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Abstract

The information about the Hilbert transform is often
scattered in books about signal processing. Their authors
frequently use mathematical formulas without explaining
them thoroughly to the reader.

The purpose of this research is to make a more stringent
presentation of the Hilbert transform but still with the
signal processing application in mind.

Everybody working in the field of singular integrals and
integral equations will know that during the last few
decades an entirely new mathematical field of Cauchy
principal value integrals and hypersingular integral has
developed.

Since this is a recent mathematical development, it is not
always easy for readers including academics, engineers
and researchers, to get a grap on.

Hilbert transforms deal with Calderon-Zygmund operators
and the theory of Calderon-Zygmund operators in such a
way that any body will be able to repeat the schedule use
of Hilbert transforms.
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Introduction

Today the signal processing is the fast growing area and a
desired effectiveness in utilization of band width and
energy makes the progress even faster. Special signal
processors[96] have been developed to make it possible
to implement the theoretical knowledge in an efficient
way. Signal processors are nowadays frequently used in
equipment for radio, transportation, medicine and
production.

Areal function () and its Hilbert transform J () are

related to each other in such a way that they together
create a so called strong analytic signal[. The strong
analytic signal can be written with an amplitude and
phase where the derivative of the phase can be identified
as the instantaneous frequency.

It is easy to see that a function and its Hilbert transform

also are orthogonal[84]. However, a function and its
energy can be used to measure the calculation accuracy
of the approximated Hilbert transform.

Whenever we write (P) in front of the integral we will
mean that the Cauchy principal value[35] of that
integral (when it exists).



Hilbert transform has the advantage of not requiring
derivatives, but the serious disadvantage that it is not a

bounded operator from L' to L . T o solve the

problem,different approaches for gain-phase relationships
in logarithmic frequency domain have been proposed. A
suitable change of variable can give the bounded
operator.

To solve the problem, different approaches for computing
Hilbert transform have been proposed.

The goal of this research is to present a brief review of
methods used to compute Hilbert transform when the
signal is composed of discrete data, sampled at
equidistant or arbitrarily instant.

Finally we study in this research Hilbert transform
continuous and discrete with Properties in chapter one and
in chapter tow we have show Singular integral equations
with Cauchy's principal value[38] and Hilbert trans form.
Then the study in chapter three is about
Calderon-Zygmund operator. In chapter four we have
show Some applications of the convolution theorem of the
Hilbert transform. The aim of chapter five is to give
information about Hilbert transform application. Lastly in
chapter six have the numerical evaluation of
hypersingular integral[35].
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Chapter 1

Properties and Continuous of Discrete Hilbert
Transforms

Sec.(1.1): Hilbert transform

The Hilbert transform defined in the time domain is a

1/mt

convolution between the Hilbert transform and

function () [7]

Definition (1.1.1) The Hilbert transform fltlof a
function () is defined forall (0} by

when the integral exists.
It is normally not possible to calculate the Hilbert
transform as an ordinary improper integral because of
the pole '=% However, the P in front of the integral

denotes the Cauchy principal value which expanding
the class of functions for which the integral in
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Definition (1.1.1) exist. It can be defined by the
following definition [102].

Definition (1.1.2) Let [q, Bt pe a real interval and

let [ be a complex-value of function defined on

le.B] I1f f is unbounded near an interior point ¢

of @Bl the integral of T over [a 'P¢ does not
always exist.

However, the two limits

&-¢ B
lim f f|x|dx Alim f flx|dx,
e-0 4 e-0¢_¢
still may exist, and if they do their sum is called the

improper integral of [ over [a, ¢ and is denoted
by the ordinary integration symbol

B

ff(x]dx.

a

Even if these two limits do not exist, it may happen
that the “symmetric limit”

e—€ B
lim| [ flx|dx+ [ f(x)dx]|,

et+e

exists. If it does, it is called the principal value
integral of f from o to P and is denoted by the
symbol

B
pff(x)dx.

11



1
Example (1.1.3) An ordinary real function x that

is integrated from ~%? can be written as

e 040 [ ~ax,

-5
6~ 0+Z,f ldx+lirn 6
YL X :

1 ax=1im ¢
X 1A

and we see that it is not possible to calculate these
integrals separately because of the pole in * = 0.
However, if we apply the Cauchy principal value then

4 and € tend zero at the same speed , that is

g - 0+¢ =0,

1 1
i;dx+{;dx

and the integral converges.

(1.2.) Mathematical Motivations for Hilbert
transform

In this chapter we motivate the Hilbert transform in
three different ways. First we use the Cauchy integral
in the complex plane and second we use the Fourier
transform in the frequency domain and the third we

look at the *7/2 phase-shift which is basic property
of the Hilbert transform.

(1.2.1.) The Cauchy integral

12



The Cauchy integral is figurative way to motivate the
Hilbert transform. The complex view helps us to relate
the Hilbert transform to something more concrete and
understandable.[152]

Consider an integral in the complex * -plane on the
form

;Mdz,

v z—a

Which is known as a Cauchy integral. If fis analytic

and ' piecewise smooth closed contour in an open

domain then the Cauchy integral theorem is
applicable as

a
$ f(z) 4, _|[2nitlalif ainside T
T Z—da Oif aoutside I

r

To get a result when a lies on we have to create

a new contour It where

[2) 4= orif () (1.1)

~<osU
N
Q

If the radius ¢ of the semicircle y tends to zero, the

contribution from the semicircle ¥« to the integral

along ., approaches nif lal according to lemma

(1.2.4)[135] .

Lemma (1.2.4) If g has a simple poleat *~¢ andis
the circular arc defined by

y,:z=a+ye”(0,<0<0,).

13



From Lemma (1.2.4) and from the definition of
Cauchy principal value[38,39], we see that

lim$f< )dz pff dz+11mff dz="2nif a/,

s—OFvZG r Z—d e—0 Z—d

and that the integral of Cauchy principal value is

f(z

~—

dz hmff )dz nif a}(1.2)

SHOF

=N

N

p

where T= is a non closed contour with out the

indentation Y¢ . By (2) we have generalized the

definition of Cauchy principal value compared to
definition (1.1.1).

If 7zl is a function that is analytic in an open region

that contain the upper half-plane and tends to zero at
infinity in such a rate that the contribution from

semicircle:
YR as R — oo, then we have

ff 1) ge=rif(x)(1.3)

If(Z)|<‘£

z\'

for any positive constant ¢ The same vyields if

imz

If(z)|<Cle

for positive m according to lemma (1.2.5)[7].

Lemma (1.2.5) (Jordan's lemma) if ™M>0AP/Q g

quotient of tow polynomials such that

14



’

Degree Q=1+degree P

then

+o
P

P(z) ,

hm J‘EI Ql2)

e™dz=0,

+{
where C, is the upper half-circle with radius p.

If we express flxl - as

flx|=glx|—ih(x)

on both sides of (3) with arguments on the real *~¢

axis and equating real and imaginary parts we obtain
for the real part

-1 _T¢h
g(X)ZFP;[Ox(TE‘;dE:_Hh(X)’

and for the imaginary part

hixi=Lp [ 1) gepigix(1.0)

m° 2, x—¢&

h(x|

From definition (1.1.1) we have that is the

Hilbert transform of 9% where H s the Hilbert
transform operator. We also note that glx|=H "hlx|
with H ' as the inverse Hilbert transform operator.

We see that HReflx=Imflx] \which motivates the

following definition.

15



Definition (1.2.5) A complex signal f(x) that

fulfills the conditions preceding is called a strong
analytic signal.

Theorem (1.2.6) For strong analytic signal fx) we

have that HReflx/=3flx].

(1.2.2) The Fourier transform [60,117]

The Fourier transform is important in theory of signal
processing . When a function ) is real , we only

have to look on the positive frequency axis because
it contains the complete information about the wave
form in the time domain .

Therefore , we do not need negative frequency axis
and the Hilbert transform can be used to remove it.
This is explained below.

Flw]

Let us define the Fourier transform of a signal

o)

F(w}=f fltle ™ dt(1.5)

—o00

This definition makes sense if €L’ (r), that is if

00

J Iflelde

—00

exists. It is important to be able to recover the signal
from its Fourier transform . To do that

If both fAF pelong to LR then flt/ s

16



continuous and bounded for all real t and we have
that flt|=flt), thatis [60]

o4}

f(‘t):Lf Flt)e dt(1.6)

2T

—o00

this result is a form of Fourier inversion theorem.

Another inversion theorem [2] is that if f belongs to

L'RIf is of bounded variation in a neighborhood of

t t

and fof continuous at

1 T
=lim — f (t]e" dt
2 -T

T — oo

This means that (1.6) is to be interpreted as a type of
a Cauchy principal value.[102]

Further more general variants of the inversion

theorem exist for [€L'R. There is also a theory for

the Fourier transform when f€L’(RI.[60]

In this case we define the Fourier transform as

/= lim f f(t)e ™ de

_»oo_N

The mean limit

Flo|=1lim F,|w),

N - o0

is to be interpreted as

lim | Flw|—F,lo|[|2=0.
N -

17



Theorem (1.2.7) If
f,gAG,belong L' RV if f Agbelong i L*(R) then

00 00

—00 —o00

Proof For a proof refer to

If 71t a real function that can be represented by an

inverse Fourier transform then we have the following
relationship in the time domain

(gl 1 ¢ o
flt|=f (t}ZEI Flole"" dw
. ]_ r I3 —iwt
czn_wa (w)e ™ dw
. 1 r I3 it
,— | F'|— .
OZT[;[; —w|e dw

This gives us the relation Flo|=F'[-0|VF|o|=F(0) i,
the frequency domain and we see that f for

negative frequencies can be expressed by F' for
positive ones[1].

Theorem(1.2.8): If f (1) is a real function then

F
[(66lw)e ™ do+F o) e do].

f(t)=ijié

Proof :If we apply the Fourier transform of a real
function (¢} then

18



0
(',2L f F'lowle™ dw+F o e dw
! —o00

These means that positive frequency spectra is
sufficient to represent a real signal.

Let us define a function Zjlwl, that the zero for all

negative frequencies and 2F(t) for all positive
frequencies

Zlo|=F|w|+sgn|o|F|w),(1.7)

where
1forw>0
sng(w)z Oforw=0
—1forw<0
and Flo] is the Fourier transform of the real function

flt  We see the relation (1.7) between Fl©/ and

Zlo) Z, o]

. The inverse transform of is therefor

written as

0
Zf(co)zL f F(w]eiwtde%f Flw)e™ dw

19



Z,lt|=ft|+ig[t)(1.8)

we will show below that gltl is real and from (1.7)
and (1.8) we have that

flt|+iglt|F Flw|(sgn)w|(1.9)

=

The definition of Fourier transform tells that f(sz(wJ

and therefore know that Fl@/sanl®l s the Fourier

transform of ¥t}  thus

glt| FFlwlisgn(o)]

It is a standard result that the inverse transform of
—isgnlo] aquals T thatis

g(t)=f(t]—*1=lpf mdT=Hf(tJ=f"(t),

it T t—71

— 00

And we see that 9() can be written as !/ which is
known as Hilbert transform of flel. Further more
gltl is real.

(1.2.3) The *"?2 phase shift

The phase shift is interpreted in frequency domain as
a multiplication with the imaginary value *' , thus

lim Glw|=H ()

o -0

20



Where 9dlt/=hltiwheno =0 304 the inverse Fourier
transform of the impulse response of @/ is

' ’ t 1
h(t)=lim g[t|=1im -1
' G*Og o0 r(o’+¢?) T

A convolution between [l and the impulse
response

A 17
_EL

’~ﬁ

where f(e) is known as the Hilbert transform. Notice

that this integral shall be considered as a
principal-valued integral.

Sec.(1.3) Properties of Hilbert Transform:

In this chapter we look at some properties of the

F(w)

Hilbert transform. We assume that does not

contain any impulses for (@) = 0andthat /! isa
real valued function.

So of the formulas are to be interpreted in a
distributional sense[142,62].

(1.3.1) Linearity

The Hilbert transform that is a Cauchy
principle-valued function, is expressed on the form

Hf [t] —lim 1 _f I;Tdr

e-01TT, T

(X—tVie

If we write the function. () as @afilttefl)  \where
the Hilbert transform of () and ) exists then

21



+C2f2<T)
l
A
1
(lim — f b
e=0 T0) Stise

a a
Lclliml f _fm) dr+c2hml f —tfzm dr
—1

e~0 Tl “rvie t—1 e~0 Ty “rvie

_ o Hf [tl+c,Hf,lt]

this is the linearity property of the Hilbert transform.

(1.3.2) Multiple Hilbert Transform and Their
Inverses

The Hilbert transform used twice on a real function but
with altered sign

1

sgnin|={ 0
-1

sincethe —isgn=H

then H =-1,

With 1 as the identity operator. The Hilbert transform
used four times on the same real function gives us the
original function back

22



H°H® = H' =1 (1.11)

A more interesting property of multiple Hilbert
transforms arises if we use the Hilbert transform 3
times, thus

H'H=1—H '=H°

This tell us that it is possible to use multiple Hilbert
transform to calculate the inverse Hilbert transform.

As we seen before the Hilbert transform can be
applied in the time domain by using the definition of
the Hilbert transform. In the frequency domain we
simply multiply the Hilbert transform operator -1 sgn

(@) to the function Fl®@/

By multiplying the Hilbert transform operator by itself
we get an easy method to do multiple Hilbert
transform, that is

H'f(0)F|-isgn()'|  Flel,

=

where n is the number of Hilbert transform.

Example (1.3.7) We want to calculate the inverse
Hilbert[97] transform of the function f(¢) by using
multiple Hilbert transform in the frequency domain .
First we have to Fourier transform the function (¢

o)

Flo|=] fltle “d,

—00

and then use the Hilbert transform three times in the
frequency domain, that is

23



From above we see that we only have to calculate two
infinite integrals n the frequency domain compared to
three infinite integrals in the time domain.

Another advantage in the frequency domain is that we
formally can choose the number of times we want to
use the Hilbert transform.

(1.3.3)Derivatives of the Hilbert Transform

Theorem (1.3.8) The Hilbert transform of the
derivative of a function is equivalent to the derivative
of the Hilbert transform of function, that is[61]

. d -
f(f)gaf(t](l-lz)

proof. From Definition (1.1.1) we have that flel

If we substitute * with 75

and then apply the derivative of t on both sides we
get

24



ds 1 ¢ fllt=s)
dtf(t)_np_{, s ds.

The substitution 5=!~T gives us that

And the relation in (1.12) is valid .

From the proof above we conclude that the relation
can be used repeatedly. Let us look at an example
where we also use of multiple Hilbert transforms,

Example (1.3.9)

By (1.3.2.) we may calculate the Hilbert transform of

St

the delta function and its derivatives. At the

same time we get the Hilbert transform
representation of the delta function. Consider the
Hilbert transform of the delta function

H6(t):%(1.13)

The derivative of the delta function is calculated to

-1
nt’

HS’|t|l=—(1.14)

And if we apply the Hilbert transform on both sides
then we get

1

§’[tI=H|=|.
it

The derivative (5) is

25



HS6’ ’(ty):—3

And when we apply the Hilbert transform on both
sides we get

a”m:m;—ﬁ)

This procedure can be continued.

(1.3.4) Orthogonally properties[112]

A symmetry about the Fourier transform Flo) of a

real function () leads us to the following
definition[6]

Definition (1.3.10) A complex function is called
Hermitian if its real part is even and its imaginary part
is odd.

From this we have that the Fourier transform Flw) of

a real function () is Hermitian.

Theorem(1.3.11) A real function f(0) and its Hilbert
transform "t} are orthogonal if f-f and F

belonged to L'Rl orif Af belongto LRl [55]

Proof From Theorem (5) we have that

00

[ flelfie)de=é

26



. o)

cﬁf sgnlow|F o F'lo)d

—00

sgnlw/¢F (w)Vvé'd,

. ;
o—fo
2 °

Where sgn( ®“ is an odd function and the fact that

Flo) s Hermitian gives us that Flo)lf is an even

function. We conclude that

00

[ fle)f (el de=o,

—00

and a real function and its Hilbert transform are
orthogonal.

(1.3.5) Energy aspects of Hilbert transform

The energy of a function fle) s closely related to the

Flw/.

energy of its Fourier transform Theorem

flt=glt] is called the Rayleigh theorem and it helps us

define the energy of [/tNFl@) ag

00

Ve dt— f .(1.4)

—o00

Ef:fz,

Here it is natural to assume that f€L Rl which

E

means that ~f is finite. The same theorem is used to

27



define the energy of Hilbert transform of fltInF ()

that is
i—isnglw|Flw|vi’de,(1.5)
r=cfIrifa=s_[ ¢

E,
;. .2
Where ° lsgn(;(w)w = 1 except for ®=% But since
Flo) does not contain any impulses at the origin we
f=LE,
get E,

A consequence of (3.5) is that €L (R} induces that

€LRl. The accuracy of the approximated Hilbert

transform operator can be measured by comparing
the energy in (3.4) and (3.5). However, a minor
difference in energy always exists in real applications
due unavoidable

truncation errors.

(1.3.6)The Hilbert Transform of Strong Analytic
Signal

From Section (1.3.2) we have that the Hilbert
transform of two multiplied strong analytic signal

2(t) s

Hz|t|=H|f(t|+if (t))=f[t|=if [t|=—iz[t)(1.6)

From the follows the result of the Hilbert transform of
two multiplied strong analytic signals.

28



Theorem (1.3.12)[55] The product of Hlz(t)z(0) s

identical with the product of zltH(z(0] 4 zltaz(l)

are strong analytic signals.

Proof. Since 2/thalt)  re strong analytic signals
then

H(Zl(t))zz(t) = (fl(t)_ifl(t)) (fz[t)"'ifz(t))(lj)

(',—i(fl(t,)"'ifl(t)) (fz[t)"'fz(t))

(—iz,lt]z,lt]

Gfyle+if ()] [folel=if,le)(1.8)

tz,[t|H[Z,(t)] (1.9)

’

Where we make use of (1.6) in (1.7) and (1.8).

Theorem (1.3.14.)[97] The product of ()2l jg
identical with the product

iH |z,(t])z,(t|=iz, (t|H (2,(t)|if z,(t| Az, (¢) are strong analytic

signals.

Proof. Since 4"z} are strong analytic signals
then

z,[t)z, )= (i ()| [F )+, (¢)]
Gilf el =if, () folel+if,(c)]

Zz(t),
z,\t)z,[t)]=iz,(t|H (0),
GIH &

29



And the theorem follows.

The Hilbert transform of the product of two strong
analytic signals gives us the same result as in (3.9). To
prove this we first need to show that the product of
two strong analytic signals is strong analytic.

Theorem (1.3.15) The product of two strong
analytic signals is strong analytic.

t) t)
Proof. Let ;¢ and z:¢ be analytic signals of

complex variable (t") = t+ it on the open upper

t) t)
half-plane. Then ¢ and ¢ is also analytic signal

t) t)
in the same region. Assume that :¢ and ¢ are

decreasing in such rate at infinity that the discussion

in Sec.(1.1) is true then 2t and =t are strong

t) t)
analytic signals. If z¢ and ¢ are decreasing

t) t)
sufficiently rabid at infinity then z¢ and 2z, have

t) t)
two decrease faster than one of ¢ and z¢ that

the decreasing with the last rate. From this we have

z,(t) {z}rsub {2} (t )

that R(z,(t){z}rsub {2} (t ))=T¢ and that
Hi

(z,(t) {z}sub {2} (¢t ) g strong analytic signal.

30



Theorem  (1.3.16): H(z,(t) {z} rsub {2} (¢ ))=¢

\ t) t)
siz(t) {2} swb (2} () ¢ % and L. are strong

analytic signals.

t) t)
Proof : Since ;¢ and 2z are strong analytic
signals then
Fo(0)+if (1)
fule)+if (e)¢

H(z,(t) {z}rsub{2} (t ))=H{
H|f [t f,lt)=f,lt]f,le)
+if [t lel+F (e o(¢)
G ltlflt)=f, () f5(1)
~fultlflel=F,(e)F,(¢)

fl(t]f2(t‘]_f1(t)fz(t)

=16

~

+if( )fz( t)— fl(t fz ) (1 10)
L ATAR AL
(—iz,lt]z,|t]

when we make use of theorem (1.8) in (1.10).

Consequently it possible to apply the Hilbert transform
on product of two strong analytic signals in several
different ways, thus

31



t
z,t|
z,(t)z,[t|)=H|z,(¢))z,(t|=2, [t HlLi—iz,t] 2,[t].)
H{

It does not matter on which strong analytic signal we
apply the Hilbert transform. We conclude that the
Hilbert transform of the product of n strong analytic
signals from the equation

nfl(

Hz'(t|=H|zlt)|z" t|=—izlt) 2" [¢|=—iz"(¢)

(1.3.7) Analytic signals in the time domain

The Hilbert transform can be used to create an
analytic signal from areal signal. Instead of studying
the signal in frequency to look at a rotating vector

with an instantaneous phase o(t) and an

Alt)

instantaneous amplitude in time domain, that is

ZltI=fle)+ifle)=e™".

This notation is usually called the polar notation
where

Alt)=VF(e)fe),
And

¢|t|=arcta

If we express the phase with Taylor series then

oltI=[t|+t—to ¢ [t,)+R,

Where R is small when t is close to ( % ). The
analytic signal becomes

32



Z(tj:A(t)eiwwryzA(t)ei[mto]\—tw'ftJ)enq;‘(to)eiR.

And we see that ¢ () has the role of frequency if

is neglected. This makes it natural to introduce the
nation of instantaneous frequency, that is
_do(t)

(x)(t)—T.

Example (1.3.15) We have a real signal and its
Hilbert transform

f(t)zcos(coot),

A

f(t|=sin(w,t],

Together they form an analytic signal where the
instantaneous amplitude is

A(t)\/Cosz(coot)+sin2(w0t)= 1.

The instantaneous frequency is easy to calculate form
the phase ?!=%: thatis

wlt|=w,

We see that in this particular case the instantaneous
frequency is the same as the real frequency.

(1.4) Numerical calculations of the Hilbert
transform

The purpose of this research is to study different type
of numerical calculation methods for the Hilbert
transform.

(1.4.1) Continuous

33



(1.4.1.1) Numerical integration.

Numerical integration works fine on smooth function
that decrease rapidly at infinity. When we want to
calculate the Hilbert transform by Definition (1.1.) we
are facing some problems. In numerical integration
we use finite intervals and it is therefore important to
consider the integration region to control the
calculation error This is the reason why a rapid
decrease at infinity is an advantage. Another problem
is that the integrand in Definition 1.1 is infinite when
nominator vanishes. However, by using more
integration grid point in the numerical integration
close to this value we get a better approximation.

(1.4.1.2) Hermite polynomials

The numerical integration is inefficient when a
function decreases in a slow rate in infinity. It is
sometimes better to use a series of orthogonal
polynomials where the function does not have to
decrease rapid at infinity. In this section we use the
Hermite polynomials to calculate the Hilbert
transform. First we need to take a look at the
definition of Hermite polynomials.

The successive differentiation of the Gaussian pules

e generates the nth order Hermite polynomial
which is defined by Rodrigues formula as [111]

H (t)Z(—l)"etzin e’
dt

n

It is also possible to calculate the Hermite polynomials
by the recursion formula[95].

H [t|=2tH ,[t|-2(n—1]|H, ,[t],(1.4.1)
with n = 1,2,3,...and the start condition
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H,lt|=1

Let us also define the weighted Hermite polynomials
that is weighted by the generated function e’ on the
form[95]

> d" -

gld=H,[tle “=(-1} Le

Theorem (1.4.16) If we assume that [/tIAf1

L\ then the Hilbert transform of (1) s

given by the equation

belong to

00

H(tf(t)):tf“(\t)—%f flr|dr.

—00

The integral is a constant defined by the function
fltl For odd constant equal zero.

Proof. Consider the Hilbert transform of tf (¢)

The insertion of a new variable 5=t~ yields

Hii(0)=1p [ 2]

S

—00
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and theorem follows.

From Theorem (1.4.16) we have that

t

n
to,_ 1 ‘[q) 1‘6dr1\
H{o,fc)=p, = 221
(n—1) n—2)! |
el ! (pn—z(t,]
n!
where n=l2.3... The first term ®{) can be

calculate by using the Fourier transform on equation
that is

;tz

-1 1 -o
o,lt|=m* F\/2n4e2

In the frequency domain we multiply the Hermite
function @:(t) by the Hilbert transform —isn()  ang

finally we use the inverse Fourier transform to get the
Hilbert transform of the Hermit function, that is

(x)

o, t|= =Vv2n* Jteji —isgn(w)|e® do.

Hc

2
@

e—{ 2

Since sgn( il is odd we have

00 — o’

l N
polt)=2v2r* [ e * sinloot]do
0

Which can be used to drive the rest of Hilbert
transform.
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It has been found that the error is large for higher
order of the Hilbert transformed Hermit functions (e.g.

bs(t) ) when we use the recursive formula .

It is therefore not suitable to use the recursive method
to calculate the Hilbert transform for higher order
Hermit functions.

Another method to calculate the Hilbert transform by
the Hermit functions is to multiply the Hilbert
transformer by the spectrum of the Hermit function
and use the inverse Fourier transform. No infinite
integrals is needed in the calculations of the Hermit
functions. Therefore the error does not propagate as
in (44).

The series expansion of fltl can be written as

flt=Y a,0,0

where

[ee]

a,= [ flt|o,ltd.

—o00

If the series expansion f(t) s limited at infinity there

will be an error &t thatis

This series expansion can also be used to calculate
the Hilbert transform

Hf(t)=2 a, [t)+&,(t](1.4.4)
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And we see that this kind of method is useful for

functions where &t/ is small.

To calculate the Hilbert transform of ¢(t) by using the

inverse Fourier transform on the product of Hermit
function spectra and the Hilbert transformer is a
rather demanding method. However, the Hermit
function functions never change and we therefore only
have to calculate their Hilbert transforms once while

9. which depends on f, represent an easy integral

to calculate.
(1.4.2) Discrete Fourier transform

To derive the discrete Hilbert transform we need the
definition of the discrete Fourier transform (DFT),
That is

Flk=Y flnle ¥ k=0,1,....,N—1(1.4.5)

and the inversion formula

T yn

AN L
n==>F n=0,1,....N—1.(1.4.6)
Nk:

Where k is the discrete frequency and n is the
discrete time. It is easy to prove (4.8) by inserting
(4.8) into (4.7). Note that (4.8) defines a periodic
function with period N. Let us expand (4.7) in its real
and imaginary parts on both sides, thus

F[k}:F‘R[k}*-iFS[k]:

And

N-1 N-1

S flale ’“—zf[

n=0

—kn

—IZF n|sin

—kn
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The real and imaginary part is now identical as

Z n|cos —kn
N—
Z nsin —kn
and we conclude that 57 when k=0Ak=N/2. Ag e

have seen before the Hilbert transform of the delta

St 1/(nt|

pulse give us the Hilbert transformer and

the Fourier transform of Hilbert transformer gives us
the sign shift function

6(t)£1%1:—isgn(w](1.4.7)

The discrete analogue of Hilbert transform for even N
is therefore given by

—ifork=1,2,...,N/2—-1
Hlk|]= 0fork=0AN/2
ifork=N/2+1,...,N—2,N —1,

and Hk can be written on the form

H[k}——lsgn(g—k

sgnlkl- (1.4.8)

Here we have used the convention that sgn(0) =
The discrete frequency k is called positive in the

interval  0<k<N/2

N/2<k<N

and negative in the interval

and alternate sign at /2

The discrete inverse Fourier transform of the discrete
Hilbert transform in (4.10) gives us the discrete
impulse response in the time domain, for even N, thus
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hin=L S HlKe ™"
N =
1 i@kn
L— Y —isgn ——k sgn(k)e ™
N =
(,—Z sin —kn (1.4.9)

And Nl can be expressed in closed form as

h[n}zgsin
N

2( 7N

2

n
cot| —
n

The function is given by the cotangent function with

2

_ mnl i
n=024. erased by gn*(s).

8

every second sample

see Figure 4.2.
The same derivation for odd N is given by
—~1fork=1,2,...,[N—1|

Ofor k=0
ifork=N+1/2,....,N—-2,N—1.

Hk|=

It is written on the same closed from as in the even
case with the difference that there is no cancellation

for sgn N/2-kl thatis

H{k}Z—isgn(%—k sgn (k)

The discrete impulse response for odd N of the
Hilbert transformer in (4.9.) is given by the discrete
inverse Forier transform of K in (4.13), thus
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where the closed form of hln| can be expressed as

nm ) cos(mn)

N

cot

in

sn™ | As we mentioned before we do
N

not have the same cancellation for odd ¥ (4.11) as

N

for even (4.12), instead hinl s changing sign by

odd and even values of n,

The discrete Hilbert transform of sequence finl s
defined by convolution on the form

=
R

flnl= 2 hln—m|f[m].

m=0

If we instead choose to use the DFT

then have the following relations

algorithm we

f[n]DFTF[k]DFT?[k}:—sgn(%—k sgn|k| F|k| DET—1f [n],

Where PFT  denotes the discrete Fourier transform,

DHT  denotes the discrete Hilbert transform and

DFT"' denotes the discrete inverse Fourier transform.
The discrete convolution algorithm (4.15) is faster

than the PfT  algorithm(4.16) because it involves

only a single summation. However the PFT
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algorithm may bere placed by a fast Fourier transform
algorithm |FFT/.

Example (1.4.1) Assume that we want to calculate
the discrete Hilbert transform of a sine-wave

f(t|=cos|2t)with N=10 DFT

samples using the algorithm

according to (4.16) where the sampling frequency is

5/n Un. " First we need

and the signal frequency is
to calculate the discrete Fourier transform (4.7) of
f() | Then we need to use (4.11) (N even) to apply
the inverse discrete Fourier transform on the product
of discrete Hilbert transform operator Hk jn (4.13)
and discrete and the discrete Fourier transform of

f(t) . The definition of the discrete Fourier transform

of fltl

By using (4.11) we get the Hilbert transform Hflnl jn

the time domain ( Neven¢

il

k|sin

2—nkn
N

The fact that this is an harmonic periodic signal (of sin
and cos) and that the sampling rate is more than
double the signal frequency gives us the exact answer.
The implementation in computer code is found in
Appendix A.3.
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Example (2.4.3) We want to calculate the Hilbert
transform of flI=U(E+1)  with N=2  terms of the

Hermitian polynomial in (4.6) and use "=?Y terms of
the discrete Fourier transfor in (4.7) and (4.11).

First we need to calculate #(t)--9:(t) by (4.2) and

then %(th®(t) 35in e Example 4.2. * is possible

to calculate with a numerical integration method
because the integral converges sufficiently rapid at

infinity. In Figure 4.6 we can see the function f(¢)

and its approximated Hilbert transform Hy(¢)

compared to the known Hilbert transform
HfT)=t/|*+1].

(1.4.3) Titchmarsh theorem

In analytic number theory, the Brun-Titchmarch
theorem, is an upper bound on the distribution of
prime numbers in arithmetic progression. It states

that, if ©*;9:9/  counts the number of primes

congruent to a modulo q with P=%> then

q

x/é

e
¢lqllog ¢

H(X;q,a)SZTX

For all 9<% . The result was proven by sieve methods

by Montgomery and Vauhan ; an earlier result of Brun
and Titchmarsh obtained a weaker version of this
inequality with an additional multiplicative factor of

9/20

1+ 0(1).If 9 is relatively small, e.g., 9=X |, then
there exists a better bound:

43



8
X/q3/£,
6
¢(q)In ¢
12+0(1])x

mlx;q,al< .

This is due to Y . Motohashi (1973). He used a bilinear
structure in the error term in the Solberg sieve,
discovered by himself. Later this idea of exploiting
structures in sieving errors developed into a major
method in Analytic Number theory, due to H. Iwaniec’s
extension to combinatorial sieve.

By contrast, Dirichlet’'s theorem on arithmetic
progressions gives an asymptotic result, which may be
expressed in the form

nlx;q,al=

X
- 1+0 -
@lq|log(x]| logx

But this can only be proved to hold for the more
restricted range q<llogx" for constant c: this is the
Siegel-Walfisz theorem.

F(x) js the limit as #~X of holomorphic function
F(Z) such that

00

f |F(x+y)‘2dx<K

—00

If f(z) is the holomorphic function such that for all y,
then there is a complex

valued function F(x) in L’ (R} such that F(x+iy)
“F(x) inthe L’ norm asy ~° .Furthermore.

Flx|=fx|~ig|x].
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Hilbert transform of [ does converge almost
everywhere to a finite function g such that

® p
f Ll(x)z‘ dx<oo,
e 1+x

(1.4.4) ®¢ mann-Hilbert problems[80]

One of the main boundary value problems of analytic
function theory. It can be stated in the simplest case

as follows. Let © be a simple smooth closed contour
that splits the plane into a bounded interior domain

+{ —4
D° and the domain D° complementary to it,
containing the point at infinity . Let two functions

GltInglt] L,

be given on satisfying a (H-condition)

L.

with (%0 everywhere on It is required to find

two functions 2 (z), analytic in D" Respectively ,
continuous up to the contour except for finitely many
points UK

satisfying

> where they may have discontinuities

bz—tk V™
‘@[z}|<é
6

And satisfying on © the boundary condition

—ilt)+g

+glt),
+¢',(tJ=G( )

|
t @(v

Glt]

Where the function is called the coefficient of the

problem. The integer
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k=indG|t|=5= [ dargGlt]=5~ [ deGlt)

Is called index of the coefficient Gle] and at the same
time the index of the Riemann-Hilbert problem.

Glt)nglt]

In the case when are only continuous, but do

not satisfy an H-condition, the results stated above
remain valid, except that here the boundary values of
the solutions exist only as the contour is approached
along non-tangential paths, and they are not

continuous, but D€L, for any p>0;ifGlt] g

continuous and glt/€L, then @*(t)€L, The most

Gl|

general assumption for the coefficient under

which the Riemann-Hilbert problem has been solved is
that it belongs to the class of measurable functions
with an additional condition on the value of the jump
of the argument; here also glt)€L,

Riemann-Hilbert problems with infinite index have
been considered, in which simple smooth curves have
been chosen for the contours with one or both ends
going to infinity. The following cases have been
investigated; (1)apolynomial order of growth, when as

[t = oo

the asymptotic equalities

LtV P
IndG(t) ¢

(‘0<p<oo)

Are satisfied for the case one infinite end,

0<p<1]" for both ends infinite); and (2) a logarithmic

] = o0

order of groth, when as ,

IndGlt] +1n°|t|,0<a <oo.
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The solution of the Riemann-Hilbert problem on a
Riemann surface, and the equivalent problem on
fundamental domain of an automorphic function
belonging to a group of permutation, has been
investigated for automorphic functions of this class.
The number of solutions or solvability conditions
depends on the index, and in certain (singular) cases
also on the genus of the surface or on the
fundamental domain[80].

If in condition (*) G is a matrix and 92 and gare

(n-dimensional) vectors, then there arises the the
Riemann-Hilbert problem for a component
wise-analytic vector .This is significantly more
complicated than the scalar case (n=1) considered
above.

Chapter 2
Singular Integral Equations
Sec.(2.1) The Fredholm Integral Equation

The Fredholm integral equation [116,121] of the

D x|

second kind for a function for a function is an

equation of the type

f(x]=®(x]—f K(x,y|@|y|dy(a<x<b)

where the kernel is of type

K['X,y)_m

ly—x[*

(0 ta<1, H bounded
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It is well known it can be transformed into a Ferdholm

type with a bounded kernel, However, in the important

case “=! (in which the integral of the equation must

be considered as a Cauchy principal integral) the
integral equation differs radically! from a Fredholm
type with a bounded kernel. That is the kernel (with

@ =1) becomes infinite at an interior point *~* of
with the interval of integration ( a.be. Therefore we
call this type the singular integral equations with
Cauchy's principal value of an integral.

The purpose of this chapter is to consider this singular
type and solve some general case with use of theory
of analytic function, in particular, with the finite Hilbert
transformations.

The theory of Hilbert transform

f=Lp [ 2Wg—n a(y)

oS, y—X

Where p denotes the Cauchy’s principal value,
discussed by Titchmarsh in his book on Fourier
integral.

The finite Hilbert transform

r 2lyl
L Yy—X

dy=[@(y)]

is less well-known, but it is studied by Tricomi, we
quote some of his results which we use later. Consider

F(z)j g(t)dt

t—z

Where z is generally a complex number lying outside
the segment (1,1) on the real axis. This transform
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changes a real function of class L, (p °'> where L, is

Lebsgue class of p, into a single-valued analytic
function which is regular in the whole z-plane cut
along the segment (-1, 1) of the real axis, vanishes at
infinity, and satisfies the condition

x—iy Vi dx<k

D
b6

[
(p>1)

For all values of y, k=cons,>0. Then it is shown that

%[@(x+i£]+®(x—ie)]:%[FbHif)—F(X_iE)}-

F|x+ie| AF (x—ie)

In other words, since are conjugate

complex numbers for 9 real, we can state that
x—Iie
D x+iel+@ ¢ —1<x<1)=0
~ 1,
JF|x+ig|==¢
« 2
(x<—1Vvx>1],

That is we have discontinuities across the real axis

—1<x<1].

From the above relation

R F(x+ie|]=H [IF|y+ie||=T, @ (y)|=T,[D(y)]
Hence

F(x+i£)=TX @(y)]+i®['(’x)(—1<x<1),
where
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®¢(X):%[®(x+ie}+® (x—is)},

H. T, are the operator of Hilbert transform, finite

Hilbert transform respectively and we use the famous
Hilbert relations between the real and imaginary part

of an analytic function . From this there follows the

%)

formula which for continuous can be written

F(x+i£):%p_1[1 ?E)))() dy+i QD (x|

In the operator form it is well-known formula

1 1
=p—=+ixd|x|.
X tie px X (X)

(2.1.2) Singular Integral Equation of second
kind with singular kernel.

The singular kernel given as

H(X’y>(2.1)

(x=y)

K(x,y|=

We can expand this in Taylor series about x as follows

H(x,yJ=H(x,x)+(y—x)Hj(x,xJ+;(y—x)2Hii(x,x)+..

So that

2% K x, y)(2.2)

Where K(x.¥) is pounded.
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Consequently the main problem in studying integral
equation with kernels of type (2) is solving the
standard equation

X xip [ 2L ay=x 23

alx|=

H(x,x)

by means of Laplace transform. We use the finite
Hilbert transform here.

If we put

_112W)

Then by result of the previous section, we have

F|x+ie|—F|x—ie|=2i @ x|

~—

1
Flx+i@|+F|x—i @):%pf ?g’(
-1

dy |

D x|

Where we assumed that is continuous in open

interval (-1,1). Consequently equation (3) assumed the
algebraic form

la|x)—Ati|Fx+ie|—|a|x|+Ati| F [ x—ie|=2if [x].

This equation can be simplified by setting

Flz|=e""'Ulz)

Provided that the function T(z) satisfies the condition

(x—ie)

)Z[a(x)+)\ri]e(

z+ie

el

[a(x)—)\ri

we obtain
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U[X+i€)—U(X—i€): Zlf(x) .e—rix+isj\v: Zlf(X) 'e—r(x—ig)
alx|—Ati al x|+ Ati

From which, if we consider the geometric mean of the
two expressions for the difference on the left (which
are equal), it follows that

2if x| ~1

Ulx+ie|—U|x—ie|= exp|— | T|x+ie|+T |xie|| {(2.4)
[az(x]+)\2T2% 2

How, in order to determine the function T(z), we
observe that from (2.4) we have

T|x+ie|—T|x—ie|=log a[x]+)m_:21tan_1£.
alx|— At alx|

Consequently, we can put

It follows from this that

1 AT

i. T|x+ie)|—T|x—ie|=0(x)=tan
a(x)

2i

in accordance with (11).
On the other hand, we have

%[T(x+i£)+T(x—i£”=%pj;%dt,
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Hence, equation (10) becomes now

Ulx+ie|-U|x—ie|=

And can be satisfied by the function

1 —elt]
U(z)zl e f(t) t—z
T °y {GZVXI+)\ZH l dt
2

Finally, we determine Z

view gives us

by using the first equation

2i @ [x|=e"™ U (x+ig|—e™ “ Ulx—ie)

ie" [x)+i0(x) ]- J’I _T}’f dy +i e_ﬂxj‘f<x)
-1

[a J+ 2% z};y—x a(x+ X’ =

2
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a

yl+X Vi

b
1
2
dy _. e " flx]
Ly-x e’(x +7\2n2]l&]
\ 2
ef(y)
b
1 1
aPl
eﬂXHie(X)(.J

After making some implications,

—ry\

dy
+)\n}y X

_alx/flx e
Q(‘XJ_CIZ\X& 27_[ 2\ )\2 2] f{

Where, according to (14) and (13),

1 AT
a(y)

t(x)=T,[0yl,|8(y)|=tan

(2.1.3) Singular Integral is an Integral Operator

In mathematics, singular integrals are central to
harmonic analysis and intimately connected with the
study of partial differential equations. Broadly
speaking a singular integral is an integral
operator[161]

T(fllx|=[ K(x,y|flyldy,

whose kernel function k:R*R ~R" s singular along
the diagonal x = .

(2.1.4) The Hilbert transform H (Fix))
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The archetypal singular integral operator is the Hilbert
transform H. It is given by convolution against the

k(x|=1/(nx|for x€R

kernel . More precisely.

a

nw_ 1. 1
Hifix)=1tim [
=0y

flyldy.

The most straight forward higher dimension analogues
of these are the Riesz transforms#, which replace
kix|=1/n

'=L-MAX s the i-th component of XK' Al|

of these operators are bounded on L’ and satify
weak-type (1,1) estimates.

(2.1.5) Singular Integral of Convolution Type

A singular integral of convolution type is an operator T
defined by convolution with kernel K that is locally

8
n{0

integrable on R'L.4 in the sense that

T(fllx)=lim [ Klx—y|fly|dy.

-0 ly—x|>¢

Suppose that the kernel satisfies:
(i)The size condition on the Fourier transform of K

KeL*(R")

(ii) The smoothness for some C >0
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T ‘K[x—y)—K(x)‘deC.

|X|<2lyl

Then be shown that T is bounded on L°(R") and

satisfies a weak-type (1,1) estimate.

Property 1. Is needed to ensure that convolution (1)
with the tempered distribution p.v. k. given by the
principal value integral

p.v.K|@ |=lim f @ (x)K|x)dx

£20 |yloe

Is a well-defined Fourier multiplier on L*  Neither of

the properties 1.or 2. Is necessarily easy to verify,
and variety of sufficient conditions exist. Typically in
applications. One also has a cancellation condition

a
[ Kl(x)dx=0,YR,R,>0

R1<M<R2

Which is quite easy to check it is automatic, for
instance, if in addition, one assumes 2 and the
following size condition

II ‘K(x)|dx£C,

R<|X|<2R

Then it can be shown that 1. follows.

A condition of a kernel K can be used:

18

(i) Kec'R'[0/éd
(ii) ‘VK(X)‘S%

Observe that these conditions are satisfied for Hilbert
and Riesz transforms.

56



Sec.(2.2) Finite Part Integral and Hypersingular
Kernels

(2.2.1) Cauchy Type Singular Integral Equations

In general, the solution to the crack problems in the
linear elastic fracture mechanics often leads to a
system of Cauchy type singular integral equations

a ¢ D(x) &

F! t—Xx dHZ‘!k”‘x’t)d”bf@f["]:l’i(m

Where ¢<x<d,abi(i=12,....) gre real constants and the
kernel Ky[x,t] are bounded in the closed domain

(x,t)€[c,d]|x]|c,d].

Function Pix is known and given by the boundary

;(x)

condition. Functions are the unknowns of

problems, also called by the density functions
However, if the unknown density function is chosen to

be the placement, say ©lX.  then the order of

singularity increases. Thus, a formulation of
hypersingular integral equations is made.

.
Shear modulus GlX/=Gee

then the governing a partial differential equation (PDE)
in terms of the z component of the displacement

) Xy o
victor ¢ ) is

VZw(XJ“BW:O (2.1)

With mixed boundary conditions

w(x,0/=0x¢|c,d].
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+{

{

% (2.2)

g,
Where PX) s the traction function along the crack

surfaces (c, d). By a process of Fourier integral
transform PDE can be reduced to hypersingular
integral equation.

(2.2.2) Hadamard Finite Part (HFP)

Integral was first introduced by Jacques Hadamard to
solve some linear  partial differential equation (PDE)
which can be considered as a generalization of
Cauchy principal value (CPV) integral[2,14].

(2.2.3) HFP and Cauchy Principal value Integrals

HFP integral is a generalization of CPV integral, thus
let us look at CPV integral first :

CPV is equations that involve integrals of the type

120 4 y<i(23)

t—Xx

C

Is not integrable in the ordinary (Riemann or

Lebesgue) sense because of the Kernel L(t=x)

Is not integrable over any interval that includes the
point =% Thus, it is regularized by CPV integral:
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Where ¢<*<d Notice that the ¢ -neighborhood about

the singular point *~! must be symmetric, and it is
how CPV works out for canceling off the
singular(xrity).

For the existence of the CPV Integral, the function

@ (x) needs to be at least Holder continuous on (c,d)

that is @xI€C™lc,dl.  Thijs requirement of regularity
can be easily checked by following manipulation:

ol [ 7 2lt-2x
Joasim | = ol
oJ Q(tt):;m )dt+®(xif%(2 5)

Thus, for any 9€C",*>0, the first integral on the

right side is an ordinary Riemann integral and the
second integral is

d
Ii=logﬂ,c<x<d.
 t—s x—c
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Although Cauchy principal value integral is defined for
an interior point in (c,d) above, it can be evaluated
separately on both sides of the end point:

X—€

il

%;)dtZQ[X]lns

where **¢ and

dt ==1im[®—(t)dt+®(x]lns

"And CPV integral does not work for a higher
singularity. For instance, consider D[t|=1Ax=0€(

That is ,

d
d—§c<0<d.
et

Thisintegral js not convergent, neither does the
principal value exist, since
i
rc,dvV—c,c

L dt . 1 1 2
0% —jjm|1-142
!66 t? CIPS(C d+e)
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is not finite. Hadamard finite part integral is defined

by disregarding the finite part, 2/¢, and keeping the

finite partg, i.e

t

t

ﬁe—)a_‘
| &
O |

(2.7)

Q|-

D efinition (2.2.1)[ (Hadamard Finite Part
Integral)

Let € >0, A denote

c,d|(x—e,x+e
Fle,x|= ¢¢eOf(t, x)de,c<x<d.

Where the singularity at the point (=xIfFlex jg

decomposed into

Fle,x|=F,le,x|+F le,x,

And

lim Fyle,x|<o.lim F,(E,x)<o.

e—-0 -0

Then the finite part integral is defined by keeping the
finite parti.e

d

ff(t,x)dtZIimFo(e,x)

¢ -0

Notice that HFP integral can be considered as
generalization of the CVP integral in the sense that if
the principal value integral exists, then they give the
same result.
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Definition (2.2.2) If 2x/€C™lc.dl, then

I 2(x) +d o) , 20x
tlim| | —dt f(t_x)zdt (2.8)

e=0| ¢ (t—X) X+e €

Following observation may help to wunderstand
Definition 2 for HFP. By a step of integration by-parts ,

the first integral under the limit ¢~°% (8) can be
written as

t—Xx
_[ D (t) dtzg();_g)_cix*'.[ Q(.J(t)dt.'

@

Thus, the term  —22X)/e in (8) will kill the singularity
[ Plx—el+@(x+e)ile, gnd under the assumption that

@(x)€C*(c,d) Definition 2 indeed takes the finite part
of the integral according to Definition 1.
Another direction of viewing to Definition 2 is by

taking direct differentiation d/ dx to(5) with
Leibnitz's rule, i.e

2(t)

t—¢é

d
[
C
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( X+e €

Proposition (2.2.3) @x/€C*lc.dl. then

t(2.10)

T

Alternatively. One can define finite part
integrals[28,30] by requation(10) A deduce Definition2 as property.

For general HFP integrals can be defined recursively
as follws.

Definition (2.2.4) (Finite part integral) Let

1+i=0p>1L"[c,d|
L(v

1+4,c<x<d,An=1,2,3....
For any @ec”(c,d|nL

By means of (2.5) and the definition of finite part
integrals,

(2.2.4) Hypersingular Kernels

For the derivation of hypersingular kernels, we use
three basic ingredients (i)Finite part integrals

(i) dentity
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.nd”{ 1
1

, 2.8
dy" y—ilt—x]

d_”{ 1
y—i(t—x)

dn
(iii)Plemelj formulas

@dtﬂti Dx|,deL™

t—x
d d
. D (t) .
| dt=1] ¢
el—%[(t—X)+i€ '[

The key point of identity, (8) is that it allows one to
dy
switch the differentiation from g4/id/ay¢ , and vice

versa, HFP integral has been defined and addressed in
previous section, for the sake of completeness , we
shall briefly address Plemelj formulas.

(iii)Plemelj Formulas

In general, the Cauchy principal value type of integrals

c<x<d

Is evaluated indirectly by to using complex Function
theory [7, 9]. Define

d

@(’Z]:f Q—(t)dt.

c

With z not on the integration contour. The principal
value is then recovered by sending z to the point x on

the interval (c, d), and the result is different as * %

from above and below. Say, define
@(x+i‘y‘). @—z,:x\:m D x—ily].

+¢[x)=lim ¢
y=0

@L.
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Then the limits are

d

+4[x| f dt+m® (x)(2.9]

C

@[.
and

—6lx)= f dt i@ n(x)(2.10)

@b
Equations above sometimes called Sokhertski
formulas. It is (2.9) that we will be using in the
derivation of hypersingular kernels. Notice that
2(x)  can be recovered from Plemelj formulas. i.e
I
+o[x|——=—
2mi
o
D x|=¢

(2.2.4.1) Rising of Hypersingular Kernels

To demonstrate how the hypersingular kernels arise,
we go through Fourier transform o(x,y)

To be expressed as

)e)ﬁrf\y

e dg(2.11)

:ﬁi[a(
where
(A& =& +iBe, (2.12)

to satisfy the far field boundary condition

I =0. we choose the root A "
lim @, y|=0. we choose the roo < to be the non-positive real

part,
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\/é“iﬂzﬁez—%sgn[ﬁa Ve+prE-g2.13

-1 -
-1y
\/E 6

Where the signum function sgn(.) is defined as

| Ln>0

sgn(n)z o,rl:O

—1,n<0
+(istaken,

As the limit of  y -o°

+4
x,0°
i
(AY8
oL [ alele ™ de(2.15)
V2 %y
+6
" X’O(J " L]
That is, ¢ inverse Fourier transform of
w6

inverting Fourier transform one optains

x,0" e ™ dx
AYA

0

1

a(é)zﬁi 6

66

(2.14).



Where the first boundary condition and a change of
dummy variable x~t have been applied.

Defining

KI&, y|=AlEle"7(2.17)

and using the second boundary condition in 2 one
reaches that for ¢<x<d

y - 0" T k(& yle ¥¢d&(2.19)

¢lim ¢
+{
Let b and by a step of decomposition
K(|=K{
K[&|=[K[E-K. (&) +K.[E]. (2.20)

One obtains a closed form expressions of

Kw(él=—\é\—%% (2.21)

67



This K.[¢] gives rise to quadratic hypersingular and
Cauchy singular kernels by the following

—2

{|E‘37‘€‘y]eiit7x\éd€y 5 0“"( E 12.22]
¢
8l e ge g =2 (593)
- t—X

(2.3.4) Higher Order Hypersingular Kernels For
more general and higher order of hypersingular
kernels, they can be derived by observing that

’ 1 [ n n — +ilt—x)
k,lt=x,y| :%f i"| | %‘e lely ¢ de
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1
y - 0”‘_[ k (t—x,y)D|(t|dt
-1
lim ¢

t—x+iy
d" .
6
dx"

1
y - o*“(—1)"\gf RILi—11D ¢ de
-1

¢lim &

4

1
y - O“f (t—x+iy)" @ t]dt
-1

-lim ¢
dx G

Z,(—l)"\/%i}%

— 1
("_1n\/g dnf Q(tr?ﬂ dt
T dx -1 (t_X)

cn!(—l)”\/%fl%dt,

where the Plemelj formula and the definition of finite
part integrals have been used. Note that, when n is
an odd integer,

inEn |€‘ e—\{\y+iit—x3§d€

n(t—x+iy)_1

T |dx

Thus we have
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+[,

1 |€| 7|§|y+1\t x| &
y- _— d
V2m

b
(t)hmc

[

-1

s
dt D

o= 25| E iy
mo | dx"

VL k),

where the Plemelj formula is used again.

Chapter 3

Calderon-Zygmund Operators

Sec.(3.1): General Calderon-Zygmund Operators
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This section study of general Calderon-Zygmund

Operators, that operators given formally as[76]:

TIfl=[ K(x,ylflyldy

For an appropriate kernel k let us quickly review what
we used in order to show that the Hilbert transform
is of weak type (1.1) and strong type (2.2).

First of all we essentially used the fact that the linear

H

operator is defined on L’

This information of linear operator H was used in two
different ways. First of

all the fact that HisdefinedonL’ means that it is defined

on a dense sub space of L' for every !sP<te.

Furthermore, the boundedness of the Hilbert transform

1H(g)>x]

on L allowed us to treat the set where g is

the 'good part' in the Calderon-Zygmund decomposition
of function f.[1]
Secondly, we used the fact that there is a specific

H

representation of the operator of the form

HIf|(x)=[ Kxy|flyldy
Whenever f€L° and has compact support and

x€supplf|. For the Hilbert transform we had that, the

k

kernel is given as:[3]

k(x.y]zx_y
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We used the previous representation and the formula of

K to prove a sort of restricted L' poundedness of H

on functions which are localized and have mean zero.
This, in turn, allowed us to treat the 'bad part' of the

Calderon - Zegmund decomposition of f- That what we

k

really need for is a Holder type condition. Note as

well that for the Hilbert transform we first proved the

1<p<2

L" bounds for and then the corresponding

boundedness for 2<P<* follwoed by the fact that H s

essentially self-adjoint.
Sec. (3.2) Singular kernels and Calderon-Zygmund
Operators
We will now define the class of Calderon-Zygmund
operators in such a wa that we will be able to repeat the
schedule used for the Hilbert transform. We begin by

k,

defining an appropriate class of kernels name the

singular kernels[4].
Definition(3.1.1).[4] (Singular or Standard
Kernels) A singular or standard kernel is a function

. pt X {RPA{ . . —
k:R ~C, defined away from the diagonal *=Y-

which satisfies the decay estimate
_(',”
K (x, <, |x=yl¢ (3.1.1)

For **Y and the holder-type regularity estimates

72



«

Sno |y_y§+(, ifly—y1|<%\x—y\(3-1-2)
x—y|

K(x,y,-Klx,y|

and

o

‘x—x1
<
~n.o

|K(x1,y)—K[x,y) if|x—x1|<%|x—y|(3.1.3)

n+o
X—

for some Holder exponent 9<o=<l.

Example (3.1.2): let KRXR=R ha given as:

-1

Klx,yl=(x-y) for

X,y €R with  **Y . Then K is a singular kernel.

Observe that
K is the singular kernel associated with the Hilbert

transform.

Example (3.1.3): Let K:R™XR'=R pe gjven as

‘i:i [’|X_y|7n
Klx,y|=Qi

. n71 " " .
Where £:S ~C js a Holder continuous function :

Q(x|—=[y"

SnalX' =y
for some 9<°<l Then K s a singular kernel.

Example (3.1.4): Let K:R'XR'-C gatisfy the size

estimate

—n

yVi o,
IK(x,yl|'nvx—ci

and the regularity estimates:
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y\/z’—{nﬂ‘\,
. —(n+1)
& "IV, K, yls,

V.Klx,yl<,

yV X—0

X—0é

K

away from the diagonal *7Y> then is a singular

kernel. In particular, the kernel K:R -R -C gjyen as:

n

yVié o
K(x,y|l=tx—¢

is a singular kernel since the gradient of K is of the order

—(n+1]

yVi .
LXxX—{
Thus the estimates (3.1.2) and (3.1.3) are consistent

with (3.1.1) but of course do not follow from it.

1
Remark (3.1.5): The constant  appearing in (3.1.2),

(3.1.3) is inessential. The condition are equivalent with

the corresponding conditions where % is replaced by
any constant between zero and one.

We are now ready to define Calderon-Zygmund
operators.

Definition (3.1.6) (Calderon-Zygmund operators)
A Calderon-Zygmund operator (in short CZO) is a linear

n-

operator T:L(R)=L*(R") \hich is bounded on L(R)

n

||T(f)||L2R"SIn "f”Lz(R)" for a” fELZ(; )
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and such that there exist a singular kernel K for which
we have

T(f)lx)=fkix,ylflyldy.

for all [EL IR with compact support and *¢ supp

()
Remark(3.1.7) : Note that the integral :

Jklx.ylfly]

converge absolutely whenever feL’(R] has compact

support and ¥ lies outside the support of [ indeed,

R
a 1
|k(x,y]|‘f(y)‘dy£ f |k[x,y)|2dy 2||f"L2(z,z-n>
y¢& supplf]
a
[
o
a 1 1
< f = dy P f 2w
k—yl=5 | X— Y|

5>

By (1), for some 0- observe that the integral in the

last estimate converges.

Remark (3.1.8): for any singular kernel k one can

T,

define by means of

TIflx)=[ Kix,y)fly|dy.
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For (€L(R") with compact support, and X#suplfl- |t js

T

not necessary however that "+ is a CZO since it might

fail to be bounded on LRI .

Remark (3.1.9): It is not hard to see that (T) uniquely
determines the kernel K. that is if

T(fllx|[kix,ylflyldy=[ K[, yIflydy.

for all f€L(R")  with compact support then K=K

almost everywhere . The opposite is not true. Indeed, for

any bounded function P€L*(R") the operator defined as

Tiflxi=blxIflx] is a Calderon-Zygmund kernel zero. A

more specific example is the identify operator which
also falls in the previous class, and is CZO with kernel o.
however, this is the only ambiguity.

If Tis a CZO, the definition already contains the fact that

T is defined and bounded on L (R) , so we don't need

to worry about that. The next step is to establish the

restricced L boundless for L functions with means
zero Lemma(3.1.10) : let B=B( z, R) be a Euclidean ball

in R" and denote by B’ the ball with the same center
and twice the radius, that is B=Blz.2Rl. |t f€L'(B)

have mean zero, that is Jsf =0 then we have that
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Rianmfsvf‘y)\/dy

|T(«f](x)

<

~n,o

[x—2]

X¢BC

for all we conclude that

" T(f)" L2{R"\B‘V\ Sn,a "f "LZB‘

Proof using the fact f has zero mean on B, for x¢B

we can estimate

(',T(f)(x)vsvaK(x,y)—K[x,z)\/i,f(y]dysz%\/f(y)\/dy
x—y

RG

|x—z|

n+o IBlf(y)‘dy

~n,o

Integrating through R'(B&  we also get the second

estimate in the lemma.

The only thing missing in order to conclude the proof of

the L° bounds for CZOs is the fact that they are self

adjoint as a class. In particular, we need the following.
Lemma(3.1.11): let T be a CZO. Consider the adjoint

T' defined by means of

[ Tiflg=f r(g)(3.14)

forall -9 in ' .Then T isa CZO.

Proof: it is immediate from (4) and the fact that T is

bounded on L that T s also bounded on L with

the same norm. Now let [ 9¢L(R) have disjoint

compact supports. We have
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[Tifig

L[ Klx,ylflyldyglx|dx

cff IfK(x,y|ylx|dxdy(3.1.5)

Now let Z#supld) and DECI(R) have support inside

B(0,1) with
[o=1
for €0 | the functions 2<Y=2) are supported in

B(2,€) 5o, for small enough, the support of Zc is

disjoint from the support of 9 . By (5) we conclude that

[ @2y T(g)(y)dy=] @(z—y) [KIx,ylglxIdxd

€-0

Letting we get

TL('g]lz)ZJ'K(x,z)g(x)dx.

for almost every z&supplgl-  since the conditions

defining singular kernals are symmetric in the variable (

XYt  the kernel

Slx,yl=K(y,x)

is again a singular kernel, so we are done.

The discussion above leads the main theorem for CZO:
Theorem (3.1.12)[4,5]: Let T be a Calderon-Zygmund
operator. Then T extends to a linear operator which is of

1<p+o©

weak type (1,1) and of strong type (p,p) for all
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where the corresponding norms depend only on (n)

and( °¢ and (P) .

Sec.(3.2) Pointwise Convergence and Maximal
Truncations

Let T be CZO. The example of the Hilbert transform
suggests that we should have the almost everywhere

convergence.

T(fllx)=lim [ Klx,yflyldy,

€0 k—yl>e

at last for nice functions €SIR pecause of (3.1).

However, the limit

lim 7. ) x)

need not even exist and be different from T(flix]. Here
we can use the trivial
example of the of the operator TIflxI=bf(x)  As we have

already observed this is a CZO operator with kernel 0.

Thus TelflIXI=0 forall e>0 ¢ clearly TIfl #0 jn

general.

Lemma (3.1.13): the limit
lim T,(f)(x]

e€-0

exists almost everywhere for all f€S(R') if and only if

the limit

d

lim [ Kix,ylflyldy,

€-0¢lx—y|<1
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exists almost everywhere.

proof : First suppose that the limit lim Tl

exist for all fE€S(R") _and let ( @€ S|R"|with@ =1onb(0.1],

then

im T, @|(x|=lim [ Klx,ylflyldy+ [ klx,y|@lyldy.

€-0 €-0 6‘X—y|<1 |x—y|>1

Observe that by (3.1) the second integral on the right hands side
converges absolutely. Since the limit on the left hand side exists we
conclude that the limit on the right hand side exists as well.
Conversely, suppose that the limit

lim ¢

e~;Y f Klx,yldy=L
e<ix—yVil

Exists and let [ € S(Rn) . We have that

€<LXx—Y
T,(f|1= [ 160K, yiflyldy+[ . K(x,y)f(y)dy

€<ix—Yy
o J e Klx,yIflyldy—flxldy+f (0) [ oo, K(x,y)dy

Klx,y|flyldy=:1,le|+1,[e|+i1,

+fi,

x—yvil

1,V

By the same considerations are before is a positive number

that doesn't depend on € . By the hypotheses we also have that
limi. ,1,lee|=Lf(x|. (]
i Finally, for ™ observe that we have
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x—yvi "™ Vay,

Ikl ylvx=yvdys, | @

O0<éx—yvil tx—yVvil

. o limée_o1,(€) .
Dominated convergence implies that i exists as well.

Thus, for specific kernel k one has an easy criterion to establish

.. hm‘;eaoTe(f) . . .
whether the limit i exists a.e for nice functions f . for

Yy
X—é )
example, for the kernel 6 of the Hilbert transform, the
kix,yl=¢
existence of the limit
lim &

L f 1 dy=0

€-0e<ix—yVvil X—y

Is obvious. In order to extend the almost everywhere convergence to

p n . . .
the class L'(R")  we need to consider the corresponding maximal

function.
Definition (3.2.14): Let T be a CZO and define the truncations of T as

before

T.Iflxl= [ Klx,y|fly/dy,xeR",feS(R")

[x—ylvie

The maximal truncations of T is the sublinear operator defined as

l

T, |f|[x)=,|Tcf|[x]|,xe R"

The maximal truncation of a CZO has the same continuity properties as

T itself.
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Theorem (3.2.15): let T be a CZO and T denote its maximal

truncation. Then ¢ is of weak type (1.1) and strong type (p,p) for

1<p<oo.

The proof of theorem 8 depends on the following two results.

Lemma (3.2.16): Let S be an operator for weak type (1,1) and

ve(0,1). with 0<|E|<+x

Then for every set ECR we have that

o~

!
The proof of this lemma is a simple application of the representation of

the L norm in term of level sets and is left as an exercise.

The second result we need is the following lemma that gives a
pointwise control of the maximal truncations of the CZO T by an
expression that involves the maximal function of f and the maximal

function of T(f).

Lemma (3.2.17): Let T be a CZO and °<Y*! Then for all

TVi(x)

©(pn M
fEC:(R) we have that i
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R

Proof: Let us fix a function ;"e" :I;), and €79 and consider the balls

B=B(x,€/2) and its double B=BIX:€- we decompose f in the
form

f=B+f1-xB'|=:f +f,
Since  °“PP [fz)n B=6 and obviously f2€LY(R") has compact

support we can write

Tif)x=[ kixylflyldy= [ Klxylflyldy=Tflx. (3¢

R k-yl>e

wEB

Also every is not contained in the support of f2 thus

IT(F,|w=T(f,)x|=| | [Klx,yl=Klw,ylf,lyldy

|x—yl>e

CX—.LO.MVI‘[Y]VCD’
tX—YVeoé
8

< [ ¢

k—yl>€

By (3.6), since X WY VXTYYE for y in the area of integration

above. By this estimate we get that
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Tl TR v e X

Lx—yV 2Kt

oflylvidy

-1 1 .
U;OE n+U)J'6

pklnta)

N

N

o X (M), M) ()

Combining the previous estimates we conclude that for any " €B

w
iV,

LTl flx|<AMf)(x]+T [f,) x|+4T(f, )¢ (3.7)

For some constant A depending only onnand ° .
If Tclfllx|=0 then we are done. If ¢Telf)lx]veo then there is
>0 o that CTelfIXIVEN. 1 o B,={w € B:|Tf(wl|[>*/3] .

B2:{WEB:|Tf1(w)‘>>\/3} .

and

B. =@M (<A,
37| BiM(f)(x)>ATN/3,"
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Let "E€B Theneither WSB1 or WEB: o AM(f)x)>X/3. 1y

the last case D2=B 5o in every case we conclude that
weB,UB,UB, thus BC B,UB,UB, . However, we have that
o 1 W |B|
B|"— | |T dy<——M|T, .
B ST irlyldy <32 (77lx]

Also, by the (1.1) type of T we get

B, %HleLl(R”F%{|f1yl|dy£%M(f](x)-
Finally, if B,=B then NS, MIflix]. Otherwise B,=6 SO,
|B|<|B,|+|B, sn,gg(M(Tf)(mM(f](x)).
Thus in every case we get that
NS, MITF|(x]+M[f|(x],
N<Te(f)(x)

Since the previous estimate is true for any we conclude

that
T (f)(x) s, ,MITf|[x]+M|f](x],

Which gives the desired estimate in the case v=1.

For v<1 estimate (3.7) implies that

S g e X

m
—C

LT (f)e

And integrationin " €B (o get
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e S o C<\ e S X o0 X

Lv

T (f)o
CVU+§H£C
oTe(f)é

And thus

T X - 8

[t
()
<

()
<

o~

Q
<
=
< |~

T(f)(

(B[ ¢
lB
B

1

T(f)(dwi)"e
(B[ ¢
1B
&

V'S,

~n,o

0Te(f)é

Note that
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w
AVEA
6
fve
(To(x)]
M.
T(f)(dwi)<i

LBV ¢
B

oo

And by lemma 9 the last term is controlled by

w
VG
) 6
Y VIfV1<M(f)(x)

T(f)(dw&) ‘B‘

LBV L
B

[

Since is of weak type (1.1). gathering these estimates we get

\,.,
<

O
x

[ E
o~

~
@
—
-y
-

[ty

as we want to show.
We can now give the proof of the fact that maximal truncation of a

1<p<oo.

CZO is of weak type (1.1) and strong type (p,p) for

Proof: proof of theorem 8. By lemma 10 for v=1 we immediately get

that T¢ isof strong type (p, p) for 1<P<*" gince both M and T are.
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In order to show that !¢ is of weak type (1, 1) we argue as follows.

By lemma 10 we have that

Hx ER”:T(-,(f](x)>>\I‘

<. Vv

~n,o

xGR":M(f][x)>>\§ Vi

fvi

(T o(x)(x)
1

M (,>\§

XER": Vi

+44

fve(x)

XER™ Mziz,xa Vi

1., .
sivcfHLanﬂ,

Thus the proof will be complete if we show that

|
fvi

n (,1 . .
XER": i\/()f\/()l

MIToolx) icxi]

6
As we have seen we have that

i XER":M|gllx}>4"% | v<2"V|x € R": M, [gl(x|>»| Vi, .

Where Mo s the dyadic maximal function. Furthermore, using the

calderon-Zygmund decomposition it is not hard to see that

[;{XE R":MA(g)(x)>>\}'vi'% f & glx)dx

[ Malg)lx >} }

fvié'
6T o(x)
Applying the last estimate to Z,% we get

glx|=¢
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fve'

fve'
X
8
18
(L5502
\%
18
f(x)Vvi'dx
¢Tok
VM, ¢
v 1
ER":|M[Tiilx]]">a"N<(|'n,v—] ¢
X ( (x)} S|[m v>\v‘[
18
X
6
I8
©(pon Ve
For [€C (R the set fT(-) has finite measure. Thus by lemma 9

M i

(¢

we conclude that

A

[ E (o

1
FVe(x]”
FVEG
T
M,
L{XER":L

And thus by (8) that

fve
XER™[M)

‘X| >>\§

\/Ln,v%\/&f\/(,LﬁR”
ol
This conclude the proof.
(3.2.2) Singular integral operator on . and
BMO.
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The theory of Calderon-Zygmund operators developed
so far is pretty satisfactory except for one point, the
action of a CZO on L .. Furthermore, it is at the
moment unclear how to define the action of T on a

general bounded function or even on a dense subset of

L™ With a little effort however this can be achieved.

R
(¢in)

0

Let us first fix a function and look at the formula

T(fl(x)=[ K(x,y|fly]dy.

As we have already mentioned several times, such a

formula is not meaningful through R’ . Indeed the

integral above need not converge, both close to the

diagonal *~Y since K is singular, as well as at infinity

«—n

V6
since K only decay like yg,x_(; , hot fast enough to make

the integral above

absolutely convergent. The first problem we have dealt
with so far by considering functions with compact
support and requiring the validity of (3.6) only for

x€supp(f) A similar solution could work now but we still

have a problem at infinity. Note that we didn't run into

this problem yet since we only considered functions in
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R
(Zt’z) which necessarily possess decay at infinity. This

iIs not necessarily the case for bounded functions.
However, looking at the difference of the values of T(

f¢  at two points %X with "% | we can formally

write

T(f)(x1)_T(f,)(X2):” K(X1’Y) K(XZ’YHf[yjd}’-

Using the regularity condition (3) we see that

« N+0

tx—=yVi
x,Ve°

e
Z’K(Xl’Y)_K(Xz:Y)< 6

~n,o

bX,—

when Y 7% | This is enough to assure intgrability in the
previous integral, as long as xuxs€supp(f) - Motivated by

this heuristic we define for €L (R):

b
R
TIFxI=T [Fxo)lx)+ J [Klx,y)-K 10, yl]flyldy(37)

For some Euclidean ball B so that %Y€B _ First of all it

is easy to see that the integrals above make sense.

f
Indeed, T("J‘(})XB) is well define since x» isin L(R)

On the other hand, the integral in the second summand
converges absolutely since we integrate away from

B30.y.f is pounded and KXYI=Ki0.yi panaves like
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n+aog
_(J
yvit for
ol

|ly| = +o0

. However, (7) only defines T(f) up to

a constant. Indeed it is easy to see that if BB are two

different balls containing 0,y the difference in the two

definitions is equal to

| K0,y flyldy

BAB

which is constant independent of * . Thus we only

define T(f) modulo constants. This definition of T

gives a linear operator which extends our previous

R
(¢én)

5 or S(R') | To deal with the
6

definition on

ambiguity in the definition, we have to define the
appropriate space.
Definition (3.2.19)[8]: We say that two functions

eC

f.9€R"  gre equivalent modulo a constant ¢ such

that fx=9/x=¢ aImost everywhere on K- This is an

equivalence relationship =9Mm°4a e will identify an

equivalence class with a representative of the class,
much like we do with measureable functions.
Theorem (3.2.20)[8]: Let T be a CZO. Then for every

fEL”R" e have that:
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" T(f) "BMow}R"}Sn,U " f "L""QR"}'

Proof: let B = (z,r) be some ball in

show that
f

6

6
TIfl-T¢

¢

6
(BVG [ ¢

B
1
0
z,2\/ﬁ
And denote pgi=g; ). We set

f:fXB"+fXR"[BZ’£Y::f1+f2
Since T is of strong type we have
ITCFON e S I IILz(Rn)\BGP
Thus by Cauchy-Schwartz we have
fi
CBVENT (F ) e |BE <, I -

(s 1
cT((,)vsz

ot

B

On other hand for *€B> the ball B

both * and zso
b
R'K(x,y|-Klz,y)|
T(fz)(X):T(fzxs’)"'fz,fz(y)dy

S"f"Lm:R”\f |y,Z‘22rVK(X’y]_K(Z’y)dy
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s N+0

(x—yVi
zV i’

dy

bXx— 7
S"f"Lm(R")J‘b/fz\zHZ)

1
ba—yvi™

1l S

{[oo—y[>r!

dy.

R
L*(é6n)
Sn,a "f ||L

Remembering that only defines T up to a constant (B)
we get
TIfllx)=c[BIVE<, oI o
¢BVi [ ¢
3
By preposition (3.2.13) this proves the theorem[9].

We will now see that although the space BMO contains

unbounded functions like log X] , this in sense the

maximum possible growth for BMO functions. Although
such a claim is not precise in apointwise sense, it can be

rigorously proved in the sense of level sets. Indeed,

assuming  If lawo=1
1 d

= [|f=fil<1.

|BI£| !

For all ball B. Using Chebyshev's inequality this implies

| . B
VxEBﬂfh%{Ac%HS%}

Theorem (3.2.21)
94



Let f€BMO R. Then for any Euclidean cube Q we have that

—Cy N ”f "BMO

[x€Q:|fx|—folex]|<,e Q|

forall €0 where the constant ©”° depends only on the

dimension n.
Which is of course quite far from the desired estimate.

C(>\>Z,n’c—en>\

This will be achieved by iterating a local Calderon-Zygmund
decomtion as follows.

QO Blofzn

Let us fix a cube and consider the family cubes inside

Qo which are formed by bisecting each side of Q. Then define the

second generation B, by bisecting the sides of each cube in B,

and so on. The family of all cubes in all generation will denoted by

B For a level A>1 to be chosen later let B’ . Be the bad cubes

in B | thatisthe cubes Q€B  such that

:QVé [ Flw)dw>A.
Q
1

6
Where FWI=|flwl=fo]

Finally, let B be the family of maximal bad cubes. Since

(Q,.; o Flwldw<1<A

1 for the original cube Q
6

, every bad cube is

contained in a maximal bad cube. As in the global Calderon-Zyfgmund

decomposition we conclude that
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LQV&IF[w)dWSrnA
Q
A<t
&

Q€B

For each cube where the constant " depends only on the

dimension " . We also conclude that

F(w)<A

If ©%UoesQ by the dyadic maximal theorem. Remembering the

e . Y, =1
initial normalization llavo we get

> <,Q\/<— > [Flw dw<—VQ Vi

QEB QEB Q

And for Q€8
.1 1
’fo_fQu‘Z(:a![f_fou] 6‘! wlsw<r, A
x>r A

Now consider n we have

L{x€Q,:

(f fQ ‘6>\| 8 aGUQGBQ ‘f o« |— fQ‘>>\ Vi
(.JHO(GUQEBQ:|f[Oc\)_fQ‘>>\HfQ_fQOV}V()
i|x€Q:F[x|>xr,AlVi

>

Q€EB

c(>\—rnA) > Q|

Qe€B

c(x—rnA)%Qo

However that
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Whenever "4 suppose that Nr”A<>\£(”+1)r“A. Since

¢ s non-increasing and the trivial estimate c(N=1 e get
r,A—1
A
b
( \ \ CNT'HA — —l¢(—1linAé _—en
C(XJSC(NrnA)S(‘—N)SC NV g pmemtimacmen
\ A
_ A>T oC. A<r
For A=c (say) and "= On the other hand, for " we have

c(Z)<1nc ™™

So the proof is complete.

Corollary () Consider the L" version of the BMO norm

p

gl e favi

I f "BMO,p =g

p
|61|_([‘3f_f0\/‘3

Then

1F w0 S, 1 lsmio
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Finally, we show how we can use the space BMO R as a different
. : : P
endpoint in the log-convexity estimates for the L norms.

fEL’(R|nBMOIR".  Then

Lemma 18: let 9<P<d<®  4pq

fEL’ IR 4nd

hhc C\'C\'w =
o~ o~

£l "ol 11
. - ‘ # :
Proof: Obviously it is enough to assume that &V fllowo™0 otherwise

there is nothing to prove. Also by homogeneity we can normalize so

that V! lavio=1 . Now from the Calderon-Zygmund decomposition of

e, b
(,f(;w, at level 1 and denote by B the family of bad cubes as usual.

For each cube QEB we then have

LfViPg,=1

1 .
V< 18
f chc£

‘QVi[ ¢
Q

1
6
From the John-Nirenberg inequality we conclude that

xQ:|f (x| =P —ifoVi
g, Ql

|{xQ:‘f(x)|>>\Hsz,
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S

For all the bad cubes 9€B since we have that for
XE U Q we get
| x€eR"|fx]>N]| <, Vif v, (11)
Forall ™! .On the other hand, since fEL" e have
cheR”:f(x)>>\Hsz’v>priP 12)
We conclude the proof by using the description of the L" horm in

terms of level sets and using (3.2.12) for A1 and (3.2.11) for

x>1.

Sec.(3.3) Calderon-Zygmund Kernels and
Operators[64,65]

. n n _[ . nl
We denote the diagonal of R *R'byA=(lx,x|:x€R".

Definition (3.3.21) Let <<l A Calderon-Zygmund

Kernel of order
a is a contenuous function K : °A — k such thatthere exist a C>0 A satisfes :

forall(x,y) €A
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C
K (x,y)|< —
|x—y]

i for allx,y,y €R" satisfing‘x—y'|£%\x—y\whenx#y

o4

1
x—y|"

ly—y]
x—y|

|K(x,y'—K(x,y')‘£C

ii forC’”X’X’Y'ER"SGtiSﬁng\X—X'|S%\X—y|whenx#y,

a

|x—x'
x—y|

1

[K(x,y-K(x y)l<C n
[x—y["

C:li|
We write Kk eczK,Anormitvia| K|,=inf ¢iii| hold .

. 1
Remark( 3.1.2) |i|the constant 5 canbereplaced by any 6 € (0,1).

Then the constant ¢ changes.

(ii) The E uclidean norm \ \can be changed ( any other

norm. Again ,C changes.
(iii)  When a=1V,K(x,y/3almost  ayerywhere and
satisfies :
c
|v}’K(X’-y)‘_ n+1
[x=yl

foralllx,y|€°A

(iv)whena=1,V K|x, y|3almost everywhere Asatisfies:
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forall|x, y| €°A.
(V) DefineK‘(x,y|=K|y,x).ThenK € CZK ,impliesK' €ECZK .
Definition (3.3.23) (Kernel associated to an operator

L*|R".
) LetTeL:

We say that a Kernel K :“ A — K is associated ( T if forall f € LZ(R” , with spt f compact,

Tf(x)sz[lx,y)f(y)dy(y)

sptf
for almostevery x €°¢, )[70].

Remark( 3.3.24) This integral is a Lebesqgue integral

for all XClsptfl.

Moreover ,this says thatTf can  y  represented by thisintegral = 5y
from the support of f

Definition (3.3.25) (Calderon-Zygmund

operator) .
A Calderon-zygmund operator of order ¢ is an

L*(R’

operator T 1, thatis associated to a K

€CZK,.wedefine CZO,{bethe collection of all

Calderon— Zygmund operators of order a. Also
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JL R+ K |,
L
ITllcz0, =0T |:

Remark( 3.3.26 ): (i) [€CZO.ifronlyif T'€CZO0,

Lz(R”) withspt f.spt gcompact Aspt f n spt g D .then,
also,letf,g €

fK(X,’y)f(y)dy(y)

R

dy(x)

(Tﬁg,f):g,Tff:fng(X)

an(x,);)g(X)
K

fly)i
of ¢

R

(',sincefwasarbitrary,T[’g(y]=f K(x,})g(x)dy(x)foralmost every y €[sptg|.that

R

is, T*has associated Kernel K°. (ii)

T €CZO.,if Aonlyif T" CZO,,where T" is thereal transpose of T.
the associated kernel , _sted =,
T"isK"(x,y|=Klx,y).

(iii) the map

CZ K ,the associated kernel ,is not injective Consequantly ,. one cannot

defineaCZ O, uniquly givena€ CZO
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The following is animportant illustration.

R"|Alet T, bethe map~ mf.it is easy ¢ that this is a bounded operator on:

Letm€ L~
L’let K=00on°A.A{

Letf € Lw(R”)with spt f compact.then, whenever x € spt f , T, fx|=m|x|f | x| =0.Therefore

Tmf(x):f K(x,y|flyld y|y|d y whenever x €°|sptf |, which shows the

R

associated kernel to T, is 0

(3.3.1)Calderon-ZygmundoperatOr in
One-Parameter Settings

In this chapter | will start my study of Caldron-Zygmund
operators in one-parameter setting. The canonical
example of such an operator is the Hilbert transform,
which is given by

_pbv
=B

X— dy

In the case of several variables, the canonical example
becomes Riesz transforms, which is given by

o X,
ij(x) pv L lyldyV¥,=1,....., n
R |x=yl

Note that these generate operators that are of
convolution type, T(f) =f * K for some appropriate kernel
function K. However, the obvious estimates on the
kernel give that

103



(a)

(b)

(c)

And so these kernels are not integrable. However it is
easy to see that these kernels

Have an additional property some cancellation, which
we will make more precise momentarily. These two

properties together will imply that the operator are in
R

fact bounded on bounded (¢en) when 1<P<*  oOur

L?{
goal in this section is to flesh out the details behind this
fact.
Definition(3.3.27) We will consider Caldron- Zygmund
operators of the following forms. We will have a
convolution kernel K(x) that satisfies the following
conditions

k()| |x[

f k(x|dx=0 forall0<r<R<oo;

r<x|<R

f |K(x—y|—K(x)|dx<1when|y|>0

i>2ly]

—n—1

X" for condition. It is easy to see that the kernels for

the Hilbert transforms satisfy these conditions. Our goal
is to prove the following theorem.

Theorem(3.3.28): Suppose that the operator T given
by:

Tf(x]:p.v.f Kix=ylflyldy,

has a kernel k that satisfies (a),(c) above. Then for

R
R
(¢én)
(66n) - LP
Tf:L"¢

1<p<oo,

we have that with the operator norm

controlled by the constants appearing in the definition of
kernel and the dimension.
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Since the ideas that we need are contained in weaker

statement, we will also look at the following theorem:
Theorem(3.3.29) Suppose that the theorem given

Tf(x]:p.v.f Klx—y|flyldy,

has a kernel k that satisfies conitions(a),(b) above. Then
for 1<P<*, we have that kI S Thenfor 1<P<0 we

R
R
(¢én)
(6on) - LPé
Tf:L"(

have that with the operator norm controlled

by the constants appearing in the definition of kernel
and the dimension.
In this statement of the theorem

transform of the kernel k. By the imposing the condition

kI denote Fourier

that [K|<1 , We are supposing that the operator is in
R
(¢én)

., ascan easy be seen. In
G

fact priory bounded on
fact it is a good to show that the conditions on a kernel
imply that for the function
K [x|= K(XHX|Z€
¢ O:|x\<e.
Weak Type Estimates for Calderon-Zygmund

Operators
In this section we prove a very useful decomposition

theorem for functions.
R

Theorem(3.3.30). Let € (°L‘;’Z) and ~>% be given,

then there exists functions (g) and (b) such that

(i)f=g+b;
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(ii) " g "L’(R")S "f "L”:R":‘/\"g||F‘R”£2n>\;

Z biwere each b, is supported ona dyadic cube Q; Athe
collecdiction

lll

of dyadic cubes { Qj} aredisjoint ;

(lV) !ibj(x)dx:O;

(v) ol g2 XQ);

IIfIIL
Z\Q E

Note thatif 9€5 that 2/ #S. so we have the
opposite equality

ilj”\f(x)|dx>x

@l

blx|= ff ldy|xQ;lx

Now using these observations we have

Ib, ||L\R‘-2f|f )| dx

CZ}Q—?‘ﬂf(x)‘dx
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S2n+1

QAQ%_({ ()]

(-’2n+1

QiI~

I8

FIxl:xe R (U,Q, [ |f(x)]dx: xeQ,
Q2
glx|=lé

By the Lebesgue Differentiation theorem we then have
that

;
If (x)|<xxeR"(U;Q;i4

Combining these tow estimates we see that

Hgll <275

Finally, observe that

;p#i;!Wﬂ&

Z,% f |f(x)|dx

UVQV
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L'(¢R").
<L Ifl.
>\ G

We now turn to show how to use this Theorem to deduce
the following result.

Theorem( 3.3.31)

suppose that K is a calderon — zygmuund kernel as defiend above € theoremthen for all fe Ll(R") Aany

X>0we have
L'(¢R").
n . ) ]_
| xeR:[TF (x)[ex s IF I
proof Fix A fe L' R”) . Apply the Calderon — Zygmund decomposition € Theorem

{obtain function g, b sothat f =g+ b.Now observe that

xe R":|Tf]>x| C xeR”:|Tg|>% U x€R”:|Tb|>%
Now observe that
|xeR™|Tf|i ]| < xeR":\Tg|>% ¥ xeR”:|Tb|>§ ,

we need to find estimates on each of these terms. The
estimate on the good function is easy since we have

179 117+ xe,
>\2

N

R":|Tg|>%= <
X€E |g|>2 <
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.1
"i"f "L'(R")

R"| - L(R"]

Here, we have used that T:L’

3.3.31
is bounded.Inthe estimate we have used property |ii | theorem i

We now turn to understanding the estimate on the bad

function. Let Q)| be the cubes obtained in theorem
(3.3.31)Let @ denote the cube concentric with <

and having side length Yn  times the side length of Q
. Then we have that

Consider now the first term above, we then have that

=+

uein

xeR”:\Tb\>%

xeR”:\Tb\>%

-uain

xeR”:\Tb|>%

uQ;jn <juej

xeR”:|Tb\>%

<> |Q;
J

SZ‘QA

J

1 n
s If I,.(R")

It only remains to handle the term

L\¢ n >\
lUQ;[n{xeR :|:rb\>E
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And for this one we will use the properties of the
function b. Note that by simple estimates we have

xeR" |Tb\>—

f |T(b )|dx
N ogr

uQin

iz}r? ITb,(x)|dx

Suppose for the moment that we prove

f ‘Tb )|dxbr|bj(x)‘dx

Then we could continue the sum to find

uQin xeR":|Tb\>—

SO XET Y

I uQ

1 .
5;2}: gf ‘bj(x)|dx

.1
(’;Z]: "bj"L‘(R”)
<2.1Q]

J

1

;Z] "f"Ll(R”)

We now turn to proving (2.2). Here we will use the fact
that b; has mean value zero to introduce some
cancellation into the integral. Let c; denote the center of
the cube Q. Observe that

f ‘Tb ‘dx—f ‘b |x— ydx‘dx
[UQ;’)“ \UQ\
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Focus on the inner integral now,

f ‘K[x—y]—K(x—Cj)‘dx

(bQjf

And inspection reveals that this is very similar to what
appears in condition (C) on the Calderon-Zygmund
Kernel. A change of variable, and simple estimates allow
one to show

[ |Klx-y-Klx-C)ldvs [ [K[x—{y-C,||-K(x)|dvs1.

‘:UQ::‘C |X|22‘y7Cr|

This then completes the proof of the Theorem (3.3.31)
With Theorem 2.2 at our

disposal, it is very easy now to conclude the proof of
Theorem (3.3.30) Proof of

Theorem 1.2.The hypothesis of the Theorem give that
T:L*(R"|L(R"| T is bounded.

We have proved that in Theorem(3.3.30) that the
operator
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T:LYR" - L*(R"]
is bounded too. Now, we apply the Marcinkiewicz

interpolation Theorem (3.3.30) conclude that
T:L?|R" - L*|R"

whenl < p<2.
;obtaintherange 2<p <oo
one simply considers the argumentgiven , but now for the

adjoint operator.

Itiseasy iseethat the kernel of the adjoin will still be a

Calderon-Zygmund Kernel and so everything we have
said so far applies again.

(3.3.3) BEHAVIOR NEAR L' AND L~

As we have seen, the convolution-type
Calderon-Zygumund operators are bounded on L*(R")

when I<P<®. We have also see that the operators

satisfy a weak-typ bound when p=1. It turns out that we
can have them be actually bounded if we change the
target and domains.

Theorem (3.3.32) Let T be a Calderon-Zygmund
operator as defined above, then we have:

T:H'(R") -~ L'(R")
And
TL*(R") - BMO(R")

While we haven’t introduced the function spaces of
H'(R") and BMO(R") (though we likely will), its useful

to at least have this theorem in mind.

112



(3.3.4) The T(b) Theorem

The T(b) theorem provides sufficient conditions for a
singular integral operators to be Calderon-Zygmund
operators, that is for singular integral operator
associated to Calderon-Zygmund kernel to be bounded

on L In order to state the result we must first
define some terms.

A normalize bump is a smooth function ¢ on ¥
supported in a ball of radius 10 and centred at the

origin such that 69 (x)]<1 , for all multi-indices
lalsn+2 penote by T¢/ly/=oly=xlAelx=r"(xIr) for g

X in R

r>0

and . An operator is said to be weakly bounded if

there is a constant ¢ such that

UT T ¥ |lyldy<C."

0.yt

for all normalized bumps ¢ and * A function is

C>0

said to be accretive if there is a constant such

that Re P/XZC forall x in R. Denote by ™ the

operator given by a function b.

the T(b) theorem states that a singular integral

operator T associated to a Calderon-Zygmund kernel

is bounded on L if it satisfies all of the following

three conditions for some bounded accretive functions
by gnd b

MblTMbZ

(a) is weakly bounded.

() Ter isin BMO.
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(c) T'bi| s in BMO, where T is the transpose operator of
T.

Sec.(3.4)The Hilbert Transform, Riesz
Transforms, and The Cauchy Operator

We discuss three important examples that have
motivated the theory .

(3.4.1) The Hilbert Transform

Definition (3.4.33). We define a map
H:y[R" - yR|by

1
Hlgp)=p.v. —)*fp-
it

That is

pvl@)yl=tim [ —gly-xdy(x

Proposition (3.3.34) H extends to a bounded

operator on LRl

Proof. We can analyze this convolution via the Fourier
Transform. For a function

peEy (R”) , the Fourier transform is given by

ol&)=[ e d y[x].

R

We can extend this naturally to T €Y'[R"|by definig
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T'viafT;(p}:<T,(p'>for every @ Ey(R").so,when(p € y(R),

e_'o}x:|x|>€} X
. | 1
(lim f —(p(x)dy(x)
€-0 -1] TIX
x:e>|x|>€
. 1 ix
¢((E) —e"d ylx||d ylE]
x e l>ll>€ X
olim [ ¢
GHORn
Now fix EER".Then

1 ix. 1 . \
le:e">lx|>€ﬁn_xe édy(X):_Cfix:e"b\xbeasm (x.&)dy|x]

i—2if,

lx:e7>|x]>e

sin (x.&)d y (x|

o— 2if .[X:€,1:>‘X|>€}sin(x|E|)sgn (c)d ylx]

® |
~

.21
i~ seg )

sinu

[on Sy

Kaal

115



The integral appearing on the right hand side is
uniformly bounded on €99& thys by Dominated
Convergence,

I8

K%

— =[p,—isgnl&|o(E)dy|E|nalsoforallpe y|R)|,Ho|E|=—isgn|&|o‘(E). sincethe Fourie

D.V.

is boundedon L’ (R|, we extend H (, the whole of L*(R by

Hf(:€)=—isgn(&|f*(¢]
defined (

almost everywhere € R .then ,this extension agrees on

y|R|AbyPlancherel Theorem, | Hf ||,=||f|l,-
Proposition (3.4.35), H€¢Z0:
proof . Let K € CZK  be defined by

1
mx—y/f

Klx,y=

when x# y.Fixf € L*|R|with spt f compact.Then,

fix x€‘spt fINL @ . s0, there Aasequence

0,€CZ(R|suchthat spt g, n Blx,rl=@ N feLZ(R").thenfor every
zGB(x,r),
Hy,z|=[;K(z,y)0,(y)d yly]
(He, — Hfe LZ(R”). Covering‘| spt f | withcountably many such balls

we conclude that
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‘(sptf |.therefor H € CZO, .
almost every where x € {

The Hilbert Transform comes from Complex Analysis.

00 6
Let [€CIR) and take the Cauchy extension fiCis

_ 1 fle]
=l e

8

Where z=x+iy,#0.Itisaneasy that!F is holomorophic onC R.

b .
but C Risnot connected, so,

Xt

y=0"fe  iyi=2(flx|+i Hf(x))
lim ¢ 2

I8

 Flx+iy|—F(x—iy)
i
Hf (x|=1im ¢

I8

y—0"

And

y - 0+(’(x+iy)+F(x—iy)
fx|=lim ¢

We have the following Theorem of M.Riesz:

Theorem (3.4.36)[79] (Boundedness of the Hilbert
Transform).H has a bounded extension to
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L?[R|for1<p<oo

y - 0"+F|(xtiyl.
Corollary|(3.4.37). Let F +(x|=1im ¢

4

thenthe decomposition

—¢istopologicale LP(R|
+(+F;
f=F,

that is

p

p

IF.

IF:é
Il =¢

Remark( 3.4.38)
+i.

when f is real valued ,%Hf is theimaginary partof F

(3.4.2) Riesz Transforms

Motivated by the symbol side of the Hilbert Transform,
we define operators R; for

J=1..,non &

R : LIRY= LRy
ey S
(ij (E)— 1|E|f(5>

Forj=1....,n
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We note that by Plancherels Theorem, R; is
defined and in particular

IR FL=<If 1,

Proposition( 3.4.40) R/€¢%0:

Proof. Consider

X.

K,[x|=pv.c,—
x|

well

For some ¢->0.ThenK;€& y’(R”).If we can show that for appropriate c,,

_=5
H

~

K;[¢]
In Y ( R") , by the same argument as for the Hilbert Transform,

X,
Rf=c,fp—2=f(y)dy(y)
|x—yl

Forall € L’ (R”) with spt f compact A for almost every x € [spt f .

We compute the Fourier Transform
K,.Fixg € y|R").then

| T \ / &\ . X; —ix.
<Kj,(p>:/\Kj’(p,\/\:hngcnfx;e<x|<e'J‘ ‘n]+1.[R"e E(p(é)dy(é)dy()()
€-0 ' X

For €#0,let

X; —ix.
Ie=Cnfjx;e<|x\<eﬂT]”e “0(&)dy(x)

As before, we show that
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I, —»—ii
&

ase -0
As previously, write
e "*=cos|x.&|—isin(x.&|. we only need ; regard the

Imaginary part . by a change of variables, let w =

é/\x=\€|y.then,

3

==iCf o, 1 L —sin (yw)d y(y)
.lx.ﬁ<x<ﬁj|y|

Since the Jacobian factor of the change of variables is
Xj
cancelled by the homogeneity of |X\—1

We change variables again, this time to polar
coordinates.

Let Yy=ro.forr>i6 €S"'.then,

r.w
b
sin (¢rdrié)do(0)

e

1
elE]
[
£
g

§
[,=—iC,fs 0,

Where do is the surface measure onS" . So Ie|isuniformly
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bounded since

in (r6.
sin (: co)dr

‘me—;;}z‘»—A

aal

Is uniformly bounded in

ﬁ‘“

€| .
Mdr - sgn(6.w)

| —

&

As € - 0Aso

e.[¢]

I, ~—icn%fsn,19jsgn(o).w)da(9).

Write

a,=[¢0;sgn(6.00)do (6).

And let

Because 06-wlw|sgn

|0.w|is odd € the symmetry withrespect i, the
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Hype rp|a ne {w}l AS" 'isinvariant under this symmetry.By rotational

Invariance,

[ l0.wldol0)=], |6,|do(6)

And so we define C, by

Cn%js”*lle‘ d0(9>:1

Then, it follows that

Cl— lO_)——l‘

El

And the proof is complete.
Theorem(3.4.41) Rjisboundedoan(R")whenever1<p<oo_

Corollary (3.4.42)(Application to PD;s).let
(pEy(R").Then

,0,0,0=—R,R,AQAL
10.0;0,<C(n,p)|Ag],

Proof. We note that for all &J=(-i&)(-i&;|a(¢)

= [t erate

g[S

(—A9) ()

( .ia-)( i,
Ol =l ||~ 177
&\ [l
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And by application of the theorem, the proof is
complete.

(3.4.3) Cauchy Operator

The Cauchy operator is an example of an operator
that is not of the convolution type.

identify R"=C. Letg: R — Rbe a Lipschitz map.that is , there an
M>0suchthat|p(t)— ¢(s)|< M |t—s|. By Rademachers Theorem

|Fed96, Theorem3.1.6

, pis diffrentiable almost every where
L@ € L”(R|withoo<M.Now , let I'=|t+ipt|:t ER|
C C.1if f is smooth€ aneighbourhood of I' AN has compact

support ,thenwhenever = & I, define

dw:ij+—ws))(1+i(p’(s))ds

: 1 . flo
Flz] 2~ (s+igls)

2’ z—w

where z=Z(t|+ia AZ|t|=t+ig|t|. Fixt.Then

lim LF(z(t]+ia):%f(z[jt))+Cf(z(t))

€-0°

(which are the Plemelj formulas-details
where the Cauchy operator is given

by
lim 1 Iim1
_e-0 f(Z(Sj) , _e-0 f(w)
Z(t)_ i .[s lz(0)]-2(s)>€| Z(t)—z(s) z (S)ds_ 21 JicoGF:‘z—co|>€} z—wdw'
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thencfz(t||=p.v. f;st|zt_z(s)|>exz(t]+z<s)f‘s)d5: Tflt].

Theorem (3.4.43)(Coifman, Mclntosh, Meyer(1982).
T €CZO,.withkernel

the hard part of thetheoremisi show | T f |l,<C || f ||, As a consequence,

Corollary (3.4.44)

\I|Cisbounded onL’ (F , \dw\ ) where\ dw\ is the arclength measure,,

liilthe  Decomposition

z|t|+ia
a—-0"F¢
fIxI=6 q —0"F|z[t]+ia|+lim ¢

lim &

6

Is topological in  L'\Tldwl.

These results have important applications in boundary
value problems, geometric measure theory and partial
differential equations.

Remark (3.4.45) We emphasize that this operators C
is not of convolution type . Unlike in the previous two
examples, we cannot employ the Fourier transform or
simple techniques.

Sec.(3.5) LP boundedness of CZOa operators

The L? boundedness of CZOa operators comes for free
by definition .It is an interesting question to ask when

TeCZOa is abounded map i, Lq(R" 6

124



L”|R"). But first ,we have the following proposition which

shows that at least

For Hilbert transform, p = q.

Proposition (3.4.46)
suppose the Hilbert transform H : Lq(R”t) - L*|R] forsome p,q>1is

bounded.Then p=q.

Proof. Let fELC’(:R")/\considerthefunctiong(x]:f(xfoor>\<0.

Then,

N Hf |, <CXIIf I,

e STl N SO TS APE PR
And so &= q ,B= ) Aa=[ whichimplies p=q.

As a heuristic, we cannot hope to prove L% to LP
boundedness unless p= q.

Definition (3.4.47) (Hormander kernel).

A
(A suppose there
18
LetK€L, (
3C,,>0suchthat
X,y
Kidy(x)<C,.

eSSSUP.,, )k b ylzaly-y1 ©

Then, K is called a Hormander kernel .

Remark (3.4.48) the number 2 appearing in the set
of integration is irrelevant. This can be replaced by
any A’1 at the cost of changing Cj
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Lemma( 3.4,49)

(i) Every CZK, kernel is Hormander.

(ii) the adjoint of a CZK, kernel is Hormander.

Proof. The proof of (ii) follows easily from (i) observing
that KECZK,implies

K‘€CZK,.

We prove (i). Let K € CZ KA sowe have that

a

1
[x—yl

y—yl

‘K(x,y]—K(x,y’)‘SCa x—y]

1
Whenever ‘y—)’"$§|x_)’|/\x¢y.so,

a

1
x—yl

‘y_}”

oot ey

I{Xrley\22|y*y’|1

a

1
x—y['

y—y]
x—y]

dy(x)

00
Z J‘:X1212|y*Y|£|X*y||£2'”2\|y*y’ﬂ
j=o

S|y_—y > y|Bly,2*
|x—y’

Y_Y’m

j=0

We now present the following important and main
lemma.

Lemma(3.4.50) (Calderon-zygmund
decomposition ).

letf € L'[R"|AX>0.

126



thenthere 3a C|(n|>0A adecomposition of f =g +b almost

everywhere on

R"|with||g|l.<C(n)>, Ab=_ b,where

i=1

R"wherege L™

li|sptb,C B,with B,aball,
lii] {,bild y<Cln|X\ y(By,
(iii) [ o bi=0,

liv] { B.} havethe bounded overlap property

1

y(eB)<Clnl-Ifl-

X

Remark (3.4.51):
(i) the constant C(n) depends only on the dimension n.

(ii) Note that

B
(cei)<cnl|If I,
. lIbif=Clnx 3 yi

i=1

which shows that

> biconvergese L'. Hence,b € L' [R"|with||b||,<C(n)" | f |,

i=1
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\iii|the that!g € L*|R"|implies g € L*(R"|for all € |1, |. € the

caseof p=2,

lal<VigTTgl.<[1+Clnl’ c(n) VNI
proof of the Calderon — Zygmund decomposition, Recall that M’ f isthe
uncentred maximal function of f onballs of R"
. Weknow thatthe set Q, set
{x ER": M f(x)>X } is open A constsnt of finite measure by the
Maximal Theorem:
yl@ =Sl
Also Q, # R". Let € be a whitney covering of Q, . Set {Bi =c, Bi: fi,- € s}

Where c; is the constant in the whiney covering

Lemma (2.3.20) Then, (iv) is proved and

C(n)
PN

y(éBi)=f;xB,dysfc(n)xgxdysc If 1l

&

™

1l
—_

Which proves (v)?

We can now take

c€l0,1] (say, c= CII) ASO {c B, }are mutually disjoint.
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Then construct a partition of unity
(plsothatz ¢,=1lonQ, N¢,=1on

¢Bi . Explicitly,

Xg
Xg,

0=
Z
j

Now set,

b= f(pi_fB,fq)idyonBi
' O otheerwise

Since we allow B; to be closed we (i) is proved and (iii)
is apparent from the construction of b..

Now, to prove (ii), we note that
[s|bildy<2fg|fldyné

4B,n°Q,=4¢,B.n° Q= Q.
then, j4B‘|f\dySM’f(z]y(4Bi)forallz €4 B,.Choosingz €° Q, we
observethatM’f(z)s XA SO

[s|bldy<2xy(4B|<24" X y(B)

Which establish (ii).

Define:

_ fon. Q.
g_
2 fsfody|xonQ,

i

then,on.” Q. , f < M’ f <X almosteverywhere. On Q, , by invoking the
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Bounded overlap property,
’Z(IB,f(pidy)XBi SC[n)suip‘jB[f¢idy|SC(n)suipIB[|f‘dySC(n)4n>\

This completes the proof.

Theorem|3.4 .52

EveryT €CZ O, is of weak type|(1,1].

We have the following immediate consequence .

Corollary(3.4.53)letT € CZO,.then,forall p €(1,%|,T is strong type|p, p|.
proof . Since T is weak type |1,1| by the theorem Al

strong type|2,2| by
definition, we havethat T is strong type| p, p| for p €(1,2).

Now ,note thatT € CZ O, impliesthat T°CZ O, A soT"hasabounded

extensioné LP (R”)for 2< p<oo,

Theorem|3.4.54)let f €L'|R"| n L*|R"| A fix x>0.

We show that :

y({xER":

NENEI T

With C independent of fand ” . Since we only know

Tf(x) when X#sptf.weuse the Calderon-Zygmund

decomposition to localize .Let f = g +p this

N

decomposition at level with the properties of g
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and b from Lemma (3.3.5.)Since f, g
GLZ(R”),wealsohavebEL2 R"|.

= bwithb,=(f o,—mb,f 9| x, wehave that this
Sinceb= Z series convegres
i=1
(L*[R").So, Tf=Tg+Tb

And we estimate by Markovs inequality

L R"
{
Li

A=y|lx €R":‘Tg(x)|>%

4 2 4
S; Rang‘ dyS;"T"z,

1

18

Me o

1

b

T (b,-) withthe series onthe
Now,T(b|=T¢

1

LL*R"

AIT(bl[< T b]

almost everywhere.So , with

c>1tbe chosen later

B=y|{xER": Tb(x)|>% <y xGR”:Z|Tbi(x)‘>%
i=1
U
U
(66jcB)+y XER”{(&LJ'CBI-):Z‘Tb,-(x)‘>%
j=1

<yié
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U
1

CBi+;-[R"[((,chBi)
b
yi
<D
=1
U
2C(n 1 e
<c >(\ )||f||1+; R,,{(LéjcB’);|Tbi(x)‘dy

Consequently, it is enough to prove that
i
i
Tb|dy <C(T)|b,],

su;p |,

Since Nbilh=Cln)xy(B) \which gives

> Lin ety yia < il

i=1 i=1

We note that for almost every where

b
XER”{BZ’PTbi(x):_[ByK(X’y)bi(y)dy(y)'

Let yi be the centre of the ball B; .Since

b
[ wb;dy=0,almostallx ER"{B{;,

Tb\x|=fg(K(x—y)=K(x=y))b(y)dy(y).

We choose ¢ = 2 since 2 |y—yi|<2rad B <[x—y|Aé
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I8
i
X, Y
f;;x;|x7y\22|y7y(|}‘K[X,}’)—K@d)’(xﬂd)’(ﬂ

[T b|dy<f,ep|bil v

SIR”|bi‘y)‘CH(K)dy(y)SCH(K) (A

Where Cu(K) is the Hormander constant associated
with K. Taking an infimum on the right hand side, we
have

;

i

fz,lTbi dy<[[K llczo 1 bill;-

The sum A + B gives us the desired conclusion with

L(L*(¢ R"))+|K "CZOFC(”)" T |lczo. -

constant 1T .
C<Cln|¢
for ageneralf € L' R")let f, — f be asequence which converges €L’ (R")

witheachf, € L* (R”). Without loss of generality ,assumethat f, —

Almost everywhere (since we can pass to a

subsequence ).The weak type (1,1) condition gives

that T f is Cauchy in measure and call T /thelimit.This3

Almost everywhere and I/ €L"|R’). Furthermore,

T(fllx|=f K (x,y)f(y)dy(y)

For almost every X€° (spt f) with spt f compact.

133



Remark (3.4.55). It would also suffice to prove for
general f in the previous Theorem by noting

L'(R" n L2(R")isdensec L'|R"| Athat T: L'(R"| n L*(R"| - L"*|R"|isbounded.Since L"*|R"is compl

T extends (. a bounded mapf :Ll(R”) . R”).

Example (3.4.56). We note that

H g, x1=—

x—1
X

Whenever *#00.1].

this exampleis of importance because H isa CZO, x;, , € L' (R) but H (x|0,1|) ¢L' (R) .

Sec.(3.4) CZO and H!

A natural question to ask is: what subspace of L!

should we choose so that a CZO, maps that spaceback into L".

Theorem (3.4 .57) letT € CZO,,.then, T induces a bounded operator H' - LI(R") .

Corollary(3.4.57)let T € CZO.,,.Then T extends (. a bounded operator (.

L*|R")¢BM

proof . Let f € L"(R"|A gEH" . ThenL, :\"\’f ,T" g is alinear functional

on H'satisfing

H',L'(R")
{
Li

.1 g |=[r e f T gd Y] <NF 1N T I

By duality , there 3a B € BMO suchthat L=L . Define Tf =3, with B
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idetified with L 5

Remark (3.4.58) (i) this was originally proved
directly, without alluding to duality .

\ii| we apply Tf i, p—atoms.Let a € g” . Then,
{T!f:a:}:L[}(a):J‘R"Ba dy.
Let B=B|yB,rB|=spt a.Then,

\T,f,a/=fpfT"(a)dy.

R"}th(r,(or)dy.
‘;IzBthr(a)d}""Ig
i
R'f (y)|foK(x,y)a(x)d y(x)|dy(y)
(LbjRnT(fXZB)ady+L,
i
R"If (y)(K(x,y)-K(yB,y))d y(y)
Ja.
6

oo T (fxpp)ad y+ [
by theapplication of Fubini.So,on Bthere3a
constant C zsuchthat B|y| =i

I8

R'Iflyl|K(x,y|-K|yB,yl|d yly|+Cj.
+[;

proof of Theorem3.4.1. We show that whenever a € g ,thenT € L'(R")

with|| T, ||,<Cln, T|. We automaticlly have T , € L |R"sincea € L*|R|
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{spta C Baball.Then,since | a ||, ——

LR
C N

(R
Li
Li

~

1
2(B)*|IT.

1

Z(B)Z " Ta "LZQB\Sy("
sz|T0(|dySyC

As in the proof of Theorem (3.3.25)
[)‘

Rn}‘T‘X'dySC‘n]"K"czo“"a"r
J:

Since H'C L'|R"

,Tf € L°°(R”)for everyf €H'.So,fixf €H'A picka
representation:f =, ;a; where Y| ‘>\j|£2 If Il witha, € g*. This
j=1 j=1

. 1.
series converges almost everywherec L' f.

Thus, T Z ~;a;|=Tf

j=1

Almost everywhere . Also

; ">\jTaj "1SFZ‘1|>\]‘C[H’T)S2"f||H1C(n,T).
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1
Thus, Z N;Ta;convergese L Ahence,

j=1

Hence Tf € L' |[R"| A| Tf ||,<2C n, T) || Il

Propositio(3.4.59
(letT €CZO,.Then, T1isdefined asa BMO function.

proof.Followseasily i thethat!1 € L*|R"|, AT : L*|R"| = BMO

is bounded.

Remark (3.4.60)

(compute T1 ,use the formula for Tf oneach ball Bfor

f=1.
Corollary (3.4.61 b letT €CZO,.ThenT mapsH' L H'if Ai
onlyif T"1=0 jn BMO -

Before we prove this corollary, we need the following
lemmas.

Lemma( 3462 (let T € CZ O, withassociated kernel K €ECZK ,Aa € g~

withspt aC B=B|yB,rB|. For each j € N with j>1,let C,(B|=2"*' B{2¢’ B.Then, for allx€ C,| B|

‘TG(X)‘S" K ||CZK02—j(n+a)r1;n'

Proof. We compute and use the &regularityof K,
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o

|y_.YB‘
|x =

1
‘X_YB

|Ta<x)|g||K||CZKﬂIyGB n‘f()’)|d}’<}’)

L cla(y)dy(y)

(erB)

<|K "czmrg

And the result follows since

[yesla(y)ldy(y)<1.

Lemma (3.4.63) letm: R" — C AB=B|yB,rB|aball suchthat

1. Cdy<—S—,

2.forevery jEN,j>1,Ax€EC,|B|=2"""B{2{' Bwehave
|m(x)‘£ I K"CZKaz_j(nm)an-
then,m € H' A||m||,, dose not exceed a constsnt dependingonn,

IKllcz Aa>0

The proof is left as an exercise.
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Chapter 4

Convolution Theorem of the Hilbert Transform

For the Hilbert transform

£{t) 4
t

E

2]|>—‘

flx)=
X—

A new proof of the convolution formula is given. This
convolution formula is then applied to calculate some
Cauchy's integrals and to solve a nonlinear singular
integral equation.

Applications of the convolution formulae of Fourier,
Laplace and Millen transforms are well-known.
Recently some applications of the convolutions
formulae for Hanklel. Stieltjes transforms are given for
the Hilbert transform

(t

~—dt,(4.1)

HIf|lx)=f(x|= % o

w%u

The convolution theorem has been established in  L»

spaces is missing in modern text books on integral
transforms. In this research we give an another proof of
this theorem and then apply this result to calculate
some Cauchy integrals of special functions and to obtain
explicit solutions of a nonlinear singular equation.

Sec.(4.1) Convolution Theorem
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Let /-9 be defined on R and belong

. \ -1, -1
corresponding to L,[R|,ALyR],1<p,q<o0, p'+q <1,

Then Hilbert transform 29 of A9 exit and belong to
LRIALIRL, to0. Furthermore MELIRI \ith r'=p'+q"

Consequently, the Hilbert transform fo of 1 exists

L(R).

and belongs to Therefore, if we put

a

h[lx,]=(f®g1(><)=%f(f(XJg(t)+QKXJf(t)—fft)g('t]);i(4-1-2)

J A —t

then h exists and belongs to LR). Our main result in

this paragraph is a new proof of the following.

Theorem (4.1.1) The Hilbert transform of h is the
product of the Hilbert transforms of /9

~

h(x)=flx]g(x) (4.1.3)

Proof. Let "9 belongs to S, the space of infinitely

differentiable functions which , together with their
derivatives, approach zero more rabidly than any power

of |xI aslx| . Applying the Hilbert transform to the

h(x)

function we obtain

h=f g+gf+fg.(4.1.4)
Applying now the Fourier transform

Flflix)=] flt|expl—ixt|dt,(4.1.5)

To using the properties

F|f|=—isgnxF|f|(4.1.6)
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And 2 7TF|fg|=F‘f‘OF‘g‘, where

fog=[fltlglx—t|dt(4.1.7)

is the Fourier convolution, we get

2nh|=2nF[f g+f g+fq|

_ _p misgnxF|f g+ fgl+Flfg]
= -isgn
x|F|flo F|g|+F|f|oF|g|+F|f|e Flg|
= -sgn

sgn xF|f|® F|g|
F|f|@(sgnxF|g|)+.+F|f|o F|g|
xé

\—isgnxF|f||@|—isgnxF|g||=(F|f]) o (F|g])
consequently
h=fg.
That means h is the convolution of the Hilbert transform.

Since the space S is dense in  L»(R) and LR where
Hilbert transform is bounded, formula, first proved to be
valid on dense subspaces of L(R) and LR still holds

fEL,RIAGEL,R.

for all Thus Theorem is proved.

Sec.(4.2) Evaluation of some Cauchy Integral
Let 9= Then formula becomes

h=—f+f*—ff.(4.1.8)
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But "=f4==1 Therefore, "=/ Consequently, we
have

72 2| _2
f (X)—f [\X]—E

The upper formula can be applied to evaluate new
Hilbert transforms. Namely, if the Hilbert transform of

2—-if*
) f
' is known, then Hilbert transform of ffis 1° For
EL
example, let flxl=exp( =X [,(x)€L, 5 | Then
f(x|=2sinh(x|K,|x). Therefore,
_exp|—[t||sinh[¢| K, [¢] T, [t] o ) 1 2
— dt=sinh’|x|K2|x|—=exp|—2|x||I}(x].
x—t A 4
[¢

Using tables of Hilbert transform one can calculate new
Cauchy integrals by this method.

(4.2.1) A Nonlinear Singular Integral Equation

Consider now a nonlinear singular integral equation

ﬂdt—l
xX—t T

?(x]

X—t

)\f(x)+%f(x) dt=glx|.(4.1.11)

o S
= Sy [
—

This equation can be rewritten in the equivalent form

A [x+(f @flx|=g(x)

Applying now the Hilbert transform using Theorem we
have
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Af+f7=g

Solving this equation we obtain

f[x):‘%id%aw

Here \/z”@()‘) is a branch of the square such that %

0. et A=0- |f [€L[R. Then 9€L:RI gang

therefore , 9€LR- We have
flx|=+vg(x)
Taking
folx|=t Vglx] if x€Q—glx,
Otherwise,

where Q is any measurable subset of R. It is not difficult
to see that e consist all of solutions of the equation.

Let 4*0 We choose
S AL A .
folxI=[=J+(+alx]  if x€Q (4.1.12)
A+l

otherwise it is easy to see that if fis a solution of
(4.1.12) , then its Hilbert
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transform has the form (20). But not every fa belongs

to LR We show that [ecls/Rl if and only if
|Q|<o0if RA<O
[RIQ]<  Gtherwise
(4.1.13)
where 2l is the measure of Q. Indeed, let ®A -
Then

a

Ifaln=] |52

Q

o

Therefore, if fo€L,/R, then @l = we prove that

|ldx >|=

\ o

this condition is not only necessary, but also sufficient.
We have

IFally =

a

pr

)\ RIQ

A

g(x)

p
dx
1+V1+4025(x)

IFllf, o

< follf o+

Analogously for the case A =0 .

Therefore all solutions of the equation (14) are Hilbert

transforms of ~fa having form (20) with the
condition(21).

(4.2.2)Singular integral operators of convolution

In  mathematics, Singular integral operators of
convolution type are the singular integral operators that

144



arise on R and T through convolution by

distributions; equivalently they are the singular integral
operators that commute with translations. The classical
examples in harmonic analysis are the harmonic
conjugation operator on the circle, the Hilbert transform
on the circle and the real line, the Beurling transform in
the complex plane and the Riesz transform in Euclidean

space. The continuity of these operators on L' s

evident because the fourier transform converts them

into multiplication operators. Continuity on L° spaces

was first established by Marcel Risez. The classical
techniques include the wuse of poisson integrals,
interpolation theory and they hardy-Littewood maximal

function.
(4.2.3) Hilbert transform on the circle

See also: Harmonic conjugate

The theory for L*  functions is particularly simple on

the circle.

Then it has a fourier series expansion

f(9)=2n£2 anzine

Hardy space H* (T) consists of the functions for which

the negative coefficients vanish, a = 0 for n %0 These

are precisely the square-integrable functions that arise
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as boundary values of holomorphic functions in the

open unit disk. Indeed f is the boundary value of the

function

F(Z):anoanzn

’

In the sense that the functions

f.l0]=F(%°),

Defined by the restriction of F to the concentric circles

|z|=r, satisfy
If,—fll.-o.

the orthogonal projection P of L*(T |onto H [T |is called
the Szego projection
itis a bounnded operator on L*| T |with operator norm

1: By Cauchys theorem

fle) , .1 ¢ _f(6)
C_Zd °2nf1—e Zde.
Thus

_nl re’

where r=1, theintegrand onthe (. hand side has a
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singuularity at 8 =0.The truncated Hilberttransformis

defined by

i flo—0) 1 f(s)
H =— - d9: i0 i d )
gf(q)) nfs£|9|£n 1_rez(p n-f‘c—e ‘25C_e’¢ ¢

where 6 = ‘ 1- 9“‘ .Sinceis defined as convolution witha

bounded function, itis a bounded operator onL’ |T|. Now

s s

If f is polynomial in z then

flg|=f(z)

H.flz P

)——i(ln_g) | dg.

1
f(Z):EIk-M

By Cauchy theorem the right hand side tends to O
uniformly as £ and hence étends (0 so

HEf_)if

Uniformly for polynomials. On the other hand if u(z) =zit
is immediate that

H.f=—u"H(uf)
Thusif f is a polynomial €z without constsntterm
H.f - if uniformaly .

Define the Hilbert transform on the circle by

H=i[2P-1]|.
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Thus if fis a polynomial in trigonometric polynomial

H,f - if uniformly

It follows that if f is any L? function

H.f  =if |n the L2 norm.

This is an immediate consequence of the result for

trigonometric polynomial once it is established that the

H

operators "¢ are uniformly bounded in operator norm.

But on L~77l

The first term is bounded on the whole of =77 so it

suffices to show that the convolution operators Se

defined by

Sff[q)):J‘eg\e\gnf((p_e)e_lde

Are uniformly bounded. With respect to the orthonormal

ne

basis €

Convolution operators are diagonal and their operator
norms are given by taking the supremum of the moduli
of the Fourier coefficients. Direct computation shows
that these all have the form

( sint

—dt
t

a

1

T

With 0 ¢ a ¢ b.These integrals are well-known to be

uniformly bounded.
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It also follows that, for a continuous function f on the

circle, H, f converges uniformly to Hf, so in particular
pointwise. The pointwise limit is a Cauchy principal

value, written

Hf:P.V.%jLZ)HPdZ.

(—e

If f is justin L then Hef converges to Hf pointwise

almost everywhere. In fact define the poisson operators

on L functions by
T,[Y a,e’|=2 "y a,e”,

. 2 .
tofin L asrincreases to 1. Moreover, as lebesgue

proved, T. also tends pointwise to f at each lebesgue

point of f. on the other hand, it is also known that T, _

Hi " _ r f tends to zero at each lebesgue point of f.

H,

Hence - r f tends pointwise to f on the common

lebesgue points of f and Hf and there for almost

everywhere.
Result of this kind on pointwise convergence are proved

more generally below for L° functions using the

poisson operators and the Hardy-Littlewood maximal
function of f.
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The Hilbert transform has a natural compatibility with
orientation-presrving diffeomophisms of the circle. Thus
if H is a diffeomorphism on the circle with

H(eiqj):eih(@)’h(e +21)=h(0]+2n,

Then the operators

w1 f(e”)
Hh ¢ - ih ip i i >
gf(e ) n.[‘e —e ‘26 elo_el(l’ de

Are uniformly bounded and tend in the strong operator

topology to H. Moreover if Vf(z) = f(H(z)), then VH v

H is an operator with smooth kernel, so a

Hilbert-Schmidt operator.

In fact if G is the inverse of H with corresponding

function

g,(e]eig(G) o
eig(B) _eig(w) eiG_eiw

1
T f|eiefe‘“"zs

VH!'V'-H,|= = f(e")do.

Since the kernel on the right hand side is smooth on T

“T it follows that the operators on the right hand side

are uniformly bounded and hence so too are the

operators H: . To see that they tend strongly to H, it

suffices to check this on trigonometric polynomials. In
the case

dz

helr_ 1 _
Hsf(ZJ_EI|HYz\7H(Z)|ZE 72— _EJ‘|H\Z:7H(Z)|Z£ dz+

flz)  _1 flzl-f(¢)
z—¢

i .[|H\ZFH(Z)‘2€ 7—
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In the first integral the integral is a trigonometric

polynomial in z and ¢

And so the integral is a trigonometric polynomial ¢t

tendsin L° tothe trigonometric polynomial

T z—(

The integral in the second term can be calculated by the

principle of the argument. It tends in L to the

constant function 1, so that

i z—

lim H’;fw):f(zwif””;’;mdz,

Where the limit is in L . On the other hand the right

hand side is independent of the diffeomorphism . since
for the identity diffeomorphism, the left hand side
equals Hf, (this can also be checked directly if f is

atrigonometric poly nomial ). Finally, letting ¢~ %

ig| 6| i0
1 ig e:

(VHV—l_H')f(ew):;I gl0e

0916 _oig 0] - o o

fle® de.

The direct method of evaluating Fourier coefficients to

prove the uniform boundedness of the operator H
dose not generalize directly to L spaces with 1>0>co.

Instead a direct comparison of Hf with the poisson
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integral of the Hilbert transform is used classically to
prove this . If f has Fourier series

f(eie):z aneine’

nez

It is Poisson integral is defined by

2n

1— r2)f(ei9)

. nl 1 i0
P fle?= a =2 do=K,+fle”),
1" r;z ! 2“{ 1—2rcos@+r’ !
Where the Poisson kernel X s given by
K (eie):z plnlee_ 1-r
' nes 1—2rcosf+r’

if is€ L?|T|then the operators P, satisfy

K, (¢e%)do=1.

1271
K |,==—) ¢
1K= ]

Thus operators P have operator norm bounded by 1

on L" . The convergence statement above follows by

continuity from the result for trigonometric polynomials,
where it is an immediate consequence of the formula for
the Fourier coefficients of K, .

The uniform boundedness of the operator norm of H.

follows because HP, -H;.. is given as convolution by the

function ¥+ where [7].

tpr(eio):1+1l_|_;:cot

0

2

K (e"’)sl+ucot
1+r

r r

i e

for1—r<|6|<m,A,for|0|<1-r,
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W (eio) 14+ 2rsind

1—2rcosf+r?

v

r

These estimate show that the L' norms are

uniformly bounded. Since H a bounded operator, it
follows that the operators H: are uniformly bounded in

operator norm on L?(T). The same argument can be used
on LP(T) once it is known that the Hilbert transform H is
bounded in operator norm on LP(T).

(4.2.3) Hilbert transform on the real line
See also: Hilbert transform

As in case of the circle, the theory for L? functions is
particularly easy to develop. In fact, as observed by
Rosenblum and Devinatz, the two Hilbert transform can
be related using the Cayley transform.!®!,

The Hilbert transform Hr on L?(R) is defined by

0,00
HRf:(iX (J_iX{—oo,O])f

Where the fourier transform is given by

—3

f(t)Z%_ £(x] e ™ dx.

8

Define the hardy space H’ (R) to be the closed

subspace of L’ (R) consisting of functions for which the

fourier transform vanishes on negative part of the real
axis. Its orthogonal complement is given by functions for
which the fourier transform vanishes on the positive part

153



of the real axis. It is the complex conjugate of H’ (R).if
Px is the orthogonal projection onto H° (R), then
Hp=i(2P,—1].

The cayley transform

C(Xi=x—_?
X+1

Carries the extended real line onto the circle, sending
the point at « to 1, And the upper halfplane onto the
unit disk.

Define the unitary operator from L° (T) onto L° (R) by
UFx)=n 2 (x+i[ f[Cx]].

The operator carries the Hardy space of the circle H’

(T) onto H’ (R).in fact for i< 1, the linear span of

the functions

1
1—wz

fulzl=

Is dense in H3(T). Moreover

1 1
Uf,lx|= L PR E—y

Where
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z=C 'lw).

On the other hand, for z €H:> the linear span of the

functions

0,00(t)

g:ltj=e" xi

I'they are the Fourier transforms of

hz(x'):g’:,(—x):L(x+z)f1

V2n

So the linear span of these functions is dense in

h,

H2(R).Since U carries the v s onto multiple of the

s, it follows that U carries H?(T) onto H?(R). thus

UH,U'=H,

In Nikolski (1986), part of the L’ theory on the real line

and the upper halfplane is developed by transferring the
results from the circle and the unit disk. the natural
replacements for concentric circles in the disk are lines
parallel to the real axis in H. under the Cauchy transform
these correspond to circles in the disk that are tangent

to the unit circle at the point one. The behavior of

functions in H' (T) on these circles is part of the theory

of Carleton measures. The theory of singular integrals,
however, can be developed more easily by working
directly on R.
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H' (R) consists exactly of L° functions f that arise of

boundary values of holomorphic functions on H in the
following sense :

Isin H provided that there is a holomorphic function
F(z) on H such that the functions
f,|x|=f|x+iy|for y>0are€ L*Af tendsi fEL*asy 0 “In this cases F

is necessary unique and given by Cauchy integral

formula:

S

—~
N

ds.

_L“’
_2{0

Cn
N

{ identifing! H’ with L’ 0, 00| viathe Fourier transform, for

y>0multiplication bye

OnL*(0,|includesacontraction  gem; group Vi on H .
. 2
Hence forin L

ZL]O’ S)ds:—Tf(SJ | :L_]O‘ \ Vfo(x).

z 2T V2m

CIJ

if fise H*, F|zis holomorphic for 3 z>0, since the family of
L’ function g, depends holomorphiclly on z.Moreever f =V f
tends (. f € H” since this istrue for the Fourier trans

forms.

Conversely if such an F exists, by Cauchy's integral

theorem and the above identify applied to fy
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fy+t:VtPfy
for t>0, Letting t tend 0, it follow that Pf ,=f ,lies€ H".

But then sotoo dose the limit f.Since
thy:fy+[:Vyft,

Uniqueness of F follows from

f‘:y?(l) f=¢  lim thynyth.

Foe F in L?, the truncated Hilbert transforms are defined
by

fly)

fly) f(x—y)
X—y dy

_1 _1
Hg,Rf(‘x]_;J-es‘y—xKR dy_E-[5§|Y|§R

Hflx=L, MM nyg( ) g,

H

The operator =k are convolution by bounded

functions of compact support, so their operator norms
are given by the uniform norm of their Fourier
transforms. As before the absolute values have the form

f 2sint

Vam |y

H

With 0 < a < b, so the operators =k gre uniformly

H H.f€i

R f tends

L? for f with compact support, and hence for arbitrary f,

the operators He are also uniformly bounded in

bounded in operator norm. Since

operator norm.
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H

To prove that '+ ftendsto Hfas ¢

tends to zero,

it suffices to check this on a dense set of functions .

On the other hand,
H’sf:_Hg(f]’

So it suffices to prove that H: f tends to if for a dense

set of function in H? (R), for example the Fourier
transforms of smooth functions g with compact support
in (0, «). But the Fourier transform f extends to an entire
function F on C, which is bounded on Im(z)=0. The same
is true of the derivatives of g. Up to a scalar these
correspond to multiplying F(z) by powers of z. Thus F
satisfies a payley -Wiener estimate for Im(z)=0.*°

F™(2)|<K, ,(1+[z)"

For any m, N = 0. In particular, the integral define

H.flx] can be computed by taking a standard
semicircle contour centered on x, it consists of a large
semicircle with radius R and a small circle radius ¢

with the two portions of the real axis between them. By
Cauchy's theorem, the integral round the contour is
zero. The integral round the large contour tends to zero
by the Payley-Wiener estimate. The integral on the real
axis is the limit sought. It is therefore given as minus the
limit on the small semicircular contour. But this is the
limit of
F(z)
Z—X

1
;L—. dz.

Where I is small semicircular contour, oriented
anticlockwise. By the wusual techniques of contour
integration, this limit equals if(x)."** In this case, it is

easy to check that the convergence is dominated in L?
since
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H. flx|=¢ % fyx|2g%dy:%f|yng_!f’(x+t['y—x))dtdy

So that convergence is dominated by

00

Glxi=o o | I (xvoy)lay

—o00

Which is in L? by the Payley-Wiener estimate.
It follows that for f on L?(R)

H.f - Hf.

This can also be deducted directly because, after

passing to Fourier transform, H: and H become

multiplication operators by uniformly bounded functions.
The multipliers for H: tend pointwise almost

everywhere to the multiplier for H, so the statement
above follows from the dominated convergence theorem
applied to the Fourier transforms.

As for the Hilbert transform on the circle, H. f tends to

Hf pointwise almost everywhere if f is an L? function. In
fact, define the poisson operators on L? function by

Tyflx):T P, |x—t|flt]dt,

Where the Poisson kernel is given by

P [x|= Y .
y T[(X2+y2)

Fory > 0 Its Fourier transform is

— el
Py(t)—e i
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From which it is easy to see that T, ftends to fin L2 as y
increases to 0. Moreover, as Lebesgue proved, T, f also
tends pointwise to f at each Lebesgue point of f. On the

other hand, it is also known that T, H f -H, f tends to

zero at each Lebesgue point of f. Hence H. f tends

pointwise to f on the common Lebesgue points of f and
Hf and therefore almost everywhere.*?131, The absolute
values of the functions T,/ f and T, H f-H, f can be
bounded pointwise by multiples of the maximal function
of f.114],

As for the Hilbert transform on the circle, the uniform

boundedness of the operator norms of He follows from

T

that of the "¢ if H is known to be bounded, since H T,

- He s convolution operator by the function

—|x|>¢€
n(x2+€2)‘ |
X 1
T[(X2+€2) X7t

g.lx)=
Ix|>¢

The L' norms of these functions are uniformly bounded.

(4.2.5) Convolution: The Hilbert transform can be
realized as a convolution with tempered distribution

hlt|=p.v,~
it

Thus formally.

HV|u|=h*u

Alternatively, one may use the fact that h(t) s the

I
distributional derivative of the function log;
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1

Htu)(ti:%

us1ogl (0

For most operational purposes the Hilbert transform can
be treated as a convolution, the convolution of Hilbert
transform of either vector is

Hlu*v|=Hu/xv=u*xH(v)

This rigorously true if “*Y are compactly supported
distributions cines, in that case,

hx(u*v|=(h*u|*v=ux*(h*v)

by passing to an appropriate limit, it is thus also true if
u€L” and V€L provided

1<l+l

p r

(4.2.6) Conjugate functions: The Hilbert transform
can be understood in terms of a pair of functions

fIxIng(x) syuch that the function

F(x|=f[x]+ig(x)

Is the boundary value of a holomorphic function

Flzl  Under these circumstances if fandg gare
sufficiently integrable then one is the Hilbert transform
of the other. Suppose that f€L’(Rl.

Then by the theory of the Poisson integral, fadmits a
unique harmonic extension in to the upper half-plane,
and the extension given by
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flsl

6

—3

) 1
u(x+1y,]:y[x,y):;

8

which the convolution of f with Poisson kernel

_1_y
Pleyl=o Xy
thus
v(x y)zlf s)—X5 4s
> ) J X—Sz+y2
Chapter 5

Hilbert Transform and Applications
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Sec.(5.1) Mathematical foundations of Hilbert
transform

The desire to construct the Hilbert transform
stemmed from simple quest: Given a real-valued

function f[‘R-R

can we find an imaginary part ig
such that [=/*9 can pbe analytically extended? For
example, iffix|=cosixl,  then by inspection we can find
g|x|=sin|x|suchthat f_x|=f+ig=exp|ix). This function can

obviously be extended analytically to the entire
complex plane by replacing the real variable x with
the complex[153] variable z in the expression, the

result is 2720 (iZ) 3nd we have
R fou(2)| 6o =f %],

Which states that real part of the extended function is
equal to the original given function f(x) on the real

line. The companion function 9x) is called the

Hilbert transform of () .

(5.1.2)Hilbert transform as a boundary-value
problem

To establish the uniqueness of the companion
function, we first note that any analytic function

folXI=falzI+if1(z)  gefined on the complex plane

Z=X*+y muyst satisfy Cauchy-Riemann equations,

P fe_of,
ox 0y’

9fi_0fw
ox* 0y’
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Consequently, both Ferfs satisfy Laplace's equation,

0Fy 0'F
20y,
0x" 0y
62FR+62FI:0
ox> 0y’

Over the region where ferl2] is analytic.

Conventionally, by requiring ferl2) to be analytic in
the upper half-plane, the quest of finding the Hilbert
transform for any given function fX)  can be

formulated as boundary value problem . By specifying
the boundary conditions that

()fe[x,01=f(x], 3nd that

(ii) folx,y|=0asx - +0o0Vy -0,

fox.yl can be uniquely determined by solving

Laplace's equation in the upper half plane. Thus
gIX=F,[X.0] s the Hilbert transform of the given

function [1x-

(5.1.2) Calculation through improper
integrals[49]

The above formulation of Hilbert transform as a
boundary-value problem is hardly mentioned in recent
texts. |Instead, Hilbert transform is commonly
introduced and defined through an improper [Hahn
96]
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Here, note that the convolution kernel function
hix|=1/mx g singular at ¥~ therefore, the integral in

Eq. 4 is improper in the sense of Cauchy's principal
value:

glxi=tm | [+ flu).hlx—uldu|(5.0.5)

e=0 | _  x+e

To be convinced that Eq. 4 indeed produces the Hilbert
transform,[106] we need to think about the effects of
Hilbert transform in the frequency domain. First, for
any frequency k, note that the Hilbert transform of

flx|=coslkel.isg,[x|=sinlkx]. g5 \ve can understand

Hilbert transform as a phase shifter which gives every
sinusoidal function -90degrees of phase shift.
Therefore, in the frequency domain, we have

G|k|=F(k|.(=i.sgn[k]) (5.1.6)

Where G(k) and F(k) are the Fourier transform of
glxlandf x|, regpectively, and sgn(x) is the sign

function (ie.,sgnlk|=1if k>0As gn|k|=—1if k>0.) Therefore, if

we think of Hlki==isnlkl 35 the transfer function of a

h(x),

phase-shift kernel the kernel can be written as

the inverse Fourier transform of the transfer function ;
that is,
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' _lw ikx
h(x)—ZT[_J;H[k)e dk.(5.1.7)

Note that Hk|=—ifork>o.AH|k|=ifor k<0. Therefore,
HlkIs first derivative with respect to k is

0H _ ..
o =2i8(k|,(5.1.8)

where §(k| is the Dirac delta function.

(5.1.3)The notion of Hilbert transform "pairs"

The phase-shift interpretation of Hilbert transform
leads to the fact that if ('S Hilbert transform is

glx, then 9% Hilbert transform is —f*l in this

sense, [1X79(¥) form a Hilbert transform pair.
This symmetric property can be understood as follows.
Note that the H2(k) = -1 for all k since H(k) = *“ This

means that if we take the Hilbert transform twice, the
result would be the original function with a negative
sign.

(5.1.4)The convolution kernel h(x) as the Hilbert
transform of ¢(*) [106,126,148]

h(x)

Therefore, must be regarded as the Hilbert

transform of the impulse function 8xl- Then it is of

our interest to check that
f.x)=68x|+ih(x)
Can be regarded as an analytic function. To see it

consider a family of complex analytic functions

flx|=iln(z+in) narameterized by a variable ™% Since
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the only singularity of flzlisatz==n.flz| jg analytic

Therefore, the real part and imaginary part of f(z)

from a Hilbert transform pair on the real line X&R

With a little algebra, the real and imaginary parts can
be written as

()
flx|=——=flx|+if ¢

n(x+in)

where

\: r’
AT

And
filxl=

n(x*+n°)
Form a Hilbert transform pair for any n>0.

(5.1.5) The Discrete-time Hilbert Transform and
Hilbert Transformers

Recall that the Hilbert transform introduce 90-degree
phase shift to all sinusoidal components. In the
discrete-time periodic-frequency domain, the transfer
function of Hilbert transform is specified as follows,

Hljool=| 1, 0<0<n
j,—n<w<0

Hljo)

The convolution kernel for can be calculated

through inverse Fourier transform

1 ) sin®| 7n)
h —— | g ]wnd =
[n] el (jo) .
. 2
ZJgsm(nm’An¢0
T n
0,An=0
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n=—oo( 00,

Note that h[n] has a infinite support form In

practice, the entire function can not be stored digitally.
To circumvent this difficulty, we now discuss two major
method for calculating the discrete-time Hilbert
transform.

Sec.(5.2)Application in system identification

Hilbert transform relates the real part and the
imaginary part of transfer function of any physically
viable linear time-invariant system. By "physical
viability" we mean a system should be stable and
causal. Stability requires the systems to produce
bounded output if the input is bounded. Causality
prohibits the system from producing responses before
any stimulus comes in. Denote the impulse response
as h(t) and its Laplace transform as H(s). The above
conditions requires that

hit|=0for allt<0 (causality)

Hls)

-All singularities of are located in the left

half-plane (stability).
The tow conditions above ensure that H(s) converges
and analytic in entire half-plane, and in particular on

the imaginary axis $7/“  Therefore, the real and

H(jw):HR[w)-l-jHI(w]

imaginary part of are

inter-dependent in term of the Kramers-Kronig
relations

00

T[

—00

.
o=t R
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Which is basically Hilbert transform in its
time-frequency dual form.

To a certain extent, the concept that the real and the
imaginary parts are inter-dependent similarly applies
to the magnitude and phase of transfer functions of a
physically viable system. Note that any transfer

H(jo)

function can be decomposed logarithmically

into magnitude and phase

logH(jw):log|H(jw)‘+j<H[ja)).

This shows that the log-magnitude and the phase are
real and imaginary parts of the log-spectrum,
respectively. It might appear that they must satisfy the
Kramers-Krong relations. Unfortunately, this is a
wishful thinking since apparently

H|jo|=exp|—jot|H| jo|,wheretis 5 constant, would have

H (jo)

the same magnitude as but a different phase

It turns out that, for any given magnitude response,
the unigueness of phase response can be established
if the transfer function satisfies a minimum-phase
criterion, requires that all zeros and poles of the

H(s) to be located in the left-half
plane. This criterion that all the singularities of log

transfer function

H(s) are located in the left-half plane so the real and

H(s)

imaginary parts of log become a Hilbert

transform pair. Otherwise, any transfer function can be
uniquely factorized as a product of a minimum-phase

M (jw)

function and an all-pass function plie) it is

noteworthy that the system whose transfer function is

M (jo) has the minimal energy delay among all linear
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time-invariant systems of the same magnitude
response.

Chapter 6
Numerical Evaluation of Hypersingular Integrals

In this chapter we will consider only a subclass which
is of interest in boundary integral equation
applications. For instance, in the one-dimensional case
we have to deal mainly with integrals of the form
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b
_fK(x;t)g(t)dt,aSXSb,(G.l)

where the kernel K(x;t) has only a pole of order
ptlatt=x.ie, it can be expanded in the form

Zp: fk(t)?(+1+h(x;t),(6.2)

(t—x

with ) and ") smooth. We also assume g(t)

either smooth or of the form g(t) = wlt] g 1(t) , Where

wit) s a weight function containing integrable

endpoint singularities and gi(t) is smooth. For the
numerical evaluation of (6.1) it will then be sufficient
to construct a quadrature rule for the term in (6.2)

which contains the strongest singularity (k=p) , since

the same rule will integrate with comparable accuracy
also the remaining terms.

The importance of these integrals springs from the
increasing number of there successful applications to
solve many two- and three-dimensional problems in
applied mechanics and in aerodynamics; see,
[1,11,13,].

We will recall definitions and basic properties of such
integral, review some numerical rules that have been
proposed for their evaluation, including convergence
results, and present some new formulas and
estimates.

Sec.(6.1): One-dimensional Finite-part Integrals
(6.1.1): Basic definitions and properties

The concept of finite-part integral seems to have been
first introduction and examined by Hadamard [] in
1923. However, in spite of its relatively early
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appearance, the use of it in applications came much
later.

Several boundary value problems are expressed as
integral equations containing integral of this form.

To introduce the concept of finite-part integral, let us
consider first the integrals

and define them as the finite components of the
corresponding

Divergent integrals, as follows.

Definition( 6.1.2)

b

i+lm

X t—X ¢-o0

f t—+loge =log(b—x/,(6.1.3)

X+e

ftdt :ft f at —logb: (6.1.4)

X t—Xx

Analogously we define the following

Definition ( 6.1.3) For any real P!

} dt =lim
X (t—x)p+1 e-0

furthermore, if P is an integer and ¢<*<b,
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[_de _. B 1
{(t—x)p+1_b {(t x)*! p{(b—x)p

(6.1.5)

Notice that in all cases above we have

)

Q..|Q_,

In @ more general situation, given a Riemann-integral

function [t/ of class C.r=Irl. in a neighborhood of

the singularity x,a<x<b| pintegerif a<x<b|, with f(0)

Holder continuous when p is an integer, we consider
the expressio

=Y e x k!
k=0 f(x) dt
J. (t_x)p+1 dt+z k, f (t_x)p.,.l,k:

k=0

xpre (X+&:blifk=b. By examining the behavior of this

expression as ¢~ % we discard the divergent terms,

and, recalling the previous definitions of finite-part
integrals, we define the following.

Definition (6.1.6)

b Zf lle—x|"Tk!
1] 1) dt—f dt

(t x )P

+Zr:fk(x)f( dt__ (6.2.5)

t_x>p+1—k

Remark( 6.1.7). In the last sum present in (6.2.5),
when p is an integer, we have the term
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When 9<*<b. we may interpret the integral in the

Cauchy principal value sense. However, as already
pointed out in [] we could also generalize its definition
as follows:

+11mlogﬁ.
X—a e-0 - &le)

f+f

X+E E

b
—= hm log

If we assume

. gle)
lim ——=e",
e-0 &€l

then we have
dt dt
]

where I denotes the standard Cauchy principal
value integral. This definition leads to a corresponding
generalization for the definition of (2.5) when a tx<b

I.=

and a’x_gl‘E))U(x+g2(£],b).

From the previous definitions it follows immediately
that

af (tl+Bg(t) . _ | f(t)
(t—x )" dt {(t_x)pﬂﬂ.,ﬁj- g(t) it

. (t_x)p+1

b

[

a
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Property (6.1.5.) When

b
X=a A pis not aninteger , \/a<x<bwehave—f [l dt=pf f(t)lj+1dt;(6.1.6)
dx g [t—x)’ a (t—x)

Definition (6.1.6) guarantees also that
integration-by-parts rule still remains valid when

a<x<b:

f(b) (a)
(b—x)P (a x)

Wy

p

The use of this formula may be of interest. For
instance, if we consider the well-known Pandtl's
integral-differential equation

clx] F(‘x)+df1 Md(x):O((x],—1<x<1,

1

g C(X]F(‘X]+d\_f (tr—(i))z dt=alx]|.

From the definition of finite-part integral it also follows
that the standard linear change-of-variable rule is

always permit if P is mot an integer, the rule is valid

only if 9<X<b. while when * coincides with one of

xX=a,

the end points, let us say this is not allowed.

For example, we have

5 (b=a)y,

f g(u) du+f;( )log

U+ 1)p+1
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1, 1, e 1
where t—E(b—a)LH'E(b'FG)/\g(U)—f E((b—a)u+§((b+a) .

Finally we have the following property

Property( 6.1.6) Forc>0(p=>1|wehave

—1+1
hb)

I8
ifc=1Apiseven
(OF8

() 4
(t_X)p+1

x+h

[

x—ch

Hence the above integral, which is well defined for h

h-0

fixed, tends to infinity as (obviously, except for

the case [ x/=0,k=0,.....pé.

A few quadrature rule have been proposed for the
numerical evaluation of finite-part integral of the form

Remark (6.1.7) If in (6.2.5) we use the Gauss-Radau
or the Gauss-Lobatto rule, then we obtain
corresponding formulas for our finite-part integral.

Theorem (6.1.8) When

wlt|=[b—t"(t—af , with— 1< B<0,Ax=a,we have
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t

h;
Ollogn),ifp=0,

O(n*?~)if p>1.

n
>
i=1

((ei—a)f'=

This bound implies that

Ollogn),ifp=0,
o(n** if p=1.

il X W)=

p

>

k=0

To prove the next theorem, we need to use the
following lemma.

Lemma (6.1.9) : Let
gECq[a,b].qz1.Foreveryintegerm22q+1 there exists a

polynomial q,t] of degree m such that for all
t€la,b] .

g‘iqi‘;m—l
(K (K Jib—tllt—al q-k
9" (t)-q, (t)‘SC(T

where cis constant independent of mAt, Aw (g‘:q‘; . )

denotes the modulus of continuity of g‘:q:‘ €la,b.

b—tVi
Theorem (6.1.10) ([,
Whenwl|t|=¢
—2(q—pl+1y
o

RE(fral=|OE0lfsn ! ifp+1<q<2p
" olnelf*;n"ifg=2p+1
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1,—2B
Where G
y=maxé
Proof For the polynomial Pilt) of degree n defined in

Lemma 2.9 we have [ xI=q,xl,k=0,1.....p;

Thus

RE-a,x)=f wie L0 a3 g

. [t—x] =1 (t—x]
_qn(tit)'

To estimate the behavior of the integral in (), we

proceed as follows. When 922P*1. by applying () with

k=0 we optain the bound O(

n il f9; 0. When p+1<q<2p, we write

flel=q,le)=(e=xF[F (6] —q" (&)

2q+2p+ 1) )

With k=2p+1—q,Aapply:weobtainO(n
P,

In this section we have mainly considered quadrature
rules of interpolatory type, i.e., obtained by
approximately the function f (x) by interpolation
polynomials (based on the zeros of Jacobi
polynomials ). Of course this is not the only possible
approach ; indeed, in this same section we have also
mentioned a couple of alternatives which are based on
piecewise polynomial interpolation. When a<x <b and
p is an integer, given any quadrature formula for
Cauchy principal value integrals, by means of (6.2.7)
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we can derive a corresponding rule for finite-part
integrals. For instance, the rules recently presented in
(6.2,16) , which we have not described here, are
derived exactly in this way. Actually, following this
approach, we could have obtained most of the
quadratures of this section.

Sec.(6.2.) Two-dimensional finite-part integrals
(6.2.1.) Basic definitions and properties

While the one-dimensional Cauchy principal value
integral concept is well know and often used in
applications, the two-dimensional analogue dose not
seem to be equally known. Furthermore, the
description of this latter is of some help to understand
what happens when we consider two-dimensional
finite-part integrals. For this reason we start section 3
by illustrating the definition of two-dimensional
Cauchy principal value integrals on bounded domains
R? .

The definition and some properties of the
two-dimensional Cauchy principal value integral were
explicitly given by Tricomi (56) in 1928. We recall that
at the end of his paper, he states that the same
concept had already been used by Petrini [47, 48] in
1908 and 1909 and by Muntz [41] in 1910.

Let FlUoU) pe integrable on a bounded domain

U,

TCR | expect at the point Furthermore,

denoting by rf the polar coordinates with origin at

Us | we assume that in a neighborhood of U we

can write

f(Uo;Q)

F|U,;U|= .

+F [U,; U,
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2 .
Where 7=lU-Ul and FlUsUl may still become

U

infinite at o . but with order less than 2. Let ¢

denote a neighborhood of Us  with contour ©

rlgl=ale, ),

given

€

where is the radius of the smallest

by

circle containing %Let¢

2 be the contour of T, given by

rl6l=Al0]. e consider first.

A(B)

f %dr

ale,0)

f(:U,;0) do.

21
F,[Uy;80]dv+ [ &

0
F(:U,;0)dv= [ ¢

r—o
[
r—o

€ -0,

Taking the limit as we obtain

U
b
2n

f(0U,;8)log Al6)d6—lim [ f(U,;6|logale,6)do.(6.2.1)

" €07
2n
Fl(éUO;B)dv+IL
0
(060;8)dv=] ¢
T
b

lim F ¢

€ -0

In particular, if we let ¢ be a circle with center

and radius € the last integral becomes
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Which gives rise to the following theorem?

Theorem( 6. 2.11). A necessary and sufficient
condition for the existence of the limitin (6.3.2) is

(U, ;6)do=0.
fi
2n

?[ i

In this case we define the following.

Definition (6.2.13). For any FUsU) of type (6.3.1)

o

satisfying condition (6.2.3), when is a circle, we

define

f(LU,;0)log Al6)do.

2n

f F(Uy;U)dv=[,F,(Uy;U)dv+] ¢

If 9 s not a circle, but nevertheless a(€,0) s such
that

limMZao(B),

e -0
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Then

A(0)

f(("Uo;e) 0(0(9)

do

log

21
frF(Uy;U)dv=[F,(Uy; U)dv+ [ ¢
0

A definition analogous to (6.5) has already been
introduced in the one -dimensional case; see Remark
2.4.

Definition( 6.2.15) if condition (6.3) does not hold,
then we can define the integral of FWUsU) only in

the finite-part sense. In this latter case in the previous
expression we discard the term containing the factor

g€  and use the second members of (6.2.4) and
(6.5) to define the corresponding finite part integrals.

The concepts we have already presented in this
section can be generalized to functions with stronger

singularities and with a source point Yo

C,.

that may

even lie on the boundary Here we consider

integrals of the form

1K, (Uy0)p(U)dv,UeTCR’,

estimate on the good function is easy since we have

N

A " Tg "2L2(RZ)
2

x€eR’;|Tg|> N

<

1 2
S;" g " L’(R%)
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>\ " f "Ll(Rz)
1
— ;"f"L](RZ) .

Here, we have used that T: L’[R* - L’[R] is pounded. In

the final estimate we have used property (ii) in
Theorem (6.2.1)

We now turn to understanding the estimate on the bad

function. Let @ be the cubes obtained in
Theorem( 6.2.1) Let Q' denote the cube concentric
with 9 and having side length Vn times the side
length of Q' Then we have that

Consider now the first term above we then have that

c
+ N

uQ;

xeRZ:\Tb\>%

‘:‘(UQE)H

xeR2:|Tb|>§

xeR2:|Tb|>%

<luQ;

‘Uan

x€R%:|Thl>2
2

<2 |uQ;
J
s2.|Q)
J
1
S
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It only remains to handle the term

L\¢ >\
‘(UQ].) n|xeR%|Tb>=

And for this one we will use the properties of the
function b Note that by simple estimates we have

< [ [Tibl(x)ax
uQjr

‘(UQ;?)%

X€ R2:|Tb\>%

<53 [ |mbx)]ax

J(ugyf

Suppose for the moment that we proved

[ |1b,(x)|dx< [ |b,x]|dx(6.1.9)

v

Where the Kernel K, admits the expansion

o fp1(Ups0)
r

K, [UyiUJ= X P hn it Uy 6. (6.1.10)

I=0

Where +(Uss8) and ¢ azre smooth.

el | .
We set O=ueT:luuj<e. oo pafore in the case

examined by Tricomi, a different choice of ¢ would

introduce changes in the values of some of the
integrals we are going to define.

Analogous to the one-dimensional case, we
preliminarily define finite-part integrals of the simpler
form
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. fp(:ifz;e) dv.

To this end, we consider first the regular integral

h_gg(;ﬁgimdv:fgwo;e) o d0= [ 9Us:6][ho|6)—eole!]do,(6.1.11)

Where O<w<2m,

log Al6),if P=0,

0= -1 .
= if P>0,
P[A(6)]"

hyl

And

log €,if P=0,
elel= —1 if P>0.

P,

ifw=2nA¢é

2n

| glU,;6)do=0,

0

Then the limit of (6.10), as €~ % exist and we define
it as the Cauchy principal value of (6.9).otherwise, we

neglect the term ele) in (6.10); thus we have the

following definition.
By this definition of g we immediately see that
I9leiw =0Tz to see the L° estimate, note that if

X€Q; then we have
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lg(x)|=

SZni,j“f(X)‘dXSZHX.

‘QJ Q

Q%f F (x)]d

Q,

i
On the other hand, if xeR"(U¢;;Q;¢, then the exist a

sequence of non-selected cubes Qi that converge to x.
we then have that

for ] xia:

‘\f x)|dx <.

Qs

By the Lebesgue Differentiation Theorem we then
have that

i
f(x)|<xxeR(UL;Q;¢ .

Combining these two estimates we see that

19lw1=2° > finally, observe that

2lefss- X Il

We now turn to show how to use this Theorem to
deduce the following result.

Theorem (.6.2.12) Suppose that K is a Calderon
-Zygmund kernel as defined above in Theorem 1.2.

then for all f€L'(R") andany >>° we have
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n . 1
[xe R XeN <0 Dy

proof Fix>AfeL'(R"]. Apply the Calderon-Zygumund

decomposition in the Theorem 2.1 to obtain functions
g, b so that f = g + b. now observe that

X€eR™:|Tf|]>N| C

xeR”:|Tg|>%

U xeR”:|Tb|>%

And so, we have

|[xeR”:\Tf|>>\Hs x€R":|Th|>=

P
2

+

xeR":\Tg‘>%

Definition (6.3.14) we define

T v=[ g|U,,0]h,,(0)de. (6.2.11)

In the more general case of (3.8) we consider the
Taylor expansion of 2(v) arround v = Vo We write

w A(6)
U,,0
Lo+ | f (V0. 0) > LDKQ(UO)rmcosK‘BsinKZG drde,
0 € ’

Where KIFK#+KyK20ALD  {anote the regulapart of

the integral whose limit exist as €-0. From (6.12)
we obtain

.[ p+2 dV
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I, D+ Z K_D @ U0 ffp U, 9 cos ‘§sin” G[hm(G) e|K|(6)]d9
Kl<p 0

where

log Al6if|[K|=P,

HK‘—P);(Q)P—K’IHKkP (3.14)

hy01=

logeif [K|=P

1 .
TKI-plater = 1 <I<P

ex€l=

ifw=2T " and, furthermore,

UO
fp(¢,0)cos" Osin"*0 d8=0,|K|<P,

2n
[
0

Then the limit of (6.13) exist and we define it
as the Cauchy principal value of (6.8).notice that
(6.15) is equivalent to

U,
U,

m0do= [ f,(¢,8)sinmd do=0.
0
fplé,0)cosé

2n
[
0
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Form=20,1,.....p .

If condition (6.15) are violated then in (3.13) we

discard the divergent terms exl€l and, letting €0,

we obtain the finite-part value of the integral, as
follows.

T
i
Definition(6.1.5) for any {
@ec™y
fr fP(L;f;m @(v]dvj fP(L;BZ;H) Blv|- D] iDK@(Uo)rwcosKl(9sinK26 dv
: T k=p K

w

3 %DKQ(UO)I o[ Uy; 0] cos 0 sin"0h(6]d6,

K|<p - 0

wherehy (0] given in ( 6.2.14).

As in the one-dimensional case, a change of variable
in (6.3.6), orin (6.3.8), in general introduces additional
point functional (at v = v,). Explicit representations for
the coefficients of these extra point functional were
given in [51].

Remark (6.6). when we take an integration region T of

size -0

O(llog h]) if p =0, and O!h*lif P=1.

the behavior of integral (3.8) is of type

In boundary element method applications, very often
one has to deal with surface integrals of the type

I1=§,K,(Uy; U=U,)p(U)dS,, Pinteger

(6.3.16)
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3 . . .
whereSCR" has an analytic parametric representations

the Kernel ¢ js homogenous of degree P72 in

the second argument and has a pole of order P + 2 at

UsU. and ) s a smooth function. These

integrals are defined as the limit, as ¢~ % of the
finite part of the expansion of

4 4

Hel= [ K,(Uy;0=0,)(0)ds,

v

T _ _ _
Where Be=lieR ji=i,|<e.e>0. tpatis having derived an
expansion of the form

Ile/-1,e)+I loge+) I,e”

J=1

I=lim I, e].

€ -0

As illustrated in [51,52], using the representation of S
in those applications, one obtains corresponding
integrals of form (3.6), with the Kernel satisfying (3.7),
a—1,

Plus additional point functional (at whose

coefficients vanish whenever Y lies in the interior of

S. thus also in the more general situation of (6.2.16)
one van deal with integrals of the form (6.2.16).

(6.2.12) Cubature formulas

Using the polar coordinates, we express (3.6) in the
form

w

;0
ffg\(e) fP(uO ) @ |u|dr db, Pintegrer,(6.3.17)

P+1
0 r
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0

Where rcosd.rsint. gurther, we assume that the
Du=2¢

function A( ¢ is analytic on %Wl If A( 8¢ s only
piecewise analytic in its domain of definition, we
subdivide this latter into subintervals where A( 9¢ is
analytic and treat separately each of the subintervals.

From Definition(6 2.3) it is straightforward to see that

if in (6.2.17) we assume frEC 0w and

@ € C”"T|, wehave

0

rcosO ,rsiné.
b
di

gP(Q]:fP<“0;9)3€g\(9)[J

To approximate (3.17) we generalize the approach
recently proposed in [39] (see also [52]). In particular,
we evaluate the outer integral by an m-point
Gauss-Legender -Lobatto rule , and the inner one
using the formulas presented in Section 2.2.But before
deciding which formula to use for the inner integral,

we need function to recall that the [#ti6) s usually

not known explicitly as we have pointed out in (3.7), in

fp(uo;B)/Z, rh?

general the term arises from a

Laurent expansion of the given Kernel function and it
contains the strongest singularity. Since we will apply
our final cubature to (3.6), and not to (3.17) , we need
a quadrature which uses only function values, not
derivatives.

To this end, when P=0, we choose rule (2.10) or its
analogue of Lobatto type, because of the simplicity of
its coefficients and its higher performance (see tables
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1 and 2). When P=L  we are forced to use rules of

type (2.16) here we choose the one with w(t) = land
(t) nodes of the corresponding Gauss-Legender (or
Gauss-Radau or Gauss-Lobatto) rule.

Denote by (h;), { 8] the coefficients and the nodes of
the m-point Gauss-Legender or Gauss-Lobatto rule

J‘ dp (ye]dezi higp(ei)"'RZL(gp)-

i=1

For 9€C 0wl we have Rulg/=0lm Iwlgiim™]. Then
use (2.10) if p = 0 and (2.16) if P>1,{approximate

0
rcosf,rsiné.
8
D

(6) ;
0 G

That is,

r,cos6,
wil0|@(¢,r;sin8,)+R; (@], if P=0,

u, (0| @ [o,o)+zn: b

2. wil0|@|(r;cos,r sinb|+R; @ |,if P>1.

j=1

Notice that
6

(Léi;0),wf(O)zwf(@i;O),rjzrj(Gi),wj.[O):wj.(Bi;0],Rf(@)ZRHG(Bi; D|,R,|D|=R,|0,;D).

Uy 0] =u,é
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We remark that under our assumption on A( 90 the

0
(66i;0)
Uy b
b
0
(661;0)

n
seel6.2.11/A¢
6

bounds . 0 0) hold uniformly with respect to i.
Loi;
wfé

i
see(6.2.13)
i
log é¢
G+ _
w;6=0¢
i
i

The remainder term of the final cubature formula is
given by

Uys
0
(66i;D),(6.18)
hifp(z’ei)an’

fo®|=Rygp|+ 2.

i=1

Rm.n

— D DD D

_ (0oi; @)if P>1.
With  (ii.0)=R"
(60i;D)if P=0,AR {
(66i; @)=RYE
R

Before deriving a convergence result for our cubature
formula, we recall the definition of the space
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H,, [Dl.wesaythatf|x,y|€H,, [D],q20, if fx ) and all its

partial derivatives of order j = 0,...q exist and are
continuous in D, and each derivative of order q
satisfies the Holder condition

Xy5Y>

g(rxpY1)_963A‘X}_X2‘F+B|Y1_Yz
6

N

, where A, B are

constants.

To estimate the behavior of (3.14) we proceed as
0,rsinb
follows. Consider the Taylor expansion of ”&‘)32@ with

respect to the variable r, around r = 0; denote by

0¢

Tpi the associated polynomial of degree p
define

0,rsinf

reosé : r, .

;,, 04 + rp+1q3p(.) 96,

D

And consider the best (uniform) approximation

r, .
polynomial P, poomi 0¢ of degree

r, )
n—P—-2erAmebassociated with®,(, 8¢ if assume

([q+P+1)( lq) ([
¢ € H, " |T), thenwehave ®, € H,[L[T|. next form the function

r, r, 6. r} 9.
P' L 00=T ¢ 4+ Pp { ¢

n—p-—2,m
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Which for fixed ¢ is a polynomial of degree n - 1
with respect to r. since it is known (see[32, p.90]) that
for P-€H],IT),

" (I)P_ Pn7P72,m "oo =0 (n—q—u+m—q—u) )

Rn(ei;(D):Rn(ei’.(D_P;.m )

And , furthermore, we can state

the following.

Theorem (6.7). if in (3.17) we assume

folug;6l€Clown@IVIEHT™IT],  £5r the remainder term

(3.18) we have

_|O(m " "+n "*)logn,if P=0,
Rm,n(fP(D) O(m_q_“+n_q_“)n2p+1/2ifpz1’ (6.2.19)

Remark (6.8) if we are interested in the construction

of a cubature rule for integral (3.6), then recalling

expansion (6.2.17), in the case P!

immediately derive

for example we

n

. K,p(uy;u)@ (v):Z; h;. 1 wil0r K [ug;u;) D u; |+ R, (D),
i= j=

6,

1

cos@,,siné
Where we have set 2 for the new remainder

Uy=U+r ;6

Roq(2) 3 bound of type (3.19) holds provided K in

(3.7) is of class CT™ | with respect to the variable

0 in the closure of the domain of integration.

In theorem 3.7 our goal is to approximate integral
(3.17) to the desired accuracy. In particular, if we think
of the boundary element method application, since
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the convergence results for these methods rely on the
exact evaluation of the integrals over each element,
our goal is the rate of convergence of our cubature

formulas as ™~ * |

In the authors examine the approximation[7] of the
integrals from a different point of view.

They consider the reference triangle T with vertices (O,
0), (h, 0), (h, h), and a cubature formula obtained by
integrating the outer integral in (3.17) by an m-point
Gaussian rule and the inner one by an n-point rule of

r,0
type (2.16), with m, n fixed. By assuming f,; ) and

2(v) analytic, they obtain an error estimate, as
h=0. of the form.
(1+60~P|logh\)e_c’"+h”:>
h'l, (3.20)
04
Where ¢ is a constant and 0 represents the

Kronecker symbol. That is, for a given cubature with
fixed number of nodes, they examine the behavior of
remainder term as the size of each element of the
surface triangulation tends to zero. Recall that under

the assumptions made in [52], in the estimates we
have derived in this section we would have 9= and
for fixed h, the remainder terms would decay, as
m,n — 00

. Faster than any negative power of m and n,

Incidentally we notice that in the above situation the
contribution of the integral itself is (see Remark 3.6)

(1468, loghl),
of order 04 hence the error bound (3.20)

guarantees that for m , n fixed the behavior of the
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h -0,

cubature rule, as is similar to that of the

integral it is applied to.

In boundary element applications we have the same
cancellation problems already observed in the
one-dimensional case. This cancellation phenomenon
arises in the summation of the contributions given by
the neighbor elements of the singular point. Only if
this sum is small with respect to the contribution of all
the remaining elements, numerical cancellation will
have little effect on the final accuracy. Otherwise,

there will be a h, such that for "<h

decrease. Finally we mention that in [12,13,52]
alternative approaches (for constructing cubature for
hypersingular integrals) to the one described here are
prod not consider them.

o accuracy will
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	To prove that f tends to Hf as tends to zero, it suffices to check this on a dense set of functions . On the other hand,


