Chapter 3
Powers and Spectrum of Class wF (p, r, q) Operators with an
Operators Equation

In this chapter we discuss powers of class wF (p, 1, q) operators for1 = p >
0, 1>7r >0 and g = 1; and an example is given on powers of class

wF (p,7,q) operators. We show that every class wF (p, 1, q) operator has
SVEP and property (), and Weyl’s theorem holds for f(T) when

f E H (G(T)) As a continuation, we  consider the equation KP =
-5 1 6

1
Hz T2(Tz HO¥"T> )s+r T2Hz .where p>0,r>0 and p=8>-r. As
applications, we show that the inclusion relations among class wA(p, ) operators
are strict and show a generalization of Aluthge’s result.

Sec (3.1): Powers of Class wF (p, r, q) Operators

Let H be a complex Hilbert space and B(H) be the algebra of all bounded linear
operators in H, and a capital letter (such as T) denote an element of B(H). An
operator T is said to be k-hyponormal for k > 0 if (T*T)* > (TT*)k, where T*
is the adjoint operator of T. A k-hyponormal operator T is called hyponormal if
k = 1; semi-hyponormal if k = 1/2. Hyponormal and semi-hyponormal
operators have been studied by many authors, such as [119,171,159,174,135]. It is
clear that every k-hyponormal operator is g-hyponormal for 0 < g < k by the
Lowner-Heinz theorem (A = B = 0ensures A > B% for any 1 > a = 0). An
invertible operator T is said to be log-hyponormal if log T*T > log TT", see
[142,158]. Every invertible k-hyponormal operator for k > 0 is log-hyponormal
since log t is an operator monotone function.log-hyponormality is sometimes
regarded as 0-hyponormal since (XX — 1)/k — logXask — 0forX > 0.

As generalizations of k-hyponormal and log-hyponormal operators, many
authors introduced many classes of operators, see the following.

Definition (3.1.1)[141,146,148]:
(1) Forp > Oandr > 0, an operator T belongs to class A(p, r) if
T

AT ITIZZ’IT*Ir)m > [T
(2) Forp > 0,r = 0and g = 1, an operator T belongs to class F(p,r,q) if
1 2(p+7)

AT*["ITIPPIT ) 2 [T 4
For each p > 0 and r > 0, class A(p,r) contains all p-hyponormal and log-
hyponormal operators. An operator T is a class A(k) operator ([147]) if and only if
T is a class A(k, 1) operator, T is a class A(1) operator if and only if T is a class A
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operator ([147]), and T is a class A(p,r) operator if and only if T is a class

F (p, T, pTH) operator.

Aluthge-Wang [143] introduced w-hyponormal operators defined by|7"| > |T| =
= U|T|and T = |T|Y?U|T|"/? is
called the Aluthge transformation of T. As a generalization of w-hyponormality,
Ito [128] and Yang-Yuan [139,138] introduced the classes wA(p,r) and
wF (p, 1, q) respectively.

Definition (3.1.2)[141]:
(1) Forp > 0,r > 0,an operator T belongs to class wA(p, ) if

(T "|T|?P|T" Ir)p” > |T°|*"and |T|*P = (IT|P|T" IerTIp)p”

(2) Forp > 0,r = 0,and g = 1, an operator T belongs to class wF (p, 1, q) if

2(ptr) 1
(T FITRR Ty = (T and (2?0 073)
1
> (TPITPTR)
denoting (1 —q 1)™! by q* (whenq > 1) becauseq and (1—q 1)1 are a
couple of conjugate exponents.
An operator T is a w-hyponormal operator if and only if T is a class WA(% ,% )

operator, T is a class wA(p, r) operator if and only if T is a class wF(p, r,pTH)

operator.

Ito [129] showed that the class A(p, ) coincides with the class wA(p, r) for each
p > 0andr > 0, class A coincides with class wA(1,1). Foreachp > 0,r =0
and ¢ = 1 such that rq < p + 1, [139] showed that class wF (p, 1, q) coincides
with class F(p,1, q).

Halmos ([171, Problem 209]) gave an example of a hyponormal operator T
whose square T? is not hyponormal. This problem has been studied by many
authors, see [169,170,173,175,176]. Aluthge-Wang [169] showed that the operator
T ™ is (k/n)-hyponormal for any positive integer n if T is k-hyponormal. In this
section, we firstly discuss powers of class wF(p,r, q) operators for 1 =>p >
0,1 = r > 0and g = 1. Secondly, we shall give an example on powers of class
wF (p, 7, q) operators.

Theorem (3.1.3)[129,141]: Let 1 > p > 0,1 = 1r > 0. Then T™" is a class

DT
wA( ;,;) operator.
Theorem(3.1.4)[172,141]: Letl > p > 0,1 > r 20,g = 1andrq < p+
r.If T is an invertible class F(p, r,q) operator, then T " is a F( %,% , q) operator.
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Theorem (3.1.5)[139,141]: Let 1 = p > 0,1 2r 20;,q = 1 whenr = 0
and pTH > q =1 whenr > 0.If T isa class wF(p,r,q) operator, then T " is a

class wF ( %,% ,q) operator.

Here we generalize them in theorem (3.1.6) .
Lemma (3.1.6)[127,141]: Let « € R and X be invertible. Then (X*X)¢ =
X*(XX*)* 1X holds, especially in the case @ = 1, Lemma (3.1.6)holds without
invertibility of X.
Theorem (3.1.7)[129,141]: Let A,B = 0. Then for each p,r = 0, the following
assertions hold:

r L 2 A
(1) (BzAp Bz) T > BT = (AzBr Az) bt < AP,
P T T r
(2) (42B7A2) 77 < A" and N(A) C N(B) = (B2AP B:) o7 2B,
2
Theorem (3.1.8)[137,141]: Let T be a class wA operator. Then |T *[n >--- >
2

IT 2| =|T|? and |T*|?> = |[(T?)*|=---= |(T™*|» hold.
Theorem (3.1.9)[139,141]: Let T be a class wF(py, 1o, qp) operator for p, >
0,79 = 0and gy = 1. Then the following assertions hold.
(1) Ifq = goandryq < py + 1y, then T is a class WF (py, 7y, @) operator.
2) Ifq* =2qy", poq" < po + 1o and N(T) c N(T*), then T 1is a class
wF (po , 79, q) Operator.
(3) Ifrq < p + r, then class wF (p, 1, q) coincides with class F(p, 1, q).

Theorem (3.1.10)[139,141]: Let T be a class wF (po ,ro,?i:o) operator for
0 0

Po > 0,1y =20and — 1y < 8§y < py. Then T is a class wF (p,

r,;)t:'r) operator
0

forp = ppandr = r,.

Proposition(3.1.11)[139,141]:LetA,B = 0; 1 =p > 0, 1 = r 0O; pTH =

q = 1. Then the following assertions hold.
1 pHT 1 pHT

(1) If (BgAP B:)7 =B«  and B>C,then (CzAp c) 7 =Cq
ptr Py 1
(2)If B 4 (Bch BE) 4 ,A > B and the condition
1

(*)If hm BZ X, = 0and lim A2 x, exists, then lim Az x, =0
n—-oo n—-oo
ptr r r l
holds for any sequence of vectors {x,}, then A 4 (AEC p AE)
Theorem (3.1.12)[141]: Let1l = p > 0,1 =271 > 0; q > 220 If Tisaclass

WF (p,1,q) operator such that N(T) € N(T*),then T"™ isa class WF( ;,; ,q)

operator.
In order to prove the theorem, we require the following assertions.
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Proof. Put§ = pqi — r,then —r < § < 0 by the hypothesis. Moreover, if
r+6 p-§6

AT*[ITPPIT P 2 T PO and T2 > (IT|P|T*]7|T|P) P+,

then T is a class wA operator by Theorem (3.1.10) and Theorem (3.1.7), so that the
2 2
following hold by taking A,, = |T"|» and B, = |[(T™)*|» in Theorem (3.1.8)

Ap=>--->4, = Ayand B, = B, >--->B,. (1)
Meanwhile, A,, and A; satisfy the following for any sequence of vectors {x,,},
(see [137])

1 1 1
if imy,_,00 A7 Xy = 0 and lim,,_, A2 X, exists, then lim,,_,, 47 x, = 0.
Then the following holds by Proposition (3.1.11)

p+r p Py L p Py =
A) T = ((A)2(B) (4)2) T = ((A)2(B) (A)2) T,
and it follows that
2(p-1)

2(p=r) P L p L
|T™| na® = (|T"|=|(T™)*|n|T"|n)

We assert that N(T) < N(T"), implies N(T™) € N((T™)").
In fact,
x€ NTH) = T"1 xe NT) € N(T,
= T" 2 xe N(T*T) =N(T) S N(T)

= x € N(T) € N(T")
= x € N(T*) € N((T)"),
thus

ol 2P A s
(1™ e | (T ) @ = (| na
holds by Theorem (3.1.7) and the Lowner-Heinz theorem, so that T™ is a class

wF ( %,% ,q) operator. O

Theorem (3.1.13)[141]: (Furuta inequality [124], in brief FI). [fA = B = 0, then
foreach r = 0,

0 (Bz4” B2) > (B2BP B:) .
and
(i) (Az47 A7) > (AzBP 42) a

holdforp =20andgq = 1with(1 + r)g=p + 1.
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Theorem(3.1.13)yields the Lowner-Heinz inequality by putting
r = 0in (i) or (ii) , of FI. It was shown by Tanahashi [134] that the domain
drawn for p, g and r in the Figure is the best possible for Theorem (3.1.13).

(0, —r)/ e ;

Theorem (3.1.14)[141]: Let A and B be positive operators on H,U and D be
operators On @y -_, Hj ,where H, = H, as follows

-0
10

U= 1 (0
10

1 0
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where (-) shows the place of the (0,0) matrix element, and T = UD. Then the
following assertions hold.

(DIf T isaclass wF(p,r,q) operator for 1 >p > 0,1 > r > 0,q = 1 and
rq < p + r,thenT"isa WF(%,% ,q) operator.

(2) If T is a class wF (p, 1, q) operator such that N(T) € N(T*), 1= p > 0,
1>r=>0q=1landrq > p + r,thenT" isawF(%,%,q) operator.
Proof .By simple calculations ,we have

2

(4)

- (8)
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Therefore

o
: B
- (B' A’ B

)
* 2p

T T

Ap+}"

And

o
2r P Bp+r » »
T| - (A°B’ A

P %

p+r

Ap+}"

Thus the following hold forn > 2
T T"

BAB.
B A" B
A g

77

Ap+}"




And
T

B
4B 4

Proof of (1). T 1s a class wF (p, 1, q) operator is equivalent to the following
ry 1 ptr p+r 1

(B2aPB2) @ 2B 4 and AT > (A2B"A2) T |
T™ belongs to class wF (

(i)

(BzAp Bz) 5 > B q

p+r
>B 4

SI"GS |"3

1_
z)q

1
I AN I . J\ T \a I R AN b
((AZB"‘J AZ) 2n AP (AZB"‘J AZ) Zn) > (AZB"‘J AZ) nq

1,2,..

\

where j = on — 1.
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We only prove (2) because of Theorem (3.1.7).
Step 1. To show

T/ j . Jyp 1\ L
(Bz (BzAn—f Bi) ﬁBi) :
forj = 1,2,...,.n — 1.

In fact, T 1s a class wF (p,7,q) operatorfor1 =p > 0,1 > r = 0,q = 1and

rq < p + rimplies T belongs to class wF (j,n - j,ﬁj); where & = pTH -

by Theorem (3.1.10) and Theorem (3.1.7), thus

p+r
q

J . J\ 6+j . . n-j . n—j\ n—j-§
(B24n~7 B2) & 2 BT and AvI0 2 (4T BIAT)
Therefore the assertion holds by applying (i) of Theorem (3.1.13) to

i\ &+j

n—j m 5+j T L
(BZA BZ) and B for (1 + 6+]_) q= 5 -+ 4]
Step 2. To show

J AN J o a [\ 2T

((Aan_] Az) 2n AP (Aan_] Az) Zn) (Aan ]Az) nq
forj = 1,2,...,.n — 1.
In fact, similar to Step 1, the following hold

j=6

n—j S+n—j A ) l . l n
(B 2 AJ Bz ) n > B%tnTJ gnd AV > (AzB"‘J Az)

j
. J . I\n
this implies that Al > (AEB”_J AE) by Theorem (3.1.7). Therefore the
j
. J . J\n
assertion holds by applying (i) of Theorem (3.1.13) to A’ and (AEB”‘J AE) for
1+5)g>24+1
( T J') 1= J +J'
Proof of (2). This part is similar to Proof of (1), so we omit it here. O
We are indebted to Professor K. Tanahashi for a fruitful correspondence and the
referee for his valuable advice and suggestions, especially for the improvement of
Theorem (3.1.12).
Corollary(3.2.15)[232]: Letp = (1 —€), r=(1—-€)andq=(2+¢€) . If Tisa
class WF((l —€),(1-¢),2+ e)) operator such that N(T) € N(T"), then T"

(- E) (1 2 ,(2 4+ €)) operator.
In order to prove the theorem we require the following assertions.

is a class wF (

—€e(1—€)

Proof. Putd =
(2+¢)

,then (e + 1) < § < 0 by the hypothesis .Moreover, if
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(1-e)? 2(1-€%)
(IT |(1=€) |7 |2(-€) | 7*|(1- 6)) > |T* | @+9 qnd |T| @+o
> (|T|(1 E)lT |2(1 E)lTl(l E)) (1+€) ’

then T is a class wA operator by Theorem (3.1.10) and Theorem (3.1.7), so that the
2 2

following hold by taking A, = |T"™|» and B, = |(T™)*|» in Theorem (3.1.8)
A,=>-+=>2A, = AjandB; =2 B, =2---=2B,.
Meanwhile, A,, and A; satisfy the following for any sequence of vectors {x,,},
(see [137])
1

1 1
iflimg, e, A7 X = 0and lim,,_,, A7 X, exists, then limp,_,, A} X, = 0.
Then the following holds by Proposition (3.1.11)

(1-¢) 1

e 2 (4 T )00 (a5 B

— —€) 1
> (() T B () 7 ) T
and it follows that
4(1-€) 1-e 4(1-€) 1-e 1
[T™ G+ = (|T™| = [(T™)*| = |T"| = ) @+
We assert that N(T) < N(T™), implies N(T™) € N((T™)*).

In fact,
x € N(T") = T" 1 x € N(T) S N(T"),
= T" 2 xe N(T*T) = N(T) S N(T")

= x € N(T) € N(T*)
= x € N(T*) € N((T)"),
thus

(1-¢€) 4(1-¢€) (1-e)\ _1 4(1-¢)
(1 (2 Sy ) @8 2 (s
holds by Theorem (3.1.7) and the Lowner-Heinz theorem, so that T™ is a class

wE ( (lne) -9 , (2 + €)) operator. O

Sec(3.2) Spectrum of Class wF (p, 1, q) Operators

A capital letter (such as T) means a bounded linear operator on a complex
Hilbert space H. For p > 0, an operator T is said to be p-hyponormal if
(T*T)P = (TT™)P, where T* is the adjoint operator of T. An invertible operator T
is said to be log-hyponormal if log(T*T) = log(TT"). Ifp = 1,T is called
hyponormal, and if p = 1/2, T is called semi-hyponormal. Log-hyponormality is
sometimes regarded as O-hyponormal since (XP —1)/p —logXasp —
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0 for X > 0. See Martin and Putinar [131] and Xia [135] for basic properties of
hyponormal and semi-hyponormal operators. Log-hyponormal operators were
introduced by Tanahashi [142], Aluthge and Wang [143], and Fujii et al. [144]
independently. Aluthge [145] introduced p-hyponormal operators.

As generalizations of p-hyponormal and log-hyponormal operators, many authors
introduced many classes of operators. Aluthge and Wang [143] introduced w-
hyponormal operators defined by |T| = |T| = |(T)*|, where the polar
decomposition of TisT = U|T| and T = |T|Y2U|T|'/? is called Aluthge
transformation of T. For p > 0 and r > 0, Ito [128] introduced class wA(p, )
defined by

T S
AT*["|T1?P|T*[")P*7 = (IT**",  |TIP|T*[*" |T|P)P+7 < |T|?P. (4)
Note that the two exponents r/(p + 1) and p/(p + r) in the formula above satisfy
r/(p +7)+ p/(p +7r) = 1, Yang and Yuan [138] introduced class wF (p, 1, q).
Definition (3.2.1) [138,139]: For p > 0,r > 0, and q = 1, an operator T
belongs to class wF (p, r, q) if

1 1
AT 7|12 Py > (72 @ 000) s (e ey a-i/e ©)

Denote (1 — g~ )™ by g*when g > 1 because g and (1 —q~1)"! are a couple
of conjugate exponents. It is clear that class wA(p, ) equals class wF(p,r,(p +
r)/7r). w-hyponormality equals wA(1/2,1/2) [128]. Ito and Yamazaki [129]
showed that class wA(p, r) coincides with class A(p,r) (introduced by Fujii et al.
[146]) for each p > 0 and r > 0. Consequently, class wA(1,1) equals class A
(ie., |T?| = |T|?, introduced by Furuta et al. [147]). Reference [139] showed that
class wF (p, 1, q) coincides with class F(p, 1, q) (introduced by Fujii and Nakamoto
[148]) whenrq < p +.

Recently, there are great developments in the spectral theory of the classes of
operators above.We cite [138, 149-157]. In this section, we will discuss several
spectral properties of class

wF(p,r,q) forp >0,r > 0, p +r < l,andq > 1.

In this Section, we prove that Riesz idempotent E ; of T with respect to each
nonzero isolated point spectrum A is selfadjoint and E ;H = ker(T — 1) =
ker(T — A)*. also we will show that each class wF(p,r,q) operator has SVEP
(single-valued extension property) and Bishop’s property (f). and we show that
Weyl’s theorem holds for class wF (p, 1, q). Now we show that Riesz idempotent.

Let o(T),0,(T),0i,(T),04(T),0iq(T),and 0, (T) mean the spectrum, point
spectrum, joint point spectrum, approximate point spectrum, joint approximate
point spectrum, and residual spectrum of an operator T, respectively (cf. [138,
158]). ¢X**(T) and 05,(T) mean the set o(T) — d,(T) and the set of isolated
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points of a(T), see [158, 135]. If A € 05, (T), the Riesz idempotent E ; of T with
respect A is defined by

Ey = [, n(z—T)dz, (6)
where Dis an open disk which is far from the rest of o(T) and 9D means its
boundary. Stampfli [159] showed that if T is hyponormal, then E) is selfadjoint and
E;H = ker(T — A1) = ker(T—A)*. The recent developments of this result are
shown in [151,152,155,157], and so on.

In this section, it is shown that when A # 0, this result holds for class
wF(p,r,q)withp + r < 1 and q = 1. It is always assumed that A € 0g;5,(T)
when the idempotent E; is considered.

Theorem (3.2.2)[138,149]: Let A # 0, and let {x,, } be a sequence of vectors. Then
the following assertions are equivalent.
(D (T — Vx, » 0and (T* — Dx, — 0.
(2) (IT| = |[ADx,, = 0and (U —e®)x, - 0.
) (T|* = |ADx,, = 0 and (U* — e )x,, — 0.
Theorem (3.2.3)[138]: If T is a class wF (p, 1, q) operator forp +r < 1 and
q = 1, then them following assertions hold.
(DIfTx = Ax, 2 # 0,thenT*x = Ax.
(2) 0a(T) — {0} = 0a(T) — {0}
(3)IfTx = Ax,Ty = uyand A # pu,then (x,y) = 0.
Theorem (3.2.4)[138,139]: If T is a class wF(p, 1, q) operator, then there exists
a o > 0, which satisfies

T, r)|?% > |T2%®*) > |T(p,r)*|>% . (7)
Lemma (3.2.5)[138]: If T belongs to class wF (p,r,q) forp +r < 1,A = |1]et €
®, and A ,1r = |A|P e  thenker(T —2) = ker(T(p,7) — Ap4r ).
Proof. We only prove ker(T —A) 2 Ker(T(p,r) — Ap4r ) because Kker(T —
A) € ker(T(p,7) — Ap4r ) is obvious by Theorems (3.2.2)-(3.2.3)

IfA+# 0,let0 # x € ker(T(p,r) — Ap4r ). By Theorem (3.2.4), T (p, 1) is

ay-hyponormal and we have
T, Mlx = 1AP*"x = |(T(,n) |x
T, )I?% — |(T(p,1))*|?% = |T(p,1)|2% — |T[2%®*) > o, ®)
Hence (|T(p,7)|?% — |T|?%®P+*))x = 0,

|||T|2ao(p+r)x — |,1|2ao(p+r)x||
< [IT 2% @+ x — T (p, ) |2%x|| + |[IT (p, ) 12%x — |2]?%P* x| = 0. (9)

On the other hand, (T(p,7))*x = [A|P*"e % x implies that IT"U*x =
|IA|Te %, T * = |A|e~9x. Therefore,
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(T = Dxll2 = |ITxlI2 — A(x, Tx) — X(Tx, x) + |A12]|x||?

= [IIT)xl1? = A(T"x,x) — ACx, T"x) + |A|?|Ix]I> = 0. (10)
If 1 =0, let 0 # x€ kerT(p,r), then x € ker |T| = kerT by Theorem
(3.2.4) so that ker(T — 1) 2 ker(T(p,7) — Ap4r )- O

Lemma (3.2.6)[138,153,160]: If A is normal, then for every operator
B,a(AB) = o(BA).
Let & be the set of all strictly monotone increasing continuous nonnegative
functions on R* = [0,). Let o = {¥ € F: P(0) = 0L.For¥ € §,, the
mapping P is defined by #(pe®?) = W (p) and ¥(T) = UP(|T)).
Theorem (3.2.7)[138,161]: If ¥ € %, then for every operator T, aja(‘T’(T)) =
¥ (0o (T)).
Lemma (3.2.8)[138]: Let T belong to class wF(p,r,q) with p + r < 1,1 =
Ale® € ®,T(t) = U|T|* ¢+t @+ | and 1,(pe’d) = e@p+t@+r-1  where
t € [0,1]. Then
0a(T(®) = 7(0a (D), aX(T(®)) = 7. (o7 (),
o(T(t)) = :(a(T)). (11)

Proof. We only need to show that o,(T(t)) = Tt(O'a (T)) by homotopy property
of the spectrum [135, page 19].

Since T belongs to class wF(p,r,q) with p + r < 1, T(t) belongs to class
wF(p/(1 +t(p +r —1)),vr/(1 +t(p +r —1),q)) with p/(1 +t(p +7r —
))+r/(1 +t(p +r —1)) < 1.By Theorems (3.2.3)(2) and (3.2.7),

02(T(©) = {0} = 0jo(T(®)) — {0}
= 7(0ja(1) — (0}) = 7(0(T)) — {0}, (12)
On the other hand, if 0 € ¢,(T), then there exists a sequence {x,,} of unit vectors
such that U|T|x, = 0. Hence |T|x, = U*U|T|x,, = 0, so that [T|¥/@x, - 0
for each positive integer m by induction. Take a positive integer m(t) such that
1/2™®) < 1+t(p +r — 1), then
|T|1HePHr-Dy = |T|1+t(p+‘r'—1)—1/(2m(t))|T|1/(2m(t))xn >0 (13)

and 0 € o,(T(t)). It is obvious that if 0 € a,(T(t)), then 0 € o,(T) because of
p + r < 1.Therefore o,(T(t)) = 1¢(0,(T)). O
Theorem (3.2.9)[138,150]: If T is p-hyponormal or log-hyponormal, then E  is
selfadjoint and E ;H = ker(T —A) = ker(T —A)".

Riesz and Sz.-Nagy [162] gave the the formula E  H = {x € H : ||(T —
D)x||Y™ - 0}.
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Lemma(3.2.10)[138]: For any operator T,|T|Pker(T —A) & |T|PE H <
E,(pr)H for p +r =1.
Proof. Let x € E,, by the formula above we have

I(T @, 7) = DMTPxV™ = |ITP(T = D)™x||V™ - 0. (14)
Hence |T|Px € E;(p,7)H.
Lemma(3.2.11)[138]: If T belongs to class wF (p,r,q) withp +r < 1, then

kerT = E,H = Ey(p,r)H = ker(T(p,r)). (15)
Note that A, € 0i5,(T(t)) if A € 05, (T) by Lemma (3.2.8), so the notion
Ey(p, ) in Lemma (3.2.10) is reasonable.
Proof. Since T'(p,r) is ay-hyponormal by Theorem(3.2.4), we only need to prove
that EgH < Eo(p,r)H for EgH 2 Ey(p,v)H holds by Lemma (3.2.5) and
Theorem (3.2.9). We may also assume that p +r = 1 by Lemma (3.2.5)
It follows from Lemma (3.2.10) that

ITIPEy(p, )3 < ITIPE, S Eo(p,7)H, (16)

thus Ey(p, r)H is reduced by |T|P.

Let x € E(HX and x = x,+ x, € Eo(p,")H @D (Ey(p,v)H)™. Then
TIPx € ITIPEH € Eo(p, ), ITIPx, € Eo(p, 1) ,ITIPx, €
(Eo(p, 7)H )* by (16), and Ey(p, r)H is reduced by |T|P.

Thus |IT|Px, = |T|Px — |T|Px; € Eo(p,)H,|T|Px, € Eo(p,7)H N
(Eo(p, 7)H)* so that

X, € ker |T|P C ker(T(p,r)) = Ey(p,7)H,x € Ey(p,7)H.

Theorem (3.2.12)[138]: Let T belong to class wF(p,r,q) withp + r < 1,4 =
|Ale® € ®,and 4,4, = |A|P*"e ¥, then the following assertions hold.

(DIf A # Ojhen E; = E, (p,r)and E; H = ker(T —A) = ker(T — A)%,
where E;(p,r) is the Riesz idempotent of T(p,r) = |T|PU|T|" (the generalized
Aluthge transformation of T) with respect to A, .

2)IfA = 0,then kerT = EqH = Ey(p,v)H = ker(T(p,1)).

Reference [156] gave an example that the operator T is w-hyponormal, E is not
selfadjoint, and kerT # kerT".
An operator T is said to be isoloid if 0;5,(T) S 0,(T), is said to be reguloid if
(T — A)H ,is closed for each A € 05, (T).
Proof. We only need to prove (1) for (2) holds by Lemma (3.2.11). Since
o(T(p,r)) = o(U|T|P*") = {e9pP*": ep € ¢(T)} by Lemmas (3.2.6) and
(3.2.8) , A p4r € 0i50(T(p, 1))- Hence
(Ex(p, D) = ker(Ey(p,7) = (I — Ex(p,)H (17)

by Theorem (3.2.9), s0 Ap1r & d(T (0, 7| (5, (pr)30)L)- By Theorem (3.2.3)(1) and
Lemma (3.2.5), we have T = A @ TooonH = E;(p,7)H @ (Ex(p,)H )L,
where To; = T| (kercr-apt -
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Since ker(T — A) is reduced by T,T,, also belongs to class wF(p,r,q) and
To2(p,r) = T )|(E s so that A & o(T;) because Apir €
o(Ty,(p,r)).Hence T — 42 = 0 (T,, — A1) and
ker(T —2A)* = ker(T — 1) @ ker(T,, — )" = ker(T —A).

Meanwhile, By = [, (z =)' @ (z—Tx)7'dz = 1B 0 = Ey(p,7). ©
Theorem (3.2.13)[138]: If T belongs to class wF (p,r,q) withp +7r < 1,thenT
is isoloid and reguloid.

Proof . We only need to prove that T is reguloid for T being isoloid follows by
Theorem (3.2.12) easily.

If 1 € 0i50(T), then H = E;H + (I — E;)H , where E;H, and (I — E})H
are topologically complemented [163, page 94]. By T = T| g,30 + Tl|y—gys on
H=EH+ (I — E;)H and Theorem (3.2.12), we have

(T =DH = (Tlg-gpne — DU — EDIH. (18)
Therefore (T — A)H is closed because o (T|(j_g,y3) = o(T) — {4} m
Definition (3.2.14)[138]: An operator T is said to have SVEP at A € & if for
every open neighborhood G of A, the only function f € H(G) such that (T —
Af ) =0onGis 0 € H(G), where H(G) means the space of all analytic
functions on G.

When T have SVEP at each 4 € ®, say that T has SVEP.

This is a good property for operators. If T has SVEP, then for each A € , 4 — T
is invertible if and only if it is surjective (cf. [164, 153]).

Definition (3.2.15)[138]: An operator T is said to have Bishop’s property
(B) at A € ® if for every open neighborhood G of A, the function f,, € H(G) with
(T = A) f, () — 0 uniformly on every compact subset of G implies that f, (u) —
0 uniformly on every compact subset of G.

When T has Bishop’s property () ateach A € ®, simply say that T has property
(B). This is a generalization of SVEP and it is introduced by Bishop [165] in order
to develop a general spectral theory for operators on Banach space.

Lemma (3. 2.16)[138,153]: Let G be open subset of complex plane ® and let
fn € H(G) be functions such that u f,, (u) = 0 uniformly on every compact
subset of G, then f,, (1) — 0 uniformly on every compact subset of G.
Theorem (3.2.17)[138]: Let p and r be positive numbers. If p + r = 1, then T
has SVEP if and only If T(p,r) has SVEP, T has property (f) if and only if
T(p,r) has property (f). In particular, every class wF(p,r,q) operator T with
p +1r < 1 has SVEP and property (S).
This result is a generalization of [153]. Lemma (3.2.16) and the relations between T
and its transformation T (p, r) are important:

T(p,NITIP = |TPUITI" TP = |T|PT,

UlTI"T(p,7) = UITI" IT|PUITI" = TUIT|". (19)
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Proof . We only prove that T has property (£) if and only if T(p,r) has property
(B) because the assertion that T has SVEP if and only if T'(p,r) has SVEP can be
proved similarly.

Suppose that T(p,r) has property (£). Let G be an open neighborhood of A and
let f, € H(G) be functions such that (u —T) f,, (#) = 0 uniformly on every
compact subset of G. By (19), (T(p, ) —IT|” fu (W) = ITIP(T — ) fu () =
0 uniformly on every compact subset of G. Hence T f,, (u) = U|T|" |T|P f,, () =
0 uniformly on every compact subset of G for T(p,r) has property (£), so that
U fn (1) = 0 uniformly on every compact subset of G, and T having property (f5)
follows by Lemma (3. 2.16).

Suppose that T has property (f). Let Gbe an open neighborhood of A and let
fn € H(G) be functions such that (u —T(p,7)) fn (1) = 0 uniformly on every
compact subset of G. By (19),
(u=T)UITI" fa (W) = UIT|"(u=T(p,7)) fu (1) = 0  uniformly on every
compact subset of G. Hence T(p,7) f,, () = 0 uniformly on every compact
subset of G for T has property (B) so that u f, (u) = 0 uniformly on every
compact subset of G, and T (p, r) having property () follows by Lemma (3. 2.16).

For a Fredholm operator T, ind T means its (Fredholm) index. A Fredholm
operator T is said to be Weyl if ind T = 0.

Let 0.(T),0,,(T), and myo(T) mean the essential spectrum,Weyl spectrum, and
the set of all isolated eigenvalues of finite multiplicity of an operator T,
respectively (cf. [163, 152]).

According to Coburn [166], we say that Weyl’s theorem holds for an operator
T if o(T) — 0,,(T) = myo(T). Very recently, the theorem was shown to hold for
several classes of operators including w-hyponormal operators and paranormal
operators (cf. [152, 167, 155]).

In this section, we will prove that Weyl’s theorem and Weyl spectrum mapping
theorem hold for class wF (p,r,q) operator T with p + r < 1. We also assume
thatp + r = 1 because of the inclusion relations among class wF (p, 1, q) [139].
Theorem (3.2.18)[138]: Let p > 0,r > 0,andq = 1,s =2 p,t = r. If T is a
class wF (p, 1, q) operator and T (s, t) is normal, then T is normal.

Lemma (3.2.19)[138]: If T belongs to class wF(p,7,q) with p +r = 1 and is
Fredholm, then indT < 0.

This result can be regarded as a good complement of Theorem (3.2.12).

Proof. Since T is Fredholm, |T|? is also Fredholm and ind(|T|? ) = 0. By (19),

indT = ind(|T|P T) = ind(T(p,r)ITI|? ) = ind(T(p,r)). (20)

Hence, indT < 0 forind(T(p,7)) < 0 by Theorem (3.20). O
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Theorem (3.2.20)[138]: Let T belong to class wF (p,r,q) withp +r = 1 and let
H(o(T)) be the space of all functions f analytic on some open set G containing
o(T), then the following assertions hold.

(1) Weyl’s theorem holds for T.

(2) 6, (f (D) = f (0, (T)) when f € H(a(T)).

(3) Weyl’s theorem holds for f (T) when f € H(a(T)).

This is a generalization of the related assertions of [152].
Proof . (1) Let A € o(T) — 0, (T), then T — A is Fredholm, ind(T —A) =
0, and dimker(T —A4) > 0.

If Ais an interior point of o(T), there would be an open subset G S o(T)
including A such that ind(T —u) = ind(T —A) = 0 for all u € G [163, page
357]. So dimker(T —pu) > 0 forall u € G, this is impossible for T has SVEP by
Theorem (3.2.17) [164, Theorem 10]. Thus A € do(T) — 6,,(T),A € 0i5,(T) by
[163, Theorem 6.8, page 366], and A € 1y (T) follows.

Let A € myo(T) then the Riesz idempotent E; has finite rank by Theorem
(3.2.12),and A € o(T) — o,(T) follows.

(2) We only need to prove that a,,( f (T)) 2 f (6,,(T)) since a,,(f (T)) S
f (o,,(T)) is always true for any operators.

Assume that f € H(og(T)) is not constant. Let A € a,,(f (T)) and f (z) —
A= (z =) (z— A)g(2), where {1;}¥ are the zeros of f (z) — A in G (listed
according to multiplicity) and g(z) # O foreachz € G.Thus

f(M—242={T —2)....(T —2)g(T). (21)

Obviously, A € f (0,,(T)) if and only if 1; € 0,,(T) for some i. Next we prove
that A; € o, (T) foreveryi € {1,...,k}, thus A € f (0,,(T)) and a,,( f (T)) =2
f (@ (T)).

In fact, for each i, T — A; is also Fredholm because f (T) — 4 is Fredholm. By
Theorem (3.2.12) and Lemma (3.2.19), ind(T —4;) < 0 for each i. Since
0 =ind(f(T)—A) = ind(T —A4;) +- +ind(T — A),ind(T —4;) =
0and A; € a,,(T) for each i.

(3) By Theorem (3.2.13), T is isoloid and it follows from [168] that

o(f (T)) = oo (f (1)) = f(o(T) = o(T))- (22)

On the other hand, f (o(T) —moo(T)) = f (0w (T)) = ow(f (T)) by (1)-(2).
The proof is complete.
Theorem (3.2.21)[138]: Let T belong to class wF(p,r,q) with p +r = 1, then
the following assertions hold.

(1) If my(a(T)) = 0 where m, means the planar Lebesgue measure, then T is
normal.

(i) If 0,,(T) = 0,then T is compact and normal.
Theorem (3.2.21)(i) is a generalization of [161] and (i) is a generalization of [159].
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Proof . (i) By ay-hyponormality of T(p,r)and Putnam’s inequality for «,-
hyponormal operators [161], T(p,r) is normal. Hence, (i) follows by Theorem
(3.2.18).

(i) Since 06,(T) = 0,0(T) — {0} = wyo(T) S 0;,(T) by Theorem
(3.2.20)(1). Hence m,(a(T)) = 0 and T is normal by (i).

Next to prove that T is compact, we may assume that (T) — {0} is a countable
infinite set for o(T) — {0} S 0, (T). Let o(T) — {0} = {1,}7 with |A;] =
|42] 2= 0 and 4y = limy,_ [Ay], then 4y = 0. Since every E; has finite
rank by Theorems (3.2.12) and (3.2.20), for every € > 0,3 |>¢ Ea, also has
finite rank. Therefore T is compact [163, page 271]. O
Corollary(3.2.22)[232]: For any operator
T,ITIker(T —2) € ITICPEH S E((1—1),7)H forp=1—r1.
Proof. Let x € E,, by the formula above we have

lerca =mry = x| = T - " - o
Hence |T|4x € E((1—1),7)H.

Sec (3.3): The Operator Equation

5 1 1 p-6 1 &

1
KP = Hz T2(Tz H*"Tz )s+r T2 HZ and its Applications

A capital letter (such as T ) means a bounded linear operator on a Hilbert space.
T>= 0and T > 0 mean a positive operator and an invertible positive operator,
respectively.

In [133], Pedersen and Takesaki developed the operator equation K = THT as a
useful tool for the noncommutative Radon—Nikodym theorem. By using Douglas’s
majorization theorem [123], Nakamoto [132] provided a simple proof.

As generalizations, Bach and Furuta [121,125] gave deep discussion on the

1
equation K = T (H»T )™
Theorem (3.3.1)[118,125]: Let H and K be bounded positive operators on a Hilbert
space, and assume that H is nonsingular.
(1) The following statements are equivalent for any natural number n:
1 L L ﬁ
(a) aHn > (HZnKHZn) for some a = 0;

(b) there exists a unique positive operator T such that [|T|| < a ,and

1 1 1\1 1

K =Tz (TET WT?) T2 (23)
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(2) If there exists a positive operator T satisfying (23) for some natural number n,
then, for each natural number m < n, there exists a positive operator T;
satisfying

1/ 1 4 1\™ 1
K =T; (leH mTf) T? . (24)
Lin [130] showed a generalization of Theorem (3.3.1)(1) via Furuta inequality
[124] under the restriction a = 1.
Theorem (3.3.2)[118,121]: Given any natural number n and m with m < n, there
exist a nonsingular positive operator H and a positive operator K such that Eq. (24)
is solvable and (23) is unsolvable.

In this section , as a continuation, we consider the following equation for

p>0,r >0andp =6 > —r
5§ 1 1 1 p-& 1 )
KP = H2 T2(T2 H%*"Tz Yerr T2 Hz | (25)
Obviously, the special case p = 1,r = % and § = 0 of (25) becomes (23).
Theorems (3.3.1)—(3.3.2) are extended to Theorems (3.3.4)—(3.3.5), respectively.
Some applications are obtained. We show that the inclusion relations in the
following result are strict. See Theorem (3.3.3) below.
Theorem (3.3.3)[118,128,129]: Let T be a class wA(p,r) operator, then T is a
class wA(p,,71) operator forp; =p >0andr; =71 > 0.
A kind of polar decomposition of Aluthge transformation [119] is given. See
Theorems (3.3.14)—(3.3.15) below.
Theorem (3.3.4)[118,123]: The following assertions are equivalent for any
operators A and B.
(1) AA* < ABB* forsome A > 0.
(2) There exists a C with A = BC and ||C|| < A.
Lemma (3.3.5)[118,126,127]: Let « € R and X be invertible. Then
(X*X)a — X*(XX*)a_l)(,
especially in case @ > 1 the equality holds without invertibility of X.
Theorem (3.3.6)[118,137,139]: (Furuta type inequality). Let A, B =0, ay,f o >

0,—ﬁ0<60Sa0,_ﬁ0S80<a0.
(HIf 0 < 6y < g, then
Boté B+68
(B%A“OB%) g§+a3 > BB otd0 — (BgAaBg) ﬁ+0? > BF+%o

foranya = agandff = f .
(2)If =By < 8o < 0 and N(A) c N(B),then

agy %otdo a+8o

A% > (ATBPAT) worho = A0 > (A2BPAR) wrho,
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for anya = agandf = .
Theorem (3.3.6) 1s important to the proof of (2) of Theorem (3.3.8).
Lemma (3.3,7)[118,134]: Let a, b,d and 0 be real numbers and satisfy a + b >
0,ab = d?,and § = ( a de 19) . Then
de' b
S? = (a + b)P71S for p > 0.
Theorem (3.3.8)[118]: Let H and K be bounded positive operators on a Hilbert
space, and assume that H is nonsingular.
(1) The following statements are equivalent for any p > 0,7 > 0 and
p =6 = 0:
S+r

(a)aH®*™ > (HEKPHE)’M for some a > 0;

(b) there exists a unique positive operator T satisfies ||T || < a and (25).

If in additional H is invertible, (1) holds forp =6 > —r.
(2) If there exists a positive operator T satisfying (25) for fixed p > 0, > 0 and
p =06 =0, then, for p; = p and r; = r, there exists a positive operator
T; satisfying

§ 1 1 1 py-6 1 8
KP1 = H? T>(T? HO*"T? Yo+ T2 H? (26)
Lin [130] showed case § = m of Theorem(3.3.8)(1) under some restrictions.

Proof .The proof is similar to [125].
(a) = (b). By Theorem (3.3.4), there exists a S such that

r _6+r 541 541
(HZKpHZ)Z(P+T) = HT S = S*HT
Put T = SS*,then ||T || £ aand by Lemma (3.3.7),

r S+r 1 1 -5 1 §+r
HZKPH: = H 2 Tz(Tz HOtTT2 )6+r Tz Hz
So (25) holds for H is singular.
(b) = (a).Fora with [|T || £ a, by Lemma (3.3.7), (25) implies

S+r

S+r S+1 1 2%6 1 5+r ®+7)
(HzKPH )“”*” (H > Tz (Tz H5+TT2) T2 HT)

S+r S+r

=H2TH: <aH?%". (27)
To show the uniqueness of T . Assume that Z also satisfies (25), by (27) we have
S+r

S+r S+r S+r S+r
HzZH: = (HzKPH )“’*” —HzTH:z,
therefore Z = T .
Next to prove (2). By the assumption and (1), (a) holds for some a > 0, that is
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S+r
Pir s+r ptr 2 N5\
(ap(5+r) H) > (ap(6+7') H) KP (ap(5+r) H) (28)

So that the following follows from (2) of Theorem (3.3.8):

N

6+T1

r r
p+r S+ p+r 71 p+r 71 P1+71)
(ap(6+r) H) > (ap(5+r) H) KP1 (ap(5+7‘) H) ,

that is

S5+11

+7r (6+11) r r
apf5+7') . p(1101+7'11) H 5+1r; > (H%Kle%)(lhﬂj)
Therefore (26) is solvable. O
Remark (3.3.9)[118]: For each p > 0,r > 0 and min{p,1} = § > —r, it is

clear that the condition (a) is satisfied if H is invertible or, more generally
p+r

ar@+n H > K for some a = 0 by (28) and Furuta inequality [124]. In the first

: L —Gn) T r (z% —(8+7)
case, the solution T to (25) is given by T = H : (HZKPHZ) H
(27).
Theorem (3.3.10)[118]: Given any positive numbers p,r,p; and r; withr; > 1,
there exist a nonsingular positive operator H and a positive operator K such that
case 6 = 0 of Eq. (26) is solvable and case 6 = 0 of (25) is unsolvable. To give
proofs, the following results are needful.
Proof . The proof is inspired by [121].

-1
For a natural number k, let 4;, = (1 0 )and B, = . ( 1k ) . Take

by

0 k—4 1+k?2 k—l k—2
S L -1oPutm o
H =@®;.,; 4, andK =@®;_,; K)* where Kj =1 AZB ™ A} .ByLemma
1 1 k D1 _ .
(3.3.9), K, = m (k kz) , hence K}1€01 =K %M <1 and K is

meaningful.
Next to show that the operators H and K satisfy the conditions.
T

T S D ON\NP1+m1) _ oo . .
In fact, H™* — (H 2 KP1H 2) =@y~ (Ax — Br) = 0 and this implies case

6 = 0 of (26) is solvable by (1) of Theorem (3.3.8). Meanwhile, case § = 0 of
(25) 1s unsolvable for H and K here. Otherwise, also by (1) of Theorem (3.3.8),
H and K satisfy (a) for some a > 0. This implies that

T P TN r
T'/T'l 211 P1 2271 n
ad; = (Ak K, A, )P T
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By Lemma (3.3.7),

r

ol B 1 1 kY, |"
a= Ay {Ak (1+k2)k2p/r1(k kZ)Ak} Ay

-r r 14 -r

A (ot (o (L ) A
k (1+k2)k2p/7'1 1+k2(1_2T/T1) kl—zr/rl kZ(l—Z‘r‘/Tl) k

r 14
(1 Ve 1 w1k
= ((1+k2)k2p/rl) (1+k2(1_2T/T1)) (k kz) . (29)
Therefore,
1+k? T 1+K2 p+r
a = (kZT/T1(1+k2(1_2T/T1))) - (((kzr/rl_l_kzu—r/rl))) . (30)

So that a > oo by letting k — ocofor max{2r/ry,2(1 —r/r;)} < 2. This is a
contradiction. O

A fact in the proof of Theorem (3.3.10) is useful.

Theorem (3.3.11)[118]: Given any positive numbers p,7,p; and r; with r; > 1,

there exist invertible positive operators H and K such that
T

T

H™ > (H%KMH%)(””“) JaHT % (HgKPHg)p” ,
where a is an arbitrary positive number.
Proof. The operators H and K in the proof of Theorem (3.3.10) are suitable. O
We Show Some Applications . For ¢ > 0,T is called a g-hyponormal operator if
(T*T)? = (T T*)?, where T" is the adjoint operator of T.If g = 1,T is called a
hyponormal operator and if ¢ = 1/2, T is called a semi-hyponormal operator. See
Martin and Putinar [131] and Xia [135] for related topics and basic properties of
hyponormal operators.

Aluthge [119] introduced Aluthge transformation T = |T |*/2U|T |*/? where the
polar decomposition of T is T = U|T |. For each p >0 and r >0, Tp,r =
|T |PU|T |" is called generalized Aluthge transformation.

As a generalization of g-hyponormal operators, Ito [128] introduced class

wA(p, 1) defined by
T P
(IT*|"|T|?P|T*|")P+T 2 |T*|*" and (|T|P|T*[*"|T|P)P*" < |T|*P .
See[120,129,137,138] for related topics.

Lemma (3.3.12)[118]: For positive operators A and B on a Hilbert space H define
operators U and D on @y-_,= H; where H,, = H Has follows:
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(0)

where (-) shows the place of the (0,0) matrix element, and T = UD. Then the

e (A

AE

following assertions hold foreach p > 0,r > 0and f > 0:

Tr Tr ﬁ
(D) (T*"ITI1?P|IT*|")F = |T*|?®P*™E if and only if (BEAPBE) > pw+nB
|4 |4
(2) IT |2®*18 > (|T |P|T*|?"|T |?)# if and only if AP*TE > (A2B7Az)F .

This example appears in [140,141] and is a modification of [122, Theorem 2] and

[136, Lemma 1].

Proof. By easy calculation,

= (4)

Therefore

r r

* 2p

T

= (B)

Bp+}"

BAB
A
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and

B p+r

2r
p * p

T T

- (A*B A%
Ap+r

By comparing the (0,0) elements of the operator matrices above, the assertions
hold. O

Theorem (3.3.13)[118]: Given any positive numbers p,7,p; and rywith r; > 7,
there exists an operator T such that T is a class wA(p4,71) operator but not a class
wA(p, ) operator.Theorem (3.3.13) implies that the inclusion relations in Theorem
(3.3.3) are strict.

Proof . By Theorem (3.3.11), there exist invertible positive operators H and K on a
Hilbert space H such that

T T

H™ (HZKlez)(p”“) . HT 2 (HQKPHQ)W

Let A = Hand B = K, define an operator T on @j-_,= H) where Hy, =H
as Lemma (3.3.12). Then T a class wA(pq,11) operator but not a class
wA(p, 1) operator by Lemma (3.3.12). O

Aluthge [119] showed a kind of polar decomposition of Aluthge transformation
on invertible g-hyponormal operators via the equation

K =THT.
Theorem (3.3.14)[118,119]: Let T be a invertible g-hyponormal operator and the
polar decomposition of The T = U|T|. Then |T| = |T |Y2S™YT |*/? and

U = |T |M?US|T |~/? where S is the solution to the equation |T | = SU*|T |US.
The following assertion say that this result holds for any invertible operator 7 .
Theorem (3.3.15)[118]:Let T be an invertible operator and the polar
decomposition  of T, beT,, = AUp,r |Tpr |- Then |Ty, | =T ["S™HT |" and
U, =|T [PUS|T |"" where Sis the solution to the equation IT %" =
SU*|T |??PUS.

Proof. By Remark (3 3. 9) the solution S to |T | 2" = SU*|T |*PUS. exists and
S = HT (Hz KHz )2H2 where H = U*|T |?PU and = |T |*" . Hence S is
invertible for T is invertible and
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| Tpr | = AT I"STHTPPSTHT DY2 =T "STHT|" .
Moreover, Uy, =Ty, [T, |7* = IT|PUS|IT|". ©
Corollary(3.3.16)[232]: Given any positive numbers p,r; — €,p; , there exist a
nonsingular positive operator H and a positive operator K such that case § = 0 of
Eq. (26) is solvable and case 6 = 0 of (25) is unsolvable. To give proofs, the
following results are needful.
Proof . The proof is inspired by [121].
_(1 o0 _ 1 (1 k!
For a natural number k, let A;, = (0 k‘4) and By, = T (k‘l k‘z) . Take
1

1 1 -1 Pit71 -1
H =®;., 4 andK =@®;_,; K;* where K, = A?B, ™" A} .By Lemma
1
1 k
k k2

1

p1
Kk

(3.39), K, = ;(

— —2/r :
(1+k2)k2p1/r1 =K 1<1 and K is

) , hence

meaningful.
Next to show that the operators H and K satisfy the conditions.

T e LE (p1T+1T1) M .. .
In fact, H™* — (H 2 KP1H 2) =@y~ (Ax — Br) = 0 and this implies case
6 = 0 of (26) is solvable by (1) of Theorem (3.3.8). Meanwhile, case § = 0 of

(25) 1s unsolvable for H and K here. Otherwise, also by (1) of Theorem (3.3.8),
H and K satisfy (a) for some a > 0. This implies that

aA]((rl_E)/rl > (Akzrl K]?lAkZTl p+(ri—e€)

By Lemma (3.3.7),

(ri-€) bp (T1_6)> (ry—€)

(ri-€)

—(r1—€) (ri—e€) 1 k (ri—€) p4r —(r1—€)
1 2r 2r
> 211 211 ( ) 1 1
azAi, {Ak o kg2 A, A,

—(r1-€) (ri-€) —(r1—€)

=4 2rq 1 p+r ( 1 )ﬁ 1 kl—Z(Tl—E)/Tl A 2r1
Tk (1+k2)k*P/T1 1+2A7201=€)/r ) k1-2@i—€)/ry  p2(-2(r1—€)pr)) Tk

(ry—€)

v
_ ( 1 )p+(r1—e) ( 1 )p+(r1—€) (1 k)
(1+k2)k?P/r1 14£20201=€) /) k k%)

Therefore,

a > 14k2 p+(ri—€) _ 1+Kk2 p+(ri—€)
= kz(rl—e)/rl(1+k2(1—2(r1—e)/rl)) - ((kz(rl—e)/rl_'_kzu— (Tl‘e)/rl)) .

So that a > oo by letting k — cofor max{2(r; —€)/r,2(1 —(ry —€)/r)} < 2.
This is a contradiction. O
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