Chapter 5
Strong Convergence Theorems and Viscosity Approximation with
Iterative Methods

In this chapter we consider the problem of finding a common fixed point of a
nonexpansive mapping and a strictly pseudocontractive mapping and the
problem of finding a common element of the set of fixed points of a
nonexpansive mapping and the set of zeros of an inverse-strongly monotone
mapping. It is shown that {x,,} converges strongly to a common element of the
set of fixed points of nonexpansive mapping and the set of solutions of the
variational inequality for an inverse strongly-monotone mapping which solves
some variational inequality. The explicit and implicit iterative algorithms are
proposed by virtue of the general iterative method with strongly positive
operators. Under two sets of quite mild conditions, we show the strong
convergence of these explicit and implicit iterative algorithms to the unique
common element of the set of fixed points of a nonexpansive mapping and the
set of solutions of the general variational inequality problem, respectively.

Sec (5.1): Strong Convergence Theorems for Nonexpansive
Mappings and Inverse-Strongly Monotone Mappings

Let C be a closed convex subset of a real Hilbert space H and let P, be the
metric projection of H onto C. A mapping A of C into H s called
monotone if for all x,y € C,(x — y,Ax — Ay) = 0. The variational
inequality problem is to finda u € C such that

(v — w,Au) =0
for all v € C; see [81,82,83,86,91]. The set of solutions of the variational
inequality is denoted by V I(C,A). A mapping Aof C into H is called
inverse-strongly monotone if  there exists a positive real number a such that
(x — y,Ax - Ay) = allAx — Ayl|®
for all x,y € C; see [56,85,57,87]. For such a case, Ais called a-inverse-
strongly monotone. A mapping S of C into it self is called nonexpansive if
[Sx - Sy || <llx =
for all x,y € C; see [90,92,76] for the results of nonexpansive mappings. We
denote by F(S) the set of fixed points of S.
In this section , we introduce an iterative scheme for finding a common
element of the set of fixed points of a non expansive mapping and the set of
solutions of the variational inequality for an inverse-strongly monotone mapping
in a real Hilbert space. Then we show that the sequence converges strongly to a
common element of two sets. Using this result, we first obtain a strong
convergence theorem for finding a common fixed point of a nonexpansive
mapping and a strictly pseudocontractive mapping. Further, we consider the
problem of finding a common element of the set of fixed points of a
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nonexpansive mapping and the set of zeros of an inverse-strongly monotone
mapping.

Let H be a real Hilbert space with inner product (.,.) and norm || .||, and let C
be a closed convex subset of HWe write x, — x to indicate that the
sequence { x, } converges weakly to x. X, = x 1implies that

{ x,, } converges strongly to x. For every point x € H, there exists a unique
nearest point in C, denoted by P.x, such that ||x — Pcx]|| < |lx — y|| for all
y € C. P. is called the metric projection of H onto C .We know that P, is a
nonexpansive mapping of H onto C. It is also known that P.satisfies

(x — y,Pcx — Pcy) = ||Pcx — Pcyll? (1)
For every x,y € H. Moreover, Pcx 1is characterized by the properties:
Pcx € C and (x — Pcx,Pcx —y) =0 for all y € C. In the context of the
variational inequality problem, this implies that

u € VI, ,A) & u = P:(u — AAu), V1> 0. (2)
It is also known that H satisfies Opial’s condition [78], i.e., for any sequence
{ x, } with x,, — x the inequality

lim,, inf”xn - x|| < lim,,_, inf”xn - y||
holds forevery y € Hwithy # x .
We state some examples for inverse-strongly monotone mappings. If

A =1 — T, where T is a nonexpansive mapping of C into itself and [ is the
identity mapping of H,then Ais 1/2-inverse-strongly monotone and
VI(C,A) = F(T). A mapping A of C into H is called strongly monotone if

there exists a positive real number 1 such that (x — y,Ax-Ay) >
nllx — y||* for all x,y € C. In such a case, we say that A is 7 -strongly
monotone. If A is n-strongly monotone and k-Lipschitz continuous, 1.e.,
|Ax — Ay|| < k|lx — y|| for allx,y € C,then A is n/k? -inverse-strongly
monotone.
If A is an a-inverse-strongly monotone mapping of C into H, then it is obvious
that A 1s 1/a -Lipschitz continuous.We also have that for all x,y € C and
A>0,
10— 24)x — (I — 24112 = ll(x — y) — A(Ax — Ap)|I2

=llx — ylI> = 24(x — y,Ax — Ay) + 2*[lAx — Ay|I®

<llx = ¥lI> + 22 - 2a)llAx — Ayll*. (3)
So, 1f A < 2a ,then ] — AA is a nonexpansive mapping of C into H.
A set-valued mapping T : H —» 2 is called monotone if for all x,y € H,
f€Tx and g € Ty imply (x — y,f — g) = 0.A monotone mapping
T :H — 2" is maximal if the graph G(T ) of T is not properly contained in
the graph of any other monotone mapping. It is known that a monotone mapping
T is maximal if and only if for (x,f) € H X H,(x — y,f — g) = 0 for every
(y,8) € G(T) implies f € Tx. Let Abe an inverse-strongly monotone
mapping of € into H and let Nov be the normal cone to C atv € C,i.e.,
Nev ={w € H: (v — u,w) =0, Yu € C}, and define



Av + Ncv, v € C,
v = {(D, ve C.
Then T is maximal monotone and 0 € T v ifandonly if v € VI(C,A); see
[88,89].
In this section, we prove a strong convergence theorem for nonexpansive
mappings and inverse-strongly monotone mappings.
Theorem (5.1.1)[67]: Let C be a closed convex subset of a real Hilbert space H.
Let A be an a-inverse-strongly monotone mapping of C into H and let S be a
nonexpansive mapping of C into itself such that F(S) n VI(C,A) # Q.
Suppose x; = x € C and { x,} is given by
Xp+1 = a,x + (1 — a,)SP:(x, — A,Ax;,)
foreveryn = 1, 2,..., where {a,,} is a sequence in [0, 1) and { 4,, } is a sequence
in [0,2«a]. If {a,} and {7, } are chosen so that A, € [a,b] for some a,b
with0 <a <b < 2a,

lima,=0, ) a, =0, ) |ay1 —a,| <o and ) 1,11 —,| < o,
then { x,} converges strongly to Pr(synvi(c,a)X -
Proof .
Put y,, = Pc(x,, — A,Ax,) foreveryn=1,2,....Let u € F(S) NV I(C,A).
Since I — A,A is nonexpansive and u = P.(u — A,Au) from (2), we have

lyn — ull = lPc(xp — ApAx,) — Pc(u — A Au)|
< G — Apdxy) — (u — L AW < |lx, — ull
foreveryn = 1,2,.... Then we have

lx; — ull = llaxx + (1 — ay)Sy: — ull
Saqflx —ull + (1 = a)llSy: — ul
allx —ull + (1 = a)lly: — ull
allx —ul[+ (1 = a)llx — ufl
lx — ull .
If [|x,—ul <|lx —u|]l holds for some k € N, we can similarly show
| e —ull < llx —ull.
Therefore, {x,} is bounded. Hence {y,}, {Sy,} and {Ax,} are also bounded.
Since I — A,A is nonexpansive,
we also have
Iy ne1 = Wull = [IPcC 1 = Ans14% 1) — Pe(xn — Apdxy)|
SN 1 = Ans1AX ne1) — (o — 2Ax) |
= 1% nt1 = 18X ne1) — (= Anr1dx) + Ay — Apr) Axyll
SN 1 = 214X ne1) — (n = Ap1Ax) |+ 140 — A l[Axg I
Slxner — xll=n + (24 — Apga[llAxl (4)
foreveryn = 1,2,....So, we obtain

[ IAIA

|| x n+1 T xn” = ”(anx + (1 —ay)Syn) — (@p—1x + (1 — an—l)Syn—l)”

= ”(an - an—l)(x - Syn—l) + (1 — ap)( Sy, — Syn—l)“
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<lap — an_1lllx = Syn—1ll + (4 = a)lISyn — Syn_1ll

<lap — an_qlllx — Syn_all + (1 — ap)llyn — Yn-all

< |an - an—l”lx - Syn—1|| + (1 - an)(”xn - xn—l”

+ A — An—1 [Ax 1 1l)

< (1 - an)”xn - xn—l” + Ml/ln _An—ll + Llan - an—ll
for every n=1,2,...,where L =sup{|l[x —Sy,|[: n € N} and M =
sup{||Ax,|| : n € N}. By mathematical induction, we have

n+m-1

lnsmsr = Xnimll < 1_[ (1 = @es) Imsr = o Il +

n+m-1 n+m-1

M Z Airs = Dl + L Z @1 =

foreveryn,m = 1, 2 .. So, we obtain
limy, oo SUP[IX iy - x|l = lim Sup”xn+m+1 - xn+m”

(0]

Z Aues = Al + L Z @ers =

k=m k=m
for every m=1,2,... Since Yo, |pe1 — ap| < @and Yp_; [Apyr — An| < 0 We
obtain

lim,, sup||x nel— xn” <0

and hence

limn_m”x nel — xn” = 0.

From (4) and X%, |11 — A,| < o , we also obtain ||y 41 — Vnll = 0. Since
“xn Syn” < “xn - Syn—lll + “ Syn—l - Syn”

< apoqllx = Syn_all + [y n-1— wull
we have|lx, — Sy,ll = 0 .Foru € F(S) n VI(C,A), from (3), we obtain

1 s = ull? = || @nx + (- @)Syn — o]’
apllx —w [I? + (1 = a) ISy, — ull?
apllx —w [I? + (1 = ap) lly, — ull®
an”x —u ”2 + (1 - an){”xn - u”2 + An(/ln - Za)llen - Au||2}
apllx = w [I? + 2, —ull® + (1 = ap)a(b — 2a)||Ax, — Aull|*.
Therefore, we have
—(1 —a,)alb — 2a)||Ax,, — Aul|?
< apllx —ull® + llx — ull® = x40 — ull?
anllx —wll? + (llxy — ull + X541 — ull)
(lxen = ull = llxpg1 — ull)
anllx = w |17 + (lxy = ull = llon41 = ull) X 12, = 2p44l.
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Since a,, = 0and ||x,,;; — x,,|| = 0, we obtain [|Ax,, — Au|| = 0. From (1),
we have
oy — ull 2 = |Pc(xp — ApAxy) — Pc(u — AnAu)HZ
< ((xp — A Axy) — (u — 1, Au),y, — u)

— % { ||(xn - AnAxn) — (u - AnAu)”2 + |y, — ull?
2
—||(xn - AnAxn) — (u - AnAu) - (y, — u)|| }

1
< E {“xn - u”2 + “yn - u” 2 — ”(xn - yn) - An(Axn - Au)” 2}

= (Il = ull? + Ilyn = ull 2 = lln = yull?

+24 X — Y, Axp — Au) — Anzllen — Aull® }.
So, we obtain

“yn - u” 2 < “xn - u”2 - “xn - ynllz + ZAn(xn —Vn» Axn - Au)

= | Axy — Aull?
and hence
ltnes —ull® = || @nx + (1= @)Syn — ul’

< apllx —u 1> + (1 = a) ISy, —ull?

< apllx —u 1> + (1 = ap)lly, — ull?

< apllx —u (17 + [l — ull® = (1 = a)llx, — yull?

+2(1 - ap) (X — Yo, Axp — Au) — (1 - ay) 5" |Ax, — Aul|%
Since a, = 0 ,||lxp41 — x,l| = 0, and ||Ax,, — Au|| — 0, we obtain [|x,, —
Yn|| = 0, Since ISy = Yull < 1Sy — xpll + [ — yull , we obtain ||y, —

Yull = 0.
Next we show that

lim sup (x — z5,Sy, — 2z, ) <0,

n—oo

where zo = Pp(s)nvic,a)X -To show it, choose a subsequence {yy } of {y,}
such that

lim sup(x — zo,S5y, — 2o )= lim(x — 25,8y, — 7y ).

n—oo [—o00

As {yp}is bounded, we have that a subsequence {ym-j} of {yy, Jconverges

weakly to z. We may assume without loss of generality that y, — z. Since
ISy — ¥ull = 0, we obtain Sy, — z. Then we can obtain z € F(S) N
V I(C, A). In fact, let us first show that z € V I(C, A). Let
T :{Av-l-NCU, v € C,
@, vé C.
Then T is maximal monotone . Let (v,w) € G(T ). Since w — Av €
Ncvandy ,, € C,
we have
(v — yp,w — Av) = 0.
On the other hand, from y ,, = P.(x,, — 4,, Ax,), we have
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(U —Yn'¥Yn — (xn _AnAxn))ZO’

and hence

<v — yn,y’;lx”+Axn>2 0.

Therefore, we have
(v - Ynp» w) = (v - Yn;» Av)

2 (v - yni»Av) - <v - yni iynli_xni +Axni>
Y =g,
= <v— Y AV — Axy, —%>
= (V= Y, AV — Ay 3,) + (V= Y, AY n, — AXy))

<’U y y‘ni _xni>
n; Ani
y‘ni _xni>

2 (U - yni'Ayni - Axni) - <U - yTli ) An-

Hence we obtain (v — z,w) = 0asi — oo.Since T is maximal monotone, we
have z € T710 and hence z € V I(C,A). Let us show that z € F(S). Assume
z & F(S).From Opial’s condition, we have

lim;_, o inf”y n — Z|| < lim;_, o inf”yni — Sz”

= lim;_, e inf ||y, — Syn, + Syn, —Sz|
= lim inf”Syni —SZ|| < lim inf”yni — Z||
i—o00 {—o00
This is a contradiction. Thus, we obtain z € F(S). Then we have
limy e SUP (X — 2o, SYn — Zo) = lim (x — 2y, Syn, — 2o)
n—oo
= (x — 29,2 — zy) < 0.

Therefore, for any € > 0, there exists m € N such that

(x — 29,Syn — zg) < ¢, anllx — Zo“2 <€
for all n > m. For all n > m.we have
”xn+1 - ZO”2 = ”anx + (1 — a,)Sy, — ZO”2

= “121“95 - Zo“2 + 2a,(1 — ay){x — 2o, Syn — Zo)
+ (1 - an)zllsyn - ZO”2
< ape+ 2a,(1 — ay)e+ (1 — ap)lISy, — ZO”2
<3apet+ (1 — a))llSy, — ZO”2
< 3afng + (1 - an)”xn - ZO”2
=3e(1 = (1 — ap) + (1 = apllx, — 2zl

By mathematical induction, we obtain

n n
tne1 = 2oll? < 3e<1— [[a- a@) ] a = @t - 2.
k=m k=m

Therefore, we have
lim sup||x,+1 — Zll* < 3¢ .
n—oo
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Since € > 0 is arbitrary, we have limsup,_e|lX,+1 — Zoll> < 0 and hence
Xn = Z : m
Remark(5.1.2)[67]: We obtain Wittmann’s theorem [94] if A = 0 in Theorem
(5.1.1); see also [84]. Takahashi and Toyoda [93] considered Mann’s type
iteration:

{ x; = x € C,

Xn+1 = AnXp + (1 — ap)SPc(xy — AnAxy),

and obtained that the sequence {x,} converges weakly to z € F(S) N
VI, A).
As a direct consequence of Theorem (5.1.1), we obtain the following:
Corollary (5.1.3)[67]: Let C be a closed convex subset of a real Hilbert space
H. Let Abe an a-inverse-strongly monotone mapping of C into H such that
VI(C,A) # @.Suppose x; = x € C and {x,} is given by

Xnt1 = X + (1 — ap)Pc(xn — ApAxy)

For every n=1,2,..., where {a,}is a sequence in [0,1)and {A,}is a
sequence in [0, 2a]. If {a,} and {A,} are chosen so that A,, € [a, b] for some
a,b with0<a <b < 2a,

[ee] [ee] [ee]
Tlll_r)gloan = O,Z A, = OO,ZIanH —a,| <o andZI/lnH — Ay < o0,
n=1 n=1 n=1

Then {x,} converges strongly to Py;(¢ 4)X.
In this section, we prove two theorems in a real Hilbert space by using
Theorem(5.1.1).A mapping T : C — C 1is called strictly pseudocontractive if
there exists k with 0 < k < 1 such that

ITx — TylI2 < llx — ylIZ + kIl = T)x — (I — T)yll?
for all x,y € C.If k = 0, then T is nonexpansive. Put A = I — T, where
T:C - C 1s a strictly pseudocontractive mapping with k. Then Ais (1 —
k) /2-inverse-strongly monotone; see [56]. Actually, we have, for all x,y € C,

10— A)x — (I — AylI?<llx — yI? + kllAx — Ay|1?.
On the other hand, since H is a real Hilbert space, we have

I —Dx —d = DylZ=llx = ylI*+ lAx — AyllI> — 2(x — y,Ax — Ay)

Hence we have
1-k
(x — y,Ax — Ay) 2z ——lAx — AylI*.
Using Theorem (5.1.1), we first prove a strong convergence theorem for finding
a common fixed point of a nonexpansive mapping and a strictly
pseudocontractive mapping.
Theorem (5.1.4)[67]: Let C be a closed convex subset of a real Hilbert space H.
Let S be a nonexpansive mapping of C into itself and letT be a k-strictly
pseudocontractive mapping of C into itself such that F(S) N F(T) #@.
Suppose x; = x € C and {x,}is given by
Xn+1 = ApX + (1 = ap)S((1 = Ap)xn + AT xp)
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For everyn = 1, 2,..., where {«, } is a sequence in [0, 1) and {4,,} is a sequence
in [0,1 —k]. If {a,} and {A,} are chosen so that A,, € [a,b] for some a,b
with0<a <b<1 -k,

[ee] [ee] [ee]
7111_{20“" = O,Z a, = °°:Z|an+1 —a,| <o andZI/lnH — A, < oo,
n=1 n=1 n=1

then {x,} converges strongly to Pr(s)np(1)X-
Proof. Put A = I — T .Then A 1s (1 — k)/2-inverse-strongly monotone.We
have F(T) =V I(C,A) and Pc(x, — A,Ax,) = (1 — A1)x, + A, T x,. So, by
Theorem (5.1.1), we obtain the desired result. O
Using Theorem (5.1.1), we also have the following:
Theorem (5.1.5)[67]: Let H be a real Hilbert space. Let A be an a-inverse-
strongly monotone mapping of H into itself and let S be a nonexpansive
mapping of H into itself such that F(S) N A™10 # @. Suppose x; = x € H
and {x,} is given by

Xnt1 = apX + (1 — a)S(x, — AxAxy)
for every n=1,2,...,, where {a,} is a sequence in[0,1) and {A,} is a
sequence in [0, 2«]. If {a,,} and {A,,} are chosen so that A,, € [a, b] for some
a,b with 0<a <b<2a,

lim a,, = O,Z a, = OO,ZIanH —a,| <o andZI/lnH — Al < 0,
" n=1 n=1 n=1
then {x,}converges strongly to Pp(syng-10%-

Proof. We have A~10 = V I(H, A). So, putting Py = I,by Theorem (5.1.1),
we obtain the desired result. O

Sec(5.2): Viscosity Approximation Methods for Nonexpansive
Mappings and Monotone Mappings

Let C be a closed convex subset of a real Hilbert space H and let P be the
metric projection of H onto C. Recall that a self-mapping f: C - C is a
contraction on C if there is a constant k € (0,1) such that

If ) —F Il < kllx —yll, xy€C.
[1; denotes the set of all contractions on C. Note that f has a unique fixed point

in C.

A mapping A of C into H is called monotone if (Au — Av,u — v) = 0, for
allu,v € C.The variational inequality problem is to find u € C such that
(Au,v — u) =0 for all v € C (Refs. [56,75]). The set of solutions of the
variational inequality is denoted by VI(C,A). A mapping A of C to H is called
inverse-strongly monotone if there exists a positive real number a such that

(x —y,Ax — Ay) = allAx — Ay||?
forall x,y € C.Forsucha case, A is a-inverse-strongly monotone.
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A mapping Sof C into itself is called nonexpansive if |[[Sx — Sy| <
lx — yl|| for all x,y € C (Ref. [76]). We denoted by F(S) the set of fixed
points of S.

The viscosity approximation method of selecting a particular fixed point of
given nonexpansive mapping was proposed by Moudafi [62] who proved the
following strong convergence of both the implicit and explicit methods in
Hilbert space.

Theorem (5.2.1)[68]: In a Hilbert space define {x,} by implicit way

&n
T xn + f ),

1+ey, 1+ey,
where ¢, is a sequence in (0,1) tending to zero. Then {x,,} converges strongly
to the unique solution ¥ € C of the variational inequality

(I — f)X,x—x)<0.
In other words, ¥ is the unique fixed point of Ppiycryf .
Theorem(5.2.2)[68]: In a Hilbert space define {x,,} by (x o € C is arbitrary)

€n
Tx, + f (xn),

&n 1+¢&,
Suppose that {&,,} satisfies the conditions
(0]

lim ¢, = 0, zen=00; lim

n—oo n—oo

1
Xn+1 = 1t

1 1

€n  &n-1

= 0.

n=1
Then {x,} converges strongly to the unique solution ¥ € C of the variational
inequality

(I — f)x, x—x)<0.
In other words, X is the unique fixed point of Prixr)f -

Very recently Xu [63] studied the viscosity approximation methods proposed
by Moudafi [62] for a nonexpansive mapping in a Hilbert space. He proved the
following theorems.

Theorem (5.2.3)[68]: (see Xu[63,theorem 3.1].) Let H be a Hilbert space, C a
closed convex subset of H, and T : C — C a nonexpansive mapping with
F(T) # @and f € IlI.. Let{x; } be given by

X =tf (x)+ (11— )T x,, te€ (0,1).
Then:
(i) s—lim;,ox; =: X exists;
(ii) x = Psf (%), or equivalently, X is the unique solution in F(T ) to the
variational inequality

(I - f)x,x— x)=0, x€ S,

where S = F(T ) and Pg is the metric projection from H to S.
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Theorem (5.2.4)[68]: (see Xu [63,theorem 3.2].) Let H be a Hilbert space, C a
closed convex subset of H, and T : C — C a nonexpansive mapping with
F(T)+# @,and f : C — C a contraction.
Let {x,}be given by
Xo€ C, xpp1=0apf (xp))+A —a,)T x,,, n= 0.
Then under the following hypotheses
(H1) a,, = O;
(H2) Y=oy = ©;
(H3)either Y.o_ol@ns1 — an| < oo or lim,,_ a;“ =1,

n
X, — X, where X 1is the unique solution of the variational inequality

(I - f)x,x— %X)=0, x€ S.

In this section, we introduce an iterative scheme by viscosity approximation
method for finding a common element of the set of fixed points of a
nonexpansive mapping and the set of solutions of the variational inequalities for
an inverse-strongly monotone mapping in a real Hilbert space. Then we show
that the sequence converges strongly to a common element of two sets which
solves some variational inequality. Using this results, we first obtain a strong
convergence theorem for finding a common fixed point of a nonexpansive
mapping and a strictly pseudocontractive mapping. Further, we consider the
problem finding a common element of the set of fixed points of a nonexpansive
mapping and the set of zeros of an inverse-strongly monotone mapping.

Let H be a real Hilbert space with inner product (. , .) and norm [|-||, and
let C be a closed convex subset of H. We write x,, — x to indicate that the
sequence {x,} converges weakly to x. x,, — x implies that {x,} converges
strongly to x. For every point x € H, there exists a unique nearest point in C,
denoted by P.x, such that

lIx = Pexll < llx —yll,
for all y € C. P; is called the metric projection of H to C. It is well known
that P, satisfies

(x —y,Pcx —Pcy) 2 |IPcx —Pcyll? ()
for every x,y € H, and P, is characterized by the following properties:
lx = ¥ 12 = llx — Pexll 2+ lly — PexlI® (7)

forallx € H,y € C.In the context of the variational inequality problem,
This 1mplies

u € VI(C,A) & u = P;(u—AAu), VA > 0. (8)
It is well known that H satisfies the Opial condition (Ref. [78]), i.e., for any
sequence {x, }with x,, — x the inequality

lim,,_,, inf ||x, — x|| < lim,_ inf||lx, — y||
holds for every y € H withy # x. If A is an a-inverse-strongly monotone
mapping of C to H, then it is obvious that A4 is %-Lipschitz continuous. We also

have that forall x,y € C and 1 > 0,
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1T = 28)x — (I = 2A)ylI? = ll(x —y) — A(Ax — AN)II®
= llx —ylI* — 2Ax —y,Ax — Ay} + 2*|lAx — Ayl|®
<llx —ylI* + 22 = 2a)|lAx — Ayll*.
So,1f A < 2a, then] — AA is a nonexpansive mapping of C into H.

A set-valued mapping T : H — 2" is called monotone if for all x,y €
H,f € Tx and g € Ty imply (x — y,f — g) = 0. A monotone mapping
T :H — 2 is maximal if graph G(T ) of T is not properly contained in the
graph of any other monotone mapping. It is known that a monotone mapping T
is maximal if and only if for (x,f) € H X H,{x — y,f — g) = 0 for every
(y,8) €G(T) 1mpliesf € Tx. Let A is an inverse-strongly monotone
mapping of C to H and let N.v be normal cone to C at v € C, 1e.,
Nev={w € H: (v —u,w) =20, Vu € C}, and define

_ (Av + N¢v, v EeC ,
v _{ 0, ve C,
then T 1s maximal monotone and 0 € T vif and only if v € VI(C,A) (Ref.
[78]).
Lemma (5.2.5)[68]: (see Goebel and Kirk [79]) Let C be a closed convex
subset of a real Hilbert space H and let T : C — C be a nonexpansive mapping
such that Fix(T) # @. If a sequence {x,}in C is such that x,, — z and
Xp —Tx, >0,then z =T z.
Lemma (5.2.6)[68]: (see Xu [80].) Let {s,} be a sequence of nonnegative real
numbers such that:

Spe1 < (1 —A)sp+Bn, n=0,

where {1,,}, {8} satisfy the condition

(D) {A4n} © (0, and Yp_1 4y = 0,
(i) lim,,_, supﬁ—" < 0or Yo—q|Bnl < co.
Then lim,_,, s, = 0.
Proposition (5.2.7)[68]: Let C be a closed convex subset of a real Hilbert space
H. Let f: C - C be a contraction with coefficient k (0 < k < 1), Aan a-
inverse-strongly monotone mapping of C to H and let S be a nonexpansive
mapping of C into itself such that F(S) NVI(C,A) # @. Suppose {x,} be
sequences generated by

Xo € €, xXpy1 = anf (xn) + (1 — ap)SPc(xn — AnAxy)
for every n = 0,1,2,..., where {4,} < [a,b] and{a,} is a sequence in
(0,1).1f {a,}and {1,,} are chosen so that A, € [a,b] for some a,b with
0<a <b<2aq,

(0.0] (0.0]
lim @, =0, @y =0, Y |@nsy =&l <0, Ay —Anial <,
n—-oo

n=1 n=1
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then {x,,} converges strongly to g € F(S) n VI(C,A), which is the unique
solution in the F(S) N VI(C, A) to the following variational inequality
(d = flaq —p)<0, pe F(S) nVICA).
Proof. Put y, = P-(x,, — A,A4x,) foreveryn = 0,1,2,....Let u € F(S) n
VI(C,A). We have
v = | = ||Pc(xen = AnAxn) — Pe(u — 2,A0)||
< [[Gen = 2p4x,) — (u — A, AW)|
< loen — ull
foreveryn = 1,2,3,.... Then we have
% ny1 —ull = ”anf (xp) + (1 - an)Syn - u”
< apllf () —ull + (1 - ) ISy, — ull
S anllf ) = F @I+ anllf ) = ull + (1= ap)lly, —ull
< apkl|x, —ul| + (1 -an)l|xn - u|| + @nllf @) —ull
(1= (1-k)an)llxn - ull + an|lf (-]

< max {llx, —ull, = IIf (@) —ull}.

A

By induction,
1
e — ull < max{ lixo — ull, 25 If @ = wll}, n2 0.
Therefore, {x,} is bounded, {v,}, {Sy,.}, {Ax,}, {f (x;,)} are also bounded. Since
I — A,A is nonexpansive and u = P;(u — 1,Au), we also have

|y n+1 = Yull S 1 i1 — 414X n1) — (0 — ApA xp)|
S MK pt1 = Anr14x pi1) — (X — App1Axp)l + A — Apia|llAxy ||
S %1 — X [+ (A0 = AppalllAxp |l

foreveryn = 1,2,3,....So we obtain
1% ne1 — 20 Il = llanf () + (1 -an)Syy,

—ap_1f (1) — (1 — ap_1)Syn_q |l

= ”(an _an—l)(f (Xp—1) — SYn-1) + (1 _an)(syn — Syn-1)

+ an(f (xp) — f (xn—l))”

<lan — an_1lllf (tn-1) = Syn-all + A —a)llyn — Yn-1ll

+ ankllx, — xp_4ll

< (1_an)(”xn_xn—1” + Mn—l _AnHlen—lll)

+ |y — an_qlllf (cp—1) = Syn-1ll + arkllx, — xp_4l|

<A -1 —a)llxy — xqqll + LAy — Apoq| + Mlay, — a4
for everyn = 0,1,2,..., where L = sup{||f (x,)- Syn_1|:n € N}, M =
Sup{”Axn“:n € N}, since Z%O=1|/1n_/1n+1| < 00, Yooy —ap_q| <
in view of Lemma (5.2.6), we have lim,,»||x ,+1 — X,l| = 0. Then we also
obtain ||yp41 — Yull =0

“xn - Syn” < “xn - Syn—lll + ”Syn—l - Syn”

= an—l”f (xn—l) - Syn—lll + “yn—l - yn”;
we have |[x, — Sy,|l = 0.Foru € F(S) n VI(C, A),
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2 2
”x n+1 - u” = ”anf (xn) + (1 - an)Syn _u”

< apllf (xn) — u”2 + (1 —ap)llyn - u”2
< an”f (xn) _u”Z +(1 _an)[”xn_ullz + (A, - Za)llen _Au”z]

< anllf (o) —ull® + I, —ull®* + (1 — ap)ald —2a)||Ax, — Aull®.
So, we obtain
—(1 —ap)ad —2a)|Ax, — Aull®
< aullf () — ull® + Ulxn —ull + xpr —ulDUlxn —wll = x40 — ul)
< anllf o) — ull® + Uy —ull + s — ulDlixn = X1l
Since a, — 0 and |[x, — x 41|l = 0, then ||Ax,, — Aul| - 0,n — oo. Further,
from (5), we obtain
Iy — ull® = IPc(n — 20A%y) — Pe(u— A Aw)l|?
< (xXp —ApAx, — (U — A,AW), yp - W)
= 2 {11 Gen ~AnAny) = (= AW
Hlyn —ull®= (= 2,4%,) — (U — A, Au) — (v, — W}
< {llbn = ull? + Iy — ull® = llxy = yall?
+225(Xn — Yo, Axp — Au) — 1% ||Ax, — Aull?}.
So, we obtain
[ e S
+200(% — Yo, AX,, — Au) — A, %||Ax, — Aul|?.
And hence
s = ull® < anllf Gen) = ull? + (1= )|y - u])
< apllf () —ull® + (1 = ap)lly, — ull®
< allf Go) = ull® + llen = ull? = (1 = @)ln =30
+2(1 - an)/ln(xn - yn'Axn _Au) - (1 - an)/lnzllen - Au||2.
Since a, =2 0,|lx,41 —x,l|=0 and ||Ax, —Au|] -0, we obtain
||xn —yn” — 0. Choose a subsequence {yy } of {y,}
such that
lim sup(f (¢) —q,Syn —q) = im(f (@) — q,Syn, — )
As {yn,} is bounded, we have that a subsequence {yn ;}of {yn }Jconverges
weakly to z. We may assume without loss of generality that 1y, — z.

Since [[Sy, — ynll > 0, we obtain Sy, —z. Then we can obtain z €

F(S) n VI(C,A). In fact, let us first show that z € VI(C, A).
Let
_ (Av + N¢v, v e C ,
T”_{w, ve C
Then T 1s maximal monotone. Let (v,w) € G(T ). Since w — Av € N;v
and y,, € C we have
(v —y,,w —Av) = 0.
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On the other hand, from y, = P.(x, — 4,Ax,),we have (v — y .,y —
(x , — A,Ax )) = 0 and hence

(v —yn,ynli+Axn) >0 .

Therefore, we have
(V = Ynp W) Z (v — Yy, AV)

= (U - yni,AU) - <U - yni ’ynil_xni + Axni>
J’n-_xn-l
= <v — Y, AV — Axy, —%>
= (v _yni'Av - Ayni) + (v - Ynp» Ayni - Axni)
yni _xni
— <’U - y n;’ Ani >

yTLi _‘xTLi
> (v — }’ni»Ayni - Axni)_ <U — Vo An, >

Hence we have (v —z,w) = 0 as i = co. Since T is maximal monotone, we
have z € T~10 and hence z € VI(C,A)
2 = Sx ]| < [l =Syl +[|SY 0 = Sx 1|
< “xn - Syn“+”xn_ yn“»

we have ||x ,, — Sx || = 0. In view of Lemma (5.2.5), we obtain z € F(S5)

limy, e sup (f (@) = q,Sy n-q) = limyeo{f (@) = ¢, Syn, — @)

=f@-qz - 1=
| n+1 — 4 ”2 = ”anf (xn) + (1- an)Syn - CI”

= @2[If () -l + 22(1 — @)(f () = 4.5y — @)
+(1 - an)zllsyn - CI||2
< (1 - Zan + anz) “xn - CI||2 + anzllf (xn) - CI||2
+2a, (1 — ap){f (x)-f (q) .Sy —q)
+2a,(1 —a)){f (@) — 4.5y n — @)
<[1 = 2ay + ap?+ 2kan(1-a)]|xn-q |
+an?|If (o) — qll?
+2a,(1 — an){f (@) — 4, 5¥n T q)
= (1— ay)llxy —CI||2 + anBn,

where

X, = a,[2 —a, —2k(1 - a,)],

5 anllf (xn) — CI||2 + 2(1— ay)){f (@) — 4,5y —q)
Bn = 2 — a, — 2k(1—a,) '

It is easily seen that @, — 0, X% . @, = o, and limsup,_cB, <0, by
Lemma (5.2.6) we obtain x ,, = q. This completes the proof. o
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S is a nonexpansive mapping, A is an a-inverse strongly monotone, and
f € Il;. Thus, by Banach contraction mapping principle, there exists a unique
fixed point

z,]: = anf(z,]:)+ (1 —an)SPC(z,]: —AnAz,]:), a, € (0,1).
For simplicity we will write z, for Z,]: provided no confusion occurs. Next we
prove the convergence of {z,}, while they claim the existence of the q €
F(S) n VI(C,A) which solves the variational inequality
(d = f)gq—p)<0, fell, p e F(S) nVICA).

Theorem (5.2.8)[68]: Let C be a closed convex subset of a real Hilbert space
H. Let f : C —» C be a contraction with coefficient k (0 < k <1),Aan a-
inverse-strongly monotone mapping of C to H and let S be a nonexpansive
mapping of C into itself such that F(S) N VI(C,A) # @. Suppose {z,}, be
sequences generated by

Zn = anf (zp) + (1 — an)SPc(zq — 4,42,), ay € (0,1),
where {1,,} < [a,b]and {a,} is a sequence in [0,1). If {a,} and {A,}are
chosen so that A, € [a,b] for some a,bwith0<a <b <2a, when
lim,,,a, = 0, z, converges strongly to g, and such that the variational
inequality

(d = f)gq —p)<0, felle, p € F(S) nVI(C,A).

Proof. Put vy, = P:(z, — 4,4z,) for every n = 0,1,2,...Let u €
F(S) n VI(C,A). We have

lyn —ull = IPc(zn — AnAzy) — Pc(u— AAu)|

< [[zn — 4p4z,) — (u — A, AW)|

< 12y —ull,

foreveryn = 1,2,3,....Then we have

|z, —ull = llanf (zn) + (1 —ay)Sy, — ull
< apllf (zn) —ull + (1 — a)|ISy, — ull
S anllf (zn) = f W+ axllf W) —ull + (1 —ap)lly, —ull
< apkllzy — ull + (1 = ap)llzy —ull + anllf @) —ull.
Hence,
Iz —ull < —IIf @) —ul,
and {z,} is bounded, {y,}, {Sy,.}, {4z, } and {f (z,,)} are also bounded.
|z, _u“Z = |lanf (zn) + (1 — ap)Syn — u”2
< apllf (zn) — ull® + 1 = a)llyn — ul|?
5 2 2
< au|lf o)l 2+ (1- @) [z -ull” + 2.t — 20)|| Az, - Au|

2
= “n”f (Zn)‘u” 2+ (1 - “n)”Zn —u||

+(1 - an)a(b — 2a)||Azn —Au||2.
Therefore, we have

~(1- ap)a — 20)||Azy - Au|” < an(||f @o-ul| 2 + llzn — ull?).
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Since @, = 0 (n = ), and {f (z,)}, {z,,} are bounded, we obtain
|Az, - Aul| >0 (n— ).
From (5) we have
Iy — ull® = IPc(zn — AnAzy) — Pe(u — A Aw)||?
<(zn — WAz, — (u — L 4u), ¥ _Zu)
1
= > {lI(2n - 4nAzs) — (0 = 2 AW)|” + Iy, — ull?
- |1|(Zn — Azy) — (u— A,Au) — (v, —wII*}
< ~lllzn = ull® +llyn —ull® = llz — ynll®
+200(2n — Y, Azy — Au) — 1,0 |Az, — Aul|?}.
So, we obtain
lyn — ull® < llzp —ull® = llz — yull?
20,02y — Yo, Az, — Au) — 1, %Az, — Aul|? .
So we have
Iz, —ull® < aullf (z7) —ull*+(1 — a)lISy, — ull®
< apllf (zn) —ull?+ (@ —ap)lly, — 121”2
< an”f (Zn)_u” 2 + (1 - an)”Zn _u” - (1 - an)llzn - ynllz
+2(1 —a DA (z, — v, Az, —Au) — (1 — ay ), ||Az, — Aull%
Hence,
(1~ a)llzn — mll* < anllf (z) —ull® — ayllz, —ull?
+2(1 —a )z, — Yy, Az, — Au) — 1, %||Az, — Aul|?.
Since a,, = 0,||Az, — Au|| = 0, we obtain ||z, — y,|| = 0 (n = ). By the
proof of Proposition (5.2.7), we have y,, = q and g € F(S) n VI(C, A), so
ZTli - q
2 2
||ZTli _q” = ”anif (Zni) + (1 _ani)syni - q”
= (ani(f (Zni) - q) + (1 - ani)(syni - q)' ZTli - q)
= ani(f (Zni) - q' ZTli - q) + (1 - ani)(syni - q' ZTli - q)
2
S (1 - ani)”Zni - q” + ani(f (Zni) - q' ZTli - q)
Hence
2
||ZTli - q” (f (Zni) - q' ZTli - q)
(f (zn) — (@) 2zn, —q) +{f (@) — @, 2, — q)
2
<k||zn, —q||” +{f @ -a2, —q).
This implies that
2 1
|zn, —all” < (20, —a.f (@ — ).
But z, —gq, it follows that z, — q. Now we show that q solves the
variational inequality

1A

(I —-f)gq —p)<0, fell;,p € F(S) n VI, A).
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Because
1- n
zn = f (z) = = 2 (2n = SYn),

foranyp € F(S) n VI(C,A) and noticep = P.(p — A,Ap), we infer that
1-ay
(Zn-f (Zp)zn - p) =— . (Zn _SPC(Zn - A, Az n)'zn -q)

an
1—«a
. (zn - SPc (2, - AnAzy,) — (P -SP:(p _AnAp));Z n= D)

n
SO;

since [ —SP:(I — A,A) is strong monotone. Let i — oo, we have

(@ —f(@.q —p)=<0. 9
Assume that there exists another subsequence {an} of {z,} such that Zn; = q",

soq* € F(S) nVI(C,A), and from(z, — f(2,),2, —p) <0, letj » 0o We
have

(@ —f(@),q" —p)<0,pe F(S) n VIC,A). (10)
Setting p = q" in(9), we have

(q —f(@)a —-q)=0, (11)
and setting p = q in (10), we obtain

(" —f@)q —q)=< 0. (12)

Inequality (11) and (12) yield
lg =" <{f (@ —f@)qa —q)<kllqg —qlI*,

which implies thatq = g*,since k € (0,1).Thus, z, > qgasn — oo and
q € F(S) n VI(C,A) is unique. And q 1is the unique solution of variational
inequality

(@ — f(@,q —p)<0, pe F(S) n VI(C, A).

This completes the proof. O
In this section we prove two theorems in a Hilbert space by using Proposition
(5.2.7) and Theorem (5.2.8).

A mapping T : C — C 1s called strictly pseudocontractive if there exists k
with0 <k < 1 such that

ITx =Tyll> <llx —ylI?+k I —T)x = —T)yll?

for everyx,y € C.If k = O,then T is nonexpansive. Put A = I — T, where
(1-k)

T:C - C 1s a strictly pseudocontractive mapping with k. Then A is

inverse-strongly monotone. Actually,
we have, forall x,y € C,
I — Dx =1 — Dyll? <llx — yII>+kllAx — Ayll®.
On the other hand, since H is a real Hilbert space, we have
(- a)x -1 - Ayl
=llx = y I” + lAx — Ayll> — 2(x — y,Ax — Ay).
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Hence we have
1—-k
(x —y,Ax — Ay) > TlIAx — Ay|?.

Using Proposition (5.2.7) and Theorem (5.2.8), we first prove a strong
convergence theorem for finding a common fixed point of a nonexpansive
mapping and a strictly pseudocontractive mapping.
Theorem (5.2.10)[68]: Let C be a closed convex subset of a real Hilbert space
H. Let f be a contractive mapping of C into itself with coefficient k € (0,1),
S be a nonexpansive mapping of C into itself and let T be a strictly
pseudocontractive mapping of C into itself with «, such that F(S) NF(T) # @
Suppose x; = x € C and {x,} is given by

Xn1 = Anf () + (1 —ap)S(1 — )% + 4,T xy)
for everyn = 1,2,..., where {a,} is a sequence in[0,1) and {A,} is a
sequence in [0,1 — ). If {a,,} and {A,,} are chosen so that A,, € [a,b] for
some a,bwith0<a <b<1- a,

(0.0] (0.0] (0.0]
lim @y = 0, ty =0, ) [@ns =l <0, ) [y =2l <o
n—-oo
n=1 n=1

n=1 =

then {x, } converges strongly to g € F(S) N F(T ), such that

(f@-aq—-p)<0, pe€FES) nFT).
Proof. PutA =1 — T.Then A is 1;—a -inverse-strongly monotone. We have
F(T) = VI(C,A) and P-(x, —A,Ax,) = (1 —A,)x, +1,T x,. So by
Proposition (5.2.7) and Theorem (5.2.8), we obtain the desired result. O
Theorem (5.2.11)[68]: Let H be a real Hilbert space H. Let f be a contractive
mapping of H into itself with coefficient k € (0,1),S be a nonexpansive
mapping of H into itself and let A be a a-inverse strongly monotone mapping
of H into itself such that F(S) N A~10 # @. Suppose x; = x € C and
{x,,} is given by

Xn+1 = 0nf () + (1 = ap)S(xn — 4, Axy),

for every n = 1,2,..., where {a,} is a sequence in [0,1) and{A,} is a
sequence in [0, 2a). If {a,} and {1} are chosen so that 4,, € [a, b] for some
a,b with0<a <b < 2a,

lim @y = 0, ty =0, ) [@ns =l <0, ) [y =2l <o
" n=1 n=1 n=1
then {x,,} converges stronglyto g € F(S) N A~10, such that

(f (@ —q,q9 —p) pe F©S) n A0
Proof. We have A~10 = VI(C, A). So putting P; = I, by Proposition (5.2.7)
and Theorem (5.2.8), we obtain the desired result.
Corollary(5.2.12)[232]: Let C be a closed convex subset of a real Hilbert space
H.Let f : C — C be a contraction with coefficient (1 —€) (0 < € < 1), Aan

A+e . .
?-mverse-strongly monotone sequence of mapping of € to H and let S be a
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nonexpansive sequence of mapping of C into itself such that F(S) N VI(C,A) #

@. Suppose {(u,,)} be sequences generated by (u,,), € C,
A+e

(U dns1 = (/1+6) f((um)n) + (1 - (_) )SPc((Umdn — AnA(Um)n),
for every n = 0,1, 2,..., where {1,,} < [a, b] and {(?)n} 1S a sequence in

(0,1).1f {(“e)n} and {A,} are chosen so that A, € [a,b] for some a,b
with0<a <b< (1+¢),

y </1+6) 0 i<l+6) z </1+6) </1+6)
= = OO —_— —_—

nl—l;rc}O 2 n ) 2 n ) | 2 n+1 2 nl
< ZM il <0

then {(u,,),} converges strongly toqg € F(S) n VI(C,A), which is the unique
solution in the F(S) N VI(C, A) to the following variational inequality
(I = f)qe)<0, (g—e€)€ F(S) n VI, A).

Proof. Put (u,,+1)n = Pc((Up)y — 1,A(u,,),) for every n = 0,1,2,.... Let
u, € F(S) n VI(C,A). We have

”(um+1)n - um” = ”PC((um)n _AnA(um)n) - PC(um - AnAum)”
< ”((um)n - AnA(um)n) - (um _AnAum)“
< ”(um)n - um”

foreveryn = 1,2,3,.... Then we have
1t dnss = um||—||(“6) f Q) +(1-(55) ) SCumdn = un |

< (59 f Qumd) =umll +(1-(5) )||s<um+1)n — Uyl
< (59) If (Gmdn) = f Q)

+(5) N @) = umll + (= (55) M msdn = sl

= (“e) (1_6)”(um)n um” + (1 (“e) )”( min = um”
+(59) 1F ) =

= (1= €(59) ) mdn = wnll + (5) Nf Q)=

< max{u(um)n — Ul 2 If () — umu} .

By induction,
1Cmdn = tnll < max{ 1umdo = wnll 2 If () = umll}, 0> o0.
Therefore, {(u,,),}is bounded,{(U4+1)n},

{SWUms)nt {Aup)n b {f ((Uy) )} are also bounded. Since I — 1,4 is

nonexpansive of sequence and u,, = P-(u,, — 4,4u,,), we also have
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| Ums1) ne1 — Wi Dnll
< [[(um) n+1 = Ans1AUmdns1) = ((Umdn — 174 (U)y) ||
< ”((um) n+1 = Ans1AQUp) n+1) - ((um)n - An+1A(um)n)”
+ 14 = sl llAGum) 5|l
< [[@m) ne1 = Wdn |+ 14 — A1l AGum )l

foreveryn = 1,2,3,....So we obtain

(5 7 @+ (1-(555) )stunsndn

Ate Ate

- (59 _F @mdn-0) = A= (55) _ ISCumssdne |

| )nsr — Wedn |l =

(59 -(59) )¢ Qudned) = SCtmendn) +
1- (A:e)n) Sums)n — SWmt1)n-1)
f)n (f () = f ()|
7 R - I 1 T (S O o W
Ate

_) M@Wmsdn — Wmsdn-all
Ze)n (1= Oll@mln — (m)n-ll

/—\ /—\
m
/N N

< (1-(29) ) Ul n - Gomdncall + 1ncs = AnlllAGum)n 1)
29 (29I o= St
) 1= ONdn — Qo

n

(5
(1 = e (59) )Gt~ Gl

LAy = Ano] +M|(“e)n -(59)

Foreveryn = 0,1,2,..., where L = sup{||f ((up)n)- Sums)n_a|:n € N},

. o 1+
M = sup{llA(up)all:n € N}, since Bi_aldn -~ Ansa| < o0 T 1(55) -

A . .
(?)n_l | < oo inview of Lemma 2, we have lim,_ || (4m) ne1 — Wmdnll =

0. then we also obtain ||(U+1)n+e1 — WUmednll = 0

| m)n — S Dnll < lum)n — Smi)n-1ll

+ ”S(um+1)n—1 - S(um+1)n I
A+e

= (T)n—l “f ((um)n—l) - S(um+1)n—1” + ”(um+1)n—1 - (um+1)n”;
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we have || (W, )n — SWme)nll = 0.Foru,, € F(S) n VI(C,A),
||(um)n+1 - um”

= [|(29). ) + (1-(29) ) St ]|

Ate

2) M Qndn) =l + (1 = (57) Ml @tmsdn = ull®

<(5°
< (59) If (@) = uml?
(
(5°

1- (A+e) )[Il(um)n unll? + 4,4, — A+ eNNAW,), — Auyll?]
+e

) F (Gtmdn) = tenll? + | Gt =t
+(1- (%)n) a(b — (A + &) IAn)n — At |l

So, we obtain
A+e

(1 = (55) Dalb = G+ )lIAG)y — Augll?
< (59 1F (Gtmdn) = unlP?
([t = ]+ 1mns = D) UmD = el = NCetmdss = el
< (59 If () = uml?
+ (||t =t || + I @dnsr = DI @t = Gt
Since (%)n - 0 and ||(uy)n — Wp)nsall = 0, then ||A(u,,),

0,n — oo. Further, from (1), we obtain

”(um+1)n - umllz = ”PC((um)n - AnA(um)n) - PC(um - AnAum)llz
=< <(um)n _AnA(um)n - (um - AnAum)' (um+1)n - um>
= % {”((um)n _AnA(um)n) - (um - AnAum)”z

+||(um+1)n - umllz
- ”((um)n - AnA(um)n) - (um - AnAum) - ((um+1)n - um)”z}

— Auyll -

1
< E{”(um)n - um”2 + “(um+1)n - um”2 - ”(um)n - (um+1)n”2

+24{(u)n — Ums1)n AlUm)n — Auy,) _AnzllA(um)n - Aumllz}-
So, we obtain

| Ctamsdn =]l < NG = I = (| = sl
+21n<(um)n - (um+1)nrA(um)n _Aum>_ AnzllA(um)n - Aumllz-
And hence

lGtmdnss =l < (55) If () = unll?

+(1-(59) ) 15 Gmsidn -]
< (59 IF (Qmd) = umll? + @ = () M @tmsdn = unll?
< (59) F Qumdn) = wll? + 11 ) = el

-1 - (”:e) ) ([ N
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+2 (1 - (E) )An((um)n - (um+1)n»A(um)n _Aum)

2 /n

—(1 = (59 ) W’ lAGum)n — Augll®

2

. A
Since (%) = 0, [ um)ns1 = Gum)nll = 0 and 1AGum)n — Al = 0, we

obtain ||(um)n = (Ums1)n|| = 0. Choose a subsequence
{(m+1)n,} of {(Um+1)n} such that
Al—rﬁ}o sup (f (Q) —q S(um+1)n - CI) = lll)rg(f (Q) - q S(um+1)ni - CI)
As {(Um41)n,} is bounded, we have that a subsequence {(uUy41)n,j}of
{(umﬂ)ni} converges weakly to (uU;,3). We may assume without loss of

generality that (Umi1)n, = (Umas)
Since [IS(um+1)n — (Wms1dnll 0, we obtain S(um+1)ni — (Wn+3). Then
we can obtain u,,,3 € F(S) N VI(C,A). In fact, let us first show that u,,,; €
VI(C,A). Let

Tum+1 — {Aum+1 + NCum+1' Un+1 € c,

®' Um+1 e C ’

Then T is maximal monotone sequence. Let (W41, Umsz) € G(T ). Since
Umsor — AlUmyeq € NeUpyq and (Uy,qq)n € C we have

(Ums1 — Ums)n  Umsz — AUmyq) = 0.
On the other hand, from (uy41)n = Pc((Up)n — 1,A(U;,)5), we have

(Umt1 — (um+1)n» (um+1)n - ((um)n - AnA(um)n)) = 0 and hence

( m )n_( m)n
(Um+1 — Ums1)n S 1, - + A(uy)n) 20 .
Therefore, we have
(Ums1 — (um+1)ni;um+2) = (Umyr — (um+1)ni;Aum+1)

= (U1 - (um+1)ni»Aum+1)

(um )ni—(um)ni
— <um+1 - (um+1)ni ’ = An; T A(um)ni>
l (um )ni_(um)ni
- <um+1 - (u’m+1)ni yAlmy — A(um)"i - An, >

= (Um+1 - (um+1)ni»Aum+1 - A(um+1)ni)

+ (U1 - (um+1)ni»A(um+1)ni - A(um)ni)
(Um+1) n; —(um) n;
“\Um+1 — (um+1)ni' A,

= (U1 - (um+1)ni 'A(um+1)ni - A(um)ni)
(um+1)ni _(um)ni
— \Ums1 — (Umy1) n; A,

Hence we have (W41 — Umss Umaz) = 0 as i = oo. since T is maximal
monotone sequence, we have u,,,3 € T~10 and hence u,,.3 € VI(C, A)
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”(um)n - S(um)n” < ”(um)n _S(um+1)n” + ”S(um+1)n _S(um)n”
< umdn — S@msnll + 1um)n — WUmenll,

we have ||(Upy)y — SUp)nll = 0. In view of Lemma 1, we obtain u,,,3 €
F(S)
lim sup (f (q) = ¢, S(um+1) n -q) = lm(f (@) = ¢, SUms1)n, — @)

=(f (@) —qunes — @) <0,

1t dnss = q||2=||(“6) f )+ (1= (29) )G a])

= (/1+e) ”f ((um)n) CI”
+2 (“f) (1= (59) ) (@) = @S Qs = @)

/1+e

(A = (59) Y2118 Qs dn — all®

<(1- z(*j)n + (29 ) tm)a - al?
Ate

+(29) If (Canda) — alP?

+2(59) (1= (59) )¢ @)~ f @, SCtmendn - @)

+2(%9) @ = (%) 3 @ =~ 0.5@medn — 4)
<[t-2(59, + (39, + 2a-0 (&), (-39 I -al

Ate

+(29) iy () = al?

+2(59), 4 = (59) )Y @ = . 5Gmi)n = @)
= (1= (%) M —all? + (55) B,

where

(59, = B9, -(59), ~2a-0(- (59,)]

Bn
(T)n If (Cumdn) = all? + 22 = (55) Hf @ = @.S@msdn — )
2= (f79),- 20-90-(579)) |

It is easily seen that (%)n -0, YXneq (A:E)n =00, and limsup,_ef, < 0,

A+e€

by Lemma 2 we obtain (u,,),, = q. This completes the proof. o
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Corollary(5.2.13)[232]: Let C be a closed convex subset of a real Hilbert space
H. Let f : C - C be a contraction with coefficient (1 —€)(0 <e < 1),Aan

A+e . .
?-mverse-strongly monotone sequence of mapping of C to H and let S be a

nonexpansive sequence of mapping of C into itself such that F(S) N VI(C,A) #
@. Suppose {(U;,+3)n}, be sequences generated by

(um+3)n = (A+6) f((um+3)n)

A+e A+e

+(1- (—) ISP ((tmssdn = nAlumsadn), (57) € (0.1,
where {1,} € [a,b]and {(%)n} is a sequence in [0,1). If {(“e) } and
{1, } are chosen so that A, € [a, b] for some a,bwith0 <a < b < (/1 + €),
when lim,,_, (%)n = 0, (Uy4+3)n converges strongly to g, and such that

the variational inequality

(I — f)q,e)<0, fel,, (q—e) € F(S) n VI(C,A).
Proof. Put (Upt)n = Pe((WUpmes)n — 2 A(Upy3),) for every n =
0,1,2,...Let u,, € F(S) n VI(C,A). We have

”(um+1)n - um” = ||PC((um+3)n - AnA(um+3)n) - PC(um - AnAum)”
< ”((um+3)n - AnA(um+3)n) - (um - AnAum)”
< ”(um+3)n _um”

foreveryn = 1,2,3,.... Then we have
Ate

e = Ul = ||(“6) f i) + (@ = (59) ISCtmidn =
) NF (@tmas)) =l + (@ = (55) IS Cumatdn = el
) f Qumadn)-f G|

A+e

6) If Gem) = tmll+ (@ = (5°) I Gtmssdn = uml
(2 )n (1 = Ol tmedn = temll + (1= (2) ) [[Gtmssdn = tem]

+(59) If Gam) = umll.
Hence,

n
1
“(um+3)n - um” < Z“f (um) - um”

~

+€

p/\/—\p/—\
+N+N

mN

+
<

NGy
N+N|

and  {(m43)n} is  bounded,  {(ums1)n} {SUms1)n}, {A(tnys)n} and
{f ((U43)7)} are also bounded.

”(um+3)n _um”
A+e

= ||(E) f ((umes)n) + (1 - (_) )Sg Umsi)n — um||2

< (59) I Q) = temll? + (1 = (55) Yt = 2
(/1"'6) ”f ((Um+3)n)- um”2
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(1= (59 ) [N =temll” + 2020 = G+ )| ACms ) - At
(%) ”f ((um+3)n)_um” 2 ( - (%)n) ”(um+3)n—um”
+(1- (59) Jatb — G+ e)l|Alumsdn - Aum|”

Therefore, we have

(1 - (A:e)n) a (b -1+ e)) ||A(um+3)n —Aum”2
< (%) (If (Qmsd)=twm]l > + 1 Qumssdn = umll?):
Since (%) -0 —> o), and {f (Ums3)r)} {(Ums3)n} are bounded, we

obtain

AN+

”A(um+3)n _Aum” -0 (Tl - oo)
From (1) we have
”(um+1)n - umllz = ||PC((um+3)n - AnA(um+3)n) - PC(um - AnAum)llz
=< <(um+3)n - AnA(um+3)n - (um - AnAum)' (um+1)n - um>

21 nsadn = A0 AU ) = Gt - LA ||+ 1t Dn = w2 = 1 Qmz)n —

A A(um+3)n) ( A Aum) ((um+1)n _um)”z}
< 2 Ul Gt = 2+ s = 2 = 1 tm2)n = Wi l?

+21n<(um+3)n - (um+1)n 'A(um+3)n _Aum> - AnzllA(um+3)n - Aumllz}-

So, we obtain
| (Ums1dn — um”2 < [[(um3)n — um”2 — | (Ums3)n — (um+1)n”2
+2/1n((um+3)n - (um+1)n »A(um+3)n _Aum)
_AnZHA(um+3)n - AumHZ .

So we have

| Gtmesdn =temll” < (55) 1If (Gamssd)= el

Ate

1 = (59 IS Qmssdn = umlP?
< (59) IF (@mes)) = temll? + (4 = (55) MWtms)n = ml?
(%) 1IF (umasd)=teml| 2+ (1 (%)n)u( Us3)n — tom||”

/1+e

~(1- (T)n) lUmsz)n — Qs nll®
A+e

+2 (1 - (T)n) An((um+3)n - (um+1)n »A(um+3)n _Aum)
—(1 = (59 ) 1 1AGtms3)n = At

IA



(1 (29) ) I Gamrsdn = Gamadal”
(“e) I (Cumssdn) =umll? = (5°) I Cmasdn = mll®
+2(1- (‘je) ) Al Qtam3dn = Qi) s AQmgs)n = Aty
A A ) — Al

Since (5) = 0, l14Gmssdn — Aumll >0, we  obtain [|(mea)s

(Um+1)nll = 0 (n > ). By the proof of Proposition 3.1we have (Up41)n, —
qandq € F(S) n VI(C,A),s0 (Upy3)n, —

||(um+3)nl - q”z = | (%) f ((um+3)n-) + (1 - (ﬁ) )S(um+1)nl
(M-E) (f ((um+3)n ) Q) + <1 - (ﬁ) )(S(um+1)nl Q) (um+3)nl - )
/1+e) (f ((um+3)ni) -4 (um+3)ni CI)

(
(1-( “6 )<s<um+1)nl ¢ Qms3)m, — )

2

+

< (1-(5 )||<um+3>nl all
+(%)ni (f (Um+3)n) — @ Wnasdn, — Q).

Hence

”(um+3)ni - q||2 < (f ((um+3)ni) —q, (um+3)ni - CI)
=(f ((um+3)ni) — f(q), (um+3)ni -q)
2

+(f (Q) - q (um+3)ni - CI) < (1 - E)||(um+3)ni _CI”
+Hf (@) —a, (w3 —q) -

This implies that

”(um+3)nl CI” (um+3)nl q,.f (@) —q).
But (Up43)n, = g, it follows that (Um43)n, = q. Now we show that g solves

the variational inequality
(I — f)q,e)<0, fel,,(q—e) € F(S) n VI(C,A).

Because
(Um+3)n — [ ((Uma3)n) = _%((unwgn — S(Um+1)n))

For any (q—¢€)€ F(S) n VI(C,A) and notice (q —€) = P:.((q —€) —
A,A(q — €)), we infer that

((um+3)n _f ((um+3)n); (um+3)n - (q - E))
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- % ((um+3)n - SPC((um+3)n - AnA (um+3)n)» (um+3)n - CI)

2

- % ((Ums3dn - SPC((um+3)n B AnA(um+3)n) -

2

((@=©)-5Pc (=0 - 1@ = ©)), Gnss) - @ =) <0,
Since I — SP-(I — A,A) is strong monotone sequence. Let i — oo, we have

(@ —f(a).€)<0.
Assume that there exists another subsequence {(um+3)nj} of {(Uy43)n} such

that (um+3)nj - q*, soq* € F(S) nVI(C,A),and from((Up,43)n —

f((Um+3In) (Umas)n —(@—€)) <0,letj - oo We have
(" = f(@)q" —(@—-€)=<0, (q—¢€)€ F(S) n VI, A).
Setting (g —€) = q" in(5), we have
(@ —f (@9 —q)=<0,

and setting € = 0 in (6), we obtain
(¢ —f@)q —q =<0,
Inequality (7) and (8) yield
lg —a* > <{(f(@—-f@)qg - q)<A-ellg —q*II*,
Which implies thatq = q*.,since 0 < e < 1Thus, (Up43)p 2> qasn —
o and g € F(S) n VI(C,A) is unique. And g is the unique solution of
variational inequality
(9 — f(q@)e)<0, (q—e) € F(S) n VI, A).
This completes the proof. O
Corollary(5.2.14)[232]: Let C be a closed convex subset of a real Hilbert space
H. Let f be a contractive mapping of C into itself with coefficient 0 < e < 1,S
be a nonexpansive sequence of mapping of C into itself and let T? be a strictly
pseudocontractive and projection mapping of C into itself with (%), such that
F(S®) NnF(T?) # @ .Suppose (Up)1 = Uy € C and {(uy,),} is given by
ndner = (55) F Q) + (1 = (55) )52 = 2)tmdn + 2272 n)n)
For everyn = 1,2,..., where {(%) } is a sequence in [0,1) and {A,} is a
n
sequence in [0, 2_(“6)). If {(ﬁ) } and {1,} are chosen so that A,, € [a,b]
2 2 Jn
forsome a,bwith0 < 2a <2b<2—-(A+¢€),

[ee] [ee]

I (/1+E) —0 Z(/H_E) _ Z (/1+E) (/1+E) 2’1 1
nl_{l;lo > n— ’ 2 n_oo’ | 2 n+1 2 n|<°ov |n+1_ nl < oo,
n

=1

then {(u,,,),,} converges strongly to g € F(5%) n F(T?), such that

(f (@ —q.€) <0, (q—€)€e F(S?) n F(T?).
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2—(A+e

Proof. Put A> = | — T?.Then A% is ) -inverse-strongly monotone

4
sequence. We haveF(T2) = VI(C,A?)and Pc((Up)y, — A 2, A2(Upy),) =
(1—2,)Wp), + 2 ,T? (Uy),.So by Proposition 3.1and Theorem 3.1, we
obtain the desired result. O

Corollary(5.2.15)[232]: Let H be a real Hilbert space H. Let f be a contractive
mapping of H into itself with coefficient 0 < e < 1, S be a nonexpansive
sequence mapping of H into itself and let A? be a contraction and projection of

a (%)-inverse strongly monotone sequence of mappings of H into itself such
that F(S?) n (42)710 # @. Suppose (u,,); = (u,) € C and {(u,,),}is
given by

(um)n+1 = (A+6) f((um) )+ (1 - (ﬁ) )52((um)n AnAz(um)n)

for every n = 1,2,..., where Ate is a sequence in [0,1) and {4 ,} is a
y 2 ).

sequence in [0,A + €). If {(“e) } and {A,,} are chosen so that 1,, € [a,b] for
some a,bwith0<a <b < (/1+e),

. (A+e > At e > Ate A+e
i (159, = 03 (159, =2 2125 o= (), 1 <2 =0l <0
n n=1 n n=1

then {(u,,),} converges stronglytoq € F(5%) n (4%)~ 1O such that

(f (@ —aq,€), (@q—e€)€ F(ES? n (45)710.
Proof. We have (42)710 = VI(C, A?). so putting Py = I, by Proposition 3.1
and Theorem 3.1, we obtain the desired result. O

Sec (5.3): A General Iterative Method with Strongly Positive
Operators for General Variational Inequalities

Let H be a real Hilbert space with norm ||.|land inner product(.,.),
respectively. Let C be a nonempty closed convex subset of H and let P. be the
metric projection of H onto C. Let S: C — C be a self-mapping on C. Recall
that S is called Lipschitz continuous if there exists a constant L > 0 such that
ISx — Sy || < L||lx — y|| for all x; y € C. Whenever 0 < L < 1, S is a
contraction on C; whenever L = 1, § is a nonexpansive mapping on C. We
denote by Fix(S) the set of fixed points of S.II. denotes the set of all
contractions on C. Note that each f € Il has a unique fixed point in C.

Recall that a mapping T : C — H is called monotone if (Tx — Ty,x —
yy= 0 forall x; y € C. Amapping T : C - H is called a-inverse-strongly
monotone if there exists a positive real number @ > 0 such that

(Tx — Ty,x — y)=allTx — Ty||>, Vx,y € C.
In this case, it is clear that T is monotone and Lipschitz continuous. Moreover,
every mapping g: C — H, which is both §-strongly monotone (i.e., (g(x) —
g(y),x — y) = 8llx— yll>,vx,y € C, for some § > 0)and o-Lipschitz
continuous (i.e.,|lg(x) — g <allx— yll,Vx,y € C,forsomeaod >
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0),is 8 /o%-inverse-strongly monotone. Recall that the classical variational
inequality problem is to find an x* € C such that
(Tx*,x — x*)=0, Vx € C ; (13a)

see [56,57]. The set of solutions of the variational inequality (13a) is denoted
by VI(C,T).

In this section , we consider the following problem of finding x* € C such

that g(x*) € C and

(Tx*,x— g(x*)) =0, Vx € C, (13b)
which is called a general variational inequality problem. The set of solutions of
the general variational inequality (13b) is denoted by GVI(C, g, T ). The general
variational inequality problem (13b) was introduced and studied by Noor [58]
and Isac [59]. Subsequently, Zeng and others (see, e.g., [60]) further considered
iterative algorithms for finding its solutions and established some convergence
results for iterative algorithms. Whenever g(x) = x for all x € C, the general
variational inequality problem (13b) reduces to the variational inequality
problem (13a).

The iterative methods for nonexpansive mappings have been extensively
studied and recently applied to solving convex minimization problems and other
problems; see, e.g., [61,73] and the references therein. A typical problem is to
minimize a quadratic function over the fixed point set of a nonexpansive
mapping on H:

1
Bz 40X = = D)
where Fix(T) denotes the fixed point set of a nonexpansive mapping T on H,
and b is a given point in H. Assume that A is strongly positive; that is, there is a
constant y > 0 with the property
(Ax,x) =7 |Ix|I>, Vx €H.
We assume that Fix(T) # @. It is well known that Fix(T)is closed and convex
(cf. [74]). In [65], it was proved that the sequence {x,} defined by the iterative
method below, with the initial guess x, € H chosen arbitrarily,
Xpy1 = U — a,A)Tx, + a,b, ¥Yn =0,

converges strongly to the unique solution of the minimization problem as above
provided the sequence {a,,} satisfies certain suitable conditions.

Furthermore, Moudafi [62] introduced the viscosity approximation method for
nonexpansive mappings (see [63] for further development in both Hilbert and
Banach spaces). Let f be a contraction on H. Starting with an arbitrary initial
X, € H, define a sequence {x,} recursively by

Xny1 = (1 — 0 )Txy + 0pf (), Yn = 0,
where {0,,} is a sequence in (0,1) . It was proved in [62,63] that under certain
appropriate conditions imposed in {o,} , the sequence {x,} strongly
converges to the unique solution ¥ in Fix(T') to the variational inequality
(I — f)x,x —X)=0, Vx € Fix(T).
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Very recently, Marino and Xu [66] combined the iterative method in [65] with
the viscosity approximation method in [62,63] and introduced the following
general iterative method:

Xny1 = (I — an)Txy + any f (%), Vn = 0, (14)
They proved that if the sequence {a,} of parameters satisfies appropriate
conditions, then the sequence {x,} generated by (14) converges strongly to the
unique solution of the variational inequality

(A —vyf)xx —x)=0, Vx € Fix(T).
which is the optimality condition for the minimization problem
1
Py 21020 — 1D,
where h is a potential function for yf (i.e.,A(x) = yf(x)forallx € H).
On the other hand, let C be a closed convex subset of a real Hilbert space H.
Letf : C — C be a contraction with coefficient k € (0,1),letT: C - H be
an a-inverse-strongly monotone mapping and let S be a nonexpansive self-
mapping on C such that Fix(S) NnVI(C,T) # @ . Chen, Zhang and Fan [68]
introduced the explicit and implicit iterative schemes by the viscosity
approximation method.
(I) Explicit iterative scheme [68]: define a sequence {x,} by
Xo€ C, xpp1 =U —ay)SPe (x,, — A4, Tx,)+a,f (x,), ¥vn = 0,

where {1,,} is a sequence in(0,2a)and {«,,} is a sequence in (0, 1).
(I) Implicit iterative scheme [68]: define a sequence {z,} by

Zpn = — ap)SPc(z, — A,Tzp)+a,f (z,), VYn = 0,
where {A,} is a sequence in (0,2a) and {a,} is a sequence in [0,2). Under
some very mild conditions, they proved that the sequences {x,} and{z,}
generated by algorithms (I) and (II), respectively, converge strongly to q €

Fix(S) N VI(C,T) , which is the unique solution in the Fix(S) N VI(C,T) to the
following variational inequality

(- f)gq —p) <0, VpeFx(S)nVIC,T).

In this section , motivated and inspired by the iterative algorithms (14), (I) and
(IT), we suggest and analyze a more general iterative method with strongly
positive operators for finding solutions of the general variational inequality
problem (13b) in a real Hilbert space. The explicit and implicit iterative
algorithms are proposed by virtue of the general iterative method with strongly
positive operators. Let S be a nonexpansive self-mapping of a nonempty closed
convex subset C of a real Hilbert space H, f be a contraction on C with
coefficient k € (0,1) and A, B: H - H be two strongly positive linear
bounded operators with coefficients y € (0,1) and f > 0, respectively. Let

0 < y< % . For an arbitrary initial x, € C, we define a sequence {x,} via

the explicit iterative scheme



{yn = Pc [xn —g(xy) + P (g(xy) — AnTxn)] )
Xn+1 = PC{(I — an,A)Sy, + an[Syn - ﬁn(BSyn - yf(xn))]}; vn =0

where {a,} € (0,1],{8,,} < (0,min{1,||B||"}],{1,} € (0,2a),8:C - H is
both §-strongly monotone and o -Lipschitz continuous, and T — [ : € — H is
an inverse-strongly monotone mapping of C into H. Furthermore, we also define
a sequence {z,} via the implicit iterative scheme

zn = Pc{( — anA)SPc [z, — 8(zn) + Pc(8(zn) — ATzp)] +

an[SPC [Zn - g(zn) + PC(g(Zn) - AnTZn)]

—Bu(BSPcl zn — 8(zy) + Pc(8(zn) — 4nTzn)] — vf (zn))]}:

It is shown that under appropriate conditions the sequences {x,} and {z,}
converge strongly to a unique common element of the set of fixed points of the
nonexpansive mapping S and the set of solutions of the general variational
inequality (13b) in a Hilbert space. The results presented in this section may be
viewed as the improvement, extension and development of

some earlier and recent results in the literature including, for instances, the
corresponding results of Marino and Xu [66], liduka and Takahashi [67], Chen,
Zhang and Fan [68].

Let H be a real Hilbert space with inner product (.,.) and norm || . ||, and let C
be a closed convex subset of H. We write x,, — x to indicate that the sequence
{x,} converges weakly to x. The notation x,, - x means that {x,} converges
strongly to x. For every point x € H, there exists a unique nearest point in C,
denoted by P.x, such that

llx = Pexll < llx =yl , vx €C.
P is called the metric projection of H to C. It is well known that P, satisfies
(x_y'PCx_PCy) 2”PC'X'_PC:VHZJ Vx;y € H} (15)

And P, is characterized by the following properties:
(x = Pcx ,Pcx —y) =20,
llx = ylI? = llx = Pexll® + lly — Pex|I?,
For all x € H,y € C. In the context of the variational inequality problem
(13a), this implies
x*€ VI(C,T) e x* = P:(x*— ATx"), vA> 0. (16a)
Further, in the context of the general variational inequality problem (13b), this
also implies
x* € GVI(C,g,T) & g(x*) = P-(g(x*) —ATx*), VA> 0. (16b)
Proposition (5.3.1)[55]: Let C be a nonempty closed convex subset of a real
Hilbert space H. Let T : C — H be a mapping suchthat T — [ : C - H be a-
inverse-strongly monotone, and letg: C — H be both §-strongly monotone
and o-Lipschitz continuous. If 2V1— 286 + 02 < 1 < 2a/(1 + 2a), then
foreachx,y € C




1P [x —g(x) + Pe(g(x) — ATx)]— Pc [y — g(y) + Pc(gly) — ATV

<[1-(-2v1- 25 +02)]llx -yl
Proof. Utilizing the &-strong monotonicity and o-Lipschitz continuity of
g: C > H,wehave

lx — glx) —(y —glDI <V1— 26 +02|lx—yll, Vx,y € C.

Since 2V1— 26+02<1 < 2a/(1+ 2a), and T—1:C - H is a-
inverse-strongly monotone, so we obtain A — 2a(1 — 1) < 0 and
1A= Dx —y) —A[(T — Dx — (T — Dy]lI®
=1 -D%llx—yl> —24QA =T — Dx—(T— Dy,x—y)
+22||(T = Dx — (T = Dyll?
< (1= D%lx = ylI? +A(A = 2a(1 = V)T = Dx— (T = Dyll?
< (1 -D%x-yl?,
which implies that

[A =D~y =2[(T - Dx-(T- Dy]|<@=Dlx-yl, vxye€cC.
Therefore, we get for each x,y € C.

1P [x — g(x) + Pc(g(x) — ATx)] = Pcly — 8(v) + Pc(g(y) — Ty)]ll

< llx — g(x) + Pc(g(x) = ATx) — [y — g(v) + Pc(g(y) — ATy)]ll

< 2llx - gt = (v — g»)|

HIA =D& —y) —A[(T - Dx — (T - Dylll

<2Vl— 26+c?|lx—yll+ (@ =Dlx—yll

=[1-(1-2vV1—- 26 +3?)|llx -yl
This completes the proof. O
The following lemmas will be used for the proof of our main results in what
follows.
Lemma (5.3.2)[55]: (see [64,lemma 2.1].)Let {S,} be a sequence of
nonnegative numbers satisfying the condition

Sn+1 = (1- an)Sn tapfn , Yn=0,

where {a,},{B,} are sequences of real numbers such that

(i) {a,} c[01]and Y-, a, = o ,orequavalently,[[;-,(1 — a,) = 0;
(i) limsup,.e fr <0 or

i)\ Y% ,a,B, isconvergent.

Then, lim,,_,,, S, = 0.

Lemma (5.3.3)[S5]: (see Goebel and kirk [64].) Demiclosedness Principle.
Assume that T is a nonexpansive self-mapping of a closed convex subset C of a
Hilbert space H.If T has a fixed point, then I — T is demiclosed. That is,
whenever {x,} is a sequence in C weakly converging to some x € C and the
sequence {(I — T)x,} strongly converges to some V, it follows that (I — T )x =
y. Here [ is the identity operator of H.
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Lemma (5.3.4)[55]: (see [66,lemma 2.3]) .Let C be a closed convex subset of a
Hilbert space H,f : C —» C be a contraction with coefficient k € (0,1), and B

be a strongly positive linear bounded operator with coefficient § > 0. Then, for

B
O<y<k

(x—y,B—yfx=—B-vIyy=B - vk)lx— yl*>vx,y € C.

That is, B — yf is strongly monotone with coefficient f — yk.
Lemma (5.3.5)[55]: (see [66,lemma 2.5]) Assume that A is a strongly positive
linear bounded operator on a Hilbert space H with coefficient ¥ > 0 and
0 < p<|lA't.Then ||l —pA|l|<1-p7} .

Throughout the rest of this section, we always assume that f : C— Cis a
contraction on C with coefficient k € (0,1),and A, B are two strong positive
bounded linear operators with coefficientsy € (0,1),and § > 0, respectively.

Let0 <y < E and lim,,f,=1€E (; Vk ; y) Then, we may assume
without loss of generahty that there exists ¢ € (—k ﬁ_) such that

1-

m<c ,Bn<m,Vn20. (17)

Let T: C - H be a mapping such that T — I: C = H is a-inverse-strongly
monotone, and let g: C — H be both §-strongly monotone and o-Lipschitz

continuous Let S be a nonexpansive self-mapping on C. Let 2V1 — 26 + 02 <
n < 2% {@y} < (0,min{L, |AI7}] and {B,} < (0, min{1, ||B]|=*}]. For

1+2
each n > 0, consider a mapping V,, : C — C defined by

Vox = Pe{ (I —a,A)S Pc [x — g(x) + Pc(g(x) —4,Tx)]
+an[S Pe[x —g(x) + Pc(g(x) — 4,Tx)]
—Bn(BS Pc [x — g(x) + Pc (8(x) — 2, Tx)] —yf (x))]}, (18)
forall x € C.Indeed, by Proposition (5.3.1) and Lemma (5.3.5) we have

IVox = Voyll = || Pe{ (I — anA)S Pc [x — g(x) + Pc(g(x) — 4,Tx)]
+ oy [S Pe[x -g(x) + Pe(g(x) — 2,T%)]
—Pn(BS P¢ [x — g(x) + P (g(x) — 4,Tx)] —yfx)]}
— Pc{ (I —a,A)SPc [y — gy) + Pc(g(y) — A,Ty)]
+an[S Pely -g() + Pc(g(y) — 2,Ty)]
—Pn(BS Pc [y — g(v) + Pc (g(y) — 2,TY)] — v}



< ”{ (1 - anA)S PC [x - g(x) + PC( g(x) - AnTx)]
+ a,[S Pelx -g(x)
+ Pe(g(x) — 2,Tx)]—Bn(BS Pc [x — g(x)
+ P (8(x) — 4,TX)] —vf ()]}
—{U - a,A)SPcly— gy) + Pc(gly) —1,Ty)]
+ an[S Pcly —g(y) + Pc(g(y) — 2,Ty)]-Bn(BS Pc [y
— g + Pc (g) — LTV —vfONI
< |(I — anA)S Pc [x — g(x) + Pc(g(x) — A,Tx)]
— (U —a,A)SPc [y — gy) + Pc(g(y) — A, Ty
+an[S Pelx -g(x) + Pe(g(x) — 2,Tx)]—Bn(BS P [x — g(x) +
Pc (8(x) — ,TX)] —vf ()] — an[S Pcly — () + Pc(g(y) —
AnTW=Bn(BS Pc [y — 8) + P @) — 4,1 —vf )|l
< I — an, AllIIS Pelx —g(x) + Pc(g(x) — A,Tx)]
—SPcly —gy)+ Pc(gly) — 2,TY)]l
+ayll(I = BuB)(S Pc [x — gx) + Pc(g(x) —A,Tx)] —SPc[y—
g) + Pc(g(y) — ATyl + By (f () — fFO)
<A -a)[1— @Ay —2V1— 25+ 0?)]llx - yll
(1= BuB) |1~ (A = 2V = 28 +02)] llx = yll + Baykllx = ¥l
=[1—-ay,(¥ — 1+ Bp(B —vkD]llx — yll
=({1- anTn)”x - y” )
where 7, .=y — 1+ f,(f — ya)Since ¢ € (
T, =Y—1+c(B —ya) € (0,1) and

1-y 2=y
B-vk’ B-vk

) .we have

T =V =1+B(B-vk) 2y —-1+c(B—-vk) =T.
Hence we get

IVax = Voyll < (1 = apDllx =yl . (19)
This shows that V,, is a contraction. Therefore, by the Banach contraction

principle, V,, has a unique fixed point z,, € C such that
Zn = PC{ - anA)S Pc [Zn - g(zn) + PC( g(zn) - AnTZn)]
+ an[S PC[Zn - g(zn)
+ PC( g(zn) - AnTZn)]_ﬁn(BS PC [Zn - g(zn)
+ PC (g(zn) - AnTZn)] - yf(zn))]}

Note that z,, indeed depends on f as well, but we will suppress this dependence
of z, on f for simplicity of notation throughout the rest of this section. We will

also always use y to mean a number in (0, %) :

In this section, we first prove a strong convergence result on the explicit

iterative algorithm for the general variational inequality problem (13b).
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Theorem (5.3.6)[55]: Let C be a nonempty closed convex subset of a real
Hilbert space H. Let f:C — C be a contraction with coefficient k €
(0,1),letT: C - H be a mapping such that T —1: C - H is a-inverse-
strongly monotone, and let g: € — H be both §-strongly monotone and o-
Lipschitz continuous. Let S be a nonexpansive self-mapping on C such that
Fix(S) n GVI(C,g T) # @. Let A,B be two strong positive bounded linear
operators with coefficients y € (0,1) and f > 0, respectively. Let 0 < y <

% . Assume that {x,,} and {y,,} are sequences in C generated by x, € C and
{ Yo = Pclxn— g(xn) + Pc(g(xn) — A,Txy,)],
Xns1 = PclU — anA)Syy + an[Syn—PBn(BS yn —vf ()]}, Yn=0

where {a,} c (0,1),{8,} < (0,min{1,||B||"*}] and 2Vv1— 26 +02+¢& <
An < 2a/(1 + 2a) for some ¢ > 0. Suppose that there hold the conditions:
(1) limyLeap = 0,200, =0 and Yo_olanes — apl < o0;

. 1-7  2-7 o
(i) limy 00 B =1 € (ﬁ—)]//k'ﬁ—_yyk) and Y ol@ni1Bni1 — AnPnl < 0

(D) XotolAnsr — Aul < o0

Then both {x, }and {y,,} converge strongly to the unique element of Fix(S) N
GVI(C,g,T).

Proof. First, we may assume that a, < ||A||"! due to lim,,_, @, = 0. By
Lemma (5.3.5), we obtain || — a, Al <1 —a,y . Also, Since lim,_, 8, =71 €
(1‘7 277 17 27

, ) ,we may assume that for some constant ¢ € (——) .
B-vk” B-vk B-vk B-vk

1-7 2-7
<c<p,< , Vn=0.
B-vk Pn B-vk
Let p € Fix(S) n GVI(C,g,T). Then p = Sp and p is a solution of the
general variational inequality (13b). Hence utilizing (16b) we have

P= P:[p— glp) + Pc(glp) — 4,Tp)], vn = 0.
Thus utilizing Proposition (5.3.1) we obtain

ly, — pll = IP¢ [x, — 8(xy) + Pc(g(x) — 2, Tx,)] — Pc [p— g(@) + Pc(g)

- AnTp)]”
<[1-(@,—2V1l— 28+ c2)]lx, — pll
< |[x, = pl|
foreveryn= 0,1,2, ..... Observe that

Vop = Pc{ (I — a,A)S Pc [p — g(p) + Pc(glp) — 24,Tp)]
+ ay[S Pclp —gp) + Pc(glp) — 2,Tp)]
— B (BS Pc[p— glp) + Pc (glp) — 4,Tp)] —vf(®)] )}

= Pc{ (I — anAp + ay[p — 8,(Bp — v ()]}
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Then from (19) we have
|xns1 — Pll = V= Vop+ Vap —p ||
< [IVaxn — Vaoll + [IVap — pl|
< (1 - anT)”xn - p”
+||Pef{ I — a,Ap + an [p — 8,(Bp —vf @) 3—Pep||
< (1 —apDllx, —pll + || — andp + ay[p — 8,(Br —vf(®))] — p||
< (1 —apDlixy, — pll + an||-Ap +p — 8, (Br — v/ ()|

< (1 - anDllxn, —pll + anlllA = llipll + 1Bl + vIIf I,
which hence implies that

1A = Illlipll + I1BlllIpll + YILf (I

T
So, {x,} is bounded and we also obtain that {yn} ,{Syn} ,{Tx,} and {f (xn)} are

bounded. Since each P.[x — g(x)+P.(g(x)—A,,Tx)] is nonexpansive according
to Proposition (5.3.1), we also have

llx, — pll Smax{”xo— pll } ,vn=>0.

|yne1 = Yull < 1Pc [xne1 — 8(xn41) + Peg8(ns1) — Ans1Txng1)] —
Pc [xn, — g(xn) + Pc(g(xn) — 1, Tx,) ]|l
< |[P¢ [xp41 — 8(xps1) + Pe(8(xns1) — ApiaTx,00)] — Pe [x, — 8(x,)
+ PC(g(xn) - An+1Txn)]”
+IPe [x, — 8Cxn) + Pe(8(xn) — AniaTxn)] — Pe [ — 8(xn) + Pc(g(x) — 2,Tx)]ll

< o — %l + 1P (g(x,) — 2041 Tx) — Pe(g(x,) — 4, Tx )|l
< xne1 — xpll + [Apge1 — ApllITx|]

foreveryn = 0,1,2,..... Thus it follows that

”PC{ (I — a,A)Sy, + an[Syn_IBn(BSyn - yf(xn))]}

- PC{ (I — anA)Sy,_1 + an[Syn—l_ﬁn(BSyn—l - yf(xn—l))]}”

< ”{ (I — anA)Sy, + an[Syn_IBn(BSyn - yf(xn))]} - { (I — anA)Syn_1 +
an[Syn—l_ﬁn(BSyn—l - yf(xn—l))]}”

=1 — and)Syn — (I — anA)Syn—1 + an[U—PpB)Syn — U—=frB)Syn_1 +
Buy (f (xn) — fCen— )]l

< |lI — a, AllllSyn — Syn—ll

+an[llI=BnB[ISyn — Syn-1ll + Byl f (xn) — f (xn-2II]

< (A= ayPllyn — yn-1ll + an(1=BB)lyn — Yn-1ll

+anBrykllxy, — xp_1ll

< [(1 = any) + an (1= B)][l1xn — xn—1ll + 14, — 2,1 [ 1T x4 l]
+anBryvkllxn, — xp-1ll

= [1 - an()7 -1+ 6,8 — yk))]“xn — Xp—1ll

+A —an(y — 1+ BuBN)]A, — Aoa[ITx,4 I

<[1—=an(7 =14 BB —vK))|(lxn — xnall + 12, = 2,4 1T, 41
= (1 — ant) (% — X1l + 12, = 24l T4 1)
< (1= apDllxn = 2n-qll + 2, = A I T2 - (20)
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Furthermore, note that

”PC{ (I — ay,A)Syn_1 + an[Syn—l_:Bn(BSyn—l - yf(xn—l))]} -
PC{ (I —ap_14)Syn_1 + an—l[syn—l_ﬁn—l(BSyn—l - yf(xn—l))]}”

< ”{ (I — anA)Syn_1 + an[Syn_IBn(BSyn—l - yf(xn—l))]} - { (-
Up—1A)Syn_1 + an—l[syn—l_ﬁn—l(BSyn—l - yf(xn—l))]}”

= |0 = an(A = D)Syn—1 — nfnBSyn_1 + anfryf(x,-) — U — an_1 (A —
D)Syn_1+ an_1Bn-1BSyn_1 — tn_1Bn_1vf (x|l

< |lap — an_1lIA = DSyl + lanfn — an_1Bn-1l11BSyn_1ll

+lanBn — apn_1Bn—1l VIIf Cem)l

< Mla, — ap_1| + Mla,fp, — an_1Bn-1l , (21)
where M is a positive constant such that M > ||(A — DSy,|| + ||BSy, |l +
vIIf(x,)|| foreveryn= 0,1,2,.....S0 from (20)and (21) we derive

lnes = xall = ||Pc{ I = @nd)Sy, + an [Sy,—B, (BSy, —vfCxw)|} -
Pe{ (= anA)Sy,_; + an|Sy,_ =B, (BSy,_, —vf G|}

+||PC{ (I — anA)Syn_1 + an[Syn—l_ﬁn(BSyn—l - yf(xn—l))]} -
PC{ (I —ap_14)Syn_1 + an—l[syn—l_ﬁn—l(BSyn—l - yf(xn—l))]}”

< (1 = anDllxn — xp-all + 12, = 2 [T, 4l

+Mlay, — an_1| + Ml|ayfn — an_1Pn-1l

< (1 - anT)”xn - xn—l” + Ll/ln - An—ll

+Mlay, — an_1| + Ml|ayfn — an_1Pn-1l
for every n = 0,1, 2, ....., where L is a positive constant such that L > ||Tx,||
for every n=0,1,2,....Since Ymeon = , X2 ol — Al <
co JZT?=O|an+1 - anl < oo, and Z?io=0|an+1ﬁn+1 - anﬁnl < oo, in view of
Lemma (5.3.2) we have lim;,_|lx,; — x,]| =0. Then we also obtain
limp, oo |y, = 7,[| = 0.

Since by Proposition (5.3.1) we have foreachn = 0

1y = pll < (1= (20— 20T = 26 +0%)) I — pll

we deduce that for p € Fix(S) n GVI(C, g T),

llotn41 — pllz = ”PC{ (I — a,A)Sy, + an[Syn_.Bn(BSyn - Vf(xn))]} - p”z
< ”(1 - anA)Syn + an[Syn_.Bn(BSyn - Vf(xn))] - p”z
= ”(1 - anA)(Syn - p) + an[Syn_.Bn(BSyn - Vf(xn))] - Ap”z
= |l - anA)(Syn - P)”z + anZHSyn_.Bn(BSyn - Vf(xn)) - Ap”z
+2an<(1 - anA)(Syn - p)rSyn_.Bn(BSyn - Vf(xn)) - Ap)
<@1- anf)zllyn - pllz + (anll(l — BnB)Syn + By f (xn) — Ap||2
+2an(1 - anV)”yn - p””(l - .BnB)Syn + .Bnyf(xn) - Ap”
< llyn = plI? + a2l = BuBISYn + Bn¥f (x,) — AplI?
+2an”yn - p””(l - .BnB)Syn + .Bnyf(xn) - Ap”
< lyn = plI? + @ *[(1 = BuBIISyull + Buvlf Ce Il + 1ApII]?
+2aplly, — pll[(1 = BEIISYnll + BryIlf Gl + 1l AplI]
< llyn = plI* + @ [IISynll + vIIf G Il + APl
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+2a,lyn, — ISyl + ¥IIf Ce)Il + [|Apll] ,

<[(1- (2 —2v1= 26+ 02)) llx, — pll |

+a,7[||sy, || + ¥IlF G + ll4pll])’

+2a,llyn, — ISyl + vIIf Ce)Il + [1Apll]
<(1- (A -2V1= 26 +02))lIx, — pl?
+an 2 [IISynll + YIIf Ce) Il + 11 Apll]?

+2aullyn — plISYLIl + I Gl + [ApIl] . (22)
Thus we obtain

Ellxy = plI? < (A — 21— 26 +02) llxy —plI?
< It = PI2 = lPtnes = PIZ + a2 [ISyall + YIF Cedll + 14pII)?
+2¢t 1y — PULISYAll + VIIf Cell + 1ApII]
< (1 = Pl = [%s1 = pIDIxn — X
+an2[ISyall + Y If Gell + 14pIIT2
+2¢t, 1y — PULISYA Il + ¥IIf Gl + ApI].

Since a, = 0 and ||x, — x,.1/l @ 0 as n — oo, and since {x,}, {y,,} ,{Sy,} and

{f(x,)} are bounded, so we know that |lx,—p|] >0 as n — oco. Note that
Iy, —pll < llx, —pll for allm > 0. Consequently, |[y,—pll-0 as n — oo.
Moreover, there is no doubt that Fix(S) N GVI(C,g, T ) = {p}. This completes
the proof. O

S is a nonexpansive mapping, T — I is a-inverse-strongly monotone, g is both
6-strongly monotone and o-Lipschitz continuous, f € II. , and A, B are two
strongly positive bounded linear operators. Thus, in terms of (19), the Banach
contraction principle guarantees that there exists a unique fixed point

Z,]: = P{( — a,A)SP, [z,]: — g(z,]:) + Pc(g(z,]:) — AnTZ,]:]
+a,[SPc|z) — g(z)) + Pc(g(2)) — AaT2}))]
—pn(BSPc|2z) — g(z}) + Pc(g(2)) — 2T2))] = vf (Zi )1},

Where {a,} < (0, min{1, [|A[|7"}], {8,} = (0, min{1, ||B]|~*}]
,2V1— 26+ 02 <A, <2a/(1+2a) and %<c§ﬁn<

2-y
B-vk
simplicity we will write z,for Z,]: provided no confusion occurs. Next we will
prove the strong convergence of {z,}.

Remark (5.3.7)[S55]:According to the definition of strongly positive
operator, A is strongly positive, that is, there is a constant ¥ > 0 with the

property

For

(Ax,x ) >y ||x]|* forallx € H.

Beyond question, we may assume without loss of generality that y < 1.
Consequently, whenever 0 < y < % ,B=Iand =1,

Then we have
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1-y 1-y 2-y 2-y

J— < J—

B-vk  1-vk 1-yk  B-yk '

Thus, we can pick B, =1 for all n = 0 and so, as an immediate consequence of
Theorem (5.3.6) we obtain

Corollary(5.3.8)[55]: Let C be a nonempty closed convex subset of a real
Hilbert space H. Let f: C — C be a contraction with coefficient k €
(0,1),letT: C - H be a mapping such that T —1:C — His a-inverse-
strongly monotone, and let g: C — H be both §-strongly monotone and o-
Lipschitz continuous. Let S be a nonexpansive self-mapping on C such that
Fix(S) n GVI(C, g, T) +# Q.

Let A be a strong positive bounded linear operator with coefficient ¥ > 0. Let
0 <y< % . Assume that {x,} and {y,,} are sequences in C generated by x, €

C and
{ = FPc [xn — g(xp) + Pce(g(xn) — 4,Txy)],
Xn+1 = PC{(I — anA)Syn + anyf(x,) L, vn=0

where {a,} < (0,1) and 2V1- 26+02+¢&<A,<2a/(1+ 2a) for some
& > 0. Suppose that there hold the conditions:

(D) limy o ap = 0,200 =0 and Yo_olanes — ap| < o;

() Xosoldnes — Al < 0.

Then both {x,} and {y,,} converge strongly to the unique element of Fix(S) N
GVI(C,g,T).

Corollary (5.3.9)[55]: Let C be a nonempty closed convex subset of a real
Hilbert space H. Let f: C — C be a contraction with coefficient k €
(0,1),letT: C — H be a mapping suchthat T— [: C — H is both u-strongly
monotone and v-Lipschitz continuous, and let g:C — H be both §-strongly
monotone and g-Lipschitz continuous. Let S be a nonexpansive self-mapping on
C such that Fix(S) n GVI(C,g,T) # @. Let A, B be two strong positive bounded
linear operators with coefficients y € (0,1) and f > 0, respectively. Let

0 <y < % . Assume that {x,}and {y,} are sequences in C generated by

Xo € C and
{ Yn= Pc [xn — g(xp) + Pc(g(xn) — 4,Txy)],
Xn+1 = PC{(I - anA)Syn + an[Syn_IBn(BS Yn — yf(xn)]}; vn =0

where {a,} c (0,1), {8,} < (0,min{1, ||B]|"*}] and 2v1 = 26+02 +&< A, <
2u/v?

14+2u/v?
(1) limyLeap = 0,200, =0 and Yo_olanes — apl < oo;

. 1-7  2-7 o
(i) limy o0 B =1 € (ﬁ—)]//k'ﬁ—_yyk) and Y ol@ni1Bni1 — AnPnl < 0

(i) Xoioldner — A,] < o0,

for some ¢ > 0. Suppose that there hold the conditions:
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Then both {x,} and {y,,} converge strongly to the unique element of Fix(S) N

GVI(C, g, T).

Proof. Note that T — [ : C — H is v-Lipschitz continuous, that is,
I(T=Dx—(T—= Dyl <vix—yll, Vxy€eC.

Since T — [ : C — H is also u-strongly monotone, we have
U
(T=Dx—(T - Dyx—y)zullx—ylI* = 21T = Dx = (T = Dyl ?,

Vx,y € C.

This implies that T — I : C > H is p/v?-inverse-strongly monotone. Hence, all
conditions in Theorem (5.3.6) are satisfied. Therefore the conclusion follows
immediately from Theorem (5.3.6). O
Theorem (5.3.10)[55]: Let C be a nonempty closed convex subset of a real
Hilbert space H. Let f: C — Cbe a contraction with coefficient k €
(0,1),letT: C - H be a mapping such thatT— [:C— H is a-inverse-
strongly monotone, and let g: C — H be both §-strongly monotone and o-
Lipschitz continuous. LetS be a nonexpansive self-mapping on C such that
Fix(S) n GVI(C, g, T) # Q.
Let A,B be two strong positive bounded linear operators with coefficients
Y €(0,1) and B > O,respectively. Let 0 < y < % Assume that {z,} is a
sequence in C generated by

Zn = PC{ (1 - anA)S PC [Zn - g(zn) + PC( g(zn) - AnTZn)] +

an[S PC[Zn - g(zn) + PC( g(zn) - AnTZn)]_ﬁn(BS Pc [Zn - g(zn) +

PC (g(zn) - AnTZn)] - yf(zn))]}

where {a,} c[0,1),{B,} c (0,min{1,||B||"*}] and 21— 26 +02+¢<
A <2a/(1+2a) forsome ¢ > 0.

If lim,,,, @, =0, and lim,,, B, =7

(1—)7 2-y
B-vk’ B-vk
strongly to the unique element of Fix(S) N GVI(C,g, T).

Proof. First, we may assume that a, < ||A||"! due tolim,_. a, =0, By

) . Then {z,} converges

Lemma (5.3.5), we obtain ||| — a,All <1 —a,y . Also, since lim,_,q B, =

1-y 277 ) 1-y  2-¥
, , we may assume that for some constant ¢ € (—, )
(ﬁ—yk B-vk y B-vk” B-vk
1-¥ 2-7
<c<pf, < ) vn=0.
B-vk bn B-vk

Put y, = P lz, — g(z,) + P:(g(z,) —A,Tz,)] for every n =0,1,2,.... Let
p € Fix(S) n GVI(C, g, T) . Then utilizing Proposition (5.3.1) we obtain
lyn = pll = IPc [z, — 8(2) + Pc(8(z2) — 2:,T2,)] = Pc [p — 8() + Pc(g(®)
- AnTp)] I
<[1—(@y—2V1— 26+ 0]z, —pll
< lz, = pll
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for every n = 0,1,2, .... Observe that

Vop = Pe{ (U —a,A)S Pc [p — g(p) + Pc(glp) — 24,Tp)]
+ ay[S Pclp —gp) + Pc(glp) — 2,Tp)]
—B,(BS Pc [p— glp) + Pc (g(p) — 4, To)] —vf(p)] )}
=Pc{ (I —a,A)p + ayp—8,(Br —vf(®)]}-
Then from (19) we have
Nz, — pll =IVpzn —=Vap+ Vap—p
< Vazp = Vool + IVop — ol
< (1 - anT)”Zn - p”
+||Pe{ U — anA)p + ay [p — 8,(Br —vf )]} — Pep||
< (1 —ayD)lizy—pll + |0 — andp + anlp — 8,(Bp —vf(®)] — 7|
< (1 —apDlizy —pll + an||—Ap + v — 8,(Bp — vf(0)) ||
< (A - a,Dllz, — pll + a,lllA = Ilipll + B2l + yIIf @I
Hence,

1
lzn — pll < - [lA = Illipll + BN+ vIIf @ ).

This implies that {z,} is bounded, and so are {yn} {Syn}, {T(zn)} and {f(zn)}.

For p € Fix(S) n GVI(C,g,T).

”Zn - pllz = ”PC{ (1 - anA)Syn + an[Syn_.Bn(BSyn - Vf(zn))]} 2_ p”z
< ”(1 - anA)Syn + ay, [Syn_.Bn(BSyn - Vf(zn))] - p” "
= ”(1 - anA)(Syn - p) + an[Syn_.Bn(BSyn - Vf(zn)) - Ap]” 5
= || - anA)(Syn - P)”z + anZHSyn_.Bn(BSyn - Vf(zn)) - Ap”
+20(n<(1 - anA)(Syn - p)rSyn_.Bn(BSyn - Vf(zn)) - Ap)
< (1 - anf)zllyn - pllz + (anll(l - .BnB)Syn+.Ban(Zn) - Ap||2
+2an(1 - anV)”yn - p””(l - .BnB)Syn + .Bnyf(zn) - Ap”
< lyn = plI* + a2l = BuBISYn + Bn¥f(2,) — AplI?
+2an”yn - p””(l - .BnB)Syn + .Bnyf(zn) - Ap”
< llyn = plI* + an?[(1 = BuB)ISy,ll + Bry Il f Gzl + lApII]?
+2ayllyn — plI[A = BuB)ISy,ll + Bry llf (z )1 + 1| Apll]
< llyn = pII? + & ?[ISyall + ¥ £ DI + 1| AplI]?
+2ayllyn — plIISYLIl + ¥IIf (Z)l + [|Apll]

<[(1- (= 2VT= 25 +02))llz — P’

2
+a2[[|sy, || + vllFGIN + ll4pll]
+2ayllyn — plILISYL Il + ¥IIf (Z)I + [|Apll]
< (1= (A — 21— 26+ 07)) llzo — plI?

2
+a,2[||sy, || + vllF @I+ llApll]
+2ay |lyn, — pIISYLIl + ¥IIf I + |lAp]l] .
So, we obtain

&z, — plI> < (A —2V1 = 28 + 02)llz, — plI?

2
< & *[[Isy, || + vl G + ll4pll]
+2anllyn — pIUISYRIl + ¥IIf DI + [|Apll].

YoV
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Since a, — 0 (n — o) ,and {yn}, {Syn} and {f(z,)} are bounded, we derive
|z, — pll 0 as n - o . Moreover, there is no doubt that Fix(S) N
GVI(C,g,T) = {p}. This completes the proof. O

In terms of Remark (5.3.7) we can take B=1, = land f, = 1,¥vn=>01n
Theorem (5.3.10). Then we get

Corollary (5.3.11)[55]: Let C be a nonempty closed convex subset of a real
Hilbert space H. Let f: C — C be a contraction with coefficient k €
(0,1),let T: C - Hbe a mapping such that T—1: C - H is a-inverse-
strongly monotone, and let g:C — H be both §-strongly monotone and o-
Lipschitz continuous. Let S be a nonexpansive self-mapping on C such that
Fix(S) n GVI(C,g,T) # Q.

Let A be a strong positive bounded linear operator with coefficient y > 0. Let

0 <y <Y Assumethat{z,}, isa sequence in C generated by
k n

Zn = PC{ (1 - anA)S PC [Zn - g(zn) + PC( g(zn) - AnTZn)]
+anyf(zn)}

where {a,} ©[0,1) and 2V1i-— 26+02+&<A,<2a/(1+ 2a) for
some § > 0.If lim, ., a, =0, then {z,}, converges strongly to the unique
element of Fix(S) n GVI(C,g,T).

Corollary (5.3.12)[55]: Let C be a nonempty closed convex subset of a real
Hilbert space H. Let f: C - C be a contraction with coefficient k €
(0,1),letT: C - H be a mapping suchthat T — [ : C = H is both u-strongly
monotone and v-Lipschitz continuous, and let g: C — H be both §-strongly
monotone and g-Lipschitz continuous. Let S be a nonexpansive self-mapping on
C such that Fix(S) n GVI(C,g,T) # @. Let A, B be two strong positive bounded
linear operators with coefficients y € (0,1) and [ > 0, respectively. Let

0 <y < % . Assume that {z,}, is a sequence in C generated by

Zn = PC{ (1 - anA)S PC [Zn - g(zn) + PC( g(zn) - AnTZn)]
+ an[S PC[Zn - g(zn) + PC( g(zn) - AnTZn)]
_ﬁn(BS PC [Zn - g(zn) + PC (g(zn) - AnTZn)] - yf(zn))]}

Where {a,}c [0,1),{B,} c (0,min{1,||B||"*}] and 2v1i— 26 + 0% +

2u/v? o1 :
<Ay < 1+’Z;v2 for some ¢ > 0 . if lim,,,,a, = 0and lim,_ ., fB, =71 €

(;__;:k,;__;k) , Then {z,} converges strongly to the unique element of
Fix(S) n GVI(C,g T).

Proof. Observe that T— [: C —» H is p/v?-inverse-strongly monotone.
Moreover, it is easy to see that all conditions in Theorem (5.3.10) are satisfied.
Therefore the conclusion follows immediately from Theorem (5.3.10). o

A mapping V: C - C is called strictly pseudocontractive if there exists
k € [0,1) such that

YoA



Vx = Vyll? < llx = ylI* + kIl = V)x = I = V)yll*, Vvx,y€C.

If k = 0, then V is nonexpansive. Put T = 2 — V, where V: C - Cis a
. . . . . 1-k .

strictly pseudocontractive mapping with k. Then T — [ is 5 -inverse-strongly

monotone. Actually, we have

N2 — T)x — 2I = T)ylI* < llx = ylI> + k|[(T — Dx — (T = Dyll* ,vx,y € C.
On the other hand, since H is a real Hilbert space, we have for all x,y € C

121 = T)x — 2I = Dyll* = llx = ylI* + II(T — Dx — (T — Dy||*
—2(x =y, (T = Dx— (T —Dy).
Hence we have
(x =y, (T = Dx— (T = Dy) 27 T = Dx— (T =Dyl Wxyec
Utilizing Theorem (5.3.6) we first establish a strong convergence theorem for
finding a fixed point of mapping % V where V:C - C is strictly

pseudocontractive.

Theorem (5.3.13)[55]: Let C be a nonempty closed convex subset of a real
Hilbert space H. Let f : C — C be a contraction with coefficient k € (0,1), let
S be a nonexpansive self-mapping on C and let V: C - C be a strictly

pseudocontractive self-mapping on C with, such that Fix(5) N Fix(% V)0 .
Let A,B be two strong positive bounded linear operators with coefficients
Y €(0,1) and B > 0, respectively.Let 0 < y < % Suppose that {x,}and
{y,,} are sequences in C generated by x, € C and
{ Yo = Pc[(1—2)x, + 2,(V — Dxyl,
Xns1 = PclU — anA)Sy, + an[Syn—PFn(BS yn — vf (xp)]}, ¥n =0

where {a,,} ¢ (0,1),{B,} c (0,min{1, [|B||"*}] and ¢<2, < (1-a)/(2 - )
for some ¢ > 0 . Suppose that there hold the conditions:

(1) lirnn—>oo an = 0) Z;?:O ap = © and Z?lo=0|an+1 - anl < ®©;

L\ 7 1-y 2-y -
(i) limy, 0 B =1 € (ﬁ—yk'ﬁ—yk) and Yp—ol@ni1Bn+1 — Anfnl <

(i) Tl nss = Anl < .

Then both {x,,}, and{y, } converge strongly to the unique element of Fix(S5) N

Fix(5 V) .

Proof. Putg=land T=2/—V.Then §=0c=1and T— [is —-
inverse-strongly monotone. In this case, the condition ¢<A4, <;:—Z 1S
equivalent to the one 2v1— 26+02+&<, < 1:%1; Moreover , y, =

2

Pe(xn— 2 Txn) = Pe[(1 = 4) %0 — A,(V — Dx,]. Note that VI(C,T) =
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Fix(% V) So by Theorem (5.3.6), we obtain the desired result. Utilizing

Theorem (5.3.6), we also establish another strong convergence theorem for
finding a zero of mapping T: H — H with the property that T — [ is a-
inverse-strongly monotone.

Theorem (5.3.14)[55]: Let f: H - H be a contraction with coefficient
k €(0,1), let T: H - H be a mapping such that T — [ is an a-inverse-
strongly monotone mapping and let S: H — H be a nonexpansive mapping
such that Fix(S) N T~10 # @. Let A, B be two strong positive bounded linear
operators with coefficients y € (0,1) and f > 0, respectively. Let 0 < y <

% .Suppose that x, € H and {x,} is generated by

{ Vo = Xn — AnTxp,
Xn+1 = (I — anA)Syn + an[Syn,—Bn(BS y, — yf(xn)]; vn =0

where {a,,} c (0,1),{B,} c (0,min{1, ||B||"*}] and ¢ <1, < 2a/(1 + 2a) for
some ¢ > 0. Assume that there hold the conditions:

(1) limy o0 o = 0, X0 Ap = © and Yp—ol@nir — anl < o0

(i) limy, e By =7 € (;—;k'ﬁ) and Y.r-ol@ni1Bn+1 — anPnl < ;

i) B0l nss — Anl < 0.
Then both {x,,} and {y,,} converge strongly to the unique element of Fix(S) N
T-10.
Proof . We have T~10 = VI(C, T). So putting Py = I, by Theorem (5.3.6),, we
obtain the desired result. ©

Corollary(5.3.15)[232]: Let C be a nonempty closed convex subset of a real
Hilbert space H. Let T : C — H be a mapping suchthat T — [ : C - H be a-
inverse-strongly monotone, and letg: C — H be both §-strongly monotone
and o-Lipschitz continuous. If 2V1— 286 + 02 < 1 < 2a/(1 + 2a), then
foreachx,x+€ € C

IPc [x —g(x) + Pc(g(x) — ATx)] — Pc[(x +€)— glx+e€) +
Pe(gx +€) —ATx + e)]ll
<[1-(1-2Vv1- 26 +0?)]e

Proof. Utilizing the &-strong monotonicity and o-Lipschitz continuity of
g: C > H,wehave

lx — g(x) — ((x+¢) —gl))|| <V1— 26 +0%€, Vx,x+€ € C.

Since 2V1— 26+02<1 < 2a/(1+ 2a), and T—1:C - H is a-
inverse-strongly monotone, so we obtain A — 2a(1 — 1) < 0 and
1A —De—A[(T— Dx —(T— D&+l
=1 -MD% —-220-2)(T - Dx—(T— D(x+e),€)
+A2(T = Dx— (T — D& +ll?
SA-D%e+AA =221 =D)IT = Dx—(T - D+el?

< (1-2)%€,
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which implies that
||(/1 —1e— A[(T — Dx-(T—- D(x+ 6)]” < (1- Qe vx,(x+€) € C.
Therefore, we get for each x, (x + €) € C.

|1Pc [x — g(x) + Pc(g(x) — ATx)] — Pc[(x+€) —glx+e€) + Pe(glx+€) —T(x+e)]ll
< ||x — gx)+P(glx) —ATx) — [(x+e€) — glx+¢e)+ Pc(g(x +€) — AT (x + 6))]”

< 2||x — g(x) — ((x +e)— glx+ E))”
+HIA-1De-A[(T - Dx = (T = D&+ ]l
<2Vl— 25+0%2e+ (1—Ae
=[1-(1-2v1- 26 +02)]e

This completes the proof. O
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