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                                       Chapter 2 
Operators of Bounded and Unbounded Imaginary Powers 
 
      In this chapter we deal with sums of operators in ߦ-convex spaces, and here 
the extensions of the Dore-Venni   results are derived. We give an application to 
a Volterra equation in a Banach space, we consist  of an  operator  of positive  
type  in Hilbert  space  without  bounded  imaginary  powers,  and  concerned 
with  the  closedness  of  the  sum of  two  closed operators  in  a Hilbert  space.   
 
Sec(2.1): Operators with Bounded Imaginary Powers in Banach 
Spaces 
    Let ܺ be a complex Banach space and let ܤ,ܣ be closed linear densely 
defined operators in ܺ such that (−∞, 0] is contained in the resolvent sets of 
both operators, such that their resolvents satisfy  
ݐ)|                 + ,|ଵି(ܣ ݐ)| + |ଵି(ܤ ≤ 1)/ܯ + ݐ	all	for	(	ݐ ≥ 0,																										(1)	
Then their purely imaginary powers are bounded, and 
 
											หܣ௦ห ≤ ,		|ఏಲ|௦	݁ܭ หܤ௦ห ≤ ݏ		all	for		ఏಳ|௦|	݁ܭ ∈ ℝ																																	(2)	
holds. Recently, it has been shown by Dore and Venni [182] that the sum  
	ܣ + ܣ)ܦ with domain ܤ + (ܤ = (ܣ)ܦ ∩ -ߦ is closed, if in addition ܺ is (ܤ)ܦ
convex,	ܣ and ܤ commute and ߠ + ߠ < -ߦ a brief explanation of the notion ;ߨ
convex Banach space' is given at the beginning of this Section. This result has 
important applications to the theory of  partial differential operators since (1) but 
also (2) are known for large classes of such operators; cp. Seeley [206]. In 
another paper the authors also show that ܣ	 +  then has properties (1) and (2) ܤ	
again, probably with different ܭ,ܯ but with ߠା = max(ߠ	, (ߠ +  where ,ߝ
ߝ > 0 can be chosen arbitrarily small. This makes it possible to iterate the 
argument and to consider sums of finitely many operators ܣ , ݅ = 	1, . . . . . , ݊, 
which are mutually commuting, and are subject to (1), (2), with exponents 
ߠ such that	ߠ + ߠ < ݅ for all ߨ ≠ ݆.  
   In many cases, however, (1) is too strong and should be replaced by the 
weaker conditions (−	∞, 0) ⊂ (ܣ)ߩ 	∩   and (ܤ)ߩ	
ݐ)|                       + ,	|ଵି(ܣ ݐ)| + |ଵି(ܤ ≤ ݐ	all	for					ݐ/ܯ > 0.																											(3)	
Examples for this generally come from differential operators on unbounded  
regions, like the Laplace operator or the Stokes operator on exterior domains; of 
Giga and Sohr [198]. In such situations one still has (3) as well as ܰ(ܣ) = 0 and 
dense in ܺ, but 0 (ܣ)ܴ ∈  Therefore it is desirable to have also results for .(ܣ)ߪ
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this case available, similar to those for the somewhat simpler case considered by 
Dore and Venni [182]. A preliminary version of such a generalization was 
obtained by Giga and Sohr [199], who also gave an application to the Navier-
Stokes equation on an exterior domain. It is the purpose of this section to study 
this extension to the case where only (3) holds thoroughly.  
 At first glance this seems to be an easy task; approximate ܣ	and ܤ	by ߝ +  and ܣ	
ߝ + ߝ use the Dore-Venni results and let ,ܤ	 → 0. Actually, this approach  
works, however, it is not straightforward. This is due to the fact, that in case we 
have (3) only, the fractional powers ܣ	௭ are in general unbounded, except for 
ݖ ∈ ݅ℝ. For this reason it is not at all obvious whether ߝ +  has bounded ܣ	
imaginary powers and whether the crucial assumption (2) holds for ߝ +  It .	ܣ	
turns out that this is indeed the case. For the proofs we use the functional 
calculus generated by the group ܣ	௦; it is closely related to the inverse Mellin 
transform; cp. Titchmarsh [209]. Once this functional calculus is put to work it 
is possible to show that (3) also holds for ߝ +  ܭ and ߠ	with the same ܣ	
uniformly in e which is indispensable for the limiting process. By means of this 
method, it is also possible to improve the estimate on (ܣ +    derived by		௦(ܤ
Dore and Venni [196]; we obtain  
                  ห(ܣ + ௦ห(ܤ ≤ Kexp(max(ߠ	, ݏ	all	for			(|ݏ|(ߠ ∈ ℝ,																							(4)	
provided ߠ 	≠ 	 	, and an additional factor 1ߠ +   appears in case	ଵ/ଶ|ݏ|
ߠ   .	ߠ	=
Let ܺ be a complex Banach space and let ܣ denote a closed linear operator in ܺ 
with dense domain (ܣ)ܦ;  and we ,ܣ denote kernel and range of (ܣ)ܴ and (ܣ)ܰ	
use the notation (ܣ)ߩ and (ܣ)ߪ for resolvent set and spectrum of .ܣ		ܤ(ܺ) is the 
space of  bounded linear operators in ܺ. The basic assumption on ܣ is  
,∞	−)		(1ܪ) 0) ⊂ ,(ܣ)ߩ (ܣ)ܰ = 0,  is dense in ܺ, and, for some constant (ܣ)ܴ
ܯ ≥ 	1, we have  
ݐ)|                    + |ଵି(ܣ ≤ ݐ	forall					ݐ/ܯ > 0.																																																								(5)	
It is well known that operators ܣ satisfying (H 1) admit not necessarily bounded  
fractional powers of any order ݖ	 ∈ ℂ, and for |Rez| ≤ 1, z	 ≠ 	0, and ݔ	 ∈
∩	(ܣ)	ܦ	   we have the representation. (ܣ)	ܴ

ݔ௭ܣ =
ߨݖ݊݅ܵ
ߨ

ݔଵିݖ}	 − (	1 + 	ݔଵିܣଵି(ݖ + න 	
ଵ



ݐ)௭ାଵݐ +  ݐ݀ݔ	ଵିܣ		ଵି(ܣ	

                                                                        

																																																																												+න 	
ஶ

ଵ

ݐ)௭ିଵݐ + ;{	ݐ݀ݔ	ܣ		ଵି(ܣ	 								(6) 



٣٣ 
 

cf. Krein [201] or Komatsu [184]. In particular, since sin  is an entire ݖߨ/ݖߨ
function, it follows that ܣ	௭ݔ is a holomorphic function of ݖ for   |ܴ݁ݖ| < 	1 on 
the set (ܣ)ܦ ∩  the latter is easily seen to be dense in ܺ. In fact, given ;(ܣ)ܴ
ݔ ∈ ܺ, choose ݕ ∈ ݕܣ such that (ܣ)ܦ →  is	(ܣ)ܴ this is possible since ;ݔ
dense in ܺ. Then we have ݔ = ݊(݊ − ݕܣ		ଵି(ܣ ∈ (ܣ)ܴ ∩ ݔ and (ܣ)ܦ →  .ݔ
Furthermore, ܣ	௭ݔ	 satisfies the group property  

௭భ	ܣ ݔ௭మ	ܣ	 = ݔ					,ݔ௭భା௭మ	ܣ ∈ (ܣ)ܦ ∩ ,(ܣ)ܴ ,ଵݖܴ݁ ,ଶݖܴ݁ ଵݖ)ܴ݁ + (ଶݖ ∈ (−1, 1).	 
Therefore the following definition makes sense. 
Definition (2.1.1) [186]: A closed linear densely defined operator ܣ in 
ܺ	belongs to the  class BIP(ܺ, ߠ where ,(ߠ ∈ [0,  satisfies (H 1) as well as ܣ if ,(ߨ
the condition. 
(H2)  For all	ݏ ∈ ℝ	, ௦	ܣ ∈ ܭ and there is some ,(ܺ)ܤ ≥ 	1 such that  
                            หܣ	௦ห 	≤ ,|ఏ|௦	݁ܭ ݏ ∈ ℝ																																																																			(7)	
In general, it is not quite simple to verify (H2); however there are a number of 
examples which underline the importance of this definition.  
Example (2.1.2) [186]:  (Normal operators in Hilbert space). Let	ܺ be a Hilbert 
space and ܣ a normal operator in ܺ	with spectral family {ܧఒ	}	ఒ∈ℂ. By the 
functional calculus for normal operators we have  
(ܣ)݂                                 = 	∫ఙ()	݂(ߣ)݀ܧఒ ∈ 	,	(ܺ)ܤ
for each Borel-measurable bounded ݂ ∶ (ܣ)ߪ	 → ℂ, and  

|(ܣ)݂| = 	sup	{|݂(ߣ)| ∶ 	ߣ	 ∈ {(ܣ)ߪ	 = |݂	|	
holds. Let ܵఈ 	= 	 	ߣ} ∈ ℂ:	|arg	ߣ	| 	<   then we have ; {ߙ	
 
ܣ                   ∈ BIP(ܺ, (ܣ)ܰ		iff		(ߠ = 0	and	(ܣ)ߪ ⊂ ܵఏ̅	.																																				(8)	
In fact, if ܰ(ܣ) 	= 	0 then ܴ(ܣ)തതതതതതത 	= 	ܺ and with ݂(ߣ) 	= 	ߣ)/1	 +   (ݐ	
	ݐ)|    + |ଵି(ܣ	 	≤ sup{1/|ߣ	 + 	ߣ	:|ݐ	 ∈  {(ܣ)ߪ	
                          = 	1/dis)ݐ	−	ݐ, ((ܣ)ߪ 	≤ 	,(ߠ	sin	ݐ)/1	
 
i.e (H 1) holds. Also, with ݂(ߣ) = 	 ௦	ߣ = 	݁௦	୪୭ఒ	 we obtain  
 

หܣ	௦ห 	= 	sup	൛หߣ	௦ห:	ߣ	 ∈ ൟ(ܣ)ߪ	 = 	sup	൛݁ି௦ୟ୰ఒ ∶ 	ߣ	 ∈ ൟ(ܣ)ߪ	 ≤ ݁	|௦|ఏ	.	
From this the converse implication is also obvious. 
Example (2.1.3) [186]:  (݉-accretive operators in Hilbert space). Suppose ܣ is 
an ݉-accretive  linear operator in a Hilbert space ܺ	such that ܰ(ܣ) = 0. Then 
we have ܴ(ܣ) dense in ܺ and (H 1) holds with ܯ = 	1. Moreover, the functional 
calculus of  ܣ	developed by  Foias and Nagy [208] implies ܣ ∈ BIP(ܺ,  the ,(2/ߨ
constant ܭ in (H 2) is 1. 
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Example (2.1.4) [186]:  (Multiplication operators on ܮ(Ω, .((ߤ Let	ܺ =
,(Ωܮ ,(ߤ 1 ≤  < ∞ , where	(Ω,  finite measure space, and-ߪ denotes a (ߤ
consider a ߤ-measurable function ݉(ݔ) such that ݉(ݔ) ≠ .ܽ- ߤ 0 ݁. ; let ܣ be 
defined as  
(ݔ)(ݑܣ)            = ݔ				,(ݔ)ݑ(ݔ)݉ ∈ Ω,				(ܣ)ܦ = 	 ݑ} ∈ ݑܣ	:ܺ ∈ ܺ}.	
This ܣ is closed linear and densely defined, ܰ(ܣ) = 0 and ܴ(ܣ)തതതതതതത = ܺ. It is not 
difficult to see that  
ܣ                              ∈ BIP(ܺ, (ݔ)݉				iff		(ߠ ∈ ܵఏ̅	ܽ. ݁.																																										(9)	
Example (2.1.5) [186]:  (݀/݀ݐ	݊݅	ܮ(ℝା; 	ܻ)). Let ܻ	denote another Banach 
space, and let  ܺ = ;(ℝାܮ 	ܻ), with 1 <  < ∞. Define ݑܣ =  for ݐ݀/ݑ݀
ݑ ∈ (ܣ)ܦ = ܹ

ଵ,(ℝା; 	ܻ);		it is well known that ܣ is closed linear densely 
defined, and that the a djoint	ܣ∗	of	ܣ is given by ݑ∗ܣ∗ = ∗ݑ				for	ݐ݀/∗ݑ݀− ∈
(∗ܣ)ܦ = ;ଵ,(ℝାݓ 	ܻ∗), in case ܻ	is reflexive, and ିଵ + ଵିݍ 	= 	1. Therefore 
we have  	ܰ(ܣ) = (∗ܣ)ܰ = 0, hence  ܴ(ܣ) is dense in ܺ. Furthermore, 	
  

ݐ) + (ݔ)ଵ݂ି(ܣ = 	න ݁ି௧(௫ି)
௫



ݐ				,ݕ݀(ݕ)݂ > 0, ݂ ∈ ܺ,	

hence (H 1) follows with ܯ	 = 	1. 
   It has been shown recently by Dore and Venni [182] that in case ܻ is  ߦ-
convex,  the imaginary powers of ܣ	satisfy the estimate  

                        หܣ	௦ห 	≤ ,)ܥ ܻ)(݈	 + 	݁(ଶݏ	
ഏ|ೞ|
మ ݏ									 ∈ ℝ,																																		(10)	

where the constant C(, ܻ) > 0 only depends on 	and ܻ. Thus if ܻ is  ߦ-convex 
and 1	 <  < 	∞ then ܣ ∈ BIP(ܺ, 	2/ߨ + ߝ for each (ߝ	 > 0.  
   Actually, Dore and Venni proved this only for the case of a finite interval 
[0, ܶ], however, without any changes their proof carries over to the hairline case.  
Example (2.1.6) [186]:  (Diffusion semigroups). Suppose −ܣ	is the generator of 
a positive contraction semigroup ܶ(ݐ)	݅݊	ܺ = ,(Ωܮ ,(ߤ 1	 ≤  ≤ ∞, where as 
before (Ω,  is selfadjoint (ݐ)ܶ finite measure space. Assume that-ߪ denotes a 	,(ߤ
for  = 2 and that ܶ(ݐ)1	 = 	1 for ݐ	 > 	0	in	ܮஶ(Ω,  where 1 denotes the ,(ߤ
function which is constant 1. Stein [207] proved that then ܣ ∈ BIP(ܺ,  (2/ߨ
holds, for any  ∈ (1,∞). This result covers elliptic boundary value problems of 
second order; the angle 2/ߨ, however is not best possible for this case, as the 
results of Seeley [206] show.  
Example (2.1.7) [186]:  (Stokes operator). Let Ω ⊂ ℝ be a domain with 
compact smooth boundary, consider the space = ,(Ω;ℝ)ܮ	 for 	1 <  <
∞	, ݊	 > 	1, and let ܺ	 = 	 ఙܮ

 (Ω;ℝ)	denote the subspace of  ܻ defined by the 
closure of C,ఙஶ ((Ω;	ℝ)} 	= 	 ݑ} ∈ Cஶ((Ω;	ℝ):	div	ݑ = 0} in the norm of ܻ; 
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here div	ݑ means the divergence of the vector field ݑ. Then for every ݂ ∈ 	ܻ 
there exists the unique decomposition  	݂ = ݂ 	+ 	grad	߮			with 	 ݂ ∈ 	ܺ	 the 
Helmholtz decomposition; grad	߮ is as usual the gradient of  the scalar function 
߮	. The operator ܲ:	ܻ → ܺ defined by ݂ܲ = ݂		is a bounded linear projection in 
ܻ with ܴ(ܲ) = ܺ. The Stokes operator ܤ on 	ܺ is then defined by ݑܤ = −ܲΔ,	 
(ܤ)ܦ = (Δ)ܦ ∩ ܺ; here Δ	 denotes the Laplacian on ܻ	 with zero boundary 
conditions, i.e. ܦ(Δ) = ܹ

ଵ,(Ω;	ℝ) ∩ܹଶ,(Ω;	ℝ). The Stokes operator 
represents the stationary linear part of the Navier-Stokes equation for the flow of 
an incompressible material with Newtonian viscosity.   
    It is known that (H1) holds for ܤ; cp. Borchers and Sohr [193]. Concerning 
(H2), it has been proved recently that for every ߠ ∈ (0,   there is a constant (2/ߨ
ܭ = ,ߠ)ܭ  such that (H2) is satisfied. For the case of bounded domains this (
result is due to Giga [197], while for exterior domains this has been proved by 
Giga and Sohr [198]. Thus ܤ ∈ BIP(ܺ, ߠ for any ,(ߠ > 0.  
 Furthermore, ܤ is even selfadjoint in ܮఙ

 (Ω; ℝ). It should, however, be noted 
that ܤ is not covered by Example (2.1.6), since the semigroup generated by ܤ 
cannot be expected to be positive and it is an open question whether it is 
contractive for general . Also, in the case of an exterior domain the Stokes 
operator is not invertible, hence (1) does not hold.  
   Note that the class BIP(ܺ,   enjoys the symmetry property  ,(ߠ
ܣ                          ∈ BIP(ܺ, ଵିܣ		iff		(ߠ ∈ BIP(ܺ, 	(11)																																											.	(ߠ
Let ܤ	denote the generator of the C-group ܣ௦; formally we obtain  	ܤ =
	݅	logܣ,	and so we may use this relation as a definition of 	logܣ.  
Definition (2.1.8) [186]:  Suppose ܣ ∈ BIP(ܺ,  be the generator of ܤ and let 		(ߠ
the  C-group ܣ௦	. Then the logarithm of ܣ is defined by  
                        log	ܣ	 = 	(12)																																																																																			.ܤ݅	−	
Recall the Mellin transform defined by   

(ߩ)ܨ																				 = න ఘିଵݐ(ݐ)݂
ஶ



;		ݐ݀ 																																																																								(13) 

Mellin's  inversion formula reads  

(ݐ)݂													 = 	(݅ߨ1/2) න ఘିݐ(ߩ)ܨ
శಮ

షಮ

		(14)																																																												.ߩ݀

 (14) will serve for the construction of a functional calculus for operators of 
Class  BIP(ܺ,  For the convenience of the reader we now collect several . 		(ߠ
well known transformation pairs and several useful properties of the Mellin 
transform.  



٣٦ 
 

		(ߩ)ܨ																					(ݐ)݂    
    1/(1	 + 	0																											ߩ	ݖ	sin/ߨ											(ݐ	 < 	Re	ߩ	 < 	1																												(15)	
      ݁	ି௧																					Γ(ߩ)																																					0	 < 	Re	ߩ																																						(16)	
    (1	 + ܽ)Γ	(ߩ)Γ										ି(ݐ	 − 	0									Γ(ܽ)/(ߩ < 	Re	ߩ	 < 	Re	ܽ																					(17)	

    ଵ݂(ݐ) ଶ݂(ݐ)											(݅ߨ1/2)	∫ ߩ)ଵܨ − శಮ(ߪ

షಮ 	(18)																																		ߪ݀(ߪ)ଶܨ						
    
 (19)																																																																													(ߩ)	ܨ	ఘ(ߙ/1)																			(ݐ	ߙ)	݂   
ߩ)							(ݐ)݂(ݐ݀/݀)−    − 	ߩ)ܨ	(1	 − 	1)																																																																			(20)	
	ߩ)ܨ																				(ݐ)݂ݐ     + 	ܽ)																																																																																	(21)	
  Adetailed study of the Mellin transform can be found, e.g., in the classical 
monograph Titchmarsh [209].  
    In the sequel, we let ߠ ∈ 	 [0,    denotes any element of	ܣ be fixed and (ߨ
BIP(ܺ,   Define .(ߠ

ఏܯ
ଵ(ℝ) = 	 ߤ} ∈ ఏ|ߤ|	:(ଵ(ℝ)ܯ 	= 	(ߨ1/2) න ݁ఏ|௦|

ஶ

ିஶ

|(ݏ)ߤ݀|		 	< 	∞},	

the Banach space of all complex measures on ℝ	 which are finite w.r. to the 
weight ݁ఏ|௦| normed by	|	. |ఏ	 ; ܯఏ

ଵ(ℝ) becomes a Banach algebra with unit, the 
convolution of measures, scaled by 1/2ߨ, being the multiplication. Evidently, 
the Dirac measure ߜ௦	with mass in ݏ ∈ ℝ belongs to ܯఏ

ଵ(ℝ)	;  is the unit of		ߜߨ2
the algebra ܯఏ

ଵ(ℝ)	. For measures ߤ ∈ ఏܯ
ଵ(ℝ)	we define  

(ݖ)݂							 = 	(ߨ1/2) න ௦ିݖ
ஶ

ିஶ

,(ݏ)ߤ݀		 |argݖ| ≤ 	(22)																																								;ߠ

 
this map defines an algebra homomorphism from ܯఏ

ଵ(ℝ)	into the Banach 
algebra ܪ	(ܵఏ) defined by  

(ܵఏ)	ܪ = 	 {	݂:	ܵఏ̅ → ℂ	continuous, holomorphic	in	ܵఏ}		
with norm |݂	| = 	sup{|݂(ݖ)|:	ݖ ∈ ܵఏ̅}, and pointwise multiplication. This gives 
rise to an algebra homomorphism from ܯఏ

ଵ(ℝ)	 into ܤ(ܺ) defined by  

(ܣ)݂						 = 	(ߨ1/2) න ௦ିܣ
ஶ

ିஶ

	(23)																																																																							,(ݏ)ߤ݀		

where ߤ and ݂	are related by (22). Choosing  ߤ = ߜߨ2 	, we obtain ݂(ݖ) =
(ܣ)	݂ as well as			ିݖ 	= (ܣ)(	ߜߨ2) ; in particularିܣ	 	=   ,Moreover .ܫ	

	
   ( ଵ݂ ଶ݂)(ܣ) = ∫	(ߨ1/2) ௦ஶିܣ

ିஶ ଵߤ)݀		 ∗  	(ݏ)(ଶߤ
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                    = ଶ(ߨ1/2) 	∫ ∫ ௦ஶିܣ
ିஶ

ஶ
ିஶ ݏ)ଵߤ݀		 −  	(ݐ)ଶߤ݀(ݐ

                    
                    = ଶ(ߨ1/2) 	∫ (ݐ)ଶߤ௧݀ିܣ

ஶ
ିஶ ∫ (ݏ)ଶߤ௦݀ିܣ

ஶ
ିஶ = ଵ݂(ܣ)	 ଶ݂(ܣ);		

this proves that the map (23) is multiplicative. 
Theorem (2.1.9) [186]:  Let ߠ ∈ [0, ܣ and (ߨ ∈ BIP(ܺ,   .(ߠ
Then (23) defines an algebra homomorphism from M

ଵ(ℝ) into ܤ(ܺ) such that 
(ݖ)݂                         = (ܣ)݂	implies		ିݖ = ,ିܣ ݎ ∈ ℝ.																																(24)	
Moreover, we have the estimate  
|(ܣ)݂|                              	≤ 	(25)																																																																											ఏ|ߤ|ܭ
with ܭ from (H2). Here ݂	and ߤ	 are related by (22). 
   It is left to the reader to translate the properties (19)-(21) into the properties of 
the algebra homomorphism. However, let us state a consequence of (19) for 
future reference.  
Corollary (2.1.10) [186]:  Let  ߠ ∈ [0, ∋ and (ߨ BIP(ܺ, ,(ߠ ߙ > 0	 .  Then 
ܣߙ ∈ BIP(ܺ,  and we have (ߠ
(ܣߙ)݂						                  	= ఈ݂(ܣ)																																																																																			(26)	
Where  ఈ݂(ݐ) =  .is given by (22)	݂	 and (ݐߙ)݂
    It is to be mentioned that this functional calculus is nothing else than the  
functional calculus of Phillips for the group 	ܣ௦	, after an exponential change of 
variable; cf. Hille and Phillips [200]. For our purposes, however it is more 
appropriate to have the Mellin-transform as a setting rather than the Laplace-
transform.  
   Unfortunately, our functional calculus is not strong enough to recover the 
resolvent (ߣ −  ௦. The reason for this is that theܣ  from the group ܣ  of	ଵି(ܣ
Mellin transform of 1/(1	 + 	ߩ has poles at (ݐ	 = 	0, 1. We are going to remove 
this defect. Consider the transform pair (15); the inversion formula (14) then 
holds for each ܿ	 ∈ (0, 1) since  |sin	ߩߨ| 	≥ ,|	ݏ|	ߨ	ℎ	ݏ	 ݏ = Imߩ	. Let ݔ	 ∈
∩	(ܣ)	ܦ	 ,ݔఘܣ the vector-valued function ;(ܣ)	ܴ	 |Re	ߩ| 	< 	1, is then 
holomorphic and we have the estimate  

|ݔఘܣ| 	≤ 	 Cக(ݔ)݁ఏ|௦|								, |Re	ߩ| ≤ 1	 − 	,ߝ

which easily follows from the representation (6) of 	ܣఘݔ and the group property. 
Therefore, the integral  

ݔܶ								 = (݅ߨ1/2) න /ߨ) sin ఘିܣ(ߩߨ
శಮ

షಮ

,ߩ݀ݔ 0 < ܿ < 1,															(27)	

Exists as an absolutely convergent integral and by Cauchy's Theorem it is 
independent of ܿ. Applying (ܫ	 +   to (27) we obtain (ܣ
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	ܫ)            + 	ݔܶ(ܣ	 = 	 (݅ߨ1/2) ∫ /ߨ) sin ఘశಮିܣ(ߩߨ

షಮ  ߩ݀ݔ
                                 

(݅ߨ1/2)+                                  ∫ /ߨ) sin ଵିఘశಮܣ(ߩߨ

షಮ 	;	ߩ݀ݔ
Using Cauchy's Theorem again, we deform the path of integration in the first 
integral into the contour	߁ଵ , the contour consisting of the intervals 
	(−	݅	∞, ,ߝ݅]			,[ߝ݅	− ݅∞) connected  by the positive halfcircle Γଵఌ of radius ߝ > 0; 
similarly, the path of integration in the second integral is deformed into Γଶ, the 
intervals (1 − 	݅	∞, 1 − 1]	݀݊ܽ	[ߝ݅	 + ,ߝ݅ 1 + ݅∞) connected by the negative 
halfcircle Γଶ		ఌ of radius ߝ > 0	. Since  sin	1)ߨ + ( = −sinπρ the contributions 
coming from the straight lines in ߁ cancel each other, and therefore there 
remains  

	ܫ)	 + ݔܶ	(ܣ	 = 	(݅ߨ1/2) 

xdA


1

)sin/( 			

+ (݅ߨ1/2) 

xdA


2

1)sin/( 		;		

it is easily seen that	(ܫ	 + 	ݔܶ	(ܣ	 = ߝ as ݔ → 	0, hence we obtain   ܶݔ	 =
	ܫ) + ݔ for each		ݔଵି(ܣ	 ∈ (ܣ)ܦ ∩  Shifting the contour to the imaginary .(ܣ)ܴ
axis in (27) and applying Corollary (2.1.10) we have shown  

ܫ) + ݔଵି(ܣߙ = 	ܸܲ(݅ߨ1/2) න(ݏ/ߨℎݏߨ)(ܣߙ)ି௦
ஶ

ିஶ

ݏ݀ݔ	 + 	(28)																	,ݔ(1/2)

for each ݔ ∈ (ܣ)ܦ ∩ 	ߙ and .(ܣ)ܴ > 	0; here ′	ܲ	ܸ′ indicates Cauchy's principal 
value. 
Now consider ߣ	 = |	߮|	 with	ఝ݁	ߙ	 < (ݐ)݂  then (14) with ;	ߨ	 	= 	1/(1	 +  (ݐߣ	
yields  
       1/(1	 + (ݐߣ	 = 1/(1	 +  (ݐߙ

(݅ߨ1/2)+													 න(ݏ/ߨℎݏߨ)(ݐߙ)ି௦
ஶ

ିஶ

	(݁ఝ௦ − 		;ݏ݀(1

the measure	ߤ	 with density ݀ݏ݀/ߤ = ఝ௦݁)(ݏߨℎݏ/ߨ) −  ௦ belongs toିߙ	(1
ఏܯ
ଵ(ℝ), provided |߮| < ߨ − ఏ|ߤ| and ,ߠ ≤ ߨ)/ܿ − ߠ − |߮|) holds for some 

constant ܿ which is independent of ߮ and ߙ	. Thus by Theorem (2.1.9), 	1, ܫ) +
ߣ  exists for each		ଵି(	ܣߣ ∈ ℂ  with 	|arg λ| 		< ߨ	 −   and ߠ
ܫ)|                  + |ଵି(	ܣߣ ≤ ܫ)| + |ଵି(	ܣߙ 	+ 	C	|ߤ|ఏ ≤ 	C	.	
On each sector 	ܵ௩̅	 with ݒ	 < ߨ	 −  We have proved .ߠ
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Theorem (2.1.11) [186]:  Let ܣ ∈ BIP(ܺ, ,(ߠ 0 ≤ ߠ < (ܣ)ߪ then	.ߨ ⊂ 	ܵఏ̅ 	 and 
we have the estimate  
ߣ)|                         + |ଵି(	ܣ ≤ C௩/|,|ߣ						ߣ ∈ S௩,																																																		(29)	
where ݒ	 < ߨ	 − 	In particular, if 0 .ߠ <  generates a uniformly ܣ− then 2/ߨ	
bounded  analytic C-semigroup ݁ି௧	 in ܺ. 
   By means of the transform pair (16) it is possible to obtain a representation  of 
݁ି௧ in terms of the imaginary powers ܣఘ, but we will not do this here. 
  Suppose ܣ	satisfies (H1); it is then obvious that ߝ + ܣ =   also satisfies (H 1)	ఌܣ
for each 0	 < 	ߝ	 < 	1, and there holds the stronger estimate  
	ݐ)|           + |ఌ)ିଵܣ	 ≤ ߝ)/ܯ + (ݐ	 ≤ 	1)/(ߝ/ܯ) + ,(ݐ ݐ > 0.																									(30)	
Therefore, the fractional powers ܣఌିఈ	 exist and are bounded for Re	ߙ > 0; they  
even form an analytic semigroup. It is much less obvious whether this 
semigroup has boundary values in ܤ(ܺ) on the imaginary axis. However, this 
can be expected if ܣ	 belongs to BIP(ܺ, ఌܣ In fact, we show that then .(ߠ ∈
BIP(ܺ, ߝ for each (ߠ > 0; even more is true.  
Theorem (2.1.12) [186]:  Suppose ܣ ∈ BIP(ܺ, ߠ for some		(ߠ ∈ (0,  and let ,(ߨ
ఌܣ = ߝ + ,	ܣ ߝ > 0 . Then ܣఌ ∈ BIP(ܺ,  and ܯ as well, and the constants 		(ߠ
ߝ ,from (HI) and (H2), respectively, can be chosen uniformly w.r.t	ܭ > 0	. 
Moreover, the group ܣఌ

ఘ	converges  strongly to the group ܣఘ  as ߝ → 0. 
Proof. The proof  is based on the functional calculus for operators of class  
BIP(ܺ, ,ܣ Let . 		(ߠ ,ߠ ,	ఌܣ  denote the ܭ and	ܯ be as in the theorem and let ߝ
constants in (H1) and (H2) for ܣ; we first consider the case ߝ	 = 	1. The 
transformation pair (17) clearly yields the complex powers of ܣଵ with negative 
real part, however, this (ݏ)ܨ does not give rise to a measure of class ܯఏ

ଵ(ℝ)  
since (ݏ)ܨ has a pole at ݏ	 = 0; also we are interested in the case Re	ܽ = 	0 and 
so we have to derive a corresponding formula of type (22).  
     First we use the Mellin inversion formula (14) for the pair (17) ,	Re	ܽ > 	0. 
Shifting the contour of integration to the imaginary axis yields  

(1 + ି(ݐ =
1
2 + ൬

1
	൰ܸܲߨ2

න Γ(݅ݏ)Γ(ܽ − Γ(ܽ)ିଵ(ݏ݅
ஶ

ିஶ

,ݏ௦݀ିݐ	 ݐ > 0, Reܽ > 0,												(31) 

where again 'ܸܲ′	denotes Cauchy's principal value. To remove the pole at  
ݏ = 0, we subtract from (31) the representation of (1	 + ,	ଵି(ݐߩ ߩ > 0,	i.e. (31) 
with 	ܽ = 	1 ; this gives  
   

(1 + ି(ݐ = (1	 + ଵି(ݐߩ 	+ ∫	(ߨ1/2) ቄ(௦)(ି௦)
()

− గఘషೞ

ୱ୧୬(గ௦)
ቅஶ

ିஶ  (32)							.	ݏ௦݀ିݐ
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Note that the integral now is absolutely convergent since the pole at ݏ = 0 has 
been removed. Next we want to let ܽ → ݏ in equation (32); then ߩ݅	 =  ߩ
becomes a singularity within the integrand. To avoid this we alter the contour of  
integration once more into 	Γக, consisting of the two rays {݅:ݏ	ݏ ≤ ߩ −
,{ߝ ݏ	:ݏ݅} ≥ ߩ + ߝ and the left halfcircle with radius  {ߝ > 0. Now passage to the 
limit ܽ →   can be carried out to the result ߩ݅
 
 (1 + ఘି(ݐ = (1	 +  	ଵି(ݐߩ
    
∫	(݅ߨ1/2)+		                {Γ(ݖ)Γ(݅ߩ − (ߩ݅)Γ/(ݖ − 	௭/sinିߩߨ .{ݖߨ


                                                                                         (33)       .	ݖ௭݀ିݐ

Next we let ߝ → 0 and obtain 
  (1 + ఘି(ݐ = (1	 + ଵି(ݐߩ +  ఘିݐ(1/2)
    

	ܸܲ(ߨ1/2)+																					 න ቊ
Γ(݅ݏ)Γ(݅ߩ − (ݏ݅

Γ(݅ߩ)
−
௦ିߩߨ

sin ݏ݅ߨ
ቋ

ஶ

ିஶ

	(34)																		.	ݏ௦݀ିݐ

finally, to remove the singularity we add (use (15) and (21))  
 
ߩ)ఘିݐߩ   +  ଵି(ݐ
        		= ఘିݐ(1/2) + 	ܸܲ(ߨ1/2) ∫ ݏ)݅ߨ௦ିఘ/sinߩߨ} − ஶ	{(ߩ

ିஶ 	(35)											ݏ௦݀ିݐ	
to (34)  
  (1	 + ఘ(ݐ = (1	 + ଵି(ݐߩ + ఘିݐ − ߩ)ఘିݐߩ +  ଵି(ݐ
                             
∫	(ߨ1/2)+                                                        g(ݏ)ିݐ௦

ஶ
ିஶ 	(36)																						,ݏ݀		

Where 
 
g(ݏ) 	= 	 {Γ(݅ݏ)Γ(݅ߩ − −	{(ߩ݅)Γ/(ݏ݅ 	௦/sinିߩߨ} {ݏ݅ߨ 		− 	 	௦ିఘ/sinߩߨ} ߩ)݅ߨ − 	(37)							,{(ݏ
 
with ݏ ∈ ℝ, ߩ > 0. 
   It is not difficult to show thatหg(ݏ)ห 	≤ C݁	ିగ|௦|, ݏ ∈ ℝ	, and so g gives rise  
to a measure ߤܯఏ

ଵ(ℝ)	.This yields the representation 
 
ଵܣ   

ିఘ = ଵ/ఘିଵܣ	ܣ	ଵିߩ	 	+ ఘିܣ	 	− ఘିଵܣ	ఘܣ	ߩ	 	+ ఘ݂ 	(38)																																					,(ܣ)	
where ఘ݂is given by (22) with ݀ߤ/݀ݏ = g	, thanks to Theorem (2.1.9). 
  Thus the functional calculus developed in this   Section shows that the 
imaginary  powers of ܣଵ	 exist and belong to ܤ(ܺ) for each fixed ߩ > 0. We 
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now have to verify estimate (7). It is clear from (38) that it remains to derive the 
desired  bound on ఘ݂   which means to prove					,(ܣ)	
 

																				 නหg(ݏ)ห݁ఏ|௦|	݀ݏ ≤ C݁	ఏఘ
ஶ

ିஶ

ߩ			 > 0,																																																				(39)	

where ܥ only depends on ߠ, but not on ߩ. The integral in (39) is broken up into 
five parts according to the intervals	(−∞,−ߟ), ,ߟ−) ,(ߟ ,ߟ) ߩ −  	,(ߟ
ߩ) − ,ߟ ߩ + ߩ) and (ߟ + ߟ where ,(∞,ߟ <  .is fixed, to be chosen lateron 2/ߩ
These integrals will be named ܫଵ, .	ଶܫ . . . ,  ହ and estimated separately. In theܫ
sequel we will use repeatedly the formula  
                        |Γ(݅ݏ)|ଶ 	= ,(ݏߨ	ℎݏ	ݏ)/ߨ	 ݏ ∈ ℝ,																																																		(40)	
see, e.g., Abramowitz and Stegun [191], p. 77, as well as the elementary 
estimate  
                         ݁గ/2 ≥ ݎߨ	ℎݏ	 ≥ ܿ݁ߟగ, ݎ ≥ 	(41)																																													,		ߟ
 
where ܿ > 0 is independent of ߟ > 0. 
  ଵ: Here we have by (40) and (41)ܫ
 

หg	(ݏ)ห ≤ Cଵ	ିߟଵ	݁ିగ|௦|	, ݏ ≤ 	ߟ−
hence  

|ଵܫ|													 ≤ 	න Cଵ	ିߟଵ	݁ିగ௦݁ఏ௦
ஶ

ఎ

ݏ݀		 ≤ Cଵ	ିߟଵ(ߨ − 	(42)																															.	ଵି(ߠ

 : For this integral (40) and (41) yield	ହܫ
หg	(ݏ)ห ≤ Cହ	ିߟଵ	݁ିగ௦	݁గఘ, ݏ ≥ ߩ + 	ߟ

hence  

|ହܫ|				 ≤ Cହ	ିߟଵ 	න 	݁ି(గିఏ)௦
ஶ

ఘ

గఘ݁	ݏ݀		 = Cହ	ିߟଵ(ߨ − 	(43)																					.	݁ఏఘ	ଵି(ߠ

  ଷ: Similarly, here we obtainܫ
หg	(ݏ)ห ≤ Cଷ	ିߟଵ൫[ߩ)ݏ/ߩ − ଵ/ଶ[(ݏ 	+ ݁ିగ௦ + ݁ିగ(ఘି௦)൯, ߟ ≤ ݏ ≤ ߩ − 	,	ߟ

and so a simple calculation shows  
 

|ଷܫ| ≤ Cଷ	ିߟଵ 	න 	൫[ߩ)ݏ/ߩ − ଵ/ଶ[(ݏ 	+ ݁ିగ௦ + ݁ିగ(ఘି௦)൯

ఘ



	 	݁ఏ௦	݀ݏ 

               ≤ Cଷ	ିߟଵ{ඥߩ	݁ఏఘ ∫ 1)ݐ] − ଵ/ଶଵି[(ݐ
 	 	݁ିఏఘ௧݀ݐ 
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ߨ)+                − ଵି(ߠ 				+ ߨ) + 		{݁ఏఘ	ଵି(ߠ
 
               	≤ Cଷ	ିߟଵ൛(1/√ߠ)	݁ఏఘ + ߨ) − ଵି(ߠ + ߨ) +  (44)																			݁ఏఘൟ.	ଵି(ߠ
Note that here we need ߠ > 	0!  
	ߩ is continuous w.r. to (ݏ)	ଶ: Since gܫ >  and the interval under	ݏ and	ߟ	2	
consideration has length 2	ߟ	 not dependent on ߩ it is clear that |ܫଶ(ߩ)| ≤ C	as 
long as  ߩ	 is bounded. Therefore we may restrict our attention to large values of  
  We have .	ߩ	

หߩߨ௦ିఘ/ sin ߩ)ߨ݅ − ห(ݏ ≤ Cଶ	ିߟଵ݁ିగ(ఘି௦) ≤ Cଶ	ିߟଵ 
and   from  the reflection formula of the gamma function  
                        Γ(ݖ)	Γ(1 − (ݖ	 = 	.	ݖߨ	sin/ߨ	
We obtain for ݏ	 ∈ 	 ,ߟ	−]   [ߟ

หg	(ݏ)ห ≤ Cଶ	ିߟଵ 	ߩ)	݅)	߁ห|(ݏ	݅)߁|	+ − (ߩ	݅)߁/((ݏ	 	− 	1)߁	௦ߩ	 − 	.ห(ݏ	݅	
 
Since Γ(݅ݏ) has a simple pole at ݏ	 = 	0 there is a constant ܿ	 > 	0 such that  

|(ݏ	݅)߁ݏ| ≤ ܿ, 	1)߁| − (ݏ	݅	 − Γ(1)| ≤ ,|ݏ|ܿ |ݏ| ≤ 	;ߟ
 
note that Γ(1) = 1	. Next we use Stirling's formula  
                       Γ(ݖ)~݁ି௭ݖ௭ିଵ/ଶ√2ߨ, |ݖ| → ∞, |argz| < 	,ߨ
And for large values of ߩ this yields  
 
        หg	(ݏ)ห ≤ Cଶ	ିߟଵ + Cଶ + ܿ	ห݁௦(1 − ݁గ௦/ଶ	(ఘି௦)ିଵ/ଶ(ߩ/ݏ − 1	ห/ݏ	 
 
                      ≤ Cଶ	ିߟଵ		, |ݏ| ≤  ,	ߟ
hence  
|ଶܫ|                  ≤ Cଶ	ିߟଵ 	∫ 	݁ఏ|௦|ఎ

ିఎ 	ݏ݀ ≤ 2Cଶ	ିߟଵ݁ఏ|ఎ| ≤ Cଶ	ିߟଵ	.	 

ߩ)	ସ we use the symmetry  gܫ ସ: To treatܫ − (ݏ	 = 	 g		(ݏ); thus  
 

|ସܫ| ≤ න หg	(ݏ)ห	݁ఏ|௦|
ఘାఎ

ఘିఎ

ݏ݀ ≤ ݁ఏ|௦| නหg	(ߩ − |݁ఏ|௦	ห(ݏ
ఎ

ିఎ

ݏ݀ ≤ ݁ఏఘCଶ	ିߟଵ. 

Thus we have shown that (39) holds for ߩ ≥ ߟ where ,ߟ2 > 0 is fixed. For  
ߩ ∈   we have to use a slightly different argument. This time we use the (ߟ0,2)
representation  
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(1 + ఘି(ݐ = (1 + ଵି(ݐ + ఘିݐ − ఘ(1ିݐ + ଵି(ݐ

+ ߨ1/2 න ℎఘ(ݏ)ିݐ௦݀ݏ,
ஶ

ିஶ

																																																																				(45) 

where  
          ℎఘ(ݏ) = –	ߩ൫݅߁(ݏ	݅)߁ (ߩ	݅)߁/൯ݏ	݅	 − /ߨ sin ݏ݅ߨ − /ߨ sin ߩ)݅ߨ −                         (46)   	,(ݏ
with ߩ > 0;  
 (45) is derived similarly to (36). This gives again  
ଵܣ                   

ିఘ = ଵିଵܣ 	+ ఘିܣ	 − ଵିଵܣఘିܣ +	 ఘ݂(ܣ)																																								(47)	
 
where ఘ݂ now is given by (22) with ݀ߤఘ/݀ݏ	 = 	 ℎఘ. To obtain the desired 

estimate  for ܣଵ
ିఘ, ߩ <   we have to prove 	ߟ2

																			 නหℎఘ(ݏ)ห݀ݏ
ஶ

ିஶ

≤ C,						0 < ߩ <  (48)																																																							.ߟ2

We divide the integral in (48) into three parts according to the intervals 
(−	∞, ,(ߟ3 ,ߟ3−) ,(ߟ3  ,	ଷܫ ,ଶܫ ,ଵܫ the corresponding integrals are named ;(∞,ߟ3)
and are estimated separately. ܫଵ	,  can be treated as before, we obtain the same		ଷܫ
bounds as in (42) and (43), respectively. On the other hand,	ܫଶ is easily seen to 
be uniformly bounded, since the integrand	ℎఘ(ݏ), is continuous and  bounded 
with respect to both variables  
|	ݏ|                             ≤ 	0			,ߟ	3	 < 	ߩ	 ≤ 	.ߟ	2	
The case ߩ	 < 	0	can be reduced to ߩ > 0	by taking complex conjugates in 
formulas (36) and (45).   
   Finally, let ߝ > 0 be arbitrary and replace ܣ by ܣߝ in the above arguments. 
Since the constants ܯ and ܭ	of (H 1), (H2) also apply to ܣߝ	, we obtain uniform 
bounds for (1	 + ఌܣ The strong convergence	.	ఘି(ܣߝ	

ఘ  ఘ follows from theܣ	→
Banach-Steinhaus theorem and from (6). □ 
Note that in Theorem (2.1.12) we had to exclude the case ߠ = 0. We do not 
know  whether this is essential or only due to the method of  proof employed.  
Recall that a Banach space ܺ	is said to be ߦ-convex if there is a function 
	ܺ	:ߦ × 	ܺ	 → 	ℝ	, convex w.r.t, both variables, such that 0)ߦ, 0) > 	0 and  

,ݔ)ߦ (ݕ ≤ ݔ| + ,ݔ	all	for				|ݕ ݕ ∈ ܺ			with	|ݔ| = |ݕ| = 1.	
Such spaces are of interest here since it is known that ܺ is ߦ -convex iff   the  
Hilbert transform ܪ on ܮ	(ℝ, ܺ), 1	 < 		 < 	∞, defined by  

(ݐ)(݂ܪ) = 	ܸܲ(݅ߨ/1) 


 sdsstf /)( , ݐ ∈ ℝ	,	
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is bounded. Hilbert spaces are ߦ -convex (choose ݔ)ߦ, (ݕ = 	1 + ,ݔ)  to see (ݕ
this), closed subspaces of ߦ -convex spaces have this property again, and if	ܺ is 
,(Ω		ܮ convex then- ߦ ;ߤ 	ܺ), 1	 < 	 < 	∞, is ߦ-convex, where (Ω,  denotes (ߤ
any ߪ-finite measure space. For the definition and these properties of ߦ -convex 
spaces as well as others we refer to the survey article of Burkholder [194] and 
the references given there.  
  Now, let the Banach space ܺ be ߦ -convex, and suppose ܣ ∈ BIP(ܺ,  ,(ߠ
ܤ ∈ BIP(ܺ, ,	(ߠ ߠ + ߠ 	<   are resolvent commuting, i.e. there are ,ߨ
ߣ	  ∈ ,(ܣ)	ߩ	 ߤ ∈ 	 such that		(ܤ)	ߩ	
	ߣ)										 − ߤ)	ଵି(ܣ − ଵି(ܤ	 		= 	 ߤ) − 	ߣ)ଵି(ܤ	 − 	(49)																																			.	ଵି(ܣ
We want to extend the result of  Dore and Venni [182], Theorem 2.1, to this 
more general setting.  
Theorem (2.1.13)[186]: Let ܺ be ߦ-convex, ܣ ∈ BIP(ܺ, ܤ ,(ߠ ∈ BIP(ܺ,  ), beߠ
resolvent commuting and assume ߠ + ߠ 	< ܣ Then the operator .ߨ +  with ܤ
domain ܣ)ܦ + (ܤ = (ܣ)	ܦ	 	∩  .is closed and satisfies condition (H I)	(ܤ)	ܦ	
Moreover, there is a constant ܥ	 > 	0 such that  
|ݑܣ|                  + |ݑܤ| ≤ C|ݑܣ + ,|ݑܤ ݑ ∈ (ܣ)ܦ ∩ 	(50)																															(ܤ)ܦ
is satisfied; ܰ(ܣ	 + (ܤ = 0 and ܴ(ܣ	 +  .ܺ is dense in (ܤ	

Proof. Consider the approximations ܣ	ఌ = 	ߝ	 + ,ܣ	 ఌ	ܤ 	= 	ߝ	 +  where ܤ	
	ߝ > 	0; according to Theorem (2.1.12), ܣ	ఌ ∈ BIP(ܺ,   ,(ߠ
ఌ	ܤ ∈ BIP(ܺ, ,ܯ ),and the constantsߠ ,ܯ  and	ܭ    appearing in (H1) and	ܭ
(H2) can be taken uniformly w.r. to ߝ	 > 	0. By virtue of (30), ܣ	ఌ, ܤ	ఌsatisfy the 
assumptions of  Theorem 2.1 in Dore and Venni [182], hence ܣ	ఌ +  ఌ with	ܤ
domain ܦ	(ܣ) 	∩   is closed, and we have the representations 	(ܤ)	ܦ	
 

	ܵఌ = ఌ	ܣ) + ఌ)ିଵ	ܤ = (1/2݅) න (ݖߨ)݊݅ݏ/(ఌ௭ିଵܤఌି௭ܣ)
శಮ

షಮ

 	,ݖ݀	

                                                                                      0 < ܿ < 1,																				(51)	
as well as  

ఌܣ 	ܵఌݔ = (1/2݅)ܸܲ	 න (ݏ݅ߨ)݊݅ݏ/(ݔఌ௦ܤఌି௦ܣ)
ஶ

ିஶ

ݏ݀ +  	,ݔ(1/2)

ݔ                                                                                         ∈ ܺ;																									(52)	
Observe   that the ߦ-convexity of 	ܺ is needed for the integral in (52) to exist for 
all ݔ ∈ ܺ	. Since ܣ	ఌ + ఌ	ܤ = ߝ2 + ܣ + ܣ)ܦ is closed with domain ܤ + (ܤ =
(ܣ)ܦ ∩ 	ܣ we see that (ܤ)ܦ +  is closed as well. Further, the moment ܤ
inequality yields with ݖ = ܿ	 +   	ߩ݅	
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|	ݔఌି௭ܣ|   ≤ หܣఌ
ିఘห|ܣఌିݔ	| 	≤  	ଵି|ݔ||	ݔఌିଵܣ|	|݁ఏಲ|ఘܭ

                                           ≤ ܯ
 	,|ݔ|	ିߝ|݁ఏಲ|ఘܭ	

 
and similarly for ܤఌ௭ିଵ	. By means of these estimates, (51) yields with  ܿ	 =
	1/2	 

|ܵఌ| ≤ ܯ
	ܯ

ଵି	ܭܭିߝ	ߝିଵ 	 න ݁(ఏಲିఏಳ)|ఘ|
ஶ

ିஶ

	݁ିగ|ఘ|݀ݏ 

                                                                              = 	(53)																						,	(ߝ2)/ାܯ
i.e. estimates (5) holds also for ܣ	 +  ,convex spaces are reflexive-ߦ Since .ܤ	
from ergodic theory of linear operators (see, e.g., Hille and Phillips [200], chap. 
18) we even obtain ܵߝఌ → 	ܲ strongly as ߝ → 	0, where ܲ	denotes the projection 
onto  ܰ(ܣ	 +   and we have the decomposition ,(ܤ	
                       ܺ	 = 	ܣ)ܰ	 + (ܤ	 ⊕ 	ܣ)ܴ + 	(54)																																																				തതതതതതതതതതതതതത.(ܤ	
As in Dore and Venni [182] we next use (52) to obtain a constant C independent 
of ߝ > 0 such that  
ఌܣ|                        	ܵఌ| ≤ C		and				|ܤఌ 	ܵఌ| ≤ C	;																																																					(55)	
this follows from the fact that the Hilbert-transform is continuous on ܮ(ℝ, ܺ),
1 <  < 	∞ whenever ܺ is ߦ -convex, and since the constants ܭ for ܣఌ,  ఌ areܤ
uniform in ߝ > 0, by Theorem (2.1.12); see Dore and Venni [182], p. 193, for 
details. From (55) we immediately get by (53)  
|ఌܵ	ܣ|                        + |ఌܵ	ܤ| ≤ C.																																																																											(56)	
 
Let ݔ	 ∈ 	ܣ	)	ܦ	 + (ܤ	 	= (	ܣ)	ܦ	 	∩   and put (ܤ	)	ܦ	
ఌݕ = 	 	ߝ) + 	ܣ	 + 	ݔ then	;ݔ	(ܤ	 = 	 ܵఌ ఌݕ	  hence  
|	ݔܣ|             + 	 |ݔܤ| 	= 	 ఌܵܣ| |ఌݕ	 	+ 	 ఌܵܤ| |ఌݕ	 	≤ 	C|(ߝ	 + 	ܣ	 + 	,|ݔ	(ܤ	

and passing to the limit ߝ → 0 we obtain (50). Finally, inequality (50) shows that 
ܣ)ܰ + (ܤ ⊂ (ܣ)ܰ ∩ (ܤ)ܰ = 0, and so from (54) we also obtain density of  
	ܣ)	ܴ + 	ܣ .in ܺ, i.e (ܤ	 +  □ .satisfies (H 1)	ܤ	
Corollary (2.1.14) [186]: Under the assumptions of  Theorem  (2.1.13)we have 
additionally that the  operators ܣ)ܣ + ܣ)ܤ  and	ଵି(ܤ +  ଵdefined on theି(ܤ
dense set ܴ(ܣ +   .ܺ  are bounded, and so admit bounded extension to all of (ܤ
  A natural question arising in connection with Theorem (2.1.13) is whether the 
sum ܣ + ,ܺ)is again of class BIP ܤ ߠ for some (ߠ ∈ [0,   .(ߨ
  A positive answer to this question would lead to the possibility to use an 
induction argument to treat sums ∑ ݅	ܣ

ଵ 	 of pairwise commuting operators of  
class BIP(ܺ,  ). It was recently shown by Dore and Venni [196] that this isߠ
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indeed the case if  both operators ܣ and ܤ are strongly positive in the sense that 
(5) is strengthened to  
ݐ)|                     + |ଵି(ܣ ≤ 1)/ܯ + ݐ				,(ݐ > 0.																																																				(57)	
Their result, however, is not optimal, since they obtain ܣ + ܤ ∈ ,ܺ)ܲܫܤ ߠ +   (ߝ
where ߠ = max(ߠ,  ). Our next theorem improves and extends Theorem 3.1ߠ
in Dore and Venni [196].  
Theorem (2.1.15) [186]: Suppose ܺ	is ߦ-convex, ܣ	 ∈ ,ܺ)ܲܫܤ ,(ߠ ܤ ∈
,ܺ)ܲܫܤ	 ߠ with	),ߠ ߠ	+ < ߠ are resolvent commuting, and let ,ߨ =
max(ߠ, ߠ  .(ߠ ≠ 	ܣ		. Thenߠ	 + 	ܤ	 ∈ 	BIP(ܺ,   .(ߠ
Proof . Let ܣ, ,ܤ ,ߠ ߠ .be as in the theorem, w.l.o.g ߠ  andߠ <  and letߠ	
ߝ > 0. We claim that ߝ)ܣ + ଵି(ܤ ∈ BIP(ܺ, ߠ ݐ ). In fact, forߠ	+ > 0 we have  
	ݐ)|    + ߝ)ܣ	 + |ଵ)ିଵି(ܤ	 = ߝ)| + ߝݐ)(ܤ	 + ܤݐ	 +  |ଵି(ܣ	
         ≤ ߝݐ)|ߝ + ܤݐ + |ଵି(ܣ	 + ߝݐ)ܤ| + ܤݐ + |ଵି(ܣ	 ≤ (ߝݐ)/ܯߝ 	+ C/ݐ,	
since ܣ and ܤݐ satisfy the assumptions of Theorem (2.1.13); here ܯ and C are 
from (53) and (55). On the other hand, the groups ܣఘ	and	(ߝ +   commute	ఘି(ܤ
and we have  
    ห(ߝ)ܣ + ଵ)ఘหି(ܤ ≤ หܣఘหห(ߝ + ఘหି(ܤ ≤ ,|ఏಳ)|ఘ	݁(ఏಲାܭܭ ߩ ∈ ℝ.	
Next, using the function g(s) introduced in (37) in the proof of Theorem 
(2.1.12) we have the representation  

(1 + ߝ)ܣ + ଵ)ିఘି(ܤ 	= (1	 + ߝ)ܣߩ + ଵ)ିଵି(ܤ − 	ߝ)ܣ)ߩ +  ଵ)ିఘି(ܤ
                                 × ߩ) + ߝ)ܣ + ଵ)ିଵି(ܤ 	+ ߝ)ܣ	) +  ଵ)ିఘି(ܤ
(ߨ1/2)+                                  ∫ g(s)(	ߝ)ܣ + ஶ,ݏଵ)ି௦݀ି(ܤ

ିஶ ߩ								 > 0.  
Multiplying this equation by (ߝ +   ఘ we obtain forି(ܤ
	ݔ  ∈ ∩	(ܣ)	ܦ	 (ܤ)	ܦ	 	∩ 	ܣ)	ܴ	 + 		(ܤ	
ߝ)    + ܣ + ݔఘି(ܤ = ߝ) + ఘ(1ି(ܤ + ߝ)ܣ +  ݔ	ଵ)ିఘି(ܤ
                     = ߝ) + ߝ)ఘି(ܤ + ߝ)(ܤ + ܣߩ + ݔଵି(ܤ +  ఘିܣ
ߝ)ߩఘିܣ−                      + ߝߩ)(ܤ + ܣ +  ݔଵି(ܤߩ
                       
(ߨ1/2)+                      ∫ g(s)ିܣ௦(ߝ + ஶ,ݏ݀ݔ(ఘି௦)ି(ܤ

ିஶ ߩ								 > 0. 
Passing to the limit ߝ → 	0 for such ݔ we arrive at the representation  
	ܣ)   + 	ݔ	ఘି(ܤ	 = 	ܣ	ߩ)ܤ	ఘିܤ	 + 	ݔ	ଵି(ܤ	 + 	ܣ)ܣ	ఘିܣ	 + 		ݔ	ଵି(ܤ	ߩ	
    
(ߨ1/2)+                         ∫ g(s)ିܣ௦ܤ(௦ିఘ)ݏ݀ݔ

ஶ
ିஶ ߩ							,	 > 0.																								(58) 

It is therefore sufficient to estimate the integral  

						 නหg(s)ห݁ఏಲ|௦|݁ఏಳ|௦ିఘ|݀ݏ ≤ C݁ఏ|ఘ|
ஶ

ିஶ

ߩ							,	 > 0.																																											(59) 
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By Corollary (2.1.14) this implies the desired estimate for  (ܣ	 +  , i.e. we	ఘି(ܤ	
obtain  ܣ + ܤ ∈ BIP(ܺ,  	For this purpose we use the estimates on หg(s)ห .(ߠ
obtained in the proof of Theorem (2.1.12). We divide the integral into ܫ, ݆ =
	1, . . . , 5 as there and get  
|ଵܫ|    ≤ Cଵ	ିߟଵ 	∫ 	݁ିగ௦ஶ

ఎ ݁ఏಲ௦݁ఏಳ(௦ାఘ)		݀ݏ ≤ Cଵ	ିߟଵ	݁ఏಳఘ ߨ)	 − ߠ −  				;	)ିଵߠ
|ହܫ|    ≤ Cହ	ିߟଵ 	∫ 	݁ିగ௦ஶ

ఘ 	 	݁గఘ 	݁ఏಲ௦݁ఏಳ(௦ିఘ)݀ݏ ≤ Cହ	ିߟଵ	݁ఏಲఘ ߨ)	 − ߠ −  				;	)ିଵߠ

|ଷܫ|   ≤ Cଷ	ିߟଵ 	∫ ߩ)ݏ/ߩ]) − ଵ/ଶ[(ݏ +	݁ିగ௦ఘ
 +	 	݁ିగ(ఘି௦))	݁ఏಲ௦݁ఏಳ(ఘି௦)݀ݏ  

         ≤ Cଷ	ିߟଵ{	݁ఏಳఘඥߩ∫ 1)/ݐ] − ଵ/ଶଵ[(ݐ
 	 	݁(ఏಲିఏಳ)ఘ௧݀ݐ 

ߨ)+          − ߠ − ݁ఏಳఘ	)ିଵߠ + ߨ) + ߠ −  	{݁ఏಲఘ	)ିଵߠ
≤ Cଷ	ିߟଵ൛	݁ఏಲఘ/(ߠ − )ଵ/ଶߠ + ߨ) + ߠ − ݁ఏಳఘ	)ିଵߠ

+ ߨ) + ߠ −  												;{݁ఏಲఘ	)ିଵߠ
|ଶܫ|     ≤ Cଶ 		∫ 	݁ఏಲ|௦|ఎ

ିఎ ݁ఏಳ(ఘା|௦|)݀ݏ	 ≤ 2Cଶ	݁ఏಳఘ	݁గఎ,	 
and finally by symmetry 

|ସܫ| ≤ 2Cଶ		݁ఏಲఘ݁గఎ.	 
Thus the estimate (59) follows for large  ߩ; for small ߩ use ℎఘ(ݏ) instead of  
g(s). The theorem is proved. □ 
   There are two interesting corollaries to this result; the first one deals with 
products of operators of class BIP(ܺ,   .(ߠ
Corollary (2.1.16)[186]: Let X be ߦ-convex, ܣ	 ∈ BIP(ܺ, ,(ߠ ܤ ∈ BIP(ܺ,  (ߠ
with   0	 ≤ ߠ	 ߠ	+ 	<  ܣ of	ܤܣ be resolvent commuting. Define the product		ߨ	
and ܤ by means of  

	ݔ(ܤܣ) = ,ݔܤܣ (ܤܣ)ܦ 	= 	 ݔ} ∈ ݔܤ	:(ܤ)ܦ ∈ 	.{(ܣ)ܦ
Then ܤܣ is closable and its closure ܤܣതതതത belongs to BIP(ܺ, ߠ  ). If inߠ	+
addition  ܣ is invertible then ܤܣ is closed. 
Proof: Since ܤ ∈ BIP(ܺ, ଵିܤ ) impliesߠ ∈ BIP(ܺ,  ), by Theorem (2.1.13)ߠ
we know  that ܣ + (ܣ)ܦ ଵ with domainିܤ ∩ ܣ)ܰ ,is closed (ܤ)ܴ + (ଵିܤ =
0		and	|ݔܣ| + |ݔଵିܤ| ≤ C|ݔܣ + (ܣ)ܦ on |ݔଵିܤ ∩ ݔ Suppose .(ܤ)ܴ ∈
(ܤܣ)ܦ = ,(ܣ)ܦ	ଵିܤ ݔ → 0  and ݔܤܣ →  commute with	ܤ and ܣ Since .ݕ
ܫ) +    we obtain	ଵି(ܤ

ܫ)ܤܣ + ݔଵି(ܤ → ,ݖ ܫ)ܤ + ݔଵି(ܤ → 0, ݖ = ܫ) + 	ݕଵି(ܤ
 
Hence  (ܫ + ݕଵି(ܤ = 0	, by closedness of ܣ, and so ݕ = 0. This shows that ܤܣ 
is closable. Since ܣ	and ܤ are resolvent commuting, it is also easy to see 
that		ܤܣ is densely defined, has dense range and is also injective.  
Next we obtain 	
	ݐ)|              + |ଵି(ܤܣ	 = ଵିܤݐ)ଵିܤ| 	+ |ଵି(ܣ	 ≤ C/ݐ.	
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By Corollary (2.1.14), hence ܤܣതതതത satisfies (H 1). Finally, the relation  
 
ݔఘ(തതതതܤܣ)              = ,ݔ	ఘܤ	ఘܣ ݔ ∈ (ܣ)ܦ ∩ (ܣ)ܴ ∩ (ܤ)ܦ ∩ 	(ܤ)ܴ
shows the estimate  
               ห(ܤܣതതതത)ఘห 	≤ หܣఘห	หܤఘห 	≤ ,|݁ఏಳ|ఘ		ܭ|݁ఏಲ|ఘ		ܭ	 ߩ ∈ ℝ,	
hence (H 2) holds and ܤܣതതതത belongs to BIP	(ܺ, ߠ   .(ߠ	+
   To see that ܤܣ is already closed in case	ܣ is invertible, let  (ݔ) ⊂  ,(ܤܣ)ܦ
ݔ → ݔܤܣ and ,ݔ	 → ݔܤ Then .ݖ	 →  ଵ is bounded, henceିܣ since ݖ	ଵିܣ
ݔ ∈ ݔܤ and (ܤ)ܦ = ݔܤ but this in turn implies ;ܤ by closedness of ݖଵିܣ ∈
	ݖ and (ܣ)ܦ = 	ݖଵିܣܣ =  □      .is closed ܤܣ Hence .ܣ closedness of ,ݔܤܣ	
   The next corollary deals with sums of n commuting operators.  
Corollary (2.1.17)[186]: Suppose ܺ is ߦ-convex, ܣ ∈ BIP(ܺ, ,(ߠ ݅ =
	1	. . . . , ݊, such that, for each pair ݅ ≠  are resolvent commuting and	ܣ andܣ ,݆
satisfy ߠ + ߠ < ߠ  Let ߨ = 	max	ߠ and assume that there is only one i with  
	ߠ =  	.ߠ	
  Then ܣ = 	∑ ܣ

ଵ 	 with domain (ܣ)ܦ = 	⋂ (ܣ)ܦ
ଵ 	 is closed and belongs to the 

class BIP(ܺ, 	ܿ Moreover, there is a constant .(ߠ > 	0	such that  
 

																|ܣݔ|


ଵ

≤ C|ݔܣ|, ݔ ∈ 	(60)																																																													(ܣ)ܦ

 
is satisfied. In particular, ܰ(ܣ) = 0 and ܴ(ܣ) is dense in ܺ. Corollary (2.1.17) 
follows by induction from Theorems (2.1.13) and (2.1.15). Before we conclude 
this section we want to make another remark. Suppose we are in the situation  of  
Theorem  (2.1.13) or more generally of Corollary (2.1.17). If one of the 
operators ܣ	 is invertible then we obtain from (60) the estimate  
 

|ݔ| ≤ C|ݔܣ|, ݔ ∈ 		;(ܣ)ܦ
 
in other words the range of ܣ is closed. Since ܴ(ܣ) is dense in ܺ this implies 
that ܣ itself is invertible. 
Will show the applications. Let ܻ	be a ߦ-convex Banach space, ܤ	a closed 
linear densely defined operator in  ܻ	, and ܽ ∈ ܤ ூܸ(ℝା), i.e. a scalar-valued 
function of  bounded variation on each interval [0, ܶ]. As an application of the 
theory developed above, we consider the abstract  Volterra  equation of 
convolution type  
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(ݐ)	ݑ	(ݐ	݀/݀)	 	+ 	නܤ	ݑ	ݐ) − 	߬)
௧



	݀ܽ	(߬) 	= 	න g(ݐ	– 	߬)
௧



ݐ			,(߬)ܽ	݀		 ∈ 	ܬ

(0)ݑ                                                                                     = 0																									(61)	
where ܬ = 	 [0, ܶ] or ܬ = ℝା	, and g:	ܬ → 	ܻ is measurable; in the sequel 
convolution of  the functions ݂ and g will be denoted by ݂ ∗ g. Given g ∈
;ܬ)ܮ 	ܻ), a continuous function :ݑ	ܬ → 	ܻ is called a strong solution of (61) if 
(ݐ)ݑ ∈ ݐ .for a.e  (ܤ)ܦ ∈ ,ܬ (∙)ݑ	ܤ ∈ ;ܬ)ܮ 	ܻ), ݑ ∈ ூܹ

ଵ,(ܬ; 	ܻ), and (61) is 
satisfied almost everywhere on ܬ	.  
     (61) arises naturally in the theory of  linear incompressible viscoelastic 
materials; there ܤ	 is the Stokes operator introduced in Example (2.1.7) and 
ܻ = ఙܮ

 (Ω;ℝଷ). The kernel ݀ܽ is called the stress relaxation modulus and is in 
general of the form 	

(ݐ)ܽ								 = ܽ + ܽஶ	ݐ + 	නܽଵ(߬)
௧



݀߬, ݐ ≥ 0,																																																	(62)	

where ܽ 	≥ 0 is a Newtonian viscosity, ܽஶ ≥ 0 the stationary elasticity 
modulus, and the relaxation function ܽଵ(ݐ)is nonnegative, nonincreasing, of 
positive type, and ܽଵ(ݐ) → 0 as 	ݐ → ∞.We refer to Pipkin [202] for the physical 
background  and to Priiss [203-205] for a detailed study of the properties of 
(61), as well  as to the references given there. 
In virtue of the properties of the Stokes operator our main assumption  
on ܤ	 is  
 (V1)   ܤ ∈ BIP(ܻ, ߠ ) for someߠ ∈ 	 [0,   ;(2/ߨ
concerning the kernel we assume 
(V2) ܽ(ݐ)	is of the form (62) with ܽ, ܽஶ ≥ 0 and ܽଵ(ݐ)	 completely monotonic  
on (0,∞), ܽଵ(ݐ) → 0	as ݐ	 → ∞. 
In the following we shall denote the class of kernels ܽ(ݐ) satisfying (V2) by  
 ,The assumption on the kernel (V2) could be relaxed to some extent .ۻ۱
however, we will not do this here since on the one hand complete monotonicity 
of ܽଵ is a quite reasonable assumption which holds for many materials (if not for 
all), and on the other hand, we want to keep our treatment of (61) as simple as 
possible, and still obtain significant results. Note that the case of an ordinary 
Cauchy problem as studied in Giga and Sohr [199] is contained in (61) by 
choosing ܽ(ݐ) ≡ 1.  
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  We want to study (61) in the space ܺ = ;ܬ)ܮ 	ܻ), 1	 <  < 	∞ which is again 
  convex; cp. the remarks at the beginning of  this Section. For this purpose we-ߦ
first introduce an operator ܤ in ܺ	by means of the definition 

(ݐ)(ݑܤ) = ,(ݐ)ݑܤ ݐ ∈ ,ܬ (ܤ)ܦ = ݑ} ∈ ܺ: (ݐ)ݑ ∈ .ܽ		(ܤ)ܦ ݁.		 
                                                                               on	ܬ, ݑܤ ∈ ܺ};																					(63)	
it is easy to verify that ܤ is a closed linear densely defined operator in ܺ which 
belongs to BIP(ܺ,   isܤ ). The latter follows from (V1) and the fact thatߠ
independent of  ݐ;	the constants ܭ,ܯ,  are in fact the same as those	in ܺ	ܤ for	ߠ
for ܤ in ܻ. To obtain a reformulation of (61) to which Theorem (2.1.13) can be 
applied we have to invert the convolution with the kernel ݀ܽ. If (V2) holds, this 
can be done since then there is a kernel ݇(ݐ) of class ۱ۻ such that  

																						න݇(ݐ − ߬)
௧



	݀ܽ(߬) = ,ݐ ݐ ≥ 0,																																																					(64)	

holds; this is a theorem which basically is due to Reuter; cp. Clement and Prüss  
[195] for the reference and a discussion of this result. In viscoelasticity the 
function ݇(ݐ) is called the creep compliance of the material. Now suppose ݑ	is a 
strong solution of (61); convolving (61) with ݀݇ and differentiating we then 
obtain the equation  
݇݀)ܦ       ∗ (ݐ)(ݑܦ + (ݐ)ݑ	ܤ = g(ݐ), ݐ ∈ 	,ܬ
(0)ݑ                                          = 0, (݀݇ ∗ (0)(ݑܦ 	= 0; 																																		(65)	
here we used ܦ = ݑ for short. On the other hand, if ݐ݀/݀ ∈ (ܤ)ܦ ∩

ூܹ
ଵ,(ܬ; 	ܻ)			is such that ݀݇ ∗ ݑܦ ∈ ூܹ

ଵ,(ܬ; 	ܻ)	and (65) holds almost 
everywhere on ܬ, convolving (65) with ݀ܽ we see that ݑ	is a strong solution of 
(61). Thus (61) and (65) are completely equivalent. We therefore define an 
operator ܣ in ܺ		by means of  
(ݐ)(ݑܣ)   = ݇݀)ܦ ∗ ,(ݐ)(ݑܦ ݐ ∈ 	,ܬ
(ܣ)ܦ       = 	 ݑ} ∈ ;ܬ)ܮ ,ݑ	:(ܻ	 ݀݇ ∗ ݑܦ ∈ 	 ூܹ

ଵ,(ܬ; 	ܻ), ݑܣ ∈ ܺ, 
(0)ݑ       = (݀݇ ∗ (0)(ݑܦ = 0}.																																																																																(66)	
  is a densely defined linear operator in ܺ which is also closed. In fact, let ܣ
ݑ → ,ݑ ݑ ∈ ݑܣ and ,(ܣ)ܦ → ݓ in ܺ; put ݖ = ݀݇ ∗  . Then convolvingݑܦ
(0)ݓ .  with ݀ܽ we obtain with (64) andݑܣ = 0 the convergence  ݑܦ →
ூܮ	in	ݒ

 ;ܬ) 	ܻ), for some ݒ ∈ ூܮ
 ;ܬ) 	ܻ),		 hence ݑ ∈ ூܹ

ଵ,(ܬ; 	ܻ)	 and ݒ =  ,ݑܦ
by closedness of ܦ. Therefore, we get ݓ → ݓ	 = 	݀	݇ ∗ ூܮ	݊݅	ݑܦ

 ;ܬ) 	ܻ) and 
since ܣ	ݑ 	= ݓ	ܦ	 → ݓ yields ܦ	 the closedness of ,ݖ	 ∈ ூܹ

ଵ,(ܬ; 	ܻ) and 
ݖ = ݓܦ = ݇݀)ܦ ∗ (ݑܦ = ݑ .i.e ,ݑܣ ∈ (ܣ)ܰ It is also easy to see that .(ܣ)ܦ =
0, this follows from the initial conditions  (0)ݑ 	= 	 (݀݇ ∗ (0)(ݑ	 = 	0. 
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Convolving the equation ܣ	ݑ	 = 	ݒଵିܣ ܽ we derive	with ݀ ݒ	 = 	ܽ ∗   for each ,ݒ	
ݒ ∈ (ܣ)	ܴ	 	= (ଵିܣ)ܦ	 	= 	 	ݒ} ∈ 	ܺ:	ܽ ∗ 	ݒ ∈ ܺ); in particular, ܣ is invertible  Iff 
 . Equation (61) can now be		is never integrable on ℝା (ݐ)ܽ is bounded since ܬ
rewritten in abstract form in the Banach space ܺ as  
	ݑܣ                                    + ݑܤ	 = g.																																																																						(67)	

To prove ܣ ∈ BIP(ܺ, ߠ ) for someߠ > 0	, we will need the following lemma 
which in simpler form was derived in Prüss [203, 205]; for the sake of 
completeness a proof is included here.  
Lemma (2.1.18) [186]: Suppose ܽ ∈ ூଵܮ (ℝା),  satisfies (V2). Then there is a 
function ܿ ∈ with c  ۻ۱ = 0 such that ܽ = ܿܦ	 ∗  .holds ܿܦ
Proof .  Let ܽ ∈ (ߣ)݂ and put ۻ۱ = ߣ ොܽ(ߣ), ߣ > 0, where the hat indicates 
Laplace transform. Define operators ܮ , ݇	 = 	0, 1, 2, . . ., by means of  
  
(ߣ)(݂ܮ)     = (−1)ିଵ(݀/݀ߣ)ଶିଵ[ߣ݂(ߣ)], ߣ > 0, ݇ = ݈, 2	. . . ,	
(ߣ)(݂	ܮ)     = ,(ߣ)	݂	 	ߣ > 	0;																																																																																(68)	
Then  ܽ ∈ ݂ is characterized by ۻ۱ ∈ Cஶ(0,∞) and ܮ݂(ߣ) ≥ 0 for all ݇ ≥ 0, 
ߣ > 0. This is a kind of  Bernstein's theorem for the Stieltjes transform; cp. the 
monograph of  Widder [210], Theorems 18b, 14b.  
   Let ܽ௦(ݐ) = (ݐ)ܽ + ,ݐݏ ,ݐ ݏ > 0, and let ݇௦ ∈  denote the solution of (64) ۻ۱
with  ܽ(ݐ) replaced by ܽ௦(ݐ); the convolution theorem for the Laplace transform 
and (64) imply the relation  

gୱ(ߣ) = ߣ ݇௦(ߣ) = (ߣ)݂ߣ] + ,		ଵି[ݏ ߣ > 0.	
 
Note that gୱ satisfies (68) for each ݏ > 0 since ݇௦ ∈ Define  ℎ .ۻ۱ ∈ Cஶ(0,∞) 
by  ℎ(ߣ) 	= 	 	ଵିߣ ොܽ(ߣ)ିଵ/ଶ	; the formula  
 

ଵ/ଶ	ିݎ = ݎ)ଵනିߨ + ଵି(ݏ
ஶ



ݎ					,ݏଵ/ଶ݀	ିݏ > 0,	

Then yields the representation  
 

    ℎ(ߣ) = ଵିߨ ∫ ൫ݏߣ + ൯(ߣ)݂
ିଵஶ

  ݏଵ/ଶ݀	ିݏ
            
             = ଵିߨ ∫ ݎ) + ଵஶି((ߣ)݂ߣ

  (69)																																																												,ݎଵ/ଶ݀	ିݎ
 
where the change of variables ݏ =   ଶ has been used. Applying the operatorsߣ/ݎ
  to (69) and interchanging differentiation with integration, we obtain	ܮ
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(ߣ)(ℎܮ)								 = ଵනିߨ (ߣ)g௦ܮ
ஶ



ିݏ
ଵ
ଶ݀ݏ, ߣ > 0, ݇ = 0, 1, . . . . ; 																		(70)	

note that all integrals are absolutely convergent. Since g௦	 satisfies (68) for each 
ݏ > 0, (70) shows that ℎ also has this property hence there is a ܾ ∈  such that ۻ۱
ℎ(ߣ) = ߣ ܾ(ߣ) for ߣ > 0. Finally, let ܿ ∈   denote the solution of (64) with ۻ۱
  then ;(ݐ)ܾ replaced by (ݐ)ܽ

(ߣ)̂ܿߣ = ቀߣଶ ܾ(ߣ)ቁ
ିଵ

= ൫ߣℎ(ߣ)൯
ିଵ

= ොܽ(ߣ)ଵ/ଶ	,							ߣ > 0,	
 
and 	c = 	 limఒ→ஶ (ߣ)̂ܿߣ 	= 0. This shows that the function (ݐ)ܿܦ = ܿஶ + ܿଵ(ݐ) 
satisfies	ܦ	ܿ ∗ 	ܿ	ܦ = 	ܽ, by the convolution theorem of the Laplace transform. □  
Let C	denote the closed linear operator in ܺ	defined by means of  

 
(Cݑ)(ݐ) = ܿܦ) ∗ ,(ݐ)(ݑ ݐ > 0, (C)ܦ = 	 ݑ} ∈ ܺ ∶ 	Cݑ ∈ ܺ}	; 																													(71) 

in Clement and Prüss [195] it has been shown that C ∈ BIP(ܺ, ߠ +   for any (ߝ
	ߝ > 	0, where 
ߠ					      	= 	sup	{|arg ߣ		R݁	:|(ߣ)̂ܿߣ > 	0} 	≤ 	(72)																																													,2/ߨ	
 
and the constants 	ܯ and ܭ  can be chosen independent of ܬ, since  
;ܬ)ܮ 	ܻ)		are closed subspaces of ܮ(ℝା	; 	ܻ); however, they do depend on 
	ߝ > 	0. 
  Obviously, since ܿܦ ∗ ܿܦ = ܽ	holds, ିܣଵ	 is a closed linear extension of Cଶ  ;  
note that Cଶ  is always closed since ߩ(C) ⊃ (−∞, 0). We show next that even 
ଵିܣ = Cଶ   holds; for the case ܬ = 	 [0, ܶ] this is trivial since ܿ	 ∈ 	ܹଵ,	(ܬ). For 
the case ܬ = ℝା, we have to show that ݑ ∈ ܺ and ܽ ∗ ݑ ∈ ܺ	imply Cݑ = ܿܦ ∗
ݑ ∈ ܺ; this, however, follows from the identity  
Cݑ = ܿܦ ∗ ݑ = ߣ) + C)ିଵ(ܽ ∗ ݑ − ,(ݑଶߣ ߣ > 0, ݑ ∈ 	(73)																							,(ܣ)ܴ
which evidently is true for each finite interval  ܬ	 = 	 [0, ܶ],	but with ܶ → ∞	 also  
for ℝା	. If in addition  
	ߠ                 = 	sup	{|arg	 ොܽ(ߣ)|:	Re	ߣ > 0} 	= 	ߠ2	 < 	(74)																																ߨ	
 
is satisfied then by Corollary (2.1.16), ܣ as well as ିܣଵ belong to  BIP	(X, 	ߠ 	+
	ε).		From Theorem (2.1.13) we can now derive  
Theorem (2.1.19) [186]: Let ܻ be a ߦ-convex Banach space,  ∈ (1,∞), ܤ ∈
BIP(ܻ, ,(	ߠ ܽ ∈ 	ߠ and let  ,ۻ۱ 	ߠ	+ 	<   is defined by	ߠ hold, where ߨ	
(74). Then, for every g	 ∈ ூ	ܮ

 (ℝା; 	ܻ) there exists a unique function us 
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ܹ	ூ
ଵ,(ℝା; 	ܻ) 	∩ ூ	ܮ

 (ℝା;  which is a strong solution of (61) on each  ((ܤ)ܦ	
finite interval ܬ = 	 [0, ܶ] (here ܦ(ܤ)	is equipped  with the graph norm of ܤ), 
and for each ܶ > 0 there is a constant ܿ(ܶ) > 0 such that for each g ∈
ூ	ܮ
 (ℝା; 	ܻ),we have the estimate  

  ∫ ்	|(ݐ)ݑ|
 	ݐ݀	 + 	∫ ݇݀ܦ| ∗ ்	|(ݐ)ݑܦ

 	ݐ݀ +	∫ |(ݐ)ݑܤ|
்
  ݐ݀	

                                            
                                                        														≤ ܿ(ܶ) ∫ |g(ݐ)|	୮்

 	(75)																					.ݐ݀
If, in addition, ܤ is invertible, then ܿ(ܶ) can be chosen independently of 
ܶ > 0.		Moreover, if g ∈ ;(ℝାܮ 	ܻ) then ݇݀ܦ ∗ ,ݑܦ ݑ	ܤ ∈ ;(ℝାܮ 	ܻ)as well, 
and there is a constant ܿ	 > 	0, independent of 	ܶ > 	0, such that 	
 
       ∫ ݇݀ܦ)| ∗ ்	|(ݐ)(ݑܦ

 	ݐ݀ +	∫ |(ݐ)ݑܤ|
்
  ݐ݀	

                                                ≤ ܿ ∫ |g(ݐ)|	୮்
 0		all	for		ݐ݀ < ܶ ≤ ∞	.													(76) 

 
Proof . Let ܬ	 = 	 [0, ܶ] be finite, first. Then ܣ	and ܤ	satisfy the assumptions of  
Theorem (2.1.13) and ܣ is invertible; consequently ܣ	 +  ,is again invertible ܤ	
i.e. for  each g ∈ ܺ = ;ܬ)ܮ 	ܻ) there exists a unique solution ݑ ∈ (ܣ)ܦ ∩
 (67), i.e. of (65) which in turn is equivalent to (61), as we have seen	of				(ܤ)ܦ
above. Furthermore, we have the estimates 

|ݑ|	 +	 |ݑܣ| |ݑܤ|	+ 	≤ 	 ܿ(ܶ)|g|	and	|ݑܣ| |	ݑܤ|	+ ≤ 	 ܿଵ|g|, where	

ܿଵ	is independent of 	ܶ	; the latter follows from the fact that the constants 
,ܯ ,ܯ ,	ܭ ,ߠ  as well as	ܭ  and therefore the	are independent of  ܶ	ߠ	
constant   C	in Theorem (2.1.13) is also independent of  ܶ. Now consider 
g ∈ ூܮ

 (ℝା; 	ܻ) then  g ∈ ;ܬ)ܮ 	ܻ) for each ܬ = [0, ܶ] hence there is a unique 
strong solution 	ݑ	 of (61) on ܬ. Since the restriction of a solution on 	ܬ	to a 
smaller interval ܬ 	= [0, ܶ] is again a strong solution on this smaller interval, 
by uniqueness we obtain  a unique ݑ	 ∈ ூܹ

ଵ,(ℝା; 	ܻ) ∩ ூܮ	
 (ℝା;  ((ܤ)ܦ	

which satisfies ݀	݇ ∗ 	ݑ	ܦ	 ∈ ூܹ
ଵ,(ℝା; 	ܻ) and (61) on ℝା. This proves the 

local part of Theorem (2.1.19) as well as estimate (75). To prove the second 
part, let g ∈ ;(ℝାܮ 	ܻ); Since ܿଵ is independent of  ܶ we conclude that ݑ is then 
even a strong solution on ℝା		 and that estimate (76) holds. The last assertion is 
also clear since in case ܤ	 is invertible in ܻ,ܤ is so in ܺ	and 	|ܤ	ିଵ| = 	  |ିଵܤ|
for any interval   ܬ	 = 	 [0, ܻ], 0	 < 	ܶ	 ≤ ∞.   □ 
   In the case where ܤ	  is the Stokes operator from Example (2.1.7) we may 
choose  	ߠ > 0	 as small as we want. To apply Theorem (2.1.19) in this case we 
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thus only need  ߠ < ߠ Note that .	ߨ ≤  ,always holds, even more is true ߨ
namely |arg	 ොܽ(ߣ)| < ߣ for each ߨ ∈ ℂ, ߣ ≠ 0, Re	ߣ ≥ 0, provided ܽ(ݐ) ≠ ܽஶ	ݐ ; 
this excludes the purely elastic case, only. Thus we have to study the limits 
ஶߠ	 = lim|ఒ|→ஶ sup|arg	 ොܽ(ߣ)|		and 	ߠ = lim|ఒ|→ sup|arg	 ොܽ(ߣ)|		 in the half 
plane	Re	ߣ > 0, but it is enough to do this for ߣ = ,ߩ݅	 	ߩ > 0	, since the Laplace 
transform of ܽ(ݐ) is holomorphic on ℂ\(−∞, 0] and ܽ(ݐ) is real.  
   Define ࣲ:	(0,∞) → ℝା by means of ࣲ(ߩ) = lm	 ොܽ(݅ߩ)/Re	ෝܽ  note that ;(ߩ݅)
ොܽ(݅ߩ)  belongs to the third quadrant for ߩ > 0.  
We then have   	ݐg		ߠஶ = limఘ→ஶ inf	ࣲ(ߩ)	,			i.e.  
ߠ	    < ஶݒ			iff			ߨ = limఘ→ஶ inf (ߩ)ࣲ > 0				ܽ݊݀	 
ݒ                          = limఘ→ inf	ࣲ(ߩ)	 > 0.																																																											(77)	
 
The following estimate is taken from Prüss [204].  

    ܿଵࣲ(ߩ) ≤ ቂܽ −	∫ (ݐ)ଵܽܦݐ
ଵ/ఘ
 ߩஶ/2ܽ]/[ݐ݀	 + ߩ ∫ (ݐ)ଵܽݐ

ଵ/ఘ
  	ቃݐ݀	

           
                 ≤ cଶࣲ(ߩ),						ߩ > 0.																																																																																	(78) 
Passing to the limits ߩ → ∞, 0	, it becomes apparent that ݒஶ > 0 implies ܽ > 0	 
or ܽଵ(0 +) = ∞	and ݒ > 0 yields	ܽஶ = 0; thus these conditions are necessary  
for 	ߠ < On the other hand, if ܽ .	ߨ > 0	 then ݒஶ = ∞, and if ܽ = 0	  but  
− lim௧→ (ݐ)ଵܽ/(ݐ)ଵܽܦݐ 	> 0 then ݒஶ > 0	by the rule of de l'Hospital; 
similarly, if ܽஶ = 0	and − lim௧→ஶ (ݐ)ଵܽ/(ݐ)ଵܽܦݐ 	> 0 then ݒ > 0. Obviously, 
these conditions are  satisfied if ܽଵ(ݐ) behaves like ିݐఈ	 for  ݐ → ∞	 and like ିݐఉ 
for ݐ → 0	, for some ߙ, ߚ ∈ (0, 1). Note also that ܽஶ = 0	and ܽଵ ∈  ଵ(ℝା)ܮ
imply ݒ > 0	since then ොܽ	(ߣ)~	(ܽ +	∫ ܽଵ(ݐ)

ஶ
 	ߣ	as	ߣ/(ݐ	݀		 → 	0.  

In case ܤ is also invertible (i.e. if the domain Ω	in Example(2.1.7) is bounded) 
or if the interval ܬ under consideration is finite then the behavior of ොܽ	(ߣ)	near 
ߣ = 0 is of no importance. In fact, if ܤ ∈ ,ܺ)ܲܫܤ ଵܤ ) is invertible thenߠ =
	ܤ − ଶߟ ∈ BIP(ܺ, ߠ + ଶߟ for (ߝ > 0	 sufficiently small; this can be shown by a 
simple Neumann-series argument. Thus we may replace ܤ	by	ܤଵ and ܣ by 
ܣ +  ଶ in (67), in particular both operators are invertible. For the Laplaceߟ
transform  of  ܣ + ଵି(ߣ)ଶ we obtain the symbol ොܽߟ +  ଶ , hence the analog ofߟ
(74) becomes  
	ܣ)ߠ                  (ଶߟ	+ = 	sup	{arg	( ොܽ(ߣ)ିଵ 	+ :(ଶߟ	 ߣ	ܴ݁ > 0} 	< 	(79)													.ߨ
 
Since ොܽ(ߣ)	is never negative real unless ܽଵ(ݐ) = ܽ = 0 and ොܽ(ߣ) 	→ ∞	as 
ߣ → 0	, Re	ߣ ≥ 0, similar to the derivation above, we obtain ܣ)ߠ + (ଶߟ <
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ஶݒ		iff		ߨ > 0; thus in this case the behavior of ܽ(ݐ) at zero alone determines 
whether Theorem (2.1.19) is applicable.  
  For the case of a finite interval ܬ = 	 [0, ܶ], we observe that by the change of 
variables (ݐ)ݒ =   ఉ௧ ; theି݁	(ݐ)ܽ is transformed into	(ݐ)ܽ ఉ௧ the kernelି݁	(ݐ)ݑ
Laplace transform of this kernel is given by ොܽ(ߣ + ,(ߚ Re	ߣ > 0.  
Thus (74) is changed into  
ߠ                  	= 	sup	{arg	( ොܽ(ߣ)):	Re	ߣ	 > {ߚ 	< 	(80)																																										;ߨ	
 
it is clear from this that ߠ 	< ஶݒ		iff		ߨ > 0, and so in this case the behavior  of 
 at zero alone is important for applicability of Theorem (2.1.19). Let us (ݐ)ܽ
summarize this as  
Corollary (2.1.20) [186]: Let Ω ⊂ ℝ	 be an open domain with smooth and 
compact boundary 	߲	Ω	for  ∈ (1,∞) let ܤ ∈ BIP(ܻ,  denote the Stokes	(ߝ
operator in ܻ = ఙܮ

 (Ω	;	ℝ	),  and let ܽ ∈ be such that either ܽ ۻ۱ 	> 	0 or 
− lim௧→ (ݐ)	ଵܽ/	(ݐ)ଵܽܦݐ > 0 holds. Then, for every g ∈ ୭ܮ

 (ℝ	ା; 	ܻ) there 

exists a unique function  ݑ ∈ ܹ୭
ଵ,(ℝ	ା; 	ܻ) ୭ୡܮ	∩

 (ℝ	ା;  which is a ((ܤ)ܦ	
strong solution of (61) on each finite interval  ܬ = [0, ܶ], and for each ܶ > 0 
there is a constant ܿ(ܶ) > 0	such that Estimate  (75) holds. If in addition Ω is 
bounded then ܿ(ܶ) can be chosen independently of  ݐ > 0. If Ω is unbounded 
but ܽஶ = 0 and − lim௧→ (ݐ)ଵܽܦݐ 	/ܽଵ	(ݐ) > 0	or  ܽଵ ∈  ା) as well as	ଵ(ℝܮ
g ∈ ;ା	(ℝܮ ܻ), then ݇݀ܦ ∗ ݑ	ܤ and ݑܦ ∈ ;ା	(ℝܮ ܻ), and there is a constant 
ܿ	 > 	0, independent of ܶ > 	0, such that Estimate (76) is satisfied. Theorem 
(2.1.19) and Corollary (2.1.20) generalize recent results of Giga and Sohr [199] 
who considered the case of a purely Newtonian fluid  ܽ(ݐ) = ܽ = 	1, i.e. 
ܽஶ = ܽଵ	(ݐ) = 0. Note that the conditions on ܽ(ݐ) at ݐ = 0 mean physically that 
a sufficiently strong viscosity must be present while the condition on ܽ(ݐ) at 
ݐ = 	∞ prohibits the presence of a stationary elasticity modulus; the case where 
ܽஶ = 0 and ܽଵ ∈  ା) corresponds to a fluid while the material is called	ଵ(ℝܮ
solid otherwise; cf. Pipkin [202].  
Corollary(2.1.21)[232]: Let X be ߦ-convex, ܣ	 ∈ BIP(ܺ, ,(ߠ ܣ) + ߳) ∈
BIP(ܺ, 	with   0 ((ାఢ)ߠ ≤ ߠ	 (ାఢ)ߠ	+ 	<  be resolvent commuting. Define		ߨ	
the product ܤܣ	of ܣ and (ܣ + ߳) by means of  
     ൫ܣ)ܣ + ߳)൯ݔ	 = ܣ)ܣ + ,ݔ(߳ ܣ)ܣ൫ܦ + ߳)൯ 
                           	= 	 ݔ} ∈ ܣ))ܦ + ܣ)	:((߳ + ݔ(߳ ∈ 	.{(ܣ)ܦ
Then ܣ)ܣ + ߳) is closable and its closure ܣ)ܣ + ߳)തതതതതതതതതതതത belongs to BIP(ܺ, ߠ +
ܣ)ܣ is invertible then ܣ  If in addition .((ାఢ)ߠ	 + ߳) is closed. 
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Proof: Since (ܣ + ߳) ∈ BIP(ܺ, ܣ) implies ((ାఢ)ߠ + ߳)ିଵ ∈ BIP(ܺ,  by ,((ାఢ)ߠ
Theorem (2.1.13) we know  that ܣ + ܣ) + ߳)ିଵ with domain (ܣ)ܦ ∩ ܣ)ܴ + ߳) 
is closed, ܰ(ܣ + ܣ) + ߳)ିଵ) = 0		and	|ݔܣ| + ܣ)| + ߳)ିଵݔ| ≤ C|ݔܣ +
ܣ) + ߳)ିଵݔ| on (ܣ)ܦ ∩ ܣ)ܴ + ߳). Suppose ݔ ∈ ܣ)ܣ)ܦ + ߳)) = ܣ) +
߳)ିଵ	(ܣ)ܦ, ݔ → 0  and ܣ)ܣ + ݔ(߳ → ܣ) and ܣ Since .ݕ + ߳)	commute with 
ܫ) + ܣ) + ߳))ିଵ	 we obtain  

ܣ)ܣ + ߳)൫ܫ + ܣ) + ߳)൯
ିଵ
ݔ → ,ݖ ܣ) + ߳)൫ܫ + ܣ) + ߳)൯

ିଵ
ݔ → 0,		 

ݖ		       = ܫ) + ܣ) + ߳))ିଵݕ	
hence (ܫ + ܣ) + ߳))ିଵݕ = 0	, by closedness of ܣ, and so ݕ = 0. This shows that 
ܣ)ܣ + ߳) is closable. Since ܣ	and (ܣ + ߳) are resolvent commuting, it is also 
easy to see that		ܣ)ܣ + ߳) is densely defined, has dense range and is also 
injective.  
Next we obtain 	
	ݐ)|             + ܣ)ܣ	 + ߳))ିଵ| = ܣ)| + ߳)ିଵ(ܣ)ݐ + ߳)ିଵ 	+ |ଵି(ܣ	 ≤ C/ݐ	
by Corollary (2.1.14), hence ܣ)ܣ + ߳)തതതതതതതതതതതത satisfies (H 1). Finally, the relation  

ܣ)ܣ) + ߳)തതതതതതതതതതതത)ఘݔ = ఘܣ ܣ)	 + ߳)ఘ ,ݔ	 ݔ ∈ (ܣ)ܦ ∩ (ܣ)ܴ ∩ ܣ)ܦ + ߳) ∩ +ܣ)ܴ ߳)	
shows the estimate  
     ห(ܣ)ܣ + ߳)തതതതതതതതതതതത)ఘห 	≤ หܣఘห	ห(ܣ + ߳)ఘห 	≤ ,|ఏ(ಲశച)|ఘ݁		(ାఢ)ܭ|݁ఏಲ|ఘ		ܭ	 ߩ ∈ ℝ,	

hence (H 2) holds and ܣ)ܣ + ߳)തതതതതതതതതതതത belongs to BIP	(ܺ, ߠ   .((ାఢ)ߠ	+
   To see that ܣ)ܣ + ߳) is already closed in case	ܣ is invertible, let  (ݔ) ⊂
ܣ)ܣ)ܦ + ݔ ,((߳ → ܣ)ܣ and ,ݔ	 + ݔ(߳ → ܣ) Then .ݖ	 + ݔ(߳ →  since ݖ	ଵିܣ
ݔ ଵ is bounded, henceିܣ ∈ ܣ)ܦ + ߳) and (ܣ + ݔ(߳ =  ;ܤ by closedness of ݖଵିܣ
but this in turn implies (ܣ + ݔ(߳ ∈ 	ݖ and (ܣ)ܦ = 	ݖଵିܣܣ = ܣ)ܣ	 +  ,ݔ(߳
closedness of ܣ. Hence ܣ)ܣ + ߳) is closed.      □ 
 
Sec (2.2): Examples of Unbounded Imaginary Powers of 
Operators 
      In a recent section, Dore and Venni [182] have used imaginary powers of 
operators in connection with the problem of the closedness of the sum of two 
operators. Roughly speaking, if ܣ and ܤ are two commuting closed operators in 
a UMD-space, then their sum is closed provided that the following condition 
holds: 
 

																	ቊฮܣ
௦ฮ ≤ ௦ฮܤฮ	ܽ݊݀		ఠಲ|௦|݁ܯ ≤ ,|ఠಳ|௦݁ܯ ݏ ∈ ℝ

߱			ℎݐ݅ݓ +߱ < 																																														.ߨ
																																(81)� 
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The UMD-spaces are precisely the Banach spaces	ܺ	for which the vector valued 
Hilbert transform is bounded in ܮଶ(ℝ; 	ܺ) [179,180]. In particular, the Hilbert 
spaces and ܮ-spaces, 1 < 		 < 	∞, are UMD-spaces. 
    The growth condition (81) implies that the spectrum of ܣ (resp. ܤ) lies in a 
sector of “angle” ߱ (resp. ߱). 
      In [182], the question was raised whether the converse is true. The Example 
(2.2. 1)  below shows that this is not the case, even in a Hilbert space. 
    However, in a Hilbert space, the conditions for the closedness of the sum can 
be weakened, as shown again by Dore and Venni [182]. Based on a 
characterization of the domain of fractional powers together with an earlier 
result of   Da  Prato and Grisvard [181], they proved the following result. 
    If ܣ௦ is a ܿ-group of bounded operators (without any assumption on ܤ௦), 
then ܣ	 +  is closed provided that the sum of the “angles” ߱  and ߱ is less ܤ	
than ߨ. 
  In Example (2.2.2)		we give two operators ܣ and ܤ in a Hilbert space which 
satisfy the “angle condition” such that ܣ	 +  is not closed. This shows again ܤ	
that ܣ௦ and ܤ௦are not ܿ-groups of  bounded operators. Moreover this implies 
that some extra condition is needed for the closedness of the sum. 
   In this Section, we state the main results. also , we introduce the main tools for 
the examples, in particular the notion of spectral family [178,183], also we 
construct the Example (2.2.1) inspired by Example 5.10,p. 168, of Berkson and 
Gillespie [ 187]. 
    Finally we give Example (2.2.2) we are convinced that the method used to 
can lead to other examples. 
Let	(ܺ, ‖	. ‖)	be a complex Banach space, and let ܣ ∶ (ܣ)ܦ	 	⊂ 	ܺ	 → 	ܺ be a 
closed and densely defined operator with domain (ܣ)ܦ and range ܴ(ܣ). As 
usual, we denote the resolvent set of ܣ	by (ܣ)ߩ and its spectrum by (ܣ)ߪ. The 
operator ܣ is called positive [182,190] if 
  (݅)			(−∞, 0) ⊂ 	(ܣ)ߩ
  (ii) there exists ܯ ≥ 	1 such that ‖(ܫ − ‖	ଵି(ܣ	ݐ ≤ 	ݐ for every ,	ܯ	 > 	0. 
In particular, if  ܯ = 	1, then ܣ is called ݉-accretive. 
For ߠ ∈ 	 [0, we define the sector  ,(ߨ

  as 

 :

= 	 ݖ} ∈ ℂ\{0};	|argݖ| 	≤ 	.{ߠ

The operator ܣ is said to be of type (߱,ܯ) [ 189], if there exist 0	 < 	߱	 <  ߨ	
and ܯ ≥ 	1 such that 
 (i) (ܣ)ߪ ⊂ ∑ ∪ఠ {0}; 
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 (ii) for every ߠ ∈ 	 [0, ߨ − ߱), there exists (ߠ)ܯ 	≥ 	1 with (0)ܯ 	=  such ,ܯ	
that ‖(ܫ + ‖ଵି(ܣݖ ≤ ݖ for any (ߠ)ܯ ∈ ∑ .ఏ  
  We recall that if the operator	ܣ is positive, then there exist ߠ ∈ 	 (0,  and (ߨ
	ܯ ≥ 	1 such that ܣ is of type (ܯ,ߠ) [ 190]. 
  We also recall that if ܣ is ݉-accretive, then ܣ is of type (2/ߨ, 1) [ 189]. 
Moreover if ܣ is of type (߱,ܯ) for some ߱ ∈ 	(0, 	ܯ  and (2/ߨ ≥ 	1, then –  ܣ
generates an analytic semigroup on the space ܺ. 
     If ܣ is a bounded positive operator with 0	 ∈  then the fractional ,(ܣ)ߩ	
powers of ܣ denoted by ܣ	௭ with ݖ	 ∈ ℂ	are usually defined by the Dunford 
integral 

௭	ܣ                               = ଵ
ଶగ  




 dAz )( 1

, 

where the contour Γ does not meet (	−	∞, 0] and contains the spectrum of ܣ. 
Then for ݖ	 ∈ ℂ	,  ௭ is a bounded operator satisfying the group property	ܣ
 
௭భା௭మ	ܣ           = ,	௭మܣ௭భܣ	 ,ଵݖ ଶݖ ∈ ℂ,with	ܣ = ଵܣ	݀݊ܽ	ܫ = 	.ܣ
The function ݖ	 ⟼  ௭ is also holomorphic. Moreover, one has the other	ܣ
representations of ܣ	௭ [186], 

	ݔ௭	ܣ = 	
ݖߨ	݊݅ݏ
ߨ

	ቐݖ	ିଵݔ − (1 + ݔଵି	ܣଵି(ݖ + න ݐ)௭ାଵ	ݐ + ଵି(ܣ
ଵ



ݐ݀ݔଵି	ܣ

+ න ݐ)௭ିଵ	ݐ + ݐ݀ݔܣଵି(ܣ
ஶ

ଵ

ቑ 				for		|Re	ݖ| < 1, 	ݖ ≠ 0,																			(82)	

ݔܣ	  =  .	ݔ
Or equivalently 

	ݔ௭	ܣ = 	
ݖߨ	݊݅ݏ
ߨ

	ቐݖ	ିଵݔ − (1 + ݔଵି	ܣଵି(ݖ + (1 − ݔܣଵି(ݖ

+න ௭(1	ݐ + ଵି(ܣଵିݐ
ଵ



ݐ݀ݔଵି	ܣ

− න ௭(1–	ݐ + ଵିݐ + ݐ݀ݔܣଵ)ିଵିܣ
ଵ



ቑ					 

                                     	for		|Re	ݖ| < 1, ݖ ≠ 0,																																																						(83)	
ݔܣ	  =  .	ݔ
  If the positive operator ܣ satisfies only ܰ(ܣ) = {0} and ܴ(ܣ) dense in ܺ, 
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then for every ݔ	 ∈ (ܣ)ܦ	 	∩ 	ݖ which is dense in ܺ, the function ,(ܣ)ܴ	 ⟼  ݔ௭	ܣ
defined by (82) or (83) is holomorphic and satisfies the group property 
ݔ௭భା௭మ	ܣ = ݔ	௭మܣ௭భܣ	 = ݔ for every		ݔ	௭మܣ௭భܣ ∈ (ଶܣ)ܦ ∩   and (ଶܣ)ܴ
[|Re	ݖଵ|, |Re	ݖଶ|, |Re(	ݖଵ + |(ଶݖ 	< 	1 [186]. 
   For ݏ	 ∈ ℝ\{0}, we say that ܣ	௦ is bounded if the operator ܣ	௦defined by (82) 
(or (83)) is bounded on (ܣ)ܦ 	∩  Then it can be uniquely extended to ܺ, as .(ܣ)ܴ
a bounded operator. 
    Following PrüB and Sohr [186], the operator ܣ is said to belong to the class 
BIP(ܺ, ߠ for some (ߠ ∈ 	 [0,  :if (ߨ
  (i)  ܣ	is positive; 
  (ii) ܰ(ܣ) = {0} and ܴ(ܣ) dense in ܺ; 
 (iii) ܣ	௦ ∈ ݏ for every (ܺ)ܤ	 ∈ ℝ and there exists ܯ > 	0 such that  ฮܣ	௦ฮ ≤
,|ఏ|௦݁ܯ	 	ݏ ∈ ℝ. 
   In the case where ܣ	is positive, ܰ(ܣ) = {0} implies the density of ܴ(ܣ) in ܺ	if 
ܺ	is a reflexive Banach space (a Hilbert space, for example). 
It is proven in [186], that if ܣ	 ∈ ,ܺ)ܲܫܤ	  for some (ܯ,ߠ) is of type	ܣ then (ߠ
ܯ ≥ 	1. In Example (2.2.1), we show in particular that the converse is not true 
even if the space ܺ is a Hilbert space. 
Example (2.2.1)[177]: There exists an operator ܣ in a Hilbert space which is of 
type (߱,ܯ) for some ܯ > 	1 and for all ߱ ∈ 	 (0,  and such that the imaginary (ߨ
powers ܣ	௦	are not bounded for all ݏ	 ∈ ℝ\{0} . 
Let ܣ and ܤ be two positive operators in a Banch space	(ܺ, ‖	. ‖	). The operators 
ܫ) are called resolvent commuting if	ܤ and ܣ + ܫ)  and	ଵି(ܣݐ	 +  ଵି(ܤݏ	
commute for some ݐ and ݏ	 > 	0 (equivalently for all ݐ and ݏ	 > 	0). 
 Building upon results of  Dore and Venni [182], PrüB and Sohr [186] have 
proven that if ܣ ∈ ,ܺ)ܲܫܤ	 ,(ߠ ݅ = 	1,2 with ߠଵ ≠ ,ଶߠ ଵߠ + ଶߠ 	<  are	,	ߨ
resolvent commuting and if ܺ	is a UMD-space, then ܣଵ + ଶܣ 		 ∈ ,ܺ)ܲܫܤ  (ߠ
where ߠ = 	max(ߠଵ,  .(ଶߠ
  Da Prato and Grisvard [181] have proved that if 	ܣ are of type (ߠ  ,(ܯ,
݅ = 	1,2, ଵߠ + ଶߠ 	< ଵܣ resolvent commuting (hence ,	ߨ +  ଶclosable) then theܣ
closure of ܣଵ + ߠ with (ܯ,ߠ) ଶ is of typeܣ = 	max(ߠଵ, ܯ for some	ଶ)ߠ ≥ 	1. 
 Therefore a natural question is to know whether the sum of two operators ܣ and 
 satisfying the assumptions of  Da Prato and Grisvard in a UMD-space is ܤ
closed. In the Hilbert space, Da Prato and Grisvard [181] gave a sufficient 
condition for this to be the case, namely if the interpolation spaces ܦ(ߠ, 2) and 
,ߠ)∗ܦ 2)are equal for some ߠ ∈ 	 (0, 1). For the definition of  these spaces, we 
refer the reader to the original paper [181]. Since ܣ	 +  is closed if and only if ܤ	
ܫ + 	ܣ	 + 	is closed, we may assume without loss of generality that 0 ܤ	 ∈  (ܣ)ߩ
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and 0	 ∈  Under these assumptions Dore and Venni [182, p. 194], have .(ܤ)ߩ
shown that if the imaginary powers ܣ	௦	are uniformly bounded for ݏ	 ∈
	[	−	1, 1], then ܣ	 +  :is closed. We have ܤ	
Example (2.2.2)[177]: There exist two resolvent commuting operators ܣ and ܤ 
in a Hilbert space which are of type (߱,ܯ) for some ܯ > 	1	and for every 
߱ ∈ 	 (0, 	ܣ such that (ߨ +  .is not closed ܤ	
Remark (2.2.3)[177]: (i) It follows from Da Prato and Grisvard [181] that 
,ߠ)ܦ 2) 	≠ ,ߠ)∗ܦ	 ,ߠ)ܦ	݀݊ܽ	(2 2) 	≠ ,ߠ)∗ܦ	 2)	 for every ߠ ∈ 	 (0, 1). 
  (ii) It follows from Dore and Venni [182] that both ܣ	௦ and ܤ	௦ are not 
uniformly bounded on [	−	1, 1]. 
We recall the notion of spectral family of projections in a Hilbert space ܪ 
[178, 183]. 
Definition (2.2.4)[177]: A spectral family of projections in ܪ	is a uniformly 
bounded projection-valued function ܨ:	ℝ →  the algebra of bounded) (ܪ)ܤ	
linear operators in	ܪ) such that: 
    (i) ܨ	is right-continuous on ℝ in the strong operator topology, 
    (ii) ܨ has a strong left-hand limit at each ݏ ∈ ℝ	, 
   (iii) (ݏ)ܨ	(ݐ)ܨ 	= (ݏ)ܨ	(ݐ)ܨ	 	= 	ݏ	for	(ݏ)ܨ	 ≤  ,ݐ	
   (iv) (ݏ)ܨ 	→ 0	(resp. (ݏ)ܨ 	→  in the strong operator topology as (ܫ	
ݏ   → −∞	(resp. as	ݏ → +∞).	
If there is a compact interval [ܽ, ܾ]	such that (ݏ)ܨ 	= 0 for ݏ	 < 	ܽ and (ݏ)ܨ 	=
	ݏ for ܫ	 ≥ 	ܾ, then we say that ܨ is concentrated on [ܽ, ܾ]. Following [	178,183], 
if ܨ is a spectral family concentrated on [ܽ, ܾ], each complex valued function 
݂	 ∈ 	C[ܽ, ܾ] 	∩ ,ܽ]ܸܤ ܾ] defines a bounded operator ܣ in ܸܤ) ܪ stands for 
bounded variation): 

	ݔܣ                       = 	  ],[ ba
ݔ							,ݔ(ߣ)ܨ݀	(ߣ)݂	 ∈ 	(84)																																													,ܪ

 
by means of convergence of  Riemann-Stieltjes sums. Moreover the norm of ܣ 
can be estimated by 
‖ܣ‖                     	≤ |݂(ܾ)| 	+ 	(|݂(ܽ)| 	+ 	Var[݂;	[ܽ, 	(85)																							,‖ܨ‖		.([ܾ
where 

                                  ‖݂‖ ∶= 	sup

	(86)																																																								.	‖(ߣ)ܨ‖	

 
If ܨ is concentrated on [0,∞) and ݂	 ∈ 	C[0,∞) ∩  then	,(∞,0]ܸܤ
	ـ	ݏ limே→ஶ  ],0[ N

 ܣ exists. This limit defines a bounded operator 	(ߣ)ܨ݀	(ߣ)݂	

in	ܪ satisfying 
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‖ܣ‖                   	≤ |݂(∞)| 	+ 	 (|݂(0)| 	+ 	Var[݂;	[0,∞]).		‖,‖ܨ																							(87)	
where ‖ܨ‖	is defined by (86) and ݂	(∞) 	= 	 limఒ→ஶ    which exists since	(ߣ)݂
݂ ∈  .(∞,0]ܸܤ
If ݂, g ∈ C[0,∞) ∩  and (∞,0]ܸܤ

ݔܣ = 	  ),0[
,ݔ(ߣ)ܨ݀	(ߣ)݂	 ݔܤ = 	  ),0[

	g(ߣ)	݀ݔ(ߣ)ܨ, ݔ ∈ 	,ܪ

then (ܣ	 + 	ݔ(ܤ	 = 	   ),0[
൫	݂(ߣ) + g(ߣ)൯݀ݔ(ߣ)ܨ. 

If moreover	݂. g	 ∈  then	,(∞,0]ܸܤ	

	ݔܤܣ = 	ݔܣܤ	 =  ),0[
	.ݔ(ߣ)ܨ݀(ߣ)g(ߣ)݂

If ݂(ߣ) ≠ 0	, for every ߣ ≥ 0 and ߣ ⟼  then ,(∞,0]ܸܤ ଵ belongs toି(ߣ)݂
0 ∈  and (ܣ)ߩ

ݔଵିܣ =  ),0[
	.ݔ(ߣ)ܨ݀	ଵି(ߣ)݂	

For the construction of a spectral family in ℓଶ(ℕ) which is not a spectral 
measure, we shall use, as in [ 178], a conditional basis which can be found 
in Singer [187]. For the sake of completeness, we give it here explicitly. 
Conditional Bases in ℓଶ(ℕ) .The sequences { ݂}	ஹଵ and {ℎ}	ஹଵ in ℓଶ(ℕ) 
defined by 

ଶ݂ିଵ = ݁ଶିଵ 	+ 	ߙିାଵ݁ଶ

ஶ

ୀ

	 , ଶ݂ = ݁ଶ , (݊	 = 	1, 2, . . . )																		(88)	

     

ℎଶିଵ = ݁ଶିଵ	, ℎଶ = −	ߙିାଵ݁ଶିଵ + ݁ଶ



ୀଵ

	,		 

                                                                                  (݊	 = 	1, 2, . . . )																	(89)	
 
where {݁}	ஹଵis the canonical basis of ℓଶ(ℕ) and ߙ 	≥ 	0, ݊	 = 	1, 2, . . .. 
∑ ଶஶߙ݆
ୀଵ 	< 	∞, ∑ ஶߙ

ୀଵ = 	+∞		(e.g., one can take ߙ = 	1/݊	log(݊	 + 	1))	are 
biorthogonal conditional bases of ℓଶ(ℕ)	.	Defining  ܲ ∈  by (ℓଶ(ℕ))ܤ	
 
                        ܲݔ = ,ݔ) ℎ) ݂	, ݔ ∈ ℓଶ(ℕ), ݊ = 	1,2, . . . ,	
where (. , . ) is the scalar product, then each ܲ is a projection with ܲ ܲ 	= 	0 
for ݉	 ≠ ݊ satisfying 

																							 lim
→ஶ

 ܲ

ஶ

ୀଵ
ݔ =	 ,ݔ ݔ ∈ ℓଶ(ℕ).																																															(90)	
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Moreover 

																							sup	 ቯ ଶܲ



ୀଵ

ቯ = ∞.																																																																													(91)	

 
For the proofs of (90)-(91), see Singer [187]. 
In the Example (2.2.1) We construct an example of a positive operator ܣ in a 
Hilbert space ܪ such that the imaginary powers ܣ௦	 are not bounded for 
ݏ ∈ 	ℝ\{0}, although ܣ is of type (߱,ܯ) for some ܯ	 > 	1 and for every 
߱ ∈ 	 (0,  .on a Hilbert product ܣ In order to do that, we construct the operator .(ߨ
   Let {ܪ , ‖	. ‖}∈ℤ be a family of complex Hilbert spaces. Let (ܪ, ‖	. ‖	) be the 
Hilbert product 

ܪ = 	൭ෑܪ
∈ℤ

൱


= ൝ݔ = ,(ݔ) ݔ ∈ ܪ , ଶ‖ݔ‖ =‖ݔ‖ଶ < ∞
∈ℤ

ൡ				 .	

   The family {ܣ}∈ℤ of bounded operators on ܪ	, defines the following closed 
densely defined operator ܣ on ܪ: 

=:(ܣ)ܦ																 ൝ݔ = ,(ݔ) ݔ ∈ ܪ ,‖ܣݔ‖ଶ < ∞
ℤ∋

ൡ																																	(92)	

 
:(ݔܣ)                 = ݔܣ , ݇ ∈ ℤ			for	ݔ = (ݔ) ∈  .(ܣ)ܦ
 
Moreover ܣ is bounded if and only if Sup∈ℤ	‖ܣ‖ 	< 	∞	 and if this is the 
case ‖ܣ‖ = 	 Sup∈ℤ	‖ܣ‖	. 
We say that the family of positive operators {ܣ}∈ℤ		satisfies Property (P) if : 
  (i)	σ(ܣ) ⊂ [0,∞); 
  (ii)   for every ߠ ∈ 	 [0, ܫ)‖ independent of ݇, such that	(ߠ)ܯ there is	,(ߨ +
)ିଵ‖ܣݖ 	≤ ݇ for every (ߠ)ܯ ∈ ℤ			and every ݖ ∈ ∑ .ఏ  
We have 
Lemma (2.2.5)[177]: Let {ܣ}∈ℤ		 be a family of bounded positive operators 
on ܪ , ݇ ∈ ℤ			, satisfying Property (P). Then there exists ܯ ≥ 	1, such that the 
operator ܣ defined by (92), is of type (߱,ܯ) for every ߱ ∈ 	 (0,  .(ߨ
  Moreover if ܰ(ܣ) 	= 	 {0}, then for every ݔ	 = 	 (ݔ) ∈ (ܣ)ܦ 	∩  and	,(ܣ)ܴ	
ݏ ∈ 	ℝ\{0}, we have ݔ ∈ (ܣ)ܦ 	∩ (ݔ௦ܣ) and 	,(ܣ)ܴ	 = ݔ௦(ܣ)	 , ݇ ∈ ℤ. 
Proof (i) Let ݖ	 ∈ 	ℂ\(	−	∞, 0] and let ߠ = 	arg	ݖ. Let ݕ	 = 	 (ݕ) 	∈  ܣ Since .ܪ
satisfies Property	(ܲ), ଵିݖ− 	 ∉ ݔ   and there exists	(ܣ)ߪ	 	 ∈ ܪ	 , ݇ ∈ ℤ		such 
that 
ܫ)                               + ݔ(	ܣݖ	 ݕ	= ,					݇ ∈ ℤ	.	
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Since ‖ݔ‖ 	≤ ݔ ‖, we haveݕ‖(ߠ)ܯ = (ݔ) ∈ ‖ݔ‖ and (ܣ)ܦ 	≤  .‖ݕ‖(ߠ)ܯ
Moreover  since ܰ(ܫ + (ܣݖ	 	= 	 {0},	we have ܰ(ܫ + (ܣݖ	 	= 	 {0}, ଵିݖ− ∈
ܫ)‖	and ,(ܣ)ߩ	 + ‖ଵି(ܣݖ	 ≤  with (ܯ,߱) is of type ܣ This implies that	.(ߠ)ܯ
	ܯ = ߱ for every	,(0)ܯ	 ∈ 	 (0,  .(ߨ
   (ii) Assume ܰ(ܣ) 	= 	 {0}, then ܰ(ܣ	) = 	 {0}  for every ݇ ∈ ℤ. Let ݔ	 =
(ݔ)	 	 ∈ (ܣ)ܦ	 	∩ ݔ ,Then clearly .(ܣ)ܴ 	 ∈ (ܣ)ܦ 	= ܪ	 . Since ݔ	 =  for	ݕܣ	
some ݕ	 ∈ ݔ we have ,(ܣ)ܦ	 	= ݕ	ܣ	  hence ݔ ∈  and ݔ௦ܣ Therefore .(ܣ)ܴ	
ݔ௦(ܣ) 	are well-defined by (82), for  
ݏ  ∈ 	ℝ\{0},Since ((ܫ + (ݔଵି(ܣݐ = ܫ) + ݔ)ିଵܣݐ , 	ݐ > 	0, 	ݔ = 	 (ݔ) 	 ∈  ,ܪ
we obtain (ܣ௦ݔ) =	 ݔ௦(ܣ) , ݇ ∈ ℤ. This completes the proof of  
Lemma(2.2.5).  
     Next, we construct a family of bounded positive operators {ܣ}∈ℤ		  in 
ℓଶ(ℕ), such that 0 ∈  and satisfying Property (P). Notice that the (ܣ)ߩ
imaginary powers ܣ௦	, ݏ ∈ 	ℝ, are then bounded. We give a necessary condition 
for sup∈ℤ	ฮܣ௦ฮ to be finite for some ݏ ∈ 	ℝ\{0}. 
Lemma (2.2.6)[177]: Let { ݂}ஹଵ		  be a (Schauder) basis of ℓଶ(ℕ), with 
corresponding  projections { ܲ}ஹଵ . 
    Let F:	ℝ	 + 	B(ℓଶ(ℕ), ) be fhe spectralfamily concentrated on [0, 1] defined 
by 
(ߣ)ܨ                   = ߣ					ݎ݂				0 < 1/2	

(ߣ)ܨ =  ܲ



ୀଵ

					for	
݊

݊ + 1
≤ ߣ <

݊ + 1
݊ + 2

			for	݊ = 1,2, … 

            
(ߣ)ܨ                  = ߣ	for		ܫ ≥ 1.	
Then for every ݇ ∈ ℤ and every ݔ ∈ ℓଶ(ℕ), 

ݔܣ =  ]1,0[
	݁ఒ	݀ݔ(ߣ)ܨ					ݏ݅		well	deϐined					

and 
    (i) The family of operators {ܣ}∈ℤ		  satisfies Property (P) and   0 ∈ ,(ܣ)ߩ
݇ ∈ ℤ. 
    (ii) For every ݏ ∈ ℝ, the imaginary power ܣ௦	 is bounded and  
ݔ௦ܣ =  ]1,0[

	݁௦ఒ	݀ݔ(ߣ)ܨ		, ݔ ∈ ℓଶ(ℕ), ݇ ∈ ℤ			. Moreover ܣ௦ =  .ଵ௦ܣ

    (iii) If for Some ݏ ∈ 	ℝ\{0}, sup∈ℤ	ฮܣ௦ฮ < ∞, then the basis { ݂}ஹଵ		 is 
unconditional. 
 (iv) If the basis { ݂}ஹଵ		  is unconditional, then for all ∈ ℝ, sup∈ℤ	ฮܣ௦ฮ < ∞	. 
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Proof. (i) For every  ݇ ∈ ℤ, the function ߣ ⟼ exp{݇ߣ} is continuous, bounded, 
increasing, hence of bounded variation on [0, 1	]. Therefore ܣ is well-defined 
and bounded on ℓଶ(ℕ), as well as ܣିଵݔ. Moreover ܣ =  .ܣ
 Let ݖ ∈ ℂ\(∞, 0] and ߠ = argݖ. Then the function	ߣ → ;ߣ)ܽ ݇, :(ݖ =
(1	 + ,ଵ is continuous, bounded, and of bounded variation on [0ି((ߣ݇)exp	ݖ	 1	]. 

Indeed ห1	 + ఒห݁ݖ
ିଵ

=	 ห1	 + 	 ఏ݁ఒห݁|ݖ|
ିଵ
, then |ܽ(ߣ; ,ݖ	 |(ݖ 	≤ ݉ଵ(ߠ)  , 

where 

݉ଵ(ߠ) ≤

⎩
⎨

⎧ 1									when				0 ≤ |ߠ| ≤
ߨ
2.

1
sin|ߠ|

									when						|ߠ| >
ߨ
2
		 .

� 

Moreover 

    
 ]1,0[ ]1,0[

2
]1,0[ ),;(

),,()],;([ 








d

kz
dzka

d
dzka

zka
eVar

k

 

 

                             = ∫
|௭|(౩ౝೖ)ഊ

ห൫(ୱ୧)ఒ,ଵ,௭൯ห
మ

||
 ߣ݀ ≤ ∫

|௭|(౩ౝೖ)ഊ

หଵା|௭|ഇ(౩ౝೖ)ഊห
మ	

ஶ
  

            
                             ≤ ∫ ௗ௧

หଵା௧ഇห
మ

ஶ
 = ݉ଶ(ߠ)					ݐ݅ݓℎ 

 

݉ଶ(ߠ) = ൞

1																			if				ߠ = 0																			
.

ߠ
sin ߠ

										if			0	 < 	 |ߠ| < 		.				ߨ
� 

 
Let (ߠ)ܯ = ݉ଵ(ߠ) + (݉ଵ(ߠ) + ݉ଶ(ߠ)). (ߠ−)ܯ We observe that .‖ܨ‖ =
	increases on 0 (ߠ)ܯ and (ߠ)ܯ ≤ 	ߠ <  .ߨ	
  Therefore −	ିݖଵ 	 ∈ ܫ)‖  and (ܣ)ߩ + ‖)ିଵܣݖ ≤  which implies that the ,(ߠ)ܯ
family {ܣ}∈ℤsatisfies Property (P). 
   (ii) Let ܾ(ߣ; 	݇, (ݏ ∶= 	exp(݅ߣ݇ݏ)	for ߣ ∈ 	 [0, 1], ݇ ∈ ℤ, and ݏ ∈ ℝ. Then 
;ߣ)ܾ| 	݇, |(ݏ ≤ 	1 and 

              .),;(),;(
1

0),0[
skdsk

d
dbskbVar  









 

Hence   )(
]1,0[

dFeisk
  defines a bounded operator C,௦ in ℓଶ(ℕ),  for every 

ݏ ∈ ℝ and ݇ ∈ ℤ. For ݔ	 = 	 (ݔ) 	 ∈ ܿ (finite sequences in ℓଶ(ℕ)), we have 
   C,௦ݔ	 = 	∑ 	

ூୀି exp(݅ܫ݇ݏ) ூܲݔ    for some ݉ ∈ 	ℕ depending on	ݔ. 
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By using the Dunford integral for the imaginary power  ܣ௦ݔ, we obtain 

ݔ௦ܣ =
1
ߨ2݅

නߣ௦(ߣ − 	ߣ݀	ݔ)ିଵܣ
.



																										 

 

							=
1
ߨ2݅

නߣ௦  	


ூୀି

ߣ) − exp(݇ܫ))ିଵ ூܲݔ	ߣ݀
.



 

                        

			= 
1
ߨ2݅

නߣ௦(ߣ − exp(݇ܫ))ିଵ ூܲݔ	ߣ݀
.



	


ூୀି

 

                                 
                                = C,௦ݔ	. 
Since both ܣ௦ and C,௦	are bounded on ℓଶ(ℕ) and ܿ  is dense in ℓଶ(ℕ), we 
have  C,௦ 	= ௦ܣ ௦. We also haveܣ =  .ଵ௦ܣ
 (iii) If sup∈ℤ	ฮܣ௦ฮ < ∞	 for some ݏ ∈ ℝ	\{0} ,then sup∈ℤ	ฮܣଵ௦ฮ < ∞	  
and without loss of generality, we may assume ݏ	 > 	0. We also have ܣଵ௦ =
 . By using a result of Nagy [185,188], there exists an equivalent(ଵ௦ܣ)
Hilbertian norm  ‖	. ‖ on ܪ	such that ฮ	ܣଵ௦ฮ = 1, for every ݇ ∈ ℤ. (Take, e.g.,  

‖ݔ‖ = lim→ஶฮܣଵ௦ݔฮ
ଶ
)ଵ/ଶwhere Lim is a Banach limit in ℕ) Then ܣଵ௦ is 

unitary in (ܪ, ‖	. ‖)	and { ݂}ஹଵ  are eigenvectors corresponding to the 
eigenvalues 
ߤ                                 = ݁௦/(ାଵ)	, ݊ = 1,2, … .	
Then for ݉, ݊	 > ,ߨ2/ݏ	 ݉	 ≠ 	݊, we have ߤ ≠ }  Thereforeߤ ݂}வ௦/ଶగ is an 
orthogonal system in (ܪ, ‖	. ‖),	hence { ݂}ஹଵis an unconditional basis in 
,ܪ) ‖	. ‖)	and also in (ܪ, ‖	. ‖). 
   (iv) Suppose the basis { ݂}ஹଵ is unconditional. By using a characterization of 
unconditional bases, see, e.g., [187, Theorem 17.1.6], there exits a constant 
C > 	0 such that   ‖∑ ߙ ݂


ୀଵ ‖ ≤ ∑‖ܥ |ߙ| ݂


ୀଵ ‖for every ݊	 ∈ ℕ and every finite 

scalar sequence {ߙ}. 
For ݔ	 ∈ } (the linear dense subspace spanned by	ܪ ݂}ஹଵ), ݇ ∈ ℤ, ݏ ∈ ℝ. 
We  have ܣଵ௦ݔ = ∑ expஹଵ 	݊)/݊	݇ݏ݅	)	 + ((	ܫ	 ܲݔ, the sum is finite. Hence  
ฮܣଵ௦ݔฮ ≤ ∑‖ܥ |exp(	݅݇ݏ	݊/(݊	 + |((	ܫ	 ܲݔஹଵ ‖ = ฮݔଵ௦ܣThen ฮ .	‖ݔ‖ܥ ≤  .ܥ
     After these preparations, we can easily construct the operator ܣ. Construction 
of  ܣ. Let ܪ = 	ℓଶ(ℕ), ݇ ∈ ℤ,	and let { ݂}ஹଵ be a conditional basis of ℓଶ(ℕ) 
for example, the basis defined in (88). Define ܣ, like in Lemma (2.2.6), then 
for every ݏ ∈ ℝ	\{0}, sup∈ℤ	ฮܣ௦ฮ = ∞	 . Then define the operator ܣ, like in 
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Lemma (2.2.5). The operator ܣ is of type (߱,ܯ) for some ܯ	 ≥ 	1 and for every 
߱ ∈ 	 (0, ݏ Moreover for .(ߨ ∈ ℝ	\{0}, ܣ௦ cannot be bounded, otherwise 
sup∈ℤ	ฮܣ௦ฮ would be finite. Therefore the operator ܣ satisfies all the required 
properties. 
In this section, we construct an example of two resolvent commuting, closed 
operators ܣ and ܤ, in a Hilbert space ܪ such that ܣ and ܤ are of type (߱,ܯ) for 
some ܯ > 	1 and every ߱ ∈ 	 (0, 	ܣ with ,(ߨ + ܪ not closed. Let ܤ	 =
	ℓଶ(ℕ)	, { ݂}ஹଵ be a (Schauder) basis in ℓଶ(ℕ), and { ܲ}ஹଵbe the associated  
projections. 
We shall denote by ܪ the linear dense subspace spanned by { ݂}ஹଵ Let 
	ℝ	:ܨ →  be the spectral family defined by (ܪ)ܤ	

(ߣ)ܨ = 	0				for			ߣ < 1	
(ߣ)ܨ   	= 	∑ ܲ

[ఒ]
ୀଵ   ,  where [ߣ] denotes the greatest integer ≤  .ߣ

We define ‖ܨ‖ 	= 	 supఒஹ	‖(ߣ)ܨ‖ < ∞. 
Lemma (2.2.7)[177]: Let ܪ,ܪ,and ܨ  be as a above .Let ℎ: [0,∞) → [1,∞) be 
a continuous and increasing function. For any ݔ	 ∈  , letܪ

															 ܶݔ = 	 ℎ(݊)
ஶ

ୀଵ

	 ܲݔ, 	(93)																																			.(	݁ݐ݂݅݊݅	ݏ݅	݉ݑݏ	ℎ݁ݐ)

Then, for every ߠ ∈ 	 ,ߨ	−	) (ߠ)ܯ there exists ,(ߨ 	> 	0 such that for every 
	ݖ ∈ ∑ ,ఏ 	ܫ	 + ݖ	 ܶ is a bijection in ܪ	and 
 
	ܫ)‖             + ݖ	 ܶ)ିଵݔ‖ ≤ 	ݔ holds for every    ‖ݔ‖(ߠ)ܯ ∈  .                   (94)ܪ
 
   Moreover ܶ is closable and its closure ܶ is of type (߱,ܯ) for some ܯ	 > 	1, 
for euery ߱ ∈ 	 (0, 	and satisfies 0 (ߨ ∈  .(ܶ)ߩ
Proof (i). Proof of (94). For every ݖ	 ∈ ℂ\(	−	∞, 0], we define ܵݔ =
∑ (1/(1 + ℎ(݊)))ஶݖ
ୀଵ 	 ܲݔ, ݔ ∈ ܫ)	. We getܪ	 + ݖ ܶ)ܵ = ܵ(ܫ + ݖ	 ܶ) 	=

 ுబ. The spectral representation of ܵis given by|ܫ	

ܵݔ = න
1

1 + (ߣ)ℎݖ

.

[,ஶ)

ݔ										,ݔ(ߣ)ܨ݀ ∈  .ܪ	

By using (87), we have 

‖ܵݔ‖ ≤ ൬
1

|1 + |(∞)ℎݖ
+

1
|1 + |ℎ(0)ݖ

‖ܨ‖ + Var[,ஶ) 
1

1 + zh(. )
൨ . ‖F‖൰  ,‖ݔ‖

 
for every ݔ ∈ (∞), ℎܪ	 	= limఒ→ஶ ℎ(ߣ) 	= supఒஹ	ℎ(ߣ), which may be 
infinite. 
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Var[,ஶ) 
1

1 + zh(. )
൨ ≤ න

ݐ݀
|1 + ݁ఏݐ|

≤ ∞		
ஶ



		with			z = |z|݁ఏ. 

Then we get (94). 
    (ii) Closure of  ܶ. It is known, see, e.g., [181], that (94) implies that ܶ is 
closable and that its closure ܶ	satisfies the same inequality. For the sake of 
completeness, we prove that ܶ is closable. 
   Let ݔ ∈ ݔ . be such thatܪ	 → 	0 and ܶ	ݔ → 	ݕ for some ݕ ∈  We have .ܪ
to prove ݕ = 0. Let ݒ ∈ ݐ , then forܪ	 > 0, we have ‖ݔ 	+ ‖ݒݐ ≤
ݔ‖ܯ 		+ 	ݒݐ	 + ݐ	 ܶ(ݔ + ‖ݒݐ‖ and ‖(ݒݐ	 ≤ 	ݒ)ݐ)‖ܯ	 + (ݕ	 	+ ଶݐ	 ܶ	ݒ‖ by 
taking the limit. Hence  ‖ݒ‖ ≤ ݔ‖ܯ + ݕ + ݐ ܶ	ݒ‖ and ‖ݒ‖ ≤ ݒ‖ܯ +  by ‖ݕ
letting ݐ ↓ 0 for every ݒ ∈ 	ݕ			,ܪ  is dense inܪ . Sinceܪ	 = 	0. 
  (iii) Type of  ܶ. From (94), we get ‖ݕ‖ 	≤ ܫ)‖	(ߠ)ܯ +  for every ‖ݕ	(ܶݖ	
ݕ ∈ ݖ and (ܶ)ܦ ∈ ∑ ,ఏ  which implies that ܫ + ܫ)ܴ is injective and that ܶݖ +  (ܶݖ
is closed, hence ܴ(ܫ + (ܶݖ	 	⊃ തതതതܪ = ଵିݖ Therefore .ܪ	 ∈ ܫ)‖ and (ܶ)ߩ +
‖ݔଵି(ܶݖ ≤ 	ݔ holds for every ‖ݔ‖(ߠ)ܯ ∈  .ܪ	
   (iv) 0 ∈ ݔܮ Let (ܶ)ߩ = ∑ (1/ℎ(݊))ஶ

ୀଵ 	 ܲݔ		for ݔ ∈   is the inverse ofܮ .ܪ
	 ܶ. By using (87), we get 

‖ݔܮ‖ ≤ ൬
1

ℎ(∞)
+ ൬2 −

1
ℎ(∞)

൰ ൰‖ܨ‖ ݒ	every	for					‖ݔ‖ ∈  .		ܪ	

 
Then ܮ  is bounded and densily defined. This implies that the closure of ܮ is 
the inverse of  ܶ.  
   Next, we consider properties of two operators ܣ  and ܤ  of the form given by 
Lemma (2.2.7). 
Lemma (2.2.8)[177]: Let	݂ and g be two continuous, increasing functions from 
[0,∞) into [	1,∞). Let ܣ and ܤ be the corresponding operators in ܪ defined 
by ܣ	ݔ = 	∑ ݂(݊)	ஶ

ୀଵ 	 ܲݔ   and ܤ	ݔ = 	∑ g(݊)	ஶ
ୀଵ 	 ܲݔ   for every ݔ ∈  .ܪ	

Let ܣ	and ܤ be their closure in ܪ.Then, we have: 
(i)  ܣ	(ܣ 		+ )ିଵܤ	 		= 	 ܣ) 	+  ;	ܪ		݊		ܣ)ିଵ	ܤ	
(ii)  ܣ and ܤ	are resolvent commuting; 
(iii)  ܣ	 + ܣ is closable and ܤ	 + തതതതതതതത	ܤ = ܣ	 	+  .	തതതതതതതതതതതതܤ	

Proof. (i) We have ܣ		ܤݔ = (∑ ݂(݊) ܲ )(∑ g(݉) ܲ (ݔ =  
∑ ݂(݊)g(݊) ܲ ݔ = ݔ for every  ݔ	ܣܤ ∈ ܣ	. Sinceܪ	 	+   is a bijection on	ܤ	
ܣ	)  andܣ	  it follows thatܪ	 	+  .  commute	)ିଵܤ	
 (ii) As is well known, it suffices to prove (ܫ + ܫ)ଵି(ܣ + ଵି(ܤ	 ܫ)  = +
ܫ)ଵି(ܤ	 + ܫ) ଵ . But this is a consequence of the commutatively ofି(ܣ +  )ିଵ	ܣ	
and (ܫ +  .. together with their boundednessܪ )ିଵ on	ܤ	



٦٨ 
 

  (iii) First we prove that ܣ	 + ݔ is closable. Let ܤ	 ∈ (ܣ)ܦ 	∩  be such (ܤ)ܦ	
that	ݔ → 0 and ݕ ∶= 	 	ܣ) + ݔ(ܤ	 → 	ݕ with ݕ	 ∈  Then .	ܪ
 
ܫ)   + ܫ)ଵି(ܣ + ݕଵି(ܤ	 = ܫ) + ܫ)ଵି(ܣ +  ݔܤଵି(ܤ	
ܫ)+                                         + ܫ)ଵି(ܤ +  ݔܣଵି(ܣ	
   
    = ܫ) + ܫ]ଵି(ܣ	 − ܫ) + ݔ[ଵି(ܤ	 + ܫ) + ܫ]ଵି(ܤ	 − ܫ) + ݔ[ଵି(ܣ	 → 0. 
Hence (ܫ + ܫ)ଵି(ܣ + ݕଵି(ܤ	 = 0, and ݕ = 0. 
  Since the closure of 	ܣ 	+ 	ܣ  is contained in the closure ofܤ	 +  we only ,ܤ	
have to prove ܣ	 + തതതതതതതതതܤ	 ⊂ 	 ܣ	 +	 ܣ	തതതതതതതതതതതത orܤ	 + ܤ ⊂ 	 ܣ	 +	 	ݔ Let	തതതതതതതതതതതത.ܤ	 ∈ (ܣ)ܦ	 	∩
(ܤ)ܦ	 	= 	ܣ)ܦ	 + ݔ Then there are two sequences .(ܤ	 , ݔ́ → ݔܣ and ݔ →
ݔ́ܤ and ݔܣ	 → 	Set ℎ .ݔܤ	 = ݔ́ −  We haveݔ
ݔ         = ܣ) + ݔܣ))ିଵܤ + (ݔ́ܤ − ܣ)ܤ + 	(95)																											ℎ	)ିଵܤ
by using part (i). Since (ܣ +  )ିଵ is bounded by Lemma (2.2.7), we obtainܤ
that the sequence ܤ(ܣ + ݒ ℎ converges to some	)ିଵܤ ∈  Moreover ܪ
ܣ) + ℎ	)ିଵܤ → 0	,then ݒ	 = 	0 since ܤ	is closable by Lemma (2.2.7). 
Rewriting (95), we get 
ܣ)                     + ݔ)(ܤ + ܣ)ܤ + (	ℎ	)ିଵܤ 	= ݔܣ	 + 	ݔ́ܤ
Which   implies by passing to the limit 

ݔ ∈ ܣ)ܦ + ܣ)								݀݊ܽ								)തതതതതതതതതതതതതܤ + ݔ)തതതതതതതതതതതതതܤ = ݔܣ	 +  	.ݔܤ	
Now we give a lemma which characterizes the closedness of ܣ	 +  .ܤ	
Lemma (2.2.9)[177]: Let the operators ܣ and ܤ be defined as in Lemma (2.2.8). 
Then ܣ	 +   suchܪ  inݔ is not closed if and only if there exists a sequence ܤ	
that 
‖ݔ‖              	≤ 1	and		Sup୬ஹଵ‖ܣ(ܣ + ‖ݔ	)ିଵܤ 		= 	∞.																												(96)	
Proof. (i) Let  ܧ = (ܣ)ܦ ∩  :ܧ We define two norms on .(ܤ)ܦ
ଵ‖ݔ‖           ∶= 	 ‖ݔ‖  		and							‖ݔܤ‖	+	‖ݔܣ‖	+
   
ଶ‖ݔ‖	           	= 	 ‖ݔ‖ ܣ)‖	+ + 	ݔ					,	‖ݔ(ܤ ∈ 	.ܧ	
 
Clearly ‖ݔ‖ଶ ≤ 	ݔ  ଵ for‖ݔ‖ ∈  is complete with ܧ ,are closed ܤ and	ܣ Since .ܧ	
respect to the norm  ‖	. ‖ଵ. Moreover ܧ is complete with respect to ‖	. ‖ଶ if and 
only if ܣ	 +  is closed, By using the open mapping theorem (for one ܤ	
implication), one has ܣ	 + 	is closed if and only if there exists C ܤ	 > 	0 such 
that 
ଵ‖ݔ‖                     ≤ C‖ݔ‖ଶ   for every ݔ	 ∈  (97)																																																					.ܧ	
 (ii) Let ݔ ∈ ‖ݔ‖  be such thatܪ	 ≤ 1	and ݕ =	 ܣ) +   withݔ)ିଵܤ
Sup୬ஹଵ‖ܣ	ݕ‖ 		= +∞.		 Then (97) cannot hold. Indeed, we have 
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‖ଶݕ‖     = ‖ݕ‖ + ܣ)‖ +  ‖ݕ(ܤ
                = ܣ)‖ + ‖	ݔ)ିଵܤ + ‖ݔ‖ ≤ ܣ)‖ + ‖)ିଵܤ + 1 
and 
‖ଵݕ‖                            ≥  .‖   which is unboundedݕܣ‖
Hence ܣ	 +  .is not closed ܤ	
 (iii) Assume C = 	Sup{	‖ܣ(ܣ + ‖ݕ‖			,‖ݕ	)ିଵܤ ≤ 1, 	ݕ ∈ {ܪ 	< 	∞. By 
triangular inequality, there is C > 0 such that 
            
ܣ)ܤ‖             + ‖ݕ	)ିଵܤ ≤ C‖ݕ‖		,	 for every ݕ	 ∈  .ܪ
Then if  ݔ	 = 	 ܣ) +  we have ,ݕ	(ܤ
ଵ‖ݕ‖    = ‖ݕ‖ + ‖ݕܣ‖ +  ‖ݕܤ‖
            
            = ‖ݕ‖ + ܣ)ܣ‖ + ‖ݔ	)ିଵܤ + ܣ)ܤ‖ +  ‖ݔ	)ିଵܤ
      
            ≤ ‖ݕ‖ + (C + C)‖ݔ‖ ≤ (1 + C + C)‖ݕ‖ଶ  for every ݕ	 ∈  .ܪ
Then the  norms ‖	. ‖ଵ and ‖	. ‖ଶare equivalent on ܪ. Observe that ܪ =
ܣ)ܦ	 + ܣ)ܦ ) which is dense inܤ +  തതതതതതതതതതതതതwith respect to the norm	)ܤ
ଷ‖ݔ‖ ∶= 	 ‖ݔ‖ +	ฮ(ܣ + ,ฮݔ	തതതതതതതതതതതതത	)ܤ 	ݔ ∈ ܣ)ܦ	 + ܧ  തതതതതതതതതതതതത. Notice that	)ܤ =
	ܣ)ܦ	 + (ܤ	 ⊂ ܣ)ܦ + തതതതതതതതതതതതത	)ܤ = ܣ)ܦ +  with respect ܧ	 is dense onܪ Hence	.	തതതതതതതതതത(ܤ
to ‖	. ‖ଷ for ݔ	 ∈ ݔ there exists ,ܧ	 ∈ ݔ	‖ such that	ܪ − ‖ଷݔ 	→ 0 and   
ଷ‖ݔ	‖ = lim→ஶ‖	ݔ‖ଷ = lim→ஶ‖	ݔ‖ଶ  ଶ , by using the continuity of‖ݔ	‖=
‖	. ‖ଶ on  ܧ. It follows that the norms ‖	. ‖ଵ and ‖	. ‖ଶ	are equivalent on ܧ.  
   Construction of the Example (2.2.2). It is enough to choose ܣ	and ܤ as in 
Lemma (2.2.7) and (2.2.8) such that condition (96) of  Lemma (2.2.9) is 
satisfied, i.e., to find two functions	݂ and g as in Lemma (2.2.7) such that 
 

													sup ൝ะ
݂(݊)

݂(݊) + g(݊) ܲݔ
ஶ

ୀଵ

ะ , ݔ ∈ ,ܪ ‖ݔ‖ ≤ 1ൡ = ∞.																											(98) 

We show that this is possible. 
   First we choose for { ݂}ஹଵ the conditional basis of example (88) which 
satisfies 

sup୫ஹଵ 	ะ ଶܲ



ୀଵ

ะ 	= +∞		.	

 
If we impose the following conditions on	݂ and  g, 
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݂(݊)

݂(݊) + g(݊)
=

⎩
⎪
⎨

⎪
⎧ 1
4
												for	݊		odd

.
3
4
											for	݊	even		

																																																											(99)� 

 

     Then ∑ ቀ ()
()ା()

ቁଶ
ୀଵ 	 ܲݔ = 	 ቀ

ଵ
ସ
ቁ∑ ܲ

ଶ
ୀଵ ݔ + (1/2)∑ ଶܲ


ୀଵ  which ,ݔ

satisfies (98). 
    Finally, we give one possible choice of functions ݂ and g	satisfying the 
hypothesis of Lemma (2.2.7) and condition (99). 
Set ℎ(ݐ) = ଵ

ଶ
+ ଵ

ସ
cos(ݐߨ), 	ݐ ≥ 	0. 

We construct ݂	and g by induction: 
݂(0) = 3						ܽ݊݀							g(0) 	= 	1.	

Suppose we know the functions between [0, 2݊],			݊	 = 	0, 1, 2, . .. then we define 
for ݐ	 ∈ 	 (2݊, 2݊	 + 	1	] 

(ݐ)݂                = ݂(2݊)						and						g(ݐ) 	= ݂(2݊) ቀ ଵ
(௧)

− 1ቁ.	

And for ݐ	 ∈ 	 (2݊ + 1, 2݊	 + 	2	] 

(ݐ)݂ = 	g(2݊ + 	1)
ℎ(ݐ)

1 − ℎ(ݐ)
								and										g(ݐ) 	= 	g(2݊	 + 	1).	

Then, ݂, g are continuous on [0,∞)  nondecreasing, not less than one with 
(ݐ)݂)/(ݐ)݂ 	+ ((ݐ)݃	 	= 	ℎ(ݐ).	  ■ 


