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Chapter 6 
Differential System of Krein and Triangular Factorization 
 
    In this chapter we show that broad classes of operators can be factorized. As a 
result, pure existence theorems in the well-known problems by Ringrose, 
Kadison and Singer are substituted by concrete examples. 
 
Sec(6.1):     Krein’s Differential System and its Generalization 
 
      In the M.G. Krein’s famous paper [47] a special class of differential systems 
(Krein’s systems) was considered. M.G.Krein announced a number of 
fundamental facts of the direct and inverse spectral theory of this class. 
Unfortunately these important results where published without proof. In recent 
years we proved a part of the assertions stated in [47] and generalized them to a 
broad class of canonical differential systems (see [51,52,53]). In this article we 
continue our investigatation of Krein’s systems and correct some assertions both 
in M.G. Krein’s article [47] and in our earlier work [51,52,53]. In the last part of 
this section, we introduce the class of the matrix functions, which contains the 
Stummel class. Assuming that the coefficients of Krein’s system belong to the 
introduced class, we prove some new results announced by M.G. Krein in [47]. 
We shall consider the operator 

ܵ௥݂ = (ݔ)݂ + නݔ)ܪ − ݐ݀(ݐ)݂(ݐ
௥

଴

			 , 0 < ݎ < ∞.																																																				(1) 

Here we suppose that the operator ܵ௥ is positive and that the function (ݐ)ܪ is 
continuous and satisfies the relation 
(ݐ)ܪ                   = തതതതതതതത(ݐ−)ܪ 			,			− ݎ ≤ ݐ ≤  (2)																																																													.ݎ
In this case there exists a Hermitian resolvent Γ୰(ݐ, (ݏ 	= 	 Γ୰(ݏ,  തതതതതതതതത satisfying the(ݐ
relation 

	Γ୰(t, s) + නݐ)ܪ − ,ݑ)Γ୰(ݑ ݑ݀(ݏ = ݐ)ܪ − ,(ݏ 0 ≤ ,ݏ ݐ
௥

଴

≤  (3)																								.ݎ

Following [47] we set 

,ݎ)ܲ					 (ߣ = ݁௜௥ఒ ቌ1 − නΓ୰(s, 0)
௥

଴

݁ି௜௦ఒ	݀ݏ	ቍ		,																																																							(4) 

					 ,ݎ)ܲ∗ (ߣ = 1 − නΓ୰(0, s)
௥

଴

݁௜௦ఒ	݀ݏ	.																																																																									(5) 

M.G. Krein [47] deduced the differential system 
 

	
,ݎ)ܲ݀ (ߣ
ݎ݀

= ,ݎ)ܲߣ݅ (ߣ − 	തതതതതത(ݎ)ܣ ,ݎ)ܲ∗ ,(ߣ
݀ ,ݎ)ܲ∗ (ߣ

ݎ݀
= ,ݎ)ܲ(ݎ)ܣ−  (6)																				,	(ߣ
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where	
(ݎ)ܣ																																												 = 	 Γ୰(0, r)																																																																			(7) 
M.G.Krein proved that there exists a nondecreasing function (ߣ)ߪ (spectral 
function) such that the operator 

			ܷ݂ = න ,ݎ)ܲ(ݎ)݂ ,		ݎ݀(ߣ
ஶ

଴

						− ∞ < ߣ < ∞																																																									(8) 

isometrically maps ܮ௠ଶ (0,∞)   into ܮఙଶ (−∞,∞). M.G.Krein formulated the 
following important results [47]. 
Theorem (6.1.1)[21]: The following propositions are equivalent: 
1) The integral 

(଴ݖ)ܭ = න|ܲ(ݎ, (9)																																																																																														ݎ଴)|ଶ݀ݖ
ஶ

଴

 

converges for at least one 	ݖ଴, ଴	ݖ݉ܫ > 	0. 
2) The function  ∗ܲ(ݎ, ,(଴ݖ 0 ≤ 	ݎ < 	∞	 is bounded for at least one ݖ଴, ଴	ݖ݉ܫ >
	0 
3) The integral (ݖ)ܭ converges uniformly at any bounded closed set ݖ of the 
open half-plane Imz > 0. 
4) There exists the limit 

                      		Π(z) = lim ∗ܲ (r, z),			r → ∞,																																																		(10)  
where the convergence is uniform on any bounded closed subset ݖ of the open 
half-plane ݖ݉ܫ	 > 	0. 
5) The integral  
                                      ∫ ௅௢௚	ఙ́(ఒ)

(ଵ	ା	ఒమ	)
ஶ
ିஶ    (11)																																																																			ߣ݀

is finite.  
If conditions 1)-5) are fulfilled then Π(ݖ) can be represented in the form 
 

Π(ݖ) =
1

ߨ2√
exp ቆ

1
ߨ2݅

න
1 + ݖݐ

ݖ) − 1)(ݐ + (ଶݐ
[loǵ(ݐ)ߪ]݀ݐ + ߙ݅

ஶ

ିஶ
ቇ	,																					(12) 

where ߙ = ഥ	ߙ . 
Let us point out some inaccuracies of the article [47]. 
1. The condition of the continuity of (ݐ)ܪ	is omitted in [47]. Without this 
condition equality (7) does not make sense. It was Krein himself who wrote 
about this [48]. 
2. In formula (12) (see [47]) the expression (ݐ	 − 	ݖ)  is used instead of (ݖ	 −  .(ݐ	
3. The right part of (12) (see [47]) contains the multiplier exp(݅ݖߚ), where	ߚ ≥
0. As it is shown (see [53]) this multiplier is equal to 1, i.e., ߚ	 = 	0. 
4. M.G.Krein [47] writes that formula (12) shows that Π(ݖ) depends only on the 
absolutely continuous part ߪ௔(ߣ) of the spectral function (ߣ)ߪ. This is true 
concerning the module |Π(ݖ)|, but the question of the connection of ߙ with the 
spectral function (ߣ)ߪ remains unanswered. 
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However under some conditions it is possible to obtain the formula expressing 
 In a number of concrete examples (see [44,45,46]) the relations (ߣ)௔ߪ	by	ߙ
                        Π(z) → 1, ݖ = 	݅ܽ,			a → +∞,																																																								(13)	
                         
                        lim	́(ݐ)ߪ = ଵ

ଶగ
ݐ						,	 → ∞																																																																(14)	

are fulfilled. From (12)– (14) it follows that 
 

	ߙ																	 = 	lim
1
݅ߨ2

න
ܽଶݐ

ଶݐ) + ܽଶ)
log	[2(ݐ)ߪ́ߨ]
(1 + (ଶݐ

ஶ

ିஶ

	(15)																																							,ݐ݀	

where ܽ → +∞. 
Thus in case when (13) and (14) are valid ߙ is indeed defined by absolutely 
continuous part ߪ௔(ߣ) of the spectral function	(ߣ)ߪ. Now we shall find the 
conditions from which follows relation (13). 
Proposition (6.1.2)[21]:  
Suppose that for all ݎ	 > 	0 there exists a ߜ	 > 	0 such that 
                            (ܵ௥݂, ݂) 	≥ ,݂)ߜ	 ݂).																																																																					(16)	
Relation (13) is valid if 

															න ଶ|(ݐ)ܪ|
ஶ

଴

	ݐ݀ = 	ܯ < ∞.																																																																											(17)	

Proof. It follows from (16) that 
                       
                             			ܵ௥ିଵ ≤

ଵ
ఋ
	(18)																																																																															.				ܫ

From (3), (17) and (18) we deduce that 
 

										න ,ݐ)௥߁| 0)|ଶ
௥

଴

	ݐ݀ = 	න ,௥(0߁| ଶ|(ݏ
௥

଴

ݏ݀ ≤ ఋܯ 			,																																														(19)	

where ܯఋ =  ଶ. Let us estimate the integralߜ/ܯ	

								อන߁௥(0, (ݏ
௥

଴

	݁௜௦ఒ݀ݏอ

ଶ

≤ 				ݏఋන݁ିଶ௔௦݀ܯ
௥

଴

																																																							(20) 

 
As  ∫ ݁ିଶ௔௦݀ݏ				ஶ

଴ → 	0 , when ߣ	 = 	݅ܽ, ܽ	 > 	0, ܽ	 → 	∞, the assertion of  the  
proposition follows from (5) and (20).  
Corollary (6.1.3)[21]:  
If relation (17) and inequality 

																									 න ݐ݀|(ݐ)ܪ|
ஶ

ିஶ

	= 	ݍ	 < 	1																																																																					(21)	
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are  fulfilled , then condition (13) is valid. 
Indeed from inequality (21)	we deduce that 
                              ‖ܵ௥ − ‖ܫ	 ≤ 	(22)																																																																													.ݍ
This implies that the conditions of  Proposition (6.1.2) hold. Hence Corollary 
(6.1.3) follows. 
Corollary (6.1.4)[21]: If conditions of Theorem(6.1.1) are fulfilled and 
coefficient (ݎ)ܣ is real, then ߙ	 = 	0. 
Indeed in this case the function ∗ܲ(ݎ, ݅) is positive. Hence Π(݅)	is positive as 
well. From formula (12) we obtain that 

																			Π(݅) =
1

√2π
exp ൭−

1
2π

න
Log	́(ݐ)ߪ
൫1	 + ൯	2ݐ	

ஶ

ିஶ

ݐ݀ + 	(23)																												൱ߙ݅

As Π(i) is positive it follows from formula (23) that ߙ	 = 	0. 
Let us consider separately the case when 
(ݎ)ܣ                          = ݎ					,0	 ≥ ܴ																																																																										(24) 
In this case we have 

																																			
݀ ∗ܲ

ݎ݀
= 	0						, ݎ ≥ ܴ																																																																			(25)	

Hence the following equality 
                               Π(ݖ) = 	 ∗ܲ(ܴ, 	(26)																																																																								(ݖ
is true. From (5) and (26) we obtain the following assertion. 
Corollary (6.1.5)[21]: If  relation	(24) is true, then relations	(13) and	(14)	are 
true as well. 
   Let us note that there is no problem in defining the ߙ value in the case of 
orthogonal polynomials (see [43]). It can be explained by a good choice of 
normalization. In the case of Krein’s system such normalization is also possible. 
We shall introduce Π(ݖ) not with the help of relation (10), but with the help of 
the  equality 
                     Π(z) 	= 	lim	[ ,ݎ)ܲ∗ ݎ				,[(ݎ)ߛ݅−)exp	(ݖ → ∞,																																(27)	
where (ݎ)ߛ = 	arg ,ݎ)ܲ∗ ݅). Then in view of (12)	and (23)	we have 
 

												Π(ݖ) =
1

√2π
exp ൭

1
ߨ2݅

න
(1 + (ݐ)ߪ́	Log(ݖݐ
−ݖ) 	൫1(ݐ + ൯	2ݐ	

ஶ

ିஶ

 (28)																																	൱ݐ݀

Theorem (6.1.1) was formulated by M.G.Krein without any proof. In our works 
[51,52,53] we gave the proof of this theorem but condition 4) of Theorem 
(6.1.1) must be replaced by the following condition: 
4ሖ 	) There exists a sequence ݎ௡ → ∞ such that 
 
                          Π(ݖ) = 	lim	P∗(ݎ௡ , ,(ݖ ௡ݎ	 → ∞, Π(ݖ) ≢ ∞																															(29) 

	
at any bounded closed set ݖ	of the open half-plane ݖ݉ܫ	 > 	0. 



١٦٦ 
 

Remark (6.1.6)[21]: A.Teplyaev called our attention to the necessity of 
replacing condition 4) by condition4ሖ ). In his article [54] Theorem (6.1.1) was 
partially proved (the equivalence of conditions 1), 2), 3) and 4ሖ )). 
The formula (12) doesn’t follow from condition 4ሖ ). Further (see the next 
section) we shall prove that condition 4ሖ ) can be replaced by the stronger 
condition: 4(ݏ)). There exists a sequence ݎ௡ → ∞  such that 
                   Π(ݖ) = 	lim	 ,௡ݎ)ܲ∗ ,(ݖ lim	ܲ(ݎ௡, (ݖ = 	0, ௡ݎ → ∞,																									(30)	
at any bounded closed set z	of the open half-plane ݖ݉ܫ	 > 	0. 
In this case formula (12) is valid and conditions 1), 2), 3), 4(s)) and 5) are 
equivalent. 
We show the generalized Krein systems (matrix case) .The matrix version of 
system (6) has the form 
 

	
݀ ଵܲ(ݔ)
ݔ݀

= ܦݖ݅ ଵܲ + (ݔ)ଵଵܣ ଵܲ	 + (ݔ)ଵଶܣ ଶܲ	,
݀ ଶܲ(ݔ)
ݔ݀

= (ݔ)ଶଵܣ ଵܲ	,		 
ݔ                                                                                             > 0																						(31)	
where ܣ௜௝	(ݔ) and	 ௞ܲ(ݔ, ݉	are (ݖ × ݉ matrices and constant ݉ ×݉	 matrix ܦ 
has the form 
	ܦ          = 	݀݅ܽ݃[݀ଵ, , ݀ଶ	. . . , ݀௠],				݀݇	 > 0		(݇	 = 	1, 2, . . . , ݉).																						(32)	
We assume that the following conditions are fulfilled. 

1. The matrices		ܣ௜௝	(ݔ)  are continuous and 
(ݔ)ଵଵܣ                              = ∗ଵଵܣ− ,	(ݔ) (ݔ)ଶଵܣ	 = ∗ଵଶܣ		  (33)																																(ݔ)
    2. The matrix functions ଵܲ(ݔ, ,ݔ)and ଶܲ (ݖ  satisfy the boundary conditions (ݖ
 
                           ଵܲ(0, (ݖ = 	 ଵܵ	, 	 ଶܲ(0, (ݖ = 	 ܵଶ,			݀݁ܵݐ௞ ≠ 	0,																											(34)	
where ଵܵ and ܵଶ are constant ݉ ×݉ matrices such that 
                                                      ଵܵ

∗
ଵܵ = ܵଶ∗ܵଶ			.																																																	(35) 

We have proved the following theorem (see [51,52,53]): 
Theorem (6.1.7) [21]:  (Generalized Krein Theorem) The following 
propositions are equivalent: 
1) The integral 

(଴ݖ)ܭ																					 = න ଵܲ
∗

ஶ

଴

,ݔ) ܦ(଴ݖ ଵܲ(ݔ, 	(36)																																																			ݔ݀(଴ݖ

 
converges for at least one   	ݖ଴	, ଴	ݖ݉ܫ > 	0. 
2) The norm of matrix function ଶܲ(ݔ, ଴)(0ݖ ≤ 	ݔ < 	∞) is bounded for at least 
one			ݖ଴	, ଴	ݖ݉ܫ > 	0	. 
3) The integral	(ݖ)ܭ converges uniformly at any bounded closed set ݖ	of the 
open half-plane ݖ݉ܫ	 > 	0. 
4) There exists a sequence	ݔ௡ → ∞ such that 
                   Π(ݖ) = 	lim	 ଶܲ(ݔ௡ , ,(ݖ ௡ݔ			 → ∞	, ||Π(ݖ)|| 	≢ ∞																												(37)	
at any bounded closed set ݖ of the open half-plane	Imz	 > 	0. 
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5) The integral  

																														 න
Log	݀݁ݐ	(ߣ)ߪ́
ቀ1	 + ቁ	2ߣ	

ஶ

ିஶ

dλ																																																																		(38) 

is finite, where (ߣ)ߪ is the spectral matrix function of system (31). 
Now we shall prove that the condition 4) of Theorem (6.1.7) can be replaced by 
the stronger condition. We shall use the relation (see [51,52,53]) 
   ଶܲ

,ݔ)	∗ (ݖ ଶܲ(ݔ, 	–(ߦ ଵܲ
,ݔ)	∗ (ݖ ଵܲ(ݔ,  (ߦ

																																				= ݅൫zത	– ൯ߦ	 ∫ ଵܲ
,ݔ)	∗ ௫(ݖ

଴ ܦ ଵܲ(ݔ,   (39)																																				ݔ݀(ߦ
In particular for ߦ	 =  we have ݖ	
ଶܲ
,ݔ)	∗ (ݖ ଶܲ(ݔ, 	–(ݖ ଵܲ

,ݔ)	∗ (ݖ ଵܲ(ݔ, (ݖ

= –	̅ݖ)݅ න(ݖ	 ଵܲ
,ݔ)	∗ (ݖ

௫

଴

ܦ ଵܲ(ݔ,  (40)																																																ݔ݀(ݖ

There exists a sequence ܴ௞ 	→ ∞ such that (see [51,52,53]) 
                    lim	 ଶܲ(ܴ௞ , (ݖ 	= 	Π(ݖ), lim	 ଵܲ(ܴ௞ , (଴ݖ 	= 	0,																																		(41)	
 
where	0ݖ݉ܫ	 > 	0. It follows from (40) that || ଶܲ(ݎ, ||(ݖ ≥ || ଵܲ(ݎ,  .||(ݖ
Using this inequality we deduce that for a subsequence		ݎ௞ of the sequence	ܴ௞ 
there exist the limits 
                       lim	 ଶܲ(ݎ௞ , (ݖ 	= 	Π(ݖ), lim	 ଵܲ(ݎ௞, (ݖ = 	Q(z),																														(42)	
where 
(଴ݖ)ܳ                               	= 	0.																																																																																	(43)	
Let us suppose that for another sequence ݐ௞ → ∞ there exist some other limits 
                           lim	 ଶܲ(ݐ௞ , (ݖ = 	Πଵ(ݖ), lim	 ଵܲ(ݐ௞ , (ݖ = 	Qଵ(z).																						(44)	
It follows from condition 1) of  Theorem (6.1.7) that there exists the limit of the 
right part of equality (39), when ܴ → ∞. Hence the following relation 
       							Πଵ∗(ݖ)Πଵ(ߦ)	–	Qଵ∗(ݖ)Qଵ(ߦ) 	= 	Π∗(ݖ)Π(ߦ) 	− 	Q∗(ݖ)Q(ߦ)																		(45)	
is true. Under condition 5) of Theorem (6.1.7) the matrix ́(ߣ)ߪ is factorable , 
i.e.there exists an analytic maximal	݉ ×݉ matrix function 		(ݖ)߁, 	ݖ݉ܫ) >
	0)	such that ݀݁ݐ	(ݖ)߁ ≠ 0 and 

														
1
ߨ2

(ߣ)∗Γା	(ߣ)ା߁ = 	 ߣ					,(ߣ)ߪ́ = 	 	(46)																																																													,ߣ̅
 
where Γା(λ) = 	limΓ(λ + ϵ),			ϵ → 	+0. Following the argumentations of the 
[53] (Theorem 3.2) we obtain the assertion. 
Proposition (6.1.8)[21]: Let condition 1) of Theorem (6.1.8)be fulfilled . Then 
Πିଵ	(z) is the maximal analytic matrix function satisfying the relation 

																															
1
2π

Πାିଵ	(λ)[Πାିଵ	(λ)]∗ = 	 σ́(λ),			λ = λത,																																				(47)	
 
where    Πାିଵ	(λ) 	= 	limΠିଵ(λ	 + ϵ	),									ϵ → 	+0.	
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Remark (6.1.9)[21]: In paper [53] Proposition 2 is proved in the case that 
଴ݖ 	= 	݅. It follows from (46) and (47) that 
                                Πିଵ(ݖ) 	= 	Γ(ݖ)ܷ,																																																																			(48) 
where U is a unitary constant ݉ ×݉ matrix. Using (40)– (43) and (48)	we 
have 
Π∗(ݖ଴)Π(ߦ) 	= 	 [Γିଵ(ݖ଴)]∗Γିଵ(ߦ) 	

= ଴ഥݖ	)݅	 	− න(ߦ	 ଵܲ
,ݔ)∗ ܦ(଴ݖ ଵܲ(ݔ, ݔ݀(ߦ

ஶ

଴

																																								(49)	

Theorem (6.1.10)[21]: Let condition 1) of Theorem (6.1.7) be fulfilled. If a 
sequence ܴ௞ → ∞ is such that relation (41) is true then 
(ݖ)ܳ                                    ≡ 	0,																																																																														(50) 

									Π∗(ݖ)Π(ξ) = 	 [Γିଵ(ݖ)]∗	Γିଵ(ߦ) = ̅ݖ)݅	 	− න(ߦ	 ଵܲ
,ݔ)∗ ܦ(ݖ ଵܲ(ݔ, ݔ݀(ߦ

ஶ

଴

.																		(51) 

Proof. We can choose an arbitrary ݖ଴	, ଴	ݖ݉ܫ) > 	0). In this case the matrix 
function Π(ݖ)	can change but not Γ(ݖ). Taking this fact into account we deduce 
from (48) and (49) relations (50) and (51). The theorem is proved.  
Corollary (6.1.11)[21]: Let  Πଵ(ݖ) and ܳଵ(ݖ) be defined by relations (44). Then 
there exist constant ݉ ×݉ matrices ܣ and ܤ such that 
                           Πଵ(z) 	= 	AΠ(z),					Qଵ(z) 	= 	BΠ(z),																																							(52)	
where 
	ܣ	∗ܣ                               − 	ܤ∗ܤ	 = 	(53)																																																																		.	௠ܫ
Proof. It follows from (45) and (50) that 
                        Πଵ∗	(ݖ)Πଵ(ߦ) 	− 	Q	ଵ∗(ݖ)Qଵ(ߦ) 	= 	Π∗(ݖ)Π(ߦ).																												(54)	
Relation (54) can be written in the form 
 

																																ܼ∗݆ܼ	 = 				 ൤	ܫ௠ ௠ܫ
௠ܫ ௠ܫ

൨																																																																	(55)	

 
Where  ݆	 = ,௠ܫ]݃ܽ݅݀	  ௠] andܫ−

																																						ܼ	 = ൤
(ݖ)ଶߎ		 			(ߦ)ଶߎ
ܳଶ(ݖ) ܳଶ(ߦ)	

൨ 																																																					(56)	

Here matrix functions 		ߎଶ(ݖ) and ܳଶ(ݖ) are defined by the equalities 
              		Πଶ(ݖ) 	= 	 		Πଵ(ݖ)Πିଵ(ݖ), 			Qଶ(ݖ) 	= 	Qଵ(ݖ)Πିଵ(ݖ).																								(57)	
Relations of type (55) were investigated by ܸ. Potapov ([49], Ch.2). Using 
Potapov’s result we obtain the equality 
																																																			ܼܶ	 = ቂܣ 0

ܤ 0ቃ		,																																																								(58)	
where 

																																															ܶ	 =
1
2
		൤	ܫ௠ ௠ܫ−
௠ܫ ௠ܫ

൨		.																																															(59)	

We deduce from (58) that 
 



١٦٩ 
 

Πଶ(ݖ) = 	Πଶ(ߦ) = 	A	 = 	const	, Qଶ(ݖ) 	= 	Qଶ(ߦ) 	= 	B	 = 	const.															(60)	
Hence the relations (52) and (53) are true.  
Naw  we show the generalized Krein systems in a particular case 
Let us consider system (31), when 
                  D	 = ,	௠ܫ Aଵଵ(ݔ) 	= 	0, Aଵଶ(ݔ) 	= 	Aଶଵ∗ (ݔ) 	= 	(61)																				.(ݔ)ܽ	
We introduce the norm 

																	||ܽ||	௣ = [sup න ଵ[ݐ௣݀‖(ݐ)ܽ‖ ௣⁄
௫ାଵ

௫

	 , ݔ ≥ 0.																																			(62)	

Here ||ܽ(ݔ)|| is the largest singular value of the	݉ × ݉ matrix ܽ(ݔ). We assume 
that ݌	 > 	1. When ݌	 = 	2 the introduced norm coincides with the well-known 
Stummel norm (see [42]). 
Theorem (6.1.12)[21]: If condition 1) of Theorem (6.1.7) is fulfilled and 
                                    ||ܽ||௣ 	< 	݌)				,∞	 > 	1),																																																				(63)	
then 
                                lim	 ଵܲ(ݔ, (ݖ = ݔ					,0	 → ݖ݉ܫ			,∞ > 0.																														(64)	
Proof. The system (31), (61) can be written in the form 
          					ௗொ(௫,௜௞)

ௗ௫
	= ௞௫݁(ݔ)ܽ	 ଶܲ(ݔ, ݅݇),

ௗ௉మ(௫,௜௞)
ௗ௫

= ,ݔ)௞௫ܳି݁(ݔ)∗ܽ	 ݅݇),								(65)	
 
where ܳ(ݔ, ݅݇) 	= 	 ݁௞௫ ଵܲ(ݔ, ݅݇), 	ݖ = 	݅݇. From (65)	we deduce that 

					݁	ି௞௫	නܽ(ݑ)݁௞௨݀ݑ	
௫

଴

= 	݁	ି௞௫න
,ݑ)ܳ݀ ݅݇)

ݑ݀

௫

଴
ଶܲ
ିଵ	(ݑ, 	(66)																										.ݑ݀(݇݅

It follows from (65) and (66) that 
,ݔ)ܩ     ݅݇) = 	 ݁	–௞௫	 ∫ ݁௞௨ܻ	(ݑ, ,ݑ)	ܻ(ݑ)∗ܽ(݇݅ ௫ݑ݀(݇݅

଴  
,ݔ)	ܻ+                                                                     ݅݇) −	݁ି௞௫ܷ	,																					(67) 
where 

,ݔ)ܩ																			 ݅݇) 	= 	 ݁ି௞௫ 	නܽ(ݑ)݁௞௨
௫

଴

	(68)																																																									,ݑ݀

,ݔ)	ܻ ݅݇) = 	 ଵܲ(ݔ, ݅݇) ଶܲ
ିଵ	(ݔ, ݅݇),			ܷ	 = 	 ଵܵܵଶିଵ. In view of (35) the matrix  ܷ is 

unitary. Further we use the following inequality	
,ݔ)ܩ‖   ݅݇)‖ ≤ 

         	‖ܽ‖௣݁ି௞௫ ቈ∑ ቀ∫ ݁௤௞௨݀ݑ௝ାଵ
௝ ቁ

భ
೜	௝ୀ[௫]ିଵ

௝ୀ଴ +	ቀ∫ ݁௤௞௨݀ݑ௫
[௫] ቁ

భ
೜቉ ,																					(69)	

where [ݔ]	is the integer part of	ݔ and ݍ is defined by the relation  1/݌	 +  = ݍ/1	
1.  From (69) we deduce that 

,ݔ)ܩ||											 ݅݇)|| 	≤ 	
C

݇
ଵ
௤
	݁ି௞௫ ቌ෍݁௞௝ 	+ 	݁௞௫

[௫]

௝ୀ଴

ቍ ≤ 	
Cଵ

݇
ଵ
௤
	.																															(70)	

 
It follows from relation (40) that 
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,ݔ)	ܻ||                                 ݅݇)|| 	≤ 	1.																																																																				(71)	
Inequalities (70) and (71) imply that 

݁	–௞௫ 		න‖ܽ(ݑ)‖݁௞௨‖ܻ	(ݑ, ݅݇)‖ଶ
௫

଴

	ݑ݀ ≤ 	 ݁ି௞௫ 		න‖ܽ(ݑ)‖݁௞௨݀ݑ
௫

଴

 

 
                                                                          ≤ 	 େభ

௞భ/೜
			.																																				(72)	

In view of (67), (70) and (71) we have 

,ݔ)	ܻ||																												 ݅݇)|| 	≤ 	
ଶܥ

݇
ଵ
௤
+	݁ି௞௫.																																																										(73)	

There exists a sequence ݔ௞ → ∞ such that 
                    lim	 ଶܲ(ݔ௞ , (ݖ 	= 	Π(ݖ),					lim	 ଵܲ(ݔ௞ , (ݖ 	= 	0.																																	(74)	
Let us assume that for another sequence ݐ௞ 	→ ∞ there exist some other limits 
                    lim	 ଶܲ(ݐ௞ , (ݖ = 	Πଵ(ݖ), lim	 ଵܲ(ݐ௞ , (ݖ 	= 	Qଵ(ݖ).																											(75)	
Then according to Corollary (6.1.11) there exist constant ݉ ×݉ matrices ܣ and 
 such that	ܤ
                         Πଵ(ݖ) = 	AΠ(ݖ), 					Qଵ(ݖ) 	= 	(76)																																									.(ݖ)Πܤ	
It follows from (66) that 
                                Qଵ(ݖ)Πଵିଵ(ݖ) 	= 	(77)																																																									ଵ.ିܣܤ	
Using inequality (73) we obtain that ܤ	 = 	0, i. e., ܳଵ(ݖ) 	= 	0. The theorem is 
proved.                                                                              □ 
Theorem (6.1.13)[21]:  If condition 1) of Theorem (6.1.7) is fulfilled and 

																								lim න 	ݑ݀||(ݑ)ܽ||
୶ାଵ

୶

= 	0, ݔ → ∞,																																												(78)	

then 
                                lim	 ଵܲ(ݔ, (ݖ = 	0, ݔ → ∞, ݖ݉ܫ > 0.																																		(79)	
Proof. Let 	ߝ	 be an arbitrary positive number. There exists a natural number ܰ 
such that  
                     ∫ ௫ାଵݑ݀||(ݑ)ܽ||

௫ 	< ߳				, 	ݔ ≥ 	ܰ.																																																						(80) 
 
Using notation (68) we have 

,ݔ)ܩ‖ ݅݇)‖ ≤ 	 ݁	–௞௫න‖ܽ(ݑ)‖݁௞௨݀ݑ	
ே

଴

+ ௞௫ି݁ߝ ቌ෍ ݁	௞௝ +	݁௞௫
[௫]

௝ୀே

ቍ 

                              	≤ 	 ݁ି௞௫ܥே + 	(81)																																																																						.		ߝ4
In view of (71) the inequality 
 

										݁ି௞௫	න‖ܽ(ݑ)‖݁௞௨‖ܻ	(ݑ, ݅݇)‖ଶ݀ݑ
௫

଴

	≤ 	݁ି௞௫	ܥ	ே + 	(82)																											ߝ4	
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is true. It follows from (67) and (81), (82) that 
,ݔ)	ܻ‖                          ݅݇)‖ ≤ 2(݁ି௞௫ܥே	 + (ߝ4	 +	݁ି௞௫	.																																	(83)	
Relations (74)–(77) are true in case ݌	 = 	1 too. From (74)–(77) and estimation 
(83) we deduce the equality ܤ	 = 	0, i. e. ܳଵ(ݖ) 	= 	0. The theorem is proved. □           
Corollary (6.1.14)[21]: If the conditions of either Theorem (6.1.12) or Theorem 
(6.1.13) are fulfilled, then 
(ݖ)ଵߎ                                 = 	(84)																																																																							,(ݖ)Πܣ	
where ܣ is a constant unitary matrix. 
Proposition (6.1.15)[21]: Let ܽ(ݔ) 	≥ 	0 and let relation (79) be fulfilled. Then 
relation (78) is fulfilled too. 
Proof.  From (79) and inequality ܽ(ݔ) 	≥ 	0 we obtain the relation 
,ݔ)ݕ                                  ݅݇) → 0, ݔ → ∞.																																																												(85)	
Using (76) , (77) and (85) we have that 

																						݁ି௞௫	න݁௞௨ܽ(ݑ)݀ݑ	
௫

଴

→ 0.																																																																				(86)	

It follows from (86) that 

																			݁ି௞௫ 	 න ݁௞௨ܽ(ݑ)݀ݑ
௫ାଵ

௫

→ 0,																																																																					(87)	

i.e. relation (78) is fulfilled. The proposition is proved.      □ 
Corollary (6.1.16)[232]: Suppose that for all ݎ	 > 	0 and  ߳	 > 	0 such that 
                              (ܵ௥݂, ݂) 	≥ 	 ݎ) + ߳)(݂, ݂).				
Relation (13) is valid if 

														 lim
௥→ஶ

න ଶ|(ݐ)ܪ|
௥

଴

ݐ݀ 		= ௥ܯ 	< ∞.						

Proof. It follows from (16) that 
                             			ܵ௥ିଵ ≤

ଵ
(௥ାఢ)

 				.				ܫ
From (3), (17) and (18) we deduce that 

										න ,ݐ)௥߁| 0)|ଶ
௥

଴

	ݐ݀ = 	න ,௥(0߁| ଶ|(ݏ
௥

଴

ݏ݀ ≤ 				,			(௥ାఢ)ܯ

 
where ܯ(௥ାఢ) = ݎ)/ܯ	 + ߳)ଶ. Let us estimate the integral 

								อන߁௥(0, (ݏ
௥

଴

	݁௜௦ఒ݀ݏอ

ଶ

≤ 				ݏන݁ିଶ௔௦݀(௥ାఢ)ܯ
௥

଴

		 

 
As  ∫ ݁ିଶ௔௦݀ݏ				ஶ

଴ → 	0 , when ߣ	 = 	݅ܽ, ܽ	 > 	0, ܽ	 → 	∞, the assertion of the  
Corollary follows from (5) and (20).  
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Corollary(6.1.17)[232]:If condition 1) of Theorem (6.1.7) is fulfilled and 
 

				lim න ෍‖ܽ(ݑ௥)‖
௥∈୾

	௥ݑ݀
୶ାଵ

୶

= 	0, ݔ → ∞,			 

then 
                                lim	 ଵܲ(ݔ, (ݖ = 	0, ݔ → ∞, ݖ݉ܫ > 0.				
Proof. Let 	ߝ	 be an arbitrary positive number. There exists a natural number ܰ 
such that  
 
                      ∫ ∑ ௥∈୾‖(௥ݑ)ܽ‖ 	௥ݑ݀

௫ାଵ
௫ 	< ߳				, 	ݔ ≥ 	ܰ.			 

 
Using notation (68) we have 

	෍‖ݔ)ܩ, ݅݇௥)‖
௥∈௓

≤ 	෍݁	–௞ೝ௫
௥∈௓

න‖ܽ(ݑ௥)‖݁௞ೝ௨ೝ݀ݑ௥ 	
ே

଴

+෍ି݁ߝ௞ೝ௫
௥∈௓

ቌ෍݁	௞ೝ௝ +	݁௞ೝ௫
[௫]

௝ୀே

ቍ 

                           	≤ 	 ݁ି௞ೝ௫ܥே +  			.		ߝ4
 
In view of (71) the inequality 
 

				෍݁ି௞ೝ௫	

ܼ∋ݎ

න‖ܽ(ݎݑ)‖݁௞ೝܻ‖ݎݑ	ݎݑ), ݅݇௥)‖ଶ݀ݎݑ

௫

଴

	≤ ෍ 	݁ି௞ೝ௫

ܼ∋ݎ

෩ே	ܥ	 +  	ߝ4	

is true. It follows from (67) and (81), (82) that 
            ∑ ,ݔ)	ܻ‖ ݅݇௥)‖ݎ∈ܼ ≤ 2∑ (݁ି௞ೝ௫ܥே	 + ܼ∋ݎ(ߝ4	 +	∑ ݁ି௞ೝ௫ݎ∈ܼ 	.			 
Relations (74)–(77) are true in case ݌	 = 	1 too. From (74)–(77) and estimation 
(83) we deduce the equality ܤ	 = 	0, i. e. ܳଵ(ݖ) 	= 	0. The theorem is proved. □          
 
Sec (6.2):   Triangular Factorization of Positive Operators 
 
      In the Hilbert space ܮ௠ଶ 	(ܽ, ܾ) we define the orthogonal projectors ܲక݂	 =
,(ݔ)݂	 ܽ	 ≤ 	ݔ	 < 	ܲక݂		and	ߦ	 = 	0	, 	ߦ < 	ݔ	 ≤ 	ܾ	, where	݂(ݔ) 	∈ 	 ௠ଶܮ 	(ܽ, ܾ). 
Definition (6.2.1)[20]:  A bounded operator ܵି on ܮ௠ଶ 	(ܽ, ܾ)is called lower 
triangular if for every ߦ	the relations 
                                                 ܵିܳక = ܳ	కܵିܳ	క 	,																																															(88)	
Are true, where ܳక = 	ܫ	 − 	ܲక . 
Definition (6.2.2)[20]: A bounded operator ܵା	on ܮ௠ଶ 	(ܽ, ܾ) is called upper 
triangular if for every ߦ the relations 
                                                  ܵାܲక 	= 	ܲకܵା	ܲక 																																																(89)	
are true. 
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Definition (6.2.3)[20]: A bounded, positive and invertible operator ܵ on 
௠ଶܮ 	(ܽ, ܾ)  is said to admit the right triangular factorization if it can be 
represented in the form 
                                            ܵ	 = 	 ܵାܵା∗ 		.																																																																	(90)	
where ܵା and ܵାିଵ				are upper triangular, bounded operators. 
Definition (6.2.4)[20]:  A bounded, positive and invertible operator ܵ on 
௠ଶܮ 	(ܽ, ܾ)  is said to admit the left triangular factorization if it can be represented 
in the form 
                                               ܵ	 = 	 ܵିܵି∗ 		,																																																														(91)	
where ܵି and ܵିିଵ			are lower triangular, bounded operators. 
 Gohberg and M.G. Krein [29] studied the problem of factorization under 
the assumption 
                                              ܵ	 − 	ܫ	 ∈ 	(92)																																																												ஶ,ߛ	
where 	ߛஶ is the set of compact operators. The operators ܵିand ܵାwere assumed 
to have the form ܵା = I + ܺା,  ܵ_ = 	ܫ	 + 	ܺି; 	ܺା, 	ܺି 	 ∈  ஶ. The factorizationߛ	
method plays an important role in a number of analysis problems (for instance 
integral equations [39], spectral theory [40], nonlinear integrable equations). 
Giving up condition (92) and considering more general triangular operators 
would essentially widen the scope of the factorization method. D. Larson proved 
in his famous work [33] the existence of positive non-factorable operators. In 
this  Section  we formulate the necessary and sufficient conditions under which 
the positive operator ܵ		admits a triangular factorization. The factorizing 
operator ܸ	 = 	 ܵିିଵ is constructed in an explicit form, also  we consider the class 
of positive operators ܵ which satisfy the operator identity 
	ܵܣ                           − ∗ܣܵ	 	= 	(93)																																																																				.	∗ߎܬߎ	
For operators of this class, the factorization conditions have a simpler form. The 
general results of this   Section are applied to operators with difference kernels  

																														݂ܵ	 = 	
݀
ݔ݀
	න 	ݔ)ݏ(ݐ)݂ − ݐ݀(ݐ	
௔

଴

.																																																			(94)	

and to operators with sum-difference kernels, 

																				݂ܵ	 =
	݀ଶ

ଶݔ݀
	න[ݏଵ(ݔ	 − (ݐ	 	+ 	ݔ)ଶݏ	 + ݐ݀(ݐ)݂[(ݐ	
௕

଴

,																												(95)	

where ݂(ݐ) 	 ∈ 	 ,ଶ(0ܮ ܾ). In particular, we prove that the Dixon operator [28], 
[32], [41] 

																								݂ܵ	 = (ݔ)݂	 −	
ߣ
ߨ
න

(ݐ)݂
	ݔ + ݐ	

ଵ

଴

	ݐ݀ = 	(96)																																								.(ݔ)݃	

where	݂(ݔ) 	∈ 	 ,ଶ(0ܮ 1) and ߣ	 < 	1, admits a left triangular factorization. We 
note that the operators of the forms (94) and (95) play an important role in 
theoretical and applied problems (inverse problems, stationary processes, 
prediction theory). also  we investigate the case when 
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	݂ܣ																					 = 	݅ න݂(ݐ)݀ݐ
௫

଴

,			rank(ܵܣ	 − (∗ܣܵ	 	= 	1.																																			(97)	

In this case the factorizing operator ܵି has the special form 

																											ܵି݂	 = 	
݀
ݔ݀

න݂(ݐ)߶(ݔ	 − ݐ݀(ݐ	
௫

଴

.																																																			(98)	

In this  Section  we consider a class of operators of the form 

	ܨܵ																 = (ݔ)ܨ	 	− න(ݕ)ܨ݇ ቀ	
ݕ
ݔ
ቁ
1
ݔ
ݕ݀

ଵ

଴

	= 	(99)																																								,(ݔ)ܩ	

Where  (ݔ)ܨ 	∈ 	 ,ଶ(0ܮ 1). The Dixon operator belongs to this class. 
Remark(6.2.5)[20]: We consider triangular operators in the space		ܮ௠ଶ (ܽ, ܾ) 
with the special set of projectors ܲక . A general theory of triangular operators is 
constructed in the works [26], [27], [31], [33]–[36]. 
Let ܵ be a linear, bounded and invertible operator ܵ on ܮ௠ଶ (ܽ, ܾ).We introduce 
the notation 

																		 కܵ	 = 	ܲకܵܲక ,			(݂, ݃)క 	= න݃∗(ݔ)݂(ݔ)݀ݔ

క

௔

,																																					(100)	

where ݂(ݔ), (ݔ)݃ 	∈ 	 ௠ଶܮ (ܽ, ܾ). 
Theorem (6.2.6)[20]: Let the bounded and invertible operator ܵ	on ܮ௠ଶ (ܽ, ܾ).be 
positive. For the operator ܵ	to admit the left triangular factorization it is 
necessary and sufficient that the following assertions are true. 
1. There exists an ݉ ×݉ matrix function ܨ଴(ݔ) such that 

ݎܶ																											 නܨ଴∗(ݔ)ܨ଴(ݔ)݀ݔ
௕

௔

	< 	∞,																																																										(101)	

that the ݉ × 	݉ matrix function 
(ߦ)ܯ                                  = 	 ቀܨ଴(ݔ), ܵక

ିଵ	ܨ଴(ݔ)ቁక
																																										(102)	

is absolutely continuous, and almost everywhere 
ሖܯݐ݁݀                                       (ߦ) 	≠ 	0.																																																																(103)	
2. The vector functions  

																																									න ,ݔ)∗ݒ ݐ݀(ݐ)݂(ݐ
௫

௔

																																																													(104)	

are absolutely continuous. Here ݂(ݔ) 	∈ 	 ௠ଶܮ (ܽ, ܾ) and 
,ߦ)ݒ                                       (ݐ 	= 	 ܵక

ିଵ	ܲకܨ଴(ݔ),																																															(105)	
( In (102) the operator ܵక

ିଵ transforms the matrix column of the original into the 
corresponding column of the image.) 
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3. The operator 

																														ܸ	݂	 = 	 ଵି	[(ݔ)∗ܴ] 	
݀
ݔ݀

නݔ)∗ݒ, ݐ݀(ݐ)݂(ݐ
௫

଴

																															(106)	

is bounded, invertible and lower triangular with its inverse ܸ	ିଵ. Here ܴ(ݔ) is 
an	݉ × ݉	matrix function such that 
 
(ݔ)ܴ(ݔ)∗ܴ                                              	= ሖܯ	 	(107)																																													.(ݔ)
Proof.  Necessity. We suppose that the operator ܵ admits the left triangular 
factorization (91). Let ܨ଴(ݔ) 	∈ ௠ଶܮ	 (ܽ, ܾ) be a fixed ݉ ×݉ matrix function 
satisfying relation (101). We introduce the	݉ × ݉ matrix function 
(ݔ)ܴ                                               	= 	(108)																																																			,(ݔ)଴ܨ	ܸ
where 	ܸ = 	 ܵ	ିିଵ . We can choose ܨ଴(ݔ) in such a way that almost everywhere 
thenequality 
                                     detܴ(ݔ) 	≠ 	0																																																																			(109)	
is true. From relations (91), (102) and (108) we have 

(ߦ)ܯ																																		 	= නܴ∗(ݔ)ܴ(ݔ)݀ݔ

క

௔

.																																																				(110)	

Hence the function (ߦ)ܯ is absolutely continuous and 
ሖܯ                               (ݔ) 	= 	(111)																																																														.(ݔ)ܴ(ݔ)∗ܴ	
Now we use the equality 
                              (݂, 	ܵక

ିଵ	ܨ଴)క 	= 	 (ܸ݂, ଴)కܨܸ .																																																(112)	
Relations (108) and (112) imply that 

																								
݀
ݔ݀

නݔ)∗ݒ, 	ݐ݀(ݐ)݂(ݐ
௫

	௔

= 	(113)																																										.(݂	ܸ)(ݔ)∗ܴ	

The necessity is proved. 
Sufficiency. Let the conditions 1–3 of Theorem (6.2.6) be fulfilled. It follows 
from (105)–(107) that 
଴	ܨ	ܸ                                              = 	(114)																																																									.(ݔ)ܴ	
From relations (105), (106) and (214) we deduce that  (ܸ	݂, ଴)కܨ	ܸ 	=
	(݂, ܵక

ିଵ	ܲకܨ଴)క ,					݅. ݁., 
                                         ܸ∗ܲకܸ	ܲకܨ଴	 = 	ܵక	

ିଵܲకܨ଴.																																									(115)	
We define ߦ)ݒ, 	ߦ in the domain	(ݐ ≤ 	ݐ	 ≤ 	ܾ by the equality ߦ)ݒ, (ݐ 	= 	0. It 
follows from the triangular structure of the operators ܸ and ܸ	ିଵ that 
                                        ܲకܸିଵܲకܸ	ܲక 	= 	ܲక .																																																		(116)	
Hence in view of (105) and (115) we have 
                                   ܲకܸିଵ[ܸ∗]ିଵߦ)ݒ, (ݐ 	= 	ܲకܨ଴.																																								(117)	
It is easy to see that ܲకܵߦ)ݒ, (ݐ 	= 	ܲకܨ଴. Thus according to relations (116) 
and(117), the equality 
                  (ܸିଵ[ܸ∗]ିଵߦ)ݒ, ,(ݐ ,ߤ)ݒ ((ݐ 	= 	 ,ߦ)ݒܵ) ,(ݐ ,ߤ)ݒ 	(118)																								((ݐ
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is true. If there exists such a vector function ଴݂(ݔ) 	∈ 	 ௠ଶܮ (ܽ, ܾ) that 
( ଴݂, ,ߦ)ݒ ((ݐ 	= 	0,then due to (106) the relation 
                                            ܸ	 ଴݂ 	= 	0																																																																			(119) 
is valid. The operator ܸ is invertible. Hence from (119) we deduce that  ଴݂ 	=
	0.			This means that ߦ)ݒ, ௠ଶܮ is a complete system in (ݐ (ܽ, ܾ) Using this fact and 
relation (118) we obtain the desired equality 
                                            ܵ	 = 	ܸିଵ[ܸ∗]ିଵ.																																																						(120)	
The theorem is proved.                                                                        □ 
Corollary (6.2.7)[20]: If the conditions of Theorem (6.2.6) are fulfilled, then the 
corresponding operator	ܵିଵ can be represented in the form 
                                        ܵିଵ 	= 	ܸ∗ܸ.																																																																		(121)	
We introduce the notation 

																		Cక 	= 	ܳకܵܳక , [݂, ݃]క	 = 	න݃∗(ݔ)݂(ݔ)݀ݔ.
௕

క

																														(122)	

In the same way as Theorem (6.2.6) we deduce the following result. 
Theorem (6.2.8)[20]: Let the bounded and invertible operator ܵ on ܮ௠ଶ (ܽ, ܾ) be 
positive. For the operator ܵ to admit the right triangular factorization it is 
necessary and sufficient that the following assertions are true. 
1. There exists an ݉ ×݉ matrix function ܨ଴(ݔ) such that 

	ݔ݀(ݔ)଴ܨ(ݔ)	∗଴ܨනݎܶ																														 < 	∞
௕

௔

,																																																						(123)	

that the	݉ × ݉ matrix function 
(ߦ)ܰ                         = 	 ,(ݔ)଴ܨൣ కܥ

ିଵ		ܨ଴(ݔ)൧క 																																																						(124)	
is absolutely continuous, and almost everywhere 
 
ݐ݁݀                                        ሖܰ (ߦ) 	≠ 0.																																																																(125)	
2. The vector functions 

																																		නݔ)∗ݑ, ݐ݀(ݐ)݂(ݐ
௕

௫

			,																																																																	(126)	

are absolutely continuous. Here	݂(ݔ) 	∈ 	 ,ܽ)ଶܮ ܾ)	and 
,ߦ)ݑ                                            (ݐ 	= కܥ	

ିଵ	ܳకܨ଴.																																															(127)	
3. The operator 

																	ܷ݂	 = ଵି[(ݔ)∗ܳ]−	
݀
ݔ݀

නݔ)∗ݑ, ݐ݀(ݐ)݂(ݐ
௕

௫

																																										(128)	

is bounded, upper triangular and invertible together with its inverse ܷିଵ.	
Here 
(ݔ)ܳ(ݔ)∗ܳ                                          	= 	− ሖܰ 	(129)																																														.(ݔ)
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Corollary (6.2.9)[20]: If the conditions of Theorem (6.2.8) are fulfilled, then the 
corresponding operator ܵିଵ can be represented in the form 
                                                     ܵ	ିଵ = 	ܷ∗ܷ.																																																			(130)	
Remark (6.2.10)[20]: Formulas (105), (106) and (127), (128) give the right and 
left factorization of the operator ܶ	 = 	 ܵିଵ . It can be useful for solving operator 
equations of the form ݂ܵ	 = 	݃. Using the notation 
 
                       ܶ	 = 	ܵିଵ, ܶ	క = 	ܳకܶܳక , ,ߦ)ݓ (ݐ = 	 కܶ

ିଵ	ܳకܶܨ଴.																		(131)	
We introduce the operator 

																ܹ݂	 = ଵି[(ݔ)∗ܴ]−	
݀
ݔ݀

නݔ)∗ݓ, .ݐ݀(ݐ)݂(ݐ
௕

௫

																																									(132)	

The connection between the operators 	ܸ	 and ܹ  is given by the following 
assertion. 
Proposition (6.2.11)[20]: Let the operator ܸ	defined by formula (106) be 
bounded. Then the operator ܹ defined by formula (132) is also bounded and 
                                          ܹܶ	 = 	ܸ.																																																																					(133)	
Proof. It can be proved by linear algebra methods that (see [40], p. 41) 
                                ܶܳక కܶ

ିଵ	ܳకܶ	 = 	ܶ	 −	ܵక
ିଵ	ܲక .																																											(134)	

From relations (105), (131) and (134) we have 
,ߦ)ݓܶ                              (ݐ 	= ଴	ܨܶ	 − ,ߦ)ݒ	 	(135)																																																		.(ݐ
Hence the equality 
                       [݂ܶ, ,ߦ)ݓ క[(ݐ 	= 	 (݂ܶ, (଴ܨ −	൫݂, ,ߦ)ݒ 	(136)																																൯క(ݐ
is true. From formulas (106) , (132) and (136) we obtain relation (133). The 
proposition is proved.                                                                   □ 
Using Proposition (6.2.11) we deduce the following important assertion. 
Proposition (6.2.12)[20]: Let ܵ be a bounded, positive, invertible operator and 
let the operator ܸ defined by formula (106) be bounded. If the relations 
଴ܨ	ܸ                                      	= 	(137)																																																																			,(ݔ)ܴ	
and 
                                       ܸ	݂	 ≠ 	0,			‖݂‖ ≠ 	0																																																					(138)	
are true, then the operator ܸ is invertible, the operator ܸିଵ	 is lower triangular, 
and 
                                        ܶ	 = 	ܸ∗ܸ.																																																																						(139)	
(Thus the operator ܶ admits the right triangular factorization.) 
Proof. It follows from the boundedness of the operator ܸ and relation (133) that 
the operator ܹ is also bounded. Let us consider 

																						(ܹ݂, ܴ) 	= නݓ∗(ܽ, 	ݐ݀(ݐ)݂(ݐ
௕

௔

	= 	 (݂, 	(140)																																			଴),ܨ

i.e., 
                                       ܹ∗ܴ	 = 	(141)																																																																					଴.ܨ	
Due to (137) and (141) we have 
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                                      ܸܹ∗ܴ	 = 	ܴ.																																																																				(142)	
From (133) we deduce that 
                                   ܹܹܶ	∗ = 	ܸܹ∗.																																																																(143)	
Using (143) we see that the operator ܸܹ∗ is selfadjoint and lower triangular. It 
means that the operator ܸܹ∗ has the form 
                                     ܸܹ∗݂	 = 	(144)																																																													,݂(ݔ)ܮ	
where (ݔ)ܮ is an ݉ ×݉ matrix function. Taking into account equality (142) we 
have (ݔ)ܮ 	= 	  ,.௠,   i.eܫ
 
                                    ܸܹ∗ 	= ∗ܸܹ			,ܫ	 	= 	(145)																																																			.ܫ	
Let us introduce the notation 			ܪ	 = ௠ଶܮ	∗ܹ	 (ܽ, ܾ).	 If for all ℎ	 ∈   the relation ܪ	
(݃, ℎ) 	= 	0 is true, then ܹ݃	 = 	0. Hence in view of relation (133) we obtain 
that 
                                     ܸ	݂	 = 	0																	(݂	 = 	ܶିଵ݃).																																		(146)	
From condition (138) we deduce that	݃	 = 	0.  
Then the equality 
	ܪ                                                   = 	 ௠ଶܮ (ܽ, ܾ)																																																			(147)	
is valid. Due to (145) and (147) the operator ܹ∗	 maps ܮ௠ଶ (ܽ, ܾ)		 onto 
௠ଶܮ (ܽ, ܾ)		one-to-one. According to the classical Banach theorem [25] the 
operator ܹ∗		 is   invertible. It follows from (145) that the operator ܸ is also 
invertible and 
                                                 ܸିଵ	 =	ܹ∗	,																																																									(148)	
and 
                                                 ܸ∗ܹ	 = 	(149)																																																												.ܫ	
From (133) and (149) we directly obtain that ܶ	 = 	ܸ∗	ܸ . The proposition is  
proved.                                                                                            □ 
Example (6.2.13) : Let us consider the operator 

݂ܵ	 = (ݔ)݂	 +
݅
ߨ
ܸ. ܲ. න݂(ݐ)

(ݔ)ܿ(ݐ)ܿ
–	ݔ ݐ	

௕

௔

 			,ݐ݀

                                           								−∞	 < 	ܽ	 < 	ܾ	 < 	∞,																																					(150)	
where 0	 < 	݉	 < (ݐ)ܿ	 	< 	1. The operator (150) does not satisfy condition (92) 
but  admits the left triangular factorization (see [14]). 
   We consider the operators A, S, Π and ܬ satisfying the operator identity 
	ܵܣ                                     − ∗	ܣܵ	 = 	(151)																																																						.∗ߎܬߎ݅	
We suppose that the operators ܣ and ܵ act on the Hilbert space ܮ௠ଶ (0, ܾ), the 
operator Π maps	ܩ	(dimܩ	 = 	݊	 < 	∞)	into ܮ௠ଶ (0, ܾ), the operator ܬ	acts on ܩ, 
and ܬ	 = 	 ଶܬ and ,∗ܬ 	= 	௡. We note that the operator Π has the form Π݃ܫ	 =
	[߶ଵ(ݔ), ߶ଶ(ݔ), . . . , ߶௡(ݔ)]݃,	where ߶௞(ݔ)	are ݉ × 1 vector functions, ݃	 =
,ଵ݃]݈݋ܿ	 ݃ଶ, . . . , ݃௡]	, ߶௞(ݔ) 	∈ 	 ௠ଶܮ (0, ܾ),	 Relation (151) is fulfilled for the 
operators S	which play an important role in the spectral theory of the canonical 
differential systems (see [40]). We shall use the following result ([40], Ch. 4). 
Theorem (6.2.14)[20] : Let the following conditions be fulfilled. 
1. The operator ܵ is bounded, positive and invertible. 
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2. The relations 
కܲ∗ܣ                                      =	ܲకܣ∗ܲక ,				0	 ≤ 	ߦ	 ≤ 	ܾ																																		(152)	
are true. 
3. The spectrum of the operator	A	is concentrated at the origin and there is a 
constant ܯ	 > 0 such that 
    ฮ൫ܲకା௱క 	− 	ܲక൯ܣ൫ܲకା௱క 	− 	ܲక൯ฮ ≤ 	0			,|ߦ߂|ܯ	 ≤ 	ߦ	 ≤ 	ܾ.																					(153)	
 
Then the ݊ × ݊ matrix function 
,ߦ)ܹ												  (ݖ = 	 ௡ܫ + 	Π∗ܵకܬݖ݅	

ିଵ൫ܫ	– ൯ܣݖ	
ିଵ
ܲకΠ																																												(154)	

satisfies the matrix integral equation 

,ݔ)ܹ												 (ݖ = ௡ܫ 	+ ܬݖ݅	 න[݀(ݐ)ܤ]ܹ(ݐ, (ݖ
௫

଴

	,																																															(155)	

where 
(ߦ)ܤ                           	= 	Π∗ܵక	

ିଵܲకΠ.																																																																				(156)	
  From relations (91) and (156) we obtain the necessary conditions for the 
operator	ܵ to admit the left triangular factorization. 
Proposition (6.2.15)[20]: Let the operator	ܵ	satisfy the relation (151) and let the 
conditions of Theorem (6.2.14) be fulfilled. If the operator ܵ admits the left 
triangular factorization, then the matrix function (ݔ)ܤ is absolutely continuous 
and 

																											
݀
ݔ݀

(ݔ)ܤ 	= (ݔ)ܪ	 	= 	(157)																																													,(ݔ)ߚ(ݔ)∗ߚ	
where 
(ݔ)ߚ = [ℎଵ(ݔ), ℎଶ(ݔ), . . . , ℎ௡(ݔ)], 		ℎ௞(ݔ) = 	ܸ	߶௞(ݔ), ܸ = 	 ܵିିଵ	.															(158)	
Using relations (155) and (157) we obtain that 

															
݀
ݔ݀

,ݔ)ܹ (ݖ 	= ,ݔ)ܹ(ݔ)ܪܬݖ݅	 	(159)																																																												.(ݖ
Lemma (6.2.16)[20]: Let the conditions of Proposition (6.2.15) be fulfilled and 
let the m× 1 vector functions 
,ݔ)௝ܨ                   (ݖ 	= 	 ൫ܫ	– ൯ݖܣ	

ିଵ
߶௝	,					1	 ≤ 	݆	 ≤ 	݊																																						(160)	

form a complete system in ܮ௠ଶ (ܽ, ܾ).  
Then we have the equality 
                                        mesܧ	 = 	0,																																																																				(161)	
where the set ܧ is defined by the relation 
	ݔ                              ∈ (ݔ)ܪ			݂݅											ܧ	 	= 	0.																																																		(162)	
Proof. We use the following relation (see [40], Ch. 4): 
	ܬ			 − ,ߦ)∗ܹ	 ,ߦ)ܹܬ(ߤ (ߣ

–	ߤ̅)݅ (ߣ	
	

= 	Π∗(ܫ	 − 	 ଵܵకି(∗ܣߤ̅
ିଵ	(ܫ	 − 	(163)																																				ଵܲకΠ).ିܣߣ	

Formula (163) implies that 
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(ܵక
ିଵ	ܨ௝(ݔ, ,(ߣ ,ݔ)ℓܨ క((ߤ

=
݅ൣ ℓܻ

,ߦ)	∗ ܬ(ߤ ௝ܻ(ߦ, (ߣ −	 ℓܻ
∗		(0, ܬ(ߤ ௝ܻ(0, ൧(ߣ

ߤ̅ − ߣ	
,																														(164)	

Where 
௝ܻ ,ݔ)	 (ߣ 	= ]݈݋ܿ	 ଵܹ,௝(ݔ, ,(ߣ ଶܹ,௝	(ݔ, ,(ߣ . . . ௡ܹ,௝(ݔ, .[(ߣ Here	ܹ	௜,௝(ݔ,  are (ߣ

entries of ܹ(ݔ,  In view of (159) and (164) we have .(ߣ
 
                        ௗ

ௗక
(ܵక	

ିଵܨ௝(ݔ, ,(ߣ ,ݔ)ℓܨ క((ߤ 	= 	0, ߦ ∈ 	(165)																																		.ܧ	
From (162) and (165) it follows that 

														
݀
ߦ݀
,ݔ)௝ܨ	ܸ) ,(ߣ ,ݔ)ℓܨ	ܸ 	క((ߤ = ߦ								,0	 ∈ 	(166)																																							,ܧ	

i.e., the relation 
 
,ݔ)௝൧ܨ	ܸൣ                 (ߣ = 	0						, ݔ ∈ 	1									,ܧ	 ≤ 	݆	 ≤ 	݊,																																	(167)	
is true. As the operator ܸ	is invertible and the system of functions ܨ௝(ݔ,  is (ߣ
complete in ܮ௠ଶ (0, ܾ), the system of the functions ܸ	ܨ௝(ݔ,  is also complete in (ߣ
௠ଶܮ (0, ܾ)The assertion of the lemma follows from this fact and equality (167). □                                                                                    
  Further we suppose that the ݊ × ݊ matrix function (ݔ)ܤ is absolutely 
continuous  and that relations (157), (158) are true.  
Let us introduce the ݉ ×݉ matrix  functions 
(ݔ)ܴ             	= 	 ℎଵ(ݔ)ߙ	ଵ +	ℎଶ(ݔ)ߙଶ 	+	·	·	· 	+	ℎ௡(ݔ)ߙ௡,																														(168)	
(ݔ)଴ܨ	            = 	߶ଵ(ݔ)ߙ	ଵ 	+ 	߶ଶ(ݔ)ߙଶ +	·	·	· 	+	߶௡(ݔ)ߙ௡,																												(169)	
,ߦ)ݒ                    (ݔ 	= 	ܵక

ିଵ	ܲకܨ଴(ݔ),																																																																				(170)	
where ߙ௞ are constant 1 ×݉	matrices. From Proposition (6.2.15) we deduce: 
Corollary (6.2.17)[20]: Let the conditions of Theorem (6.2.14) and Lemma 
(6.2.16) be fulfilled. If  ݉	 = 	1, then there exist numbers ߙ	ଵ, ,ଶߙ . . . ,  ௡ suchߙ
that almost everywhere we have the inequality 
(ݔ)ܴ                                   	≠ 	0.																																																																												(171)	
Now we can formulate the main result of this section. 
Theorem (6.2.18)[20]: Let the following conditions be fulfilled. 
1. The operator ܵ  satisfies relation (151). 
2. The conditions of Theorem (6.2.14) are valid. 
3. The matrix function (ݔ)ܤ is absolutely continuous and formulas (157) and  
(158) are true. 
4. The vector functions ܨ௝(ݔ, 	1)				(ߣ ≤ 	݆	 ≤ 	݊) form a complete system in 
௠ଶܮ (ܽ, ܾ). 
5. Almost everywhere the inequality 
 
                                               detܴ(ݔ) 	≠ 	0																																																								(172)	
holds. 
Then the operator ܶ	 = 	 ܵିଵ	 admits the right triangular factorization 
 



١٨١ 
 

Proof. We introduce the operator 

																			ܸ	݂	 = 	 ଵି[(ݔ)∗ܴ]
݀
ݔ݀

නݔ)∗ݒ, ݐ݀(ݐ)݂(ݐ
௫

଴

	.																																									(173)	

From (154), (172) and (173) we deduce the equality 
௝ܨ	ܸ                       	= 	 [ℎଵ(ݔ), . . . , ℎ௡(ݔ)] ௝ܻ	(ݔ, 	(174)																																														.(ݖ
Relation (174) implies that 

					ቀV	ܨ௝(ݔ, ,(ߣ V	Fℓ(ݔ, ቁ(ߤ = නYℓ∗	(ݔ, ,ݔ)	Y୨(ݔ)H(ߤ ݔd(ߣ
ୠ

଴

	.																													(175)	

Using equality (174) and relation 

																						
݀
ݔ݀

Y୨	(ݔ, (ݖ 	= ,ݔ)	Y୨(ݔ)ܪܬݖ݅	 	(176)																																																							(ݖ
we have 
ቀܸ	ܨ௝(ݔ, ,(ߣ ,ݔ)ℓܨܸ ቁ(ߤ

=
݅ൣ ℓܻ

∗		(ܾ, ,ܾ)	Y୨ܬ(ߤ (ߣ −	 ℓܻ
∗	(0, ,(0	Y୨ܬ(ߤ ൧(ߣ

–ߤ̅ ߣ
																													(177)	

Comparing formulas (164) and (177) we obtain the equality 
                                 ܶ	 = 	ܸ∗ܸ.																																																																														(178)	
This means that the introduced operator V is bounded, ܸ	݂	 ≠ 0, and  ‖݂‖ ≠ 	0. 
Taking into account (168), (169) and (174) when	ݖ	 = 	0 we obtain the relation 
଴ܨ	ܸ                                     	= 	ܴ.																																																																										(179)	
Thus all conditions of  Proposition (6.2.12) are fulfilled. The assertion of the 
theorem follows from Proposition (6.2.12).                                          □ 
Proposition (6.2.19)[20]: Let the following conditions be fulfilled. 
1. Conditions 1–3 of Theorem (6.2.18) are valid. 
2. The ݉×݉ blocks ܾଵ,௝(ݔ)			(1	 ≤ 	݆	 ≤ 	݊)	of the matrix (ݔ)ܤ are absolutely 
continuous and 
                                    ܾଵ,௝(ݔ) 		= 	 ℎଵ∗(ݔ)ℎ	௝(ݔ).																																																		(180)	
3. All the entries of the matrices ℎ	௝(ݔ) belong to ܮଶ(ܽ, ܾ). 
4. Almost everywhere the inequality (172) holds. Here ܴ(ݔ) 	= 	 ℎଵ(ݔ). Then the 
operator ܸ defined by formula (173) and the equality 
,ߦ)ݒ                            (ݔ = 	 ܵక

ିଵ	ܲక߮ଵ(ݔ)																																																												(181)	
are bounded. 
Proof.  We introduce the matrix (ݔ)ܪ 	= (ݔ)ߚ  where ,(ݔ)ߚ(ݔ)∗ߚ	 	=
	[ℎଵ(ݔ), ℎଶ(ݔ), . . . , ℎ௡(ݔ)]. Relations (173)–(175) remain true. We use the 
formula 

න ℓܻ
,ݔ)∗ [(ݔ)ܤ݀](ߤ ௝ܻ(ݔ, 	ݔ݀(ߣ

௕

଴

=
݅ൣ ℓܻ

∗	(ܾ, ܬ(ߤ ௝ܻ(ܾ, (ߣ −	 ℓܻ
∗	(0, ,௝(0	ܻܬ(ߤ ൧(ߣ

–ഥߤ ߣ 																			(182)	

and the inequality ݔ݀(ݔ)ܪ	 ≤  From formulas (164), (175) and (182) we .(ݔ)ܤ݀	
deduce that 
                               ܸ∗ܸ	 ≤ 	ܶ.																																																																																	(183)	



١٨٢ 
 

The proposition is proved.                                                                   □ 
     Let us consider the bounded, positive and invertible operator S	with the 
difference kernel 

																					݂ܵ	 =
݀
ݔ݀

න 	ݔ)ݏ(ݐ)݂ − ݐ݀(ݐ	
௔

଴

.																																																												(184)	

Let us put 

	݂ܣ																								 = 	݅ න ݐ݀(ݐ)݂
௫

଴

,																				݂	 ∈ 	 ,ଶ(0ܮ ܽ).																															(185)	

Equality (151) is valid (see [39], Ch. 1), if 
	ܬ								                           = ቂ0 1

1 0ቃ						,																																																																				(186)	
                            
                           ߶ଵ(ݔ) 	= ,(ݔ)ܯ	 ߶ଶ(ݔ) 	= 	1,																																																			(187)	
where (ݔ)ܯ = 	0												,(ݔ)ݏ	 ≤ 	ݔ	 ≤ 	ܽ. In the case under consideration the 
matrix (ߦ)ܤ has the form 

(ߦ)ܤ							                    	= ቈ
൫ܵక	

ିଵܯ,ܯ൯ ൫ܵక	
ିଵ1,ܯ൯

൫ܵక	
ିଵ	ܯ, 1൯ ൫ܵక	

ିଵ	1, 1൯
቉ 	.																																								(188)	

The corresponding function ݔ)ܨ,  has the form (ߣ
,ݔ)ܨ                                             (ߣ 	= 	 ݁௜௫ఒ.																																																							(189)	
The operator ܣ defined by formula (185) satisfies all the conditions of Theorem 
(6.2.14). The following fact is useful here. 
Theorem (6. 2.20)[20]: Let the operator S	be bounded, positive, invertible and 
have the form (184). If the matrix function (ݔ)ܤ is absolutely continuous and 
                 
ሖܤ                    (ݔ) = ,(ݔ)ߚ(ݔ)∗ߚ	 (ݔ)ߚ 	= 	 [ℎଵ(ݔ), ℎଶ(ݔ)],																													(190)	
Then  the equality 
                               ℎଵ(ݔ)ℎଶ(ݔ)തതതതതതത +	ℎଶ(ݔ)ℎଵ(ݔ)തതതതതതത 	= 	1																																								(191)	
is true almost everywhere. 
Proof.  Let us consider the expression 
                         ݅క 	= 	 (ܵక

ିଵ	ܲకܯ, 1) 	+ 	 (1, ܵక
ିଵ	ܲక.(ܯ																																					(192)	

Setting 
                                    ଵܰ(ݔ, (ߦ 	= 	 ܵక

ିଵ	ܲక,ܯ																																																					(193)	

we rewrite formula (192) in the form ݅క 	= ∫ [ ଵܰ(ݔ, (ߦ 	+
క
଴ 	 ଵܰ(ݔ,  ,.i.e , ݔ݀[തതതതതതതതതത(ߦ

																										݅క 		= නൣ ଵܰ(ݔ, (ߦ + 	 ଵܰ(ߦ	– ,ݔ	 .			ݔതതതതതതതതതതതതതതത൧݀(ߦ

క

଴

																																					(194)	

We use the relation (see [39], Ch. 1) 
 
                                  ଵܰ(ݔ, (ߦ 	+ 	 ଵܰ൫ߦ	– ,ݔ	 ൯ߦ

തതതതതതതതതതതതതതത 	= 	1.																																								(195)	
In view of (194) and (195) . 
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We obtain the equality 
                                                 ݅క 		= 	(196)																																																																.ߦ	
Taking into consideration Equalities (100), (158), (184) and (192) we deduce 
that 

																					݅క 	= න[ℎଵ(ݔ)ℎଶ(ݔ)തതതതതതത 	+ 	ℎଶ(ݔ)ℎଵ(ݔ)തതതതതതത]݀ݔ

క

଴

	.																																						(197)	

Relation (191) follows from (196) and (197). The theorem is proved. □  
From equality (191) we have 
                                    ℎଶ(ݔ) 	≠ 	0,								0	 ≤ 	ݔ	 ≤ 	ܽ.																																								(198)	
Remark (6.2.21)[20]: The operators of the form 

																				݂ܵ	 = (ݔ)݂	 	+ න݂(ݐ)݇(ݔ	– ݐ݀(ݐ	
௔

଴

,																																																			(199)	

where ݇(ݔ) 	∈ ,ܽ−)ܮ	 ܽ), belong to class (184). For this case inequality (198) 
was deduced by M.G. Krein by another method (see [29], Ch. 4). The main 
result of this section follows directly from Proposition (6.2.15), Theorem 
(6.2.18) and Inequality (198). 
Theorem (6.2.22)[20]: Let the operator S be positive, invertible and have the 
form (184). Then the operator S	admits the left triangular factorization if and 
only if the matrix (ݔ)ܤ is absolutely continuous and relation (190) is valid. 
Example (6.2.23)[20]: Let us consider the operator 	 ఉܵ				of the form 

															 ఉ݂ܵ	 = 	݂	 +
ߚ݅
ߨ
ܸ. ܲ.න

(ݐ)݂
–ݔ ݐ	

௕

଴

	(200)																																																															,ݐ݀

where −1	 < 	ߚ	 < 	1. This operator with a difference kernel is bounded, 
invertible and positive (see [14]). The operator ఉܵ does not satisfy condition 
(91). Nevertheless ఉܵ admits the left triangular factorization ఉܵ 	= 	 ఈܹ ఈܹ

∗			,  
where 

						 ఈܹ݂	 =
௜ఈݔ

ඥܿℎ(ߙߨ)	Γ(݅ߙ	– 	1)
݀	
ݔ݀
			න 	ݔ)(ݐ)݂	 − ݐ௜ఈ݀ି(ݐ	

௫

଴

.																										(201)	

Here α	 = 	 ଵ
஠	
	arcth	ߚ, and Γ(ݖ)	is the gamma function. 

    Let us consider the following class of bounded and positive operators which 
can be represented in the form ((+, −) − class): 

														݂ܵ	 =
݀ଶ

ଶݔ݀
න[ݏଵ(ݔ	 − (ݐ	 	+ 	ݔ)ଶݏ	 + ݐ݀(ݐ)݂[(ݐ	
௕

଴

	,																																(202)	

where	݂(ݐ) 	 ∈ 	 ,ଶ(0ܮ ܾ).	We introduce the operator 

	݂ܣ																											 = න(ݐ	 − ݐ݀(ݐ)݂(ݔ	
௫

଴

.																																																														(203)	
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Then the operator identity (151) is valid. Here the 4 × 4 matrix ܬ is defined by 
the relation 

	ܬ																																								 = ൤0 ଶܫ
ଶܫ 0൨									,																																																													(204)	

and the operator	Π	has the form 
                                    Π	 = 	 [Φଵ, Φଶ],																																																																		(205)	
 
the operators Φଵ and Φଶ		are defined by the relations 
                              Φଵ	݃	 = ଵ݃(ݔ)ܯ݅−	 	− 	(206)																																						ଶ,݃(ݔ)଴ܯ݅	
  
                                    Φଶ݃	 = 	݃ଵ 	+ 	(207)																																																										ଶ,݃ݔ	
where 
(ݔ)ܯ            	= (ݔ)ଵݏ]−	 	+ (ݔ)଴ܯ			,[(ݔ)ଶݏ	 	= 	 (ݔ)ଵݏ́ 	− 	(208)																		,(ݔ)ଶݏ́
and a constant 2 × 1 vector g has the form ݃	 = 	col[݃ଵ, ݃ଶ]. The main result of 
this section follows directly from Proposition (6.2.15), Lemma (6.2.16) and 
Theorem (6.2.18). 
Theorem (6.2.24)[20]: Let the operator	ܵ be positive, invertible and have the 
form (202). The operator S admits the left triangular factorization if and only if 
the matrix (ݔ)ܤ is absolutely continuous and 
ሖܤ           (ݔ) 	= ,(ݔ)ߚ(ݔ)∗ߚ	 (ݔ)ߚ 	= 	 [ℎଵ(ݔ), ℎଶ(ݔ), ℎଷ(ݔ), ℎସ(ݔ)].													(209)	
Example (6.2.25 )[20]:  Let us consider the equation 

			݂ܵ	 = (ݔ)݂	 +
ߤ݅
ߨ
ܸ. ܲ.න

(ݐ)݂
–ݔ ݐ	

ݐ݀	
ଵ

଴

	–	
ߣ
ߨ
න

(ݐ)݂
ݔ + ݐ	

	ݐ݀
ଵ

଴

= 	(210)																						,(ݔ)݃	

 
where ݂(ݔ) 	∈ 	 ,ଶ(0ܮ 1), 	ߣ = 	 	ߤ			,ߣ̅ = ഥߤ	 , and |ߣ| 	+ 	 |ߤ| 	< 	1. It is well known 
([29], Ch. 9) that the operator S is bounded, positive and invertible, i.e., the 
operator ܵ belongs to the (+, −) class . We introduce the functions 

,ݔ)ݒ ,ߣ (ߤ 	= 	 ܵିଵ1, ,ߣ)ߙ (ߤ 	= නݔ)ݒ, ,ߣ ݔ݀(ߤ
ଵ

଴

	= 	 (ܵିଵ1, 1) 	> 	0.													(211)	

In view of (210) and (211) the relations 
 
           ܵక	

ିଵܲక1	 = ݒ	 ቀ௫
క
, ,ߣ 	൫ܵక					ቁ,ߤ

ିଵܲక1	, 1൯క	 = ,ߣ)ߙߦ	 	(212)																										(ߤ
are true. We introduce the operator 

																	ܸ	݂	 =
1

ඥߣ)ߙ, (ߤ
݀
ݔ݀
		න )ݒ(ݐ)݂

ݐ
ݔ
, ,ߣ ݐ݀(ߤ

௫

଴

.																																										(213)	

Using Proposition (6.2.19) we deduce that the operator ܸ is bounded and  
Sିଵ	 ≥ 	V∗	V	. 
Open problem . Prove that 
                             V	f	 ≠ 	0,						when	‖݂‖ ≠ 0.																																																			(214)	
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Remark (6.2.26)[20]: If relation (214) is true, then  ܵିଵ	 =	ܸ∗	ܸ	and the 
operator ܵ admits the left triangular factorization 
                                 ܵ	 = 	ܸିଵ[ܸ∗]ିଵ.																																																																			(215)	
Remark (6.2.27)[20]: Relation (214) is valid when ߣ	 = 	0 (see Example 
(6.2.23)). Now we consider separately the case when ߤ	 = 	0, i.e., the case of the 
Dixon equation [28],[32], [41]: 

																								݂ܵ	 = 	–	(ݔ)݂	
ߣ
ߨ
න

(ݐ)݂
ݔ + ݐ	

ଵ

଴

	ݐ݀ = 	(216)																																								.(ݔ)݃	

 
where ݂(ݔ) 	∈ 	 ,ଶ(0ܮ 1), and ߣ	 < 	1. M.G. Krein deduced the formula for the 
Dixon equation  resolvent (see [32], Ch. 4). This formula can be written in the 
following way: Sିଵ	 = 	V	∗V . Thus we obtain: 
Proposition (6.2.28)[20]: The Dixon operator ܵ defined by (216) admits the left 
triangular factorization ܵ	 = 	ܸ	ିଵ[ܸ	∗]ିଵ,	where the operator	ܸ has the form 
(213). 
   Let us consider the integral operators 

	݂ܣ																				 = 	݅ න݂(ݐ)݀
௫

଴

	݂∗ܣ					,ݐ = 	−݅ න݂(ݐ)݀ݐ
௕

௫

	,																																		(217)	

where ݂(ݔ) 	∈ 	 ,ଶ(0ܮ ܾ). 
Definition (6.2.29)[20]: We say that the linear bounded operator ܵ acting in the 
Hilbert space ܮଶ(0, ܾ). belongs to the class Rଵ	(rank	1) if the following 
conditions are fulfilled: 
1)      ݉(݂, ݂) ≤ 	 (݂ܵ, ݂) ≤ ,݂)ܯ	 ݂),											0	 < ݉	 < 	ܯ < 	∞.																				(218) 
2)	rank(AS	 − 	SA∗) 	= 	1, i.e., 
 
	ܵܣ)             − 	݂(∗ܣܵ	 = 	݅(݂, (ݔ)߶							,߶(߶ 	∈ 	 ,ଶ(0ܮ ܾ).																															(219)	
We associate with the operator ܵ the operator 

																	ܵି݂	 =
݀
ݔ݀

න݂(ݐ)߶(ݔ	 − ݐ݀(ݐ	
௫

଴

	.																																																											(220)	

It is easy to see that 
                                       ܵି1	 = 	߶.																																																																								(221)	
Lemma (6.2.30)[20]: Let the bounded operator	S satisfy relation (219). If the 
corresponding operator Sି is bounded, then the representation 
                                      ܵ	 = 	ܵିܵି∗ 																																																																								(222)	
is true. 
Proof.  We consider the operator 
                                         ܺ	 = 	ܵିܵି∗ 	.																																																																		(223)	
Using formula (219) and relation ܣ	ܵି 	= 	  we deduce the equality ܣିܵ	
 
	ܺܣ                     − ∗ܣܺ	 = 	 ܣ)ିܵ	 − ∗ିܵ(∗ܣ = 	ܵܣ	 − 	(224)																														.∗ܣܵ	
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The equation	ܺܣ	 − ∗ܣܺ 	=  .(see [39], Ch	has no more than one solution ܺ	ܨ	
1).Hence we deduce from (224) that ܵ	 = 	ܺ. The lemma is proved.   □ 
Lemma (6.2.31)[20]: If the bounded operator S satisfies the relation (219), then 
this operator can be represented in the form (222), where the operator 	Sି is 
defined by formula (220). 
Proof. To prove that the operator 	ܵି is bounded we introduce the operator 

												ܺି݂	 = 	݂ିܵ	ܣ	 = 	݅ න 	ݔ)߶(ݐ)݂ − ݐ݀(ݐ	
௫

଴

.																																															(225)	

 
We note that 

																ܺି∗݂	 = 	 	݂∗ܣ∗ିܵ = 	−݅ න 	ݐ)߶(ݐ)݂ − 	ݐതതതതതതതതതതതതത݀(ݔ	
௕

௫

																																							(226)	

where the operator ܵି∗ 		 has the form 

																		ܵି∗݂	 = 	−
݀
ݔ݀

න݂(ݐ)߶(ݐ	 − ݐതതതതതതതതതതതതത݀(ݔ	
௕

௫

	.																																																					(227)	

According to Lemma (6.2.30) we have 
∗ܣܵܣ                                 	= 	ܺିܺି∗ .																																																																						(228)	
It follows from relations (225) and (228) that S	 = 	 SିSି					∗ .	Hence the operator 
Sି	 is bounded. The lemma is proved .                                         □ 
Now we shall deduce the main result of this section. 
Theorem (6.2.32)[20]: If the operator   ܵ belongs to the class Rଵ		, then this 
operator admits the left triangular factorization. 
Proof.  We suppose that for some ଴݂(ݔ) 	∈ 	 ,ଶ(0ܮ ܾ) the relation 
 
                                       ܵି ଴݂ = 	0									(‖f଴‖ ≠ 	0)																																											(229)	
is true. In view of the well-known Titchmarsh theorem (see [41], Ch. 11) and 
(229) we have 
(ݔ)߶                                   	= 	0,											0	 ≤ 	ݔ	 ≤ 	(230)																																								.ߜ	
Using (219) and (230) we deduce that 
	ఋܵఋܣ                                   −	ܵఋ	ܣఋ	

∗ = 	0,																																																											(231)	
 
where ܣఋ݂	 = 	݅ ∫ ௫ݐ݀(ݐ)݂

଴ 		,			0	 ≤ 	ݔ	 ≤ 	ܵఋ		and			,ߜ	 = 	 ఋܲܵ ఋܲ . Operator 
equation (231) has only the trivial solution ܵఋ	 = 0 (see [39], Ch. 1). The last 
equality contradicts relation (218). It means that equality (229) is impossible 
when	‖ ଴݂‖ ≠ 	0. Hence in view of (222) the operator Sି maps ܮଶ(0, ܾ)	one-to-
one onto	ܮଶ(0, ܾ)		. This fact according to the classical Banach theorem [25] 
implies that the operator ܵି is invertible. The operator ܵିିଵ	 is defined by 
formula (see [39], Ch. 1) 
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																						ܵିିଵ		݂	 =
݀
ݔ݀

න݂(ݐ)ܰ(ݔ	 − ,ݐ݀(ݐ	
௫

଴

																																																			(232)	

Where  ܰ(ݔ) 	= 	 ܵିିଵ	1. Thus the operators ܵି and ܵିିଵ			are bounded and lower   
triangular . The assertion of the theorem now follows directly from Definition 
(6.2.4).                                                                                 □ 
Example (6.2.33)[20]: We consider the case when 
(ݔ)߶                                     	= 	log(ܾ	 − 	(233)																																																						.(ݔ	
In this case we have 

ܵି	݂	 =
݀
ݔ݀

න݂(ݐ)log(ܾ − 	ݔ + ݐ݀(ݐ	
௫

଴

	= 	logܾ(ݔ)݂	 − න
(ݐ)݂

ܾ	 − 	ݔ	 + ݐ	

௫

଴

	(234)																								.ݐ݀		

 
Let us introduce the operator 

	݂ܭ																														 = න
(ݐ)݂

ܾ	 − 	ݔ	 + ݐ	

௫

଴

	(235)																																																										.ݐ݀

It is well known (see [41], Ch. 11) that ‖ܭ‖ 	≤  Hence the operator Sି .ߨ	
defined by (234) and the operator S	ିିଵ are bounded, when logܾ	 >  From .ߨ	
Lemma (6.2.31) we obtain the assertion. 
Proposition (6.2.34)[20]: If			log(ܾ) 	>  defined by	then the operator ܵ ,ߨ	
relations (219) and (233) admits the left triangular factorization (222) where the 
operator Sି has the form (234). 
In this section we consider operators of the form 

	ܨܵ											 = (ݔ)ܨ	 − න(ݕ)ܨ݇
ଵ

଴

ቀ
ݕ
ݔ
ቁ
1
ݔ
	ݕ݀ = 	(236)																																											,(ݔ)ܩ	

where (ݔ)ܨ 	∈ ,ଶ(0ܮ	 1) and 
 

																				݇ ቀ
ݕ
ݔ
ቁ
1
ݔ
= 	݇ ൬

ݔ
ݕ
൰

തതതതതതത 1
ݕ
.																																																																															(237)	

We assume that 

	ܣ																			 = 	2න ฬ݇ ൬
1
ݔ
൰ฬ ିݔ

ଷ
ଶ			݀ݔ	 < 	∞

ଵ

଴

.																																																							(238)	

It follows from condition (237) that the operator ܵ is selfadjoint. From condition 
(238) we deduce that the operator 

	ܨܭ												 = න(ݕ)ܨ݇ ቀ
ݕ
ݔ
ቁ
1
ݔ
	ݕ݀	

ଵ

଴

																																																																										(239)	

Is bounded and (see [29], Ch. 9) 
                                      ‖݇‖ ≤ 	(240)																																																																										.ܣ	
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Theorem (6.2.35)[20]: Let conditions (237) and (238) be fulfilled and let the 
corresponding operator ܵ be positive and invertible, then the operator ܵ	admits 
the left triangular factorization. 
Proof.  We introduce the change of variables ݔ	 = 	 ݁ି௨ and	ݕ	 = 	 ݁ି௩		. Hence 
equation (236) takes the form 

	݂ܮ												 = (ݑ)݂	 − න –	ݑ)ܪ(ݒ)݂ 	ݒ݀(ݒ	
ஶ

଴

	= 	(241)																																						.(ݑ)݃	

where 
(ݑ)݂                    = ି݁(௨ି݁)ܨ	

ೠ
మ , (ݑ)݃ = ି݁(௨ି݁)ܩ	

ೠ
మ .																																				(242)	

 
(ݑ)ܪ                   = തതതതതതതതത(ݑ−)ܪ	 = 	݇(݁௨)݁

ೠ
మ ݑ					, ≥ 	0.																																											(243)	

 
It follows from relation (238) that 

																						 න ݑ݀|(ݑ)ܪ|
ஶ

ିஶ

	= 	(244)																																																																													.ܣ	

We denote by			γ(u)	 the solution of Equation (241) when	݃(ݑ) 	=  In the .(ݑ)ܪ	
theory  of equations (241) the following function plays an important role (see 
[32], Ch. 2): 

(ߣ)ାܩ 	= 	1 + න ݐ௜௧ఒ݀݁(ݑ)ߛ
ஶ

଴

,						Imߣ	 ≥ 	0.	

Let us consider the solution γஞ(u)			 of equation (241) when 	݃(ݑ) =
	݁௜௨క 	and				Imξ	 ≥ 	0.  
We use the formula (see [32], Ch. 2) 

											γஞ(ݑ) = 	[1		൯തതതതതതതതതതതത	̅ߦ−ା൫ܩ	 + න ݎ௜௥క݀ି݁(ݎ)ߛ
௨

଴

	]݁௜௨క 	.																																						(245)	

Further we need the particular case of γஞ(ݑ)	 when	ξ	 = 	i/2. In this case we 
have 

௜ߛ																							
ଶ
(ݑ) 	= 	1]ߚ	 + න ݁(ݎ)ߛ

௥
ଶ݀ݎ]݁ି

௨
ଶ

௨

଴

	,																																													(246)	

Where  
	ߚ                             = 	(247)																																																																													ା(ଓ/2)തതതതതതതതതത.ܩ	
Let us introduce the function	(ݔ)ݒ, which satisfies Equation (236) when 
(ݔ)ܩ 	= 	1. It is easy to see that 
(௨ି݁)ݒ																						 = 	 ߛ ௜

ଶ
݁(ݑ)

௨
ଶ .																																																																											(248)	

From (246) and (248) we deduce that 
ଶݔ(ݔ)ݒ́                       	= ି݁(ݐ)ߛߚ−	

೟
మ,																																																																			(249)	

and 
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(1)ݒ                          = 	(250)																																																																																							.ߚ	
Using relations (246) and (248) we can calculate the integral 

	ߙ = නݔ݀(ݔ)ݒ	
ଵ

଴

	= ߚ	 ቎1	 + න න ݁(ݎ)ߛ
௥
ଶ݀ݔ݀ݎ

ି୪୭୥௫

଴

ଵ

଴

	቏ .	

Hence the equalities 

	ߙ																										 = 	1]ߚ	 + න ି݁(ݎ)ߛ
௥
ଶ݀ݔ݀ݎ

ஶ

଴

] 	= 	(251)																																							ߚ̅ߚ	

are true. The operator ܸ in (236) has the form 

																				ܸ	݂	 =
1
ߚ
݀
ݔ݀

න݂(ݐ)ݒ ൬
ݐ
ݔ
൰ ݐ݀

௫

଴

	.																																																													(252)	

In view of (249) and (250) we can represent the operator ܸ in the form 

														ܸ	݂	 = (ݔ)݂	 	+ න ܮ(ݐ)݂	 ൬
ݐ
ݔ
൰
1
ݐ
ݐ݀

௫

଴

,																																																								(253)	

where 
(ݔ)ܮ                                     	= ି݁(ݐ)ߛ	

೟
మ.																																																														(254)	

Now the assertion of the theorem follows from Proposition (6.2.12).     □ 
 
Corollary (6.2.36)[20]: Let the conditions of  Theorem (6.2.35) be fulfilled. 
Then we have the equality 
                                         ܵିଵ 	= 	ܸ∗ܸ,																																																																	(255)	
where the operator ܸ	is defined by relations (253) and (254). 
Example (6.2.37)[20]: We obtain an interesting example when 

(ݑ)݇																													 =
ߣ

|1	– 	ఈ(1|ݑ	 + ఉ(ݑ	
				.																																																		(256)	

 
where	λ	 = 	λത, α	 ≥ 	0, β	 > 	0,  and ߙ	 + 	ߚ	 = 	1. We note that ݇(ݑ) satisfies 
conditions (237) and (238). Equations (236) and (256) coincide with the Dixon 
equation when ߙ	 = 	0.	
Corollary (6.2.38)[232]: Let the bounded and invertible operator ܵାଶ	on 
௠ଶܮ (ܽ, ܽ + ߳ଶ)	be positive. For the self-adjoint operator ܵାଶ	to admit the left 
triangular factorization it is necessary and sufficient that the following assertions 
are true. 
1. There exists an ݉ ×݉ matrix function ܨ଴(ݔ) such that 
 

ݎܶ					 න ݔଶ݀|(ݔ)∗଴ܨ|

௔ାఢమ

௔

	< 	∞,																			

that the	݉ × 	݉ matrix function 



١٩٠ 
 

ݔ)ܯ		                        + ߳) = 	 ൫ܨ଴∗(ݔ), [ܵ∗](௫ାఢ)
ିଵ 																	൯(௫ାఢ)(ݔ)∗଴ܨ	

is absolutely continuous, and almost everywhere 
ሖܯݐ݁݀                                       ݔ) + ߳) 	≠ 	0.																	
2. The vector functions  

				න ,ݔ)∗ݒ ݐ݀(ݐ)݂(ݐ
௫

௔

						 ,	

are absolutely continuous. Here	݂(ݔ) 	∈ 	 ௠ଶܮ (ܽ, ܽ + ߳ଶ) and 
 
ݔ)൫ݒ                         + ߳), ൯ݐ = 	 [ܵ∗](௫ାఢ)

ିଵ 	ܲ(௫ାఢ)ܨ଴∗(ݔ),							 
(In (102) the self -adjoint operator [ܵ∗](௫ାఢ)

ିଵ  transforms the matrix column of the 
original into the corresponding column of the image.) 
3. The operator 

							ܸ∗	݂	 = 	 ଵି	[(ݔ)∗ܴ] 	
݀
ݔ݀

නݔ)∗ݒ, ݐ݀(ݐ)݂(ݐ
௫

଴

															

is bounded, invertible and lower triangular with its inverse [ܸ∗]	ିଵ. Here ܴ∗(ݔ) 
is an	݉ × ݉	matrix function such that 
ଶ[(ݔ)∗ܴ]                                  	= ሖܯ	 									.(ݔ)
Proof.  Necessity. We suppose that the self-adjoint operator ܵ∗ admits the left 
triangular factorization (91). Let ܨ଴∗(ݔ) 	∈ ௠ଶܮ	 (ܽ, ܽ + ߳ଶ) be a fixed ݉ ×݉ 
matrix function satisfying relation (101). We introduce the	݉ × ݉ matrix 
function 
(ݔ)∗ܴ                                	=  								,(ݔ)∗଴ܨ	∗ܸ
where 	ܸ∗ = 	 [ܵ∗]ିଶ . We can choose ܨ଴∗(ݔ) in such a way that almost 
everywhere then equality 
                                     					detܴ∗(ݔ) 	≠ 	0								 
is true. From relations (91), (102) and (108) we have 

ݔ)ܯ					 + ߳) 	= න ݔଶ݀|(ݔ)∗ܴ|

(௫ାఢ)

௔

.									

Hence the function ݔ)ܯ + ߳) is absolutely continuous and 
ሖܯ                                     (ݔ) 	= 	 						.ଶ[(ݔ)∗ܴ]
Now we use the equality 
                               (݂, 	[ܵ∗](௫ାఢ)

ିଵ ଴∗)(௫ାఢ)ܨ	 	= 	 (ܸ∗݂, 										.଴∗)(௫ାఢ)ܨ∗ܸ
Relations (108) and (112) imply that 

										
݀
ݔ݀

නݔ)∗ݒ, 	ݐ݀(ݐ)݂(ݐ
௫

	௔

= 									.(݂	∗ܸ)(ݔ)∗ܴ	

The necessity is proved. 
     Sufficiency. Let the conditions 1–3 of Theorem (6.2.6) be fulfilled. It follows 
from (105)–(107) that 
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∗଴ܨ∗ܸ                                                = 											.(ݔ)∗ܴ	
We can write		ܯሖ (ݔ) =  .ଶ[∗଴ܨ∗ܸ]
From relations (105), (106) and (214) we deduce that 
  (ܸ∗݂, ∗଴ܨ∗ܸ =	)(௫ାఢ) 	= 	 (݂, [ܵ∗](௫ାఢ)

ିଵ 	ܲ(௫ାఢ)ܨ଴∗)(௫ାఢ),					݅. ݁., 
 
                                    ܸ∗ܲ(௫ାఢ)ܸ∗	ܲ(௫ାఢ)ܨ଴	 = 	[ܵ∗](௫ାఢ)	

ିଵ ܲ(௫ାఢ)ܨ଴∗.												
We define ݔ))ݒ − ߳ଵ), ݔ) in the domain	(ݐ − ߳ଵ) 	≤ 	ݐ	 ≤ 	ܽ + ߳ଶ by the 
equality		ݔ))ݒ − ߳ଵ), (ݐ 	= 	0. It follows from the triangular structure of the self -
adjoint operators ܸ∗ and [ܸ∗]ିଵ that 
                                 ܲ(௫ିఢభ)[ܸ

∗]ିଵ	ܲ(௫ିఢభ)ܸ
∗	ܲ(௫ିఢభ) 	= 	ܲ(௫ିఢభ).									

Hence in view of (105) and (115) we have 
                                ܲ(௫ିఢభ)[ܸ

∗]ିଶݔ))ݒ − ߳ଵ), (ݐ 	= 	ܲ(௫ିఢభ)ܨ଴
∗.									

 
It is easy to see that ܲ(௫ିఢభ)ܵ

ݔ))ݒ∗ − ߳ଵ), (ݐ 	= 	ܲ(௫ିఢభ)ܨ଴
∗. Thus according to 

relations (116) and (117), the equality 
                       	([ܸ∗]ିଶݔ))ݒ − ߳ଵ), ,(ݐ ,ߤ)ݒ ((ݐ 	= 	 ݔ))ݒ∗ܵ) − ߳ଵ), ,(ݐ ,ߤ)ݒ 							((ݐ
is true. 
 If there exists such a vector function ଴݂(ݔ) 	∈ 	 ௠ଶܮ (ܽ, ܽ + ߳ଶ) that ( ଴݂, ݔ))ݒ −
߳ଵ), ((ݐ 	= 	0,then due to (106) the relation 
                                             ܸ∗ ଴݂ 	= 	0																					 
is valid. The self -adjoint operator ܸ∗ is invertible. Hence from (119) we deduce 
that  ଴݂ 	= 	0.			This means that ݔ))ݒ − ߳ଵ), ௠ଶܮ is a complete system in (ݐ (ܽ, ܽ +
߳ଶ) Using this fact and relation (118) we obtain the desired equality 
                                             ܵ∗ 	= [ܸ∗]ିଶ.																				
The Corollary is proved.                                                                        □ 
Corollary (6.2.39)[232]: Let the self-adjoint operator ܸ∗	defined by formula 
(106) be bounded. Then the operator ܹ defined by formula (132) is also 
bounded and 
                                          ܹܶ∗ =	ܸ∗.										
Proof.  It can be proved by linear algebra methods that (see [40], p. 41) 
 
                 ܶ∗ܳ(௫ିఢభ)[ܶ

∗](௫ିఢభ)
ିଵ 	ܳ(௫ିఢభ)ܶ

∗ 	= 	 ܶ∗ −	[ܵ∗](௫ିఢభ)
ିଵ 	ܲ(௫ିఢభ).						

From relations (105), (131) and (134) we have 
 
ݔ))ݓ∗ܶ                              − ߳ଵ), (ݐ 	= ∗଴ܨ∗ܶ	 − ݔ))ݒ	 − ߳ଵ), 									.(ݐ
Hence the equality 
 
ݔ))ݓ,݂∗ܶ]      − ߳ଵ), (௫ିఢభ)[(ݐ 	= 	 (ܶ

∗݂, (∗଴ܨ −	ቀ݂, ݔ)൫ݒ − ߳ଵ), 	൯ቁ(௫ିఢభ)ݐ
			

is true. From formulas (106), (132) and (136) we obtain relation (133). The 
corollary is proved.                                                                   □ 
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Corollary (6.2.40)[232]: Let ܵ∗ be a bounded, positive, self-adjoint and 
invertible operator and let the operator ܸ∗ defined by formula (106) be bounded. 
If the relations 
∗଴ܨ	∗ܸ                                      	= 							,(ݔ)∗ܴ	
and 
                                       ܸ∗݂	 ≠ 	0,			‖݂‖ ≠ 	0								
are true, then the self-adjoint operator ܸ∗ is invertible, the operator [ܸ∗]ିଵ	 is 
lower triangular, and 
                                        ܶ∗ 	= 	 [ܸ∗]ଶ.							
(Thus the self-adjoint operator ܶ∗ admits the right triangular factorization.) 
Proof. It follows from the boundedness of the self-adjoint operator ܸ∗ and 
relation (133) that the operator ܹ is also bounded. Let us consider 

								(ܹ݂, ܴ∗) 	= න ,ܽ)∗ݓ 	ݐ݀(ݐ)݂(ݐ

௔ାఢమ

௔

	= 	 (݂, 							,(∗଴ܨ

i.e., 
                                       ܹ∗ܴ∗ 	= 												.∗଴ܨ	
Due to (137) and (141) we have 
                                      ܸ∗ܹ∗ܴ∗ =	ܴ∗.									 
From (133) we deduce that 
                                     ܹܶ∗ܹ	∗ = 	ܸ∗ܹ∗.										
 
Using (143) we see that the self-adjoint operator ܸ∗ܹ∗ is lower triangular. It 
means that the operator ܸ∗ܹ∗ has the form 
                                     ܸ∗ܹ∗݂	 = 																,݂(ݔ)ܮ	
where (ݔ)ܮ is an ݉ ×݉ matrix function. Taking into account equality (142) we 
have (ݔ)ܮ 	= 	  ,.௠,   i.eܫ
                                     ܸ∗ܹ∗ 	= ∗ܸܹ			,	ܫ	 	= 															.ܫ	
Let us introduce the notation 			ܪ	 = ௠ଶܮ	∗ܹ	 (ܽ, ܽ + ߳ଶ).	 If for all ℎ	 ∈  the ܪ	
relation  (݃, ℎ) 	= 	0 is true, then ܹ݃	 = 	0. Hence in view of relation (133) we 
obtain that 
                                     ܸ∗݂	 = 	0																	(݂	 = 	 [ܶ∗]ିଵ݃).						
From condition (138) we deduce that	݃	 = 	0. Then the equality 
	ܪ                                            = 	 ௠ଶܮ (ܽ, ܽ + ߳ଶ)									
is valid. Due to (145) and (147) the operator self-adjoint ܹ∗	 maps ܮ௠ଶ (ܽ, ܽ +
߳ଶ)		 onto ܮ௠ଶ (ܽ, ܽ + ߳ଶ)		one-to-one. According to the classical Banach theorem 
[25] the operator ܹ∗		 is   invertible. It follows from (145) that the self-adjoint 
operator ܸ∗ is also invertible and 
                                                 [ܸ∗]ିଵ	 = 	ܹ∗	,															
and 
                                                 ܸ∗ܹ∗	 	=  						.ܫ	
From (133) and (149) we directly obtain that 	ܶ∗ = 	 [ܸ∗]ଶ. The proposition is 
proved.      □                                                                                        



١٩٣ 
 

Now we can deduce the following results.  
Corollary (6.2.41)[232]: Suppose the hypothesis of  Propositions (6.2.11) and 
(6.2.12) are satisfied  
∗଴ܨ∗ܹܶ	(݅)    .(ݔ)∗ܴ	=
∗଴ܨ[ܷ∗ܷ]ܹ(݅݅)   ∗ܶ  and hence 	(ݔ)∗ܴ	= = [ܷ∗]ଶ. 
ଶ[∗଴ܨ∗ܹܶ]	(݅݅݅)   = ሖܯ  . (ݔ)
Proof: (݅) since ܹܶ∗ = ܸ∗	, ∗଴ܨ∗ܹܶ = ∗଴ܨ∗ܸ =  	.(ݔ)∗ܴ
∗଴ܨ∗ܸ	(݅݅)  = ∗଴ܨ∗ܹܶ	 = ܹ[ܵ∗]ିଵܨ଴∗ =  ଴∗ , which implied thatܨ[ܷ∗ܷ]ܹ
 ܶ∗ = [ܷ∗]ଶ. 
 (݅݅݅)	Since		ܯሖ (ݔ) = ଶ[(ݔ)∗ܴ] = ଶ[∗଴ܨ∗ܸ] =    . ଶ[∗଴ܨ∗ܹܶ]
Corollary (6.2.42)[232]: Let the following conditions be fulfilled. 
1. The self-adjoint operator ܵ∗  satisfies relation (151). 
2. The conditions of Theorem (6.2.14) are valid. 
3. The matrix function (ݔ)ܤ is absolutely continuous and formulas (157) and  
(158) are true. 
4. The vector functions ܨ௝(ݔ, 	1)				(ߣ ≤ 	݆	 ≤ 	݊) form a complete system in 
௠ଶܮ (ܽ, ܽ + ߳ଶ). 
5. Almost everywhere the inequality 
                                               detܴ∗(ݔ) 	≠ 	0								
holds. Then the self-adjoint operator ܶ∗ 	= 	 [ܵ∗]ିଵ	 admits the right triangular 
factorization 
Proof. We introduce the self-adjoint operator 

										ܸ∗	݂	 = 	 ଵି[(ݔ)∗ܴ]
݀
ݔ݀

නݔ)∗ݒ, ݐ݀(ݐ)݂(ݐ
௫

଴

	.									

From (154), (172) and (173) we deduce the equality 
 
௝ܨ	∗ܸ                       	= 	 [ℎଵ(ݔ), . . . , ℎ௡(ݔ)] ௝ܻ	(ݔ, 										.(ݖ
Relation (174) implies that 

		ቀܸ∗	ܨ௝(ݔ, ,(ߣ ܸ∗	Fℓ(ݔ, ቁ(ߤ = න Yℓ∗	(ݔ, ,ݔ)	Y୨(ݔ)H(ߤ ݔd(ߣ

௔ାఢమ

଴

	.								

Using equality (174) and relation 

								
݀
ݔ݀

Y୨	(ݔ, (ݖ = ,ݔ)	Y୨(ݔ)ܪܬݖ݅	 								,				(ݖ
we have 

	ቀܸ∗	ܨ௝(ݔ, ,(ߣ ,ݔ)ℓܨ∗ܸ ቁ(ߤ

=
݅ൣ ℓܻ

∗		(ܽ + ߳ଶ, ܽ)	Y୨ܬ(ߤ + ߳ଶ, (ߣ −	 ℓܻ
∗	(0, ,(0	Y୨ܬ(ߤ ൧(ߣ

–ߤ̅ ߣ
				

Comparing formulas (164) and (177) we obtain the equality 
                                 ܶ∗ 	= [ܸ∗]ଶ.										
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  This means that the introduced self-adjoint operator ܸ∗ is bounded, ܸ∗݂	 ≠ 0, 
and  ‖݂‖ ≠ 	0. Taking into account (168), (169) and (174) when		ݖ	 = 	0 we 
obtain the relation 
∗଴ܨ	∗ܸ                                                  	= 	ܴ∗.									
Thus all conditions of  Proposition (6.2.12) are fulfilled. The assertion of the 
theorem follows from Proposition (6.2.12).                 □                                                                   
Corollary (6.2.43)[232]: Let the following conditions be fulfilled. 
1. Conditions 1–3 of Theorem (6.2.18) are valid. 
2. The ݉×݉ blocks ܾଵ,௝(ݔ)			(1	 ≤ 	݆	 ≤ 	݊)	of the matrix (ݔ)ܤ are absolutely 
continuous and 
                                    ܾଵ,௝(ݔ) 		= 	 ℎଵ∗(ݔ)ℎ	௝(ݔ).										
3. All the entries of the matrices ℎ	௝(ݔ) belong to ܮଶ(ܽ, ܽ + ߳ଶ). 
4. Almost everywhere the inequality (172) holds. Here ܴ∗(ݔ) 	= 	 ℎଵ(ݔ). Then 
the self-adjoint operator ܸ∗ defined by formula (173) and the equality 
 
ݔ)൫ݒ                       − ߳ଵ), ൯ݔ = 	 [ܵ∗](௫ିఢభ)

ିଵ 	ܲ(௫ିఢభ)߮ଵ(ݔ)										
are bounded. 
Proof.  We introduce the matrix (ݔ)ܪ = 	 (ݔ)∗ߚ  where		ଶ[(ݔ)∗ߚ] 	=
	[ℎଵ(ݔ), ℎଶ(ݔ), . . . , ℎ௡(ݔ)]. Relations (173)–(175) remain true. We use the 
formula 

		 න ℓܻ
,ݔ)∗ [(ݔ)ܤ݀](ߤ ௝ܻ(ݔ, 	ݔ݀(ߣ

௔ାఢమ

଴

=
݅ൣ ℓܻ

∗	(ܽ + ߳ଶ, ܬ(ߤ ௝ܻ(ܽ + ߳ଶ, (ߣ −	 ℓܻ
∗	(0, ,௝(0	ܻܬ(ߤ ൧(ߣ

–ߤ̅ ߣ
				

And the inequality ݔ݀(ݔ)ܪ	 ≤  From formulas (164), (175) and (182) .(ݔ)ܤ݀	
we deduce that 
                                 [ܸ∗]ଶ 	≤ 	ܶ.									
The Corollary is proved.                                                                              □ 
Corollary (6.2.44)[232]: Let the self-adjoint operator ܵ∗	be bounded, positive, 
invertible and have the form (184). If the matrix function (ݔ)ܤ is absolutely 
continuous and 
ሖܤ                             (ݔ) = ,(ݔ)ߚ(ݔ)∗ߚ	 (ݔ)ߚ 	= 	 [ℎଵ(ݔ), ℎଶ(ݔ)],									
Then the equality 
                               ℎଵ(ݔ)ℎଶ(ݔ)തതതതതതത +	ℎଶ(ݔ)ℎଵ(ݔ)തതതതതതത 	= 	1									,	
is true almost everywhere. 
Proof.  Let us consider the expression 
 
                         ݅(௫ାఢ) 	= 	 ([ܵ∗](௫ାఢ)

ିଵ 	ܲ(௫ାఢ)ܯ, 1) 	+ 	 (1, [ܵ∗](௫ାఢ)
ିଵ 	ܲ(௫ାఢ)ܯ).					

Setting 
                                    ଵܰ(ݔ, ݔ) + ߳)) 	= 	 [ܵ∗](௫ାఢ)

ିଵ 	ܲ(௫ାఢ)ܯ,				
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we rewrite formula (192) in the form    ݅(௫ାఢ) 	= ∫ [ ଵܰ(ݔ, ݔ) +
(௫ାఢ)
଴

߳)) 	+	 ଵܰ(ݔ, ݔ) + ߳))തതതതതതതതതതതതതതതതതത]݀ݔ , i.e.,  

					݅(௫ାఢ) 		= න ቂ ଵܰ൫ݔ, ݔ) + ߳)൯ +	 ଵܰ൫(ݔ + ߳)	– ,ݔ	 ݔ) + ߳)൯തതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതቃ .			ݔ݀

(௫ାఢ)

଴

				

We use the relation (see [39], Ch. 1) 

                                  ଵܰ൫ݔ, ݔ) + ߳)൯ 	+ 	 ଵܰ ቀ(ݔ + ߳)	– ,ݔ	 ݔ) + ߳)ቁതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത 	= 	1.					
In view of (194) and (195) we obtain the equality 
                                                 ݅(௫ାఢ) 		= 	 ݔ) + ߳).								
Taking into consideration Equalities (100), (158), (184) and (192) we deduce 
that 

						݅(௫ାఢ) 	= න [ℎଵ(ݔ)ℎଶ(ݔ)തതതതതതത 	+ 	ℎଶ(ݔ)ℎଵ(ݔ)തതതതതതത]݀ݔ

(௫ାఢ)

଴

	.						

Relation (191) follows from (196) and (197). The Corollary is proved. □  
Corollary (6.2.45)[232]: Let the bounded self-adjoint operator	ܵ∗ satisfy 
relation (219). If the corresponding operator ܵି∗  is bounded, then the 
representation 
                                        ܵ∗ 	= [ܵି∗ ]ଶ								
is true. 
Proof.  We consider the operator 
                                           ܺ	 = [ܵି∗ ]ଶ.								
Using formula (219) and relation ܣ∗ܵି∗ 	= 	  we deduce the equality ∗ܣ∗ିܵ
 
	ܺ∗ܣ                     − ∗ܣܺ	 = ∗ܣ)∗ିܵ	 − ∗ିܵ(∗ܣ ∗ܵ∗ܣ	= 	− 								.∗ܣ∗ܵ	
 
The equation ܣ∗ܺ	 − ∗ܣܺ 	=  .(see [39], Ch	has no more than one solution ܺ	∗ܨ	
1). We can deduce that ܣ∗ܺ = ∗ܨ	 and ∗ܣܺ	 = 0	. Hence we deduce from (224) 
that ܵ∗ 	= 	ܺ.  
The lemma is proved .                      □ 
Corollary (6.2.46)[232]: If the bounded self-adjoint operator ܵ∗ satisfies the 
relation (219), then this operator can be represented in the form (222), where the 
operator ܵି∗  is defined by formula (220). 
Proof. To prove that the self-adjoint operator ܵି∗  is bounded we introduce the 
operator 

					ܺି݂	 = 	݂∗ିܵ∗ܣ	 = 	݅ න 	ݔ)߶(ݐ)݂ − ݐ݀(ݐ	
௫

଴

.										

We note that 

									ܺି∗݂	 = 	 	݂∗ܣ∗ିܵ = 	−݅ න 	ݐ)߶(ݐ)݂ − 	ݐതതതതതതതതതതതതത݀(ݔ	

௔ାఢమ

௫
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where the operator ܵି∗ 		 has the form 

					ܵି∗݂	 = 	−
݀
ݔ݀

න 	ݐ)߶(ݐ)݂ − ݐതതതതതതതതതതതതത݀(ݔ	

௔ାఢమ

௫

	.							

According to Lemma (6.2.31) we have 
ଶ[∗ܣ]∗ܵ                                     	= 	ܺିܺି∗ .								
It follows from relations (225) and (228) that ܵ∗ =	 [Sି	∗ ]ଶ.	Hence the operator 
Sି	∗ 	 is bounded. The lemma is proved.                    □ 
Corollary (6.2.47)[232]: If the self-adjoint operator ܵ∗ belongs to the 
class	Rଵ∗ , then this operator admits the left triangular factorization. 
Proof.  We suppose that for some ଴݂(ݔ) 	∈ 	 ,ଶ(0ܮ ܽ + ߳ଶ) the relation 
 
                                       ܵି	∗ ଴݂ = 	0									(‖f଴‖ ≠ 	0)								
is true . In view of the well-known Titchmarsh theorem (see [41], Ch. 11) and 
(229) we have 
(ݔ)߶                                       	= 	0,											0	 ≤ 	ݔ	 ≤ 									.ߜ	
Using (219) and (230) we deduce that 
ఋܣ                                

∗ܵఋ
∗ −	ܵఋ

	ఋܣ∗
∗ = 	0,																

 
where	ܣఋ

∗݂	 = 	݅ ∫ ௫ݐ݀(ݐ)݂
଴ 		,			0	 ≤ 	ݔ	 ≤ ఋܵ		݀݊ܽ			,ߜ	

∗ =	 ఋܲܵ∗ ఋܲ 	.	Operator 
equation (231) has only the trivial solution ܵఋ

∗ = 0 (see [39], Ch. 1). The last 
equality contradicts relation (218). It means that equality (229) is impossible 
when	‖ ଴݂‖ ≠ 	0. Hence in view of (222) the self-adjoint operator ܵି	∗  maps 
,ଶ(0ܮ ܾ)	one-to-one onto ܮଶ(0, ܽ + ߳ଶ)		. This fact according to the classical 
Banach theorem [25] implies that the self-adjoint operator ܵି	∗  is invertible. The 
self-adjoint operator [ܵ∗]ିିଵ	 is defined by formula (see [39], Ch. 1) 
 

								[ܵ∗]ିିଵ		݂	 =
݀
ݔ݀

න݂(ݐ)ܰ(ݔ	 − ,ݐ݀(ݐ	
௫

଴

									

Where  ܰ(ݔ) 	= 	 [ܵ∗]ିିଵ	1. Thus the self-adjoint operators ܵି	∗  and [ܵ∗]ିିଵ			are 
bounded and lower   triangular .The assertion of the theorem now follows 
directly from Definition (6.2.4).□ 
 
Sec (6.3):  Effective Construction of a Class of Positive Operators 
in Hilbert Space, which do not Admit Triangular Factorization 
 
     To introduce the main notions of the triangular factorization (see 
[4,6,8,14,15, 20]) consider a Hilbert space ܮଶ(ܽ, ܾ)		(−∞ ≤ ܽ	 < 	ܾ ≤ ∞). The 
orthogonal projectors Pஞin ܮଶ(ܽ, ܾ)are defined by the relations  

൫Pஞ݂൯	(ݔ) = 	ܽ		for(ݔ)݂ < 	ݔ	 < ,ߦ	 ൫Pஞ݂൯(ݔ) = 0		for	ߦ	 < 	ݔ	 < 	ܾ		 ቀ݂ ∈ ,ܽ)2ܮ	 ܾ)ቁ .	
Denote the identity operator by ܫ. 
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Definition (6.3.1)[1]: A bounded operator ܵିon ܮଶ(ܽ, ܾ)is called lower 
triangular if for every	ߦ		the relations 
                                             ܵିܳక 	= 	ܳకܵିܳక ,																																																			(257)	
where ܳక = 	ܫ	 − 	ܲక , are true. The operator ܵି∗  is called upper triangular. 
Definition (6.3.2)[1]:  A bounded, positive definite and invertible operator S	on 
,ܽ)ଶܮ ܾ)		 is said to admit a left (right) triangular factorization if it can be 
represented in the form 
                                     ܵ	 = 	 ܵିܵି∗ 					(ܵ	 = 	 ܵି∗ 	ܵି),																																											(258)	
where ܵି and ܵିିଵ are bounded and lower triangular operators. Further, we often 
write factorization meaning a left triangular factorization. 
    In paper [20] (see p. 291) we formulated necessary and sufficient conditions 
under which the positive definite operator ܵ admits a triangular 
factorization. The factorizing operator  ܵିିଵ  was constructed in the explicit 
form. We proved that a wide class of operators admits a triangular factorization 
[20].  
  D. Larson proved [8] the existence of positive definite and invertible but non-
factorable operators. In the present article we construct concrete examples of 
such operators. In particular, the following operator 
 

			݂ܵ	 = (ݔ)݂	 − න	ߤ	
	ݔ)ߨ݊݅ݏ − (ݐ	
	ݔ)ߨ − (ݐ	 ݐ݀(ݐ)݂

ஶ

଴

	 , (ݔ)݂ ∈ ,ଶ(0,∞)ܮ 0	 < 	ߤ	 < 1																(259)	

is positive definite and invertible but non-factorable. Using positive definite and 
invertible but non-factorable operators we have managed to substitute pure 
existence theorems [8] by concrete examples in the well-known problems posed 
by J.R. Ringrose [13], R.V. Kadison and I.M. Singer [6]. We note that Kadison-
Singer problem was posed independently by ܫ. Gohberg and M.G. Krein [5].  
   The non-factorable operator ܵ, which is defined by formula (259), is used in a 
number of theoretical and applied problems (in optics [22], random  matrices 
[24], generalized stationary processes [11, 12], and Bose gas theory[10]). The 
results obtained in this section are interesting from this point of view too. 
   In this section we consider operators ܵ of the form 

					݂ܵ	 = (ݔ)݂	 − 	ߤ	 න ℎ(ݔ	– ݐ݀(ݐ)݂(ݐ	
ஶ

଴

	 , (ݔ)݂ ∈ 	(260)																					ଶ(0,∞),ܮ

 
where	ߤ	 = 	  admits representation (ݔ)and ℎ ߤ̅

																										ℎ(ݔ) =
1
ߨ2

න 	݁௜௫ఒߣ݀(ߣ)ߩ
ஶ

ିஶ

	.																																																								(261)	

We suppose that the function (ߣ)ߩ satisfies the following conditions 
1. The function (ߣ)ߩ is real and bounded 
|(ߣ)ߩ|                           ≤ ܷଶ,							ܷ	 > 	0			(−∞	 < ߣ < 	∞).																										(262)	
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(ߣ)ߩ				.2  	= (ߣ−)ߩ	 ∈ 	.(∞,∞−)ܮ
Hence, the function ℎ(ݔ)			(−∞	 < 	ݔ	 < 	∞) is continuous and real. The 
corresponding operator 

	݂ܪ																						 = 	න ℎ(ݔ	 − ݐ݀(ݐ)݂(ݐ	
ஶ

଴

																																																														(263)	

is self-adjoint and bounded, where ‖ܪ‖ ≤ ܷ. We introduce the operators 
 

ܵక݂	 = (ݔ)݂	 	− 	ߤ	 නℎ(ݔ	– ݐ݀(ݐ)݂(ݐ	

క

଴

, (ݔ)݂ ∈ ,ଶ(0ܮ ,(ߦ 0	 < ߦ	 < 	∞.																							(264)	

The following statement is true.  
Proposition (6.3.3)[1]:  If −1/ܷ	 < 	ߤ	 < 	1/ܷ	,  then the operator ܵక 	, which is 
defined by formula (264), is positive definite, bounded and invertible. 
 
 
Hence, we have 

												 కܵ
ିଵ݂	 = (ݔ)݂	 	+ 	නܴక(ݔ, ,ݐ ݐ݀(ݐ)݂(ߤ

క

଴

.																																																		(265)	

The function ܴక(ݔ, ,ݐ ,ݔ is jointly continuous in	(ߤ ,ݐ ,ߦ  M.G. Krein (see .ߤ
[5],Ch. IV, Section 7) proved  that 
                    ܵ௕ିଵ 	= 	 	ܫ) + 	 ାܸ)(ܫ	 + 	 ܸି ),							0	 < 	ܾ	 < 	∞,																													(266)	
 
where the operators ାܸ and ܸି  are defined in ܮଶ(0, ܾ) by the relations 

										( ାܸ
(ݔ)(݂	∗ 	= (	ܸି (ݔ)(݂ 	= 	නܴ௫(ݔ, ,ݐ ݐ݀(ݐ)݂(ߤ

௫

଴

.																																			(267)	

The Krein’s formula (266) is true for the Fredholm class of operators. The 
operator ܵ௕ 	belongs to this class. The kernel of the operator ܸି 		does not depend 
of  ܾ	. Hence, if the operator S	admits the factorization, then formula (266) holds 
for the case   ܾ	 = 	∞ too, i.e. 
                                      ܵିଵ 	= 	 	ܫ) + 	 ାܸ)(ܫ	 + 	 ܸି ).																																									(268)	
Remark (6.3.4)[1]: Relation (268) also follows from Theorem 2.1 in the paper 
[20]. Let us introduce the function 

(ݔ)ଵݍ																					 	= 	1	 + 	නܴ௫(ݔ, ,ݐ ݐ݀(ߤ
௫

଴

	.																																																							(269)	

Using the relation ܴ௫(ݔ, ,ݐ (ߤ 	= 	ܴ௫(ݔ	 − ,ݐ	 0,  we ,(see [5], formula (8.12)) (ߤ
obtain 

(ݔ)ଵݍ												 	= 	1	 + 	නܴ௫(ݑ, 0, ݑ݀(ߤ
௫

଴

.																																																															(270)	
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According to the well-known Krein’s formula ( [5], Ch. IV, formulas (8.3)  and 
(8.14)) we have 

(ݔ)ଵݍ																						 		= 	exp	 ൝නܴ௧(ݐ, 0, ݐ݀(ߤ
௫

଴

ൡ.																																																				(271)	

Together with ݍଵ(ݔ)		 we shall consider the function 

(ݔ)ଶݍ									 	= (ݔ)ܯ	 	+ 	න(ݐ)ܯܴ௫(ݔ, ,ݐ ݐ݀(ߤ
௫

଴

	,																																																	(272)	

where 

(ݔ)ܯ																	 	=
1
2
− න	ߤ	 ℎ(ݏ)݀ݏ

௫

଴

	.																																																																			(273)	

The functions ݍଵ(ݔ)		and ݍଶ(ݔ) generate the 2 × 2 differential system 
 

															
ܹ݀
ݔ݀

= ,0)ܹ														,ܹ(ݔ)ܪܬݖ݅	 (ݖ 	= 	 	(274)																																										ଶ.ܫ
 
Here ܹ(ݔ, are 2 	(ݔ)ܪ and 	(ݖ × 2  matrix functions and ܬ is a  
2 × 2			matrix : 

(ݔ)ܪ                       	= 		 ቎
(ݔ)ଶଶݍ

ଵ
ଶ

ଵ
ଶ

(ݔ)ଵଶݍ
቏ 	ܬ								,				 = 	 ቂ0 1

1 0ቃ.																							(275)	

Note that according to [19] (see formulas (53) and (56) therein) we have: 
 
(ݔ)ଶݍ(ݔ)ଵݍ                                  =

ଵ
ଶ
							.																																																												(276)	

It is easy to see that 
(ݔ)ܪܬ                                	= 	(277)																																																						,(ݔ)ଵିܶܲ(ݔ)ܶ	
where 

(ݔ)ܶ																 	= 	 ൤ݍଵ
(ݔ) (ݔ)ଵݍ−

(ݔ)ଶݍ (ݔ)ଶݍ
൨ 			,						ܲ	 = 	 ቂ1 0

0 0ቃ.																														(278)	

Consider the matrix function 
 

,ݔ)	ܸ                        (ݖ = 	݁ି
೔ೣ೥
మ 				ܶିଵ(ݔ)ܹ(ݔ, 	(279)																																				.(0)ܶ(ݖ

Due to (274)-(279) we get 
 

																				
ܸ݀
ݔ݀

= 	 	ܸ݆(2/ݖ݅) + 	Γ(ݔ)ܸ,							ܸ	(0) 	= 	 	(280)																																			ଶ,ܫ
where 

											Γ(ݔ) = 	 ൤ 0 (ݔ)ܤ
(ݔ)ܤ 0 ൨ 				,			݆	 = 	 ቂ1 0

0 −1ቃ	,																																												(281)	
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(ݔ)ܤ												 =
(ݔ)ଵ́ݍ
(ݔ)ଵݍ

			= 	ܴ௫(ݔ, 0, 	(282)																																																																		.(ߤ

Let us introduce the functions 
 
								Φ௡(ݔ, (ݖ = ,ݔ)ଵ௡ݒ	 (ݖ + ,ݔ)ଶ௡ݒ	 	݊)							(ݖ = 	1, 2),																																		(283)	
 
						Ψ௡(ݔ, (ݖ 	= ,ݔ)ଵ௡ݒ]݅	 (ݖ 	− ,ݔ)ଶ௡ݒ	 	݊)									[(ݖ = 	1, 2),																											(284)	
 
where ݒ௜௡(ݔ, ,ݔ)	ܸ are elements of the matrix function (ݖ  It follows from .(ݖ
(280) that 

					
݀Φ௡

ݔ݀
= 	 ቀ

ݖ
2
ቁΨ௡ − ,Φ௡(ݔ)ܤ	 Φଵ(0, (ݖ = 	Φଶ, (0, (ݖ = 	1,																		(285)	

 

		
݀Ψ௡
ݔ݀

= 	− ቀ
ݖ
2
ቁΦ௡ 	+ ,	Ψ௡(ݔ)ܤ	 Ψଵ(0, (ݖ = 	−Ψଶ(0, (ݖ = 	݅.																							(286)	

 
Consider again the differential system (274) and the solution ܹ(ݔ,  of this (ݖ
system. The element ݓଵ,ଶ(ߦ, ,ߦ)ܹ of the matrix function	(ݖ  can be (ݖ
represented in the form (see [17], p. 54, formula (2.6)) 
 
,ߦ)ଵ,ଶݓ               (ݖ = 	ݖ݅	 ቀ൫ܫ	– ൯ܣݖ	

ିଵ
	1	, ܵక

ିଵ	1ቁ
క
				,																																								(287)	

where the operator ܣ	has the form 
 

	݂ܣ																	 = 	݅	 න݂(ݐ)݀ݐ
௫

଴

.																																																																																(288)	

It is well-known that 
	ܫ)                            − 	1	ଵି(ܣݖ	 = 	 ݁௜௭௫			.																																																											(289)	
We can obtain a representation of ܹ(ߦ, without using the operator    ܵక (ݖ

ିଵ	. 
Indeed, it follows from (279), (283), and (284) that 
 

,ݔ)ܹ											 (ݖ 	= 	 (1/2)݁
௜௫௭
ଶ ൤Φଵ	(ݔ)ܶ 	− 	݅Ψଵ Φଶ − 	݅Ψଶ

Φଵ + 	݅Ψଵ Φଶ + 	݅Ψଶ
൨		ܶିଵ(0).																															(290)	

 
According to equality (270) we have  ݍଵ(0) 	= 	1. Due to (278) we infer 
 

												ܶ(0) 	= 	 ൤ 1 −1
1/2 1/2൨,																		ܶ

ିଵ(0) 	= 		 ൤ 1/2 1
−1/2 1൨.																	(291)	

 
Further we plan to use a Krein’s result from [7]. For that purpose we intro- duce 
the functions 

,ݔ)ܲ					 (ݖ 	= 		 ݁
௜௫௭
ଶ [Φ(ݔ, (ݖ 	− 	݅Ψ(ݔ, 	(292)																																																					,2/[(ݖ
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					 ,ݔ)ܲ∗ (ݖ 	= 	 ݁
௜௫௭
ଶ [Φ(ݔ, (ݖ 	+ 	݅Ψ(ݔ, 	(293)																																																						,2/[(ݖ

where 
       								Φ(ݔ, (ݖ = 	Φଵ(ݔ, (ݖ +	Φଶ(ݔ, ,ݔ)	Ψ			,(ݖ (ݖ 	= 	Ψଵ(ݔ, (ݖ 	+	Ψଶ(ݔ, 	(294)																			.(ݖ
 
Using (285), (286) and (292), (293) we see that the pair ܲ(ݔ, ,ݔ)ܲ∗ and (ݖ  is a	(ݖ
solution of the following Krein system 
 

										
݀ܲ
ݔ݀

= 	ܲݖ݅	 − (ݔ)ܤ	 ∗ܲ			,
݀ ∗ܲ

ݔ݀
= 	(295)																																									,ܲ(ݔ)ܤ−	

where 
                             ܲ(0, (ݖ 	= 	 ∗ܲ(0, (ݖ 	= 	1.																																																								(296)	
 
It follows from (292) and (293) that 

,ݔ)ܲ                            (ݖ −	 ,ݔ)ܲ∗ (ݖ = 	−݅݁
೔ೣ೥
మ 	Ψ(ݔ, 	(297)																																					.(ݖ

 
We assume that the following relation is true: 
 
(ݔ)ܯ                  	= 	 (1	 − 	2/(ߤ	 + (ݔ)ݍ			,(ݔ)ݍ	 ∈ 	(298)																									ଶ(0,∞),ܮ
 
where the function (ݔ)ܯ is defined by (273). Condition (298) can be rewritten 
in an equivalent form: 
 

															න 	ℎ(ݔ)݀ݔ
ஶ

଴

	=
1
2
					 , න 	ℎ(ݔ)݀ݔ

ஶ

௫

∈ 	(299)																																								ଶ(0,∞).ܮ

Now, we need the relations (see [16], Ch. 1, formulas (1.37) and (1.44)): 
 
                 ܵక1	 = (ݔ)ܯ	 	+ 	ߦ)ܯ − ,(ݔ	 			ܵక 	= 	 కܷܵక కܷ ,																																(300)	
 
where కܷ݂(ݔ) 	= 	 ݂൫ߦ	– ൯ݔ	

തതതതതതതതതതത,			0 ≤ ݔ ≤  It follows from (298) and (300) that .ߦ
 
                           ܵక1	 = 	1	 − 	ߤ	 + (ݔ)ݍ	 	+ 	 కܷ.(ݔ)ݍ																																							(301)	
 
Hence the relation 

																								ܵ	క
ିଵ1	 =

1
(1	– (ߤ	

[1	 − (ݔ)కݎ	 	− 	 కܷݎక(ݔ)]																															(302)	

 
is true. Here ݎక(ݔ) = 	 ܵ	క

ିଵ(ݔ)ݍ.		Using formulas (287), (298), and (302), we  
obtain the following representation of ݓଵ,ଶ(ߦ, 	.(ݖ
Lemma (6.3.5)[1]: The function ݓଵ,ଶ(ߦ,  has the form .(ݖ
 
,ߦ)ଵ,ଶݓ                           (ݖ 	= 	 ݁௜௭కߦ)ܩ, ,ߦ)ܩ	–	(ݖ 	(303)																																								തതതതതതതതത,(̅ݖ
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where 

,ߦ)ܩ														 (ݖ 	=
1

(1	 − (ߤ	
			቎1	 − 	ݖ݅	 න݁ି௜௭௫	ݎక(ݔ)݀ݔ

క

଴

቏.																												(304)	

 
Note that the operator  S  is positive definite, bounded and invertible. According 
to (266) we have 
(ݔ)ܳ                            	= 	 	ܫ) + 	 ܸି (ݔ)ݍ( ∈ 	(305)																																							ଶ(0,∞).ܮ
 
Hence, there exists a sequence ݔ௡	 such that 
 
(௡ݔ)ܳ                                     → ௡ݔ										,0 → ∞.																																															(306)	
Now, we prove the following statement. 
 
Lemma (6.3.6)[1]: Let relation (306) be  true. Then we have 
 

																																				 lim
௫೙→ஶ

qଵ(ݔ௡) 	=
1

ඥ1	 − 	μ
												.																																						(307)	

Proof.  In view of (269), (272), and (298) we get 
(ݔ)ଶݍ                            	= 	1)(ݔ)ଵݍ	 − 	2/(ߤ	 + 	(308)																																				.(ݔ)ܳ	
 
Taking into account the relation ݍଵ(ݔ)ݍଶ(ݔ) = 1/2			(see [19], formulas (53) 
and (56)),  we obtain the equality 
                        1/2	 = 	 	1)(ݔ)ଵଶݍ − 	2/(ߤ	 	(309)																																.(ݔ)ܳ(ݔ)ଵݍ	+
 
Formula (307) follows directly from (306), (309), and inequality  
(ݔ)ଵݍ  > 	0.                                                                                                 □	
It follows from (278) and (307) that 
 

(௡ݔ)ܶ														 → ൤ ܥ ܥ−
ܥ1/2 				൨ܥ1/2 , ௡ݔ		 → 	ܥ			,∞ = 	1/ඥ(1	– 	(310)												.(ߤ	

 
Hence, in view of (291), (292), (294), and (310) the following assertion is true. 
Lemma (6.3.7)[1]: Let 		ݔ௡ tend to ∞	. Then, ݓଵ,ଶ has the following asymptotics 

,௡ݔ		)ଵ,ଶݓ										 (ݖ 	= ݁ܥ݅−	
௜௫೙௭
ଶ Ψ(	ݔ௡, 	൫1(ݖ + 	(311)																																					൯.(1)݋	

 
Lemma (6.3.8)[1]: Suppose that the operator ܵ admits a factorization. Then we 
have 
													 lim

క→ஶ
݁ି௜௭క ,ߦ)ଵ,ଶݓ (ݖ = 	ݖॅ					,(ݖ)ܩ	 < 	0,																																														(312)	

 
												 lim

క→ஶ
,ߦ)ଵ,ଶݓ (ݖ = 	ݖॅ												,തതതതതത(̅ݖ)ܩ−	 > 	0.																																														(313)	
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where 

(ݖ)ܩ		 =
1

(1	 − (ߤ	
൥1	 − 	ݖ݅	 න 	݁ି௜௭௫ݔ݀(ݔ)ݎ

ஶ

଴

൩ , (ݔ)ݎ = 	 ܵିଵ.(ݔ)ݍ													(314)	

Proof .  According to (268) we ℎܽ݁ݒ	ܵିିଵ 	= 	ܫ	 + 	ܸି ,	 where	ܸି 	is defined by 
(267). Hence, the operator function ܵక

ିଵ		 strongly converges to the 
operator			ܵିଵ	 when	ߦ → ∞. Then the function ݎక(ݔ) 	= ܵక

ିଵ	(ݔ)ݍ strongly 
converges to (ݔ)ݎ = 	 			ܵିଵ(ݔ)ݍ, when	ߦ → ∞.  and (ݔ)ݎ ∈   Using		ଶ(0,∞).ܮ
(303) and (304) we obtain relations (312) and (313). The lemma is proved. □                                                                                
From Lemma (6.3.8) we derive the following important assertion. 
Proposition (6.3.9)[1]:  If at least one of the equalities (312) and (313) is not 
true, then the corresponding operator 		ܵ			does not admit factorization. 
  Note that a new approach to the notion of the limit of a function was 
used in Lemma (6.3.6). Namely, we introduce a continuous function (ݔ)ܨ, 
which belongs to (∞,0)ܮ, and consider sequences  ݔ௡ → ∞, such that 
(௡ݔ)ܨ                                           → 0.																																																																		(315)	
Definition (6.3.10)[1]:  We say that the function ݂(ݔ) tends to ܣ	almost sure (a. 
s.)  if relation (315) implies 
 
(௡ݔ)݂                                    → ,ܣ ௡ݔ									 → ∞.																																																	(316)	
Equality (307) can be written in the form 

																			 lim
௫→		∞

(ݔ)ଵݍ 	=
1

ඥ1	– 	μ		
					 , a. s.																																																												(317)	

Remark (6.3.11)[1]: From heuristic point of view ”almost all” sequences 
௡ݔ  → ∞			satisfy relation (315). This is the reason of using the probabilistic 
term” almost sure”. 
   Introduce a partition 
                                0	 = 	ܽ଴ 	< 	ܽଵ 	<	. . . < 	 ܽ௡ 	= 	ܽ,																																						(318)	
 
and consider the function (ߣ)ߩ 	=  such that (ߣ−)ߩ	
 

(ߣ)ߩ										 = ൜ 0		,													ܽ	 ≤ 											,ߣ	
			ܾ௞ିଵ,							ܽ௞ିଵ ≤ ߣ <	ܽ௞ ,									

� 																																																(319) 

where 
                   ܾ	଴ = 	1; 		−1 ≤ ܾ௞ ≤ 1					(0	 < 	݇ ≤ ݊	 − 	1).																													(320)	
In the case of 	ߩ		 given by (319) and (320) we can put ܷ	 = 	1	in (262). Further 
we investigate the operators 	ܵ	, which are defined by formulas (260), (261), and 
(319). The spectral function 	(ߣ)ߪ	of the corresponding system (295) is 
absolutely continuous and such that (see [7]): 
 

(ߣ)ߪ́																																	 = 	
[1	 − [(ߣ)ߩߤ	

ߨ2
.																																																											(321)	
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Remark (6.3.12)[1]: The operators ܵ, which are defined by formulas (260), 
(261), and (319), appear in the theory of generalized stationary processes of 
white  noise type (see [11,12]). If  ݊	 = 	1 and ܽଵ 	=  then the corresponding ,	ߨ	
operator ܵ has the form (259). 
   It follows from (261) and (319) that 

													ℎ(ݔ) 	=
1
ߨ
෍ܾ௞

sinܽ௞ݔ	 − 	sinܽ௞ିଵݔ
ݔ

௡

௞ୀଵ

.																																																		(322)	

 
According to (321) we have 

																								 න
loǵ(ݑ)ߪ
1	 ଶ	ݑ	+

	ݑ݀
ஶ

ିஶ

< 	∞.																																																																					(323)	

It follows from (324) (see [7]) that 

																		න ,ݔ)ܲ| 	ݔ଴)|ଶ݀ݖ
ஶ

଴

	< 	∞, ଴ݖॅ 	> 	0.																																												(324)	

Hence, there exists a sequence 	ݔ௡		 such that 
௡ݔ)ܲ|                                , ଴)|ଶݖ → ௡ݔ													,0 → ∞.																																							(325)	
 
Now, we use the corrected form of   Krein’s theorem (see [7, 21]): 
Proposition (6.3.13)[1]: There exists the limit 
  
																Π(ݖ) 	= 	 lim

௫೙→ஶ
௡ݔ)ܲ∗ , (ݖ ,																																																																									(326)	

where the convergence is uniform at any bounded closed set of the upper half- 
plane ॅݖ	 > 	0. 
2) The function Π(ݖ) can be represented in the form 
 

					Π(ݖ) =
1

ߨ2√
exp ൝

1
	ߨ2݅

න
1	 + ݖݐ	

–	ݖ) 	1)(ݐ	 + (ଶݐ	

ஶ

ିஶ

(log σ́(t))݀ݐ + ൡ	ߙ݅	 ,											(327)	

 
where ߙ	 =  is the spectral function of system (295), which 	ߪ . Here	തߙ	
corresponds to	ߩ		given by (319) and (320), that is, this ߪ	 is defined  by (321). 
Remark (6.3.14)[1]: The function |ܳ(ݔ)|ଶ + ,ݔ)ܲ|   belongs to the space	଴)|ଶݖ
 ௡ such that relations (306) and (325)ݔ Hence, there exists a sequence .(∞,0)ܮ
are true simultaneously. 
   If (322) holds, then the following conditions are fulfilled: 

																	0	 < ߜ	 ≤ ‖ܵ‖ ≤ ∆	< 	∞, න |ℎ(ݔ)|ଶ݀ݔ	
ஶ

଴

	< 	∞.																									(328)	

Therefore, in formula (327) we have (see [19], Proposition 1): 
	ߙ                                                 = 	0.																																																																			(329)	
 



٢٠٥ 
 

One can easily see that 
 

														
−1
ߨ2݅

	 න
1	 + ݖݐ	

–	ݖ) 	1)(ݐ	 + (ଶݐ	

ஶ

ିஶ

log(2ߨ)݀ݐ	 =
1
2
log(2ߨ).																										(330)	

It follows from (327), (329), and (330) that Π(ݖ)	 has the form 
 

					Π(ݖ) 	=ෑ൤൬
ܽ	௞ାଵ + ݖ	
ܽ௞ାଵ	– ݖ	

൰ ൬
ܽ௞	 − ݖ	
ܽ௞	 + ݖ	

൰൨
୪୭୥(ଵି௕ೖఓ)

ଶ୧஠
௡ିଵ

௞ୀ଴

, ݖॅ > 	0.																							(331)	

 
Next, we prove the main result of this section. 
Theorem (6.3.15)[1]: The bounded positive definite and invertible operator ܵ, 
whichis defined by formulas (260) and (322), does not admit a left triangular  
factorization. 
Proof .  Taking into account   Lemma (6.3.7) and relations (297), (325), and 
(326) we have 
 
				 lim
௫೙→ஶ

,௡ݔ)ଵ,ଶݓ (ݖ = ,(ݖ)Πܥ−	 	ݖॅ > 	0, 	ܥ = 	1/ඥ(1	– 	(332)																	.(ߤ	

 
 
Now, we use the following relations 
 

																		 lim
௬→ା଴

൬
	ܽ௞ାଵ − ݕ݅	
ܽ௞ାଵ 	+ ݕ݅	

൰ ൬
ܽ௞ + ݕ݅	
ܽ௞ 	− ݕ݅	

൰ 		= 	1, ݇	 > 	0,																								(333)	

 

																	 lim
௬→ା଴

൬
	ܽ௞ାଵ − ݕ݅	
ܽ௞ାଵ 	+ ݕ݅	

൰ ൬
ܽ௞ + ݕ݅	
ܽ௞ 	− ݕ݅	

൰ 		= 	−1, ݇ = 	0.																							(334) 

Formulas (331), (333), and (334) imply that 
 
																				 lim

௬→ା଴
Π(݅ݕ) 	= 	ඥ(1	– 	(335)																																																																			.(ߤ	

Suppose that the operator S admits a factorization. It follows from the 
asymptotics of sinus integral (see [3], Ch. 9, formulas (2) and (10)), that the 
kernel ℎ(ݔ),	defined by formula (322), satisfies conditions (299). Hence, the 
conditions of   Lemma (6.3.8) are fulfilled. Comparing formulas (313) and 
(332), we see that 
 
								−	 lim

௬→ା଴
തതതതതതതതതത(ݕଓ−)ܩ 	= 	−1/(1	 − (ߤ	 ≠ 	ܥ	−	 lim

௬→ା଴
Π(݅ݕ) 	= 	−1.																	(336)	

 
Hence, the relation (313) is not true. According to Proposition (6.3.9) the 
operator ܵ does not admit a factorization. The theorem is proved.            □ 



٢٠٦ 
 

   Let the nest ܰ	be the family of subspaces 	ܳకܮଶ(0,∞). The corresponding   
nest algebra  ݈݃ܣ(ܰ)  is the algebra of all linear bounded operators in the 
space		ܮଶ(0,∞)	for which every subspace from ܰ	is an invariant subspace. Put 
ேܦ =   is		ேܦ The set ܰ has multiplicity one if the diagonal .∗(ܰ)݈݃ܣ⋂(ܰ)݈݃ܣ	
abelian, that is, ܦே		 is a commutative algebra. We can see that the lower 
triangular operators 	ܵି	form the algebra ݈݃ܣ(ܰ), the corresponding diagonal 
  is abelian, and it consists of the commutative operators	ேܦ
                           ఝ݂ܶ	 = ݂									,		݂(ݔ)߮ ∈ 	(337)																																									ଶ(0,∞),ܮ
where ߮(ݔ)		is bounded. Hence, the introduced nest ܰ  has the multiplicity 
Ringrose Problem. Let ܰ  be a multiplicity one nest and ܶ  be a bounded 
invertible operator. Is ܶܰ  necessarily multiplicity one nest? 
   We obtain a concrete counterexample to Ringrose’s hypothesis. 
Proposition (6.3.16)[1]: Let the positive definite, invertible operator ܵ	 be 
defined by the relations (260) and (322). The set ܵଵ/ଶܰ	 fails to have 
multiplicity 1. 
Proof . We use the well-known result (see [4], p. 169): The following assertions 
are equivalent: 
1. The positive definite, invertible operator  ܶ admits factorization. 
2. ܶଵ/ଶ		 preserves  the multiplicity of 	ܰ.	
   We stress that in our case the set  ܰ	 = 	ܳకܮଶ(0,∞) is fixed.) The operator ܵ  
does not admit the factorization. Therefore, the set ܵଵ/ଶܰ fails to have 
multiplicity 1. The proposition is proved.                                            □ 
Next, consider the operator 

																				ܸ	݂	 = 	න ݁ି(௫ା௬)݂(ݕ)݀ݕ
௫

଴

		 , (ݔ)݂ ∈ 	(338)																							ଶ(0,∞).ܮ

An operator is said to be hyperintransitive if its lattice of invariant subspaces 
contains a multiplicity one nest. Note that the lattice of invariant subspaces of 
the operator ܸ coincides with ܰ, see [9] and [23] (Ch. 11, Theorem 150). Hence 
we deduce the answer to Kadison-Singer [6] and to Gohberg-Krein [5] question. 
Corollary (6.3.17)[1]: The operator ܹ	 = 	ܵଵ/ଶܸ	ܵିଵ/ଶ is a non-
hyperintransitive compact operator. 
   Indeed, the lattice of the invariant subspaces of the operator ܹ coincides 
With   ܵଵ/ଶܰ. 
Corollary (6.3.18)[232]: Let relation (306) be  true. Then we have 
 

			 lim
௫೙→ஶ

෍ (௡ݔ)௠ାଵݍ
௠∈୾

	=
1

ඥ1	 ௠ߤ	−
												.																												

 
Proof.  In view of (269), (272), and (298) we get 
 
             ∑ ௠∈୾(ݔ)௠ାଶݍ 	= 	∑ ௠∈୾(ݔ)௠ାଵݍ) (1	 	௠)/2ߤ	− + 	ܳ௠(ݔ)).					
 



٢٠٧ 
 

Taking into account the relation ݍ௠ାଵ(ݔ)ݍ௠ାଶ(ݔ) = 1/2			(see [19], formulas 
(53) and (56)),  we obtain the equality 
 
         1/2	 = 	∑ ௠ାଵݍ

ଶ ௠∈୾(ݔ) (1	 		௠)/2ߤ	− + 	∑ ௠∈୾(ݔ)௠ܳ(ݔ)௠ାଵݍ .				
 
Formula (307) follows directly from (306), (309), and inequality  
(ݔ)௠ାଵݍ  > 	0.                                                                                         □	
It follows from (278) and (307) that 
 

		෍ ܶ௠(ݔ௡)
௠∈୾

→ ෍ ൤ ௠ܥ ௠ܥ−
௠ܥ1/2 ௠ܥ1/2

൨	
௠∈୾

			 , ௡ݔ		 → ∞,			 ෍ ௠ܥ = 	1/ඥ(1	–	ߤ௠)
௠∈୾

.	 

 
Hence, in view of (291), (292), (294), and (310) the following assertion is true. 
Corollary (6.3.19)[232]: Suppose that the operator ܵ admits a factorization. 
Then we have 

													 lim
కೕ→ஶ

݁ି௜௭ೕకೕ ,௝ߦଵ,ଶ൫ݓ ௝൯ݖ = ௝ݖॅ					,௝൯ݖ൫ܩ	 	< 	0,	

 
												 lim

కೕ→ஶ
,௝ߦଵ,ଶ൫ݓ ௝൯ݖ = ௝ݖॅ												,ఫഥ൯തതതതതതതݖ൫ܩ−	 	> 	0.							

Where 

(ݖ)ܩ		 =
1

(1	 − (ߤ	
൥1	 − ௝ݖ݅	 	න 	݁ି௜௭ೕ௫ݎ௝(ݔ)݀ݔ

ஶ

଴

൩ , (ݔ)௝ݎ = 	 ܵିଵݍ௝(ݔ).	

Proof .  According to (268) we ℎܽ݁ݒ	ܵିିଵ 	= 	ܫ	 + 	ܸି ,	 where	ܸି 	is defined by 
(267). Hence, the operator function ܵకೕ

ିଵ		 strongly converges to the 
operator			ܵିଵ	 when ߦ௝ → ∞. Then the function ݎ௝కೕ(ݔ) 	= ܵకೕ

ିଵ	ݍ௝(ݔ) strongly 

converges to ݎ௝(ݔ) = 	 			ܵିଵݍ௝(ݔ), when  ߦ௝ → ∞  and (ݔ)ݎ ∈   		.ଶ(0,∞)ܮ
 
 

  

 
 

  


