  H 2

(R)  to  be  the  closed

subspace of L2

(R) consisting of functions for which the

fourier transform vanishes on negative part of the real

axis. Its orthogonal complement is given by functions for

which the fourier transform vanishes on the positive part
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of the real axis. It is the complex conjugate of H 2

(R).if

pR is the orthogonal projection onto H 2

(R), then

HR=i ( 2PR−1 ) .

The cayley transform

C ( x )=
x−i
x+ i

Carries the extended real line onto the circle, sending

the point at ∞ to 1, And the upper halfplane onto the

unit disk.

Define the unitary operator from L2

(T) onto L2

(R) by

Uf ( x )=π
−1

2 ( x+i )−1 f (C ( x ) ).

The operator carries  the Hardy space of  the circle H 2

(T)  onto H2

(R).in fact for ∣w∣<¿  1, the linear span of

the functions

f w ( z )=
1

1−wz

Is dense in H2(T). Moreover

U f w ( x )=
1

√π
1

(1−w )(x− ź )

Where
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z=C−1 (ẃ ) .

On the other  hand,  for  z ∈H ,  the linear  span of  the

functions

0,∞(t)
g ; (t )=eit ; x ¿

�they are the Fourier transforms of

hz (x )= ĝ❑ (−x )=
i

√2π
(x+z )−1

So  the  linear  span  of  these  functions  is  dense  in

H2(R).Since U carries the f W
,

s onto multiple of the hz
,

s, it follows that U carries H2(T) onto H2(R). thus

U HTU
¿
=HR.

In Nikolski (1986), part of the L2

 theory on the real line

and the upper halfplane is developed by transferring the

results  from the  circle  and  the  unit  disk.  the  natural

replacements for concentric circles in the disk are lines

parallel to the real axis in H. under the Cauchy transform

these correspond to circles in the disk that are tangent

to  the  unit  circle  at  the  point  one.  The  behavior  of

functions in H 2

(T) on these circles is part of the theory

of Carleton measures. The theory of singular integrals,

however,  can  be  developed  more  easily  by  working

directly on R.
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H 2

(R)  consists exactly of  L2

 functions f  that arise of

boundary values of holomorphic functions on  H in the

following sense :

Is in  H 2

 provided that there is a holomorphic function

F(z)  on  H  such  that  the  functions

f y ( x )=f ( x+iy ) for y>0are∈L2
∧f y tends¿ f ∈L

2as y→0 . In this cases F

is  necessary  unique  and  given  by  Cauchy  integral

formula:

F ( z )=
1

2πi
∫
−∞

∞
f (s)
s−z

ds.

¿ identifing!H 2with L2 (0,∞ ) viathe Fourier transform , for

y>0multiplication bye− yt

OnL2 (0,∞) includesacontraction  semi  group  V y  on  H 2
.

Hence for in L2 .  

1
2πi

∫
−∞

∞
f (s )
s−z

ds=
1

√2π
∫
−∞

∞

f ( s ) ĝ ; (s )ds=
1

√2π
∫
−∞

∞

f̂ (s )g ; ( s )ds=V yPf ( x ) .

if f is∈H2 ,F ( z ) is holomorphic for ℑ z>0, since the family of

L2 function gzdepends holomorphiclly on z.Moreever f y=V y f

tends ¿ f ∈H 2 since this istrue for the Fourier trans

forms.

Conversely  if  such  an  F  exists,  by  Cauchy's  integral

theorem and the above identify applied to f y
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f y+t=V t P f y

for t>0, Letting t tend ¿0, it follow that P f y=f y lies∈H 2 .

But then so too dosethe limit f.Since

V t f y=f y+t=V y f t ,

Uniqueness of F follows from

f t=lim
y→0

f y+t=¿
 lim V t f y =

y→0
V t f.

Foe F in L2, the truncated Hilbert transforms are defined
by

H ε , R f (x )=
1
π
∫ ε≤∣y−x∣≤ R

f ( y)
x− y

dy=
1
π
∫ ε ≤∣y∣≤ R

f (x− y )

y
dy

H ε f ( x )=
1
π
∫∣y−x∣≥ε

f ( y)
x− y

dy=
1
π
∫∣y∣ε

f (x− y)
y

dy

The  operator  H ε , R  are  convolution  by  bounded

functions of compact support, so their operator norms
are  given  by  the  uniform  norm  of  their  Fourier
transforms. As before the absolute values have the form

1

√2π ∣∫
a

b
2sin t
t

dt∣.

With 0 < a < b, so the operators  H ε , R  are uniformly

bounded in operator norm. Since H ε , R  f tends  H ε f ∈¿

L2 for f with compact support, and hence for arbitrary f,

the  operators  H ε  are  also  uniformly  bounded  in

operator norm.
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To prove  that H ε  f tends to Hf as ε  tends to zero, 

it suffices to check this on a dense set of functions .
On the other hand,

́H ε f=−H ε ( f̂ ) ,

So it suffices to prove that H ε  f tends to if for a dense

set  of  function  in  H2 (R),  for  example  the  Fourier
transforms of smooth functions g with compact support
in (0, ∞). But the Fourier transform f extends to an entire
function F on C, which is bounded on Im(z)≥0. The same
is  true  of  the  derivatives  of  g.  Up  to  a  scalar  these
correspond to multiplying F(z)  by powers of z.  Thus F
satisfies a payley –Wiener estimate for Im(z)≥0.[10]

∣F (m )
(z )∣≤KV ,m(1+∣z∣)

−N

For  any  m,  N  ≥  0.  In  particular,  the  integral  define
H ε f ( x )  can  be  computed  by  taking  a  standard

semicircle contour centered on x, it consists of a large

semicircle  with  radius  R and a small  circle  radius  ε

with the two portions of the real axis between them. By
Cauchy's   theorem,  the  integral  round  the  contour  is
zero. The integral round the large contour tends to zero
by the Payley-Wiener estimate. The integral on the real
axis is the limit sought. It is therefore given as minus the
limit on the small semicircular contour.  But this is the
limit of

1
π
∫ Γ
F (z)
z−x

dz.

Where   Γ  is  small  semicircular  contour,  oriented

anticlockwise.  By  the  usual  techniques  of  contour
integration, this limit equals if(x).[11]  In this case, it is
easy to check that the convergence is dominated in L2

since
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H ε f ( x )=¿  
1
π  ∫∣ y−x∣≥ ε

f ( y )−f (x)
y−x

dy=
1
π
∫∣y−x∣≥ ε∫

0

1

f , (x+ t ( y−x ) )dt dy

So that convergence is dominated by

G (x )=
1
2π

∫ 0
1∫
−∞

∞

∣f ,(x+ty)∣dy

Which is in L2 by the Payley-Wiener estimate.

It follows that for f on L2(R)

H ε f →Hf.

This  can  also  be  deducted  directly  because,  after

passing  to  Fourier  transform,  H ε  and  H  become

multiplication operators by uniformly bounded functions.

The  multipliers  for  H ε  tend  pointwise  almost

everywhere  to  the  multiplier  for  H,  so  the  statement
above follows from the dominated convergence theorem
applied to the Fourier transforms.

As for the Hilbert transform on the circle, H ε f tends to

Hf pointwise almost everywhere if f is an L2 function. In
fact, define the poisson operators on L2 function by

T y f ( x )=∫
−∞

∞

P y (x−t ) f (t )dt ,

Where the Poisson kernel is given by

P y (x )=
y

π (x2
+ y2

)
.

For y > 0 Its Fourier transform is

P̂ y (t )=e− y∣t∣, ,
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From which it is easy to see that Ty f tends to f in L2 as y
increases to 0. Moreover, as Lebesgue proved, Ty f also
tends pointwise to f at each Lebesgue point of f. On the
other hand, it is also known that Ty H f –Hy f tends to

zero at  each Lebesgue point  of  f.  Hence  H ε  f  tends

pointwise to f on the common Lebesgue points of f  and
Hf and therefore almost everywhere.[12][13]. The absolute
values of  the functions Tyf-  f  and  Ty H f–Hy f  can be
bounded pointwise by multiples of the maximal function
of f.[14].

As for the Hilbert transform on the circle, the uniform

boundedness of the operator norms of H ε  follows from

that of the T ε  if H is known to be bounded, since H T ε

- H ε  is convolution operator by the function

gε ( x )={
x

π (x2
+ε2

)
∣x∣>ε

x

π (x2
+ε2

)
−

1
πxπ

∣x∣>ε

The L1 norms of these functions are uniformly bounded.

(4.2.5) Convolution:  The  Hilbert  transform can be 
realized as a convolution with tempered distribution

h (t )=p.v ,
1
πt

Thus formally.

H∨(u )=h∗u

Alternatively, one may use the fact that h(t )  is the 

distributional derivative of the function log
∣t∣
π
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H (u ) ( t )=
d
dt (

1
π

(u∗log∣.∣)(t))

For most operational purposes the Hilbert transform can 
be treated as a convolution, the convolution of Hilbert 
transform of either vector is

H (u∗v )=H (u )∗v=u∗H (v)

This rigorously true if u∧v are compactly supported 

distributions cines, in that case,

h∗(u∗v )=(h∗u )∗v=u∗(h∗v )

by passing to an appropriate limit, it is thus also true if
u∈Lp

and v∈Lr

 provided 

1<
1
p

+
1
r

(4.2.6) Conjugate functions: The Hilbert  transform 
can be understood in terms of a pair of functions
f ( x )∧g(x )  such that the function 

F ( x )=f (x )+ig(x)

Is the boundary  value of a holomorphic function 

F ( z ) . Under these circumstances if fand g  are 

sufficiently integrable then  one is the Hilbert transform 

of the other. Suppose that f ∈Lp (R ) .

Then by the theory  of the Poisson integral, f admits  a 
unique  harmonic  extension in to the upper  half-plane, 
and the extension  given by
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x−s
¿
¿

¿2+ y
¿

f (s ) y
¿

u ( x+iy )= y ( x , y )=
1
π
∫
−∞

∞

¿

which the convolution of f with Poisson kernel

P (x , y )=
1
π

y

x2
+ y2

thus

v ( x , y )=
1
π
∫
−∞

∞

f (s)
x−s

x−s2
+ y2 ds

.

Chapter 5

Hilbert Transform and Applications
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Sec.(5.1)  Mathematical foundations of  Hilbert
transform

The  desire  to  construct  the  Hilbert  transform
stemmed   from  simple  quest:  Given  a  real-valued

function  f :R→R,  can we find an imaginary part  ig

such that  f c=f +ig can be analytically  extended? For

example, if f ( x )=cos ( x ) ,  then by inspection we can find

g ( x )=sin ( x ) suchthat f c ( x )=f +ig=exp (ix ) .  This  function  can

obviously  be  extended  analytically  to  the  entire
complex plane  by replacing  the real variable x with
the  complex[153]  variable  z  in  the  expression,  the

result is f ext ( z )=exp (iz)  and we have 

ℜ { f ext (z)}¿z= x=f ( x ) ,

Which states that real part of the extended function is

equal to the original  given function f (x)  on the real

line.  The  companion  function  g(x)  is  called  the

Hilbert transform of  f (x) .

(5.1.2)Hilbert  transform  as  a  boundary-value
problem

To  establish  the  uniqueness  of  the  companion
function,  we  first  note  that  any  analytic  function
f ext ( x )=f R ( z )+i f I (z)  defined   on  the  complex  plane

z=x+iy  must satisfy Cauchy-Riemann equations,

∂2 f R
∂ x

=
∂ f I
∂ y

,

∂ f I
∂x2 =

∂ f R
∂ y

.
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Consequently, both f R∧f I satisfy Laplace's equation,

∂FR

∂ x2 +
∂2FR

∂ y2 =0,

∂2FR

∂ x2 +
∂2F I

∂ y2 =0

Over  the  region  where  f ext ( z )  is  analytic.

Conventionally, by requiring  f exr( z)  to be analytic in

the upper half-plane, the quest of finding the Hilbert

transform  for  any  given  function  f (x)  can  be

formulated as boundary  value problem . By specifying
the boundary conditions that

(i) f R ( x ,0 )=f ( x ) , and that

(ii) f R ( x , y )=0as x→±∞∨ y→∞ .

f g ( x , y )  can  be  uniquely  determined  by  solving

Laplace's  equation  in  the  upper  half  plane.  Thus
g ( x )=F I (X ,0 )  is  the  Hilbert  transform  of  the  given

function f ( x ) .

(5.1.2)   Calculation  through  improper
integrals[49]

The  above  formulation  of  Hilbert  transform  as  a
boundary-value problem is hardly mentioned in recent
texts.  Instead,  Hilbert  transform  is  commonly
introduced  and  defined  through  an  improper  [Hahn
96]
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g ( x )=
1
π
∫
−∞

∞

f (u )
1

x−u
du (5.1.4)

    
 Here,  note  that  the  convolution  kernel  function
h ( x )=1/πx is singular at x=0  therefore, the integral in

Eq. 4 is improper in the sense of Cauchy's principal
value:

g ( x )=lim
ε→0 (∫

−∞

x−ε

+∫
x+ ε

∞

f (u ) .h ( x−u )du)(5.1 .5)

To be convinced that Eq. 4 indeed produces the Hilbert
transform,[106] we need to think about the effects of
Hilbert  transform in the frequency domain.  First,  for
any frequency k, note that the Hilbert transform of

 f k ( x )=cos (kx ) .is gk ( x )=sin (kx ) .  So,  we  can  understand

Hilbert transform as a phase shifter which gives every
sinusoidal function -90degrees of phase shift.

Therefore, in the frequency domain, we have

G (k )=F (k ) .(−i. sgn (k ))                                (5.1.6)

Where  G(k)  and  F(k)  are  the  Fourier  transform  of
g ( x )andf ( x ) , respectively,  and  sgn(x)  is  the  sign

function (i.e. , s g n ( k )=1if k>0∧s gn (k )=−1if k>0.)  Therefore,  if

we think of H (k )=−i.s n (k )  as the transfer function of a

phase-shift kernel  h ( x ) , the kernel can be written as

the inverse Fourier transform of the transfer function ;
that is,
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h ( x )=
1
2π

∫
−∞

∞

H ( k ) eikx dk.(5.1.7)

Note  that  H (k )=−i for k>o.∧H (k )=i for k<0.  Therefore,

H (k )' s  first derivative with respect to k is

∂H
∂k

=2iδ (k ) , (5.1.8)

where δ ( k )  is the Dirac delta function. 

(5.1.3)The notion of Hilbert transform "pairs"

The  phase-shift  interpretation  of  Hilbert  transform

leads to  the fact  that  if  f (x) ' s  Hilbert  transform is

g ( x ) ,  then g ( x ) , s  Hilbert transform is −f ( x );  in this

sense,  f ( x )∧g(x )  form a Hilbert transform pair.

This symmetric property can be understood as follows.

Note that the H²(k) = -1 for all k since H(k) = ±i.  This

means that if we take the Hilbert transform twice, the
result would be the original function with a negative
sign.

(5.1.4)The convolution kernel h(x) as the Hilbert

transform of δ (x) [106,126,148] 

Therefore,  h(x )  must  be  regarded  as  the  Hilbert

transform of the impulse function  δ ( x ) . Then it is of

our interest to check that 
f c ( x )=δ (x )+ih(x)

Can  be  regarded  as  an  analytic  function.  To  see  it
consider  a  family  of  complex  analytic  functions
f ( x )=i / π (z+iη)  parameterized by a variable η>0.  Since
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the  only  singularity  of  f ( z ) isat z=−η , f ( z) is  analytic  .

Therefore, the real part and imaginary part of  f (z)

from a Hilbert transform pair on the real line  x∈R.

With a little algebra, the real and imaginary parts can
be written as

(x )

f ( x )=
i

π (x+ iη)
=f R ( x )+i f I ¿  

where

f R ( x )=
η

π ( x2
+η2

)

And

f I ( x )=
x

π (x2
+η2

)

Form a Hilbert transform pair for any η>0.

(5.1.5) The Discrete-time Hilbert Transform and
Hilbert Transformers

Recall that the Hilbert transform  introduce  90-degree
phase  shift  to  all  sinusoidal  components.  In  the
discrete-time periodic-frequency domain, the transfer
function of Hilbert transform is specified as follows,

H ( jω )={− j ,0<ω<π
j ,−π<ω<0

The convolution kernel for  H ( jω )  can be calculated

through     inverse Fourier transform 

h [n ]= 1
2π

∫
−π

π

H ( jω)e jωndω
sin 2 (πn )

n
,

¿ {2
π

sin2
(πn)
n

,∧n≠0

0,∧n=0
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Note that h[n] has a infinite support form n=−∞¿∞ .  In

practice, the entire function can not be stored digitally.
To circumvent this difficulty, we now discuss two major
method  for  calculating  the  discrete-time  Hilbert
transform. 

Sec.(5.2)Application in system identification

Hilbert  transform  relates  the  real  part  and  the
imaginary part of transfer function of any physically
viable  linear  time-invariant  system.  By  "physical
viability"  we  mean  a  system  should  be  stable  and
causal.  Stability  requires  the  systems  to  produce
bounded  output  if  the  input  is  bounded.  Causality
prohibits the system from producing responses before
any stimulus comes in. Denote the impulse response
as h(t) and its Laplace transform as H(s). The above
conditions requires that

•  h (t )=0 for all t<0   (causality)

-All  singularities  of  H (s )  are  located  in  the  left

half-plane (stability). 
The tow conditions above ensure that H(s) converges
and analytic in entire half-plane, and in particular on

the  imaginary  axis  s= jω.  Therefore,  the  real  and

imaginary  part  of  H ( jω )=H R (ω)+ j H I (ω)  are

inter-dependent  in  term  of  the  Kramers-Kronig
relations

H I (ω )=
1
π
∫
−∞

∞ HR (u )du

ω−u

HR (ω )=
1
π
∫
−∞

∞ H I (u )du

ω−u
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Which  is  basically  Hilbert   transform  in  its
time-frequency dual form.

To a certain extent, the concept that the real and the
imaginary parts are inter-dependent similarly applies
to the magnitude and phase of transfer functions of a
physically  viable  system.  Note  that  any  transfer

function  H ( jω)  can  be  decomposed logarithmically

into magnitude and phase

lo g H ( jω )=lo g∣H ( jω )∣+ j<H ( jω ) .

This shows that the log-magnitude and the phase are
real  and  imaginary  parts  of  the  log-spectrum,
respectively. It might appear that they must satisfy the
Kramers-Krong  relations.  Unfortunately,  this  is  a
wishful  thinking  since  apparently
H ( jω )=exp (− jωτ ) H ( jω ) ,whereτ is  a  constant,  would  have

the same magnitude as H ( jω)  but a different phase  

It turns out that, for any given magnitude response,
the uniqueness of phase response can be established
if  the  transfer  function  satisfies  a  minimum-phase
criterion,  requires  that  all  zeros  and  poles  of  the

transfer function  H (s)  to be located in the left-half

plane. This criterion that all the singularities of log

H (s)  are located in the left-half plane so the real and

imaginary  parts  of  log  H (s)  become  a  Hilbert

transform pair. Otherwise, any transfer function can be
uniquely factorized as a product of a minimum-phase

function M ( jω)  and an all-pass function p( jω) . It is

noteworthy that the system whose transfer function is
M ( jω)  has the minimal energy delay among all linear
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time-invariant  systems  of  the  same  magnitude
response. 

  

Chapter 6

Numerical Evaluation of Hypersingular Integrals

In this chapter we will consider only a subclass which
is  of  interest  in  boundary  integral  equation
applications. For instance, in the one-dimensional case
we have to deal mainly with integrals of the form
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∫
a

b

K ( x; t )g (t )dt , a≤ x ≤b ,(6.1)

where  the  kernel  K(x;t)  has  only  a  pole  of  order
p+1at t=x ,i.e. ,  it can be expanded in the form

∑
k=0

p f k (t)

(t−x )
k+1 +h ( x ; t ) ,(6.2)

with  f k (t)  and  h(x ; t)  smooth. We also assume g(t)

either smooth or of the form g(t) = w (t ) g ₁(t ) , where

w (t)  is  a  weight  function  containing  integrable

endpoint  singularities  and  g₁(t)  is  smooth.  For  the
numerical evaluation of (6.1) it  will then be sufficient
to construct  a  quadrature rule  for  the term in  (6.2)

which contains the strongest singularity (k−p) , since

the same rule will integrate with comparable accuracy
also the remaining terms.

The  importance  of  these  integrals  springs  from the
increasing number of there successful applications to
solve many two-  and three-dimensional  problems in
applied  mechanics  and  in  aerodynamics;  see,
[1,11,13,]. 

We will recall  definitions and basic properties of such
integral, review some numerical rules that have been
proposed for their evaluation, including convergence
results,  and  present  some  new  formulas  and
estimates.

 Sec.(6.1): One-dimensional Finite-part Integrals

 (6.1.1): Basic definitions and properties

The concept of finite-part integral seems to have been
first  introduction  and  examined  by  Hadamard  []  in
1923.  However,  in  spite  of  its  relatively  early
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appearance, the use of it in applications came much
later. 

Several  boundary  value  problems  are  expressed  as
integral    equations containing integral of this form. 

To introduce the concept of finite-part integral, let us
consider first the integrals

∫
x

b
dt
t−x

,∫
a

b
dt
t−x

,a<x<b ,

and  define  them  as  the  finite  components  of  the
corresponding  

Divergent integrals, as follows. 

Definition( 6.1.2)

    

∫
x

b
dt
t−x

+ lim
ε→0 [∫

x +ε

b
dt
t−x

+lo g ε ]=log (b−x ) ,(6.1 .3)

          

∫
a

b
dt
t−x

=∫
a

x
dt
t−x

+∫
x

b
dt
t−x

=lo g
b−x
x−a

.(6.1.4)

Analogously we define the following

Definition  ( 6.1.3)  For any real p>0

∫
x

b
dt

(t−x )
p+1

=lim
ε→ 0 [∫

x+ ε

b
dt

(t−x )
p+1

−
1

pε p ]= −1

p(b−x )
p

 furthermore, if p  is an integer and a<x<b ,
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∫
a

b
dt

(t−x )
p+1 =∫

b

x

+∫
x

b
dt

(t−x)p+1 −
1
p [ 1

(b−x)p ](6.1 .5)

Notice that in all cases above we have

d
dt
∫
a

b
dt

( t−x)p
=p∫

a

b
dt

( t−x)p+1 .

In a more general situation, given a Riemann-integral 

function f (t )  of class ∁ r , r=⌈ p ⌉ , in a neighborhood of 

the singularity x ,a≤ x≤b ( pinteger if a<x<b ) , with f (r )
(t)  

Holder continuous  when p is an integer, we consider 
the expressio

∫
Iε

❑ f (t )−∑
k−0

r

f k ( x ) (t−x )
k
/k !

(t−x)p+1 dt+∑
k=0

r f (k )
(x)
k !

∫ dt

(t−x )
p+1−k ,

xpre ( x+ε , b ) ifx=b.  By  examining  the  behavior  of  this

expression as ε→0,  we discard the divergent terms,

and,  recalling  the  previous  definitions  of  finite-part
integrals, we define the following.

Definition (6.1.6)

∫
a

b
f (t )

(t−x )
p+1 dt=∫

a

b f (t )−∑
k=0

r

f ( k ) ( x ) (t−x )
k
/k !

( t− x)p+1 dt

+∑
k=0

r f ( k )
(x )

k !
∫
a

b
dt

(t−x)p+1−k .(6.2 .5)

Remark( 6.1.7).  In the last sum present in (6.2.5),
when p is an integer, we have the term
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f (p )
(x)
p!

dt=∫
a

b
dt
t−x

.

When  a<x<b ,  we may interpret  the  integral  in  the

Cauchy  principal  value  sense.  However,  as  already
pointed out in [] we  could also generalize its definition
as follows:

∫
a

b
dt
t−x

=lim
ε →0 [ ∫

a

x−ε1( ε)

+ ∫
x+ε 2(ε )

b

❑]=log
b−x
x−a

+ lim
ϵ→ 0

log
ε1(ε )

ε2(ε )
.

If we assume

lim
ε→ 0

ε1 (ε )

ε2 (ε )
=ec ,

then we have 

∫
a

b
dt
t−x

=∫
a

b
dt
t−x

+c ,

where   ∫ denotes  the  standard  Cauchy  principal

value integral. This definition leads to a corresponding

generalization for the definition of (2.5) when a ¿ x<b

and I ε=(a , x−ε1 (ε ) )∪ (x+ε 2 (ε ) , b ).

From the previous  definitions  it  follows  immediately
that

αf (t )+β g(t)

(t−x )
p+1 dt=α∫

a

b
f (t)

(t−x )p+1+¿ β∫
a

b
g( t)

(t−x )
p+1 dt.

∫
a

b

¿
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Property (6.1.5.)  When

x=a∧pis not aninteger ,∨a<x<b wehave
d
dx

∫
a

b
f (t )

(t−x )
p dt=p∫

a

b
f ( t)

(t−x )
p+1 dt ; (6.1 .6)

∫
a

b
f (t)

(t−x )
p+1 dt=

1
p!

dp

dx p∫
a

b
f (t )
t−x

dt (6.1.7)

 

Definition  (6.1.6)   guarantees  also  that
integration-by-parts  rule  still  remains  valid  when
a<x<b :

∫
a

b
f (t)

(t−x )
p+1 dt=

−1
p [ f (b)

(b−x)p
−

f (a)

(a−x )
p ]+ 1

p
∫
a

b
f ' (t )

( t− x)p
dt

The  use  of  this  formula  may  be  of  interest.  For
instance,  if  we  consider  the  well-known  Pandtl's
integral-differential equation

c (x ) Γ ( x )+d∫
−1

1
Γ ' (t )

t−x
d ( x )=α (x ) ,−1<x<1,

� c (x ) Γ ( x )+d∫
−1

1
Γ (t )

(t−x )
2 dt=α ( x ) .

From the definition of finite-part integral it also follows
that  the  standard  linear  change-of-variable  rule  is

always permit if p  is mot an integer, the rule is valid

only  if  a<x<b , while  when  x coincides  with  one of

the end points, let us say  x=a ,  this is not allowed.

For example, we have

      
     

∫
a

b
f ( t)

(t−a)p+1 dt=( 2
b−a )

p

∫
−1

1
g(u)

(u+1)
p+1 du+

f (p )
(a)

p!
lo g {1

2
(b−a)},
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where t=
1
2

(b−a )u+
1
2

(b+a )∧g (u )= f ( 1
2

(b−a )u+
1
2

(b+a )) .

Finally we have the following property

Property( 6.1.6) Forc ≥0 ( p≥1 )wehave

−1+1
h¿ ,
¿

if c=1∧p is even
O ¿

f (t )

(t−x)p+1 dt ¿

∫
x−ch

x+h

¿

Hence the above integral, which is well defined for h

fixed, tends to infinity as h→0  (obviously, except for

the case  f (k ) ( x )=0, k=0,….. p¿ .   

A  few  quadrature  rule  have  been  proposed  for  the
numerical evaluation of finite-part integral of the form

If=∫
a

b
f (t)

( t−x)p+1 dt.

Remark (6.1.7) If in (6.2.5) we use the Gauss-Radau
or  the  Gauss-Lobatto  rule,  then  we  obtain
corresponding formulas for our finite-part integral.

Theorem (6.1.8)  When
w (t )=(b−t )α (t−a )β ,with−1< β≤0,∧x=a ,wehave
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t
hi

(¿¿ i−a)p+1
={ O (lo g n ) , ifp=0,

O(n2 ( p−gβ )
)if p≥1.

∑
i=1

n

¿

This bound implies that

∣vk (a)∣+¿∑
i=1

n

∣wG(a)∣={O (lo gn ) , ifp=0,
O(n2 (p− β )

) if p≥1.

∑
k=0

p

¿

To  prove  the  next  theorem,  we  need  to  use  the
following         lemma.

Lemma   (6.1.9)  .  Let
g∈Cq [a ,b ] . q≥1.For every integer m≥2q+1  there  exists  a

polynomial  qm (t )  of  degree  m  such  that  for  all

t∈[a ,b] . 

g (q );m−1

∣g( k ) (t )−qm
( k ) (t )∣≤c (√(b−t ) (t−a )

m )
q−k

ω¿

where c is constant independent of m∧t ,∧ω (g( q ); . )

denotes themodulusof continuity of g(q)
∈[a ,b ] .

Theorem (6.1.10)

b−t∨¿
¿
¿

Whenw (t )=¿
 

−2 (q−p )+↑γ
n¿

Rn
G (f ;a )={O (¿ ) ω (f (q );n−1 ) , ifp+1≤q≤2p

O (nq )ω (f (q );n−1 ) ifq ≥2p+1
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Where 

1,−2β
¿ .
¿

γ=max ¿

Proof For the polynomial pn(t)  of degree n defined in

Lemma 2.9 we have f (k ) ( x )=qn
(k ) ( x ) , k=0,1…. , p ;

Thus 

Rn
G

( f−qn; x )=∫
x

b

w (t )
f (t )−qn (t )

(t−x )
p+1 dt−∑

i=1

n h i

(t−x )
p+1 dt [ f (ti ) ]

−qn (ti ) .

To  estimate  the  behavior  of  the  integral  in  (),  we

proceed as follows. When q≥2p+1,  by applying () with

k=0  we  optain  the  bound  O(

n−q
¿ω ( f ( q) ;n−1 ) .When p+1≤q≤2p ,we write   

          f (t )−qn (t )= (t− x )
k [ f k (ξ i )−qn

(k )
(ξi ) ],  

With k=2p+1−q ,∧apply :weobtainO(n2q+2p+1
)ω

( f (q ); f (q ); n−1 ).

In this section we have mainly considered quadrature
rules  of  interpolatory   type,  i.e.,  obtained  by
approximately  the  function  f  (x) by  interpolation
polynomials  (based  on  the  zeros  of  Jacobi
polynomials ). Of course this is not the only possible
approach ; indeed, in this same section we have also
mentioned a couple of alternatives which are based on
piecewise polynomial interpolation. When a<x <b and
p is  an  integer,  given  any  quadrature  formula  for
Cauchy principal value integrals, by means of (6.2.7)
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we  can  derive  a  corresponding  rule  for  finite-part
integrals. For instance, the rules recently presented in
(6.2,16)  ,  which  we  have  not  described  here,  are
derived  exactly  in  this  way.  Actually,  following  this
approach,  we  could  have  obtained  most  of  the
quadratures of this section.

Sec.(6.2.) Two-dimensional finite-part integrals 

(6.2.1.) Basic definitions and properties 

While  the  one-dimensional  Cauchy  principal  value
integral  concept  is  well  know  and  often  used  in
applications,  the two-dimensional  analogue dose not
seem  to  be  equally  known.  Furthermore,  the
description of this latter is of some help to understand
what  happens  when  we  consider  two-dimensional
finite-part integrals. For this reason we start section 3
by  illustrating  the  definition  of  two-dimensional
Cauchy principal  value integrals on bounded domains
R2 .

The  definition  and  some  properties  of  the
two-dimensional Cauchy principal value integral were
explicitly given by Tricomi (56) in 1928. We recall that
at  the  end  of  his  paper,  he  states  that  the  same
concept had already been used by Petrini [47, 48] in
1908 and 1909 and by Muntz [41] in 1910.

Let  F(U 0;U )  be  integrable  on  a  bounded  domain

T⊂R2

,  expect  at  the  point  U0 .  Furthermore,

denoting by  r θ  the polar coordinates with origin at

U 0  , we assume that in a neighborhood of U 0   we

can write 

F (U0 ;U )=
f (U 0;θ)

r2 +F1 (U 0;U ) ,
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Where  r2
=∣U−U 0∣

2

 and  F1 (U 0 ;U )  may  still  become

infinite  at  U 0 ,  but  with  order  less  than 2.  Let  σ

denote a neighborhood of U0  with contour C1  given

by r (θ )=α (ϵ , θ ) ,  where ϵ  is the radius of the smallest

circle containing σ.Let C2 be the contour of T, given by

r (θ )=A (θ ) .  We consider first.

             

¿

f (¿U 0 ;θ)[ ∫
α(ϵ , θ)

A (θ )
1
r
dr ]dθ.

F1 (U 0 ;θ )dv+∫
0

2π

¿

F (¿U0 ;θ)dv=∫
r−σ

.

¿

∫
r−σ

.

¿

Taking the limit as ϵ→0,  we obtain

U
¿

f (¿U 0 ;θ) log A (θ )dθ−lim
ϵ→ 0

∫
0

2π

f (U0;θ ) log α (ϵ , θ )dθ.(6.2 .1)

F1(¿U 0;θ)dv+∫
0

2π

¿

(¿¿0 ;θ)dv=∫
T

.

¿

¿
lim
ϵ→∞

F ¿

                                    

In particular, if we let σ  be a circle with center U 0

and radius ϵ ,  the last integral becomes 
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¿
f (¿U 0 ;θ)dθ

ϵ∫
0

2π

¿

log ¿

,

Which gives rise to the following theorem?

Theorem(  6.  2.11).  A  necessary  and  sufficient
condition for the existence of the limit in (6.3.2) is 

        

¿ (U0 ;θ )dθ=0.
f ¿

∫
0

2π

¿

In this case we define the following.

Definition (6.2.13). For any F(U 0;U )  of type (6.3.1)

satisfying condition (6.2.3),  when  σ  is a circle,  we

define 

             

f (¿U 0;θ) log A (θ )dθ.

∱rF (U0 ;U )dv= ∫T F1(U 0 ;U )dv+∫
0

2π

¿

If  σ  is not a circle , but nevertheless α (ϵ , θ)  is such

that 

             lim
ϵ→0

α (ϵ , θ)

ϵ
=α 0 (θ ) ,
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Then

     

f (¿U0 ;θ)[ log
A(θ)

α0 (θ ) ]dθ
∱T F (U0 ;U )dv= ∫ TF1(U 0 ;U )dv+∫

0

2π

¿

A  definition  analogous  to  (6.5)  has  already  been
introduced in the one –dimensional case; see Remark
2.4.

Definition( 6.2.15)  if condition (6.3) does not hold,

then we can define the integral of  F(U 0;U )  only in

the finite-part sense. In this latter case in the previous
expression we discard the term containing the factor

log ϵ  and  use  the  second  members  of  (6.2.4)  and

(6.5) to define the corresponding finite part integrals.

The  concepts  we  have  already  presented  in  this
section can be generalized to functions with stronger

singularities  and with  a  source  point  U 0  that  may

even  lie  on  the  boundary  C2 .  Here  we  consider

integrals of the form

     ⨎T K p(U 0;θ)ϕ (U )dv ,U0ϵT⊂R2 ,                          

 estimate on the good function is easy since we have 

                  ∣{xϵ R2 ;∣Tg∣>
⋋
2 }∣≲ ‖Tg‖2

L2
(R2

)

⋋2  

                                                    ≲ 1

⋋2
‖g‖2

L2
(R2

)
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                                                    ≲ 1

⋋2
⋋‖ f ‖

L1
(R2

)

                                                     = 
1
⋋

‖f ‖
L1

(R2
) .

Here, we have used that T: L2 (R2)→L2 (R2 ) is bounded. In

the  final  estimate  we  have  used  property  (ii)  in
Theorem (6.2.1)

We now turn to understanding the estimate on the bad

function.  Let {Q j }  be  the  cubes  obtained  in

Theorem( 6.2.1) Let  Q j
¿

 denote the cube concentric

with  Q j  and having side length  
2√n  times the side

length of Q j . Then we have that

∣{xϵ R2 :∣Tb∣>
⋋
2 }∣=∣(⋃Q j

¿
)∩{x ϵR2:∣Tb∣>

⋋
2 }∣+∣(⋃Q j

¿
)
c
∩{xϵ R2:∣Tb∣>

⋋
2 }∣.

Consider now the first term above we then have that

                           ∣⋃Q j
¿∩{xϵ R2 :∣Tb∣>

⋋
2 }∣≤∣⋃Q j

¿∣

≤∑
j

∣⋃Q j
¿∣

≲∑
j

∣Q j∣

≲ 1
⋋

‖f ‖
L1 (R2 ).
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It only remains to handle the term

                          ∣(⋃Q j
¿
)
c
∩{xϵ R2:∣Tb∣>

⋋
2 }∣

And  for  this  one  we  will  use  the  properties  of  the
function b Note that by simple estimates we have

           ∣(⋃Q j
¿
)
c
∩{xϵ R2:∣Tb∣>

⋋
2 }∣≲⋋2 ∫

(⋃Q j

¿
)
c

.

∣T (b )(x )∣dx

≤
⋋
2
∑
j

∫
(⋃Q j

¿
)
c

.

∣Tb j(x )∣dx

Suppose for the moment that we proved

        

∫
(⋃Q j

¿
)
c

.

∣Tb j(x)∣dx≲∫
Q j

.

∣b j ( x )∣dx (6.1 .9)

Where the Kernel Kp admits the expansion

K p (U 0 ;U )=∑
I=0

p+1 f p−1(U0 ;θ)

r p+2−1 +K p
¿

(U 0 ; r ,θ ) .                     (6.1.10)

Where  f p(U 0 ;θ)  and ϕ (u)  are smooth.

We  set  σ={uϵT :∣u−u0∣≤ϵ }.  as  before  in  the  case

examined by Tricomi, a different choice of  σ  would

introduce  changes  in  the  values  of  some  of  the
integrals we are going to define.

Analogous  to  the  one-dimensional  case,  we
preliminarily define finite-part integrals of the simpler
form
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⨎r

f p(U 0;θ)

r p+2 dv.

To this end, we consider first the regular integral

∫ T−σ

g (U 0 ;θ)

r p+2 dv=∫
0

w

g (U 0;θ ) [ ∫
ϵ

A (θ )
dr

r p+1 ]dθ=∫
0

w

g (U 0 ;θ ) [h0 (θ )−e0 (ϵ ) ] dθ ,(6.1 .11)

Where 0<w≤2π ,

     
θ={

log A (θ ) , if P=0 ,
−1

P [A (θ)]
P, if P>0,

h0 ¿

And 

e0 (ϵ )={
log ϵ , if P=0,
−1
PϵP, if P>0.

if w=2π∧¿

∫
0

2π

g (U 0 ;θ )dθ=0,

Then the limit of (6.10), as ϵ→0,  exist and we define

it as the Cauchy principal value of (6.9).otherwise, we

neglect the term  e0(ϵ)  in (6.10);  thus we have the

following definition.

By  this  definition  of  g  we  immediately  see  that
‖g‖L1(R n)

≤‖ f ‖
L1(R n)

.  to see the  L∞

 estimate, note that if

xϵQ j  then we have
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∣g(x )∣=∣ 1
Q j

∫
Q j

.

∣f (x)∣dx∣≤2n 1

∣Q j
'∣
∫
Q j

'

.

∣f (x )∣dx≤2n⋋ .

On the other hand, if  
¿

xϵ Rn
{U ¿ j ;Q j ¿ ,  then the exist a

sequence of non-selected cubes Qk that converge to x.
we then have that

∣ 1
∣Q∣k

∫
Qk

.

f (x )dx∣≤ 1

∣Qk∣
∣f (x)∣dx ≤⋋ .

By  the  Lebesgue  Differentiation  Theorem  we  then
have that

                         
¿

∣f (x)∣≤⋋x ϵ Rn
{U ¿ j ;Q j ¿ .

Combining  these  two  estimates  we  see  that
‖g‖L1

(R n
)
≤2n⋋. finally, observe that 

                                 ∑
j

∣Q j∣≤
1
⋋∑

j
∫
Q j

.

∣f (x )∣dx

                                                 ¿
1
⋋ ∫

U j ;Q j

.

∣f (x )∣dx

                                                 ≤
1
⋋

‖ f ‖
L1

(R n
)
.

We now  turn  to  show  how to  use  this  Theorem to
deduce the following result.

Theorem  (.6.2.12) Suppose  that  K  is  a  Calderon
–Zygmund kernel  as defined above in  Theorem 1.2.

then for all f ϵ L1
(Rn

)  and any ⋋>0  we have
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∣{x ϵ Rn:∣Tf ( x )∣¿⋋ }∣≲
1
⋋

‖f ‖
L1 (R n)

  proof.Fix⋋∧f ϵ L1 (Rn ).  Apply  the  Calderon-Zygumund

decomposition in the Theorem 2.1 to obtain functions
g, b so that f = g + b. now observe that

        {x ϵRn:∣Tf∣>⋋}⊂{x ϵ Rn:∣Tg∣>
⋋
2 }⋃{xϵ Rn:∣Tb∣>

⋋
2 }

And so, we have 

∣{x ϵ Rn:∣Tf∣>⋋ }∣≤∣{x ϵ Rn :∣Tg∣>
⋋
2 }∣+∣{x ϵ Rn :∣Tb∣>

⋋
2 }∣

Definition (6.3.14) we define 

⨎T
g (∪0 , θ)

r p+2 dv=∫
0

w

g (∪0 , θ )h0 , (θ )dθ.                          (6.2.11)

In  the  more  general  case  of  (3.8)  we  consider  the

Taylor expansion of ∅(v ) arround v = v0 we write

¿ ∫
T−σ

. f p(∪0 ,θ)

r p+2 ∅(v )dv

Iϵ∅+∫
0

w

∫
ϵ

A (θ) f p(∪0 , θ)

r p+1 [ ∑∣K∣≤ p

1
K !

DK∅ (∪0 ) r
∣K∣cosK 1θ sinK2θ]dr dθ ,

 Where ∣K∣=K1+K2 , K1≥0,∧Iϵ∅  denote the regulapart of

the integral whose limit exist as  ϵ→0.  From (6.12)

we obtain

¿ ∫
T−σ

. f p(∪0 ;θ)

r p+2 ∅ ( v )dv
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Iϵ∅+ ∑
∣K∣≤ p

1
K !

DK∅ (∪0 )∫
0

w

f p (∪0 ,θ ) cosK1θ sinK 2θ [h∣K∣ (θ )−e∣K∣(ϵ)]dθ

.    

where 

h∣K∣ (θ )={
log A (θ )if ∣K∣=P ,

1
(∣K∣−P ) A (θ)P−∣K∣

, if ∣K∣<P     (3.14)

And 

e∣K∣(ϵ )={
logϵ if ∣K∣=P

1
(∣K∣−P ) A(θ)P−∣K∣ if ∣K∣<P

           if w=2π  and, furthermore,

             

∪0

f P(¿ ,θ)cos
K1θ sin

K2θ dθ=0,∣K∣≤ P ,

∫
0

2π

¿

                                      

             Then the limit of (6.13) exist and we define it
as the       Cauchy principal value of (6.8).notice that
(6.15) is equivalent to

            

∪0

∪0

mθ dθ=∫
0

2π

f P(¿, θ)sinmθ dθ=0.

f P(¿, θ)cos¿

∫
0

2π

¿
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          For m = 0,1,…..p .

If  condition  (6.15)  are  violated  then  in  (3.13)  we

discard the divergent terms e∣K∣(ϵ )  and, letting ϵ→0 ,

we  obtain  the  finite-part  value  of  the  integral,  as
follows.

Definition(6.1.5) for any 

T
¿́
¿

∅∈CP+1
¿

⨎T

f P(∪0 ;θ)

rP+2 ∅ (v )dv∫
T

. f P(∪0;θ)

rP+2 [∅ ( v )− ∑
∣K∣≤ p

1
K!

DK∅ (∪0 ) r∣K∣cosK1θ sinK2θ]dv

           +

∑
∣K∣≤ p

1
K !

DK∅ (∪0 )∫
0

w

f P (∪0;θ ) cosK1θ sinK 2θh∣K∣ (θ )dθ ,

         where h∣K∣(θ )  is given in ( 6.2.14).

As in the one-dimensional case, a change of variable
in (6.3.6), or in (6.3.8), in general introduces additional
point functional (at v = v0). Explicit representations for
the coefficients of  these extra point  functional  were
given in [51].

Remark (6.6). when we take an integration region T of

size  h→0,  the behavior  of  integral  (3.8)  is  of  type

O([log h]) if p =0, and O (h−P ) if P≥1.

In boundary element method applications, very often
one has to deal with surface integrals of the type

I=⨎S Ḱ P(∪́0 ;∪́−∪́0)ϕ́(∪́)dS v́ ,P integer

(6.3.16)
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where S⊂R3
 has an analytic parametric representations

the Kernel  ḰP  is homogenous of degree  −P−2  in

the second argument and has a pole of order  P + 2 at
Ú 0 ;Ú ,  and  ϕ́ ( v́)  is  a  smooth  function.  These

integrals  are  defined as  the  limit,  as  ϵ→0,  of  the

finite part of the expansion of

         

I (ϵ )= ∫
S−B,

.

ḰP(∪́0 ;∪́−∪́0)ϕ́ (∪́)dSv́

Where Bϵ={úϵ R3 :∣ú−ú0∣<ϵ },ϵ>0.  that is having derived an

expansion of the form 

I (ϵ )∽ I 0 (ϵ )+ I−1 log ϵ+∑
j=1

I jϵ
− j

I=lim
ϵ→0

I 0 (ϵ ) .

As illustrated in [51,52], using the representation of S
in  those  applications,  one  obtains  corresponding
integrals of form (3.6), with the Kernel satisfying (3.7),

Plus  additional  point  functional  (at  ú−ú0¿  whose

coefficients vanish whenever ú0  lies in the interior of

S. thus also in the more general situation  of (6.2.16)
one van deal with integrals of the form (6.2.16).

(6.2.12) Cubature formulas

Using the polar coordinates, we express (3.6) in the
form

∫
0

w

⨎0
A (θ) f P(u0 ;θ)

rP+1 ∅ (u )dr dθ , P integrer ,(6.3 .17)
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Where  

θ
r cosθ , r sin ¿ .
∅ (u )=∅¿

 Further,  we  assume  that  the

function A( θ ¿  is analytic  on [ 0,w ] .  If A( θ ¿  is only

piecewise  analytic  in  its  domain  of  definition,  we

subdivide this latter into subintervals where  A( θ ¿  is

analytic and treat separately each of the subintervals.

From Definition(6 2.3) it is straightforward to see that

if  in  (6.2.17)  we  assume  f P∈C q {0,w }  and

∅∈Cq+P+1 (T́ ) ,wehave

θ
r cosθ ,r sin ¿ .

¿
∅¿

gP (θ )=f P(u0;θ)⨎0
A (θ )¿

To  approximate  (3.17)  we  generalize  the  approach
recently proposed in [39] (see also [52]). In particular,
we  evaluate  the  outer  integral  by  an  m-point
Gauss-Legender  –Lobatto  rule  ,  and  the  inner  one
using the formulas presented in Section 2.2.But before
deciding which formula to use for the inner integral,

we need function to recall that the f P(u0;θ)  is usually

not known explicitly as we have pointed out in (3.7), in

general  the  term  f P(u0;θ)/¿  r P+2

 arises  from  a

Laurent expansion of the given Kernel function and it
contains the strongest singularity. Since we will apply
our final cubature to (3.6), and not to (3.17) , we need
a  quadrature  which  uses  only  function  values,  not
derivatives.

 To this end, when  P=0, we choose rule (2.10) or its
analogue of Lobatto type, because of the simplicity of
its coefficients and its higher performance (see tables
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1 and 2). When  P≥1,  we are forced to use rules of

type (2.16) here we choose the one with w(t) = 1and
(t1)  nodes  of  the  corresponding  Gauss-Legender  (or
Gauss-Radau or Gauss-Lobatto) rule.

Denote by (h1), { θ }  the coefficients and the nodes of

the m-point Gauss-Legender or Gauss-Lobatto rule

∫
0

w

gP (θ )dθ=∑
i=1

m

hi gP (θi )+Rm
GL

(gP ) .

For  gP∈Cq
[0,w ]  we have  Rm

GL
(gP )=O (m−q )w (gP

(q );m−1 ) .  Then

use (2.10) if p = 0 and (2.16) if P≥1,¿approximate

θ
r cosθ , r sin ¿ .

¿
∅¿
⨎0
A (θ)¿

That is,

r j cosθi
w j

G ( 0 )∅(¿, r j sinθi)+Rn
G (∅ ) , if P=0,

u0 (0 )∅ (0,0 )+∑
j=1

n

¿

    

∑
j=1

n

w j
I (0 )∅ (r j cosθ ir jsin θ i)+Rn

I (∅ ) , if P≥1.

Notice  that

θ
(¿¿ i ; 0) ,w j

G ( 0 )=w j
G

(θi ;0 ) , r j=r j (θi ) ,w j
I (0 )=w j

I
(θi; 0 ) ,Rn

G (∅ )=Rn
G

(θi ;∅ ) ,Rn
I (∅ )=Rn

I
(θ i;∅ ) .

u0 (0 )=u0 ¿
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We remark that under our assumption on A( θ ¿  the

bounds 

θ
(¿¿ i ;0)

u0 ¿
¿
θ

(¿¿ i ;0)
n

see (6.2.11 )∧¿
¿
θ

(¿¿ i ;0)

w j
G
¿

¿
see(6.2.13)

¿
log ¿¿

w j
G
¿=O ¿
¿
¿

hold uniformly with respect to i.

The remainder term of the final cubature formula is
given by

u0 ;
θ

(¿¿ i ;Φ) ,(6.18)

hi f P(¿θi)Rn¿

Rm.n ( f PΦ)=Rm
GL

(gP )+∑
i=1

m

¿

With 

θ
θ
θ
θ

(¿¿ i ;Φ) if P≥1.
(¿¿ i ;Φ)=Rn

1
¿

(¿¿ i ;Φ )if P=0,∧Rn ¿

(¿¿i ;Φ)=Rn
G
¿

Rn ¿

Before  deriving a convergence result for our cubature
formula,  we  recall  the  definition  of  the  space
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H μ ,⋋
(q ) (D ) .we say that f ( x , y ) ∈H μ,⋋

( q) (D ) , q≥0, if  f(x  ,y) and  all  its

partial  derivatives of  order  j  = 0,…q exist   and are
continuous  in  D,  and  each  derivative  of  order  q
satisfies  the  Holder  condition

x2 , y2

g (x1 , y1 )−g¿≤ A∣x1−x2∣
μ
+B∣y1− y2∣

⋋
,

¿
 where  A,  B  are

constants.

To  estimate  the  behavior  of  (3.14)  we  proceed  as

follows. Consider the Taylor expansion of 
θ , r sinθ
r cos¿
Φ¿

 with

respect  to  the  variable  r,  around r  =  0;  denote  by
r ,
T P ¿  θ ¿  the  associated  polynomial  of  degree  p  .

define 

θ , r sinθ
r cos¿

¿
r ,
Φ¿

 θ ¿  +
r ,

r P+1ΦP¿  θ ¿ ,

And  consider  the  best  (uniform)  approximation

polynomial  
r ,

Pn−P−2.m ¿  θ ¿  of  degree

r ,
n−P−2∈r∧m∈θassociatedwithΦP ¿  θ ¿ .  if  assume

ϕ∈H μ, μ
(q+P+1 ) ( T́ ) , thenwehaveΦP∈H μ, μ

(q ) (T́ ) . next form the function

r ,
Pn.m

¿
¿  

r ,
θ ¿=T P¿  θ ¿  +

r ,
r P+1Pn−p−2,m¿  θ ¿ ,
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Which for fixed  θ ,  is a polynomial of degree n – 1

with respect to r. since it is known (see[32, p.90]) that

for ΦP∈Hμ , μ
(q ) (T́ ) ,

‖ΦP−Pn−P−2,m‖∞=0 (n−q−μ
+m−q−μ ) ,

And , furthermore,  Rn (θi ;Φ )=Rn (θi;Φ−Pn.m
¿

) ,  we can state

the following.

Theorem  (6.7). if  in  (3.17)  we  assume
f P (u0 ;θ )∈C q [ 0,w ]∧∅ (v ) ∈Hμ ,μ

( q+P+1 ) (T́ ) ,  for the remainder term

(3.18) we have

Rm, n ( f PΦ )={O(m−q−μ
+n−q−μ

) log n ,if P=0,
O(m−q−μ

+n−q−μ
)n2p+1/2ifP ≥1,             (6.2.19)

Remark (6.8) if we are interested in the  construction
of  a  cubature  rule  for  integral  (3.6),  then  recalling

expansion (6.2.17), in the case P≥1  for example we

immediately derive

⨎T K P(u0 ;u)∅(v)=∑
i=1

m

hi∑
j=1

n

w j
I (0 ) r j

P+2K p (u0;uij )∅ (u ij)+Rm.n (∅ ) ,

Where we have set  

θ i

cosθi , sin ¿
¿
¿

uij=u0+r j ¿

 for the new remainder

Rm, n(∅)  a bound of type (3.19) holds provided KP
¿

 in

(3.7) is of class  Cq+P+1

,  with respect to the variable

r ,θ  in the closure of the domain of integration.

In  theorem  3.7  our  goal  is  to  approximate  integral
(3.17) to the desired accuracy. In particular, if we think
of  the  boundary  element  method  application,  since
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the convergence results for these methods rely on the
exact evaluation of the integrals over each element,
our goal  is  the rate of convergence of our cubature

formulas as m ,n→∞ .

In  the authors examine the approximation[7] of the
integrals from a different point of view. 

They consider the reference triangle T with vertices (0,
0), (h, 0), (h, h), and a cubature formula obtained by
integrating the outer integral in (3.17) by an m-point
Gaussian rule and the inner one by an n-point rule of

type (2.16), with m, n fixed. By assuming 
r , θ
f P ¿  ) and

∅(v )  analytic,  they  obtain  an  error  estimate,  as

h→0,  of the form. 

(1+δ 0.P∣log h∣)e−cm
+hn 〉

h−P 〈¿,
O ¿

                (3.20)

Where  c  is  a  constant  and   δ i.j  represents  the

Kronecker symbol. That is, for a given cubature with
fixed number of nodes, they examine the behavior of
remainder  term as  the  size  of  each element  of  the
surface triangulation tends to zero. Recall that under
the assumptions made in  [52],  in  the estimates  we

have derived in this section we would have q=∞  and

for  fixed  h,  the  remainder  terms  would  decay,  as
m ,n→∞ . Faster than any negative power of m and n,

Incidentally we notice that in the above situation the
contribution of the integral itself  is (see Remark 3.6)

of order 
h−P 〈(1+δ 0.P∣log h∣) ,

O ¿  hence the error bound (3.20)

guarantees that for  m ,  n fixed the behavior of the
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cubature  rule,  as   h→0,  is  similar  to  that  of  the

integral it is applied to.

In boundary element applications we have the same
cancellation  problems  already  observed  in  the
one-dimensional case. This cancellation phenomenon
arises in the summation of the contributions given by
the neighbor elements of  the singular  point.  Only if
this sum is small with respect to the contribution of all
the  remaining  elements,  numerical  cancellation  will
have  little  effect  on  the  final  accuracy.  Otherwise,

there will  be a  h0 such that for  h<h0,  accuracy will

decrease.  Finally  we  mention  that  in  [12,13,52]
alternative approaches (for constructing cubature for
hypersingular integrals) to  the one described here are
prod  not consider them.  

197



References

[1]  H.  Ashly  and M.Landahl,  Aerodynamics  of  Wings
and Bodies (Dover, New York, 1985).

[2]  B.Bialecki,  A  Sinc  quadrature  rule  for  Hadamard
finite-part integrals, Numer. Math. 57 (1990) 263-269.

[3]C.A. Brebbia, J.C.I. Telles and L.C. Wrobel, Boundary
echniques (Springer, Berlin, 1984).

[4]  F.G.  Bureau,  Problems  and   methods   in  partial
differential  equations,  part  111  (finite  part  and
logarithmic  part  of  some  divergent  integrals  with
applications  to  the  Cauchy problem),  Duke lectures,
1955-1956.

[5] G. Criscudo and G. Mastroianni, Convergenza  di
formule  Gaussiane  per  il  calcolo  delle  derivate  di
integrali a valor principale di Cauchy, Calcola 24(1987)
179-192.

[6]  G.  Criscudo  and  G.  Mastroianni,  On  the
convergence  of  product  formulas  for  the  numerical
evaluation of Cauchy principal value integrals, SIAM J.
Numer. Anal. 25 (1988) 713-727.

[7]  G. Criscudo and G. Mastroianni, On the uniform
convergence  of  modified  Gaussian  rules  for  the

198



numerical evaluation of derivatives of principal value
integrals, in: G.V. Milovanovie, Ed, Numerical Methods
and Approximation Theory 111, Nis, 1987 (Univ. Nis,
1988) 139-147.

[8]  V.J.  Ervin  and  E.P.  Stephan,  Collocation  with
Chebyshcv  polynomials  for  a  hypersingular  integral
equation  on  an  interval,  J.  Comput.  Appl.  Math.  43
(1-2) (1992) 221-229.

[9]   I.M.Gelfand  and  G.E.  Shilov,  Generalized
Functions, Vol.1 (Academic Press, New York, 1964).

[10]  M.  Golberg,  The  convergence  of  several
algorithms  for  solving   integral  equations  with
finite-part  integrals,  J.  integral  Equations  5  (1983)
329-340.

[11]  L.J.  Gray,  L.  F.  Martha  and  A.R.  Ingraffea,
Hypersingular integrals in boundary element fracture
analysis, internal . J. Numer. Methods Engrg .29 (1990)
1135-1158.

[12] M. Guiggiani and A. Gigante, A general algorithm
for multidimensional Cauchy principal value integrals
in  the  boundary  element  method,  ASME  J.  Appl.
Meth.57  (1990) 907-915.

[13] M. Guiggiani,  G. Krishnasamy, T.J.  Rudolphi  and
F.J. Rizzo, A general algorithm for numerical solution of
hypersingular  boundary  integral  equations,  ASME  J.
Appl, Mech, to appear.

[14]  J  .  Hadamard,  Lectures  on Cauchys Problem in
Linear Partial Differential Equations (Yalc Univ. Press,
New Haven, CT,  1923/Dover, New York, 1952).

[15] F. Hartmann, Introduction to Boundary Elements
(Springer, Berlin, 1989).

199



[16] T. Hasegawa and T. Torii,  Hilbert and Hadamard
transforms  by  generalized  Chebyshev  expansion,  J.
Comput. Appl. Math. 51 (1) 1994), to appear.

[17] N.I  .  Ioakimidis, On the numerical evaluation of
derivatives  of  Cauchy  principal  value  integrals,
Computing 27 (1981) 81-88.

[18] N.I. Ioakimidis, Application of finite-part integrals
to the singular integral equation of crack problems in
plane and three-dimensional elasticity, Acta, Mech. 45
(1982) 31-47.

[19]  N.I. Ioakimidis. On the numerical evaluation of a
class  of  finite-part  integrals,  Z.  Angew.  Mech.  63
(1983) 572-574.

[20]   N.I.  Ioakimidis,  A  direct  method  for  the
construction of Gaussian quadrature rules for Cauchy
type  and  finite-part  integrals,  Anal,  Numer.  Theor.
Approx. 12 (1983) 131-140.

[21]  N.I.  Ioakimidis,  On the  uniform convergence of
Gaussian quadrature rules for Cauchy principal value
integrals and their derivatives, Math. Comp. 44 (1985)
191-198.

[22]   N.I.  Ioakimidis,  Generalized  Mangler  –type
principal value integrals with an application to fracture
mechanics.  J.  Comp.  Appl.  Math.  30  (2)  (1990)
227-234.

[23]  N.I.  Ioakimidis,  and  P.S.  Theocaris,  On  the
numerical  solution  of  singular  integrodifferential
equations, Quart,Appl.Math. 73 (1979) 325-331.

[24]  A.C> Kaya  and  F.  Ergodan,  On  the  solution  of
integral  equations  with  strong  singularities,  in  :  A.
Gerasoulis  and  R.  Vichnevetsky,  Eds,  Numerical
Solution  of  Singular  Integral  Equations  (IMACS,  New
Brunswick, NJ, 1984) 54-57.

200



[25]  A.C  Kaya  and  F.  Ergodan,  On  the  solution  of
integral  equations  with  strongly  singular  Kernels,
Quart. Appl. Math. 45 (1987) 105-122.

[26]  G> Krishnasamy,  F.  J.  Rizzo  and  T.J.  Rudolphi,
Hypersingular  boundary  integral  equations:  their
occurrence,  interpretation,  regularization  and
computation, in : P.K. Nancrjee and S. Kobayashi, Eds,
Developments  in  Boundary Element  Methods,  Vol.  7
(App. Sci. Publ, Barking, 1991).

[27] H.R.  Kutt,  and numerical  evaluation of principal
value integrals by finite-part integration, Numer. Math.
24 (1975) 205-210.

[28] H.R. Kutt, and R.  Rosel, A quadrature formula for
a  finite-part  integral,  Preliminary  note  no.  1,  CSIR
Special  Report  WISK  106,  National  Research  Inst.
Math. Sci, Pretoria, 1972.

[29] M.J. Lighthill, Introduction to Fourier Analysis and
Generalized  Functions  (Cambridge  Univ.  Press,
Cambridge, (1959).

[30]  A.M.  Linkov and S.G.  Mogilevskaya,  Finite-  part
integrals  in  problems  of  three-dimensional  cracks,
Prikl. Mat. Mech. 50 (19860 844-850.

[31]  P.  Linz,  On  the  approximate  computation  of
certain  strongly  singular  integrals,  Computing  35
(1985) 345- 353.

[32]  G.G. Lorentz, Approximation of Functions (Holt,
Rinehart and Winston, New York, 1956).

[33]  J.N.  Lyness,  Extrapolation-based  boundary
element quadrature,in: Numerical methods in applied
science  and  industry,  Rend,  Sem.  Mat.  Univ.  Politic.
Torino, fasc. Special (1991) 189-203.

201



[34]  J.N.  Lyness,  Finite-part  integrals  and  the
Euler-Maclaurin expansion, in :  Proc. Conf.W.Gautschi
(Birkhauser, Basel, to appear).

[35]  C.  Macaskil  and  E.O.  Tuck,  Evaluation  of  the
acoustic  impedance  a  screen,  J.  Austral.  Math.  Soc.
Ser. B 20 (1977) 46-61.

[36]  K.  w.  Mangler,  Improper  integrals  in  theoretical
aerodynamics,  Report  no,  2424,  Royal  Aircraft
Establishment, Farnborough, 1951.

[37]  G.  Monegato,  The  numerical  evaluation  of
one-dimensional  Cauchy   principal  value  integrals,
Computing 29 (1982) 337-345.

[38]  G.  Monegato,  On  the  weights  of  certain
quadratures  for  the  numerical  evaluation  of  Cauchy
principal value integrals and their derivatives, Numer.
Math. 50 (1987) 273-281.

[39] G. Monegato, The numerical evaluation of a 2-D
Cauchy  principal  value  integral  arising  from  a
BIE-method  Math. Comp, to appear.

[40]  G.  Monegato  and  V.Pennacchietti,  Quadrature
rules  for  Prandtls  integral  equation,  Computing  37
(1986) 31-42.

[41] Ch. Muntz, Zum Randwertproblem der partiellen
Differentialgleichung  der  Minimalflachen  ,  J.  Rein
Angew.Math. 139 (1910) 52-79.

[42]  J  .  C.  Nedelec,  Integral  equations  with  non
integrable Kernel, Integral Equations Operator Theory
5 (1982) 562-572.

[43]  B.W.  Ninham,  Generalized  functions  and
divergent integrals, Numer . Math. 8 (1966) 444-457.

202



[44] A. Ossicini, Alcune  formula di quadrature per il
calcolo  della  parte  finta  e  del  valore  principale  di
integrali divergenti , Rend. Mat. (6) 2 (1969) 385-403.

[45]  D.F.  Paget,  A  quadrature  rule  for  finite-part
integrals, BIT 21(1981) 212-220.

[46] D.F. Paget, The numerical evaluation of Hadamard
finite-part integrals, Numer, Math. 36 (1981) 447-453.

[47]  H.Petrini,  Les  derives  premieres  et  seconds  du
potenticl, Acta Math. 31 (1908) 127-332.

[48]  H.Petrini,  Les  derives  premieres  et  seconds  du
potenticl, logarithmique , J.Math (6) 5 (1909) 127-223.

[49]  A.G.  Ramm  and  A,van  der  Sluis,  Calculating
singular  integrals  as  an  ill-posed  problem,  Numer.
Math. 57 (1990) 139-145.

[50] P.O. Runck, Bemerkungen zu den Approximation
ssatzen von Jackson und Jackson-Timan, in : P.L. Butzer
and  B.  Szokcfalvi-Nagy,  Eds,  Abstrake  Raume  und
Approximation  ,  Internet.  Ser.Numer.  Math.  10
(Birkhauser, Basel, 1969) 303-308.

[51] C.Schwab and W.L. Wendland, Kernel properties
and  representations  of  boundary  integral  operators,
Math.Nachr.156 (1992)  187-218.

[52] C. Schwab and W.L. Wendland,  On the numerical
cubatures of  singular  surfaces  integral  in  boundary
element methods, Numer. Math. 62(1992) 343-370.

[53]  H.V.Smith  and  D.B.  Hunter,  The  numerical
evaluation  of a  class of divergent integrals,  in :  H.
Brass and G.  Hammerlin,  Eds,  Numerical  Integration
11 (Birkhauser, Basel, 1988) 274-284.

[54]  ] H.W .Stolle  and R. Strauss, On the numerical
integration of certain singular integrals, Computing 48
(1992) 177-189.

203



[55]  G.Szego,  Orthogonal  Polynomials,  Amer.  Math.
Soc.  Colloq.  Publ.23  (Amer.  Mathematical  Soc,
Providence, Rl, 1975).

[56]  F.Tricomi,  Equazioni  integrali  contenenti  il  valor
principale di un  integrale doppio, Math. Z. 27 (1928)
87-133.

[57] G.Tsamasphyros and G. Dimou, Gauss quadrature
rules  for  finite-part  integrals,  Internet.  J.Numer.
Methods Engrg. 30 (1990) 13-26.

[58]  G.Tsamasphyros  and  P.S.  Theocarise,  On  the
convergence  of  some  quadrature  rules  for  Cauchy
principal-value  and  finite-part  integrals,  Computing
31(1983) 105 114.

[59]Aguirre,J. Matrilineal pseudo-differential operators
and  Para  products  Thesis,  Washington  University,
1981. 

 [60]  Aniansson  J.  et,  al,  Fourier  mentored,  KTH,
Stokholm, 1989.

[61] Ansari, R., IIR., discrer-time Hilbert transformers,
IEEE Trans., ASSP.-33, 1146-1150, (1985).

[62] A. H. Nuttall, Complex envelope properties, 

interpretation, Filtering, and evaluation, 19912

[63]   A.  Parthasarathy  and  S.  Kak,  An  improved
method of  content based image watermarking.  IEEE
Trans on Broadcasting, vol. 53, pp. 468-479, 2007.

[64] A. P. Caldron and A. Zygmund, On the existence
of  certain  singular  integrals  Acta  Math.  88(1952|).
85-139.

[65]  A.  P.  Caldron  and  A.  Zygmund.  On  singular
integrals, Amer. J. Math. 78 (1956)289-309.   

204



[66] A.V. Oppenheim and  R. W. Schafer, Discrete-Time
Signal Processing. Prentice Hall, New Jersey, 1999.

        [67] Bull. Belg. Soc. 11(2004), 163-180.

[68] Butzer  P.L.  and Nessel  R.J.  Fourier Analysis and 

Approximation.  Vol.  1.:One dimensional Theory.

[69] Caldron, A. P. Cauchy integrals on Lipchitz curves
and  related  operator  Proc.  Nat.  Acad.  Sc.  USA.
74(1977), 1324-1327.

[70] Caldron, A. P. and Zygmund A. in the existence of
certain  singular  integrals  Acta.  Math.  88(1952),
85-139.  

[71]  Chandrasekhar,  Radioactive  Transfer,  Univ
Chicago Press, 1953.

[72]  Chang,  S.Y.A.  and  Fefferman,  R.  A  continuous
version of duality of H¹ with BMO on the bi-disc, Ann of
Math. 112(1980),179-201.

[73]  Chang,  S.  Y.A.  and  Fefferman  R.  The
Caldron-Zygmund decomposition  on  product  domain
Am. J. of Math. Vol. 104, 3, 455-468. 

[74] Coifman R. R. McIntosch A., and Meyer, Y. L'intgral
de Cauchy definit un operateurs born' sur  L² pour les
courbes  Lipschitziennes, Ann. Of Math., 116 (1982),
361-387.

[75]  Coifman  R.R.  and  Meyer,  Y.  au  dela  dse
operateurs pseud-differentiels  Asterisque No. 57.

[76]  David,  G.  and  Journe,  J.  L.  A   boundedness
criterion for generalized Caldron Zygmond operators,
Ann. Of Math. 120(1984)., 371-397.

[77]  D.  Chang,  S.  Krantz,  and  E.  M.  Stein,  Hardy
spaces and elliptic boundary value problems. Cont. 

205



[78] Discrete Time Signal processing, 2nd Edition 1999
chapter 11 pages 755-800, Alan V Oppenheim, Roland
W Schafer with John R buck.

[79]  D.  Lixin,  A new approach of  data hiding within
speed  on  hash  and  Hilbert  transform.  Int.  Conf.  on
Systems and Networks Communication, 2006.

[80]  D.  V.  Aonsov   and  A.  A  Bolibruch,  The
Riemann-Hilbert  problem  Aspects  of  Mathematics,
1994. 

[81]  David  and  J.L  Journe  criterion  for  generalized
calderon-Zygmund  operators,  Ann.of  Math.,120
(1984), p. 371-397. 

[82]  David and J.L  journe,  S.  Semmes,  operator de
Calderon-Zygmund  ,  fonctions  para-accretive  et
interpolation,  Rev.  Mat.  Iberoamer.,  1  (1985),  p.
1-[83]Goldberg  R.  R.,  Fourier  transforms,  Cambridge
University press Cambridge . 

[84]  Elias  M.  Stein,  Harmonic  analysis:  real-variable
methods,  orthogonality  ,  and  oscillatory,  integrals,
Princeton  Mathematical  Series,  vol.  43,  Princeton
University  Press  Princeton,  NJ,  1993.With  the
assistance  of  Timothy  S.  Murphy;  Monographs  in
Harmonic Analysis, III.

[85]   Erdelyi  A.  et  al.  Tables  of  integral  Transforms.
Vol.11. McGraw-Hill. New York-Toronto-London, 1954.

[86]   Erdelyi,  A.,  Tables  of  integral  transform,
McGraw-Hill book Co.Inc., New York, NY, 1954.    

[87]   F.  Erdogan,  G.  D.  Gupta.  On  the  numerical
solution  of  singular  integral  equations,  Quarterly  of
Applied  Mathematics,  30,  (1972)  525-534.

[88]Fefferman,  C.  and  stein  E.  M.  H p

 spaces  of

several variables, Acta. Math, 129(1972)137-193.

206



[89] Fefferman, C.and stein, E. M. Singular integral on
product spaces, Adv.in Math., Vol. 45, No. 2, 117-143.

[90]  F.Nazarov,  S.Treil,  and  A.  volberg,  Weak
-Calderon-Zygmund  operators  on  nonhomogeneous
spaces,  International  Math.  Research  Notices,  1998,
No 9,   p. 463-487.

[91]   F.Nazarov  and  S.Treil,  The  hunt  for  a  bellman
function: applications to estimates of singular integral
operators and to other classical problems in harmonic
analysis,  St.Petersburng  Mathematical  Journal,
8(1996), No 5, 32-162.
[92] F.Nazarov, S. Treil, and A. Volberg, Cauchy Integral
and  Calderon-Zygmund  operators  on
nonhomogeneous space, International Math. Research
Notices, 1997, No 15, 103-726.

[93]Gakhov F. D. Boundary Value Problems. Translated
from  Russian.  Pergamon  Press.  Oxford
–London-Edinbugh-New York- Paris- Frankfurt, 1966.

[94]  Goldberger  and  Watson,  Collision  theory,
John-Wiley, 1965

[95].  Hahan  Stefan  L.  Hilbert  transforms  in  signal
processing. Artech House. Inc, Boston, 1996.

[96] Hahn, S.  L.  (1996).  Hilbert  Transforms in signal
processing, Artech  House, Inc., Norwood, MA, USA.

[97]  Hahn  Stefan  L.,  Hilbert  transforms,  and
Applications  Handbook,  Ed.  Alexander  D.  Poularikas
CRC press Inc., Boka Raton., Raton, FL., 1996. 

            [98]  Hardy, G. H.(1932). On Hilbert  transform,
Quart. J.                                                   Math.(Oxford)
3: 102-112.    

207



   [99]   Henrici  Peter,  Applied  and  computational
complex             analysis, Volume 1, John Wiley &
Sons, Inc, New York .1988. 

[100] Hirschman Jr.  I.I.  Variation diminishing  Hankel
transforms. J. Anal. Math 8(1960/1961).p. 307- 336.

[101]  J. Elliott, On some singular integral equations of
the Cauchy  type, March, 54 (1951) 340-370³.

[102] J.  Hadamard. Lectures on Cauchy's problem in
linear  Partial  Differential  Equations,  Int.  J.  Numerical
Methods. Eng. 44. (1999)205-214.

[103]    Javier  Duoadikoeteaxea  –Journal  of
Applications-volume  347,  15  November  2008,  page
592-596

[104]  Javier Duoandikoetxea,  Fourier  analysis,
Graduate Studies in  Mathematics,  vol.  29.  American
Mathematical Society, Providence, RI, 2001. Translated
and revised from the 1995 Spanishoriginal  by David
Cruz-Uribe.  

[105] Jean van Heijenoort, 1967 . From Frege to 
Godel. A Source  Book in Mathematical Logic, 
1879-1931. Harvard Univ. Press. Wikipedia, the free 
encyclopedia.

[106]Kakichev V.  A.  On the convolutions for  integral
transforms Izv. Acad. Navuk BSSR. Ser. Fiz-Mat.Navuk
No. 2(1967). P. 48-57.

[107]  Keith  Langly,   Stephen  J.  Anderson  –Vision
Research – Vol. 50, 6 August 2010, pp. 1748-1765

[108]  K.  Penumarthi  and  S.  Kak,  Augmented
watermarking.  Cryptolologia,  vol.  30,  pp.  173-180,
2006. 

[109]  King,  F.  W.  (2009a).Hilbert  Transforms,  Vol.  1,
Cambridge University Press, Cambridge, UK.

208



[110]  King,  F.  W.  (2009a).Hilbert  Transforms,  Vol.  2,
Cambridge University Press, Cambridge, UK.

[111]  Lennart  Hellstrom, Linjar  analyses, Hogskolan
I, Vaxjo199

 [112]  Liu,  Y-W.  &  Smith,  J.  O.  (200).  Perceptually
similar  orthogonal  sounds  and  applications  to
multichannel  acoustic  echo  canceling,  Proc.  Audio
Eng. Soc. 22nd Int. Conf., Espoo,Finland.

[113]   L.  Landweber  -  American  Journal  of
Mathematics –

[114]  M.  Christ  Weak  type(1,1)  bounds  for  rough
operators, Annals Math. 128 (1988). 19-42. 

[115] M. Christ and J-L.  Rubio de Francia Weak type
(1,1) bounds for rough operators, II. Invent Math. 93
(1988). 225-237.  

[116]  M.  Feldman,  Theoretical  analysis  and
comparison  of  the  Hilbert  transform  decomposition
methods. 

[117] Loukas  Grafakos, Modern Fourier analysis, 2nd
ed.,   Graduate  Texts  in  Mathematics,  vol.  250,
Springer, New York, 2009.  

[118] Mechanical Systems and Signal processing, vol.
22/3, pp. 509-519, 2008.

[119] Morse and Feshbach, The method of theoretical
physics, McGraw-Hill, New York,1947.

[120]  M.  Satti  and  S.  Kak,  Multilevel  indexed
quasigrooup  encryption  for  data  and  speech.  IEEE
Trans on Broadcasting, vol.55, pp. 270-281, 2009

[121] Muskhelishvili, N. I. Singular integral equations,
OGIZ Moscow, Leningrad. 1946

209



[122]  N.  Thrane:  "The  Hilbert  transform"  Technical
Review No. 3   1984, Brule & kjaer, BV 0015

[123]  J.S.  Bendat:  "The  Hilbert  Transform"  and
applications to Corrilation Measurements",  Bruel and
Kjaer, 1985, BT0008

[124] S. Gade, H.Herlufsen : Digital  Filter Techniques

 [125] Vs,.F OR Damping measurements". Reveiew,N  

 [126] Nguyen Thanh Hai  and Yakubovich S,  B.  The
Double                 Mellin-Barnes Type Integrals and
their  Applications  to  Convolution  Theory.  World
Scientific. Singapore-New          

  [127] Nie, K., Barco, A. & Zeng, F.-G. {2002). Spectral
and              temporal cues in cocklear implant speech

perception, Ea Hear. 27:208-217

[128]  Oppenheim,  A.  V.&  Schafer,  R.  W.  (2010).
Discrete-Time Signal  Processing,  3rd Edition,  Pearson.
Boston.

[129]  P.  A.  Martin,  F.  J.  Rizzo,  On boundary  integral
equations for crack  problems, Proc. R. Soc. Land A.
421, (1989) 341-355.     

[130]  Potamianos,  A.  &  Maragos,  P.  (1994).  A
comparison of energy operator and Hilbert transform
approach to signal and speech demodulation, Signal
Processing 37(1): 95-120.

[131]. Proakis John  G, Salehi  Masoud, Communication
systems  engineeihb  Prentice-Hall,  lnc  …New  jersey
1994.

[133] R. R. Coifman and G. Weiss, Extensions of Hardy
spaces and their use in analysis. Bull. Amer. Math. Soc.
83 (1977). 569-645.

210



[134]  Recio-Spinoso,  A.,  Fan,  Y-H.  &  Ruggero,  M.
(2011).  Basilar-membrane  responses  to  broadband
noise modeled using linear filters with rational transfer
functions,  Biomedical  Engineering,  IEEE  Transaction
on 58(5): 1456-1465.

[135] Saff E.  B. Snider A.  D. complex  analysis for
mathematics.  Science  and  engineering,
Prentice-Hall,Inc. New York, 1976

 [147]  Smith,  Z.  M.,  Delgutte,  B.  &  Oxenham,  A.  J.
(2002).  Chimaeric  sounds  reveal  dichotomies  in
auditory perception, Nature 416: 87-90.

[148]  Srivastava  H.  M.  and  Vu  Kim  Tuna.  A  new
convolution theorem for the Stieltjes transform and its
application to a class of  singular  integral  equations.
Univ. Victoria Research Report, No.DMS-574-IR/199

[149] Titchmarsh, Introduction to the theory of Fourier
integrals, Univ. Press. Oxford, 1937

[150] Tricomi, On the finite Hilbert transform. Quat. J,

         Math. (Oxford). (2) 2, 1951. Pp. 199-211.

[151]  Tricomi  F.G.  Integral  Equations  Inter  science
Publishers, New York-London, 1957.

[152] T.Murai A real variable method for the Cauchy
transform, and analytic capacity Lect. Notes in Math.,
1307, Springer-Verlag, Berlin, 1988.

[153]  Tricomi,  Integral  equations.  Inter  science  Inc.,
1957.

[154]  Widder,  The  Laplace  transform,    Univ.  Press
Princeton,  1916.  Seoul  National   University  Moscow,
Leningrad.  1946

211



 [155] W.C. Connett, Singular integrals near L¹,.
Sympo. Pure Math. Of the Amer. Math. Soc(S.

Wainger and G.Weiss, eds) Vol35 1(1979). 163-1  

[156] Van Drongelen,  W. (2007) Signal Processing for
Neuroscientists:  Introduction  to  the  analysis  of
physiological signals, Academic Press, London.

[157]   Y.S Chan. A. C. Fannjiang, G. H. Paulino. The 
crack problem for nonhomogeneous materials under 
shear loading-A displacement based formulation. Int J. 
Solids Struct. 38 (2001) 2989-3005.[158] Zeng,F., 
G.,Rebscher, Harrison, W., Sun, X. & Feng, H. (2008). 
Cochlear implants: System design  integration, and 
evaluation, IEEE Rev. Biomed. Eng. 1: 115-142.            

212



                                                              

213



  

214


	Chapter 3
	
	To prove that f tends to Hf as tends to zero, it suffices to check this on a dense set of functions . On the other hand,


