Chapter 6
Differential System of Krein and Triangular Factorization

In this chapter we show that broad classes of operators can be factorized. As a
result, pure existence theorems in the well-known problems by Ringrose,
Kadison and Singer are substituted by concrete examples.

Sec(6.1): Krein’s Differential System and its Generalization

In the M.G. Krein’s famous paper [47] a special class of differential systems
(Krein’s systems) was considered. M.G.Krein announced a number of
fundamental facts of the direct and inverse spectral theory of this class.
Unfortunately these important results where published without proof. In recent
years we proved a part of the assertions stated in [47] and generalized them to a
broad class of canonical differential systems (see [51,52,53]). In this article we
continue our investigatation of Krein’s systems and correct some assertions both
in M.G. Krein’s article [47] and in our earlier work [51,52,53]. In the last part of
this section, we introduce the class of the matrix functions, which contains the
Stummel class. Assuming that the coefficients of Krein’s system belong to the
introduced class, we prove some new results announced by M.G. Krein in [47].
We shall consider the operator

T

Srf=f(x)+fH(x—t)f(t)dt ,0<1r < oo, (D
0
Here we suppose that the operator S, is positive and that the function H(t) is
continuous and satisfies the relation
H(t)=H(-t) , —r<t<r. (2)
In this case there exists a Hermitian resolvent I'.(t,s) = [(s,t) satisfying the

relation
T

r.(ts) + f H(t — W) s)du = HE—s), 0<st<r 3)
0
Following [47] we set
T
P, ) = e[ 1 - f [(s,0)e=% ds | | @)
0
T
P(r,2)=1- f I.(0,s) et ds. (5)

0
M.G. Krein [47] deduced the differential system

. — dpP,.(r, 1)
= iAP(r,A) — A(r) P.(r, A),T = —A()P(r,1), (6)

Y

dP(r, 1)
dr



where

A(r) = I.(0,r) (7)
M.G.Krein proved that there exists a nondecreasing function o(A) (spectral
function) such that the operator

Uf=ff(r)P(r,/1)dr, —w <A< (8)
0

isometrically maps L3,(0,) into L3(—o0,). M.G.Krein formulated the
following important results [47].

Theorem (6.1.1)[21]: The following propositions are equivalent:

1) The integral

KGo) = [ 1PGrz0)lPer (9)
0

converges for at least one z,, Imz , > 0.
2) The function P,(7,z3),0 <r < oo is bounded for at least one z,, Imz y >
0
3) The integral K(z) converges uniformly at any bounded closed set z of the
open half-plane Imz > 0.
4) There exists the limit

[1(z) = limP, (r,z), r > oo, (10)
where the convergence is uniform on any bounded closed subset z of the open
half-plane Imz > 0.
5) The integral

o Log 6(A)
f—oo (1 +12) d/’l (11)

is finite.
If conditions 1)-5) are fulfilled then I1(z) can be represented in the form

1 1 (® 1+tz loed ()1d¢ + 1 »
H(z)—mexp<2m£w(z_t)(l_l_tz)[oga(t)] t+la>, (12)

where @ = .

Let us point out some inaccuracies of the article [47].

1. The condition of the continuity of H(t) is omitted in [47]. Without this
condition equality (7) does not make sense. It was Krein himself who wrote
about this [48].

2. In formula (12) (see [47]) the expression (t — z) is used instead of (z — t).
3. The right part of (12) (see [47]) contains the multiplier exp(iffz), where f >
0. As it is shown (see [53]) this multiplier is equal to 1, i.e., § = 0.

4. M.G.Krein [47] writes that formula (12) shows that [1(z) depends only on the
absolutely continuous part g,(4) of the spectral function o(A). This is true
concerning the module |I[1(z)], but the question of the connection of a with the
spectral function o (4) remains unanswered.
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However under some conditions it is possible to obtain the formula expressing
a by a,(4) In a number of concrete examples (see [44,45,46]) the relations
[I(z) » 1, z= ia, a— +oo, (13)

limd(t) =—, t—oo (14)
are fulfilled. From (12)- (14) it follows that

_ 1 j‘o a’t log [2md(t)]

CEMn v ary
where a — +o0o.
Thus in case when (13) and (14) are valid a is indeed defined by absolutely
continuous part g,(A) of the spectral function o0(1). Now we shall find the
conditions from which follows relation (13).
Proposition (6.1.2)[21]:
Suppose that for all r > 0 there exists a § > 0 such that

Srf,f) =2 6(f, 1) (16)
Relation (13) is valid if

(15)

f|H(t)|2dt =M < oo, (17)
0

Proof. It follows from (16) that

1

Srt<sl . (18)
From (3), (17) and (18) we deduce that

Tr Tr
f|1;(t,0)|2dt - f|1;,(o,s)|2dng5 , (19)
0 0

where Mg = M /52, Let us estimate the integral
2 T

< M(gfe_zasds (20)
0

T
f [.(0,s) e™*ds
0

As foooe_zasds - 0,when A = ia, a > 0, a - oo, the assertion of the

proposition follows from (5) and (20).
Corollary (6.1.3)[21]:
If relation (17) and inequality

f|H(t)|dt =g<1 21)
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are fulfilled , then condition (13) is valid.
Indeed from inequality (21) we deduce that

IS, — 11l < q. (22)
This implies that the conditions of Proposition (6.1.2) hold. Hence Corollary
(6.1.3) follows.
Corollary (6.1.4)[21]: If conditions of Theorem(6.1.1) are fulfilled and
coefficient A(r) is real, then « = 0.
Indeed in this case the function P,(7,i) is positive. Hence II(i) is positive as
well. From formula (12) we obtain that

100 = (L [ Logo® , s
R 2m J (1 + &%) “ (23)

As T1(Q) is positive it follows from formula (23) that « = 0.
Let us consider separately the case when

A(r)=0, r=R (24)
In this case we have
dP, -
I = , Y =R (25)
Hence the following equality
(z) = P.(R,2) (26)

is true. From (5) and (26) we obtain the following assertion.
Corollary (6.1.5)[21]: If relation (24) is true, then relations (13) and (14) are
true as well.

Let us note that there is no problem in defining the a value in the case of
orthogonal polynomials (see [43]). It can be explained by a good choice of
normalization. In the case of Krein’s system such normalization is also possible.
We shall introduce I1(z) not with the help of relation (10), but with the help of
the equality

[I(z) = lim [P,(r,z) exp(—iy(r)], r — oo, (27)
where y(r) = argP,(r,i). Then in view of (12) and (23) we have

1 1 [ (1+tz)Loga(t)
[(z) = —exp| = >~ dt
V21 2m_oo z—0v(1 + t°)
Theorem (6.1.1) was formulated by M.G.Krein without any proof. In our works
[51,52,53] we gave the proof of this theorem but condition 4) of Theorem
(6.1.1) must be replaced by the following condition:

4 ) There exists a sequence 7,, — oo such that

(28)

[(z) = lim P,(7;,,2), 1, > oo, II(2z) # (29)

at any bounded closed set z of the open half-plane Imz > 0.
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Remark (6.1.6)[21]: A.Teplyaev called our attention to the necessity of
replacing condition 4) by condition4). In his article [54] Theorem (6.1.1) was
partially proved (the equivalence of conditions 1), 2), 3) and 4)).
The formula (12) doesn’t follow from condition 4). Further (see the next
section) we shall prove that condition 4) can be replaced by the stronger
condition: 4(s)). There exists a sequence 1;; = oo such that

[1(z) = lim P,(r;, z), lim P(r;,,z) = 0, 1, = oo, (30)
at any bounded closed set z of the open half-plane Imz > 0.
In this case formula (12) is valid and conditions 1), 2), 3), 4(s)) and 5) are
equivalent.
We show the generalized Krein systems (matrix case) .The matrix version of
system (6) has the form

dP;(x) = izDP; + A1 (x)P; + A12(X)P, ’dPZ—(x) = Ay (0)Py,
X dx
x>0 (31)
where A;; (x) and Pg(x,z) are m X m matrices and constant m X m matrix D
has the form
D = diagld,,,d, ..., dy], dk >0 (k = 1,2,...,m). (32)
We assume that the following conditions are fulfilled.
1. The matrices A;; (x) are continuous and
A1 (x) = —A11(x), Az1(x) = Al (x) (33)
2. The matrix functions P; (x, z) and P, (x, z) satisfy the boundary conditions

Pl(o, Z) == Sl ’ Pz(o, Z) == Sz, detSk * 0, (34)
where S; and S, are constant m X m matrices such that

We have proved the following theorem (see [51,52,53]):

Theorem (6.1.7) [21]: (Generalized Krein Theorem) The following
propositions are equivalent:

1) The integral

K(z) = f P} (x, 26)D Py (x, zo)dx 36)
0

converges for at least one zy,Imz ;> 0.
2) The norm of matrix function P,(x,zy)(0 < x < ) is bounded for at least
one ZzZg,Imz,> 0.
3) The integral K(z) converges uniformly at any bounded closed set z of the
open half-plane Imz > 0.
4) There exists a sequence x,, = o such that

N(z) = lim P, (xy,2), X = o0, [[lI(2)]| # oo (37)
at any bounded closed set z of the open half-plane Imz > 0.
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5) The integral

(00)

Log det 6(A
f g 2( ) N
(1+2%)
is finite, where o (A) is the spectral matrix function of system (31).
Now we shall prove that the condition 4) of Theorem (6.1.7) can be replaced by
the stronger condition. We shall use the relation (see [51,52,53])
PZ* (x; Z)PZ(x; E)_ Pl* (x; Z)Plgcx; E)

= i(Z— E) fo P{ (x,z) DP;(x,&)dx (39)
In particular for ¢ = z we have
PZ* (x; Z)PZ(x; Z)_ Pl* (x; Z)Pl(x; Z)

X

(38)

=i(z- z) f P{ (x,z) DP;(x,z)dx (40)
0

There exists a sequence R, — oo such that (see [51,52,53])
lim P,(Ry,z) = Il(2),lim P, (R, zy,) = O, (41)

where Imz0 > 0. It follows from (40) that ||P,(r, z)|| = ||P1(7, 2)]|.
Using this inequality we deduce that for a subsequence 1, of the sequence Ry,
there exist the limits

lim P, (1, z) = II(2),lim P;(ry, 2z) = Q(2), (42)
where
Q(z0) = 0. (43)
Let us suppose that for another sequence t;,, — oo there exist some other limits
lim P, (ty, z) = I;(2),lim P,(t,,z) = Q4(2). (44)

It follows from condition 1) of Theorem (6.1.7) that there exists the limit of the
right part of equality (39), when R — oo. Hence the following relation

M) (§) - Q) = MAIE) — Q' (2)Q) (45)
is true. Under condition 5) of Theorem (6.1.7) the matrix (A1) is factorable ,
1.e.there exists an analytic maximal m X m matrix function [I'(z),(Imz >

0) such that det I'(z) # 0 and

%11,(/1) Iy =60, 1= 4 (46)

where T, (A) = limI'(A + €), € » +0. Following the argumentations of the
[53] (Theorem 3.2) we obtain the assertion.
Proposition (6.1.8)[21]: Let condition 1) of Theorem (6.1.8)be fulfilled . Then

M1 (z) is the maximal analytic matrix function satisfying the relation

%Hzl MM W1 = 6(), A=1, (47)

where 131 (A) = limII~1(A +€), e > +0.
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Remark (6.1.9)[21]: In paper [53] Proposition 2 is proved in the case that
zy = L. It follows from (46) and (47) that

n1(z) = T(2)U, (48)
where U is a unitary constant m X m matrix. Using (40)-(43) and (48) we
have

I (z)1(E) = [z T )
— (% — ©) | PiGua)DP(x, E)dx (49)

0
Theorem (6.1.10)[21]: Let condition 1) of Theorem (6.1.7) be fulfilled. If a
sequence R; — oo is such that relation (41) is true then

JOEN ] (50)
M"@ANE) = @' T () = iz - 5)] Pi(x,z)DP;(x,§)dx. (1)
0

Proof. We can choose an arbitrary z,,(Imz o > 0). In this case the matrix
function I1(z) can change but not I'(z). Taking this fact into account we deduce
from (48) and (49) relations (50) and (51). The theorem is proved.

Corollary (6.1.11)[21]: Let I1,(z) and Q(z) be defined by relations (44). Then
there exist constant m X m matrices A and B such that

(z) = All(z), Qi(z) = BI(2), (52)
where

A*A — BB =1,,. (53)

Proof. It follows from (45) and (50) that
I} @)1(€) = Q1(2)Q:1(§) = M ()I(E). (54)

Relation (54) can be written in the form

L, 1

2z = o 7 =

Where j = diag|l,,, —I,,] and
7 = Iy(z) 11,(8)

1R QD)
Here matrix functions [1,(z) and Q,(z) are defined by the equalities

M(2) = M@HI(2), Q(z) = UE@HI (2. (57)
Relations of type (55) were investigated by V. Potapov ([49], Ch.2). Using
Potapov’s result we obtain the equality

(56)

1A 0
ZT = 5 ol (58)
where
1701 —1
T =— | ™ m 59

We deduce from (58) that
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I,(z) = M,(&) = A = const,Q,(2) = Q,(¢) = B = const. (60)
Hence the relations (52) and (53) are true.
Naw we show the generalized Krein systems in a particular case
Let us consider system (31), when

D =1L,, Aj1(x) = 0, Ajp(x) = Ay (x) = a(x). (61)
We introduce the norm
x+1
lallp =Tsup [ le@IPde’?, x>0, (62)

Here ||a(x)]]| is the largest singular value of the m X m matrix a(x). We assume
that p > 1. When p = 2 the introduced norm coincides with the well-known
Stummel norm (see [42]).

Theorem (6.1.12)[21]: If condition 1) of Theorem (6.1.7) is fulfilled and

then
limP;(x,z) = 0, x—> o, Imz> 0. (64)
Proof. The system (31), (61) can be written in the form
T = a@e Py (x, k), TEIR = a(0e T QEx ik),  (65)

where Q(x,ik) = e®P,(x,ik), z = ik. From (65) we deduce that
X X

e ~hx fa(u)ekudu = e‘k"fWPz_l (u, ik)du. (66)

0 0
It follows from (65) and (66) that

G(x, ik) = ek fox efuy (u,ik)a* (W)Y (u,ik)du

+Y (x,ik) — e **U, (67)

where
X

G(x, ik) = e™** fa(u)eku du, (68)

0
Y (x,ik) = Py(x,ik)P; 1 (x,ik), U = S$;S;1. In view of (35) the matrix U is
unitary. Further we use the following inequality

1G (x, i) <

lallpe ™ [z (U et au) + (f[’;]eq"“du)al, (69)

where [x] is the integer part of x and q is defined by the relation 1/p + 1/q =
1. From (69) we deduce that
[x]
C ,
1G(x, k)] < — e~ z ekl 4 ek | <
ka j=0

C
(70)

=
Q||

It follows from relation (40) that
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Y (x,ik)|| < 1. (71)
Inequalities (70) and (71) imply that
X

X
e kx f la@lleR ]|y (w, i) du < e f la(wlle™ du
0 0

C
< kqu : (72)
In view of (67), (70) and (71) we have
Y (x,ik)|| < C—i+ ek, (73)
ka
There exists a sequence x;, — oo such that
lim Py (xy,z) = MI(z), limP;(xy,z) = 0. (74)
Let us assume that for another sequence t, — oo there exist some other limits
lim P, (ty, z) = M1(2), lim P;(ty,z) = Q1(2). (75)

Then according to Corollary (6.1.11) there exist constant m X m matrices A and
B such that

y(2) = Al(z), Q,(z) = BII(z). (76)
It follows from (66) that
Q@);'(z) = BA™ (77)
Using inequality (73) we obtain that B = 0, i.e.,, Q;(z) = 0. The theorem is
proved. O
Theorem (6.1.13)[21]: If condition 1) of Theorem (6.1.7) is fulfilled and
X+1
limf [la(w)||du = 0, X — 00, (78)
X
then
limP;(x,z) = 0, x > o, Imz > 0. (79)

Proof. Let ¢ be an arbitrary positive number. There exists a natural number N
such that

L la@lldu <e ,x = N. (80)

Using notation (68) we have
[x]

N
16 Cx, k)| < e-kxfua(u)uekudu teehr| e 4 o
0 j=N
< e_kaN + 4¢ . (81)
In view of (71) the inequality

X
e kx flla(u)llekullY (w,ik)||?du < e ™® C y + 4¢ (82)
0
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is true. It follows from (67) and (81), (82) that
Y (x,ik)|| < 2(e™®*Cy + 4€) + e /¥, (83)

Relations (74)—(77) are true in case p = 1 too. From (74)—(77) and estimation
(83) we deduce the equality B = 0,i.e.Q;(z) = 0. The theorem is proved. O
Corollary (6.1.14)[21]: If the conditions of either Theorem (6.1.12) or Theorem
(6.1.13) are fulfilled, then

I1,(z) = All(z), (84)
where A is a constant unitary matrix.
Proposition (6.1.15)[21]: Let a(x) = 0 and let relation (79) be fulfilled. Then
relation (78) 1s fulfilled too.
Proof. From (79) and inequality a(x) = 0 we obtain the relation

y(x,ik) - 0, x — co. (85)
Using (76) , (77) and (85) we have that

X

e~ kx fek“a(u)du - 0. (86)
0
It follows from (86) that
x+1
e~ kx f efa(u)du - 0, (87)

X
1.e. relation (78) is fulfilled. The proposition is proved. O
Corollary (6.1.16)[232]: Suppose that forall» > 0 and € > 0 such that

Sef.f) =2 (r+ e, .
Relation (13) is valid if

r
1imf|H(t)|2dt =M, < o.
T—00

0

Proof. It follows from (16) that

_1< 1
Sr ~ (r+e)

From (3), (17) and (18) we deduce that
T

Tr
f|1;(t,0)|2dt - fm(o,s)ﬁdssM(m) ,
0 0

where M(,+¢) = M/(r + €)?. Let us estimate the integral

T 2 T

fI}(O, s) eBtds| < M(r+e)fe_2a5ds
0 0

As foooe_zasds - 0,when A1 = ia, a > 0, a —» oo, the assertion of the
Corollary follows from (5) and (20).
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Corollary(6.1.17)[232]:1f condition 1) of Theorem (6.1.7) 1s fulfilled and

then

limP;(x,z) = 0, x > o, Imz > 0.
Proof. Let ¢ be an arbitrary positive number. There exists a natural number N
such that

x+1
fx ZreZ“a(ur)“ dur <e€e ,x = N.

Using notation (68) we have

N [x]
ZIIG(x,ikT)II < Ze-er j la(u,)llekrrdu, +de—er (Zekw‘ + eer>
0

rez reZ reZ j=N
< e frXCy + 4e .

In view of (71) the inequality

X
> e [la@let IV G ik )lPdu, < Y 7% €+ 4o
r€Z 0

is true. It follows from (67) and (81), (82) that

YollY ik )l < 2%,(e7 7 Cy + 4e) + X, e .
Relations (74)—(77) are true in case p = 1 too. From (74)—~(77) and estimation
(83) we deduce the equality B = 0,i.e.Q;(z) = 0. The theorem is proved. O

rezZ

Sec (6.2): Triangular Factorization of Positive Operators

In the Hilbert space L2, (a,b) we define the orthogonal projectors Pef =
f(x), a < x < &and Pef = 0, § < x < b,where f(x) € L, (a,b).
Definition (6.2.1)[20]: A bounded operator S_ on L%, (a,b)is called lower
triangular if for every ¢ the relations

S_Q:=0Q5_Q¢, (88)
Are true, where Q¢ = [ — Pe.
Definition (6.2.2)[20]: A bounded operator S, on L2, (a,b) is called upper
triangular if for every ¢ the relations
are true.
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Definition (6.2.3)[20]: A bounded, positive and invertible operator S on
L%, (a,b) is said to admit the right triangular factorization if it can be
represented in the form
S =8,5]. (90)
where S, and S;1  are upper triangular, bounded operators.
Definition (6.2.4)[20]: A bounded, positive and invertible operator S on
L2, (a,b) is said to admit the left triangular factorization if it can be represented
in the form
S =S85, 91)
where S_ and S~ are lower triangular, bounded operators.
Gohberg and M.G. Krein [29] studied the problem of factorization under
the assumption
S —1 € Yy, (92)
where Y, is the set of compact operators. The operators S_and S, were assumed
to have the form S, =7+ X,, S_=1 + X_; X, X_ € y,. The factorization
method plays an important role in a number of analysis problems (for instance
integral equations [39], spectral theory [40], nonlinear integrable equations).
Giving up condition (92) and considering more general triangular operators
would essentially widen the scope of the factorization method. D. Larson proved
in his famous work [33] the existence of positive non-factorable operators. In
this Section we formulate the necessary and sufficient conditions under which
the positive operator S admits a triangular factorization. The factorizing
operator V = S~1 is constructed in an explicit form, also we consider the class
of positive operators S which satisfy the operator identity
AS — SA® = IIjII". (93)
For operators of this class, the factorization conditions have a simpler form. The
general results of this Section are applied to operators with difference kernels

a
d
Sf = — ff(t)s(x — t)dt. (94)
dx
0
and to operators with sum-difference kernels,
b
d2
Sf =27 [ = 0 + 5,00 + O1f@de, (95)

0
where f(t) € L?*(0,b). In particular, we prove that the Dixon operator [28],
[32], [41]

1
Al f©
Sf = - =
f f@&) nf x +t
0
where f(x) € L?(0,1) and A < 1, admits a left triangular factorization. We
note that the operators of the forms (94) and (95) play an important role in
theoretical and applied problems (inverse problems, stationary processes,
prediction theory). also we investigate the case when

dt = g(x). (96)
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X
Af = iff(t)dt, rank(4AS — SA®) = 1. 97)
0
In this case the factorizing operator S_ has the special form

S_f = j—x [ rose - ode. (98)
0

In this Section we consider a class of operators of the form
1

SF = F(x) —fF(y)k(%)%dy - G(x), (99)

0

Where F(x) € L?(0,1). The Dixon operator belongs to this class.
Remark(6.2.5)[20]: We consider triangular operators in the space L3, (a,b)
with the special set of projectors Pg. A general theory of triangular operators is
constructed in the works [26], [27], [31], [33]-[36].

Let S be a linear, bounded and invertible operator S on L%,(a, b).We introduce

the notation
¢

St = PSP, (£.9)¢ = | '@ @dx, (100)
a
where f(x),g(x) € L%, (a,b).
Theorem (6.2.6)[20]: Let the bounded and invertible operator S on L2, (a, b).be
positive. For the operator Sto admit the left triangular factorization it is
necessary and sufficient that the following assertions are true.
1. There exists an m X m matrix function Fy(x) such that

b
Tr f Fy(x)Fy(x)dx < oo, (101)
a
that the m X m matrix function
ME©) = (R8¢ Fo@), (102)
is absolutely continuous, and almost everywhere
detM(§) # 0. (103)

2. The vector functions
X

fv*(x, t)f (t)dt (104)
a
are absolutely continuous. Here f(x) € L2%,(a,b) and

v t) = Sgl PeFy(x), (105)
( In (102) the operator Sz ! transforms the matrix column of the original into the
corresponding column of the image.)

V¢



3. The operator

Vf =R j—x [ veor@a (106)
0

is bounded, invertible and lower triangular with its inverse V ~1. Here R(x) is
an m X m matrix function such that

R*(X)R(x) = M(x). (107)
Proof. Necessity. We suppose that the operator S admits the left triangular
factorization (91). Let Fy(x) € L%,(a,b) be a fixed m X m matrix function
satisfying relation (101). We introduce the m X m matrix function

R(x) =V Fy(x), (108)
where V = SZ! . We can choose Fy(x) in such a way that almost everywhere
thenequality

detR(x) # 0 (109)
is true. From relations (91), (102) and (108) we have
§
M) = f R*(x)R(x)dx. (110)
a
Hence the function M (§) is absolutely continuous and
M(x) = R*(x)R(x). (111)
Now we use the equality
(f, Sg ' Fo)e = (Vf,VF)s. (112)

Relations (108) and (112) imply that
X

d
afv*(x, Hf(dt = R )V f). (113)

The necessity is proved.
Sufficiency. Let the conditions 1-3 of Theorem (6.2.6) be fulfilled. It follows
from (105)—(107) that
VF,= R(x). (114)

From relations (105), (106) and (214) we deduce that (V f,V Fy)e =
(f,Sg' PeFo)e, e,

V*P¢V P¢Fy = S;'PgF,,. (115)
We define v(¢,t) in the domain ¢ < t < b by the equality v(¢,t) = 0. It
follows from the triangular structure of the operators VV and V ~! that

P:V™'P;V Py = P;. (116)
Hence in view of (105) and (115) we have
PVHV I (&, t) = PeF,. (117)

It is easy to see that P¢Sv(¢,t) = PgFy. Thus according to relations (116)
and(117), the equality
VTV T vE D, v ) = (Sv(E,6), v, 1)) (118)
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is true. If there exists such a vector function fy(x) € L%,(a,b) that
(fo,v(&,t)) = 0,then due to (106) the relation

Vf =0 (119)
is valid. The operator V is invertible. Hence from (119) we deduce that f, =
0. This means that v(&,t) is a complete system in L2, (a, b) Using this fact and
relation (118) we obtain the desired equality

S = v v (120)
The theorem is proved. O
Corollary (6.2.7)[20]: If the conditions of Theorem (6.2.6) are fulfilled, then the
corresponding operator S~1 can be represented in the form

st =y, (121)

We introduce the notation
b

G = 050 gk = [ o' (122)
§
In the same way as Theorem (6.2.6) we deduce the following result.
Theorem (6.2.8)[20]: Let the bounded and invertible operator S on L%,(a, b) be
positive. For the operator S to admit the right triangular factorization it is
necessary and sufficient that the following assertions are true.
1. There exists an m X m matrix function Fy(x) such that
b
Trf Fy (X)Fy(x)dx < oo, (123)

a
that the m X m matrix function

N() = [Fo(x);cg_l Fo(x)],E (124)

is absolutely continuous, and almost everywhere

detN(§) # 0. (125)
2. The vector functions
b
fu*(x, Hf (Hdt (126)
X
are absolutely continuous. Here f(x) € L?(a, b) and
u¢,t) = Cg' Q:F,. (127)
3. The operator
b
d
Uf = —10" 1" o [ w o f @t (128)
X

is bounded, upper triangular and invertible together with its inverse U1,
Here

Q' (0Q) = —N(x). (129)
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Corollary (6.2.9)[20]: If the conditions of Theorem (6.2.8) are fulfilled, then the
corresponding operator S~1 can be represented in the form

s~1=y*u. (130)
Remark (6.2.10)[20]: Formulas (105), (106) and (127), (128) give the right and
left factorization of the operator T = S~ . It can be useful for solving operator
equations of the form Sf = g. Using the notation

T =S Te= QTQ:, w(§,t) = T¢' Q:TF,. (131)
We introduce the operator

b
Wf = —[R*(x)]—lj—xfw*(x, t)f(t)dt. (132)

The connection between the operators V and W is given by the following
assertion.

Proposition (6.2.11)[20]: Let the operator V defined by formula (106) be
bounded. Then the operator W defined by formula (132) is also bounded and

WT = V. (133)
Proof. It can be proved by linear algebra methods that (see [40], p. 41)
TQ:T¢' QT =T — S;' P;. (134)
From relations (105), (131) and (134) we have
Tw(ét) = TF o — v(é, ). (135)
Hence the equality
[Tf,w(E Dle = (Tf,F) — (f, v, t))sz (136)
is true. From formulas (106) , (132) and (136) we obtain relation (133). The
proposition is proved. m

Using Proposition (6.2.11) we deduce the following important assertion.
Proposition (6.2.12)[20]: Let S be a bounded, positive, invertible operator and
let the operator V defined by formula (106) be bounded. If the relations
VF, = R(x), (137)

and

Vi =#0 lfll# 0 (138)
are true, then the operator V is invertible, the operator V=1 is lower triangular,
and

T =V*V. (139)
(Thus the operator T admits the right triangular factorization.)
Proof. It follows from the boundedness of the operator V' and relation (133) that
the operator W is also bounded. Let us consider

b
(WF,R) = f wH(a, DF(Odt = (f,Fy), (140)

1e., ‘
W'R = F, (141)

Due to (137) and (141) we have
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VW*R = R. (142)

From (133) we deduce that
WTW * = VW™ (143)

Using (143) we see that the operator VW™ is selfadjoint and lower triangular. It
means that the operator VW™ has the form

VW*f = L(x)f, (144)
where L(x) is an m X m matrix function. Taking into account equality (142) we
have L(x) = I, 1.e.,

Yw* =1,
Let us introduce the notation H
(g,h) = 0 is true, then Wg =
that

wv* = 1. (145)
= W Lfn(a b). If for all h € H the relation
0. Hence in view of relation (133) we obtain

VFi=0 f = T"1g). (146)
From condition (138) we deduce that g = 0.
Then the equality

H = 1%,(a,b) (147)

is valid. Due to (145) and (147) the operator W* maps L3,(a,b) onto
L%,(a,b) one-to-one. According to the classical Banach theorem [25] the
operator W* is invertible. It follows from (145) that the operator V is also
invertible and

vl =w*, (148)
and

V'w = L (149)
From (133) and (149) we directly obtain that T = V*V . The proposition is
proved. O

Example (6.2.13) : Let us consider the operator

S = fG) +=V.P. f Fo S,

—00<a<b<oo (150)
where 0 < m < c¢(t) < 1. The operator (150) does not satisfy condition (92)
but admits the left triangular factorization (see [14]).
We consider the operators A, S, I1 and J satisfying the operator identity

AS — SA* = ]Il (151)
We suppose that the operators A and S act on the Hilbert space L2,(0, b), the
operator I maps G (dimG = n < o0)into L%,(0, b), the operator J acts on G,
and ] = J*, and J> = I,. We note that the operator I has the form Ilg =
[P1(x%), o (x),...,Pn(x)]g, Wwhere ¢j(x)are m X 1 vector functions, g =
col[g1, Gzr---r Gnl, Pr(x) € L4,(0,b), Relation (151) is fulfilled for the
operators S which play an important role in the spectral theory of the canonical
differential systems (see [40]). We shall use the following result ([40], Ch. 4).
Theorem (6.2.14)[20] : Let the following conditions be fulfilled.

1. The operator S is bounded, positive and invertible.
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2. The relations

are true.

3. The spectrum of the operator A is concentrated at the origin and there is a
constant M > 0 such that

|(Pesas — Pg)A(Peyas — Pe)|| < MI4EL, 0 < & < b. (153)

Then the n X n matrix function
-1
W, z) = I, + izJTI"S; *(I - zA) " Pell (154)
satisfies the matrix integral equation
X

Wz) =1, + iz f [dBOIW (L, 2) (155)
0

where

B(§) = 'Sz 'P.IL. (156)

From relations (91) and (156) we obtain the necessary conditions for the

operator S to admit the left triangular factorization.
Proposition (6.2.15)[20]: Let the operator S satisfy the relation (151) and let the
conditions of Theorem (6.2.14) be fulfilled. If the operator S admits the left
triangular factorization, then the matrix function B(x) is absolutely continuous
and

d
P = Hx) = (0)Bx), (157)
where
B(x) = [~ (x), hy(x),..., hy ()], hi(x) = V (), V = SZ1. (158)
Using relations (155) and (157) we obtain that
iW(x,z) = izJH(x)W (x, z). (159)

dx
Lemma (6.2.16)[20]: Let the conditions of Proposition (6.2.15) be fulfilled and

let the m X 1 vector functions
-1
Fi(x,z) = (I-4z) ¢;, 1 <j<n (160)
form a complete system in L2, (a, b).
Then we have the equality

mesE = 0, (161)
where the set E is defined by the relation
x €E if Hx) = 0. (162)

Proof. We use the following relation (see [40], Ch. 4):
J — W wjwE, )
i(@- 21
= I*(I — gA)7'Se (I — 2A71P:ID). (163)
Formula (163) implies that
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(S5 Fj(x, ), Fo(x, 1))
_ i G wivE A - v 0m)Y(0,1)]

) 164
-2 (164)
Where
Y; (x,1) = col[Wy;(x,4), Wy (x,4),... Wy j(x,A)].Here W ; ;(x, 1) are
entries of W (x, A). In view of (159) and (164) we have
d ,o_
d—f(sf YFi(x, 1), Fp(x,1))e = 0, € E. (165)
From (162) and (165) it follows that
d
d_E(V Fi(x, 1),V Fp(x,1))e = 0, §EE, (166)
1.e., the relation
[VFE]x,H)=0 ,xeE, 1<j<n, (167)

is true. As the operator V is invertible and the system of functions F;(x, 1) is

complete in L%,(0, b), the system of the functions V F;(x,2) is also complete in

L2,(0, b) The assertion of the lemma follows from this fact and equality (167). o
Further we suppose that the n X n matrix function B(x) is absolutely

continuous and that relations (157), (158) are true.

Let us introduce the m X m matrix functions

R(x) = hy(x)a1+ hy,(x)a, + -+ + h,(x)ay,, (168)
Fo(x) = ¢1(0)a; + ¢o(0)az + -+ + pp(X)ay, (169)
v(é,x) = Sgl PgFy(x), (170)

where a;, are constant 1 X m matrices. From Proposition (6.2.15) we deduce:
Corollary (6.2.17)[20]: Let the conditions of Theorem (6.2.14) and Lemma
(6.2.16) be fulfilled. If m = 1, then there exist numbers « 4, ay,..., a, such
that almost everywhere we have the inequality

R(x) # 0. (171)
Now we can formulate the main result of this section.
Theorem (6.2.18)[20]: Let the following conditions be fulfilled.
1. The operator S satisfies relation (151).
2. The conditions of Theorem (6.2.14) are valid.
3. The matrix function B(x) is absolutely continuous and formulas (157) and
(158) are true.
4. The vector functions Fj(x,A) (1 < j < n) form a complete system in
L%, (a,b).
5. Almost everywhere the inequality

detR(x) # 0 (172)
holds.
Then the operator T = S~! admits the right triangular factorization
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Proof. We introduce the operator

X
d
VF =[R()]? Ef v*(x, t)f(t)dt . (173)
0
From (154), (172) and (173) we deduce the equality
VF = [h(x),..., hy(X)]Y; (x, 2). (174)
Relation (174) implies that
b
(V E G2,V Foe ) = f Y7 (o H@Y, (x, dx . (175)
0
Using equality (174) and relation
d
an (x,z) = izJH(x)Y; (x,2) (176)

we have
(V Fj G, ), VE, (e, 0))
_i[Y; (b, w]Y; (b, 1) — Y7 (0,1)]Y; (0,2)]
= 7
Comparing formulas (164) and (177) we obtain the equality
T = V*V. (178)
This means that the introduced operator V is bounded, V f # 0, and [|f]| # O.
Taking into account (168), (169) and (174) when z = 0 we obtain the relation

(177)

VF, = R. (179)
Thus all conditions of Proposition (6.2.12) are fulfilled. The assertion of the
theorem follows from Proposition (6.2.12). O

Proposition (6.2.19)[20]: Let the following conditions be fulfilled.
1. Conditions 1-3 of Theorem (6.2.18) are valid.
2. The m X m blocks by ;(x) (1 < j < n) of the matrix B(x) are absolutely
continuous and
by ;(x) = hi(x)h(x). (180)

3. All the entries of the matrices h ;(x) belong to L*(a,b).
4. Almost everywhere the inequality (172) holds. Here R(x) = h;(x). Then the
operator V' defined by formula (173) and the equality

v(§,x) = Szt Pep(x) (181)
are bounded.
Proof. We introduce the matrix H(x) = B"(x)f(x), where f(x) =
[~ (x), hy(X),..., h,(x)]. Relations (173)—~(175) remain true. We use the
formula

b o . |
[ vemiaseom e pax = JACT) Yf'(b'”ﬁ_ 10w ¥,0.0)]

0
and the inequality H(x)dx < dB(x). From formulas (164), (175) and (182) we
deduce that

(182)

VvV < T. (183)
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The proposition is proved. m
Let us consider the bounded, positive and invertible operator S with the
difference kernel

a
d
Sf = aff(t)s(x — t)dt. (184)
0
Let us put
X
Af = iff(t)dt, f € L?(0,a). (185)
0
Equality (151) is valid (see [39], Ch. 1), if
[0 1
1= o - (186)
$1(x) = M(x), ¢p2(x) = 1, (187)
where M(x) = s(x), 0 < x < a. In the case under consideration the
matrix B (&) has the form

(G (57 M)
B(S) =|,.4 1 :
(Sg"m,1) (Sg'1,1)
The corresponding function F(x, A) has the form
F(x,1) = e™4, (189)
The operator A defined by formula (185) satisfies all the conditions of Theorem
(6.2.14). The following fact is useful here.
Theorem (6. 2.20)[20]: Let the operator S be bounded, positive, invertible and
have the form (184). If the matrix function B(x) is absolutely continuous and

(188)

B(x) = B*(0)B(x), B(x) = [hi(x), ha(x)], (190)
Then the equality
hi(X)hy(x) + hy(X)h(x) = 1 (191)
is true almost everywhere.
Proof. Let us consider the expression

ie = (Sg'PeM, 1) + (1,571 PeM). (192)
Setting
Ni(x,§) = St PeM, (193)
we rewrite formula (192) in the form iy = fOE[Nl (x,&) + Nyi(x,8)]dx ,ie.,
§
r = [N+ G- xDdx - (194)

0
We use the relation (see [39], Ch. 1)

N (x, &) + Ny (E-x,8) = 1. (195)
In view of (194) and (195) .
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We obtain the equality
ig = . (196)
Taking into consideration Equalities (100), (158), (184) and (192) we deduce

that
3

ir = [(mGRE + k@ Gdx (197)

0
Relation (191) follows from (196) and (197). The theorem is proved. o
From equality (191) we have
h,(x) # O, 0 <x < a (198)
Remark (6.2.21)[20]: The operators of the form
a

SF = f(x) + f F(Ok(x - D, (199)

0

where k(x) € L(—a,a), belong to class (184). For this case inequality (198)
was deduced by M.G. Krein by another method (see [29], Ch. 4). The main
result of this section follows directly from Proposition (6.2.15), Theorem
(6.2.18) and Inequality (198).

Theorem (6.2.22)[20]: Let the operator S be positive, invertible and have the
form (184). Then the operator S admits the left triangular factorization if and
only if the matrix B(x) is absolutely continuous and relation (190) is valid.
Example (6.2.23)[20]: Let us consider the operator Sp  of the form

ip f(©)
Sgf = f +?V.P f—dt (200)
0
where —1 < f < 1. This operator with a difference kernel is bounded,
invertible and positive (see [14]). The operator Sp does not satisfy condition
(91). Nevertheless Sp admits the left triangular factorization Sp = W, W,
where

)

xza

——n f FOG - Hiedt, (201)

Here a0 = ; arcth §, and I'(z) is the gamma function.

Wef =

Let us consider the following class of bounded and positive operators which
can be represented in the form ((+, —) — class):

2

Sf =Wf[sl(x —t) + s,(x + ]f(t)dt, (202)

0
where f(t) € L?(0,b). We introduce the operator
X

Af = f(t — X)f(t)dt. (203)
0
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Then the operator identity (151) is valid. Here the 4 X 4 matrix J is defined by
the relation

[0 L
and the operator IT has the form
H == [CDl,ch], (205)
the operators @, and @, are defined by the relations
®; 9 = —iM(x)g, — iMp(x)92, (206)
®y9 = 91 + x92, (207)
where
M(x) = —[s1(x) + s2(x)], Mo(x) = $1(x) — $2(x), (208)

and a constant 2 X 1 vector g has the form g = col[g;, g2]- The main result of
this section follows directly from Proposition (6.2.15), Lemma (6.2.16) and
Theorem (6.2.18).
Theorem (6.2.24)[20]: Let the operator S be positive, invertible and have the
form (202). The operator S admits the left triangular factorization if and only if
the matrix B (x) is absolutely continuous and
B(x) = B"(x)B(x), B(x) = [h1(x), ha(x), h3(x), ha(x)]. (209)

Example (6.2.25 )[20] Let us consider the equation

Sf = f()+ “v.p. f() - = &dt g(x), (210)

x+t
0 0

where f(x) € 12(0,1), A = A, u = @, and |A| + |u| < 1.1It is well known
([29], Ch. 9) that the operator S is bounded, positive and invertible, i.e., the

operator S belongs to the (4, —) class . We introduce the functions
1

v, bu = S, a(l,p) = fv(x,/l,,u)dx = (S711,1) > 0. (211)

0
In view of (210) and (211) the relations

S,f_lpfl = v(?,/l,,u), (S'f_lp'fl'l)f = éa(A, 1) (212)
are true. We introduce the operator
Vf = — f Ftw, A, wydt. (213)
a(/’{ H dx

Using Proposition (6.2.19) We deduce that the operator V' is bounded and
STt > V'V,
Open problem . Prove that

Vf # 0, when]|f] #0. (214)
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Remark (6.2.26)[20]: If relation (214) is true, then S™! = V*V and the
operator S admits the left triangular factorization

S = v vt (215)
Remark (6.2.27)[20]: Relation (214) is valid when A = 0 (see Example
(6.2.23)). Now we consider separately the case when u = 0, i.e., the case of the
Dixon equation [28],[32], [41]:

Sf = - = %dt = 9. (216)
0

where f(x) € L*(0,1), and 2 < 1. M.G. Krein deduced the formula for the
Dixon equation resolvent (see [32], Ch. 4). This formula can be written in the
following way: S™1 = V *V . Thus we obtain:
Proposition (6.2.28)[20]: The Dixon operator S defined by (216) admits the left
triangular factorization S = V ~[V *]71, where the operator V has the form
(213).

Let us consider the inte gral operators

ff(t)dt A f = —lff(t)dt (217)

where f(x) € LZ(O b).

Definition (6.2.29)[20]: We say that the linear bounded operator S acting in the
Hilbert space L?(0,b). belongs to the class R; (rank 1) if the following
conditions are fulfilled:

D m(f,f) < (Sf,f) < M(f,f), 0<m<M < oo, (218)
2) rank(AS — SA™) = 1,1i.e,

(AS — SAOf = i(f.$)p,  ¢(x) € L*(0,D). (219)

We associate with the operator S the operator
X

d
S_f =aff(t)¢(x — t)dt . (220)

It is easy to see that

S_1 = ¢. (221)
Lemma (6.2.30)[20]: Let the bounded operator S satisfy relation (219). If the
corresponding operator S_ is bounded, then the representation

S =85_8 (222)
is true.
Proof. We consider the operator
= S_S5”. (223)

Using formula (219) and relation A S_ = S_A we deduce the equality

AX — XA* = S_(A—A")S* = AS — SA". (224)
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The equation AX — XA* = F has no more than one solution X (see [39], Ch.
1).Hence we deduce from (224) that S = X. The lemma is proved. O

Lemma (6.2.31)[20]: If the bounded operator S satisfies the relation (219), then
this operator can be represented in the form (222), where the operator S_ is
defined by formula (220).

Proof. To prove that the operator S_ is bounded we introduce the operator

X
X_f=AS_f = iff(t)(,b(x — t)dt. (225)
0
We note that
b
X:f = SIAf = —iff(t)(,b(t — x)dt (226)
X
where the operator S© has the form
b
d -
SIf = —aff(t)qb(t — x)dt . (227)
X
According to Lemma (6.2.30) we have
ASA* = X_XZ. (228)
It follows from relations (225) and (228) that S = S_SZ .Hence the operator
S_ 1is bounded. The lemma is proved . O

Now we shall deduce the main result of this section.

Theorem (6.2.32)[20]: If the operator S belongs to the class R; , then this
operator admits the left triangular factorization.

Proof. We suppose that for some fy(x) € L?(0,b) the relation

S-fo=0  (lfell# 0) (229)
is true. In view of the well-known Titchmarsh theorem (see [41], Ch. 11) and
(229) we have

o(x) = 0, 0 <x < 4. (230)
Using (219) and (230) we deduce that
A(gS(g - 55 A:; = 0, (231)

where  Asf = ifoxf(t)dt , 0 < x <6, and S = PsSPs.  Operator
equation (231) has only the trivial solution S5 = 0 (see [39], Ch. 1). The last
equality contradicts relation (218). It means that equality (229) is impossible
when ||fyl| # 0. Hence in view of (222) the operator S_ maps L?(0, b) one-to-
one onto L?(0,b) . This fact according to the classical Banach theorem [25]

implies that the operator S_ is invertible. The operator S=! is defined by
formula (see [39], Ch. 1)
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L A )
S =—| fONG& - Dt (232)

0
Where N(x) = S-! 1. Thus the operators S_ and S~! are bounded and lower
triangular . The assertion of the theorem now follows directly from Definition
(6.2.4). O
Example (6.2.33)[20]: We consider the case when
¢(x) = log(b — x). (233)
In this case we have

d X
S_f =ajf(t)log(b—x + t)dt = f(x)logb _jb—f(—xt)-l-t dt. (234)
0 0
Let us introduce the operator
_fO

It is well known (see [41], Ch. 11) that ||K|| < m. Hence the operator S_
defined by (234) and the operator SZ! are bounded, when logh > m. From
Lemma (6.2.31) we obtain the assertion.

Proposition (6.2.34)[20]: If log(b) > m, then the operator S defined by
relations (219) and (233) admits the left triangular factorization (222) where the
operator S_ has the form (234).

In this section we consider operators of the form
1

SF = F(x)—fF(y)k(g)%dy = G(0), (236)
where F(x) € L?(0, f) and
k(%)%: @% (237)

We assume that
1 _3
= 2f|k<;)|x 2 dx < oo, (238)

It follows from condition (237) that the operator S is selfadjoint. From condition
(238) we deduce that the operator
1

Vi 1
KF = | F o 2
[ Pk () ay (239)
0
Is bounded and (see [29], Ch. 9)
k]| < A. (240)
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Theorem (6.2.35)[20]: Let conditions (237) and (238) be fulfilled and let the
corresponding operator S be positive and invertible, then the operator S admits
the left triangular factorization.

Proof. We introduce the change of variables x = e ™“ andy = e™" . Hence
equation (236) takes the form

Lf = f@) - [ F@IHG@-v)dv = g (241)
where ’

fw = F(e™e 2z, glu) = G(e™Me 2, (242)

Hw) = H(=w) = k(e¥)ez, u > 0. (243)

It follows from relation (238) that

f |[H(u)|du = A. (244)
We denote b_y y(u) the solution of Equation (241) when g(u) = H(u). In the
theory of equations (241) the following function plays an important role (see

[32], Ch. 2):

G,(A) = 1+fy(u)eit’1dt, ImA > 0.
0
Let us consider the solution yg(u) of equation (241) when g(u) =
e and Im& > 0.
We use the formula (see [32], Ch. 2)
u

ye(w) = G+(—f_) [1 +fy(r)e‘ir’fdr]ei“’f. (245)
0
Further we need the particular case of yz(u) when§ = i/2. In this case we

have
u
u

yi(w) = B[1 +fy(r)e%dr]e_5, (246)
2
0

g = G.(1/2). (247)
Let us introduce the function v(x), which satisfies Equation (236) when
G(x) = 1.1It1is easy to see that

Where

u
v(e™) = yi(wez, (248)
2
From (246) and (248) we deduce that
t
v(x)x? = —By(t)e z, (249)

and
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v(l) = B. (250)
Using relations (246) and (248) we can calculate the integral
1 1 —logx

o =fv(x)dx = [|1 +0f Of y(r)ezdrdx

0
Hence the equalities

r _
a = B[1 + f y(r)e 2drdx] = BB (251)
0
are true. The operator V in (236) has the form
%4 _1d fx (t) (t)dt 252
0
In view of (249) and (250) we can represent the operator V in the form
X
t\1
VE=fo) + f FOL <;)?dt, (253)
0
where
t
L(x) = y(t)e 2. (254)

Now the assertion of the theorem follows from Proposition (6.2.12). O

Corollary (6.2.36)[20]: Let the conditions of Theorem (6.2.35) be fulfilled.
Then we have the equality

st =y, (255)
where the operator V is defined by relations (253) and (254).
Example (6.2.37)[20]: We obtain an interesting example when

k(u) =

11 - ul*(1 + w)P (256)

whereA = A, > 0, B > 0, and @ + f = 1. We note that k(u) satisfies
conditions (237) and (238). Equations (236) and (256) coincide with the Dixon
equation when ¢ = 0.

Corollary (6.2.38)[232]: Let the bounded and invertible operator S% on
L2.(a,a + €,) be positive. For the self-adjoint operator SZto admit the left
triangular factorization it is necessary and sufficient that the following assertions
are true.

1. There exists an m X m matrix function Fy(x) such that

a+te,

Trf |Fg(x)|?dx < oo,

a
that the m X m matrix function
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M(x+e) = (F3 (), 15" T5he Fo ()
is absolutely continuous, and almost everywhere

detM(x +¢€) # 0.
2. The vector functions

(x+€)

X

fv*(x, OHf(dt
a
are absolutely continuous. Here f(x) € L%,(a,a + €,) and

v((x + €), t) = [S*](_x1+e) P(yre)Fo (),
(In (102) the self -adjoint operator [S *](_x1+ ¢) transforms the matrix column of the

original into the corresponding column of the image.)
3. The operator

d X
Vi = R o f 0" OF (0)de
0

is bounded, invertible and lower triangular with its inverse [V*] ~1. Here R*(x)
is an m X m matrix function such that
[R*(0)]2 = M(0).
Proof. Necessity. We suppose that the self-adjoint operator S* admits the left
triangular factorization (91). Let F§(x) € L%,(a,a + €,) be a fixed m xm
matrix function satisfying relation (101). We introduce the m X m matrix
function
R°() = V* F§(x),
where V* = [S*]7? . We can choose Fj(x) in such a way that almost
everywhere then equality
detR*(x) # 0
is true. From relations (91), (102) and (108) we have
(x+¢€)

M(x +¢€) =f |R*(x)|?dx.

a
Hence the function M (x + €) is absolutely continuous and
M(x) = [R*(x)]*.
Now we use the equality
(f» [S*](_x1+e) F(Sk)(x+e) = (V*f; V*F(;k)(x+e)-
Relations (108) and (112) imply that
X

d
dx f v (x, 0)f (©)dt = R*(x)(V" ).

The necessity is proved.
Sufficiency. Let the conditions 1-3 of Theorem (6.2.6) be fulfilled. It follows
from (105)—(107) that

4.



V*'Fy = R*(x).
We can write M(x) = [V*F§]2.
From relations (105), (106) and (214) we deduce that
VL VFs =)re) = (I8 1are ParoFo)rey L€

V*P(x+e)V* P(x+e)F0 = [S*](_x1+e) P(x+e)Fg-
We define v((x —€;),t)in the domain (x—¢;) <t < a+e¢€, by the
equality v((x — €;),t) = 0. It follows from the triangular structure of the self -
adjoint operators V* and [V*]~! that
P(x—el)[V*]_1 P(x—el)V* P(x—el) = P(x—el)-
Hence in view of (105) and (115) we have
P(x—el)[V*]_Zv((x —€1),t) = P(x—el)F(Sk-

It is easy to see that P,_)S*v((x — €1),t) = P(x—¢,)Fo. Thus according to
relations (116) and (117), the equality
_ IV T2v((x — €, ), v(1, 1)) = (STv((x — €1),8), v(W, 1))
1S true.
If there exists such a vector function fy(x) € L2,(a,a + €,) that (fy, v((x —
€1),t)) = 0,then due to (106) the relation

V'fo = 0
is valid. The self -adjoint operator V" is invertible. Hence from (119) we deduce
that f, = 0. This means that v((x — €,),t) is a complete system in L2, (a, a +
€,) Using this fact and relation (118) we obtain the desired equality

S* =[V*] 2
The Corollary is proved. O
Corollary (6.2.39)[232]: Let the self-adjoint operator V* defined by formula
(106) be bounded. Then the operator W defined by formula (132) is also
bounded and

WT* =V~

Proof. It can be proved by linear algebra methods that (see [40], p. 41)

T*Q(x—61)[T*](_x1—61) Qu—enpT™ = T" = [S*](_xl—q) P(x—e,)-
From relations (105), (131) and (134) we have

T*w((x —€,),t) = T'F; — v((x — €1), t).
Hence the equality

[T f,w((x — €1), t)](x—61) = (T"f, Fg) = (f' v((x —€) t))(x—e )

is true. From formulas (106), (132) and (136) we obtain relation (133). The
corollary is proved. O



Corollary (6.2.40)[232]: Let S* be a bounded, positive, self-adjoint and
invertible operator and let the operator VV* defined by formula (106) be bounded.
If the relations
V*F; = R*(x),

and

Vif =0, lIfll# 0
are true, then the self-adjoint operator V* is invertible, the operator [V*]™1 is
lower triangular, and

T* = [V*]%
(Thus the self-adjoint operator T* admits the right triangular factorization.)
Proof. It follows from the boundedness of the self-adjoint operator V* and

relation (133) that the operator W is also bounded. Let us consider
a+e,

(Wf,R") = f W@ Of©Odt = (f,F),

a

1e.,
W*R* = Fj.
Due to (137) and (141) we have
V*W*R* = R".

From (133) we deduce that
WT*W* = V*W".

Using (143) we see that the self-adjoint operator V*W ™ is lower triangular. It
means that the operator V*IW* has the form

VW' f = L(x)f,
where L(x) is an m X m matrix function. Taking into account equality (142) we
have L(x) = I, 1e.,

Vwr =1, WvV* = L.
Let us introduce the notation H = W*L% (a,a+ €;). If for all h € H the
relation (g,h) = 0 is true, then Wg = 0. Hence in view of relation (133) we
obtain that

Vf =0 f = [1"]2g).
From condition (138) we deduce that g = 0. Then the equality

H = I3(a,a+¢,)
is valid. Due to (145) and (147) the operator self-adjoint W* maps L%,(a,a +
€,) onto L3 (a,a + €,) one-to-one. According to the classical Banach theorem
[25] the operator W™ is invertible. It follows from (145) that the self-adjoint
operator V™ is also invertible and
vt =wr,
and
V'w* = L

From (133) and (149) we directly obtain that T* = [V*]?. The proposition is
proved. O



Now we can deduce the following results.
Corollary (6.2.41)[232]: Suppose the hypothesis of Propositions (6.2.11) and
(6.2.12) are satisfied

(i) WT*F; = R*(x).

(ii))W[U*U]F; = R*(x) and hence T* = [U*]>.

(iii) [WT*F31? = M(x) .
Proof: (i) since WT* =V* ,WT*F; = V*F; = R"(x).

(i) V*'F; = WT*F; = W[S*]71F; = W[U*U]F; , which implied that

T* = [U*]>

(iii) Since M(x) = [R*(x)]? = [V*F]? = [WT*F§]? .
Corollary (6.2.42)[232]: Let the following conditions be fulfilled.
1. The self-adjoint operator S* satisfies relation (151).
2. The conditions of Theorem (6.2.14) are valid.
3. The matrix function B(x) is absolutely continuous and formulas (157) and
(158) are true.
4. The vector functions Fj(x,A) (1 < j < n) form a complete system in
L2,(a,a + €;).
5. Almost everywhere the inequality

detR*(x) # 0

holds. Then the self-adjoint operator T* = [S*]™! admits the right triangular
factorization
Proof. We introduce the self-adjoint operator

X
d
Ve f = [R*(x)] ! Ef v (x, t)f(t)dt.
0
From (154), (172) and (173) we deduce the equality

V*F = [hy(x),..., hy(0)]Y; (x, 2).
Relation (174) implies that

a+te,

(v FGe, ),V o)) = f Y; G, H@)Y, (x, Adx

0
Using equality (174) and relation

LV () = iHEY, @)

we have
(V* P‘j(x; /1); V*F{’(x; H))
B i[Yf* (a+e,wW)Yja+eyd) — Y, (0,0)]Y, (O,/l)]
= T
Comparing formulas (164) and (177) we obtain the equality
T =[V*]




This means that the introduced self-adjoint operator VV* is bounded, V*f =+ 0,
and |[|f]| # 0. Taking into account (168), (169) and (174) when z = 0 we
obtain the relation

V*Fy = R".
Thus all conditions of Proposition (6.2.12) are fulfilled. The assertion of the
theorem follows from Proposition (6.2.12). O

Corollary (6.2.43)[232]: Let the following conditions be fulfilled.
1. Conditions 1-3 of Theorem (6.2.18) are valid.
2. The m X m blocks by ;(x) (1 < j < n) of the matrix B(x) are absolutely
continuous and
by j(x) = hi(x)h;(x).
3. All the entries of the matrices h ;(x) belong to L*(a,a + €).
4. Almost everywhere the inequality (172) holds. Here R*(x) = hy(x). Then
the self-adjoint operator V* defined by formula (173) and the equality

U((x - El);x) = [S*](_xl—el) P(x—el)(pl(x)
are bounded.
Proof. We introduce the matrix H(x) = [5*(x)]?> where f*(x) =
[~ (x), hy(X),..., hy(x)]. Relations (173)—(175) remain true. We use the

formula
a+e,

| v
0
_ i @t e miYat e — ¥ (0p)Y;(0,2)]
f-A
And the inequality H(x)dx < dB(x). From formulas (164), (175) and (182)
we deduce that

[V]? < T.

The Corollary is proved. - O
Corollary (6.2.44)[232]: Let the self-adjoint operator S* be bounded, positive,
invertible and have the form (184). If the matrix function B(x) is absolutely
continuous and

B(x) = B*(x)B(x), B(x) = [h1(x), h2(x)],
Then the equality

hy()ha(x) + h (b (x) =1,

is true almost everywhere.
Proof. Let us consider the expression

i(x+e) = ([S*](_x1+e) P(x+e)M; 1)+ (1, [S*](_x1+e) P(x+e)M)-
Setting
N; (x, (x + E)) = [S*](_x1+e) P(x+e)M»



we rewrite formula (192) in the form iy = [ (x+e)[N1 (x, (x +

0
€)) + Ni(x,(x +€))]dx , i.e.,
(x+€)

x+e) = f [Nl(x, (x + e)) + Nl((x +e)-x,(x+ 6))] dx .

0
We use the relation (see [39], Ch. 1)
Nl(x, (x + e)) + N; ((x +e)-x,(x+ e)) = 1.
In view of (194) and (195) we obtain the equality
(xre) = (x+e).
Taking into consideration Equalities (100), (158), (184) and (192) we deduce
that

(x+€)

iwro = | (MGORG + hyCORGd

0
Relation (191) follows from (196) and (197). The Corollary is proved. O

Corollary (6.2.45)[232]: Let the bounded self-adjoint operator S* satisfy
relation (219). If the corresponding operator S* is bounded, then the
representation

S* =[S*]?
is true.
Proof. We consider the operator
X =[S:]~

Using formula (219) and relation A*S” = SZA" we deduce the equality
A'X — XA = SI(A"—A")SZI = A*S" — S*A".

The equation A*X — XA®™ = F™ has no more than one solution X (see [39], Ch.
1). We can deduce that A*X = XA and F* = 0. Hence we deduce from (224)
that S = X.

The lemma is proved . O

Corollary (6.2.46)[232]: If the bounded self-adjoint operator S* satisfies the
relation (219), then this operator can be represented in the form (222), where the
operator S~ is defined by formula (220).

Proof. To prove that the self-adjoint operator SZ is bounded we introduce the
operator

X_f = A'S*f = iff(t)(,b(x — t)dt.
0

We note that

X:f = S*A*f = —i f FOPE = x)dt

AR



where the operator S© has the form
a+e,

d -
S*f = _Ef FOPE = x)dt.

X

According to Lemma (6.2.31) we have

S [A']? = X_XZ.
It follows from relations (225) and (228) that S* = [S* ]2. Hence the operator
SZ is bounded. The lemma is proved. O
Corollary (6.2.47)[232]: If the self-adjoint operator S* belongs to the
class R}, then this operator admits the left triangular factorization.
Proof. We suppose that for some fy(x) € L?(0,a + €,) the relation

Sfo=0  (lfell # 0)
is true . In view of the well-known Titchmarsh theorem (see [41], Ch. 11) and
(229) we have
Pp(x) = 0, 0 <x <6.
Using (219) and (230) we deduce that
AsSs — SsAs = 0,

where A5f = ifoxf(t)dt , 0 < x <6, and S5 = PsS*Ps . Operator

equation (231) has only the trivial solution S5 = 0 (see [39], Ch. 1). The last
equality contradicts relation (218). It means that equality (229) is impossible
when ||fy|| # 0. Hence in view of (222) the self-adjoint operator S* maps
L?(0,b) one-to-one onto L?(0,a + €,) . This fact according to the classical

Banach theorem [25] implies that the self-adjoint operator S* is invertible. The
self-adjoint operator [S*]=1 is defined by formula (see [39], Ch. 1)

[S*1= f = ;—xff(t)N(x — t)dt,
0

Where N(x) = [S*]Z! 1. Thus the self-adjoint operators S* and [S*]Z1 are
bounded and lower triangular .The assertion of the theorem now follows
directly from Definition (6.2.4).0

Sec (6.3): Effective Construction of a Class of Positive Operators
in Hilbert Space, which do not Admit Triangular Factorization

To introduce the main notions of the triangular factorization (see
[4,6,8,14,15, 20]) consider a Hilbert space L?>(a,b) (= < a < b < ). The
orthogonal projectors Pgin L?(a, b)are defined by the relations

(Pef) @ = ffor a < x < ¢, (Pef)) =0 for <x < b (e L@b)).
Denote the identity operator by 1.
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Definition (6.3.1)[1]: A bounded operator S_on L?(a, b)is called lower
triangular if for every ¢ the relations
S_Qs = Q¢S_0Q¢, (257)
where Qs = | — Pyg, are true. The operator SZ is called upper triangular.
Definition (6.3.2)[1]: A bounded, positive definite and invertible operator S on
L?*(a,b) is said to admit a left (right) triangular factorization if it can be
represented in the form
S=8.8 (§=S8285), (258)
where S_ and S are bounded and lower triangular operators. Further, we often
write factorization meaning a left triangular factorization.
In paper [20] (see p. 291) we formulated necessary and sufficient conditions
under which the positive definite operator S admits a triangular
factorization. The factorizing operator S-! was constructed in the explicit
form. We proved that a wide class of operators admits a triangular factorization
[20].
D. Larson proved [8] the existence of positive definite and invertible but non-
factorable operators. In the present article we construct concrete examples of
such operators. In particular, the following operator

sf =f<x)—u0j

sint(x — t)

T — D fdt, fx)€eL?0,,0 <pu<1 (259)

is positive definite and invertible but non-factorable. Using positive definite and
invertible but non-factorable operators we have managed to substitute pure
existence theorems [8] by concrete examples in the well-known problems posed
by J.R. Ringrose [13], R.V. Kadison and I.M. Singer [6]. We note that Kadison-
Singer problem was posed independently by I. Gohberg and M.G. Krein [5].

The non-factorable operator S, which is defined by formula (259), is used in a
number of theoretical and applied problems (in optics [22], random matrices
[24], generalized stationary processes [11, 12], and Bose gas theory[10]). The
results obtained in this section are interesting from this point of view too.

In this section we consider operators S of the form

SF = @) - u f hGx- Of(Odt,  f(x) € 12(0,), (260)
0

where ¢ = g and h(x) admits representation

1 .
h(x) = — f e p()dA . (261)
21
We suppose that the function p(4) satisfies the following conditions

1. The function p(A) is real and bounded
lp(DI<U? U >0 (—o <1< ), (262)
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2. p() = p(~A) € L(~, 00).
Hence, the function h(x) (—o < x < o) is continuous and real. The
corresponding operator

Hf = fh(x — Of(t)dt (263)
0

is self-adjoint and bounded, where ||H|| < U. We introduce the operators

¢
Sef = f(x) —u jh(x— Of®de,  f(x)€L*(0,§),0 < §< (264)
0

The following statement is true.
Proposition (6.3.3)[1]: If —-1/U < u < 1/U, then the operator Sg , which is
defined by formula (264), is positive definite, bounded and invertible.

Hence, we have
§

SFf = @) + [ Ren 0 @de. (265)
0
The function R¢ (x, t, ) 1s jointly continuous in x, t, ¢, u. M.G. Krein (see

[5],Ch. IV, Section 7) proved that
Sst=U+V)U+V), 0<b< ox, (266)

where the operators V., and V_ are defined in L?(0, b) by the relations
X

VNG = (LA = [ R tf @de. (267)

0
The Krein’s formula (266) is true for the Fredholm class of operators. The

operator S, belongs to this class. The kernel of the operator I~ does not depend
of b . Hence, if the operator S admits the factorization, then formula (266) holds
for the case b = oo too, 1.c.

STl=(0U+Vv)U + V). (268)
Remark (6.3.4)[1]: Relation (268) also follows from Theorem 2.1 in the paper

[20]. Let us introduce the function
X

q1(x) = 1+ f Ry(x,t,p)dt . (269)

0
Using the relation R, (x,t,u) = R,(x — t,0,u) (see [5], formula (8.12)), we

obtain
X

n@) = 1+ [ Row,0,0)du 270)
0
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According to the well-known Krein’s formula ( [5], Ch. IV, formulas (8.3) and
(8.14)) we have

X
q,(x) = exp {f R, (t, O,M)dt}. (271)
0
Together with g, (x) we shall consider the function
X
@0 = MC) + [ MOR 6w, 272)
0
where
1 X
M(x) =z U fh(s)ds. (273)

0
The functions q;(x) and g, (x) generate the 2 X 2 differential system

dw
— = igHOW, W(0,2) = I (274)

Here W (x,z) and H(x) are 2 X 2 matrix functions and J is a

2 X 2 matrix :
2 1
qz (%) > 0 1
H(x) = z , ] = : (275)
tRN €D b o

Note that according to [19] (see formulas (53) and (56) therein) we have:

Q@0 =5 . (276)
It is easy to see that
JH(x) = T(x)PT(x), (277)
where
_ [a1(x) —q1(x) N
Tx) = q2(x)  qx(x) 1’ b= [0 0]' (278)
Consider the matrix function
V(x,z)= e_ixTZ T~ Y (x)W (x,z)T(0). (279)
Due to (274)-(279) we get
dv
Tx (iz/2)jV + T(x)V, V(0) = I, (280)

where

=l =l )

144



q1(x)

q1(x)
Let us introduce the functions

B(x) =

= R,(x,0, ). (282)

D, (x,z) = viu(x,2) + vy,(x,2) (n = 1,2), (283)
Wn(x,z) = i[vin(x,2) — vop(x,2)] (n = 1,2), (284)

where v;,(x, z) are elements of the matrix function V (x, z). It follows from
(280) that

dd, z

= (5) ¥ - B, 9102 = 05,(0,2) = 1, (285)
d¥, A

dx _(E) Py + B(0)W, ,¥1(0,2) = —¥,(0,2) = . (286)

Consider again the differential system (274) and the solution W (x, z) of this
system. The element w, , (¢, z) of the matrix function W (&, z) can be
represented in the form (see [17], p. 54, formula (2.6))

wiz(6,2) = iz ((1-2z4) 1,5 1)5 , (287)

where the operator A has the form

Af = iff(t)dt. (288)
0

It is well-known that
(I —zA) 11 = & | (289)
We can obtain a representation of W (¢, z) without using the operator Sz L
Indeed, it follows from (279), (283), and (284) that
_ ﬂ q)1 - il'pl qu - iqu _
W(x,z) = (1/2)e2 T(x) [¢1 b, @, + i‘ljz] T-1(0). (290)

According to equality (270) we have q,(0) = 1. Due to (278) we infer

~1 12 1

1 _
r(0) = [1/2 1/2) T7H(0) = [—1/2 1)

(291)

Further we plan to use a Krein’s result from [7]. For that purpose we intro- duce

the functions
ixz

P(x,z) = e2[P(x,z) — i¥(x,2)]/2, (292)
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P.(x,z) = eleZ[CD(x,Z) + i¥(x,2)]/2, (293)
where
D(x,z) = P;(x,2) + ©,(x,2), ¥ (x,2) = ¥,(x,2) + ¥,(x,2). (294)

Using (285), (286) and (292), (293) we see that the pair P(x,z) and P,(x,z) is a
solution of the following Krein system

dP—'P B(x)P ah. _ B(x)P 295
dx 20T PN dx__(x)' (295)
where

P(0,z) = P(0,2) = 1. (296)

It follows from (292) and (293) that
P(x,z) — P.(x,z) = —ieTZ Y(x, z). (297)

We assume that the following relation is true:
M) = (1 — /2 + q(x), q(x) € L*(0,00), (298)

where the function M (x) is defined by (273). Condition (298) can be rewritten
in an equivalent form:

(0] 1 (0]
f h(x)dx = 5 ,f h(x)dx € L*(0, o). (299)
0 x

Now, we need the relations (see [16], Ch. 1, formulas (1.37) and (1.44)):

Sszl = M(X) -|'1VI({T - X), S’f = UESEUE’ (300)

where Ug f(x) = f(f — x), 0 < x < &. It follows from (298) and (300) that

Sel =1 — p+ qx) + Ugq(x). (301)
Hence the relation
1
_1 _
S:1 = a-mn [1 — re(x) — Usre(x)] (302)

is true. Here 7z (x) = S Elq(x). Using formulas (287), (298), and (302), we
obtain the following representation of wy , (¢, z).
Lemma (6.3.5)[1]: The function w; ,(¢, 2). has the form

wi2(§,2) = e%6(5,2) - G(,2), (303)
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where
¢

G, z) = 1 — iz f e re(x)dx]|. (304)

1 -w

Note that the operator S is positive definite, bounded and invertible. According
to (266) we have
Q(x) = (I + V)q(x) € L*(0, 00). (305)

Hence, there exists a sequence x,, such that

Q(x,) — 0, Xp — 00, (306)
Now, we prove the following statement.

Lemma (6.3.6)[1]: Let relation (306) be true. Then we have

1
xlniLnoo ql(xn) :m (307)
Proof. In view of (269), (272), and (298) we get
q2(x) = q:(x)(1 — p)/2 + Q(x). (308)

Taking into account the relation g, (x)q,(x) = 1/2 (see [19], formulas (53)
and (56)), we obtain the equality

1/2 = qi ()1 — /2 + ¢ (x)Q(x). (309)
Formula (307) follows directly from (306), (309), and inequality

q.(x) > 0. O
It follows from (278) and (307) that

T(x,) - [1/626 17266 Cx,ow C=1/4/0-0. (310

Hence, in view of (291), (292), (294), and (310) the following assertion is true.
Lemma (6.3.7)[1]: Let x,, tend to o . Then, w, , has the following asymptotics

ixXpz
wyo( xp,2) = —iCe 2 Y( xn,z)(l + 0(1)). (311)
Lemma (6.3.8)[1]: Suppose that the operator S admits a factorization. Then we
have
Ehm e_iZE Wl,Z(E;Z) = G(Z); SZ < O; (312)
%imwl,z(f,z) = —G(2), Iz > 0. (313)



(00)

1 .
G(z) :—H)[l — iz f e_‘zxr(x)dx],r(x) = S 1q(x). (314)
0

Proof . According to (268) we have S-1 = I + V_, where V_ is defined by

(267). Hence, the operator function Sz 1 strongly converges to the
operator S™! whené — . Then the function re(x) =S¢ Lq(x) strongly
converges to r(x) = S 1g(x), whené - . and r(x) € L?(0,). Using
(303) and (304) we obtain relations (312) and (313). The lemma is proved. o
From Lemma (6.3.8) we derive the following important assertion.
Proposition (6.3.9)[1]: If at least one of the equalities (312) and (313) is not
true, then the corresponding operator S does not admit factorization.

Note that a new approach to the notion of the limit of a function was
used in Lemma (6.3.6). Namely, we introduce a continuous function F(x),
which belongs to L(0, o), and consider sequences x, — oo, such that

F(x,) = 0. (315)

Definition (6.3.10)[1]: We say that the function f(x) tends to A almost sure (a.
s.) ifrelation (315) implies

f(xp) = A4, Xp — 00, (316)
Equality (307) can be written in the form
1

;me q1(x) m ,a.S. (317)
Remark (6.3.11)[1]: From heuristic point of view “almost all” sequences
X, — oo satisfy relation (315). This is the reason of using the probabilistic
term” almost sure”.
Introduce a partition
0 =agy < aq <...< a, = aq, (318)

and consider the function p(1) = p(—A) such that

0, a < A,
p(/l) B { bk—l’ ap_1 <AL ag, (319)
where
bo=1, -1<b, <1 (0<k<n-—1). (320)

In the case of p given by (319) and (320) we can put U = 1 in (262). Further
we investigate the operators S, which are defined by formulas (260), (261), and
(319). The spectral function o(A) of the corresponding system (295) is
absolutely continuous and such that (see [7]):

1 — up(a
s = | 2‘;”( ) (321)




Remark (6.3.12)[1]: The operators S, which are defined by formulas (260),
(261), and (319), appear in the theory of generalized stationary processes of
white noise type (see [11,12]). If n = 1 and a; = m, then the corresponding
operator S has the form (259).
It follows from (261) and (319) that
n

L _ 1zb sinapx — sina,_qx 127
0 =3 2, b . . (322)

According to (321) we have

j‘ologd(u) p
1+ u?

It follows from (324) (see [7]) that

u < . (323)

f|P(x,ZO)|2dx < o,  Fzy > 0. (324)
0

Hence, there exists a sequence X, such that
|P(x,20)|? = 0, X, — 0, (325)

Now, we use the corrected form of Krein’s theorem (see [7, 21]):
Proposition (6.3.13)[1]: There exists the limit

M(z) = lim P.(x,,z), (326)

xn—>00
where the convergence is uniform at any bounded closed set of the upper half-
plane 3z > O.
2) The function I1(z) can be represented in the form

B 1 1 r 1+ tz log & )
(z) —\/T_nexp i _f Z- D0 1 tz)(ogc(t))dt+ a ¢, (327)

where @« = a. Here o 1is the spectral function of system (295), which
corresponds to p given by (319) and (320), that is, this o 1s defined by (321).
Remark (6.3.14)[1]: The function |Q(x)|? + |P(x,2,)|* belongs to the space
L(0, ). Hence, there exists a sequence X, such that relations (306) and (325)
are true simultaneously.

If (322) holds, then the following conditions are fulfilled:

0<s<|ISI<A< = f|h(x)|2dx < o. (328)

0
Therefore, in formula (327) we have (see [19], Proposition 1):

a = 0. (329)



One can easily see that

0

-1 1+ tz
2im (z- )1 + t?)
It follows from (327), (329), and (330) that [1(z) has the form

log(2m)dt = 1log(27t). (330)

log(1—bgp)

2 = 1—[ [(aal;ij_zz) <al;: ; j)] Zi“ 32> 0. (331)

Next, we prove the main result of this section.

Theorem (6.3.15)[1]: The bounded positive definite and invertible operator S,
whichis defined by formulas (260) and (322), does not admit a left triangular
factorization.

Proof . Taking into account Lemma (6.3.7) and relations (297), (325), and
(326) we have

lim wy ,(xy, z) = —CII(2), Iz > 0, = 1/4/(1 - ). (332)
Xp—00

Now, we use the following relations

a - i a, + i
1im< et 1 y)( k _y) -1, k>0 (333)
y=+0\ayyq + iy) \ay — iy

a - a, + i
lim ( k1 y)( k _y) =1 k=0 (334)
y=+0\ayp; + iy/) \ap — iy

Formulas (331), (333), and (334) imply that

lim [(iy) = (1 - ). (335)

y—+0
Suppose that the operator S admits a factorization. It follows from the
asymptotics of sinus integral (see [3], Ch. 9, formulas (2) and (10)), that the
kernel h(x), defined by formula (322), satisfies conditions (299). Hence, the
conditions of Lemma (6.3.8) are fulfilled. Comparing formulas (313) and
(332), we see that

— lim G(-1y) = —1/(1 — p) # —C lim I(iy) = —1. (336)
y—+0 y—+0

Hence, the relation (313) is not true. According to Proposition (6.3.9) the
operator S does not admit a factorization. The theorem is proved. m



Let the nest N be the family of subspaces QELZ(O, ). The corresponding

nest algebra Alg(N) is the algebra of all linear bounded operators in the
space L?(0,o0) for which every subspace from N is an invariant subspace. Put
Dy = Alg(N) N Alg(N)*. The set N has multiplicity one if the diagonal Dy is
abelian, that is, Dy 1is a commutative algebra. We can see that the lower
triangular operators S_ form the algebra Alg(N), the corresponding diagonal
Dy 1s abelian, and it consists of the commutative operators
Tof =@@)f ., fel?(0,0), (337)

where @ (x) is bounded. Hence, the introduced nest N has the multiplicity
Ringrose Problem. Let N be a multiplicity one nest and T be a bounded
invertible operator. Is TN necessarily multiplicity one nest?

We obtain a concrete counterexample to Ringrose’s hypothesis.
Proposition (6.3.16)[1]: Let the positive definite, invertible operator S be
defined by the relations (260) and (322). The set SY2N fails to have
multiplicity 1.
Proof . We use the well-known result (see [4], p. 169): The following assertions
are equivalent:
1. The positive definite, invertible operator T admits factorization.
2.TY2 preserves the multiplicity of N.

We stress that in our case the set N = Q,EL2 (0,0) is fixed.) The operator S
does not admit the factorization. Therefore, the set SY/2N fails to have

multiplicity 1. The proposition is proved. m

Next, consider the operator
X

vi=[et Wiy, fe) € 20w, (338)

0
An operator is said to be hyperintransitive if its lattice of invariant subspaces

contains a multiplicity one nest. Note that the lattice of invariant subspaces of
the operator V coincides with N, see [9] and [23] (Ch. 11, Theorem 150). Hence
we deduce the answer to Kadison-Singer [6] and to Gohberg-Krein [5] question.
Corollary (6.3.17)[1]: The operator W = SY2V §71/2 i3 a non-
hyperintransitive compact operator.

Indeed, the lattice of the invariant subspaces of the operator W coincides
With S/2N.
Corollary (6.3.18)[232]: Let relation (306) be true. Then we have

Proof. In view of (269), (272), and (298) we get

2mez Gm+2(X) = Xmez(Gm+1(X) (1 — tm)/2 + Qm(x)).

Yot



Taking into account the relation g, 41 (%) gm42(x) = 1/2 (see [19], formulas
(53) and (56)), we obtain the equality

1/2 = TmezGm+1(0) A = m)/2 + Zmez Gm+1(0)Qm ().

Formula (307) follows directly from (306), (309), and inequality

qm+1(x) > 0. =
It follows from (278) and (307) that

> (xn)aZ[l/ZC e ] e Y = 1T ).

meZ meZ

Hence, in view of (291), (292), (294), and (310) the following assertion is true.

Corollary (6.3.19)[232]: Suppose that the operator S admits a factorization.
Then we have

ghm e lzlffwlz(fj, )— G( ) Jz; < 0,

Jim wi,(),2) = ~6(3), Sz > 0.
]

0o

1
G(2) =m[1 — iz f izjx ri(x)dx|,r(x) = S71q;(x).
0

Proof . According to (268) we have S-1 = I + V_, where V_ is defined by
(267). Hence, the operator function Sf_j 1 strongly converges to the

operator S™1 when & j = 0. Then the function 7; E'(x) = ng Lgq j(x) strongly
]

converges to 7j(x) = S_lqj(x), when §; > o and r(x) € L%(0, ).



