Chapter 2

Operators of Bounded and Unbounded Imaginary Powers

In this chapter we deal with sums of operators in {-convex spaces, and here
the extensions of the Dore-Venni results are derived. We give an application to
a Volterra equation in a Banach space, we consist of an operator of positive
type in Hilbert space without bounded imaginary powers, and concerned
with the closedness of the sum of two closed operators in a Hilbert space.

Sec(2.1): Operators with Bounded Imaginary Powers in Banach

Spaces
Let X be a complex Banach space and let A,B be closed linear densely
defined operators in X such that (—oo,0] is contained in the resolvent sets of
both operators, such that their resolvents satisfy
It+A)7 Y |t+B)<M/(1+t)forallt =0, (1)
Then their purely imaginary powers are bounded, and

|A"| < Ke®lsl , |B| < Ke %815l forall se R (2)
holds. Recently, it has been shown by Dore and Venni [182] that the sum
A + B with domain D(A + B) = D(A) n D(B) is closed, if in addition X is ¢-
convex, A and B commute and 84 + 05 < m; a brief explanation of the notion ¢-
convex Banach space' is given at the beginning of this Section. This result has
important applications to the theory of partial differential operators since (1) but
also (2) are known for large classes of such operators; cp. Seeley [206]. In
another paper the authors also show that A + B then has properties (1) and (2)
again, probably with different M, K but with 6,,5 = max(6,,0p) + &, where
€ > 0 can be chosen arbitrarily small. This makes it possible to iterate the
argument and to consider sums of finitely many operators 4;, i = 1,..... M,
which are mutually commuting, and are subject to (1), (2), with exponents
6; such that 6; + 6; < m for all i # .

In many cases, however, (1) is too strong and should be replaced by the
weaker conditions (— o,0) € p(4) N p(B) and
[(t+A)7Y,|(t+B)" | <M/t forallt> 0. (3)
Examples for this generally come from differential operators on unbounded
regions, like the Laplace operator or the Stokes operator on exterior domains; of
Giga and Sohr [198]. In such situations one still has (3) as well as N(4) = 0 and
R(A) dense in X, but 0 € g(A). Therefore it is desirable to have also results for
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this case available, similar to those for the somewhat simpler case considered by
Dore and Venni [182]. A preliminary version of such a generalization was
obtained by Giga and Sohr [199], who also gave an application to the Navier-
Stokes equation on an exterior domain. It is the purpose of this section to study
this extension to the case where only (3) holds thoroughly.
At first glance this seems to be an easy task; approximate A and B by € + A and
€ + B, use the Dore-Venni results and let € = 0. Actually, this approach
works, however, it is not straightforward. This is due to the fact, that in case we
have (3) only, the fractional powers A # are in general unbounded, except for
z € iR. For this reason it is not at all obvious whether € + A has bounded
imaginary powers and whether the crucial assumption (2) holds for ¢ + A . It
turns out that this is indeed the case. For the proofs we use the functional
calculus generated by the group A %; it is closely related to the inverse Mellin
transform; cp. Titchmarsh [209]. Once this functional calculus is put to work it
is possible to show that (3) also holds for € + A with the same & and K
uniformly in e which is indispensable for the limiting process. By means of this
method, it is also possible to improve the estimate on (4 + B)*  derived by
Dore and Venni [196]; we obtain

|(A + B)®| < Kexp(max (8, ,0p)|s|) foralls € R, (4)
provided 8, # 05, and an additional factor 1 + |s|*/? appears in case
6, = 03.
Let X be a complex Banach space and let A denote a closed linear operator in X
with dense domain D(A); N(A) and R(A) denote kernel and range of 4, and we
use the notation p(A) and g (A) for resolvent set and spectrum of A. B(X) is the
space of bounded linear operators in X. The basic assumption on 4 is
(H1) (—,0) c p(A),N(A) = 0,R(A) is dense in X, and, for some constant
M > 1, we have

|(t+A)" Y <M/t forallt> 0. (5)
It is well known that operators A satisfying (H 1) admit not necessarily bounded
fractional powers of any order z € C, and for |Rez| <1,z # 0, and x €

D (A) N R (A) .we have the representation

1

Sinzn
A%x = - z7Wx—(1+2) 147 x + f t?t1(t 4+ A7 A7 xdt

0

(0.0)

+f tZ Yt + At Axdt};,  (6)
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cf. Krein [201] or Komatsu [184]. In particular, since sinmz/mz is an entire
function, it follows that A “x is a holomorphic function of z for |Rez| < 1 on
the set D(A) N R(A); the latter is easily seen to be dense in X. In fact, given
x € X, choose y, € D(A) such that Ay, — x, this is possible since R(A) is
dense in X. Then we have x,, = n(n— A)~! Ay, € R(A) N D(A) and x,, - x.
Furthermore, A “x satisfies the group property
AZr A%y = A%t22x,  x € D(A) N R(4), Rezy,Rez,, Re(z,; + z,) € (—1,1).

Therefore the following definition makes sense.
Definition (2.1.1) [186]: A closed linear densely defined operator A in
X belongs to the class BIP(X, ), where 6 € [0, ), if A satisfies (H 1) as well as
the condition.
(H2) Foralls € R,A " € B(X), and there is some K > 1 such that

|A5] <Ke®slseR (7)
In general, it is not quite simple to verify (H2); however there are a number of
examples which underline the importance of this definition.
Example (2.1.2) [186]: (Normal operators in Hilbert space). Let X be a Hilbert
space and A a normal operator in X with spectral family {E; } ;ec. By the
functional calculus for normal operators we have

fA) = [, FA)Es € BX)
for each Borel-measurable bounded f : o(A4) = C, and

lf (A= sup{lf(DI|: 2 € a(A}=If lo
holds. Let S, = {4 € C:|argA| < a} ; then we have

A € BIP(X,0) iff N(A) =0anda(4) c Sp. (8)
In fact, if N(A) = 0then R(A) = X and with f(1) = 1/(1 + t)
|t + A)7Y <sup{1/|2 + t|: 1 € a(A)}
= 1/dist(—t, a(4)) < 1/(tsin 6),

i.e (H 1) holds. Also, with f(1) = 1% = ¢!5198% we obtain

|AS| = sup{|2’]:2 € a(4)} = sup {e_sarg’l: A €ea(l)l<e Islo,
From this the converse implication is also obvious.
Example (2.1.3) [186]: (m-accretive operators in Hilbert space). Suppose A is
an m-accretive linear operator in a Hilbert space X such that N(A) = 0. Then
we have R(A) dense in X and (H 1) holds with M = 1. Moreover, the functional
calculus of A developed by Foias and Nagy [208] implies A € BIP(X, /2), the
constant K in (H 2) is 1.
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Example (2.1.4) [186]: (Multiplication operators on LP(Q,u)).LetX =
LP(Q,u),1<p<oo , where (Q,u) denotes a o-finite measure space, and
consider a u-measurable function m(x) such that m(x) # 0 u -a.e.; let A be
defined as
(Au)(x) = m(x)u(x), x€Q, D(A) = {u€X:Au € X}.

This A is closed linear and densely defined, N(A) = 0 and R(A) = X. It is not
difficult to see that

A € BIP(X,0) iff m(x) € Sy a.e. (9)
Example (2.1.5) [186]: (d/dtin LP(R,; Y)). Let Y denote another Banach
space, and let X = LP(R,; Y), with 1 < p < co. Define Au = du/dt for
u€eD() = VI/()l’p(IR+; Y); it is well known that A is closed linear densely
defined, and that the a djoint A" of A is given by A*u* = —du”/dt for u”" €
D(A*) = wl(R,; Y*), in case Y is reflexive, and p~1 + g~ = 1. Therefore
we have N(A) = N(A®) = 0, hence R(A) is dense in X. Furthermore,

(¢ +A) () = f etV f(y)dy, t>0, fEX,
0

hence (H 1) follows with M 1.
It has been shown recently by Dore and Venni [182] that in case Y is ¢-
convex, the imaginary powers of A satisfy the estimate

1ls|

A <cp, U + sHe>  seR, (10)
where the constant C(p,Y) > 0 only depends on p and Y. Thus if Y i1s &-convex
and 1 <p < oothenA € BIP(X, /2 + ¢) for each ¢ > 0.

Actually, Dore and Venni proved this only for the case of a finite interval
[0, T], however, without any changes their proof carries over to the hairline case.
Example (2.1.6) [186]: (Diffusion semigroups). Suppose —A is the generator of
a positive contraction semigroup T(t) in X = LP(Q,u),1 < p < oo, where as
before (), 1), denotes a o-finite measure space. Assume that T'(t) is selfadjoint
for p =2 and that T(t)1 = 1 for t > 0in L*(Q, u), where 1 denotes the
function which is constant 1. Stein [207] proved that then A € BIP(X,m/2)
holds, for any p € (1, o). This result covers elliptic boundary value problems of
second order; the angle /2, however is not best possible for this case, as the
results of Seeley [206] show.

Example (2.1.7) [186]: (Stokes operator). Let Q@ c R"™ be a domain with

compact smooth boundary, consider the space = LP(Q;R"), for 1<p <

o,n > 1, and let X = IP(Q; R") denote the subspace of Y defined by the

closure of Cy,((Q; R")} = {u € C5((; R™):divu = 0} in the norm of Y;
Y¢



here divu means the divergence of the vector field u. Then for every f € Y
there exists the unique decomposition f = f, + grad @ with f; € X the
Helmholtz decomposition; grad ¢ is as usual the gradient of the scalar function
¢ . The operator P: Y — X defined by Pf = f, is a bounded linear projection in
Y with R(P) = X. The Stokes operator B on X is then defined by Bu = —PA,
D(B) =D(A) N X; here A denotes the Laplacian on Y with zero boundary
conditions, i.e. D(A) = Wol’p(ﬂ; R™) N W2P(Q; R™). The Stokes operator
represents the stationary linear part of the Navier-Stokes equation for the flow of
an incompressible material with Newtonian viscosity.

It 1s known that (H1) holds for B; cp. Borchers and Sohr [193]. Concerning

(H2), it has been proved recently that for every 6 € (0,m/2) there is a constant
K = K(6,p) such that (H2) is satisfied. For the case of bounded domains this
result is due to Giga [197], while for exterior domains this has been proved by
Giga and Sohr [198]. Thus B € BIP(X, 8), for any 8 > 0.
Furthermore, B is even selfadjoint in LY. (Q; R™). It should, however, be noted
that B is not covered by Example (2.1.6), since the semigroup generated by B
cannot be expected to be positive and it is an open question whether it is
contractive for general p. Also, in the case of an exterior domain the Stokes
operator is not invertible, hence (1) does not hold.

Note that the class BIP(X, 8), enjoys the symmetry property

A € BIP(X,0) iff A~ € BIP(X,0). (11)
Let B denote the generator of the Cy-group A®; formally we obtain B =
i logA, and so we may use this relation as a definition of logA.
Definition (2.1.8) [186]: Suppose A € BIP(X,0) and let B be the generator of
the Co-group A® . Then the logarithm of A is defined by

logA = —iB. (12)
Recall the Mellin transform defined by

F(p) = f FOPdt ; (13)
0
Mellin's inversion formula reads
C+ioo
f@O=a/em) | FExdp (14)
C—ioo

(14) will serve for the construction of a functional calculus for operators of
Class BIP(X,0) . For the convenience of the reader we now collect several
well known transformation pairs and several useful properties of the Mellin
transform.



f () F(p)

1/(1 + ¢t) m/sinz p 0 < Rep <1 (15)

et T'(p) 0 < Rep (16)
1+t)™¢ IF'(p)T(a—p)/T(a) 0 < Rep < Rea (17)
AOREG (/21 [CSFp-0)  Fyo)do (18)
f(at) (1/a)? F (p) (19)
—d/an)f) (- 1DF@p - 1) (20)
tf(¢) Flp + a) (21)

Adetailed study of the Mellin transform can be found, e.g., in the classical
monograph Titchmarsh [209].
In the sequel, we let 6 € [0,m) be fixed and A denotes any element of
BIP(X, ). Define

MAR) = (€ MY(R)): [uls = (1/27) f ¢! |du(s)| < oo,

the Banach space of all complex measures on R which are finite w.r. to the

Olsl normed by |.lg ; Mj(R) becomes a Banach algebra with unit, the

weight e
convolution of measures, scaled by 1/2m, being the multiplication. Evidently,
the Dirac measure 8 with mass in s € R belongs to M3 (R) ; 218, is the unit of

the algebra Mz (R) . For measures u € Mj(R) we define

f@=zm [ du), gl <o, 22)

this map defines an algebra homomorphism from Mg(R) into the Banach
algebra H, (Sg) defined by

Hy (Sp) = {f: Sy — C continuous, holomorphic in Sy}
with norm |f |, = sup{|f(2)|: z € Sy}, and pointwise multiplication. This gives
rise to an algebra homomorphism from Mj(R) into B(X) defined by

fay=a/zm [ 47 dues), @3)

where u and f are related by (22). Choosing u = 2mé,, we obtain f(z) =
z7" aswellas f (A) = A™; in particular (278, )(A) = I. Moreover,

(fuif)(A) = (1/2m) [0 A7S d(uy * pp)(s)
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= (1/2m)? [ [T ATS duy (s — )du,(t)

= (1/2m)% [ A7 dpy(t) [, A5 duy () = f1(4) f2(4);
this proves that the map (23) is multiplicative.
Theorem (2.1.9) [186]: Let 8 € [0,7) and A € BIP(X, 9).
Then (23) defines an algebra homomorphism from Mé(R) into B(X) such that

f(z) =z~ implies f(A) = A™", r € R. (24)
Moreover, we have the estimate
lf (A <Klulg (25)

with K from (H2). Here f and u are related by (22).

It is left to the reader to translate the properties (19)-(21) into the properties of
the algebra homomorphism. However, let us state a consequence of (19) for
future reference.

Corollary (2.1.10) [186]: Let 6 €[0,m) and € BIP(X,6),a >0 . Then
aA € BIP(X, 0) and we have

f(ad) = fo(A) (26)
Where f,(t) = f(at) and f is given by (22).

It is to be mentioned that this functional calculus is nothing else than the
functional calculus of Phillips for the group A%, after an exponential change of
variable; cf. Hille and Phillips [200]. For our purposes, however it is more
appropriate to have the Mellin-transform as a setting rather than the Laplace-
transform.

Unfortunately, our functional calculus is not strong enough to recover the
resolvent (A —A)™! of A from the group A%. The reason for this is that the
Mellin transform of 1/(1 + t) has poles at p = 0,1. We are going to remove
this defect. Consider the transform pair (15); the inversion formula (14) then
holds for each ¢ € (0,1) since |sinmp| = shm|s|, s=Imp. Let x €
D (A) N R (A); the vector-valued function APx,|Rep| < 1, is then
holomorphic and we have the estimate

|4Px| < C.(x)e?!s! ,JRep| <1 —¢,

which easily follows from the representation (6) of A”x and the group property.
Therefore, the integral
C+ioo
Tx = (1/2mi) f (/sinmp)A~P xdp, 0<c<1, (27)
c— i
Exists as an absolutely convergent integral and by Cauchy's Theorem it is
independent of c. Applying (I + A) to (27) we obtain
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(I + ATx = (1/2mi) fcc_:::o(n/ sinmp)A~P xdp

+(1/2mi) fcc_:zo (m/sinmp)A* =P xdp ;

Using Cauchy's Theorem again, we deform the path of integration in the first
integral into the contourl; , the contour consisting of the intervals
(—ioo,—ig], [ig, i) connected by the positive halfcircle I'f of radius € > 0;
similarly, the path of integration in the second integral is deformed into I, the
intervals (1 — ioo,1— ic]and [1 + ie, 1+ i) connected by the negative
halfcircle T's of radius € > 0. Since sin m(1 + p) = —sinmp the contributions
coming from the straight lines in I; cancel each other, and therefore there
remains

I+ A)Tx= (1/2mi) jrf(”/Siﬂ Tp) A_pxdp

. 1-
+(1/2"i)jfi(ﬂ/81n o) A "xdp ,

it 1s easily seen that (I + A)Tx = x as € > 0, hence we obtain Tx =
(I + A)"x for each x € D(A) N R(A). Shifting the contour to the imaginary
axis in (27) and applying Corollary (2.1.10) we have shown

(I + ad)™x = (1/2mi) PV f (/shrs)(aA)™" xds + (1/2)x, (28)

for each x € D(A) N R(A). and @« > 0; here ' P V' indicates Cauchy's principal
value.
Now consider 1 = a e!? with |¢ | < m; then (14) with f(t) = 1/(1 + At)
yields

1/(1 + At)

1/(1 + at)
+(1/2mi) f(n/shns)(at)_is (e?s — 1)ds;

the measure u with density du/ds = (m/shms)(e®S — 1) @™ belongs to
Mg(R), provided |p| <m—6, and |ulg < c/(m—6 —|pl) holds for some
constant ¢ which is independent of ¢ and a . Thus by Theorem (2.1.9), 1,(I +
AA )1 exists foreach A € C with |argA|] < m— 6 and

I +2A)7 Y <|U+ad)™ Y + Clulg < C.
On each sector S, withv < m — 6. We have proved
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Theorem (2.1.11) [186]: Let A € BIP(X,0),0 < 8 < m.then o(4) € Sy and
we have the estimate
A +A4)7H <Cy/IAl, €S, (29)
where v < m — 6. In particular, if 0 < m/2 then —A generates a uniformly
bounded analytic Cy-semigroup e ~*4 in X.
By means of the transform pair (16) it is possible to obtain a representation of
e~ in terms of the imaginary powers A'°, but we will not do this here.
Suppose A satisfies (H1); it is then obvious that ¢ + A = A, also satisfies (H 1)
foreach 0 < ¢ < 1, and there holds the stronger estimate
|t + A)7 <M/(e+ t) < (M/e)/(1 +1), t>0. (30)
Therefore, the fractional powers A; ¢ exist and are bounded for Re a@ > 0; they
even form an analytic semigroup. It is much less obvious whether this
semigroup has boundary values in B(X) on the imaginary axis. However, this
can be expected if A belongs to BIP(X,0). In fact, we show that then A, €
BIP(X, ) for each € > 0; even more is true.
Theorem (2.1.12) [186]: Suppose A € BIP(X,68) for some 6 € (0, ), and let
A, =e+A,e>0 . Then A, € BIP(X,0) as well, and the constants M and
K from (HI) and (H2), respectively, can be chosen uniformly w.rt, € > 0.

Moreover, the group Aip converges strongly to the group A° as & - 0.
Proof. The proof is based on the functional calculus for operators of class
BIP(X,0) . Let A,0,A,,¢ be as in the theorem and let M and K denote the
constants in (H1) and (H2) for A; we first consider the case € = 1. The
transformation pair (17) clearly yields the complex powers of A; with negative
real part, however, this F(s) does not give rise to a measure of class Mj(R)
since F(s) has a pole at s = 0; also we are interested in the case Re a = 0 and
so we have to derive a corresponding formula of type (22).

First we use the Mellin inversion formula (14) for the pair (17) , Rea > 0.
Shifting the contour of integration to the imaginary axis yields

e}

1 1 .
(1407 =2+ (ﬁ) 3% j [(is)[(a - is)[(@)~! t-5ds, t>0,Rea>0,  (31)

— 0o

where again 'PV’ denotes Cauchy's principal value. To remove the pole at
s = 0, we subtract from (31) the representation of (1 + pt)™1,p > 0,1ie. (31)
with a = 1 ; this gives

(is)l(a~is) np~is
Ir'(a) sin(ims)

A+ =1 +p)™ +(1/2m) [ { ft=as. (32
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Note that the integral now is absolutely convergent since the pole at s = 0 has
been removed. Next we want to let a = ip in equation (32); then s =p
becomes a singularity within the integrand. To avoid this we alter the contour of
integration once more into [y, consisting of the two rays {is:s<p—
e} {is: s = p + €} and the left halfcircle with radius € > 0. Now passage to the
limit a — ip can be carried out to the result

1+t)%? =1 +pt) !

+(1/2mi) fl;s{F(z)F(ip —2)/T(ip) —mp~%/sin mz}t~%dz. (33)

Next we let £ = 0 and obtain
1+ =00 +pt) t+1/2)t7

(00)

r(s)rp — is) np_is}t—isds (34

+(1/2m)PV f{ I'(ip) ~ sinis

finally, to remove the singularity we add (use (15) and (21))

pt=*P(p+1t)7?
= (1/2)t™% + (1/2m)PV [ {mp'~t /sinmi(s — p)} t~ds (35)
to (34)
1 +)P=00+pt) T+t —ptP(p+1t)7!

+(1/2m) [ g ()t ds, (36)
Where

go(s) = {T(is)T(ip — is)/T(ip)} — {mp~*/sin mis} — {mp®~*/sin mi(p —5)},  (37)

withs € R,p > 0.
It is not difficult to show that|gp(s)| < Cpe ~7lsl s € R, and so gp gives rise
to a measure u,, M (R) .This yields the representation

A7 = pTTAATE + AT — p AP ASY +f, (A), (38)
where f,is given by (22) with du,/ds = g, , thanks to Theorem (2.1.9).

Thus the functional calculus developed in this  Section shows that the
imaginary powers of A; exist and belong to B(X) for each fixed p > 0. We
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now have to verify estimate (7). It is clear from (38) that it remains to derive the
desired bound on f, (4), which means to prove

flgp(S)Ie‘”s' ds<Ce® p>0, (39)

where C only depends on 8, but not on p. The integral in (39) is broken up into
five parts according to the intervals (—oo,—n), (—n,1), (M, p — 1),
(p—n,p+1n) and (p +n, ), where n < p/2 is fixed, to be chosen lateron.
These integrals will be named I;,1,....,Is and estimated separately. In the
sequel we will use repeatedly the formula

IT(is)|? = n/(s shms), s €R, (40)
see, €.g., Abramowitz and Stegun [191], p. 77, as well as the elementary
estimate

e™ /2 = shmr = cyne™, r=n, (41)

where ¢y > 0 is independent of n > 0.
I;: Here we have by (40) and (41)

|gp (s)|<cyin™? e sl s < —p
hence

11| < f C,nte™e% ds<Cint(m—-0)1. (42)

n
I5 : For this integral (40) and (41) yield

|gp (s)| < Csnte ™ e, S=p+n

hence
lIs] < Cs 7t f e~ (m=0)s dse™ =Csnt(m—6)" e, (43)
p

I5: Similarly, here we obtain

lgo )| < Can~M([p/s(p = V? +e ™ +e P I)n<s<p-1,
and so a simple calculation shows

p
I3l < C3n~t f ([p/s(p — $)]M? + e 4 e ™P=9) 5 gs

0
< Cyn i fp e’ fo [t(1—t)]7Y/2 e~ 9tqt
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+r—0)"1 +(m+6)1e

<Can H{1/V0) e + (m— )1+ (m+6) L eb”). (44)
Note that here we need 8 > 0!
I: Since g, (s) is continuous w.r. to p > 2nand sand the interval under
consideration has length 2 not dependent on p it is clear that |I,(p)| < Cas
long as p is bounded. Therefore we may restrict our attention to large values of
p . We have

|mpis=t /sinin(p — s)| < C;n~te ™™= < ¢yt
and from the reflection formula of the gamma function
I'(z)T(1— z) = n/sinnz.

We obtain fors € [—n,7]

8o (| < Con™t + IFEIT @ p — sN/TEp) — p¥T (A — is)]

Since I'(is) has a simple pole at s = 0 there is a constant ¢ > 0 such that
Isl'(is)| <c, Ir(1 — is)—T)| <cls|, Is| <n;

note that I'(1) = 1. Next we use Stirling's formula
['(z2)~e ?z%"Y2\2m, |z| - oo, |argz| < m,
And for large values of p this yields

|gp () <Con P +Cy+cles(- s/p)iP=)=1/2 gms/2 _ 1 |/s

S C277_1 ) |S| Sn'
hence
L] <Cyn?t ffn e?lslds <2¢,n7teM <, n71.

I,: To treat I, we use the symmetry g, (p — s) = g, (s); thus

p+1 n
11,] < f ENG] eflsl s < 0!l f|gp (p —s)| eflslds < ePPC,n72
p=1 -

Thus we have shown that (39) holds for p = 27, where n > 0 is fixed. For
p € (0,2n) we have to use a slightly different argument. This time we use the
representation
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1+t P=A+t) 1+t —t7P(1+1¢)?

+1/2m f h,(s)t™5ds, (45)
where
h,(s) =T( s)I'(ip - is)/I'(ip)—mr/sinmis —n/sinmi(p —s), (46)
with p > 0;
(45) 1s derived similarly to (36). This gives again
ATP = ATY + AP — AT AT + £ (A) (47)

where f, now is given by (22) with du,/ds = h, To obtain the desired

estimate for AIip , p < 21 we have to prove

(0.0)

f|hp(s)|ds <C 0<p<2n. (48)
We divide the integral in (48) into three parts according to the intervals
(= 00,3n),(—3n,3n), (3n,©); the corresponding integrals are named I, I, I3,
and are estimated separately. I;, I3 can be treated as before, we obtain the same
bounds as in (42) and (43), respectively. On the other hand, I, is easily seen to
be uniformly bounded, since the integrand h, (s), is continuous and bounded
with respect to both variables
Is|<3n 0<p < 2n.
The case p < Ocan be reduced to p > 0 by taking complex conjugates in
formulas (36) and (45).
Finally, let € > 0 be arbitrary and replace A by €4 in the above arguments.
Since the constants M and K of (H 1), (H2) also apply to €4 , we obtain uniform

bounds for (1 + £4)~* . The strong convergence Aip — A" follows from the
Banach-Steinhaus theorem and from (6). O
Note that in Theorem (2.1.12) we had to exclude the case 8 = 0. We do not
know whether this is essential or only due to the method of proof employed.
Recall that a Banach space X is said to be &-convex if there is a function
& X X X - R, convex w.r.t, both variables, such that £(0,0) > 0 and

E(x,y) < |x+y| forallx,y € X with|x|=]|y| = 1.
Such spaces are of interest here since it is known that X is ¢ -convex iff the
Hilbert transform H on L P(R,X),1 < p < oo, defined by

(H)(®) = (1/mi)PV jf(f—s)dS/S, teR,
R
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is bounded. Hilbert spaces are ¢ -convex (choose é(x,y) = 1+ (x,y) to see
this), closed subspaces of ¢ -convex spaces have this property again, and if X is
& -convex then LP (Q,u; X),1 <p < oo, is é-convex, where (Q,u) denotes
any o-finite measure space. For the definition and these properties of ¢ -convex
spaces as well as others we refer to the survey article of Burkholder [194] and
the references given there.
Now, let the Banach space X be ¢ -convex, and suppose A € BIP(X, 6,),
B € BIP(X,05),0, + 05 < m, are resolvent commuting, i.e. there are
A€ p(A),u € p(B) such that
A -4 u- B = (- B — AL (49)
We want to extend the result of Dore and Venni [182], Theorem 2.1, to this
more general setting.
Theorem (2.1.13)[186]: Let X be é-convex, A € BIP(X,6,), B € BIP(X, 83), be
resolvent commuting and assume 6, + 8 < m. Then the operator A + B with
domain D(A+ B) = D (A) n D (B)is closed and satisfies condition (H I).
Moreover, there is a constant C > 0 such that
|Au| + |Bu| < C|Au + Bu|, u € D(A) N D(B) (50)
is satisfied; N(A + B) = 0 and R(A + B) is dense in X.

Proof. Consider the approximations A.,= ¢ + A, B, = ¢ + B where
g€ > 0; according to Theorem (2.1.12), A . € BIP(X, 8,),

B . € BIP(X, 8g),and the constants M,, K, and Mg, Kz appearing in (H1) and
(H2) can be taken uniformly w.r. to € > 0. By virtue of (30), A ., B .satisfy the
assumptions of Theorem 2.1 in Dore and Venni [182], hence A . + B . with
domain D (A) N D (B) is closed, and we have the representations

C+ioo
Se=A.+B,)t=(1/20) f (A7ZBZ Y /sin(nz) dz,
C—ioo
0<c<l1, (51)
as well as

ioo
A, S.x = (1/20)PV f (A;5BEx) /sin(mis) ds + (1/2)x,
—joo
X €X; (52)
Observe that the {-convexity of X is needed for the integral in (52) to exist for
all x € X. Since A, +B,.=2¢+ A+ B is closed with domain D(A + B) =
D(A)NnD(B) we see that A + B is closed as well. Further, the moment
inequality yields with z = ¢ + ip
£



|A77x | < |A"|1AZSx | < K eb4lPl A7 x |¢]x ¢

< Mj K efalPle=c |x|,

and similarly for BZ~!. By means of these estimates, (51) yields with ¢ =
1/2
1S, < M§ ML=¢ K, Kpe e°1 fewA—eBnm o7l g

— 00

= My.p/(2¢), (53)
i.e. estimates (5) holds also for A + B. Since ¢-convex spaces are reflexive,

from ergodic theory of linear operators (see, e.g., Hille and Phillips [200], chap.
18) we even obtain €S, — P strongly as € = 0, where P denotes the projection
onto N(A + B), and we have the decomposition

X = N@A + B)®R(A + B). (54)
As in Dore and Venni [182] we next use (52) to obtain a constant C independent
of € > 0 such that

|A; Se| < C and |B. S¢| <C; (55)
this follows from the fact that the Hilbert-transform is continuous on LP (R, X),
1 <p < oo whenever X is ¢ -convex, and since the constants K for A, B, are
uniform in € > 0, by Theorem (2.1.12); see Dore and Venni [182], p. 193, for
details. From (55) we immediately get by (53)

|A S| +|B S| <C. (56)

Letx € D(A+ B) = D(A) n D (B) and put
ve= (¢ + A + B) x;thenx = S; y, hence
|Ax | + |Bx| = |AS, y¢| + [BS; y¢| < C|(¢e + A + B) x|,

and passing to the limit € = 0 we obtain (50). Finally, inequality (50) shows that
N(A+B)cN(A)NN(B) =0, and so from (54) we also obtain density of
R(A + B)inX,1e.A + Bsatisfies(H1). o
Corollary (2.1.14) [186]: Under the assumptions of Theorem (2.1.13)we have
additionally that the operators A(A + B)™! and B(A + B) !defined on the
dense set R(A + B) are bounded, and so admit bounded extension to all of X.

A natural question arising in connection with Theorem (2.1.13) is whether the
sum A + B is again of class BIP(X, 8) for some 8 € [0, m).

A positive answer to this question would lead to the possibility to use an
induction argument to treat sums ).f A i of pairwise commuting operators of
class BIP(X, 0;). It was recently shown by Dore and Venni [196] that this is
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indeed the case if both operators A and B are strongly positive in the sense that
(5) 1s strengthened to
I(t+A) Y <M/(1+t), t>0. (57)
Their result, however, is not optimal, since they obtain A + B € BIP(X, 0 + ¢€)
where 8 = max(0,, 05). Our next theorem improves and extends Theorem 3.1
in Dore and Venni [196].
Theorem (2.1.15) [186]: Suppose X is ¢&-convex, A € BIP(X,0,),B €
BIP(X,0p),with 84+ 0 <m, are resolvent commuting, and let 6 =
max(60y,05). 84 # 0. Then A + B € BIP(X,0).
Proof . Let A,B,0,,05 and 0 be as in the theorem, w.l.o.g. 84 < fgzand let
e > 0. We claim that A(e + B)™! € BIP(X, 08, + 63). In fact, for t > 0 we have
|t + A(e+ B)™ )Y =|(e+ B)(te + tB+ A7}
<e|(te+tB+ A7+ |B(ts +tB+ A)7Y < eM/(te) +C/t,
since A and tB satisfy the assumptions of Theorem (2.1.13); here M and C are
from (53) and (55). On the other hand, the groups A%’ and (¢ + B)™* commute
and we have
|(ACe + B) 1P| < |A%]||(e + B) ™| < K,Kze®at90)IPl p e R.
Next, using the function g,(s) introduced in (37) in the proof of Theorem
(2.1.12) we have the representation
(1+A(E+B)y™ )™ =1 +pA(e+B)™ ™D —p(A(e + B)"H)7%
x(p+A+B)™) +(A(e+ B) )7
+(1/2m) f_oooo g,(s)(A(e + B)™H)™ds, p > 0.
Multiplying this equation by (& + B)~* we obtain for
x € DA NnDB)NRA+ B)
(e+A+B)"Px=(e+B)"P(1+A(c+B)"H) Py
=(e+B)"(e+B)(e+pA+B) x+ A7
—A7%p(s + B)(pe + A+ pB) 'x

+(1/2m) f_oooo g,()A™5 (e + B) P9 xds, p > 0.
Passing to the limit € — 0 for such x we arrive at the representation
(A+ B)Y"x =B "B(pA+B)y'x+ A%PAA + pB) x

+(1/2m) f_oooo g,()ASB S Pxds ,  p > 0. (58)

It is therefore sufficient to estimate the integral
f|gp(s)|eeA|S|eeB|S_p|ds <ceflrl  p>o. (59)
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By Corollary (2.1.14) this implies the desired estimate for (4 + B)™%, i.e. we
obtain A + B € BIP(X, ). For this purpose we use the estimates on |gp(s)|
obtained in the proof of Theorem (2.1.12). We divide the integral into I;, j =
1,...,5 as there and get
|| <Cy n7t fnoo e ™5 e045g0B(stP) ds < Co e (m—05 —0,)71;
|Is| < Csn~? fpoo e ™ P e945¢985(s-P)ds < ConteP4P (m—0, — 05)71;
sl < Can™ 7 (p/s(p = Y2 + 7™ + "0 ePasef=ds
—1¢ ,0gp 1 _ N\11/2  ,(04—-0p)pt
<C37 {eB\/,BfO[t/(l t)]1/? el®a=fIPtgy
+(m— 05 —0,)1e%P + (m+ 0, —05)" 1 e%4P}
< (3 77_1{ eb4P /(6 — 0,)Y? + (T + 05 — 0,) L %8P
+ (m+ 6, — 05)7 " e%4P};
|I,| <C, fi?n ebalsl gbrlptlshgg < 2C, %8P ™1

and finally by symmetry
|I,] <2C, ePaPe™,

Thus the estimate (59) follows for large p; for small p use h,(s) instead of
go(s)- The theorem is proved. O

There are two interesting corollaries to this result; the first one deals with
products of operators of class BIP(X, ).
Corollary (2.1.16)[186]: Let X be ¢-convex, A € BIP(X,60,),B € BIP(X,05)
with 0 < 6, + O < m be resolvent commuting. Define the product AB of A
and B by means of

(AB)x = ABx, D(AB) = {x € D(B): Bx € D(A)}.
Then AB is closable and its closure AB belongs to BIP(X,8, + 6g). If in
addition A is invertible then AB is closed.
Proof: Since B € BIP(X,605) implies B! € BIP(X, 85), by Theorem (2.1.13)
we know that A + B! with domain D(A4) N R(B) is closed, N(A+ B~1) =
0 and |Ax| + |B" x| < ClAx + B™'x|] on D(A)NR(B). Suppose x, €
D(AB) =B 'D(A),x, » 0 and ABx, — y. Since A and B commute with
(I + B)™! we obtain
AB(I+B) 'x, >z, B(U+B)'x,-0, z=(U+B)ly

Hence (I + B) 'y =0, by closedness of 4, and so y = 0. This shows that AB
is closable. Since Aand B are resolvent commuting, it is also easy to see
that AB is densely defined, has dense range and is also injective.
Next we obtain
|(t + AB)™ Y| = |B71(tB~! + A)71| < C/t.
£y



By Corollary (2.1.14), hence AB satisfies (H 1). Finally, the relation

(AB)*x = A B x, x € D(A) N R(A) N D(B) N R(B)
shows the estimate
|(ﬁ)ip| < |Aip| |Bip| < K, efalrlg, eflrl 5 e R,
hence (H 2) holds and AB belongs to BIP (X, 0, + 0p).

To see that AB is already closed in case A is invertible, let (x,) € D(AB),
x, = x, and ABx,, > z. Then Bx, » A1z since A™! is bounded, hence
x € D(B) and Bx = A 'z by closedness of B; but this in turn implies Bx €
D(A)and z = AA"'z = ABx, closedness of A. Hence AB is closed. O

The next corollary deals with sums of n commuting operators.

Corollary (2.1.17)[186]: Suppose X is ¢&-convex, A; € BIP(X,6;), i =
1....,n, such that, for each pair i # j, A;and A; are resolvent commuting and
satisty 6; + 6; <m Let 6 = max 6; and assume that there is only one i with
6 = 0.

Then A = )7 A; with domain D(4) = Nt D(4;) is closed and belongs to the
class BIP(X, 8). Moreover, there is a constant ¢ > 0 such that

n
zlAixl <ClAx|, x€D(A) (60)
1

is satisfied. In particular, N(A) = 0 and R(A) is dense in X. Corollary (2.1.17)
follows by induction from Theorems (2.1.13) and (2.1.15). Before we conclude
this section we want to make another remark. Suppose we are in the situation of
Theorem (2.1.13) or more generally of Corollary (2.1.17). If one of the
operators A; is invertible then we obtain from (60) the estimate

|x| < C|Ax]|, x € D(A);

in other words the range of A is closed. Since R(A) is dense in X this implies
that A itself is invertible.

Will show the applications. Let Y be a {-convex Banach space, By a closed
linear densely defined operator in Y, and a € BV},.(R,), i.e. a scalar-valued
function of bounded variation on each interval [0, T]. As an application of the
theory developed above, we consider the abstract Volterra equation of
convolution type
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t t

d/dt)yu(t) + fBOu(t— 7) da (1) = fg(t— ) da(t), t€]
0 0
u(0)=0 (61)
where ] = [0,T] or /] =R,, and g:]J > Y is measurable; in the sequel
convolution of the functions f and g will be denoted by f xg. Given g €
LP(J; Y), a continuous function u:J — Y is called a strong solution of (61) if

u(t) € D(By) for ae. t € J,Byu() € LP(J; Y),u € WP(J; Y), and (61) is
satisfied almost everywhere on J .

(61) arises naturally in the theory of linear incompressible viscoelastic
materials; there B, is the Stokes operator introduced in Example (2.1.7) and
Y = Ll;(ﬂ; R3). The kernel da is called the stress relaxation modulus and is in

general of the form
t

a(t) =ag+aet+ fal(r) dr, t=>0, (62)
0

where a; =0 1s a Newtonian viscosity, a. = 0 the stationary elasticity
modulus, and the relaxation function a4(t)is nonnegative, nonincreasing, of
positive type, and a,(t) —» 0 as t — 00.We refer to Pipkin [202] for the physical
background and to Priiss [203-205] for a detailed study of the properties of
(61), as well as to the references given there.
In virtue of the properties of the Stokes operator our main assumption
on By is
(V1) By € BIP(Y, 8p) for some 85 € [0,7/2);
concerning the kernel we assume
(V2) a(t) is of the form (62) with ay, a, = 0 and a,(t) completely monotonic
on (0,),a,(t) > 0ast — oo,
In the following we shall denote the class of kernels a(t) satisfying (V2) by
CM. The assumption on the kernel (V2) could be relaxed to some extent,
however, we will not do this here since on the one hand complete monotonicity
of a4 1s a quite reasonable assumption which holds for many materials (if not for
all), and on the other hand, we want to keep our treatment of (61) as simple as
possible, and still obtain significant results. Note that the case of an ordinary
Cauchy problem as studied in Giga and Sohr [199] is contained in (61) by
choosing a(t) = 1.
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We want to study (61) in the space X = LP(J; Y),1 < p < oo which is again
&-convex; cp. the remarks at the beginning of this Section. For this purpose we
first introduce an operator B in X by means of the definition

(Bu)(t) = Byu(t), te]j, D(B) = {u € X:u(t) € D(By) a.e.

onJ,Bu € X}; (63)
it is easy to verify that B is a closed linear densely defined operator in X which
belongs to BIP(X,8g). The latter follows from (V1) and the fact that B, is
independent of ¢; the constants M, K, 8 for B in X are in fact the same as those
for By in Y. To obtain a reformulation of (61) to which Theorem (2.1.13) can be
applied we have to invert the convolution with the kernel da. If (V2) holds, this
can be done since then there is a kernel k(t) of class CM such that

t
fk(t — 1) da(t) =t, t=>0, (64)
0

holds; this is a theorem which basically is due to Reuter; cp. Clement and Priiss
[195] for the reference and a discussion of this result. In viscoelasticity the
function k(t) is called the creep compliance of the material. Now suppose u is a
strong solution of (61); convolving (61) with dk and differentiating we then
obtain the equation
D(dk = Du)(t) + By u(t) = g(t), t €],

u(0) =0, (dk * Du)(0) = 0; (65)
here we used D = d/dt for short. On the other hand, if u € D(B)nNn
WoP(J; Y) is such that dkxDu € W,.P(J; Y)and (65) holds almost

lIoc
everywhere on J, convolving (65) with da we see that u is a strong solution of
(61). Thus (61) and (65) are completely equivalent. We therefore define an
operator A in X by means of
(Auw)(t) = D(dk = Du)(t), t €],

D(A) = (u€LP(J; Y):u,dk  Du € W P(J; V), Au € X,

u(0) = (dk * Du)(0) = 0}. (66)
A is a densely defined linear operator in X which is also closed. In fact, let
u, = u, u, € D(A), and Au,, — z in X; put w,, = dk * Du,,. Then convolving
Au,. with da we obtain with (64) and w,,(0) = 0 the convergence Du, —

(J; V), for some v € L (J; Y), hence u € Wli’f(]; Y) and v = Du,

. D
vinlL loc

Ioc
by closedness of D. Therefore, we get w, > w= dk *xDuin LZ;OC(]; Y) and
since Au, = Dw, - z, the closedness of D yields w € lef (J; Y) and
z =Dw = D(dk * Du) = Au, i.e. u € D(A). It is also easy to see that N(4) =
0, this follows from the initial conditions u(0) = (dk * u)(0) = 0.



Convolving the equation Au = v with d a we derive A~'v = a * v, for each
vE R(A) = D(A™Y) = {v € X:a*v € X); in particular, A is invertible Iff
J is bounded since a(t) is never integrable on R, . Equation (61) can now be
rewritten in abstract form in the Banach space X as

Au + Bu=g. (67)

To prove A € BIP(X, 8,) for some 6, > 0, we will need the following lemma
which in simpler form was derived in Priiss [203, 205]; for the sake of
completeness a proof is included here.

Lemma (2.1.18) [186]: Suppose a € L},.(R,), satisfies (V2). Then there is a
function ¢ € CM with ¢y = 0 such that a = Dc * Dc holds.

Proof . Let a € CM and put f(1) = Ada(4), 1 > 0, where the hat indicates
Laplace transform. Define operators Ly, k = 0,1, 2,..., by means of

(Lf)A) = (=1 Hd/dD)* A fFD], >0, k=12...,

Lo HAD) = f D), 2 > 0; (68)
Then a € CM is characterized by f € C*(0,) and L, f (1) = 0 for all k = 0,
A > 0. This 1s a kind of Bernstein's theorem for the Stieltjes transform; cp. the
monograph of Widder [210], Theorems 18b, 14b.

Let as(t) = a(t) + st,t,s > 0, and let k; € CM denote the solution of (64)
with a(t) replaced by a,(t); the convolution theorem for the Laplace transform
and (64) imply the relation

gs(D) = ks(D) =f D) +s]71,  1>0.

Note that g satisfies (68) for each s > 0 since k; € CM. Define h € C*(0, o)
by h(1) = A7t a(1)~Y/?; the formula

(0.0)

r-1/2 = n_lf(r +8)" s~ Y2ds, r>0,

0
Then yields the representation

hQ) =77t [P(2s + F()) s V2ds
=n [T+ A ) Yar, (69)
where the change of variables s = /A% has been used. Applying the operators

Ly to (69) and interchanging differentiation with integration, we obtain
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1
(Lyh(A) = n_lf Ligs(1) s 2ds, A>0k=0,1,....; (70)
0
note that all integrals are absolutely convergent. Since g satisfies (68) for each
s > 0, (70) shows that h also has this property hence there is a b € CM such that
h(1) = Ab(A) for A > 0. Finally, let ¢ € CM denote the solution of (64) with
a(t) replaced by b(t); then

26(1) = (,1213(,1))_1 = (@) = a2, 1>,

and cy = limy_, AC(A) = 0. This shows that the function Dc(t) = c + ¢1(t)
satisfies D ¢ * D ¢ = a, by the convolution theorem of the Laplace transform. o
Let C denote the closed linear operator in X defined by means of

(Cw)(t) = (Dc*u)(t),t >0,D(C) = {ueX: CueX}; (71)

in Clement and Priiss [195] it has been shown that C € BIP(X, 6, + ¢) for any
e > 0, where
0. = sup {largA¢(1)|:Re 1 > 0} < m/2, (72)

and the constants M, and K. can be chosen independent of J, since
LP(J; Y) are closed subspaces of LP(R, ; Y); however, they do depend on
e > 0.

Obviously, since Dc * Dc = a holds, A™! is a closed linear extension of C? ;
note that C% is always closed since p(C) D (—o0,0). We show next that even
A™1 = (C? holds; for the case ] = [0, T] this is trivial since c € WP (]). For
the case ] = R,, we have to show that u € X and a * u € X imply Cu = Dc *
u € X; this, however, follows from the identity
Cu=Dcxu=QA+0C)ax*u-— 1), A>0,u€R(A), (73)
which evidently is true for each finite interval | = [0,T], but with T = oo also
for R, . If in addition

0 ,= sup{larga(A)|:ReA >0} = 20.< 7 (74)

is satisfied then by Corollary (2.1.16), A as well as A~! belong to BIP (X,0 , +
€). From Theorem (2.1.13) we can now derive

Theorem (2.1.19) [186]: Let Y be a &-convex Banach space, p € (1,), B, €
BIP(Y,0 5),a € CM, and let 8 4 + 6 5 < m hold, where 8 , is defined by

(74). Then, for every g € LfOC(IRJr; Y) there exists a unique function us
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w Ilgf:(IRJr ;YY) NL ?OC(IRJr ; D(By)) which is a strong solution of (61) on each
finite interval ] = [0, T] (here D(B,) is equipped with the graph norm of B,),
and for each T > 0 there is a constant c¢(T) > 0 such that for each g€

LY (Ry; Y),we have the estimate

[ lu@IP dt + [/IDdk = Du(®)| P dt + [, |Bou(t)|P dt

< c(T) f Ig(®)| P dt. (75)
If, in addition, B, is invertible, then c¢(T) can be chosen independently of
T > 0. Moreover, if g € LP(R,; Y) then Ddk * Du, Byu € LP(R,; Y)as well,
and there is a constant ¢ > 0, independent of T > 0, such that

[, 1(dk = Du)(©)| P dt + [ 1Bou(O)|P dt
<cf,lg®)|Pdt forall 0<T < oo, (76)

Proof . Let ] = [0, T] be finite, first. Then A and B satisfy the assumptions of
Theorem (2.1.13) and A is invertible; consequently A + B is again invertible,
i.e. for each g€ X =LP(J; Y) there exists a unique solution u € D(A) N
D(B) of(67), 1.e. of (65) which in turn is equivalent to (61), as we have seen
above. Furthermore, we have the estimates

lul + |Au| + |Bu| < ¢o(T)|g| and |Au| + |[Bu | < c4lg], where

c11s independent of T ; the latter follows from the fact that the constants
My, Mg, K, ,Kg as well as 8,, 05 are independent of T and therefore the
constant  Cin Theorem (2.1.13) is also independent of T. Now consider
g€ LZ;OC(IRJr ; V) then g€ LP(J; V) for each | = [0, T] hence there is a unique
strong solution u of (61) on J. Since the restriction of a solution on Jto a

smaller interval J, = [0, T,] is again a strong solution on this smaller interval,
by uniqueness we obtain a unique u € lef (Ry; V)N L2 (Ry; D(By))

Ioc

which satisfies d k* Du € Wli’f (Ry; Y) and (61) on R,. This proves the
local part of Theorem (2.1.19) as well as estimate (75). To prove the second
part, let g € LP(R,; Y); Since ¢, is independent of T we conclude that u is then
even a strong solution on R, and that estimate (76) holds. The last assertion is
also clear since in case By is invertible in Y, B is so in X and |B ~1| = |Bg?|
forany interval /| = [0,Y], 0 < T <. O

In the case where B, 1is the Stokes operator from Example (2.1.7) we may

choose 6 > 0 as small as we want. To apply Theorem (2.1.19) in this case we
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thus only need 6, < m. Note that 8, < m always holds, even more is true,
namely |arg @(1)| < m for each A € C,A # 0,Re 4 = 0, provided a(t) # ae t ;
this excludes the purely elastic case, only. Thus we have to study the limits
0o = lim;50 suplarg @(4)| and 6y = lim|yo suplarg @(4)| in the half
plane Re A > 0, but it is enough to do this for A = ip,p > 0, since the Laplace
transform of a(t) is holomorphic on C\(—oo, 0] and a(t) is real.

Define X: (0,0) — R, by means of X (p) =Im a@(ip)/Rea(ip); note that
a(ip) belongs to the third quadrant for p > 0.
We then have tg 6, = lim,_, inf X (p), ie.

0y <m iff vy =Ilim, e, infX(p) >0 and

vy = lim,_ inf X'(p) > 0. (77)

The following estimate is taken from Priiss [204].

6 X(p) < [ag = [} tDay () dt]/[aw/2p +p [, tay (£) dt]

<c,X(p), p>0. (78)
Passing to the limits p = o0, 0, it becomes apparent that v,, > 0 implies ay > 0
or a;(0 +) = wand vy > 0 yields a,, = 0; thus these conditions are necessary
for 8, < m. On the other hand, if ay; > 0 then v, = o, and if ap =0 but
—lim;¢tDa,(t)/a;(t) >0 then v, >0by the rule of de I1'Hospital;
similarly, if a,, = 0 and —lim;_,,, tDa,(t)/a;(t) > 0 then vy > 0. Obviously,
these conditions are satisfied if a; (t) behaves like t % for t — oo and like t 7
for t > 0, for some a,f € (0,1). Note also that a, = 0and a; € L'(R;)
imply vy > 0 since then @ ()~ (ao + J, a;(t) dt)/AasA - 0.
In case By is also invertible (i.e. if the domain () in Example(2.1.7) is bounded)
or if the interval J under consideration is finite then the behavior of d (1) near
A =0 is of no importance. In fact, if B € BIP(X, 0g) is invertible then B, =
B —n? € BIP(X, 05 + &) for n? > 0 sufficiently small; this can be shown by a
simple Neumann-series argument. Thus we may replace B by B; and A by
A+ n? in (67), in particular both operators are invertible. For the Laplace
transform of A + n? we obtain the symbol a(1)~! + n? , hence the analog of
(74) becomes

(A + n?) = sup{arg (@(1)"! + n?):Re 1> 0} <m. (79)

Since d(A) is never negative real unless a,(t) =a, =0 and d(1) — xas
A—> 0, Red >0, similar to the derivation above, we obtain 8(4 +7n?) <
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m iff v, > 0; thus in this case the behavior of a(t) at zero alone determines
whether Theorem (2.1.19) is applicable.

For the case of a finite interval / = [0,T], we observe that by the change of
variables v(t) = u(t) e Pt the kernel a(t) is transformed into a(t) e Pt ; the
Laplace transform of this kernel is given by @(4 + f),Re 4 > 0.

Thus (74) is changed into
0, = sup {arg (@(1)):Red > B} < m; (80)

it is clear from this that 8, < m iff v, > 0, and so in this case the behavior of
a(t) at zero alone is important for applicability of Theorem (2.1.19). Let us
summarize this as

Corollary (2.1.20) [186]: Let Q c R™ be an open domain with smooth and
compact boundary d Qfor p € (1,) let B, € BIP(Y, ¢) denote the Stokes
operator in Y = IV.(Q; R™), and let a € CM be such that either a; > 0 or

—lim;_ o tDa,(t) /a, (t) > 0 holds. Then, for every g € Liog(IR +; Y) there

exists a unique function u € WLl(;Z,(IR S5 Y)n L’EOC(R +; D(By)) which is a

strong solution of (61) on each finite interval J = [0,T], and for each T > 0
there is a constant ¢(T) > 0 such that Estimate (75) holds. If in addition Q is
bounded then ¢(T) can be chosen independently of ¢t > 0. If Q is unbounded
but aw, =0 and —lim,_otDa,(t) /a; (t£) >0o0r a; € L}Y(R,) as well as
g€ LP(R ,;Y), then Ddk * Du and Byu € LP(R ,;Y), and there is a constant
¢ > 0, independent of T > 0, such that Estimate (76) is satisfied. Theorem
(2.1.19) and Corollary (2.1.20) generalize recent results of Giga and Sohr [199]
who considered the case of a purely Newtonian fluid a(t) =a,= 1, 1e.
as = a4 (t) = 0. Note that the conditions on a(t) at t = 0 mean physically that
a sufficiently strong viscosity must be present while the condition on a(t) at
t = oo prohibits the presence of a stationary elasticity modulus; the case where
ao =0 and a; € LY(R ) corresponds to a fluid while the material is called
solid otherwise; cf. Pipkin [202].
Corollary(2.1.21)[232]: Let X be ¢&-convex, A € BIP(X,60,),(A+¢€) €
BIP(X,0(44+¢) with 0 < 6, + 644 < 7 be resolvent commuting. Define
the product AB of A and (A + €) by means of

(A(A+€)x =A(A+e)x, D(A(A+¢))

={xeD((A+¢€)):(A+e)x e D(A)}.

Then A(A + €) is closable and its closure A(A + €) belongs to BIP(X, 0, +
O(a+e))- If in addition A is invertible then A(A + €) is closed.
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Proof: Since (A + €) € BIP(X, 041¢)) implies (A + €)™" € BIP(X, O41¢)), by
Theorem (2.1.13) we know that A + (A4 + €)~! with domain D(A) N R(A + €)
is closed, NA+(A+e)™1) =0 and |Ax| + |(A + e)" x| < C|Ax +
(A+e)" x| on DA)NR(A+¢€). Suppose x, €EDAUA+¢e)=(A+
€)"1D(A),x, > 0 and A(A + €)x, —» y. Since A and (4 + €) commute with
(I+ (A+ €)' we obtain
A(A + e)(I +(A+ 6))_1xn - 2z, A+ e)(I + (A + 6))_1xn -0,
z=(U+UA+e)ly
hence (I + (A + €))"1y = 0, by closedness of 4, and so y = 0. This shows that
A(A + €) is closable. Since A and (A + €) are resolvent commuting, it is also
casy to see that A(A + €) is densely defined, has dense range and is also
injective.
Next we obtain
I(t + AA+e) Y =lAd+e)(tA+e)t + A7 <C/t
by Corollary (2.1.14), hence A(A + €) satisfies (H 1). Finally, the relation
(AA+e)Px =A% (A+e)Px, x€DANRANDMA+e)NRA+E€)
shows the estimate
|(AA+ )| < |A?||(A+e)| < Ky eP4lPIK o ePuralPl p e R,
hence (H 2) holds and A(A + €) belongs to BIP (X, 84 + 0(4+¢))-

To see that A(A + €) is already closed in case A is invertible, let (x,) C
D(A(A +¢€)), x, » x, and A(A + €)x, » z. Then (4 + €)x,, > A~ z since
A~1is bounded, hence x € D(A + €) and (4 + €)x = A~z by closedness of B;
but this in turn implies (A +¢€)x € D(A) and z = AA7 1z = A(A + e)x,
closedness of A. Hence A(A + €) isclosed. O

Sec (2.2): Examples of Unbounded Imaginary Powers of

Operators

In a recent section, Dore and Venni [182] have used imaginary powers of
operators in connection with the problem of the closedness of the sum of two
operators. Roughly speaking, if A and B are two commuting closed operators in

a UMD-space, then their sum is closed provided that the following condition
holds:

{”AiS” < Me®alsl gnd ||Bi5|| < Me“slsl s e R (81)

with wy + wg < .
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The UMD-spaces are precisely the Banach spaces X for which the vector valued
Hilbert transform is bounded in L*(R; X) [179,180]. In particular, the Hilbert
spaces and LP-spaces, 1 < p < oo, are UMD-spaces.

The growth condition (81) implies that the spectrum of A (resp. B) lies in a
sector of “angle” w, (resp. wg).

In [182], the question was raised whether the converse is true. The Example
(2.2. 1) below shows that this is not the case, even in a Hilbert space.

However, in a Hilbert space, the conditions for the closedness of the sum can
be weakened, as shown again by Dore and Venni [182]. Based on a
characterization of the domain of fractional powers together with an earlier
result of Da Prato and Grisvard [181], they proved the following result.

If A is a cqy-group of bounded operators (without any assumption on B),
then A + B is closed provided that the sum of the “angles” w, and wg is less
than .

In Example (2.2.2) we give two operators A and B in a Hilbert space which
satisfy the “angle condition” such that A + B is not closed. This shows again
that A* and B*are not c,-groups of bounded operators. Moreover this implies
that some extra condition is needed for the closedness of the sum.

In this Section, we state the main results. also , we introduce the main tools for
the examples, in particular the notion of spectral family [178,183], also we
construct the Example (2.2.1) inspired by Example 5.10,p. 168, of Berkson and
Gillespie [ 187].

Finally we give Example (2.2.2) we are convinced that the method used to

can lead to other examples.
Let (X, ]| .]]) be a complex Banach space, and let A: D(A) € X —» X be a
closed and densely defined operator with domain D(A) and range R(A). As
usual, we denote the resolvent set of A by p(A4) and its spectrum by o(A). The
operator A is called positive [182,190] if

(D) (—,0) c p(4)

(i) there exists M > 1 suchthat ||[(I —tA)"1|| < M, foreveryt > 0.

In particular, if M = 1, then A is called m-accretive.
For 8 € [0, ), we define the sector zg as

z : = {z € C\{0}; |argz| < 6}.
0

The operator A is said to be of type (w, M) [ 189], if there exist 0 < w < &
and M > 1 such that

() o(4) © XU {0};
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(i1) for every 6 € [0,m — w), there exists M(6) = 1 with M(0) = M, such
that ||(I + zA)"Y|| < M(0) for any z € Y.

We recall that if the operator A is positive, then there exist 8 € (0,7) and
M = 1 such that A is of type (6, M) [ 190].

We also recall that if A is m-accretive, then A is of type (/2,1) [ 189].
Moreover if A is of type (w, M) for some w € (0,7/2) and M = 1, then - A
generates an analytic semigroup on the space X.

If A is a bounded positive operator with 0 € p(A), then the fractional
powers of A denoted by A # with z € Care usually defined by the Dunford
integral

1 z B
AZ:EJ,I (A—A) ar,
where the contour I' does not meet ( — oo, 0] and contains the spectrum of A.
Then for z € C, A ? is a bounded operator satisfying the group property

A0tz = AZT1p% | 7., 7, € C,with A° = [ and A® = A.
The function z +— A ? is also holomorphic. Moreover, one has the other

representations of A # [186],
1

sin tz
Afx = - z Ix—(1+2)714Ax+ f t 2t + A1 A "xdt
0
+f t 7Yt + A) Axdt; for |Rez| <1,z # 0, (82)
1
A% = x.
Or equivalently
sin z
AZx = - z7x—(14+2)"14A 7 x+ (1 —-2)"14x
1
+ f tZ(1+t714) 1A xdt
0
1
— f t 21+t 1+ A7) TAxdt
0
for |Rez| <1,z # 0, (83)
A% = x.

If the positive operator A satisfies only N(A) = {0} and R(A) dense in X,

oA



then for every x € D(A) N R(A), which is dense in X, the function z +— A “x
defined by (82) or (83) is holomorphic and satisfies the group property
A%ty = AZ1A% x = AZ1A% x for  every x € D(A’)NR(4%)  and
[IRe z;|, |Re z,|, |Re( z; + z,)| < 1[186].

For s € R\{0}, we say that A ™S is bounded if the operator A **defined by (82)
(or (83)) is bounded on D(A) N R(A). Then it can be uniquely extended to X, as
a bounded operator.

Following PriiB and Sohr [186], the operator A is said to belong to the class
BIP(X, 8) for some 8 € [0, r) if:

(1) A is positive;

(ii) N(A) = {0} and R(A) dense in X;

(iii) A € B(X) for every s € R and there exists M > 0 such that ||4 5| <
Meflsl s eR.

In the case where A is positive, N(A) = {0} implies the density of R(A) in X if
X 1s a reflexive Banach space (a Hilbert space, for example).

It 1s proven in [186], that if A € BIP(X,0) then A is of type (8, M) for some
M > 1. In Example (2.2.1), we show in particular that the converse is not true
even if the space X is a Hilbert space.

Example (2.2.1)[177]: There exists an operator A in a Hilbert space which is of
type (w, M) for some M > 1 and for all w € (0, ) and such that the imaginary
powers A ' are not bounded for all s € R\{0} .

Let A and B be two positive operators in a Banch space (X, || .|| ). The operators
A and Bare called resolvent commuting if (I + tA)™! and (I + sB)™!
commute for some t and s > 0 (equivalently for all £ and s > 0).

Building upon results of Dore and Venni [182], PriiB and Sohr [186] have
proven that if A; € BIP(X,0;), i= 1,2 with 0, #6,, 0, +6, <m,are
resolvent commuting and if X is a UMD-space, then A; + A, € BIP(X,0)
where 8 = max(6, 6,).

Da Prato and Grisvard [181] have proved that if A; are of type (6;,M;),
i = 1,2, 6, + 0, < m, resolvent commuting (hence A; + A,closable) then the
closure of A; + A, is of type (6, M) with & = max(6,, 6,) for some M > 1.
Therefore a natural question is to know whether the sum of two operators A and
B satistying the assumptions of Da Prato and Grisvard in a UMD-space is
closed. In the Hilbert space, Da Prato and Grisvard [181] gave a sufficient
condition for this to be the case, namely if the interpolation spaces D, (6, 2) and
D4+(0, 2)are equal for some 8 € (0, 1). For the definition of these spaces, we
refer the reader to the original paper [181]. Since A + B is closed if and only if

I + A + B is closed, we may assume without loss of generality that 0 € p(A)
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and 0 € p(B). Under these assumptions Dore and Venni [182, p. 194], have
shown that if the imaginary powers A *are uniformly bounded for s €
[—1,1], then A + B is closed. We have:
Example (2.2.2)[177]: There exist two resolvent commuting operators A and B
in a Hilbert space which are of type (w, M) for some M > 1and for every
w € (0,m) suchthat A + B is not closed.
Remark (2.2.3)[177]: (1) It follows from Da Prato and Grisvard [181] that
D4(0,2) + Dy (6,2) and Dg(0,2) + Dg+(6,2) forevery 8 € (0,1).

(ii) It follows from Dore and Venni [182] that both A% and B are not
uniformly bounded on [ — 1, 1].
We recall the notion of spectral family of projections in a Hilbert space H
[178, 183].
Definition (2.2.4)[177]: A spectral family of projections in H is a uniformly
bounded projection-valued function F: R — B(H) (the algebra of bounded
linear operators in H) such that:

(1) F 1s right-continuous on R in the strong operator topology,

(11) F has a strong left-hand limit at each s € R,

() F(s) F(t) = F(t) F(s) = F(s)fors < t,

(iv) F(s) — 0 (resp.F(s) — I) in the strong operator topology as

s = —oo (resp.as s = +00).
If there is a compact interval [a, b] such that F(s) =0 fors < a and F(s) =
I for s = b, then we say that F is concentrated on [a, b]. Following [ 178,183],
if F is a spectral family concentrated on [a, b], each complex valued function
f € Cla,b] N BV|[a,b] defines a bounded operator A in H (BV stands for
bounded variation):

Ax = | fFMAF@Dx,  xeH, (84)

by means of convergence of Riemann-Stieltjes sums. Moreover the norm of A
can be estimated by

Al < 1f(B)] + (f(@)] + Var[f; [a,b]). |[F], (85)
where
IfIl == SIJ:p IFDII - (86)

If F is concentrated on [0,00) and f € C[0,) N BV][0,), then
s-limy_ e J'[ o f(A) dF(A) exists. This limit defines a bounded operator A

in H satisfying



1Al < |f ()] + (If(0)] + Var[f; [0,]). ||IFII, (87)
where ||F|| is defined by (86) and f (o) = lim,_,. f(4) which exists since
f € BV[0, ).

If f,g € C[0,) N BV[0, ) and

Ax = I[O’w) f(A) dF (A)x, Bx = J[O’w) g(A) dF ()x, X €H,

then (4 + B)x = [ (fQ)+g@)dF)x.
If moreover f.g € BV][0, »), then
ABx = BAx = [ f)g)dF M.

If f(1) # 0, forevery A > 0 and 1 — f(1)~! belongs to BV [0, o), then
0 € p(4) and

A= fFA)TdF()x.

[0.%0)
For the construction of a spectral family in #2(N) which is not a spectral
measure, we shall use, as in [ 178], a conditional basis which can be found

in Singer [187]. For the sake of completeness, we give it here explicitly.
Conditional Bases in #2(N) .The sequences {f,}n>; and {h,} ,»; in £?(N)
defined by

fon-1 = €p—1 + z ®Ai—n+1€2i » fon = €2n n=12..) (88)
i=n

hon—1 = €xn—1, hyn =

Ai_nt+1€2i-1 + €21,

R

=1

(n=12.. (89)

where {e,,} ,>1is the canonical basis of #2(N) anda,, = 0, n = 1,2,....
Z;‘;ljaf < oo, ¥izaj = 4 (e.g., one can take a, = 1/nlog(n + 1)) are
biorthogonal conditional bases of £2(N) . Defining P, € B(£%(N)) by

Px = (x,h,)f,, x€£?*(N), n= 1,2,...,
where (.,.) is the scalar product, then each P, is a projection with P,B,, = 0
for m # n satisfying

(0.0)

lim P;ix = x, x € £2(N). (90)
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Moreover

n
sup EPZJ- = 00, 91)
j=1

For the proofs of (90)-(91), see Singer [187].

In the Example (2.2.1) We construct an example of a positive operator A in a

Hilbert space H such that the imaginary powers A* are not bounded for

s € R\{0}, although A is of type (w,M) for some M > 1 and for every

w € (0,m). In order to do that, we construct the operator A on a Hilbert product.
Let {Hy, || . lx}xez be a family of complex Hilbert spaces. Let (H, || .|| ) be the

Hilbert product

H = <1—I Hk) = {x = (X)), xi € Hy, Ix]1? = z”xk”i < Oo}
2

KEL K€L
The family {4 }rez of bounded operators on Hj, , defines the following closed
densely defined operator A on H:

D(A) = {x = (xk),xk € Hk,zHAkkai < OO} (92)

kEZ
(Ax)y: = Agxy, k € Z for x = (x;) € D(A).

Moreover A is bounded if and only if Supgey [|Akllx < oo and if this is the
case ||All = Supgez Akl -
We say that the family of positive operators {4 }xez satisfies Property (P) if :

(1) 0(4x) < [0, 0);

(i) for every 6 € [0,m), there is M (@) independent of k, such that ||(I +
zA) "l < M(O) forevery k € Z and every z € Y.

We have

Lemma (2.2.5)[177]: Let {Ay}xez be a family of bounded positive operators
on Hy, k € Z , satisfying Property (P). Then there exists M > 1, such that the
operator A defined by (92), is of type (w, M) for every w € (0, m).

Moreover if N(A) = {0}, then for every x = (x;) € D(A) N R(A), and
s € R\{0}, we have x;, € D(4x) N R(Ax), and (A%x), = (Ay)%xy, k € Z.
Proof (i) Let z € C\( —,0] and let & = argz. Let y = (y,) € H. Since A
satisfies Property (P), —z~! & o(A)) and there exists x;, € Hj, k € Z such
that

I+ zA )x, = yr, k€EL.
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Since [lxll < M(@)llykllx, we have x = (x;) € D(A) and ||x|| < M(6)]yll.
Moreover  since N(I + zA;) = {0}, we have N(I + zA) = {0},—z '€
p(A), and ||(I + zA)™1|| < M(0). This implies that A is of type (w, M) with
M = M(0), forevery w € (0, m).

(ii) Assume N(A) = {0}, then N(4, ) = {0} for every k €Z. Let x =
(xx) € D(A) NR(A). Then clearly, x;, € D(A;) = Hj. Since x = Ay for
some y € D(A), we have x, = Ay, hence x;, € R(Ay). Therefore A*x and
(Ar)x), are well-defined by (82), for
s € R\{0},Since ((I+tA) x),=U+tA) x,, t > 0,x = (x;,) €H,
we obtain  (A%x), = (Ax)®xx, k € Z. This completes the proof of
Lemma(2.2.5).

Next, we construct a family of bounded positive operators {Ay}rez in
£2(N), such that 0 € p(4,) and satisfying Property (P). Notice that the
imaginary powers A% ,s € R, are then bounded. We give a necessary condition
for supyez |4 | to be finite for some s € R\{0}.

Lemma (2.2.6)[177]: Let {f,},>1 be a (Schauder) basis of #?(N), with
corresponding projections {P, };>1 -

Let F: R + B(#%(N),) be fhe spectralfamily concentrated on [0, 1] defined
by

F(A) =0 for A<1/2

F(A)—iP for —— <1<l frn=12
_k_lk or —— < 5 forn=12,..

FQ) =1 ford= 1.
Then for every k € Z and every x € £*(N),

Apx = J-[ ek dF(D)x is well defined

and
(1) The family of operators {A;}xcz satisfies Property (P) and 0 € p(Ay),
k € Z.

(i1) For every s € R, the imaginary power Aff is bounded and
iSx = j[o ; ek dF(N)x ,x € £2(N),k € Z . Moreover A¥ = A%

(iii) If for Some s € R\{0}, supyez [|AE|| < oo, then the basis {f;}nsy is
unconditional.
(iv) If the basis {f,;},,>1 is unconditional, then for all € R, supyez ||A§f || < 00,
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Proof. (i) For every k € Z, the function A — exp{kA} is continuous, bounded,
increasing, hence of bounded variation on [0, 1 ]. Therefore A, is well-defined
and bounded on £2(N), as well as Ay *x. Moreover 4;, = A]’-‘ .

Let z € C\(%,0] and 6 =argz. Then the functiond — a(l;k,z):=
(1 + zexp(kA))~1 is continuous, bounded, and of bounded variation on [0, 1 ].
Indeed |1 + Zek’1|_1 = |1 + |Z|eieek’1|_1, then |a(4; z,2)| <my(8)

where

T
(1 when 0< 10| <=

-2
<
ml(é’)_{ ! hen [6] > —
when — .
sin|@| 2
Moreover
d izl "
Varla(d;k,z)] = j —a(A,k,z)dA = j —d)
e ol 44 vnia(Ask,z)
_ |k| |Z|e(signk)/1 foo |Z|e(signk)/1
o |0L((signk)/1,1,z)|2 —J0 |1+|Z|ei9e(signk)/1|2
0o dt
<), /== 0 ith
_fo |1+tei9|2 my(6)  wi
1 if =0
m,(0) =

: if 0 < |0l<m
sin @

Let M(0) =m4(0) + (my(6) + m,(0)).||Fl|. We observe that M(—0) =
M(0) and M(0) increaseson 0 <0 < .

Therefore —z~1 € p(4,) and ||(I + zA,) || < M(8), which implies that the
family {Aj }rezsatisfies Property (P).

(i) Let b(4; k,s) := exp(iskd) for A€ [0,1],k €Z, and s € R. Then
|b(4; k,s)| < 1and

db
Var b(A;k,s) = J‘Ol‘d—/l(/l;k,s)}d/l = ‘sk ‘

Ae[0,0)
iskA
Hence J;m]e dF(A) defines a bounded operator Cy ¢ in #2(N), for every
s€Rand k € Z. For x = (x;) € cyo (finite sequences in £?(N)), we have

Crsx = Xit_, exp(iskl)P;x for some m € N depending on x.
¢



By using the Dunford integral for the imaginary power A%x, we obtain

. 1 .
px = o [ A5G- a0 x
r

= f 2is z (A — exp(kD))~P,x dA

I=—m
= z ﬁf/lis(/l —exp(kD))"tPx dA
I=—m r
= Ck,sx .
Since both A and Cj, 5 are bounded on #%(N) and ¢y, is dense in #2(N), we

have Cy s = A}f. We also have A = A,

(iii) If supyez ||AE|| < oo for some s € R\{0} ,then supy¢z [|AY]| < o0

and without loss of generality, we may assume s > 0. We also have A} =
(A¥)k. By using a result of Nagy [185,188], there exists an equivalent

Hilbertian norm || .|| on H such that || AﬁkS” = 1, for every k € Z. (Take, e.g.,
x|l = limn_m||A§S"x||2)1/zwhere Lim is a Banach limit in N) Then AY is
unitary in (H,||.[)and {f,},>1 are eigenvectors corresponding to the
eigenvalues

fy, = eSO =12 ..
Then for m,n > s/2m, m # n, we have u,, # p, Therefore {f,}n>s/27 1S an
orthogonal system in (H,]||.]||), hence {fy,},>1is an unconditional basis in
(H,]| .|]) and also in (H, || .|]).

(iv) Suppose the basis {f;,,}n>1 is unconditional. By using a characterization of
unconditional bases, see, e.g., [187, Theorem 17.1.6], there exits a constant
C > Osuchthat ||YX, aifill < ClIXi={la;|f;|lfor every n € N and every finite
scalar sequence {a;}.

For x € H, (the linear dense subspace spanned by {f,,}n>1), k € Z, s € R.

We have A¥Sx =3 ..exp (iskn/(n + 1))P,x, the sum is finite. Hence

|A%sx|| < ClIXns1lexp(isk n/(n + 1))|Px|| = Cllx|| . Then ||[AFSx|| < C.
After these preparations, we can easily construct the operator A. Construction

of A. Let H, = ¢,(N),k € Z, and let {f,},,»; be a conditional basis of £?(N)

for example, the basis defined in (88). Define Ay, like in Lemma (2.2.6), then

for every s € R\{0}, suprez ||A¥|| = o . Then define the operator 4, like in

10



Lemma (2.2.5). The operator A is of type (w, M) for some M > 1 and for every
w € (0,m). Moreover for s € R\{0}, A® cannot be bounded, otherwise
SUPkez ||A§f || would be finite. Therefore the operator A satisfies all the required
properties.
In this section, we construct an example of two resolvent commuting, closed
operators A and B, in a Hilbert space H such that A and B are of type (w, M) for
some M > 1 and every w€ (0,m), with A + B not closed. Let H =
£2(N), {f,.},>1 be a (Schauder) basis in #2(N), and {P,},,»;be the associated
projections.
We shall denote by H, the linear dense subspace spanned by {f,;}n»1 Let
F: R — B(H) be the spectral family defined by
F(A) =0 for 1<1

F(A) =) ,[('1]1 P, , where [1] denotes the greatest integer < A.
We define [|F|| = supaz [IF(DI < co.
Lemma (2.2.7)[177]: Let H, Hy,and F be as a above .Let h: [0, 00) — [1,00) be
a continuous and increasing function. For any x € H, let

Tox = z h(n) P,x, (the sum is finite ). (93)
n=1

Then, for every 8 € (— m, m), there exists M(8) > 0 such that for every
Z € Y9, I + zT, is a bijection in Hy and

(I + zTy) x|l < M(8)||x]| holds for every x € H,. (94)

Moreover Ty is closable and its closure T is of type (w, M) for some M > 1,
for euery w € (0, ) and satisfies 0 € p(T).
Proof (i). Proof of (94). For every z € C\(— o0,0], we define Syx =
Yre1(1/(1 + zh(n))) B,x, x € Hy. We get(I +2zTy)Sy = So(I + 2T,) =
Iy, The spectral representation of Syis given by
dF (Q)x, X € H,.

SoX = f 1+zh(D)
[0,00)

By using (87), we have

Isoxl < (

1 1
1+ zh(e)] T 1T+ zh(oy] 1F 1+ Vari )[1+Zh(.)] I ”)“x“

for every x € Hy, h(o0) =lim,_, h(Ad) = sup,so h(4), which may be
infinite.

11
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Then we get (94).

(i1) Closure of T,. It is known, see, e.g., [181], that (94) implies that T, is
closable and that its closure T satisfies the same inequality. For the sake of
completeness, we prove that Ty is closable.

Let x,, € H,. be such that x,, - 0 and T, x,, = y for some y € H. We have
to prove y=0. Let v€ Hy, then for t >0, we have |[|lx, +tv| <
Mllx, + tv + tTo(x, + tv)|| and |[tv]| < M||(t(v + y) + t?T,v| by
taking the limit. Hence ||v|| < M||x +y + tT, v|| and ||v|| < M]||v + y|| by
letting t 1 O for every v € H,. Since Hyis dense in H, y = 0.

(iii) Type of T. From (94), we get ||yl| < M(0) ||(I + zT) y|| for every
y € D(T) and z € )4, which implies that I + zT is injective and that R(I + zT)
is closed, hence R(I + zT) D> Hy = H. Therefore z71 € p(T) and ||(I +
zT) x|l < M(0)||x]|| holds for every x € H.

(iv) 0 € p(T) Let Lox = Y.;-1(1/h(n)) B,x for x € Hy. L, is the inverse of
T,. By using (87), we get

1 1
Loxll < <@ + (2 _ @) ||F||) x|l foreveryv € H, .

Then L, 1s bounded and densily defined. This implies that the closure of L, is
the inverse of T.

Next, we consider properties of two operators A, and B, of the form given by
Lemma (2.2.7).
Lemma (2.2.8)[177]: Let f and g be two continuous, increasing functions from
[0,00) into [ 1,0). Let A, and B, be the corresponding operators in H, defined
by Agx = Yp=q1f(n) Bx andByx = Y;-,g(n) P,x forevery x € H,.
Let A and B be their closure in H.Then, we have:

(i) Ao (Ady + By)™" = (Ag + By) '4q on Hy;

(i) A and B are resolvent commuting;

(i) A + Bisclosableand A+ B = A, + By.
Proof. (1) We have Ay Box = QnfmM)B)megm)B, x) =
Yn f(M)g(n)B, x = ByAy x for every x € H,. Since A, + B, is a bijection on
H, it follows that Ay and (A4, + By)™! commute.

(ii) As is well known, it suffices to prove (I +A4)" (U + B)™1= U+
B) (1 + A)~1 . But this is a consequence of the commutatively of (I + Ay )~ ?
and (I + By )~ ! on H,. together with their boundedness.
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(i11) First we prove that A + B is closable. Let x,, € D(A) N D(B) be such
that x, - 0 and y, := (A + B)x, - ywithy € H. Then

I+A) U+ By, =0U+A4)"*U+ B)"'Bx,
+(I+B) (1 + A)Ax,

=U+ A -U+B)Yx, + U+ B)HI-U+ A x, > 0.
Hence (I + A)™*(I + B) 'y =0,and y = 0.

Since the closure of A, + By is contained in the closure of A + B, we only
have to prove A + Bc Ay+ B, orA+Bc Ay+ By.Let x € D(A) n
D(B) = D(A + B). Then there are two sequences x,, X, — x and Ayx, —
Ax and Byx,, = Bx.Seth, = x,, — x, We have

X = (Ao + Bo) ™ (AgXn + BoXn) — Bo(Ag + Bo) ™" Iy, (95)
by using part (i). Since (Ay + By)~ ! is bounded by Lemma (2.2.7), we obtain
that the sequence By(Ay, + By) ! h,, converges to some v € H Moreover
(Ag+ By) 1 h, > 0,then v = 0 since Byis closable by Lemma (2.2.7).
Rewriting (95), we get

(Ao + Bo)(xn + Bo(Ag + Bo) ™" hy ) = Agxy + Bokn
Which implies by passing to the limit

x€D(Ay+By) and (Ay+ By)x = Ax + Bx.
Now we give a lemma which characterizes the closedness of A + B.
Lemma (2.2.9)[177]: Let the operators A and B be defined as in Lemma (2.2.8).
Then A + B is not closed if and only if there exists a sequence x, in Hy such
that

Ixall < 1and Supysqlldg(Ag + Bo) ™! xull = oo, (96)
Proof. (i) Let E = D(A) N D(B). We define two norms on E’
lIxlly :== llxll + llAx|l + [IBx|l ~ and

lIxll = llxl + [[(A+B)x[l, x € E.

Clearly ||x]||, < [|x]]; for x € E. Since A and B are closed, E is complete with
respect to the norm || .|[;. Moreover E is complete with respect to || . ||, if and
only if A + B 1is closed, By using the open mapping theorem (for one
implication), one has A + B is closed if and only if there exists C > 0 such
that

x|, < Cl|x]|, foreveryx € E. 97)
(ii) Let x, € H, be such that |[x,||<1land y, = (4, + By) 'x, with
Supps1ll4o ynll = +oo. Then (97) cannot hold. Indeed, we have
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Iynllz = llyall + 1A + Bo)ynll
= [1(Ag + Bo) "oz Il + llxnll < 11(Ap + Bo) Ml + 1
and
IV lly = IlAgyn|l which is unbounded.
Hence A + B is not closed.
(iii) Assume C, = Sup{[|4o(4o +Bo) ' yll, llyll <1, y € Hy} < . By
triangular inequality, there is Cg > 0 such that

1Bo(Ag + Bo) ™ yll < Cgllyll , forevery y € H.
Then if x = (4y + By) vy, we have

lylls = llyll + lAoyIl + [|Boyll
= |lyll + lAo(Ag + Bo) ™" x|l + [|Bo (4o + Bo) ™ x||

< llyll + (Ca + Cp)llx|l = (1 + Co + Cp)llyllz forevery y € H,.

Then the norms [|.]||; and ||.||,are equivalent on H,. Observe that H, =
D(A, + By) which is dense in D (4, + B,) with respect to the norm

x5 := llx|l + ||(Ao + Bo) x||, x € D(Ag+ By). Notice that E=
D(A + B) c D(Ay + By) = D(A+ B) .Hence H, is dense on E with respect
to ||.|l3 for x € E, there exists x, € Hysuch that || x —x,|l3s = 0 and
| x|ls = limy, L0l X, 1l3 =limy,Loll X, l2 =] x|, , by using the continuity of
| .|, on E. It follows that the norms || .||; and || .||, are equivalent on E.

Construction of the Example (2.2.2). It is enough to choose A and B as in
Lemma (2.2.7) and (2.2.8) such that condition (96) of Lemma (2.2.9) is
satisfied, i.e., to find two functions f and g as in Lemma (2.2.7) such that

f(n)

su —
p{ L, 760 + g(m)
We show that this is possible.

First we choose for {f,},>1 the conditional basis of example (88) which

satisfies
m
E Pyn
n=1

If we impose the following conditions on f and g,

P,x

,X € Hy, ||x]| < 1} = 00, (98)

SUPm>1 = 400 .
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£(n) 2 forn odd
) +800) {3 9
u for n even

Then Y27 (=22) Px = () 237 Pux + (1/2) £ty Py, which

f(n)+g(n)
satisfies (98).
Finally, we give one possible choice of functions f and g satisfying the
hypothesis of Lemma (2.2.7) and condition (99).

Set h(t) = % + %cos(nt), t = 0.
We construct f and g by induction:
f(0)=3 and g(0) = 1.
Suppose we know the functions between [0,2n], n = 0,1, 2,... then we define
fort € (2n,2n + 1]

f@O=f@n) and g =fCn) (55— 1)
And fort € 2n+1,2n + 2]

® = glen + )L
f=glent V70
Then, f,g are continuous on [0,00) nondecreasing, not less than one with

fO/F@® + g@®) = h(t). =

and g(t) = g(2n + 1).



