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Chapter 3 
Powers and Spectrum of Class	࢝࢖)ࡲ, ࢘,  Operators with an (ࢗ
Operators Equation 
 
      In this chapter we discuss powers of class ܨݓ	݌), ,ݎ 	operators for 1 (ݍ ≥ 	݌	 >
	0, 1	 ≥ 	ݎ	 > 	0 and ݍ	 ≥ 	1; and an example is given on powers of class 
,݌)	ܨݓ ,ݎ ,݌)ܨݓ operators. We show that every class (ݍ ,ݎ  operator has (ݍ
SVEP and property (ߚ), and Weyl’s theorem holds for ݂(ܶ) when 
݂	 ∈ ௣ܭ	 As a continuation, we  consider the equation  .((ܶ)ߪ)ܪ 	=

ܪ	
ഃ
మ		ܶ

భ
మ(ܶ

భ
మ	ܪఋା௥ܶ

భ
మ 		)

೛షഃ
ഃశೝ	ܶ

భ
మ	ܪ

ഃ
మ 		,where ݌ > 0, ݎ > 0 and ݌ ≥ ߜ >  As .ݎ−

applications, we show that the inclusion relations among class ݌)ܣݓ,  operators (ݎ
are strict and show a generalization of Aluthge’s result. 
 
Sec (3.1): Powers of Class ࢝࢖)ࡲ, ࢘,  Operators (ࢗ
 
     Let ܪ be a complex Hilbert space and (ܪ)ܤ be the algebra of all bounded linear 
operators in ܪ, and a capital letter (such as ܶ) denote an element of (ܪ)ܤ. An 
operator ܶ	is said to be ݇-hyponormal for ݇	 > 	0 if (ܶ∗ܶ)௞ 	 ≥ 	 (ܶܶ∗)݇, where ܶ∗ 
is the adjoint operator of ܶ. A ݇-hyponormal operator ܶ is called hyponormal if 
݇	 = 	1; semi-hyponormal if ݇	 = 	1/2. Hyponormal and semi-hyponormal 
operators have been studied by many authors, such as [119,171,159,174,135]. It is 
clear that every ݇-hyponormal operator is ݍ-hyponormal for 0	 < 	ݍ	 ≤ 	݇ by the 
Löwner-Heinz theorem (ܣ	 ≥ 	ܤ	 ≥ 	0	ensures ܣఈ ≥ 	ఈ for any 1ܤ ≥ ߙ ≥ 	0). An 
invertible operator ܶ is said to be log-hyponormal if log	ܶ∗T	 ≥ log	Tܶ∗,	 see 
[142,158]. Every invertible ݇-hyponormal operator for ݇	 > 	0 is log-hyponormal 
since log ݐ is an operator monotone function.	log-hyponormality is sometimes 
regarded as 0-hyponormal since (X	୩ − 	1)/k	 → 	logX as ݇	 → 	0 for ܺ	 > 	0. 
     As generalizations of ݇-hyponormal and log-hyponormal operators, many 
authors introduced many classes of operators, see the following. 
Definition  (3.1.1)[141,146,148]: 
(1)	For	݌	 > 	0	and	ݎ	 > 	0, an operator ܶ	belongs to class ݌)ܣ,  if (ݎ

(|ܶ∗|௥|ܶ|ଶ௣|ܶ∗|௥)
௥

௣ା௥ 	≥ 	 |ܶ∗|ଶ௥.	
(2)	For	݌	 > 	0, 	ݎ ≥ 	0	and	ݍ	 ≥ 	1, an operator ܶ belongs to class ݌)ܨ, ,ݎ  if (ݍ

(|ܶ∗|௥|ܶ|ଶ௣|ܶ∗|௥)
ଵ
௤ 	≥ |ܶ∗|

ଶ(௣ା௥)
௤ 	.	

For each ݌	 > 	0 and ݎ	 > 	0, class ݌)ܣ, -hyponormal and log-݌ contains all	(ݎ
hyponormal operators. An operator ܶ	is a class ܣ(݇) operator ([147]) if and only if 
ܶ is a class ܣ(݇, 1) operator, ܶ is a class (1)ܣ operator if and only if ܶ is a class A 
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operator ([147]), and ܶ	is a class ݌)ܣ,  operator if and only if ܶ is a class (ݎ
ܨ ቀ݌, ,ݎ ௣ା௥

௥
ቁ operator. 

   Aluthge-Wang [143] introduced ݓ-hyponormal operators defined byห ෨ܶ ห ≥ |ܶ| 	≥
หܶ	෩ ∗ห  where the polar decomposition of ܶ is ܶ	 = 	ܷ|ܶ| and ෨ܶ 	= 	 |ܶ|ଵ/ଶܷ|ܶ|ଵ/ଶ is 
called the Aluthge transformation of  ܶ. As a generalization of ݓ-hyponormality, 
Ito [128] and Yang-Yuan [139,138] introduced the classes ݌)ܣݓ,  and (ݎ
,݌)ܨݓ ,ݎ  .respectively (ݍ
Definition (3.1.2)[141]: 
(1)	For	݌	 > 	0, 	ݎ > 	0, an operator ܶ belongs to class ݌)ܣݓ,  if (ݎ

(|ܶ∗|௥|ܶ|ଶ௣|ܶ∗|௥)
௥

௣ା௥	 ≥	 |ܶ∗|ଶ௥	and	|ܶ|ଶ௣ 	≥ (|ܶ|௣|ܶ∗|ଶ௥|ܶ|௣)
௣
௣ା௥	.	

 
 (2)	For	݌	 > 0, 	ݎ ≥ 0, and ݍ	 ≥ 	1, an operator	ܶ belongs to class ݌)ܨݓ, ,ݎ  if (ݍ
 

(|ܶ∗|௥|ܶ|ଶ௣|ܶ∗|௥)
ଵ
௤	 ≥	 |ܶ∗|

ଶ(௣ା௥)
௤ 		and	|ܶ|ଶ(௣ା௥)ቀଵି

ଵ
௤ቁ 

                                                         ≥ 	(|ܶ|௣|ܶ∗|ଶ௥|ܶ|௣)(ଵି
భ
೜)		,	

denoting (1 − 	ݍ	ℎ݁݊ݓ)	∗ݍ ଵ)ିଵ byିݍ > 	1) because	ݍ and (1 −  ଵ)ିଵ are aିݍ
couple of conjugate exponents. 
    An operator ܶ is a ݓ-hyponormal operator if and only if  ܶ	is a class  ܣݓ(	ଵ

ଶ
	 , ଵ
ଶ
		) 

operator, ܶ	is a class ݌)ܣݓ, ,݌)ܨݓ  is a class	operator if and only if  ܶ (ݎ ,ݎ ௣ା௥
௥
	) 

operator. 
    Ito [129] showed that the class ݌)ܣ, ,݌)ܣݓ coincides with the class	(ݎ  for each (ݎ
	݌ > 	0 and ݎ	 > 	0, class ܣ coincides with class 1)ܣݓ, 1). For each ݌	 > 	ݎ ,0	 ≥ 0 
and ݍ	 ≥ 	1 such that ݍݎ	 ≤ 	݌	 + ,݌)ܨݓ showed that class [139] ,ݎ	 ,ݎ  coincides (ݍ
with class ݌)ܨ, ,ݎ  .(ݍ
   Halmos ([171, Problem 209]) gave an example of a hyponormal operator ܶ 
whose square ܶଶ		 is not hyponormal. This problem has been studied by many 
authors, see [169,170,173,175,176]. Aluthge-Wang [169] showed that the operator 
ܶ	௡ is (݇/݊)-hyponormal for any positive integer ݊ if ܶ	݅ݏ	݇-hyponormal. In this 
section, we firstly discuss powers of class ݌)ܨݓ, ,ݎ 	operators for 1	(ݍ ≥ 	݌ >
	0, 1	 ≥ 	ݎ	 > 	0 and ݍ	 ≥ 1. Secondly, we shall give an example on powers of class 
,݌)ܨݓ ,ݎ  .operators (ݍ
Theorem (3.1.3)[129,141]:  Let 1	 ≥ 	݌	 > 	0, 1	 ≥ 	ݎ	 > 	0. Then ܶ	௡ is a class  
௣	)ܣݓ

௡
, ௥
௡
)  operator. 

Theorem(3.1.4)[172,141]:  Let	1	 ≥ 	݌	 > 	0, 1	 ≥ 	ݎ	 ≥ 0, 	ݍ ≥ 	1 and ݍݎ	 ≤ ݌	 +
,݌)ܨ ܶ is an invertible class	 If .ݎ ,ݎ 	௣	)ܨ ௡ is a	operator, then ܶ (ݍ

௡
, ௥
௡
	,  .operator (ݍ
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Theorem (3.1.5)[139,141]:  Let 1	 ≥ 	݌	 > 	0, 1	 ≥ 	ݎ ≥ 0; 	ݍ	 ≥ 	1 when ݎ	 = 	0 
and ௣ା௥

௥
	≥ 	ݍ	 ≥ 1 when	ݎ	 > 	0. If  ܶ is a class ݌)ܨݓ, ,ݎ  ௡ is a	operator, then ܶ (ݍ

class ܨݓ(	௣	
௡
, ௥
௡
	 ,  .operator  (ݍ

    Here we generalize them in theorem (3.1.6) . 
Lemma (3.1.6)[127,141]: Let ߙ ∈ ℝ	 and ܺ	be invertible. Then (ܺ∗ܺ)ఈ 	=
ܺ∗(ܺܺ∗)ఈିଵܺ holds, especially in the case	ߙ ≥ 	1, Lemma (3.1.6)holds without 
invertibility of X. 
Theorem (3.1.7)[129,141]: Let ܣ, ܤ ≥ 	0. Then for each ݌, 	ݎ ≥ 0, the following 
assertions hold: 

  (1) 		ቀܤ
ೝ
మܣ௣ ܤ	

ೝ
మቁ		

ೝ
೛శೝ 		≥ ௥ܤ 		⟹ ቀܣ

೛
మܤ௥	ܣ

೛
మቁ		

೛
೛శೝ 				≤  .௉ܣ

  (2) 		ቀܣ
೛
మܤ௥	ܣ

೛
మቁ		

೛
೛శೝ 		≤ (ܣ)ܰ	݀݊ܽ				௉ܣ ⊂ (ܤ)ܰ 		⟹ ቀܤ

ೝ
మܣ௣	ܤ

ೝ
మቁ		

ೝ
೛శೝ 			≥  .௥ܤ

Theorem (3.1.8)[137,141]: Let ܶ be a class wA operator. Then |ܶ	௡|
మ
೙ ≥	·	·	·	≥

	|ܶ	ଶ| 	≥ |ܶ|ଶ and |ܶ∗|ଶ ≥ 	 |(ܶ	ଶ)∗| ≥	·	·	·	≥ 	 |(ܶ	௡)∗|
మ
೙  hold. 

Theorem (3.1.9)[139,141]: Let ܶ be a class ݌)ܨݓ଴, ,଴ݎ ଴݌	 ଴) operator forݍ 	 >
	0, ଴ݎ 	 ≥ 0 and ݍ଴ ≥ 1. Then the following assertions hold. 
(1)		If	ݍ	 ≥ 	 	ݍ଴ݎ	and	଴ݍ ≤ 	 ଴݌ 	+ ,଴݌)ܨݓ is a class	଴, then ܶݎ	 ,଴ݎ  .operator	(ݍ
(2)		If	ݍ∗ ≥ ,∗଴ݍ ∗ݍ଴݌ ≤ ଴݌	 	+ (ܶ)ܰ ଴ andݎ	 	⊂ ܰ(ܶ∗), then ܶ is a class 
,	଴݌)ܨݓ ,଴ݎ  .operator (ݍ
(3)		If	ݍݎ ≤ 	݌	 + ,݌)ܨݓ then class ,ݎ	 ,ݎ ,݌)ܨ coincides with class (ݍ ,ݎ  .(ݍ
Theorem  (3.1.10)[139,141]: Let ܶ	be a class ܨݓ ቀ݌଴	, ,଴ݎ

௣బା	௥బ
ఋబା௥బ

	ቁ	 operator for 

଴݌ 	> ଴ݎ,0	 	≥ 0	and	 − ଴ݎ ଴ߜ	> ≤ ܨݓ is a class	଴. Then ܶ݌	 ቀ݌, ,ݎ ௣ା௥
ఋబା௥

ቁ operator 
for ݌	 ≥ 	 	ݎ	and	଴݌ ≥ 	  .଴ݎ
Proposition(3.1.11)[139,141]:Let	ܣ, 	ܤ ≥ 	0; 	1	 ≥ 	݌ > 	0, 1	 ≥ ;0		ݎ	 	௣ା௥

௥
		 ≥

	ݍ ≥ 	1. Then the following assertions hold. 

  (1)			If		 ቀܤ
ೝ
మܣ௣ ܤ	

ೝ
మቁ		

భ
೜ 		≥ ܤ

೛శೝ
೜ 									and		ܤ ≥ ,	ܥ then ቀܥ

ೝ
మܣ௣	ܥ

ೝ
మቁ		

భ
೜ 	≥ ܥ

೛శೝ
೜ 	 .  

		(2)	If		ܤ
೛శೝ
೜ 		 ≥ ቀܤ

ೝ
మܥ௣	ܤ

ೝ
మቁ		

భ
೜			, ܣ ≥  condition	the	and		ܤ

݂ܫ(∗)	 lim
௡→ஶ

ܤ
ଵ
ଶ ௡ݔ	 = 	0	and	 lim

௡→ஶ
ܣ
ଵ
ଶ ௡ݔ	 	exists, then	 lim

௡→ஶ
ܣ
ଵ
ଶ ௡ݔ	 = 0	

holds for any sequence of vectors {ݔ௡}, then 	ܣ
೛శೝ
೜ 			≥ ቀܣ

ೝ
మܥ௣	ܣ

ೝ
మቁ		

భ
೜					.  

Theorem (3.1.12)[141]:  Let 1	 ≥ 	݌	 > 	0, 1	 ≥ 	ݎ	 > 	0; 	ݍ	 > 	௣ା௥
௥

 . If  ܶ is a class 
,݌)ܨݓ ,ݎ (ܶ)ܰ operator such that (ݍ ⊂ ܰ(ܶ∗), then ܶ	௡    is a class ܨݓ(	௣	

௡
, ௥
௡
	,   (ݍ

operator. 
   In order to prove the theorem, we require the following assertions. 
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Proof .  Put ߜ	 = 	௣ା௥	
௤	

− 	ݎ− then ,ݎ	 < ߜ	 < 	0 by the hypothesis. Moreover, if 

(|ܶ∗|௥|ܶ|ଶ௣|ܶ∗|௥)
ೝశഃ
೛శೝ	 ≥	 |ܶ∗|ଶ(௥ାఋ)	and	|ܶ|ଶ(௣ିఋ) 	 ≥ (|ܶ|௣|ܶ∗|ଶ௥|ܶ|௣)	

೛షഃ
೛శೝ , 

 
then ܶ is a class ܣݓ	operator by Theorem (3.1.10) and Theorem (3.1.7), so that the 
following hold by taking ܣ௡ =	 |ܶ௡|

మ
೙   and ܤ௡ = 	 |(ܶ௡)∗|

మ
೙  in Theorem (3.1.8) 

    
௡ܣ                         ≥	·	·	·	≥ ଶܣ 	≥ ଵܤ	ଵܽ݊݀ܣ	 	≥ ଶܤ	 	 ≥	·	·	·	≥ ௡ܤ 	.																											(1)	
Meanwhile, ܣ௡ and ܣଵ satisfy the following for any sequence of vectors {ݔ௠}, 
(see [137]) 

if	 lim௠→ஶ ଵܣ
భ
మ ௠ݔ	 = 	0	ܽ݊݀		 lim௠→ஶ ௡ܣ

భ
మ ௠ݔ	 		exists, then	 lim௠→ஶ ௡ܣ

భ
మ ௠ݔ	 = 0.	

Then the following holds by Proposition (3.1.11) 

(௡ܣ)	
௣ା௥
௤∗ 					 ≥ ቀ(ܣ௡)

௣
ଶ(ܤଵ)௥	(ܣ௡)

௣
ଶቁ		

ଵ
௤∗ 				≥ ቀ(ܣ௡)

௣
ଶ(ܤ௡)௥	(ܣ௡)

௣
ଶቁ		

ଵ
௤∗ 		,	 

and it follows that 

                       |ܶ௡|
మ(೛షೝ)
೙೜∗ 	≥ (|ܶ௡|

೛
೙|(ܶ௡)∗|

మೝ
೙ |ܶ௡|

೛
೙)	

భ
೜∗				. 

 
We assert that ܰ(ܶ) 	⊂ ܰ(ܶ∗), implies ܰ(ܶ௡) ⊂ ܰ((ܶ௡)∗). 
In fact, 
ݔ        ∈ 	ܰ(ܶ௡) ⟹ ܶ௡ିଵ		ݔ ∈ ܰ(ܶ) 	⊆ ܰ(ܶ∗),  
                           ⟹ ܶ௡ିଶ		ݔ ∈ ܰ(ܶ∗ܶ) = ܰ(ܶ) 	⊆ ܰ(ܶ∗) 
                          .		.		. 
 
                          ⟹ ݔ ∈ ܰ(ܶ) 	⊆ ܰ(ܶ∗)		 
                          ⟹ ݔ ∈ ܰ(ܶ∗) 	⊆ ܰ((ܶ௡)∗),		 
thus 

                                   ቀ|(ܶ௡)∗|
ೝ
೙|ܶ௡|

మ೛
೙ |(ܶ௡)∗|

ೝ
೙ቁ	

భ
೜ 		 ≥ 	 |(ܶ௡)∗|

మ(೛శೝ)
೙೜ 	 

holds by Theorem (3.1.7) and the Löwner-Heinz theorem, so that ܶ௡ is a class 
	௣	)ܨݓ

௡
, ௥
௡
	 ,  □                                                                                .operator   (ݍ

Theorem (3.1.13)[141]: (Furuta inequality [124], in brief FI). If ܣ	 ≥ ܤ	 ≥ 	0, then 
for each   ݎ	 ≥ 	0, 

  				(݅)																															ቀܤ
ೝ
మܣ௣ ܤ	

ೝ
మቁ		

భ
೜ 		≥ 	 ቀܤ

ೝ
మܤ௣	ܤ

ೝ
మቁ		

భ
೜		 

   and  

 				(݅݅)																																ቀܣ
ೝ
మܣ௣	ܣ

ೝ
మቁ		

భ
೜ 		≥ ቀܣ

ೝ
మܤ௣	ܣ

ೝ
మቁ		

భ
೜		 

hold for ݌	 ≥ 0 and ݍ	 ≥ 1	with (1	 + ݍ(ݎ	 ≥ 	݌	 +  .ݎ	
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Theorem(3.1.13)yields the Löwner-Heinz inequality by putting 
ݎ	 = 	0	in	(݅)	or	(݅݅) , of FI. It was shown by Tanahashi [134] that the domain 
drawn for ݌,  .in the Figure is the best possible for Theorem (3.1.13) ݎ and ݍ
 
 

 
Theorem (3.1.14)[141]: Let ܣ and ܤ be positive operators on ܪ,ܷ and ܦ be 
operators On    ⊕௞ୀିஶ

ஶ ,	௞ܪ	 where	ܪ௞ ≅  as follows ,ܪ
 
 

               





































01
01

)0(1
01

0

U      , 
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





































A
A

A
B

B

D

2
1

2
1

2
1

2
1

2
1

)(      , 

 
where	(·) shows the place of the (0, 0) matrix element, and ܶ	 =  Then the .ܦܷ	
following assertions hold. 
(1)If		ܶ	is	a	class	݌)ܨݓ, ,ݎ 	operator for 1 (ݍ ≥ 	݌ > 	0, 1	 ≥ 	ݎ	 ≥ 	0, 	ݍ ≥ 	1 and  
	ݍݎ ≤ 	݌	 + 	௣	)ܨݓ then ܶ௡ is a ,ݎ	

௡
, ௥
௡
	 ,  .operator   (ݍ

(2)	If	ܶ	is	a	class	݌)ܨݓ, ,ݎ (ܶ)ܰ operator such that (ݍ 	⊂ ܰ(ܶ∗), 1 ≥ 	݌	 > 	0, 
1	 ≥ 	ݎ	 ≥ 	0, 	ݍ ≥ 1	and ݍݎ	 > 	݌	 + 	௣	)ܨݓ then ܶ௡  is a	,ݎ	

௡
, ௥
௡
	 ,  .operator   (ݍ

Proof .By simple calculations ,we have 
 

                                            



































A
A

A
B

B

T
2

       , 

                           
 

                                                
 



































A
A

B
B

B

T
2

      , 
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Therefore 

       











































A
A

BAB
B

B

TTT
rp

rp

rpr

rp

rp

rpr

)( 22

2

   

And  
               











































A
A

ABA
B

B

TTT
rp

rp

prp

rp

rp

prp

)( 22

2

 , 

Thus the following hold for ݊ ≥ 2 
  ܶ௡∗	ܶ௡ 
 
 






























































AA
BAB

BAB

BB
B

B

nn

n

j
jn

j

nn

n

n

)(
2
11

2
1

22

2
1

2
1
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And 
  ܶ௡ܶ௡∗ 





























































AA
AA

ABA

ABA
B

B

nn

nn

jjnj

n

n

n

B 2
1

2
1

22

2
1

1
2
1

)(

 

 
Proof of (1). T is a class ݌)ܨݓ, ,ݎ  operator is equivalent to the following (ݍ

ቀܤ
௥
ଶܣ௣	ܤ

௥
ଶቁ		

ଵ
௤ 		≥ ܤ

௣ା௥
௤ 									and			ܣ

௣ା௥
௤∗ 					 ≥ ቀܣ

௣
ଶܤ௥	ܣ

௣
ଶቁ		

ଵ
௤∗					, 

ܶ௡ belongs to class ܨݓ(	௣	
௡
, ௥
௡
	 ,  .is equivalent to the following (2) and (3)   (ݍ
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⎪
⎪
⎨

⎪
⎪
⎧ ൬ܤ

௥
ଶ ൬ܤ

௝
ଶܣ௡ି௝	ܤ

௝
ଶ൰		

௣
௡	ܤ

௥
ଶ൰		

ଵ
௤ 		 ≥ ܤ

௣ା௥
௤ 																																						

ቀܤ
௥
ଶܣ௣	ܤ

௥
ଶቁ		

ଵ
௤ 		 ≥ ܤ

௣ା௥
௤ 																																																														

൬൬ܣ
௝
ଶܤ௡ି௝	ܣ

௝
ଶ൰		

௥
ଶ௡	ܣ௣ ൬ܣ

௝
ଶܤ௡ି௝	ܣ

௝
ଶ൰		

௥
ଶ௡൰

ଵ
௤
≥ ൬ܣ

௝
ଶܤ௡ି௝	ܣ

௝
ଶ൰		

௣ା௥
௡௤

	݆	݁ݎℎ݁ݓ																																																														 = 	1, 2, . . . , ݊	 − 	1.

� 																								 (2)	

 
 

					

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧
ቆ൬ܤ

௝
ଶܣ௡ି௝ ܤ	

௝
ଶ൰		

௣
ଶ௡		ܤ௥ ൬ܤ

௝
ଶܣ௡ି௝	ܤ

௝
ଶ൰ቇ

ଵ
௤∗
≥ ൬ܤ

௝
ଶܣ௡ି௝	ܤ

௝
ଶ൰		

௣ା௥
௡௤∗

ܣ	
௣ା௥
௤∗ 					 ≥ ቀܣ

௣
ଶܤ௥ ܣ	

௣
ଶቁ		

ଵ
௤∗																																																											

ܣ	
௣ା௥
௤∗ 					≥ ൭ܣ

௣
ଶ ൬ܣ

௝
ଶܤ௡ି௝	ܣ

௝
ଶ൰

௥
௡
	 ܣ	

௣
ଶ൱		

ଵ
௤∗																																

	݆	݁ݎℎ݁ݓ																																																																	 = 	1, 2, . . . , ݊	 − 	1

																						(3)�	
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We only prove (2) because of Theorem (3.1.7). 
Step 1. To show 

൬ܤ
௥
ଶ ൬ܤ

௝
ଶܣ௡ି௝	ܤ

௝
ଶ൰		

௣
௡	ܤ

௥
ଶ൰		

ଵ
௤ 		≥ ܤ

௣ା௥
௤ 		 

  for	݆	 = 	1, 2, . . . , ݊	 − 	1.	
   In fact, ܶ	is a class ݌)ܨݓ, ,ݎ 	operator for 1 (ݍ ≥ 	݌ > 	0, 1	 ≥ 	ݎ	 ≥ 	0, 	ݍ ≥ 1 and 
	ݍݎ ≤ 	݌	 + ܨݓ implies ܶ belongs to class ݎ	 ቀ݆, ݊	 − 	݆, ௡

ఋା௝
	ቁ, where   ߜ	 = 	௣ା௥

௤
	–   ݎ	

by Theorem (3.1.10) and Theorem (3.1.7), thus 
 

൬ܤ
௝
ଶܣ௡ି௝	ܤ

௝
ଶ൰		

ఋା௝
௡ 		≥ ఋି௝ܤ ௡ି௝ିఋܣ		݀݊ܽ				 	 ≥ ൬ܣ

௡ି௝
ଶ ܣ	௝ܤ

௡ି௝
ଶ ൰		

௡ି௝ିఋ
௡  

Therefore the assertion holds by applying (i) of Theorem (3.1.13) to    

൬ܤ
ೕ
మܣ௡ି௝	ܤ

ೕ
మ൰		

ഃశೕ
೙ 		     and ܤఋା௝				 for  ቀ1 + ௥

ఋା௝
ቁ ݍ	 ≥	 ௣

ఋା௝
+ ௥

ఋା௝
		. 

Step 2. To show 

        ൬൬ܣ
ೕ
మܤ௡ି௝	ܣ

ೕ
మ൰		

ೝ
మ೙		ܣ௣ ൬ܣ

ೕ
మܤ௡ି௝	ܣ

ೕ
మ൰		

ೝ
మ೙൰

భ
೜
≥ ൬ܣ

ೕ
మܤ௡ି௝	ܣ

ೕ
మ൰		

೛శೝ
೙೜  

  for	݆	 = 	1, 2, . . . , ݊	 − 	1.	
In fact, similar to Step 1, the following hold 

    ൬ܤ
೙షೕ
మ ௝ܣ ܤ	

೙షೕ
మ ൰		

ഃశ೙షೕ
೙ 			 ≥ ௝ିఋܣ	݀݊ܽ			ఋା௡ି௝ܤ 	≥ ൬ܣ

ೕ
మܤ௡ି௝	ܣ

ೕ
మ൰

ೕషഃ
೙
			,	 

this implies that    ܣ௝ 	 ≥ ൬ܣ
ೕ
మܤ௡ି௝	ܣ

ೕ
మ൰

ೕ
೙
			 by Theorem (3.1.7). Therefore the 

assertion holds by applying (i) of Theorem (3.1.13) to ܣ௝ and   ൬ܣ
ೕ
మܤ௡ି௝	ܣ

ೕ
మ൰

ೕ
೙
			  for  

ቀ1 + ௥
௝
ቁ ݍ	 ≥ 	 ௣

௝
+ ௥

௝
			. 

Proof of (2). This part is similar to Proof of (1), so we omit it here.       □ 
   We are indebted to Professor ܭ. Tanahashi for a fruitful correspondence and the 
referee for his valuable advice and suggestions, especially for the improvement of 
Theorem (3.1.12). 
Corollary(3.2.15)[232]: Let ݌ = (1 − ߳)	, ݎ = (1 − ߳)	and	ݍ = (2 + ߳) . If		ܶ is a 
class ܨݓ൫(1 − ߳), (1 − ߳), (2 + ߳)൯	operator such that ܰ(ܶ) ⊂ ܰ(ܶ∗), then ܶ	௡    
is a class ܨݓ(	(ଵିఢ)		

௡
, (ଵିఢ)

௡
	 , (2 + ߳))  operator. 

   In order to prove the theorem, we require the following assertions. 
 
Proof .  Put ߜ	 = 	ିఢ(ଵିఢ)	(ଶାఢ)	

, then  (߳ + 1) < ߜ < 0  by the hypothesis .Moreover, if 
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   ൫|ܶ∗|(ଵିఢ)	|ܶ|ଶ(ଵିఢ)	|ܶ∗|(ଵିఢ)	൯ 			 ≥ 	 |ܶ∗|ଶ
(భషച)మ

(మశച) 	ܽ݊݀	|ܶ|
మ൫భషചమ൯
(మశച)  

                                                      		≥ (|ܶ|(ଵିఢ)|ܶ∗|ଶ(ଵିఢ)|ܶ|(ଵିఢ))	(ଵାఢ) , 
then ܶ is a class ܣݓ	operator by Theorem (3.1.10) and Theorem (3.1.7), so that the 
following hold by taking ܣ௡ =	 |ܶ௡|

మ
೙   and ܤ௡ = 	 |(ܶ௡)∗|

మ
೙  in Theorem (3.1.8) 

௡ܣ                         ≥	·	·	·	≥ ଶܣ 	≥ ଵܤ	ଵܽ݊݀ܣ	 	≥ ଶܤ	 	 ≥	·	·	·	≥ ௡ܤ 	.				
Meanwhile, ܣ௡ and ܣଵ satisfy the following for any sequence of vectors {ݔ௠}, 
(see [137]) 

if lim௠→ஶ ଵܣ
భ
మ ௠ݔ	 = 	0	and	 lim௠→ஶ ௡ܣ

భ
మ ௠ݔ	 	exists, 	ℎ݁݊ݐ lim௠→ஶ ௡ܣ

భ
మ ௠ݔ	 = 0.	

Then the following holds by Proposition (3.1.11) 
 

(௡ܣ)	         
మ(భషച)
(మశച)∗ 					 ≥ ൬(ܣ௡)

(భషച)
మ (௡ܣ)	(ଵିఢ)(ଵܤ)

(భషച)
మ ൰		

భ
(మశച)∗				 

                               ≥ ൬(ܣ௡)
(భషച)
మ (௡ܣ)	(ଵିఢ)(௡ܤ)

(భషച)
మ ൰		

భ
(మశച)∗		,	 

and it follows that 

                       |ܶ௡|
ర(భషച)
೙(మశച)∗ 	≥ (|ܶ௡|

(భషച)
೙ |(ܶ௡)∗|

ర(భషച)
೙ |ܶ௡|

(భషച)
೙ )	

భ
(మశച)∗				. 

We assert that ܰ(ܶ) 	⊂ ܰ(ܶ∗), implies ܰ(ܶ௡) ⊂ ܰ((ܶ௡)∗). 
In fact, 
ݔ        ∈ 	ܰ(ܶ௡) ⟹ ܶ௡ିଵ		ݔ ∈ ܰ(ܶ) 	⊆ ܰ(ܶ∗),  
                           ⟹ ܶ௡ିଶ		ݔ ∈ ܰ(ܶ∗ܶ) = ܰ(ܶ) 	⊆ ܰ(ܶ∗) 
                          .		.		. 
 
                          ⟹ ݔ ∈ ܰ(ܶ) 	⊆ ܰ(ܶ∗)		 
                          ⟹ ݔ ∈ ܰ(ܶ∗) 	⊆ ܰ((ܶ௡)∗),		 
thus 

                      ൬|(ܶ௡)∗|
(భషച)
೙ |ܶ௡|

ర(భషച)
೙ |(ܶ௡)∗|

(భషച)
೙ ൰	

భ
(మశച) 		≥ 	 |(ܶ௡)∗|

ర(భషച)
೙(మశച)	 

holds by Theorem (3.1.7) and the Löwner-Heinz theorem, so that ܶ௡ is a class 
(ଵିఢ)	)ܨݓ

௡
, (ଵିఢ)

௡
	 , (2 + ߳)) operator.           □            

 
Sec(3.2)      Spectrum of Class ݌)ܨݓ, ,ݎ  Operators (ݍ
 
    A capital letter (such as ܶ) means a bounded linear operator on a complex 
Hilbert space ℋ. For ݌	 > 	0, an operator ܶ is said to be ݌-hyponormal if 
(ܶ∗ܶ)௣ 	≥ 	 (ܶܶ∗)௣, where ܶ∗ is the adjoint operator of ܶ. An invertible operator ܶ 
is said to be log-hyponormal if log(ܶ∗ܶ) ≥ 	log(ܶܶ∗).		If	݌	 = 	1, ܶ is called 
hyponormal, and if ݌	 = 1/2	,				ܶ is called semi-hyponormal. Log-hyponormality is 
sometimes regarded as 0-hyponormal since (ܺ௣ 	− 	݌/(1 → logܺ	ܽݏ	݌	 →
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0			for	ܺ	 > 0. See Martin and Putinar [131] and Xia [135] for basic properties of  
hyponormal and semi-hyponormal operators. Log-hyponormal operators were 
introduced by Tanahashi [142], Aluthge and Wang [143], and Fujii et al. [144] 
independently. Aluthge [145] introduced ݌-hyponormal operators. 
   As generalizations of ݌-hyponormal and log-hyponormal operators, many authors 
introduced many classes of operators. Aluthge  and Wang [143] introduced w-
hyponormal operators defined by |	 ෨ܶ| 	 ≥ 	 |ܶ| 	≥ 	 |( ෨ܶ)∗|,	where the polar 
decomposition of  T	is	T	 = 	U|T| and ෨ܶ 	= 	 |ܶ|ଵ/ଶܷ|ܶ|ଵ/ଶ	 is called Aluthge 
transformation of  ܶ. For ݌	 > 	0 and ݎ	 > 	0, Ito [128] introduced class ݌)ܣݓ,  (ݎ
defined by 

(|ܶ∗|௥|ܶ|ଶ௣|ܶ∗|௥)
௥

௣ା௥ ≥ (|ܶ∗|ଶ௥	, |ܶ|௣|ܶ∗|ଶ௥	|ܶ|௣)
௦

௣ା௥ ≤	 |ܶ|ଶ௣.																					(4) 
Note that the two exponents ݌)/ݎ	 + 	݌)/݌ and (ݎ +  in the formula above satisfy (ݎ
	݌)/ݎ + (ݎ + 	݌)/݌	 + (ݎ 	= 	1, Yang and Yuan [138] introduced class 	݌)ܨݓ, ,ݎ  .(ݍ
Definition (3.2.1) [138,139]:  For ݌	 > 	0, 	ݎ > 	0, and ݍ	 ≥ 	1, an operator ܶ 
belongs to class ݌)ܨݓ, ,ݎ  if (ݍ
 
  (|ܶ∗|௥|ܶ|ଶ௣|ܶ∗|௥)

భ
೜ ≥ |ܶ∗|ଶ(௣ା௥)/௤	, |ܶ|ଶ(௣ା௥)ቀଵି

భ
೜ቁ 		 ≥ (|ܶ|௣|ܶ∗|ଶ௥|ܶ|௣)(ଵିଵ/௤)																								(5)	 

 
Denote (1 − 	ݍ when	∗ݍ  by	ଵ)ିଵିݍ > 	1 because ݍ	݀݊ܽ	1) −  ଵ)ିଵ are a coupleିݍ
of conjugate exponents. It is clear that class ݌)ܣݓ, ,݌)ܨݓ   equals class (ݎ ,ݎ 	݌) +
 Ito and Yamazaki [129] .[128] (1/2,1/2)ܣݓ hyponormality equals-ݓ 	.(ݎ/(ݎ
showed that class  ݌)ܣݓ, ,݌)ܣ  coincides with class (ݎ  .introduced by Fujii et al) (ݎ
[146]) for each ݌	 > 	0 and ݎ	 > 	0. Consequently, class (1,1)ܣݓ equals class ܣ 
(i.e., |ܶଶ| 	≥ 	 |ܶ|ଶ, introduced by Furuta et al. [147]). Reference [139] showed that 
class ݌)ܨݓ, ,ݎ ,݌)ܨ coincides with class (ݍ ,ݎ  introduced by Fujii and Nakamoto) (ݍ
[148]) when ݍݎ	 ≤ 	݌	 +  .ݎ
     Recently, there are great developments in the spectral theory of the classes of 
operators above.We cite [138, 149–157]. In this section, we will discuss several 
spectral properties of class 
,݌)ܨݓ         ,ݎ 	݌	for	(ݍ > 0	, 	ݎ > 	0, 	݌ + 	ݎ ≤ 	1, and	ݍ	 ≥ 	1.	
In this Section, we prove that Riesz idempotent ܧ	ఒ 	of	ܶ with respect to each 
nonzero isolated point spectrum ߣ is selfadjoint and ܧ	ఒℋ = 	ker(ܶ	 − (ߣ 	=
	ker(ܶ	 − ,݌)ܨݓ also we will show that each class .∗(ߣ ,ݎ  operator has SVEP (ݍ
(single-valued extension property) and Bishop’s property (ߚ). and we show that 
Weyl’s theorem holds for class ݌)ܨݓ, ,ݎ  .Now we show that Riesz  idempotent .(ݍ
Let ߪ(ܶ), ,(ܶ)௣ߪ ,(ܶ)௝௣ߪ ,(ܶ)௔ߪ ,(ܶ)௝௔ߪ and	ߪ௥(ܶ)	mean the spectrum, point 
spectrum, joint point spectrum, approximate point spectrum, joint approximate 
point spectrum, and residual spectrum of an operator ܶ, respectively (cf. [138, 
(ܶ)ߪ ௜௦௢(ܶ) mean the setߪ ௑௜௔(ܶ) and	௥ߪ .([158 −  ௔(ܶ) and the set of isolatedߪ
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points of ߪ(ܶ), see [158, 135]. If ߣ	 ∈   of ܶ with	ఒ	ܧ ௜௦௢(ܶ), the Riesz idempotentߪ	
respect ߣ is defined by 
ఒܧ                                        	= ∫డु(ݖ − ܶ)ିଵ݀,ݖ																																																										(6)	
where	ुis an open disk which is far from the rest of ߪ(ܶ) and ߲ु means its 
boundary. Stampfli [159] showed that if ܶ	is hyponormal, then ܧఒ is selfadjoint and 
ఒℋܧ = 	ker(ܶ	 − (ߣ = 	ker൫ܶ	– ൯ߣ

∗
. The recent developments of this result are 

shown in [151,152,155,157], and so on. 
    In this section, it is shown that when ߣ ≠ 	0, this result holds for class 
,݌)ܨݓ ,ݎ 	݌ with	(ݍ + 	ݎ	 ≤ 	1 and ݍ	 ≥ 	1. It is always assumed that ߣ	 ∈  (ܶ)௜௦௢ߪ	
when the idempotent ܧఒ is considered. 
Theorem (3.2.2)[138,149]: Let ߣ	 ≠ 	0, and let {ݔ௡}	be a sequence of vectors. Then 
the following assertions are equivalent. 
 (1)	(ܶ	 − ௡ݔ(ߣ 	→ 0	ܽ݊݀	(ܶ∗	 − ௡ݔ(ߣ̅ 	→ 0.	
 (2)	(|ܶ| − ௡ݔ(|ߣ| 	→ 0	ܽ݊݀	(ܷ	 − ݁௜ఏ)ݔ௡ → 0.	
 (3)	(|ܶ|	∗ − ௡ݔ(|ߣ| → 0	ܽ݊݀	(ܷ∗ 	− ݁ି௜ఏ)ݔ௡ 	→ 0.	
Theorem (3.2.3)[138]: If  ܶ	is a class ݌)ܨݓ, ,ݎ 	݌ operator for (ݍ + 	ݎ ≤ 	1 and  
	ݍ ≥ 	1, then them following assertions hold. 
 (1)	If	ܶݔ	 = ,ݔߣ	 	ߣ ≠ 	0, 	ݔ∗ܶ	ℎ݁݊ݐ = 	 	.ݔߣ̅
(ܶ)௔ߪ	(2)  − {0} 	= (ܶ)௝௔ߪ	 − {0}.	
 (3)	If	ܶݔ	 = ,ݔߣ	 	ݕܶ = 	ߣ	and	ݕߤ	 ≠ ,ߤ	 then	(ݔ, (ݕ 	= 	0.	
Theorem (3.2.4)[138,139]: If  ܶ is a class ݌)ܨݓ, ,ݎ  operator, then there exists (ݍ
଴	ߙ > 	0, which satisfies 
,݌)ܶ|                                ଶఈబ|(ݎ ≥	 |ܶ|ଶఈబ(௣ା௥) 	 ≥ ,݌)ܶ| ଶఈబ|∗(ݎ 	.																													(7)	
Lemma (3.2.5)[138]: If ܶ belongs to class ݌)ܨݓ, ,ݎ 	݌	for	(ݍ + ݎ ≤ 1, ߣ = ௜ఏ݁|ߣ| ∈
ॄ, and ߣ	௣ା௥ = ௣ା௥݁௜ఏ|ߣ| 	,	then ker(ܶ	 − (ߣ 	= 	ker(ܶ(݌, (ݎ − 	.(	௣ା௥ߣ
Proof. We only prove ker(ܶ	 − (ߣ 	⊇ 	ker(ܶ(݌, (ݎ − 	ܶ)) because  ker		௣ା௥ߣ −
(ߣ 	⊆ 	ker(ܶ(݌, (ݎ −  ) is obvious by Theorems (3.2.2)-(3.2.3)	௣ା௥ߣ
    If ߣ ≠ 	0, let	0	 ≠ 	ݔ	 ∈ 	ker(ܶ(݌, (ݎ − ,݌)ܶ ,By Theorem (3.2.4)	).	௣ା௥ߣ  is (ݎ
 ଴-hyponormal and we haveߙ 
,݌)ܶ|                      	ݔ|(ݎ = 	 	ݔ௣ା௥|ߣ| = ห൫ܶ(݌,  ,		ݔ൯∗ห(ݎ
,݌)ܶ|         ଶఈబ|(ݎ 	− ,݌)ܶ)| ଶఈబ|∗((ݎ ≥ ,݌)ܶ| ଶఈబ|(ݎ − |ܶ|ଶఈబ(௣ା௥) 	≥ 	0.																(8)	
Hence (|ܶ(݌, ଶఈబ|(ݎ − |ܶ|ଶఈబ(௣ା௥))ݔ	 = 	0, 
  
  ฮ|ܶ|ଶఈబ(௣ା௥)ݔ	 −  ฮݔଶఈబ(௣ା௥)|ߣ|
     	≤ ฮ|ܶ|ଶఈబ(௣ା௥)ݔ − ,݌)ܶ| ฮݔଶఈబ|(ݎ + ฮ|ܶ(݌, 	ݔଶఈబ|(ݎ − ฮݔଶఈబ(௣ା௥)|ߣ| = 	0.			(9)	
 
On the other hand,	(ܶ(݌, 	ݔ∗((ݎ = 	 	ݔ∗implies that  |ܶ|௥ܷ	ݔ௣ା௥݁ି௜ఏ|ߣ| =
,ݔ௥݁ି௜ఏ|ߣ|	 ܶ	∗ =  ,Therefore .ݔ௜ఏି݁|ߣ|
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  ‖(ܶ	 − ଶ‖ݔ(ߣ 	 = ଶ‖ݔܶ‖ 	− ,ݔ)ߣ (ݔܶ − ,ݔܶ)ߣ̅ (ݔ +  ଶ‖ݔ‖ଶ|ߣ|
                         	= ଶ‖ݔ|ܶ|‖ − ,ݔ∗ܶ)ߣ (ݔ − ,ݔ)ߣ̅ (ݔ∗ܶ + ଶ‖ݔ‖ଶ|ߣ| = 	0.							        (10)	
If ߣ	 = 	0, let 0	 ≠ ݔ	 ∈ 	kerܶ(݌, 	ݔ then 		,(ݎ ∈ 	ker	|ܶ| 	= 	kerܶ by Theorem 
(3.2.4) so that ker(ܶ − (ߣ 	⊇ 	ker(ܶ(݌, (ݎ −  □                                            .(	௣ା௥ߣ
Lemma (3.2.6)[138,153,160]:  If 	ܣ is normal, then for every operator  
,ܤ	 (ܤܣ)ߪ 	=  .(ܣܤ)ߪ	
 Let ृ	be the set of all strictly monotone increasing continuous nonnegative 
functions on ℜା 	 = 	 [0, ∞). Let ृ଴ =	 {Ψ	 ∈ 	ृ ∶ 	Ψ(0) 	= 	0}. For	Ψ	 ∈ 	ृ଴, the 
mapping Ψ෩  is defined by  ߖ෩൫݁ߩ௜ఏ൯ = 	݁௜ఏ(ߩ)ߖ	and		ߖ෩(ܶ) 	=  .(|ܶ|)ߖܷ	
Theorem (3.2.7)[138,161]: If 	ߖ	 ∈ 	ृ଴, then for every operator ܶ,  	ߪ௝௔(Ψ෩(ܶ)) 	=
	Ψ෩(ߪ௝௔(ܶ)). 
Lemma (3.2.8)[138]: Let ܶ	belong to class ݌)ܨݓ, ,ݎ 	݌ with (ݍ + 	ݎ	 ≤ 	1, 	ߣ =	  
௜ఏ݁|ߣ| 	 ∈ ॄ, (ݐ)ܶ = ܷ|ܶ|ଵି௧ା௧(௣ା௥)	, and ߬௧(݁ߩ௜ఏ) 	= ݁௜ఏߩଵା௧(௣ା௥ିଵ),  where 
	ݐ ∈ 	 [0,1]. Then 
൯(ݐ)௔൫ܶߪ              = 	 ߬௧൫ߪ௔(ܶ)൯, ൯(ݐ)௥௑௜௔൫ܶߪ = 	߬௧ ቀߪ௥௑௜௔	(ܶ)ቁ,	 
((ݐ)ܶ)ߪ	                                                            = 	 ߬௧(ߪ(ܶ)).																																			(11)	
Proof. We only need to show that ߪ௔(ܶ(ݐ)) 	= 	 ߬௧൫ߪ௔(ܶ)൯ by homotopy property 
of the spectrum [135, page 19]. 
    Since ܶ belongs to class ݌)ܨݓ, ,ݎ 	݌ with (ݍ + 	ݎ	 ≤ 	1,  belongs to class (ݐ)ܶ
	1)/݌)ܨݓ + 	݌)ݐ + 	ݎ − 1)), 	1)/ݎ + 	݌)ݐ + 	ݎ − 1), 	1)/݌ with ((ݍ + 	݌)ݐ + 	ݎ −
1)) + 	1)/ݎ + 	݌)ݐ + 	ݎ − 1)) 	≤ 	1	. By Theorems (3.2.3)(2) and (3.2.7), 
 
൯(ݐ)௔൫ܶߪ   − {0} = 	 ൯(ݐ)௝௔൫ܶߪ − {0} 
                            =	 ߬௧൫ߪ௝௔(ܶ) − {0}൯ = 	 ߬௧൫ߪ௔(ܶ)൯ − {0}.																																				(12)	
On the other hand, if 0	 ∈  of unit vectors	{௡ݔ} then there exists a sequence	௔(ܶ),ߪ	
such that ܷ|ܶ|ݔ௡ → 0. Hence |ܶ|ݔ௡ 	= ௡ݔ|ܶ|ܷ∗ܷ	 	→ 0, so that	|ܶ|ଵ/(ଶ೘)ݔ௡ → 0 
for each positive integer ݉	by induction. Take a positive integer ݉(ݐ) such that 
1/(2௠(௧)) 	≤ 	1 + 	݌)ݐ + 	ݎ − 1),	 then	
        |ܶ|ଵା௧(௣ା௥ିଵ)ݔ௡ = 	 |ܶ|ଵା௧(௣ା௥ିଵ)ିଵ/(ଶ

೘(೟))|ܶ|ଵ/(ଶ೘(೟))ݔ௡ 	→ 	0																					(13)	
 
and 0	 ∈ 	 	It is obvious that if 0 .((ݐ)ܶ)௔ߪ ∈ 	then 0 ,((ݐ)ܶ)௔ߪ	 ∈  ௔(ܶ) because ofߪ	
	݌ + 	ݎ	 ≤ 	1. Therefore ߪ௔(ܶ(ݐ)) 	= 	 ߬௧(ߪ௔(ܶ)).                                            □ 
Theorem (3.2.9)[138,150]: If		ܶ	is ݌-hyponormal or log-hyponormal, then ܧ	ఒ is 
selfadjoint and ܧ	ఒℋ = 	ker(ܶ	 − (ߣ 	= 	ker(ܶ	 −  .∗(ߣ
Riesz and Sz.-Nagy [162] gave the the formula ܧ	ఒℋ 	ݔ}	= ∈ ℋ ∶ 	 ‖(ܶ	 −
ଵ/௡‖ݔ௡(ߣ 	→ 0}. 
 



84 
 

Lemma(3.2.10)[138]: For any operator ܶ, |ܶ|௣ker(ܶ	 − (ߣ ⊆		 |ܶ|௣ܧ	ఒℋ ⊆
,݌)ఒ	ܧ	 	݌		for		ℋ(ݎ + 	ݎ = 1 . 
Proof. Let ݔ	 ∈ ఒܧ	 , by the formula above we have 
,݌)ܶ)‖                  (ݎ − 	ଵ/௡‖ݔ௡|ܶ|௣(ߣ = ‖|ܶ|௣(ܶ	 − 	ଵ/௡‖ݔ௡(ߣ → 	0.																			(14)	
Hence |ܶ|௣ݔ	 ∈ 	 ,݌)ఒܧ	  .ℋ(ݎ
Lemma(3.2.11)[138]: If  ܶ belongs to class ݌)ܨݓ, ,ݎ 	݌ with (ݍ + 	ݎ ≤ 	1, then 
                kerܶ	 = 	଴ℋܧ	 ,݌)଴ܧ	= 	ℋ(ݎ = 	ker൫ܶ(݌, 	(15)																																							൯.(ݎ
Note that ߣ	௣ା௥ ∈ ߣ	if	((ݐ)ܶ)௜௦௢ߪ ∈  ௜௦௢(ܶ) by Lemma (3.2.8), so the notionߪ
,݌)଴ܧ  .in Lemma (3.2.10) is reasonable	(ݎ
Proof.  Since ܶ(݌,  ଴-hyponormal by Theorem(3.2.4), we only need to proveߙ is (ݎ
that ܧ଴ℋ	 ⊆ ,݌)଴ܧ 	଴ℋܧ  for	ℋ(ݎ ⊇ ,݌)଴ܧ	  ℋ holds by Lemma (3.2.5) and(ݎ
Theorem (3.2.9). We may also assume that ݌	 + 	ݎ = 	1 by Lemma (3.2.5) 
It follows from Lemma (3.2.10) that 
                      |ܶ|௣ܧ଴(݌, ℋ(ݎ ⊆ |ܶ|௣ܧ଴ 	 ⊆ 	 ,݌)଴ܧ 	(16)																																												ℋ,(ݎ
thus ܧ଴(݌,  .is reduced by |ܶ|௣	ℋ(ݎ
   Let ݔ	 ∈ 	ݔ  and	଴ℋܧ	 = 	 ଵ	ݔ ଶݔ	+ 	 ∈ 	 ,݌)଴ܧ ℋ(ݎ ,݌)଴ܧ)	⊕  ℋ)ୄ. Then(ݎ
|ܶ|௣ݔ	 ∈ 	 |ܶ|௣ܧ଴ℋ		 ⊆ ,݌)଴ܧ	 ,	ℋ(ݎ |ܶ|௣ݔଵ 	 ∈ ,݌)଴ܧ	 ,	ℋ(ݎ |ܶ|௣ݔଶ 	 ∈
,݌)଴ܧ)	 ,݌)଴ܧ and ,(16)	ݕܾ	ୄ(	ℋ(ݎ  .ℋ is reduced by |ܶ|௣(ݎ
     Thus |ܶ|௣ݔଶ = |ܶ|௣ݔ	 − 	|ܶ|௣ݔଵ 	 ∈ ,݌)଴ܧ ,ℋ(ݎ |ܶ|௣ݔଶ ∈ ,݌)଴ܧ ℋ(ݎ ∩
,݌)଴ܧ)  ℋ)ୄ so that(ݎ
ଶݔ     	 ∈ 	ker	|ܶ|௣ 	⊆ 	ker൫ܶ(݌, ൯(ݎ ,݌)଴ܧ	= ,ℋ(ݎ 	ݔ ∈ ,݌)଴ܧ	 	.ℋ(ݎ
Theorem (3.2.12)[138]: Let  ܶ	belong to class ݌)ܨݓ, ,ݎ 	݌ with (ݍ + 	ݎ	 ≤ 	1, 	ߣ =
௜ఏ	݁|ߣ|	 ∈ 	ॄ, and ߣ௣ା௥ =  ., then the following assertions hold	௜ఏ	௣ା௥݁|ߣ|
    (1)If		ߣ	 ≠ 	0,then		ܧఒ 		 = 	 ,݌)	ఒܧ ఒܧ	and	(ݎ 	ℋ	 = 	ker(ܶ	 − (ߣ 	= 	ker(ܶ	 −  ,∗(ߣ
where ܧఒ(݌, ,݌)ܶ is the Riesz idempotent of (ݎ (ݎ 	= 	 |ܶ|௣ܷ|ܶ|௥ (the generalized 
Aluthge transformation of  ܶ) with respect to ߣ௣ା௥	. 
    (2) If ߣ	 = 	0, then kerܶ	 = 	଴ℋܧ	 = 	 ,݌)଴ܧ	 ℋ(ݎ = 	ker(ܶ(݌, 	.((ݎ
Reference [156] gave an example that the operator ܶ is ݓ-hyponormal, 	ܧ଴ is not 
selfadjoint, and ݇݁ܶݎ	 ≠  .∗ܶݎ݁݇
  An operator ܶ is said to be isoloid if ߪ௜௦௢(ܶ) 	⊆   ௣(ܶ), is said to be reguloid ifߪ	
	(ܶ	 − 	ߣ ,is closed for each	ℋ(ߣ ∈  .(ܶ)௜௦௢ߪ	
Proof. We only need to prove (1) for (2) holds by Lemma (3.2.11). Since 
,݌)ܶ)ߪ ((ݎ 	= (௣ା௥	|ܶ|ܷ)ߪ	 	= 	 {݁௜ఏߩ௣ା௥ ∶ 	 ݁௜ఏߩ	 ∈  by Lemmas (3.2.6) and {(ܶ)ߪ	
௣ା௥	ߣ , (3.2.8) ∈ ,݌)ܶ)௜௦௢ߪ	  Hence .((ݎ
,݌)ఒܧ)               ୄ(ℋ(ݎ 	 = ,݌)ఒܧ)ݎ݁݇	 ((ݎ = 	ܫ) − ,݌)ఒܧ 	(17)																															ℋ((ݎ
by Theorem (3.2.9), so ߣ௣ା௥ 	 ∉ ,݌)ܶ)ߪ	  By Theorem (3.2.3)(1) and	.(఼(ாഊ(௣,௥)ℋ)	|(ݎ
Lemma (3.2.5), we have ܶ	 = ߣ	 ⊕ ଶܶଶ	݊݋	ℋ		 = 	 ,݌)ఒܧ 	ℋ(ݎ ⊕ ,݌)ఒܧ)  ,ୄ(	ℋ(ݎ
where ଶܶଶ 		= 	ܶ|	(௞௘௥(்ିఒ))఼			.  
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    Since ker(ܶ	 − ,ܶ is reduced by (ߣ ଶܶଶ		 also belongs to class ݌)ܨݓ, ,ݎ  and (ݍ
ଶܶଶ(݌, (ݎ 	= ,݌)ܶ	 ఼(ாഊ(௣,௥)ℋ)|(ݎ 	 so that ߣ	 ∉ )ߪ	 ଶܶଶ) because  ߣ	௣ା௥ ∉
)ߪ ଶܶଶ(݌, 	ܶ Hence .((ݎ − 	ߣ = 	0 ⊕ ( ଶܶଶ 	−   and (ߣ
 ker(ܶ	 − ∗(ߣ 	= 	ker(ܶ	 − (ߣ ⊕ ker( ଶܶଶ − ∗(ߣ 	= 	ker(ܶ	 − 	.(ߣ
   Meanwhile, ܧఒ = ∫డु(ݖ − ଵି(ߣ 	⊕ ݖ) − ଶܶଶ)ିଵ݀ݖ	 = 	1 ⊕ 0	 = ,݌)ఒܧ	  □  	.(ݎ
Theorem (3.2.13)[138]: If  ܶ belongs to class ݌)ܨݓ, ,ݎ 	݌ with (ݍ + 	ݎ ≤ 	1, then ܶ 
is isoloid and reguloid. 
Proof . We only need to prove that ܶ is reguloid for ܶ being isoloid follows by 
Theorem (3.2.12) easily. 
   If ߣ	 ∈ 	ℋ	 ௜௦௢(ܶ), thenߪ	 = 	ఒℋܧ	 + 	ܫ) − 	ܫ) ఒℋ, andܧ , where	ఒ)ℋܧ −  ఒ)ℋܧ
are topologically complemented [163, page 94]. By ܶ	 = 	ܶ|	ாഊℋ + 	ܶ|(ூିாഊ)ℋ 	 on  
	ℋ = ఒℋܧ	 	ܫ)	+ −  ఒ)ℋ and Theorem (3.2.12), we haveܧ	
                 (ܶ	 − 	ℋ(ߣ = ൫ܶ|(ூିாഊ)ℋ 		− 	ܫ)൯ߣ − 	(18)																																												ఒ)ℋ.ܧ
Therefore (ܶ	 − (ℋ(ூିாഊ)|ܶ)ߪ ℋ is closed because(ߣ 	= (ܶ)ߪ	 −  □             	.{ߣ}
Definition (3.2.14)[138]: An operator ܶ is said to have SVEP at ߣ	 ∈ 	ॄ if for 
every open neighborhood G	݂݋	ߣ, the only function ݂	 ∈ 	ܶ) such that	(ܩ)ܪ	 −
(ߤ)	݂	(ߣ 	= 	0 on	G	is 0	 ∈  means the space of all analytic (ܩ)ܪ where ,(ܩ)ܪ	
functions on ܩ. 
   When ܶ have SVEP at each ߣ	 ∈ 	ॄ, say that ܶ has SVEP. 
This is a good property for operators. If ܶ	has SVEP, then for each ߣ	 ∈ 	ॄ, 	ߣ − 	ܶ 
is invertible if and only if it is surjective (cf. [164, 153]). 
Definition (3.2.15)[138]: An operator ܶ is said to have Bishop’s property 
	ߣ	ݐܽ	(ߚ) ∈ 	ॄ if for every open neighborhood G	of	ߣ, the function ௡݂ 	 ∈  with (ܩ)ܪ	
(ܶ	 − 	(ߣ ௡݂ (ߤ)	 → 0 uniformly on every compact subset of ܩ	implies that ௡݂	(ߤ) 	→
	0 uniformly on every compact subset of ܩ. 
   When ܶ has Bishop’s property (ߚ) at each ߣ	 ∈ 	ॄ, simply say that ܶ has property 
 This is a generalization of SVEP and it is introduced by Bishop [165] in order .(ߚ)
to develop a general spectral theory for operators on Banach space. 
Lemma (3. 2.16)[138,153]:  Let ܩ	be open subset of complex plane ॄ and let 
௡݂ 	 ∈ 	ߤ be functions such that (ܩ)ܪ	 ௡݂	(ߤ) 	→ 	0 uniformly on every compact 

subset of ܩ,	then ௡݂ (ߤ)	 	→ 	0 uniformly on every compact subset of ܩ. 
Theorem (3.2.17)[138]: Let ݌	and ݎ be positive numbers. If  ݌	 + 	ݎ	 = 	1, then ܶ 
has SVEP if and only If  ܶ(݌,  if and only if (ߚ) has SVEP, ܶ has property (ݎ
,݌)ܶ ,݌)ܨݓ In particular, every class .(ߚ) has property (ݎ ,ݎ  with	operator ܶ (ݍ
	݌ + 	ݎ ≤ 	1 has SVEP and property (ߚ). 
This result is a generalization of [153]. Lemma (3.2.16) and the relations between ܶ 
and its transformation ܶ(݌,  :are important (ݎ
,݌)ܶ                    ௣|ܶ|(ݎ 	= 	 |ܶ|௣ܷ|ܶ|௥ 	|ܶ|௣ 	= 	 |ܶ|௣ܶ,	
                   ܷ|ܶ|௥ܶ(݌, (ݎ = 	ܷ|ܶ|௥	|ܶ|௣ܷ|ܶ|௥ 	= 	ܷܶ|ܶ|௥ 	.																																					(19)	
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Proof . We only prove that ܶ	has property (ߚ) if and only if ܶ(݌,  has property (ݎ
,݌)ܶ has SVEP if and only if	because the assertion that ܶ (ߚ)  has SVEP can be (ݎ
proved similarly. 
   Suppose that ܶ(݌,  and	ߣ be an open neighborhood of ܩ Let .(ߚ) has property (ݎ
let ௡݂ 		 ∈ ߤ) be functions such that (ܩ)ܪ	 − ܶ)	 ௡݂	(ߤ) → 0 uniformly on every 
compact subset of G. By (19), (ܶ(݌, (ݎ − 	௣|ܶ|(ߤ ௡݂ (ߤ)	 	= 	 |ܶ|௣(ܶ	 − 	(ߤ ௡݂ (ߤ)	 →
0 uniformly on every compact subset of ܩ. Hence ܶ	 ௡݂	(ߤ) 	= 	ܷ|ܶ|௥	|ܶ|௣	 ௡݂ (ߤ)	 →
0	uniformly on every compact subset of ܩ for ܶ(݌,  so that ,(ߚ) has property (ݎ
	ߤ ௡݂	(ߤ) → 0 uniformly on every compact subset of ܩ, and ܶ	having property (ߚ) 
follows by Lemma (3. 2.16). 
   Suppose that T has property (β). Let G	be an open neighborhood of ߣ and let 
௡݂ 	 ∈ ߤ) be functions such that (ܩ)ܪ − ,݌)ܶ 	((ݎ ௡݂	(ߤ) 	→ 	0 uniformly on every 

compact subset of ܩ. By (19), 
ߤ) − ܶ)(ܷ|ܶ|௥	 ௡݂	(ߤ)) 	= 	ܷ|ܶ|௥(ߤ − ,݌)ܶ 	((ݎ ௡݂ (ߤ)	 	→ 0  uniformly on every 
compact subset of ܩ. Hence ܶ(݌, 	(ݎ ௡݂	(ߤ) → 	0	 uniformly on every compact 
subset of ܩ	for ܶ has property (ߚ) so that ߤ	 ௡݂	(ߤ) 	→ 	0 uniformly on every 
compact subset of	ܩ, and ܶ(݌,   .follows by Lemma (3. 2.16) (ߚ) having property (ݎ
   For a Fredholm operator ܶ, ind	T	means its (Fredholm) index. A Fredholm 
operator ܶ is said to be Weyl if  ind	T = 0. 
   Let ߪ௘(ܶ),  ଴଴(ܶ) mean the essential spectrum,Weyl spectrum, andߨ ௪(ܶ), andߪ
the set of all isolated eigenvalues of finite multiplicity of an operator ܶ, 
respectively (cf. [163, 152]). 
    According to Coburn [166], we say that Weyl’s theorem holds for an operator 
ܶ	if ߪ(ܶ) − (ܶ)௪ߪ 	=  ଴଴(ܶ). Very recently, the theorem was shown to hold forߨ	
several classes of operators including ݓ-hyponormal operators and paranormal 
operators (cf. [152, 167, 155]). 
   In this section, we will prove that Weyl’s theorem and Weyl spectrum mapping 
theorem hold for class ݌)ܨݓ, ,ݎ 	݌ with	operator ܶ (ݍ + 	ݎ	 ≤ 	1. We also assume 
that ݌	 + 	ݎ	 = 	1  because of the inclusion relations among class ݌)ܨݓ, ,ݎ  .[139] (ݍ
Theorem (3.2.18)[138]: Let ݌	 > 	0, 	ݎ > 	0, and ݍ	 ≥ 	1, 	ݏ ≥ ,݌	 	ݐ ≥  If ܶ is a .ݎ	
class ݌)ܨݓ, ,ݎ ,ݏ)ܶ operator and (ݍ  .is normal, then T is normal (ݐ
Lemma (3.2.19)[138]: If  ܶ belongs to class ݌)ܨݓ, ,ݎ 	݌ with (ݍ + 	ݎ = 	1 and is 
Fredholm, then indT	 ≤ 	0. 
This result can be regarded as a good complement of Theorem (3.2.12). 
Proof. Since ܶ is Fredholm, |ܶ|௣	is also Fredholm and ind(|ܶ|௣	) 	= 	0. By (19), 
 
               indܶ	 = 	ind(|ܶ|௣	T) = 	ind(T(p, r)|ܶ|௣	) = 	ind൫T(p, r)൯.																		(20)	
 
Hence,  indܶ	 ≤ 	0 for ind(ܶ(݌, ((ݎ 	≤ 	0 by Theorem (3.20).                           □ 
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Theorem (3.2.20)[138]: Let ܶ belong to class ݌)ܨݓ, ,ݎ 	݌ with (ݍ + 	ݎ = 	1 and let 
 containing	be the space of all functions ݂ analytic on some open set G ((ܶ)ߪ)ܪ
σ(T), then the following assertions hold. 
	.ܶ	for	holds	theorem	ݏ’݈ݕܹ݁	(1)   
((ܶ)	݂	)௪ߪ	(2)    	= 	݂	ℎ݁݊ݓ	((ܶ)௪ߪ)	݂	 ∈ 	.((ܶ)ߪ)ܪ	
   (3)	Weyl’s	theorem	holds	for	݂	(ܶ)	when	݂	 ∈ 	.((ܶ)ߪ)ܪ	
This is a generalization of  the  related assertions of [152]. 
Proof . (1) Let ߣ	 ∈ (ܶ)ߪ	 − 	ܶ ௪(ܶ), thenߪ − 	ܶ)is Fredholm,  ind ߣ − (ߣ =
	0,		and dimker(ܶ	 − (ߣ 	> 	0. 
   If ߣ	is an interior point of ߪ(ܶ), there would be an open subset ܩ	 ⊆  (ܶ)ߪ	
including ߣ such that ind(ܶ	 − (ߤ 	= 	ind(ܶ	 − (ߣ 	= 	0 for all ߤ	 ∈  page ,163] ܩ	
357]. So dimker(ܶ	 − (ߤ 	> 	0 for all ߤ	 ∈  this is impossible for ܶ has SVEP by ,ܩ	
Theorem (3.2.17) [164, Theorem 10]. Thus ߣ	 ∈ (ܶ)ߪ߲	 − ,(ܶ)௪ߪ 	ߣ ∈  ௜௦௢(ܶ) byߪ	
[163, Theorem 6.8, page 366], and  ߣ	 ∈ 	  .଴଴(ܶ) followsߨ
     Let ߣ	 ∈ ఒܧ ଴଴(ܶ) then the Riesz idempotentߨ	 	 has finite rank by Theorem 
(3.2.12), and ߣ	 ∈ (ܶ)ߪ	 −  .௪(ܶ) followsߪ
     (2) We only need to prove that ߪ௪(	݂	(ܶ)) 	⊇ ((ܶ)	݂	)௪ߪ  since ((ܶ)௪ߪ)	݂	 	⊆
 .is always true for any operators ((ܶ)௪ߪ)	݂	
      Assume that ݂	 ∈ 	ߣ is not constant. Let ((ܶ)ߪ)ܪ	 ∉ 	 (ݖ)	݂ (ܶ)) and	݂	௪(ߪ 	−
	ߣ	 = 	 	ݖ) − (ଵߣ ··· ݖ) − (ݖ)	݂ ଵ௞ are the zeros of{௜ߣ} where ,(ݖ)௞)gߣ −  listed) ܩ in ߣ
according to multiplicity) and g(z) 	≠ 	0 for each ݖ	 ∈  Thus	.ܩ	
                          ݂	(ܶ) − 	ߣ = (ܶ	 − .(ଵߣ . … (ܶ	 − 	(21)																																					௞)g(ܶ).ߣ
 
Obviously, ߣ	 ∈ ௜	ߣ if and only if ((ܶ)௪ߪ)	݂	 ∈	  for some ݅. Next we prove	௪(ܶ)ߪ
that ߣ	௜ 	 ∉ 	 	݅ ௪(ܶ) for everyߪ ∈ 	 {1, . . . , ݇}, thus ߣ	 ∉ ((ܶ)	݂	)௪ߪ	 and ((ܶ)௪ߪ)	݂ 	⊇
 .((ܶ)௪ߪ)	݂	
     In fact, for each	݅, ܶ	 − (ܶ)	݂ ௜ is also Fredholm becauseߣ −  is Fredholm. By ߣ
Theorem (3.2.12) and Lemma (3.2.19), ind(T	 − (௜ߣ 	≤ 	0 for each ݅. Since 
	0	 = 	ind(	݂	(ܶ) − (ߣ 	= 	ind(ܶ	 − (ଵߣ 	+··· 	+	ind(ܶ	 − ,(௞ߣ ind(ܶ	 − (௜ߣ 	=
	0	and	ߣ௜ 	 ∉  .݅ ௪(ܶ) for eachߪ
     (3) By Theorem (3.2.13), ܶ is isoloid and it follows from [168] that 
((ܶ)	݂)ߪ                          − ((ܶ)	݂)଴଴ߨ = (ܶ)ߪ)݂	 − 	(22)																														଴଴(ܶ)).ߨ
On the other hand, ݂	(ߪ(ܶ) − ((ܶ)଴଴ߨ 	= ((ܶ)௪ߪ)	݂	 	= 	  .(ܶ)) by (1)-(2)	݂	௪(ߪ
The proof is complete. 
 Theorem (3.2.21)[138]: Let ܶ belong to class ݌)ܨݓ, ,ݎ 	݌ with (ݍ + 	ݎ = 	1, then 
the following assertions hold. 
   (i) If ݉ଶ(ߪ(ܶ)) 	= 	0 where ݉ଶ means the planar Lebesgue measure, then ܶ	is 
normal. 
   (ii) If	ߪ௪(ܶ) = 	0, then		ܶ is compact and normal. 
Theorem (3.2.21)(i) is a generalization of [161] and (ii) is a generalization of [159].  
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Proof . (i) By ߙ଴-hyponormality of  ܶ(݌, -଴ߙ  and Putnam’s inequality for	(ݎ
hyponormal operators [161],	ܶ(݌,  is normal. Hence, (i) follows by Theorem (ݎ
(3.2.18). 
  (ii) Since ߪ௪(ܶ) = 	0, (ܶ)ߪ 	− 	 {0} 	= (ܶ)଴଴ߨ	 	⊆ 	  ௜௦௢(ܶ) by Theoremߪ
(3.2.20)(i). Hence ݉ଶ(ߪ(ܶ)) 	= 	0 and ܶ is normal by (i). 
   Next to prove that ܶ	is compact, we may assume that ߪ(ܶ) − {0} is a countable 
infinite set for ߪ(ܶ) − {0} 	⊆ (ܶ)ߪ ௜௦௢(ܶ). Letߪ	 − {0} 	= 	 |ଵߣ| ଵஶ with{௡ߣ} 	≥
|ଶߣ|	 ≥···≥ 0 and ߣ଴ 	 = 	 lim௡→ஶ ଴ߣ , then	௡|ߣ| 	 = 	0. Since every  ܧఒ೙ has finite 
rank by Theorems (3.2.12) and (3.2.20), for every ߝ	 > 	0,⊕|ఒ೙|வఌ  ఒ೙ also hasܧ	
finite rank. Therefore ܶ is compact [163, page 271].                             □ 
Corollary(3.2.22)[232]: For any operator 
ܶ, |ܶ|(ଵି௥)ker(ܶ	 − (ߣ ⊆ 		 |ܶ|(ଵି௥)ܧ	ఒℋ ఒ൫(1	ܧ	⊇ − ,(ݎ ݌		for		൯ℋݎ = 1 −  . ݎ
Proof. Let ݔ	 ∈ ఒܧ	 , by the formula above we have 
             ฮ(ܶ((1 − ,(ݎ (ݎ − ฮݔ௡|ܶ|(ଵି௥)(ߣ

ଵ/௡	
= ฮ|ܶ|(ଵି௥)(ܶ	 − ฮݔ௡(ߣ

ଵ/௡	
→ 	0.	

 
Hence |ܶ|(ଵି௥)ݔ	 ∈ 	 ఒ൫(1ܧ	 − ,(ݎ  .൯ℋݎ
 
Sec (3.3):  The Operator Equation 
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૛ and its Applications 

 
   A capital letter (such as ܶ	) means a bounded linear operator on a Hilbert space.  
ܶ ≥ 	0	ܽ݊݀	ܶ	 > 0 mean a positive operator and an invertible positive operator, 
respectively. 
    In [133], Pedersen and Takesaki developed the operator equation ܭ	 =  as a ܶܪܶ
useful tool for the noncommutative Radon–Nikodym theorem. By using Douglas’s 
majorization theorem [123], Nakamoto [132] provided a simple proof. 
As generalizations, Bach and Furuta [121,125] gave deep discussion on the 
equation  ܭ	 = ܪ)	ܶ	

భ
೙	ܶ	)௡ . 

Theorem (3.3.1)[118,125]: Let ܪ	and ܭ be bounded positive operators on a Hilbert 
space, and assume that ܪ is nonsingular. 
  (1) The following statements are equivalent for any natural number ݊: 

ܪܽ			(ܽ)	
భ
೙ ≥	 ቀܪ

భ
మ೙ܪܭ

భ
మ೙	ቁ

భ
೙శభ
		 for some ܽ	 ≥ 	0; 

 (ܾ) there exists a unique positive operator ܶ	such that ‖ܶ‖ 	≤ 	ܽ	 ,and 
                              

	ܭ																															 = 	ܶ
భ
మ 	ቀܶ

భ
మܶ	

భ
೙ܶ

భ
మቁ
௡
ܶ
భ
మ			.																																																																	(23)	
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   (2) If there exists a positive operator ܶ	satisfying (23) for some natural number ݊, 
then, for each natural number  ݉	 ≤ 	݊, there exists a positive operator ଵܶ	 
satisfying 

	ܭ                         = 	 ଵܶ

భ
మ 	ቆ ଵܶ

భ
మܪ	

భ
೘ ଵܶ

భ
మ 	ቇ

௠

ଵܶ

భ
మ		.                                                         (24) 

Lin [130] showed a generalization of Theorem (3.3.1)(1) via Furuta inequality 
[124] under the restriction ܽ	 = 	1. 
Theorem (3.3.2)[118,121]: Given any natural number ݊	and ݉ with ݉ < ݊, there 
exist a nonsingular positive operator ܪ and a positive operator ܭ	such that Eq. (24) 
is solvable and (23) is unsolvable. 
  In this section  , as a continuation, we consider the following equation for  
	݌ > 0, 	ݎ > 0 and ݌	 ≥ 	ߜ >  ݎ−

௣ܭ	                           	= ܪ	
ഃ
మ		ܶ

భ
మ(ܶ

భ
మ	ܪఋା௥ܶ

భ
మ		)

೛షഃ
ഃశೝ 	ܶ

భ
మ	ܪ

ഃ
మ 			.																																									(25) 

Obviously, the special case ݌	 = 	1, 	ݎ = 	 ଵ
௡
  and ߜ	 = 	0 of (25) becomes (23). 

Theorems (3.3.1)–(3.3.2) are extended to Theorems (3.3.4)–(3.3.5), respectively. 
   Some applications are obtained. We show that the inclusion relations in the 
following result are strict. See Theorem (3.3.3) below. 
Theorem (3.3.3)[118,128,129]: Let ܶ be a class ݌)ܣݓ,  is a	operator, then ܶ (ݎ
class ݌)ܣݓଵ, ଵ݌ ଵ)  operator forݎ 	 ≥ 	݌ > 0 and ݎଵ ≥ 	ݎ > 0. 
  A kind of polar decomposition of Aluthge transformation [119] is given. See 
Theorems (3.3.14)–(3.3.15) below. 
Theorem (3.3.4)[118,123]: The following assertions are equivalent for any 
operators ܣ	and	ܤ. 
∗	ܣܣ	(1)  ≤ 	ߣ	some	for	∗ܤܤߣ ≥ 	0.	
 (2)	There	exists	ܽ	ܥ	ݐ݅ݓℎ	ܣ	 = ‖ܥ‖	and	ܥܤ	 ≤ 	.ߣ
Lemma (3.3.5)[118,126,127]: Let ߙ	 ∈ 	ܴ and ܺ be invertible. Then 
           (ܺ∗ܺ)ఈ 	 = 	 ܺ∗(ܺܺ∗)ఈିଵܺ,	
especially in case ߙ	 ≥ 1 the equality holds without invertibility of ܺ. 
Theorem (3.3.6)[118,137,139]: (Furuta type inequality). Let ܣ, 	ܤ ≥ ,	଴ߙ  ,0 ଴	ߚ >
	0, ଴	ߚ− ଴ߜ	> ,଴ߙ	≥ ଴	ߚ− 	≤ 	 ଴̅ߜ 	 <  .଴ߙ
 
(1) If  0	 ≤ ଴ߜ	 ≤  ଴, thenߙ	
 

     ൬ܤ
ഁ	బ
మ ܤఈబܣ

ഁ	బ
మ ൰		

ഁ	బశഃబ
ഁ	బశഀబ 		≥ బାఋబ	ఉܤ 		⟹ ൬ܤ

ഁ
మܣఈܤ

ഁ
మ൰		

ഁశഃబ
ഁశഀ 				 ≥  ఉାఋబܤ

for any ߙ	 ≥ 	ߚ	and	଴ߙ	 ≥  .଴	ߚ
 (2)	If	 − ଴ߚ ଴̅ߜ	≥ ≤ (ܣ)ܰ		݀݊ܽ					0	 	⊂ ,(ܤ)ܰ	 then	

ఈబାఋഥబܣ         	≥ 	 ቀܣ
ഀ	బ
మ ܣఉబܤ

ഀ	బ
మ ቁ		

ഀ	బశഃഥబ
ഀ	బశഁబ 		⟹ ఈାఋഥబܣ	 	≥ 	 ቀܣ

ഀ
మܤఉܣ

ഀ
మቁ		

ഀశഃഥబ
ഀశഁబ	, 
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for  any ߙ	 ≥ 	 	ߚ	and	଴ߙ ≥  .଴	ߚ	
Theorem (3.3.6) is important to the proof of (2) of Theorem (3.3.8). 
Lemma (3.3,7)[118,134]: Let ܽ, ܾ, ݀	and ߠ	be real numbers and satisfy 	ܽ + ܾ	 >

0, ܾܽ	 = 	 ݀ଶ	, ܽ݊݀	ܵ	 = 	 ൬ ܽ ݀݁ି௜ఏ	
݀݁௜ఏ 	 ܾ

൰		. Then 

                            ܵ௣ 	= 	 (ܽ	 + 	ܾ)௣ିଵܵ				for		݌	 > 0.	
Theorem (3.3.8)[118]: Let ܪ and ܭ	be bounded positive operators on a Hilbert 
space, and assume that ܪ	is nonsingular. 
(1)   The following statements are equivalent for any ݌	 > 0, 	ݎ > 0 and  

	݌  ≥ 	ߜ ≥ 	0: 

ఋା௥ܪܽ(ܽ)    	≥ 	 ቀܪ
ೝ
మܭ௣ܪ

ೝ
మቁ

ഃశೝ
೛శೝ 			for	some			ܽ	 ≥ 0; 

			(ܾ) there exists a unique positive operator ܶ	satisfies ‖ܶ	‖ ≤ 	ܽ and (25). 
    If in additional ܪ is invertible, (1) holds for ݌	 ≥ 	ߜ >  .ݎ−
(2) If there exists a positive operator ܶ	satisfying (25) for fixed ݌	 > 0, 	ݎ > 	0 and 
	݌ ≥ 	ߜ	 ≥ 	0, then, for ݌	ଵ ≥ ଵݎ and ݌	 ≥   there exists a positive operator ,ݎ	
ଵܶ	satisfying 

௣భܭ                              	= ଵܪ	
ഃ
మ		 ଵܶ

భ
మ( ଵܶ

భ
మ	ܪఋା௥భ

ଵܶ

భ
మ		)

೛భషഃ
ഃశೝభ

	
ଵܶ

భ
మ	ܪଵ

ഃ
మ				.																																	(26) 

 
Lin [130] showed case ߜ	 = 	௣ି௡௥

௡ାଵ
	 of Theorem(3.3.8)(1) under some restrictions. 

Proof .The proof is similar to [125]. 
(ܽ) 	⇒ (ܾ). By Theorem (3.3.4), there exists a ܵ	such that 

ܪ)                
ೝ
మܭ௣ܪ

ೝ
మ)

ഃశೝ
మ(೛శೝ) 			= ܪ

ഃశೝ
మ 		ܵ = ܪ∗ܵ

ഃశೝ
మ 		.	 

Put 	ܶ = 	ܵܵ∗ , then 	‖ܶ	‖ ≤ 	ܽ and by Lemma (3.3.7), 
 

ܪ                    
ೝ
మܭ௣ܪ

ೝ
మ 	= ܪ

ഃశೝ
మ 	ܶ

భ
మ(ܶ

భ
మ	ܪఋା௥ܶ

భ
మ		)

೛షഃ
ഃశೝ	ܶ

భ
మ			ܪ

ഃశೝ
మ 		.	 

So (25) holds for ܪ is singular. 
(ܾ) 	⇒ (ܽ). For a with ‖ܶ	‖ ≤ 	ܽ, by Lemma (3.3.7), (25) implies 

    ቀܪ
ೝ
మܭ௣ܪ

ೝ
మቁ

ഃశೝ
(೛శೝ) 	 = ൭ܪ

ഃశೝ
మ 	ܶ

భ
మ ቀܶ

భ
మ	ܪఋା௥ܶ

భ
మ		ቁ

೛షഃ
ഃశೝ	

ܶ
భ
మ			ܪ

ഃశೝ
మ 	൱

ഃశೝ
(೛శೝ)

                   

 

                               = ܪ
ഃశೝ
మ ܪ	ܶ

ഃశೝ
మ ≤  .                                                     (27)		ఋା௥	ܪ	ܽ

To show the uniqueness of  ܶ	. Assume that ܼ also satisfies (25), by (27) we have 

ܪ             
ഃశೝ
మ ܪ	ܼ

ഃశೝ
మ = ቀܪ

ೝ
మܭ௣ܪ

ೝ
మቁ

ഃశೝ
(೛శೝ) = ܪ

ഃశೝ
మ ܪ	ܶ	

ഃశೝ
మ ,	 

therefore ܼ	 = 	ܶ	. 
Next to prove (2). By the assumption and (1), (a) holds for some ܽ	 > 0, that is 



91 
 

          		൬ܽ
೛శೝ

೛(ഃశೝ)		ܪ൰		ഃశೝ 			 ≥ 	 ൭൬ܽ
೛శೝ

೛(ഃశೝ)		ܪ൰
ೝ
మ
௣ܭ		 	൬ܽ

೛శೝ
೛(ഃశೝ)		ܪ൰

ೝ
మ
		൱

ഃశೝ
(೛శೝ)

	                 (28) 

So that the following follows from (2) of Theorem (3.3.8): 

        ൬ܽ
೛శೝ

೛(ഃశೝ)		ܪ൰		ഃశೝభ 			 ≥ 	 ൭൬ܽ
೛శೝ

೛(ഃశೝ)		ܪ൰
ೝభ
మ
௣భܭ		 	൬ܽ

೛శೝ
೛(ഃశೝ)		ܪ൰

ೝభ
మ
		൱

ഃశೝభ
(೛భశೝభ)

	,	   

that is 

                     ܽ
೛శೝ

೛(ഃశೝ)		.		
೛భ(ഃశೝభ)
(೛భశೝభ) ఋା௥భ	ܪ			 		 ≥ 	 ቀܪ

ೝభ
మ ܪ௣భܭ

ೝభ
మ ቁ

ഃశೝభ
(೛భశೝభ)				. 

Therefore (26) is solvable.   □ 
Remark (3.3.9)[118]: For each ݌	 > 	0, 	ݎ > 	0 and min{݌, 1} 	≥ 	ߜ	 >  it is ,ݎ−	
clear that the condition (a) is satisfied if ܪ	is invertible or, more generally 

 ܽ	
೛శೝ

೛(ഃశೝ)		ܪ ≥ 	ܽ for some ܭ ≥ 	0 by (28) and Furuta inequality [124]. In the first 

case, the solution ܶ	to (25) is given by ܶ	 = ܪ	
ష(ഃశೝ)

మ 	ቀܪ
ೝ
మܭ௣ܪ

ೝ
మቁ

ഃశೝ
(೛శೝ) ܪ

ష(ഃశೝ)
మ 			 by 

(27). 
Theorem (3.3.10)[118]: Given any positive numbers ݌, ,ݎ ଵݎ  with	ଵݎ  and	ଵ݌ 		>  ,ݎ	
there exist a nonsingular positive operator ܪ and a positive operator ܭ	such that 
case ߜ	 = 	0 of Eq. (26) is solvable and case ߜ	 = 	0 of (25) is unsolvable. To give 
proofs, the following results are needful. 
Proof . The proof is inspired by [121]. 

For a natural number ݇, let	ܣ௞ = 	ቀ
1 0
0 ݇ିସቁ and ܤ௞ = 	

ଵ
ଵା௞మ

ቀ 1 ݇ିଵ
݇ିଵ ݇ିଶ

ቁ . Take  

	ܪ  =⊕௞ୀଵ
ஶ 	 ௞ܣ

భ
ೝభ 						 and ܭ	 =⊕௞ୀଵ

ஶ ௞ܭ	
భ
೛భ			where		ܭ௞ 	= ௞ܣ	

షభ
మ ௞ܤ

೛భశೝభ
ೝభ ௞ܣ

షభ
మ 		. By Lemma 

௞ܭ		 ,(3.3.9) 	 = 	
ଵ

(ଵା௞మ)௞మ೛భ/ೝభ
	ቀ1 ݇
݇ ݇ଶቁ			, hence 	ብܭ௞

భ
೛భብ = ଶ/௥భିܭ ≤ 1		and ܭ is 

meaningful.	
    Next to show that the operators ܪ and ܭ satisfy the conditions. 

In fact, ܪ௥భ − ቀܪ
ೝభ
మ ܪ௣భܭ

ೝభ
మ ቁ

ೝభ
(೛భశೝభ) 	 =⊕௞ୀଵ

ஶ 	 ௞ܣ) − (௞ܤ ≥ 0 and this implies case 
	ߜ = 	0 of (26) is solvable by (1) of Theorem (3.3.8). Meanwhile, case ߜ	 = 	0 of 
(25) is unsolvable for ܪ	and ܭ here. Otherwise, also by (1) of Theorem (3.3.8), 
	ܽ satisfy (a) for some ܭ and	ܪ > 0. This implies that 
 

௞ܣܽ    
௥/௥భ 		 ≥ ቆܣ௞

ೝ
మೝభܭ௞

೛
೛భܣ௞

ೝ
మೝభቇ	

ೝ
೛శೝ				. 
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By Lemma (3.3.7), 
 

   ܽ ≥ ௞ܣ
షೝ
మೝభ	 		ቊܣ௞

ೝ
మೝభ 	 ଵ

(ଵା௞మ)௞మ೛/ೝభ
ቀ1 ݇
݇ ݇ଶቁܣ௞

ೝ
మೝభቋ

ೝ
೛శೝ

௞ܣ		
షೝ
మೝభ	 			 

 

௞ܣ		=   
షೝ
మೝభ	 		ቀ ଵ

(ଵା௞మ)௞మ೛/ೝభ
ቁ

ೝ
೛శೝ 	ቀ ଵ

ଵା௞మ(భషమೝ/ೝభ )
ቁ

೛
೛శೝ 	൬ 1 ݇ଵିଶ௥/௥భ

݇ଵିଶ௥/௥భ ݇ଶ(ଵିଶ௥/ೝభ)
൰	ܣ௞

షೝ
మೝభ		 

 

   = ቀ ଵ
(ଵା௞మ)௞మ೛/ೝభ

ቁ
ೝ

೛శೝ 	ቀ ଵ

ଵା௞మ(భషమೝ/ೝభ)
ቁ

೛
೛శೝ 	ቀ1 ݇

݇ ݇ଶቁ			.                                             (29) 
 
Therefore, 

ܽ	 ≥ ቆ	 ଵା௞మ

௞మೝ/ೝభቀଵା௞మ(భషమೝ/ೝభ)ቁ
ቇ

೛
೛శೝ

=	ቆ	 ଵା௞మ

ቀ(௞మೝ/ೝభା௞మ(భష	ೝ/ೝభ )ቁ
ቇ

೛
೛శೝ

	.                                (30) 

So that ܽ	 ≥ ∞ by letting ݇ → ∞for max{2ݎ/ݎଵ, 2(1	 − {(ଵݎ/ݎ 	< 	2. This is a 
contradiction.     □ 
A fact in the proof of Theorem (3.3.10) is useful. 
Theorem (3.3.11)[118]: Given any positive numbers ݌, ,ݎ ଵݎ with	ଵݎ ଵ and݌ 	>  ,ݎ	
there exist invertible positive operators ܪ and ܭ such that 

௥భ	ܪ 		≥ 	 ቀܪ
௥భ
ଶܭ௣భܪ

௥భ
ଶ ቁ

௥భ
(௣భା௥భ) 					 , ௥	ܪܽ 		 ≱ 	 ቀܪ

௥
ଶܭ௣ܪ

௥
ଶቁ

௥
௣ା௥

				,	 
where a	is an arbitrary positive number. 
Proof. The operators ܪ	and ܭ in the proof of Theorem (3.3.10) are suitable. □ 
We Show Some Applications  . For ݍ	 > 	0, ܶ is called ܽ	ݍ-hyponormal operator if 
(ܶ∗ܶ	)௤ 	 ≥ (ܶ	ܶ∗)௤	, where ܶ∗ is the adjoint operator of  ܶ	. If ݍ	 = 	1, ܶ is called a 
hyponormal operator and if ݍ	 = 	1/2, ܶ is called a semi-hyponormal operator. See 
Martin and Putinar [131] and Xia [135] for related topics and basic properties of  
hyponormal operators. 
   Aluthge [119] introduced Aluthge transformation ෨ܶ 	= 	 |ܶ	|ଵ/ଶܷ|ܶ	|ଵ/ଶ where the 
polar decomposition of ܶ is ܶ	 = 	ܷ|ܶ	|. For each ݌	 > 0 and ݎ	 > 0, ෨ܶ௣,௥ 	=
	|ܶ	|௣ܷ|ܶ	|௥ is called generalized Aluthge transformation. 
  As a generalization of ݍ-hyponormal operators, Ito [128] introduced class 
,݌)ܣݓ  defined by (ݎ

(|ܶ∗|௥|ܶ|ଶ௣|ܶ∗|௥)
௥

௣ା௥	 ≥	 |ܶ∗|ଶ௥			and			(|ܶ|௣|ܶ∗|ଶ௥|ܶ|௣)	
௣

௣ା௥ 		≤ |ܶ|ଶ௣		. 
See[120,129,137,138] for related topics. 
Lemma (3.3.12)[118]: For positive operators ܣ	and ܤ	on a Hilbert space ℋdefine 
operators ܷ	and ܦ on   ⊕௞ୀିஶ

ஶ = ℋ௞   where ℋ௞	 ≅ ℋ	  Has follows: 
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





































0
1

)0(
1
0

U   ,       









































A

A

B

D

2
1

2
1

2
1

)(  

where	(·) shows the place of the (0, 0) matrix element, and ܶ	 =  Then the .ܦܷ	
following assertions hold for each  ݌	 > 0, 	ݎ > 	ߚ	݀݊ܽ	0 > 0: 

 (1)		(|ܶ∗|௥|ܶ|ଶ௣|ܶ∗|௥)ఉ	 ≥	 |ܶ∗|ଶ(௣ା௥)ఉ		if	and	only	if		 ቀܤ
ೝ
మܣ௣ܤ

ೝ
మቁ
ఉ
	≥   .	ఉ(௣ା௥)ܤ

	(2)		|ܶ	|ଶ(௣ା௥)ఉ 	≥ 	 (|ܶ	|௣|ܶ∗|ଶ௥|ܶ	|௣)ఉ 	if	and	only	if	ܣ(௣ା௥)ఉ ≥ ܣ)	
೛
మܤ௥ܣ

೛
మ)ఉ	. 

 
This example appears in [140,141] and is a modification of [122, Theorem 2] and 
[136, Lemma 1]. 
Proof. By easy calculation, 
 



































A

A

B

T )(
2

  ,       



































A

B

B

T )(
2

  , 

Therefore 






































A
BAB

B

TTT
rp

rpr

rp

rpr

)( 22

2
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and 







































A

ABA

B

TTT
rp

prp

rp

prp

)( 22

2

 , 

By comparing the (0, 0) elements of the operator matrices above, the assertions 
hold.    □ 
Theorem (3.3.13)[118]: Given any positive numbers ݌, ,ݎ ଵݎ ଵwithݎ ଵ and݌ >  ,ݎ	
there exists an operator ܶ	such that ܶ is a class ݌)ܣݓଵ,  ଵ) operator but not a classݎ
,݌)ܣݓ  operator.Theorem (3.3.13) implies that the inclusion relations in Theorem	(ݎ
(3.3.3) are strict. 
Proof .  By Theorem (3.3.11), there exist invertible positive operators ܪ and ܭ on a 
Hilbert space ℋ such that 

௥భ	ܪ 		 ≥ 	 ቀܪ
௥భ
ଶܭ௣భܪ

௥భ
ଶ ቁ

௥భ
(௣భା௥భ) 					 , ௥	ܪ 		≱ 	 ቀܪ

௥
ଶܭ௣ܪ

௥
ଶቁ

௥
௣ା௥

		.	 
 
 Let ܣ	 = 	ܤ and ܪ	 = on  ⊕௞ୀିஶ	define an operator ܶ ,ܭ	

ஶ = ℋ௞   where ℋ௞	 = ℋ	  
as Lemma (3.3.12). Then ܶ a class     ݌)ܣݓଵ,  operator but not a class	ଵ)ݎ
,݌)ܣݓ  □  .operator by Lemma (3.3.12)	(ݎ
  Aluthge  [119] showed a kind of polar decomposition of Aluthge transformation 
on invertible ݍ-hyponormal operators via the equation  
	ܭ   =  .	ܶܪܶ
Theorem (3.3.14)[118,119]: Let ܶ be a invertible	ݍ-hyponormal operator and the 
polar decomposition of  ܶ	෩be  ෨ܶ 	 = 	 ෩ܷ|ܶ	෩ |. Then |ܶ	෩ | 	= 	 |ܶ	|ଵ/ଶܵିଵ|ܶ	|ଵ/ଶ and   
ܷ	෩ = 	 |ܶ	|ଵ/ଶܷܵ|ܶ	|ିଵ/ଶ where	ܵ is the solution to the equation  |ܶ	| 	= 	ܷܵ∗|ܶ	|ܷܵ. 
  The following assertion say that this result holds for any invertible operator T . 
Theorem (3.3.15)[118]:Let ܶ be an invertible operator and the polar 
decomposition of ෨ܶ௣,௥	ܾ݁	 ෨ܶ௣,௥	 = 	෩ܷ௣,௥	| ෨ܶ௣,௥		|. ܶℎ݁݊	| ෨ܶ௣,௥	| 	= |ܶ	|௥ܵିଵ|ܶ	|௥	and  
	෩ܷ௣,௥ = |ܶ	|௣ܷܵ|ܶ	|ି௥	where S	is the solution to the equation  |ܶ	|	ଶ௥ =
	ܷܵ∗|ܶ	|ଶ௣ܷܵ. 
Proof. By Remark (3.3.9), the solution ܵ to |ܶ	|	ଶ௥ = 	ܷܵ∗|ܶ	|ଶ௣ܷܵ. exists and  
ܵ	 = ܪ	

షభ
మ	 ܪ)	

భ
మ	ܪܭ

భ
మ		)

భ
మ	ܪ

షభ
మ    where  ܪ	 =	ܷ∗|ܶ	|ଶ௣ܷ and 	= 	 |ܶ	|ଶ௥ . Hence ܵ	is 

invertible for ܶ is invertible and 
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         		ห ෨ܶ௣,௥	ห = 		 (|ܶ	|௥ܵିଵ|ܶ	|ଶ௥ܵିଵ|ܶ	|௥)ଵ/ଶ 	 = |ܶ	|௥ܵିଵ|ܶ	|௥		. 
Moreover,  	෩ܷ௣,௥ = ෨ܶ௣,௥		| ෨ܶ௣,௥		|ିଵ =	 |ܶ	|௣ܷܵ|ܶ	|ି௥	.   □ 
Corollary(3.3.16)[232]:  Given any positive numbers ݌, ଵݎ − ߳	,   , there exist a	ଵ݌
nonsingular positive operator ܪ and a positive operator ܭ	such that case ߜ	 = 	0 of 
Eq. (26) is solvable and case ߜ	 = 	0 of (25) is unsolvable. To give proofs, the 
following results are needful. 
Proof . The proof is inspired by [121]. 

For a natural number ݇, ௞ܣ	ݐ݈݁ =	ቀ
1 0
0 ݇ିସቁ and ܤ௞ =	

ଵ
ଵା௞మ

ቀ 1 ݇ିଵ
݇ିଵ ݇ିଶ

ቁ . Take  

	ܪ  =⊕௞ୀଵ
ஶ 	 ௞ܣ

భ
ೝభ 						 and ܭ	 =⊕௞ୀଵ

ஶ ௞ܭ	

భ
೛భ			where		ܭ௞ 	= ௞ܣ	

షభ
మ ௞ܤ

೛భశೝభ
ೝభ ௞ܣ

షభ
మ 		. By Lemma 

௞ܭ		 ,(3.3.9) 	 = 	
ଵ

(ଵା௞మ)௞మ೛భ/ೝభ
	ቀ1 ݇
݇ ݇ଶቁ			, hence 	ብܭ௞

భ
೛భብ = ଶ/௥భିܭ ≤ 1		and ܭ is 

meaningful.	
    Next to show that the operators ܪ and ܭ satisfy the conditions. 

In fact, ܪ௥భ − ቀܪ
ೝభ
మ ܪ௣భܭ

ೝభ
మ ቁ

ೝభ
(೛భశೝభ) 	 =⊕௞ୀଵ

ஶ 	 ௞ܣ) − (௞ܤ ≥ 0 and this implies case 
	ߜ = 	0 of (26) is solvable by (1) of Theorem (3.3.8). Meanwhile, case ߜ	 = 	0 of 
(25) is unsolvable for ܪ	and ܭ here. Otherwise, also by (1) of Theorem (3.3.8), 
	ܽ satisfy (a) for some ܭ and	ܪ > 0. This implies that 
 

௞ܣܽ    
(௥భିఢ	)/௥భ 		≥ ቆܣ௞

(ೝభషച	)
మೝభ ௞ܭ

೛
೛భܣ௞

(ೝభషച	)
మೝభ ቇ	

(ೝభషച	)
೛శ(ೝభషച	)				. 

By Lemma (3.3.7), 

   ܽ ≥ ௞ܣ
ష(ೝభషച	)
మೝభ	 		ቊܣ௞

(ೝభషച	)
మೝభ 	 ଵ

(ଵା௞మ)௞మ೛/ೝభ
ቀ1 ݇
݇ ݇ଶ

ቁܣ௞
(ೝభషച	)
మೝభ ቋ

(ೝభషച	)
೛శೝ

௞ܣ		
ష(ೝభషച	)
మೝభ	 			 

   = ௞ܣ

ష(ೝభషച	)
మೝభ	 	൬ ଵ

(ଵା௞మ)௞మ೛/ೝభ
൰
(ೝభషച	)
೛శೝ

	ቀ ଵ

ଵା௞మ(భషమ(ೝభషച	)/ೝభ)
ቁ

೛
೛శ(ೝభషച	) ൬ 1 ݇ଵିଶ(௥భିఢ	)/௥భ

݇ଵିଶ(௥భିఢ	)/௥భ ݇ଶ(ଵିଶ(௥భିఢ	)/ೝభ)
൰ ௞ܣ	

ష(ೝభషച	)
మೝభ	 	 

 

   = ൬ ଵ
(ଵା௞మ)௞మ೛/ೝభ

൰
(ೝభషച	)

೛శ(ೝభషച	) 	ቀ ଵ

ଵା௞మ(భషమ(ೝభషച	)/ೝభ)
ቁ

೛
೛శ(ೝభషച	) 	ቀ1 ݇

݇ ݇ଶቁ			.                  

 
Therefore, 

ܽ	 ≥ ቆ	 ଵା௞మ

௞మ(ೝభషച	)/ೝభቀଵା௞మ(భషమ(ೝభషച	)/ೝభ )ቁ
ቇ

೛
೛శ(ೝభషച	)

=	ቆ	 ଵା௞మ

ቀ(௞మ(ೝభషച	)/ೝభା௞మ(భష	(ೝభషച	)/ೝభ)ቁ
ቇ

೛
೛శ(ೝభషച	)

	.       

 
So that ܽ	 ≥ ∞ by letting ݇ → ∞for max{2(ݎଵ − ,ଵݎ/(	߳ 2(1	 − ଵݎ) − {(ଵݎ/(	߳ 	< 	2. 
This is a contradiction.     □ 


