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Chapter	6	

Fractional	Poincare	Inequalities	and	Fractional	–Order	Sobolev	Semi-norms 

  We quantify the tightness at infinity provided by the control on the fractional derivative in 

terms of a weight growing at infinity. The proof goes through the introduction of the 

generator of the Ornstein–Uhlenbecks emigroup and some careful estimates of its powers.We 

the proof of fractional Poincaré  inequality for measures more general than Lévy measures. 

Main results are mutual estimates of the three semi-norms of Sobolev-Slobodeckij, 

interpolation and quotient space types. In particular, we show that the former two are 

uniformly equivalent under affine mappings that ensure shape regularity of the domains 

under consideration. 

Sec	(6.1):General	Measures:	

The aim of this section is to prove a Poincaré inequality on ℝ୬, endowed with  a 
measure M(x)dx, involving non-local quantities in the right-hand side in the  spirit of 
Gagliardo semi-norms for Sobolev spaces Wୱ,୮(ℝ୬) with fractional order s ∈ (0, 1) (see 
e.g. [225]). 

Fractional diffusions naturally appear in many models, ranging from plasma 
turbulence [226] or geostrophic ϐlows [227] in fluid dynamics, grazing collisions in  
kinetic theory (cf. the Boltzmann equation for long-range interactions [228-231]), all 
the way to stockmarket modeling based on Lévy processes [232]. They also appear  
naturally in mathematics: in probability, they appear in the important class of infinitely 
divisible Markov processes given (cf. the Lévy-Khinchin representation  [233]); in 
analysis they naturally appear in the study of singular integral operators (e.g. for the 
Boltzmann equation, cf. references above) as well as in the so-called  “Dirichlet-to-
Neuman” boundary value problem and in the Signorini (obstacle) problem [234] (see 
for instance among other references [235] and [236]). The search  for a Poincaré 
inequality for the non-local fractional energy associated with such fractional diffusion is 
therefore a natural and interesting question since this  inequality governs the spectral 
gap of the underlying operator and the speed of (fractional) diffusion towards an 
equilibrium. 

Throughout this section, we denote by M a positive weight in Lଵ(ℝ୬). In the sequel, 
by Lଶ(ℝ୬, M), we mean the space of measurable functions on ℝ୬ which are square 
integrable with respect to the measure M(x)dx, by L଴

ଶ (ℝ୬, M) the subspace  of functions 

of Lଶ(ℝ୬, M) such that ∫ f(x)M(x)ℝ౤ dx = 0, and by Hଵ(ℝ୬, M), the Sobolev space of 
functions in Lଶ(ℝ୬, M), the weak derivative of which belongs to Lଶ(ℝଶ, M). Finally for 
any measurable subset A ⊂  ℝ୬ by Lଶ(A, M) we mean the  obvious restriction of the 
definition above to the set A. 
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We assume that M is a Cଶ function and that this measure M satisfies the usual 
Poincaré inequality: there exists a constant λ(M)  > 0 such that ∀f ∈  Hଵ(ℝ୬, M), 

න|∇݂(ݕ)|ଶ(ݕ)ܯ
ℝ೙

ݕ݀ ≥ (ܯ)ߣ න อ݂(ݕ) − න ݔ݀(ݔ)ܯ(ݔ)݂
ℝ೙

อ
ଶ

ℝ೙

 (1)                                 .ݕ݀(ݕ)ܯ

If  the measure M can be written M =  eି୚, this inequality is known to hold (see [237], 
or also [238], Theorem (6.1.2), see also [239], proof of Theorem (6.1.2) for related 
criteria) whenever there exist a ∈ (0, 1), c > 0 and R > 0 such that 

|ݔ|∀  ≥ ଶ|(ݔ)ܸ∇|ܽ   ,ܴ − ∆ܸ ≥ ܿ.                                                                  (2) 
In particular, the inequality (1) holds, for instance, when    ܯ =
௡ି(ߨ2) ଶ⁄ exp(− ଶ|ݔ| 2⁄ )is the Gaussian measure, but  also when (ݔ)ܯ = ݁ି|௫|, and more 
generally when (ݔ)ܯ = ݁ି|௫|ഀwith ߙ ≥ 1. Note that, when ܸis convex, and 

Hess(V) ≥ cstId 

on the set where |V | < +∞, the measure M(x)dx satisfies the log-Sobolev inequality, 
which in turn implies (1) (see [240]).  

As it shall be proved to be useful later on, remark that, under a slightly  stronger 
assumption than (1), the Poincaré inequality (2),the Poincaré inequality (1) admits the 
following self-improvement: 

Proposition	(6.1.1)	[224]:	

 Assume that there exists ε >0 such that 

(1 − ଶ|ܸ∇|(ߝ

2 − ݔ ܸ∇ → ∞ሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ + ܯ   ,∞ = ݁ି௏ .                                                     (3) 
Then there exists ߣᇱ(ܯ) > 0 such that, for all functions ݂ ∈ ଴ܮ

ଶ (ℝ௡ , (ܯ ∩
ଵ(ℝ௡ܪ ,  :(ܯ

ඵ|∇݂(ݔ)|ଶ(ݔ)ܯ
ℝ೙

ݔ݀ ≥ (ܯ)ᇱߣ න|݂(ݔ)|ଶ(1 + |∇In (ݔ)ܯ|ଶ)
ℝ೙

 (4)                                  .ݔ݀(ݔ)ܯ

The proof of Proposition (6.1.1) is classical and will be given for the sake of 
completeness. 

We want to generalize the inequality (1) in the strengthened form of Proposition 
(6.1.1), replacing, in the left-hand side, the Hଵ semi-norm by a non-local expression in 
the flavour of the Gagliardo semi-norms. 

We establish the following theorem: 

Theorem	(6.1.2)	[224]:	

Assume that M = eି୚ is a Cଶ  positive Lଵ  function which satisϐies (3). Let α ∈ (0, 2). 
Then there exist  λ஑(M) > 0 and δ(M) (constructive from our proof and the usual 
Poincaré constant λ(M)such that, for any function f  belonging to a dense subspace of 
L଴

ଶ (ℝ୬, M), we have: 
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ඵ
(ݔ)݂| − ଶ|(ݕ)݂

ݔ| − ௡ାఈ|ݕ |ఋ(ெ)|௫ି௬ି݁(ݔ)ܯ

ℝ೙×ℝ೙

             ݕ݀ ݔ݀

≥ (ܯ)ఈߣ න|݂(ݔ)|ଶ(1
ℝ೙

+ |∇In (ݔ)ܯ|ଶ)  (5)                                                    ݔ݀(ݔ)ܯ
Remark	(6.1.3)	[224]:	

Inequality (5) could as usual be extended to any function f with zero average such 
that both sides of the inequality make sense. In particular it is satisfied for any function 
݂with zero average belonging to the domain of the operator  ܮ = −∆ − ܸߘ ·  that we ߘ 
shall introduce later on. Functions of this domain with zero integral with respect to 
଴ܮ are dense inݔ݀(ݔ)ܯ

ଶ (ℝ௡ ,  .(ܯ

Observe that the right-hand side of (5) involves a fractional moment of order 
 related to the homogeneity of the semi-norm appearing in the left-hand side. Oneߙ
could expect in the left-hand side of (5) the Gagliardo semi-norm for 

the fractional Sobolev space ܪఈ ଶ⁄ (ℝ௡ ,  namely ,(ܯ

ඵ
(ݔ)݂| − ଶ|(ݕ)݂

ݔ| − ௡ାఈ|ݕ (ݕ)ܯ(ݔ)ܯ
ℝ೙×ℝ೙

 .ݕ݀ ݔ݀

Notice that, instead of this semi-norm, we obtain a “non-symmetric” expression. 
However, our norm is more natural: one should think of the measure over ݕ as the Lévy 
measure, and the measure over  ݔ as the a mbient measure. We emphasize on the fact 
that our measure is rather general and in particular, as a corollary of Theorem (6.1.2), 
we obtain an automatic improvement of the Poincaré inequality (1) by: 

ඵ
(ݔ)݂| − ଶ|(ݕ)݂

ݔ| − ௡ାఈ|ݕ (ݕ)ܯ(ݔ)ܯ
ℝ೙×ℝ೙

ݕ݀ ݔ݀ ≥ (ܯ)ఈߣ න|݂(ݔ)|ଶ(ݔ)ܯ
ℝ೙

 .ݔ݀

The question of obtaining Poincaré-type inequalities (or more generally entropy 
inequalities) for Lévy operators was studied in the probability community in the last 
decades. For instance it was proved by Wu [241] and Chafaï [242] that 

Entఓ
ః(݂) ≤ න ݂∇(݂)௡ߔ ∙ ߪ ∙ ߤ݀ ݂∇ + ඵ ,(ݔ)ః൫݂ܦ ݔ)݂ + ൯(ݖ  (ݔ)ఓݒ݀ (ݖ)ఓݒ݀

(see also the use of this inequality in [243]) with 

Entఓ
ః(݂) = න ߤ݀(݂)ߔ − ߔ ൬න  ,൰ߤ݂݀

andܦఃis the so-called Bregman distance associated to ߔ: 
,ܽ)ఃܦ ܾ) = (ܽ)ߔ − (ܾ)ߔ − ܽ)(ܾ)ᇱߔ − ܾ), 

Where ߔ is some well-suited functional with convexity properties, ߪthe matrix of 
diffusion of the process, ߤa rather general measure, and ݒఓthe (singular) Lévy measure 
associated to ߤ. Choosing (ݔ)ߔ = ߪ ଶ andݔ  =  0 yields a Poincaré inequality for this 
choice of measure ߤ, ఓݒ . The improvement of our approach is that we do not impose any 
link between our measure ܯon ݔand the singular measure |ݖ|ି௡ିఈon ݖ = − ݔ   This .ݕ 
is to our knowledge the first result that gets rid of this strong constraint. 
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Remark	(6.1.4)[224]: 

Note that the exponentially decaying factor ݁ିఋ(ெ)|௫ି௬| in (5) also improvesthe 
inequality as compared to what is expected from Poincaré inequality for Lévy measures. 
This decay on the diagonal could most probably be further  improved, as shall be 
studied in future works. Other extensions in progress are to  allow more general 
singularities than the Martin Riesz kernel ଵ

|௫ି௬|೙శഀ (see the book [244]) and to develop 

an ܮ௉theory of the previous inequalities. 

Our proof heavily relies on fractional powers of a (suitable generalization of  the) 
Ornstein-Uhlenbeck operator, which is defined by: 

݂ܮ = (݂∇ܯ)ଵdivିܯ− = −∇݂ − ∇ ln ܯ ∙  ∇݂, 
for all ݂ ∈ (ܮ)ܦ  =  {g ∈ ଵ(ℝ௡ܪ , (gߘܯ)div(ܯ√/1) ;(ܯ ∈  ,ଶ(ℝ௡)}. One  therefore hasܮ 
for all  ݂ ∈ and g(ܮ)ࣞ ∈ ଵ(ℝ௡ܪ ,   ,(ܯ

න (ݔ)ܯ(ݔ)g(ݔ)݂ܮ
ℝ೙

ݔ݀ = න (ݔ)݂∇ ∙ ∇g(ݔ)(ݔ)ܯ
ℝ೙

 .ݔ݀

It is obvious that ܮis symmetric and nonnegative on ܮଶ(ℝ௡ ,  which allows to  define ,(ܯ
the usual power ܮఉ for any ߚ ∈ (0, 1)by means of spectral theory. Note that  ܮఈ ଶ⁄  is 
notthe symmetric operator associated to the Dirichlet form 
∬ |௙(௫)ି௙(௬)|మ

|௫ି௬|೙శഀ ℝ೙×ℝ೙(ݔ)ܯ  ݕ݀ ݔ݀
We now describe the strategy of our proofs. The proof of Theorem (6.1.2)  goes in 

three steps. We first establish ܮଶoff-diagonal estimates of Gaffney type on theresolvent 
of L on ܮଶ(ℝ௡ ,  These estimates are needed in our context since we do not have .(ܯ
Gaussian pointwise estimates on the kernel of the operator ܮ. 

Then, we bound the quantity, 

න|݂(ݔ)|ଶ(1 + |∇ ln (ݔ)ܯ(ఈ|(ݔ)ܯ
ℝ೙

 ,ݔ݀

This will be obtained by an abstract argument of functional calculus based on rewriting 
in a suitable way the conclusion of Proposition (6.1.1). Finally, using the ܮଶ off-diagonal 
estimates for the kernel of  ܮ, we establish that 

ฮܮఈ ସ⁄ ݂ฮ
௅మ(ℝ೙,ெ)
ଶ

≤ ܥ ඵ
(ݔ)݂| − ଶ|(ݕ)݂

ݔ| − ௡ାఈ|ݕ (ݔ)ܯ
ℝ೙×ℝ೙

 ,ݕ݀ ݔ݀

which concludes the proof. 

As can be seen from the rough sketch previously described, we borrow methods 
from harmonic analysis. This seems not so common in the field of  Poincaré and log-
Sobolev inequalities (to the knowledge of the authors), where standard techniques rely 
on global functional inequalities, see for instance the  powerful so-called  ߁ଶ-calculus of 
Bakry and Émery [245]. We hope this section will stimulate further exchanges between 
these two fields. 



241 
 

We recall that for every f ∈ ࣞ(L), we define 

Lf = −Mିଵdiv (M∇f) = −∆f − ∇ ln M ∙ ∇f.                                        (6) 

From the fact that L is self-adjoint and nonnegative on Lଶ(ℝ୬, M)we have: 

‖(L − μ)ିଵ‖୐మ(ℝ౤,୑) ≤
1

dist (μ, ∑(L)) 

whereΣ(L) denotes the spectrum of  L, and μ ∉ Σ(ܮ). Then we deduce that (ܫ +  ଵ isି(ܮݐ
bounded with norm less than 1 for all ݐ > 0. Since ܮݐ(I + ଵି(ܮݐ  = I − (I +  ଵ, theି(ܮݐ
same is true for  ܮݐ(I + ଵି(ܮݐ  =  I − + ܫ)  ,ଵ with a norm  less than 2. Moreoverି(ܮݐ 
(I + ଵ݂ି(ܮݐ  ∈ ଵ(ℝ௡ܪ ,  .(ܯ

Actually, when  ݂ ∈ ଶ(ℝ௡ܮ , ܧ is supported in a closed set(ܯ ⊂ ℝ௡and ܨ ⊂ ℝ௡ is a 
closed subset disjoint from ܧ, a much more precise estimate on the ܮଶ norm of 
(I + I)ܮݐ ଵ݂ andି(ܮݐ  +  ଶ off-diagonalܮ can be given. Here are theseܨ  ଵ݂ onି(ܮݐ
estimates for the resolvent of  ܮ: 

Lemma	(6.1.5)	[224]:	
There exists ܥଵ = (ܯ)ଵܥ > 0 (constructive from our proof) with the  following 

property: for all compact disjoint subsets ܧ, ܨ ⊂ ℝ௡ ,ܧ)bounded, with  dist ܨ , (ܨ =: ݀ >
0,  all functions ݂ ∈ ଶ(ℝ௡ܮ  , ݐ and all ܧ supported in (ܯ >  0, 

‖(I + ଵ݂‖௅మ(ி,ெ)ି(ܮݐ + I)ܮݐ‖ + ଵ݂‖௅మ(ி,ெ)ି(ܮݐ ≤ 8݁ି஼భ
೏
√೟‖݂‖௅మ(ா,ெ). 

Note that, in different contexts, this kind of estimate, originating in [246], turns out to be 
a powerful tool, especially when no pointwise upper estimate on the kernel of  the 
semigroup generated by ܮis available (see for instance [247-249]). Since we  found no 
reference for these off-diagonal estimates for the resolvent of  ܮ, we give  here a proof. 

	

Proof	of	Lemma	(6.1.5):	

 We argue as in [248]. Since (I +  tL)ିଵ is bounded with norm less than 1 for all 
t > 0 it is clearly enough to restrict to  0 < ݐ < ݀.  

Define ut = (I + tL)ିଵf , so that, for all functions  ݒ ∈ ଵ(ℝ௡ܪ ,  ,(ܯ

න (ݔ)ܯ(ݔ)ݒ(ݔ)௧ݑ
ℝ೙

ݔ݀ + ݐ න (ݔ)௧ݑ∇ ∙ (ݔ)ܯ(ݔ)ݒ∇
ℝ೙

 = න (ݔ)ܯ(ݔ)ݒ(ݔ)݂
ℝ೙

 (7)                    .ݔ݀

Fix now a nonnegative function ߟ ∈ ࣞ(ℝ௡)vanishing on  ܧ. Since  ݂is supported  inܧ, 
applying (7) with  ݒ = ௧ݑ ௧(remember thatݑଶߟ  ∈ ଵ(ℝ௡ܪ ,  ,yields ((ܯ

න (ݔ)ܯଶ|(ݔ)௧ݑ|(ݔ)ଶߟ
ℝ೙

ݔ݀ + ݐ න (ݔ)௧ݑ∇ ∙ (ݔ)ܯ(௧ݑଶߟ)∇
ℝ೙

ݔ݀ = 0, 

which implies: 
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න (ݔ)ܯଶ|(ݔ)௧ݑ|(ݔ)ଶߟ
ℝ೙

ݔ݀ + ݐ න (ݔ)ܯଶ|(ݔ)௧ݑ∇|(ݔ)ଶߟ
ℝ೙

 ݔ݀

= ݐ2− න (ݔ)ߟ∇(ݔ)௧ݑ(ݔ)ߟ ∙ (ݔ)ܯ(ݔ)௧ݑ∇
ℝ೙

 ݔ݀

                                     ≤ ݐ න|ݑ௧(ݔ)|ଶ|∇(ݔ)ߟ|ଶ(ݔ)ܯ
ℝ೙

ݔ݀ + ݐ න (ݔ)ܯଶ|(ݔ)௧ݑ∇|(ݔ)ଶߟ
ℝ೙

 ,ݔ݀

hence 

න (ݔ)ܯଶ|(ݔ)௧ݑ∇|(ݔ)ଶߟ
ℝ೙

ݔ݀ ≤ ݐ න|ݑ௧(ݔ)|ଶ|∇(ݔ)ߟ|ଶ(ݔ)ܯ
ℝ೙

 (8)                      .ݔ݀

Let ߦbe such that ߦ = 0 on   ܧ and  ߦ nonnegative so that  ߟ = ݁ఈక − 1 ≥ 0  and  
ߙ  for someܧ  vanishes onߟ > 0  to be chosen. Choosing this particular ߟin (8)  
withߙ > 0  gives: 

නหe஑ஞ − 1หଶ|u୲(x)|ଶM(x)
ℝ౤

dx ≤ αଶt න|u୲(x)|ଶ|∇ξ(x)|ଶeଶ஑ஞ(୶)M(x)
ℝ౤

dx. 

Taking  α = 1/(2√t‖∇ξ‖ஶ),  one obtains: 

නหe஑ஞ(୶) − 1หଶ|u୲(x)|ଶM(x)
ℝ౤

dx ≤
1
4

න|ݑ௧(ݔ)|ଶ݁ଶఈక(௫)(ݔ)ܯ
ℝ೙

 .ݔ݀

Using the fact that the norm of  (ܫ + ݐ  ଵ is bounded by 1 uniformly inି(ܮݐ > 0,  this 
gives: 

ฮ݁ఈకݑ௧ฮ
௅మ൫ℝమ,ெ൯ ≤ ฮ൫݁ఈక − 1൯ݑ௧ฮ

௅మ(ℝ೙ ,ெ) +  ௧‖௅మ(ℝ೙,ெ)ݑ‖

                    ≤
1
2

ฮ݁ఈకݑ௧ฮ
௅మ(ℝ೙,ெ) + ‖݂‖௅మ(ℝ೙,ெ), 

therefore 

නห݁ఈక(௫)หଶ|ݑ௧(ݔ)|ଶ(ݔ)ܯ
ℝ೙

ݔ݀ ≤ 4 න|݂(ݔ)|ଶ(ݔ)ܯ
ℝ೙

 .ݔ݀

We choose now ߦsuch that  ߦ =  0 on  ܧ as before and additionally that  ߦ =  1 on  ߟ)ܨis 
then compactly supported from the fact that  ܨ is bounded). It can trivially  be chosen 
with ‖∇ߦ‖ஶ ≤ ܥ ݀⁄ , which yields the desired conclusion for the  ܮଶ norm of  (ܫ +
+ ܫ)ܮݐ ଵ݂with a factor 4 in the right-hand side. Sinceି(ܮݐ  ଵ݂ି(ܮݐ  = ݂ − + ܫ)   , ଵ݂ି(ܮݐ 
the desired inequality with a factor 8 readily  follows. 

Remark	(6.1.6)	[224]:	
Arguing similarly, we could also obtain analogous gradient estimates for  

ฮ√ݐ∇(I + ଵ݂ฮି(ܮݐ
௅మ(ி,ெ). 

This section is devoted to the control of the  ܮଶ norm of fractional powers of  ܮ. 
This is the cornerstone of the proof of Theorem (6.1.2). In the functional calculus theory 
of sectorial operators ܮ, fractional powers (for the particular  powers we are interested 
in) are deϐined as follows (see for instance [250]): 

ߚ∀ ∈ ఉ݂ܮ     ,(0,1) =
1

1)߁ − (ߚ න ௅௧݂ି݁ܮఉିݐ
ஶ

଴

 (9)                                  .ݐ݀
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They can also be defined in terms of the resolvent by the Balakrishnan formulation (see 
for instance [250]): 

ߚ∀   ∈ ఉܮ     ,(0,1) ݂ =
sin൫1)ߨ − ൯(ߚ

ߨ
න ܮ)ܮఉିଵߣ + I)ିଵ݂ߣ
ஶ

଴

 (10)            .ߣ݀

We shall in fact not need any of the representations (9) or (10); instead we shall rely on 
the powerful tool of the so-called “quadratic estimates” obtained in the functional 
calculus. This is the object of the next lemma. 

Lemma	(6.1.7)	[224]:	

Let  α ∈ (0, 2). There exists  ܥଷ = (ܯ)ଷܥ > 0  such that, for all  ݂ ∈  ,(ܮ)ࣞ

ฮܮఈ ସ⁄ ݂ฮ
௅మ(ℝ೙,ெ)
ଶ

≤ ଷܥ න ଵିఈିݐ ଶ⁄ I)ܮݐ‖ + ଵ݂‖௅మ(ℝ೙,ெ)ି(ܮݐ
ଶ

ାஶ

଴

 (11)           .ݐ݀

Proof:		
Let  ߤ ∈ ቀ0, గ

ଶ
ቁ, and 

∑ఓశ = ݖ} ∈ ℂ∗; |arg |ݖ <  .{ߤ
Let ߰be a holomorphic function in  ܪஶ(∑ఓశ)such that for some  ܥ, ,ߪ ߬ > 0, 

|(ݖ)߰| ≤ ܥ inf{|ݖ|ఙ ,  ,{ఛି|ݖ|
for any ݖ ∈ ఓశߑ  .Since ܮis positive self-adjoint operator on ܮଶ(ℝ௡ ,  is  one-to-oneܮ  and(ܯ
on  ܮ଴

ଶ (ℝ௡ ,  ,by (6.80), one has by the spectral theorem (ܯ

௅మ(ℝ೙‖ܨ‖ ,ெ)
ଶ ≤ ܥ න ௅మ(ℝ೙,ெ)‖ܨ(ܮݐ)߰‖

ଶ

ାஶ

଴

݀
 ݐ݀

whenever  ܨ ∈ ଴ܮ
ଶ (ℝ௡ , (ݖ)߰ Choosing .(ܯ = ଵିఈݖ ସ⁄ (1 + ⁄(ݖ yields, 

௅మ(ℝ೙,ெ)‖ܨ‖
ଶ ≤ ܥ න ฮ(ܮݐ)ଵିఈ ସ⁄ (I + ฮܨଵି(ܮݐ

௅మ(ℝ೙ ,ெ)
ଶ

ାஶ

଴

݀
ݐ݀ ,                   (12) 

whenever  ܨ ∈ ଴ܮ
ଶ (ℝ௡ ,   .(ܯ

Let  ܨ ∈ ଶ(ℝ௡ܮ ,  Since .(ܯ

න (ݔ)ܯ(ݔ)݂ܮ
ℝ೙

ݔ݀ = 0, 

it follows from (9) that the same is true with  ܮఈ ସ⁄ ݂. Applying now (12) with ܨ = ఈܮ ସ⁄ ݂ 
gives the conclusion of Lemma (6.1.7). 

Let us draw a simple corollary of Lemma (6.1.7): 

Corollary	(6.1.8)	[224]:	

For any α ∈ (0, 2)and  ߝ > 0,  there is  ܣ = ,ܯ)ܣ  such that  (ߝ
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ฮܮఈ ସ⁄ ݂ฮ
௅మ(ℝ೙,ெ)
ଶ

≤ ଷܥ න ଵିఈିݐ ଶ⁄ I)ܮݐ‖ + ଵ݂‖௅మ(ℝ೙,ெ)ି(ܮݐ
ଶ

஺

଴

.             (13) 

Proof:		

The proof is straightforward since 

I)ܮݐ‖ + ଵ݂‖௅మ(ℝ೙,ெ)ି(ܮݐ
ଶ ≤ ௅మ(ℝ೙,ெ)‖ܨ‖ܥ

ଶ  
and 

න ଵିఈିݐ ଶ⁄

ାஶ

஺

ܣ ݐ݀ → +∞ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗  0. 

We now come to the desired estimate. 

Lemma	(6.1.9)	[224]:	
Let ߙ ∈ (0, 2) and ߝ and ܣ given by Corollary (6.1.8). There exist ܥସ = ,ܯ)ସܥ (ܣ > 0 

and  ܿᇱ = ܿᇱ(ܣ, (ܯ > 0 such that, for all  ݂ ∈ ࣞ(ℝ௡), 

න ଵିఈିݐ ଶ⁄ I)ܮݐ‖ + ଵ݂‖௅మ(ℝ೙ି(ܮݐ ,ெ)
ଶ

஺

଴

ݐ݀ ≤ ସܥ ඵ
(ݔ)݂| − ଶ|(ݕ)݂

ݔ| − ௡ାఈ|ݕ |௖ᇲ|௫ି௬ି݁(ݔ)ܯ

ℝ೙×ℝ೙

 .ݕ݀ ݔ݀

Proof:	
Throughout this proof, for all ݔ ∈ ℝ௡and all  ݏ > 0, denote by ࣫(ݔ,  the   closed cube(ݏ

centered at ݔwith side length ݏ. For fixed  ݐ ∈ (0,  following Lemma (6.1.7), we shall ,(ܣ
look for an upper bound for ‖ܮݐ(I + ଵ݂‖௅మ(ℝ೙,ெ)ି(ܮݐ

ଶ  involving first order differences for  

݂. Pick up a countable family of points  ݔ௝
௧ ∈ ℝ௡ , ݆ ∈ ℕ, such that the cubes ࣫൫ݔ௝

௧,  ൯ݐ√
have pairwise disjoint interiors, and 

ℝ௡ = ራ ࣫൫ݔ௝
௧, ൯ݐ√

௝∈ℕ

.                                                                   (14) 

By Lemma (6.1.12), there exists a constant ܥሚ > 0 such that for all  ߠ > 1 and all  
ݔ ∈ ℝ௡ , there are at most  ܥሚߠ௡indexes ݆such that |ݔ − ௝ݔ

௧ ≤  .ݐ√ߠ

For fixed ݆, one has 
I)ܮݐ + ଵ݂ି(ܮݐ = I)ܮݐ +  ,ଵg௝,௧ି(ܮݐ

where, for all ݔ ∈ ℝ௡ , 
g௝,௧(ݔ) = (ݔ)݂ − ݉௝,௧  

and݉௝,௧  is defined by: 

݉௝,௧ =
1

ห࣫൫ݔ௝
௧, ൯หݐ√2

න (ݕ)݂

࣫ቀ௫ೕ
೟,ଶ√௧ቁ

 .ݕ݀

Note that, here, the mean value of  ݂ is computed with respect to the Lebesgue  measure 
on ℝ௡ . Since (14) holds and the cubes ࣫൫ݔ௝

௧,  ൯ have pairwise disjoint interiors, oneݐ√2
clearly has: 
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I)ܮݐ‖ + ଵ݂‖௅మ(ℝ೙,ெ)ି(ܮݐ
ଶ = ෍‖ܮݐ(I + ‖ଵ݂ି(ܮݐ

௅మ࣫ቀ௫ೕ
೟,ଶ√௧ቁ

ଶ

௝∈ℕ

 

                                                  = ෍ฮܮݐ(I + ଵg௝,௧ฮି(ܮݐ
௅మ࣫ቀ௫ೕ

೟,ଶ√௧ቁ
ଶ

௝∈ℕ

, 

and we are left with the task of estimating, 
ฮܮݐ(I + ଵg௝,௧ฮି(ܮݐ

௅మ࣫ቀ௫ೕ
೟,ଶ√௧ቁ

ଶ
. 

To that purpose, set 
଴ܥ

௝,௧ = ࣫൫ݔ௝
௧, ௞ܥ൯andݐ√2

௝,௧ = ࣫൫ݔ௝
௧, 2௞ାଵ√ݐ൯\࣫൫ݔ௝

௧, 2௞√ݐ൯,   ∀݇ ≥ 1, 
and  g௞

௝,௧ ≔ g௝,௧૚஼ೖ
ೕ,೟ , ݇ ≥ 0, ,where, for any subset ܣ ⊂ ℝ௡ , ૚஺ is the usual  characteristic 

function of  ܣ. Since g௝,௧ = ∑ g௞
௝,௧

௞ஹ଴  one has: 

ฮܮݐ(I + ଵg௝,௧ฮି(ܮݐ
௅మ࣫ቀ௫ೕ

೟,ଶ√௧ቁ
ଶ

≤ ෍ฮܮݐ(I + ଵg௝,௧ฮି(ܮݐ
௅మ࣫ቀ௫ೕ

೟,ଶ√௧ቁ
ଶ

௞ஹ଴

                     (15) 

and, using Lemma (6.1.5), one obtains (for some constants ܥ, ܿ > 0): 

ฮܮݐ(I + ଵg௝,௧ฮି(ܮݐ
௅మ࣫ቀ௫ೕ

೟,ଶ√௧ቁ
ଶ

 ≤ ܥ ൭ฮg଴
௝,௧ฮ

௅మቀ஼బ
ೕ,೟,ெቁ + ෍ ݁ି௖ଶೖ ฮg௞

௝,௧ฮ
௅మቀ஼ೖ

ೕ,೟,ெቁ
௞ஹ଴

൱       (16) 

By Cauchy-Schwarz’s inequality, we deduce (for another constant ܥᇱ > 0): 

ฮܮݐ(I + ଵg௝,௧ฮି(ܮݐ
௅మ࣫ቀ௫ೕ

೟,ଶ√௧ቁ
ଶ

≤ ᇱܥ ൭ฮg଴
௝,௧ฮ

௅మቀ஼బ
ೕ,೟,ெቁ + ෍ ݁ି௖ଶೖ ฮg௞

௝,௧ฮ
௅మቀ஼ೖ

ೕ,೟,ெቁ
௞ஹ଴

൱              (17) 

As a consequence, we have: 

න ଵିఈିݐ ଶ⁄ ฮܮݐ(I + ଵg௝,௧ฮି(ܮݐ
௅మ࣫ቀ௫ೕ

೟,ଶ√௧ቁ
ଶ

஺

଴

ݐ݀ ≤ ᇱܥ න ଵିఈିݐ ଶ⁄ ෍ฮg଴
௝,௧ฮ

௅మቀ஼బ
ೕ,೟,ெቁ

௝ஹ଴

஺

଴

 (ݐ݀

ᇱܥ+     න ଵିఈିݐ ଶ⁄ ෍ ݁ି௖ଶೖ

௞ஹଵ

஺

଴

෍ฮg௞
௝,௧ฮ

௅మቀ஼ೖ
ೕ,೟,ெቁ

௝ஹ଴

 18)                  .ݐ݀

We claim that 

Lemma	(6.1.10)	[224]:		

There exists Cത > 0 such that, for all  t > 0 and all  j ∈ ℕ: 

A. For the first term: 

ฮg଴
௝,௧ฮ

௅మቀ஼బ
ೕ,೟,ெቁ

ଶ
≤

̅ܥ
௡ݐ ଶ⁄ න න (ݔ)݂| − (ݔ)ܯଶ|(ݕ)݂

࣫ቀ௫ೕ
೟,ଶ√௧ቁ࣫ቀ௫ೕ

೟,ଶ√௧ቁ

 .ݕ݀ ݔ݀

B. For all ݇ ≥ 1, 

ฮg௞
௝,௧ฮ

௅మቀ஼ೖ
ೕ,೟,ெቁ

ଶ
≤

̅ܥ

൫√ݐ൯ଶ න න (ݔ)݂| − (ݔ)ܯଶ|(ݕ)݂

௬∈࣫ቀ௫ೕ
೟,ଶೖశభ√௧ቁ௫∈࣫ቀ௫ೕ

೟,ଶೖశభ√௧ቁ

 .ݕ݀ ݔ݀
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We postpone the proof to the end of the section and finish the proof of Lemma 
(6.1.9). Using Assertion A in Lemma (6.1.10), summing up on  ݆ ≥ 0 and  integrating 
over (0,  :we get ,(ܣ

න ଵିఈିݐ ଶ⁄ ෍ฮg଴
௝,௧ฮ

௅మቀ஼బ
ೕ,೟ ,ெቁ

ଶ

௝ஹ଴

஺

଴

ݐ݀ = ෍ න ଵିఈିݐ ଶ⁄

஺

଴

ฮg଴
௝,௧ฮ

௅మቀ஼బ
ೕ,೟ ,ெቁ

ଶ

௝ஹ଴

 ݐ݀

≤ ̅ܥ ෍ න ଵିഀିݐ
మି೙

మ ൮ න න (ݔ)݂| − (ݔ)ܯଶ|(ݕ)݂

࣫ቀ௫ೕ
೟,ଶ√௧ቁ࣫ቀ௫ೕ

೟,ଶ√௧ቁ

൲ݕ݀ ݔ݀
஺

଴௝ஹ଴

 ݐ݀

                    ≤ ̅ܥ ෍ ඵ (ݔ)݂|
(௫,௬)∈ℝ೙×ℝ೙௝ஹ଴

− (ݔ)ܯଶ|(ݕ)݂

⎝

⎜
⎜
⎜
⎛

න ଵିഀିݐ
మି೙

మ

஺

௧ஹ୫ୟ୶ቐ
ቚೣషೣೕ

೟ቚ
మ

೙ ;
ቚ೤షೣೕ

೟ቚ
మ

೙ ቑ

ݐ݀

⎠

⎟
⎟
⎟
⎞

 .ݕ݀ ݔ݀

The Fubini theorem now shows: 

෍ න ଵିഀିݐ
మି೙

మ

஺

௧ஹ୫ୟ୶ቐ
ቚೣషೣೕ

೟ቚ
మ

೙ ;
ቚ೤షೣೕ

೟ቚ
మ

೙ ቑ

ݐ݀
௝ஹ଴

= න ଵିഀିݐ
మି೙

మ ෍ ૚
ቌ୫ୟ୶ቐ

ቚೣషೣೕ
೟ቚ

మ

೙ ;
ቚ೤షೣೕ

೟ቚ
మ

೙ ቑ,ାஶ ቍ

(ݐ)
௝ஹ଴

஺

଴

 .ݐ݀

Observe that, by Lemma (6.1.12), there is a constant ܰ ∈ ℕ such that, for all  ݐ > 0,  
there are at most  ܰindexes ݆such that หݔ − ௝ݔ

௧หଶ
< ݕand หݐ݊ − ௝ݔ

௧หଶ
<  If such  an .ݐ݊

index  ݆exists, one has |ݔ − |ݕ <  It therefore follows that .ݐ݊√2

෍ ૚
ቌ୫ୟ୶ቐ

ቚೣషೣೕ
೟ቚ

మ

೙ ;
ቚ೤షೣೕ

೟ቚ
మ

೙ ቑ,ାஶ ቍ

(ݐ)
௝ஹ଴

≤ ܰ૚൫|௫ି௬|మ ସ௡,ାஶ⁄ ൯(ݐ), 

so that 

න ଵିఈିݐ ଶ⁄ ෍ฮg଴
௝,௧ฮ

௅మቀ஼బ
ೕ,೟,ெቁ

ଶ

௝

஺

଴

 ݐ݀

≤ ܰ̅ܥ ඵ (ݔ)݂| − (ݔ)ܯଶ|(ݕ)݂ ቌ න ଵିഀିݐ
మି೙

మ

஺

|௫ି௬|మ ସ௡⁄

ቍݐ݀
ℝ೙×ℝ೙

 ݕ݀ ݔ݀

  ≤ ܰ̅ܥ ඵ
(ݔ)݂| − ଶ|(ݕ)݂

ݔ| − ௡ାఈ|ݕ (ݔ)ܯ
|௫ି௬|ஸଶ√௡஺

 (19)                                         .ݕ݀ ݔ݀

Using now Assertion B in Lemma (6.2.10), we obtain, for all ݆ ≥ 0  and all ݇ ≥ 1, 

න ଵିఈିݐ ଶ⁄ ෍ฮg௞
௝,௧ฮ

ଶ

ଶ

௝ஹ଴

஺

଴

 ݐ݀
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≤ ̅ܥ ෍ න ଵିఈିݐ ଶ⁄ ൮ ඵ (ݔ)݂| − (ݔ)ܯଶ|(ݕ)݂

࣫ቀ௫ೕ
೟,ଶೖశభ√௧ቁ×࣫ቀ௫ೕ

೟,ଶೖశభ√௧ቁ

൲ݕ݀ ݔ݀
஺

଴௝ஹ଴

 ݐ݀

         ≤ ̅ܥ ෍ ඵ (ݔ)݂| − (ݔ)ܯଶ|(ݕ)݂

⎝

⎜
⎛

න ଵିഀିݐ
మି೙

మ૚
୫ୟ୶ቐ

ቚೣషೣೕ
೟ቚ

మ

రೖ೙
;
ቚ೤షೣೕ

೟ቚ
మ

రೖ೙
ቑ,ାஶ

஺

଴

ݐ݀(ݐ)

⎠

⎟
⎞

௫,௬∈ℝ೙௝ஹ଴

 .ݕ݀ ݔ݀

But, given  t > 0, ,ݔ ݕ ∈ ℝ୬, by Lemma (6.1.12) again, there exist at most C෨2୩୬ indexes  j  
such that 

หݔ − ௝ݔ
௧ห ≤ 2௞√݊ݐandหݕ − ௝ݔ

௧ห ≤ 2௞√݊ݐ, 
and for these indexes  ݆, ݔ| − |ݕ ≤ 2௞ାଵ√݊ݐ.  As a consequence we have: 

න ଵିഀିݐ
మି೙

మ ෍ ૚
୫ୟ୶ቐ

ቚೣషೣೕ
೟ቚ

మ

రೖ೙
;
ቚ೤షೣೕ

೟ቚ
మ

రೖ೙
ቑ,ାஶ

(ݐ)
௝ஹ଴

஺

଴

ݐ݀ ≤ ሚ2௞௡ܥ න ଵିഀିݐ
మି೙

మ

஺

௧ஹ|ೣష೤|మ

రೖశభ೙

 ݐ݀

≤ ሚܥ
ᇱଶೖ(ഀశ೙)|௫ି௬|ష೙షഀ૚

|ೣష೤|ರమೖశభ√೙ಲ ,
                                       (20) 

for some other constant ܥሚ ᇱ > 0, and therefore 

න ଵିఈିݐ ଶ⁄ ෍ฮg௞
௝,௧ฮ

௅మቀ஼బ
ೕ,೟,ெቁ

ଶ

௝

஺

଴

ݐ݀ ≤ ሚܥ̅ܥ ᇱ2௞(ఈା௡) ඵ
(ݔ)݂| − ଶ|(ݕ)݂

ݔ| − ௡ାఈ|ݕ (ݔ)ܯ
|௫ି௬|ஸଶೖశభ√௡஺

 .ݕ݀ ݔ݀

We can now conclude the proof of Lemma (6.1.9), using Lemma (6.1.7), (16), (19) and 
(20). We have proved, by reconsidering (18): 

න ଵିఈିݐ ଶ⁄

஺

଴

I)ܮݐ‖ + ଵ݂‖௅మ(ℝ೙,ெ)ି(ܮݐ
ଶ ≥  ݐ݀ ሚܰܥᇱܥ ඵ

(ݔ)݂| − ଶ|(ݕ)݂

ݔ| − ௡ାఈ|ݕ (ݔ)ܯ
|௫ି௬|ஸଶೖశభ√௡஺

    ݕ݀ ݔ݀

   + ෍ ሚܥ̅ܥᇱܥ ᇱ2௞ఈ݁ି௖ଶೖ

௞ஹଵ

ඵ
(ݔ)݂| − ଶ|(ݕ)݂

ݔ| − ௡ାఈ|ݕ (ݔ)ܯ
|௫ି௬|ஸଶೖశభ√௡஺

 (21)                         ݕ݀ ݔ݀

and we deduce that 

න ଵିఈିݐ ଶ⁄ I)ܮݐ‖ + ଵ݂‖௅మ(ℝ೙,ெ)ି(ܮݐ
ଶ

஺

଴

ݐ݀ ≤ ସܥ ඵ
(ݔ)݂| − ଶ|(ݕ)݂

ݔ| − ௡ାఈ|ݕ |௖ᇲ|௫ି௬ି݁(ݔ)ܯ

ℝ೙×ℝ೙

 ݕ݀ ݔ݀

for some constants ܥସ and ܿᇱ > 0 as claimed in the statement. 

Proof	of	Lemma	(6.1.10):	

Observe first that, for all x ∈ ℝ୬, 

g଴
௝,௧(ݔ) = (ݔ)݂ −

1
ห࣫൫ݔ௝

௧, ൯หݐ√2
න (ݕ)݂

࣫ቀ௫ೕ
೟,ଶ√௧ቁ

 .ݕ݀
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               =
1

ห࣫൫ݔ௝
௧, ൯หݐ√2

න ൫݂(ݔ) − ൯(ݕ)݂
࣫ቀ௫ೕ

೟,ଶ√௧ቁ

 .ݕ݀

By Cauchy-Schwarz inequality, it follows that 

หg଴
௝,௧(ݔ)ห

ଶ
≤

ܥ
௡ݐ ଶ⁄ න (ݔ)݂| − ଶ|(ݕ)݂

࣫ቀ௫ೕ
೟,ଶ√௧ቁ

 .ݕ݀

Therefore, 

ฮg଴
௝,௧ฮ

௅మቀ஼బ
ೕ,೟,ெቁ

ଶ
≤

ܥ
௡ݐ ଶ⁄ න න (ݔ)݂| − (ݔ)ܯଶ|(ݕ)݂

࣫ቀ௫ೕ
೟,ଶ√௧ቁ࣫ቀ௫ೕ

೟,ଶ√௧ቁ

 ,ݕ݀ ݔ݀

which shows Assertion A. We argue similarly for Assertion B and obtain: 

ฮg௞
௝,௧ฮ

௅మቀ஼ೖ
ೕ,೟,ெቁ

ଶ
≤

ܥ
௡ݐ ଶ⁄ න න (ݔ)݂| − (ݔ)ܯଶ|(ݕ)݂

௬∈࣫ቀ௫ೕ
೟,ଶ√௧ቁ௫∈࣫ቀ௫ೕ

೟,ଶ√௧ቁ

 ,ݕ݀ ݔ݀

which ends the proof of  Lemma (6.1.10) 

We end up this section with a few comments on Lemma (6.1.10). It is a  well-known 
fact [251] that, when 0 < > ߙ 2, for all  ܲ ∈ (1, +∞), 

ฮ(−∆)ఈ ସ⁄ ݂ฮ
௅ು(ℝ೙) ≤ ఈ,௉ฮܵఈ,௉݂ฮܥ

௅ು(ℝ೙),                                                      (22) 
where 

                    ܵఈ,௉݂(ݔ) = ቌන ൭න|݂(ݔ + (ݕݎ − |(ݔ)݂
஻

൱ݕ݀
ଶ

ݎ݀
ଵାఈݎ

ାஶ

଴

ቍ

భ
మ

, 

and also [252] 
ฮ(−∆)ఈ ସ⁄ ݂ฮ

௅ು(ℝ೙) ≤  ఈ݂‖௅ು(ℝ೙)                                                             (23)ܦ‖ఈ,௉ܥ
where 

(ݔ)ఈ݂ܦ = ൭ න
ݔ)݂| + (ݕ − ଶ|(ݔ)݂

௡ାఈ|ݕ| ݕ݀
ℝ೙

൱

భ
మ

. 

In [253], these inequalities were extended to the setting of a unimodular Lie group  
endowed with a sub-laplacian ∆, relying on semigroups techniques and  Littlewood-
Paley-Stein functionals. In particular, in [253], we use pointwise estimates of the kernel 
of the semigroup generated by ∆. The conclusion of Lemma  (6.1.10) means that the 
norm of ܮఈ ସ⁄ ݂ in  ܮଶ(ℝ௡ , ଶ(ℝ௡ܮ  is bounded from above by the (ܯ ,  norm of an(ܯ
appropriate version of ܦఈ. Note that this does not require  pointwise estimates for the 
kernel of the semigroup generated by  ܮ, and that the  ܮଶoff-diagonal estimates given by 
Lemma (6.1.5), which hold for a general  measure ܯ, are enough for our argument to 
hold. However, we do not know if anܮ௉  version of Lemma (6.1.10) still holds. Note also 
that we do not compare the  ܮଶ(ℝ௡ , ఈܮ norm of(ܯ ସ⁄ ݂ with the ܮଶ(ℝ௡ ,  norm of a(ܯ
version of ܵఈ,௉݂.  Finally,  the converse inequalities to (22) and (23) hold in ℝ௡ and also 
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on a unimodular  Lie group [252], and we did not consider the corresponding 
inequalities in the  present section. 

Observe first that, by the definition of  ܮ, we have 

න|∇݂(ݔ)|ଶ(ݔ)ܯ
ℝ೙

ݔ݀ = න (ݔ)ܯ(ݔ)݂(ݔ)݂ܮ
ℝ೙

 ,ݔ݀

for all ݂ ∈  The inequality (4) can therefore be rewritten, in terms of  operators, as .(ܮ)ࣞ

ܮ  ≥  (24)                                                                          ,ߤᇱߣ
whereߤis the multiplication operator by ݔ ⟼ 1 + |∇ ln  is a  nonnegativeߤ  ଶ. Since|(ݔ)ܯ
operator on ܮଶ(ℝ௡ ,  using a functional calculus argument (see [254]), one deduces ,(ܯ
from (24) that, for any ߙ ∈ (0,2), 

ఈܮ ଶ⁄ ≥ ఈ(ᇱߣ) ଶ⁄ ఈߤ ଶ⁄ , 
which implies, thanks to the fact ܮఈ ଶ⁄ = ൫ܮఈ ସ⁄ ൯ଶ

 and the symmetry of ܮఈ ସ⁄  on  ܮଶ(ℝ௡ ,  ,(ܯ
that 

ఈ(ᇱߣ) ଶ⁄ න|݂(ݔ)|ଶ(1 + |∇ ln ଶ)ఈ|(ݔ)ܯ ଶ⁄ (ݔ)ܯ
ℝ೙

ݔ݀ ≤ නหܮఈ ସ⁄ หଶ(ݔ)݂
(ݔ)ܯ

ℝ೙

ݔ݀

= ฮܮఈ ସ⁄ ݂ฮ
௅మ(ℝ೙,ெ)
ଶ

. 
The conclusion of Theorem (6.1.2) readily follows by using the previous inequality in 
conjunction with Corollary (6.1.6) and Lemma (6.1.7), and picking ε small enough. 

The first author would like to thank the Award No. KUK-I1-007-43, funded  by 
the King Abdullah University of Science and Technology (KAUST) for the  funding 
provided in Cambridge University. In this section, we prove Proposition (6.1.1), namely: 

Proposition	(6.1.11)	[224]:	

Assume that M = eି୚ satisϐies (3). Then there exists λᇱ(M) > 0 such that,  for all 
functions f ∈ L଴

ଶ (ℝ୬, M) ∩ Hଵ(ℝ୬, M): 

න|∇݂(ݔ)|ଶ(ݔ)ܯ
ℝ೙

ݔ݀ ≥ (ݔ)ᇱߣ න|∇݂(ݔ)|ଶ(1 + |∇ ln (ݔ)ܯ(ଶ|(ݔ)ܯ
ℝ೙

 (25)                     .ݔ݀

Note that of course in general the constants (ܯ)ߣ and (ܯ)ߣ in (1) and (4) are 
different. 

Proof	of	Proposition	(6.1.1):	

Let  ݂ be as in the statement of Proposition (6.1.1) and let g ≔ ܯ݂
భ
మ. Since 

∇݂ = భିܯ
మ ∇g −

1
2 gିܯయ

మ∇ܯ, 
assumption (3) yields two positive constants ߚ,  such that ߛ
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න|∇݂(ݔ)|ଶ(ݔ)ܯ
ℝ೙

ݔ݀ = න ൬|∇g(ݔ)|ଶ +
1
4 gଶ(ݔ)|∇ ln ଶ|(ݔ)ܯ − g(ݔ)∇g(ݔ) ∙ ∇ ln ൰(ݔ)ܯ

ℝ೙

 ݔ݀

= න ൬|∇g(ݔ)|ଶ +
1
4 gଶ(ݔ)|∇ ln ଶ|(ݔ)ܯ −

1
2 ∇gଶ(ݔ) ∙ ∇ ln ൰(ݔ)ܯ

ℝ೙

          ݔ݀

≥ න gଶ(ݔ) ൬
1
4

|∇ ln ଶ|(ݔ)ܯ +
1
2 ∆ ln ൰(ݔ)ܯ

ℝ೙

 ݔ݀

 ≥ න ݂ଶ(ݔ)(ߚ|∇ ln ଶ|(ݔ)ܯ − (ݔ)ܯ(ߛ
ℝ೙

 (26)                                              .ݔ݀

The conjunction of (1) (which holds because (2) is satisϐied), and (26) yields the 
desired conclusion. 

We prove the following lemma. 

Lemma	(6.1.12)	[224]:	

There exists a constant C෨ > 0 with the following property: for all  θ > 1and  
allx ∈ ℝ୬,  there are at most ܥሚߠ௡ indexes ݆ such that หݔ − ௝ݔ

௧ห ≤  .ݐ√ߠ

Proof:	
The argument is very simple (see [255]) and we give it for the sake of  

completeness. Let ݔ ∈ ℝ௡and (ݔ)ܫ  = ൛݆ ∈ ℕ; หݔ − ௝ݔ
௧ห ≤ ݆ ൟ. Since, for allݐ√ߠ ∈  ,(ݔ)ܫ

࣫൫ݔ௝
௧, ൯ݐ√ ⊂ ܤ ൬ݔ, ൬ߠ +

1
2൰  ,൰ݐ݊√

one has 

ܥ ቆ൬ߠ +
1
2൰ ቇݐ݊√

௡

≥ ෍ ห࣫൫ݔ௝
௧, ൯หݐ√

௝∈ூ(௫)

= ݐ√|(ݔ)ܫ|
௡

, 

we get the desired conclusion. 
Lemma (6.1.13)[272]: 

        There exists ܥଵ = (ܯ)ଵܥ > 0 with the following property: for all compact disjoint 

subsets ܧ, ܨ ⊂ ℝ௡ ,ܧ)bounded, with  dist ܨ , (ܨ =: ݐ + ϵ , ϵ > 0,  all functions 

݂ ∈ ଶ(ℝ௡ܮ  , ଶݐ and all ܧ supported in (ܯ >  1 

‖(I + ଶݐ) − ଵ݂‖௅మ(ி,ெ)ି(∗ࡸ(1 + ଶݐ)‖ − I)∗ࡸ(1 + ଶݐ) − ଵ݂‖௅మ(ி,ெ)ି(∗ࡸ(1

≤ 8݁ି஼భ
೟శച
√೟ ‖݂‖௅మ(ா,ெ). 

Note that, in different contexts, this kind of estimate, originating in [246], turns out to be 

a powerful tool, especially when no pointwise upper estimate on the kernel of  the 

semigroup generated by ࡸ∗ is available (see [247-249]). Since we found no reference for 

these off-diagonal estimates for the resolvent of   ࡸ∗, we give  here a general  proof 

[224]. 
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Proof of Lemma (6.1.13): We argue as in [24]. Since (I + ଶݐ)  −  ଵ is boundedି(∗ࡸ(1

with norm less than 1 for all tଶ > 1 it is clearly enough to restrict to  ߳ > 0 .  

Define  u(ݐଶ − 1) = (I + ଶݐ) − ݒ  ଵf , so that, for all functionsି(∗ࡸ(1 ∈ ଵ(ℝ௡ܪ ,  ,(ܯ

න (௡ݔ)ܯ(௡ݔ)ݒ(௡ݔ)௧మିଵݑ
ℝ೙

௡ݔ݀ + ଶݐ) − 1) න (௡ݔ)௧మିଵݑ∇ ∙ (௡ݔ)ܯ(௡ݔ)ݒ∇
ℝ೙

 

 

= න (௡ݔ)ܯ(௡ݔ)ݒ(௡ݔ)݂
ℝ೙

௡ݔ݀ .                    (27) 

Fix now a nonnegative function ߟ ∈ ࣞ(ℝ௡)vanishing on  ܧ. Since  ݂ is supported  in ܧ, 

applying (27) with  ݒ = ௧మିଵݑ ௧మିଵ(remember thatݑଶߟ  ∈ ଵ(ℝ௡ܪ ,  ,yields ((ܯ

න (௡ݔ)ܯଶ|(௡ݔ)௧మିଵݑ|(௡ݔ)ଶߟ
ℝ೙

௡ݔ݀ + ଶݐ) − 1) න (௡ݔ)௧మିଵݑ∇ ∙ (௡ݔ)ܯ(௧మିଵݑଶߟ)∇
ℝ೙

௡ݔ݀ = 0, 

which implies: 

න (௡ݔ)ܯଶ|(௡ݔ)௧మିଵݑ|(௡ݔ)ଶߟ
ℝ೙

௡ݔ݀ + ଶݐ) − 1) න (௡ݔ)ܯଶ|(௡ݔ)௧మିଵݑ∇|(௡ݔ)ଶߟ
ℝ೙

 ௡ݔ݀

= ଶݐ)2− − 1) න (௡ݔ)ߟ∇(௡ݔ)௧మିଵݑ(௡ݔ)ߟ ∙ (௡ݔ)ܯ(௡ݔ)௧మିଵݑ∇
ℝ೙

 ௡ݔ݀

≤ ଶݐ) − 1) න|ݑ௧మିଵ(ݔ௡)|ଶ|∇ߟ(ݔ௡)|ଶܯ(ݔ௡)
ℝ೙

௡ݔ݀

+ ଶݐ) − 1) න (௡ݔ)ܯଶ|(௡ݔ)௧ݑ∇|(௡ݔ)ଶߟ
ℝ೙

 ,௡ݔ݀

 

hence 

න (௡ݔ)ܯଶ|(௡ݔ)௧మିଵݑ∇|(௡ݔ)ଶߟ
ℝ೙

௡ݔ݀ ≤ ଶݐ) − 1) න|ݑ௧మିଵ(ݔ௡)|ଶ|∇ߟ(ݔ௡)|ଶܯ(ݔ௡)
ℝ೙

 ௡.   (28)ݔ݀

Let ߦ be such that ߦ = 0 on ܧand  ߦ nonnegative so that  ߟ ∶= ݁(ଵାఢ)క − 1 ≥ 0  and  ߟ 

vanishes on  ܧ for some  ߳ > 0  to be chosen. Choosing this particular ߟ in (28) 

with ߳ > 0  gives: 
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නหe(ଶି஫)ஞ − 1หଶ|u௧మିଵ(ݔ௡)|ଶM(ݔ௡)
ℝ౤

dݔ௡

≤ (2 − ϵ)ଶ(ݐଶ − 1) න|u௧మିଵ(ݔ௡)|ଶ|∇ξ(ݔ௡)|ଶeଶ(ଶି஫)ஞ(௫೙)M(ݔ௡)
ℝ౤

dݔ௡ . 

Taking   ϵ = 2 − ଶݐ√2)/1 − 1‖∇ξ‖ஶ),  one obtains: 

නหe(ଶି஫)ஞ(௫೙) − 1หଶ|u௧మିଵ(ݔ௡)|ଶM(ݔ௡)
ℝ౤

dݔ௡ ≤
1
4

න|ݑ௧మିଵ(ݔ௡)|ଶ݁ଶ(ଶିఢ)క(௫೙)ܯ(ݔ௡)
ℝ೙

௡ݔ݀ . 

Using the fact that the norm of  (ܫ + ଶݐ) − ଶݐ   ଵ is bounded by 1 uniformly inି(∗ࡸ(1 > 1,  

this gives: 

ฮ݁(ଶିఢ)కݑ௧మିଵฮ
௅మ൫ℝమ,ெ൯ ≤ ฮ൫݁(ଶିఢ)క − 1൯ݑ௧మିଵฮ

௅మ(ℝ೙,ெ) +  ௧మିଵ‖௅మ(ℝ೙,ெ)ݑ‖

                    ≤
1
2

ฮ݁(ଶିఢ)కݑ௧మିଵฮ
௅మ(ℝ೙,ெ) + ‖݂‖௅మ(ℝ೙,ெ), 

therefore 

නห݁(ଶିఢ)క(௫೙)หଶ|ݑ௧మିଵ(ݔ௡)|ଶܯ(ݔ௡)
ℝ೙

௡ݔ݀ ≤ 4 න|݂(ݔ௡)|ଶܯ(ݔ௡)
ℝ೙

௡ݔ݀ . 

We choose now  ߦ such that   ߦ =  0 on  ܧ as before and additionally that  ߦ =  1 on   ߟ )ܨ 

is then compactly supported from the fact that  ܨ is bounded). It can trivially be chosen 

with ‖∇ߦ‖ஶ ≤ ܥ ൫(ݐଶ − 1) + ߳൯⁄ , which yields the desired conclusion for the  ܮଶ norm of  

+ ܫ) ଶݐ)  − ଶݐ) ଵ݂with a factor 4 in the right-hand side. Sinceି(∗ࡸ(1 − + ܫ)∗ࡸ(1

ଶݐ)  − ଵ݂ି(∗ࡸ(1 = ݂ − + ܫ) ଶݐ)  −  ଵ݂ ,  the desired inequality with a factor 8ି(∗ࡸ(1

readily  follows. 

Lemma (6.1.14)[272]: 

               Let   ∈> 0. There exists  ܥሚଷ = (ܯ)ሚଷܥ > 0  such that, for all   ݂ ∈  ,(∗ܮ)ࣞ

ฮܮ∗(ଶିఢ) ସ⁄ ݂ฮ௅మ(ℝ೙,ெ)
ଶ

≤ ଷܥ න ଶݐ) − 1)ି∈షర
మ ቛ(ݐଶ − ൫I∗ࡸ(1 + ଶݐ) − ൯ିଵ∗ࡸ(1

݂ቛ
௅మ(ℝ೙,ெ)

ଶ
ାஶ

଴

݀൫2ݐ − 1൯. (29) 

Proof:  Let   ߤ ∈ ቀ0, గ
ଶ

ቁ, and 

∑ఓశ = ௡ݖ} ∈ ℂ∗; |arg |௡ݖ <  .{ߤ

Let  ߰  be a holomorphic   function in  ܪஶ(∑ఓశ) such that for some  ܥ, ,ߪ ߬ > 0, 
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|(௡ݖ)߰| ≤ ܥ inf{|ݖ௡|ఙ ,  ,{௡|ିఛݖ|

for any  ݖ௡ ∈ ఓశߑ  .Since ࡸ∗ is positive self-adjoint operator on  ܮଶ(ℝ௡ , -is  one ∗ࡸ  and(ܯ

to-one on  ܮ଴
ଶ (ℝ௡ ,  ,by (1), one has by the spectral theorem (ܯ

௅మ(ℝ೙,ெ)‖ܨ‖
ଶ ≤ ܥ න ฮ߰൫(2ݐ − ฮܨ൯∗ܮ(1

௅మ(ℝ೙,ெ)
ଶ

ାஶ

଴

݀
ଶݐ)݀ − 1) 

Whenever   ܨ ∈ ଴ܮ
ଶ (ℝ௡ , (௡ݖ)߰  Choosing .(ܯ = ௡ݖ

యషച
ర (1 + ௡)ൗݖ yields, 

௅మ(ℝ೙,ெ)‖ܨ‖
ଶ ≤ ܥ න ฯ൫(2ݐ − ൯∗ܮ(1

మశച
ర (I + 2ݐ) − ฯܨଵି(∗ܮ(1

௅మ(ℝ೙,ெ)

ଶାஶ

଴

݀
ଶݐ)݀ − 1),                   (30) 

Whenever   ܨ ∈ ଴ܮ
ଶ (ℝ௡ ,   .(ܯ

Let   ܨ ∈ ଶ(ℝ௡ܮ ,  Since .(ܯ

න (௡ݔ)ܯ(௡ݔ)݂∗ܮ
ℝ೙

௡ݔ݀ = 0, 

it follows from (9) that the same is true with  ܮ∗(ଶିఢ) ସ⁄ ݂. Applying now (30) with 

ܨ = (ଶିఢ)∗ܮ ସ⁄ ݂ gives the conclusion of Lemma (6.1.14). 

Let us draw a simple corollary of Lemma (6.1.14) (see [224]). 

Corollary (6.1.15)[272]:  

            For any  ∈, ߝ > 0,  there is  ܣ = ,ܯ)ܣ  such that  (ߝ

ฮܮ∗(ଶିఢ) ସ⁄ ݂ฮ
௅మ(ℝ೙,ெ)

ଶ

≤ ሚଷܥ න(ݐଶ − 1)ି∈షర
మ 2ݐ)‖ − I)∗ܮ(1 + 2ݐ) − ଵ݂‖௅మ(ℝ೙,ெ)ି(∗ܮ(1

ଶ

஺

଴

.             (31) 

Proof.The proof is straightforward since 

2ݐ)‖ − I)∗ܮ(1 + 2ݐ) − ଵ݂‖௅మ(ℝ೙ି(∗ܮ(1 ,ெ)
ଶ ≤ ௅మ(ℝ೙,ெ)‖ܨ‖ܥ

ଶ  

And 

න 2ݐ) − 1)
షయష∈

మ

ାஶ

஺

ܣ ݐ݀ → +∞ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗  0. 

We now come to the desired estimate. 
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Lemma (6.1.16)[272]: 

       Let  ∈, ߝ > 0 and ܣ given by Corollary (6.1.15). There exist ܥሚସ = ,ܯ)ሚସܥ (ܣ > 0 and 

 ܿᇱ = ܿᇱ(ܣ, (ܯ > 0  such that, for all  ݂ ∈ ࣞ(ℝ௡), 

න(ݐଶ − 1)
∈షర

మ 2ݐ)‖ − I)∗ܮ(1 + 2ݐ) − ଵ݂‖௅మ(ℝ೙,ெ)ି(∗ܮ(1
ଶ

஺

଴

             ݐ݀

≤ ሚସܥ ඵ
(௡ݔ)݂| − ଶ|(௡ାଵݔ)݂

௡ݔ| − ௡ାଵ|௡ାଶିఢݔ |௖ᇲ|௫೙ି௫೙శభି݁(௡ݔ)ܯ

ℝ೙×ℝ೙

 .௡ାଵݔ݀ ௡ݔ݀

Proof: Throughout this proof, for all ݔ௡ ∈ ℝ௡ and all   ݏ > 0, denote by  ࣫(ݔ௡ ,    the (ݏ

closed cube centered at ݔ௡with side length ݏ . For fixed   (ݐଶ − 1) ∈ (0,  following ,(ܣ

Lemma (6.1.14), we shall look for an upper bound for 

2ݐ)‖ − I)∗ܮ(1 + 2ݐ) − ଵ݂‖௅మ(ℝ೙,ெ)ି(∗ܮ(1
ଶ  involving first order differences for   ݂. Pick up a 

countable family of points  (ݔ௡)௝
1−2ݐ ∈ ℝ௡ , ݆ ∈ ℕ, such that the cubes ࣫ ቀ൫݊ݔ

1൯−2ݐ
݆
, 2ݐ√ − 1ቁ 

have pairwise disjoint interiors, and 

ℝ௡ = ራ ࣫ ቀ൫݊ݔ
1൯−2ݐ

݆
, ඥ2ݐ − 1ቁ

௝∈ℕ

.                                                                   (32) 

By Lemma (B.1) in [224], there exists a constant ܥሚ > 0 such that for all  ∈> 0   and  all  

௡ݔ ∈ ℝ௡ , there are at most  ܥሚ(1+∈)௡indexes ݆such that ቚݔ௡ − ൫݊ݔ
1൯−2ݐ

݆
ቚ ≤ 2ݐ√(∋+1) − 1. 

For fixed   ݆, one has 

ଶݐ) − ൫I∗ܮ(1 + ଶݐ) − ൯−1݂∗ܮ(1 = ଶݐ) − ൫I∗ܮ(1 + ଶݐ) −  ,൯−1g݆,௧మିଵ∗ܮ(1

Where, for all   ݔ௡ ∈ ℝ௡ , 

g௝,൫1−2ݐ൯(ݔ௡): = (௡ݔ)݂ − ݉௝,൫1−2ݐ൯ 

And    ݉௝,1−2ݐ   is defined by: 

݉௝,1−2ݐ ≔
1

ቚ࣫ ቀ൫݊ݔ
1൯−2ݐ

݆
, 2ݐ√2 − 1ቁቚ

න (௡ାଵݔ)݂

࣫൬ቀ݊ݔ
1ቁ−2ݐ

݆
,ଶඥ1−2ݐ൰

 .௡ାଵݔ݀

Note that, here, the mean value of   ݂ is computed with respect to the Lebesgue  measure 

on ℝ௡ . Since (32) holds and the cubes ࣫ ቀ൫݊ݔ
1൯−2ݐ

݆
, 2ݐ√2 − 1ቁ have pairwise disjoint 

interiors, one clearly has: 
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2ݐ)‖ − I)∗ܮ(1 + 2ݐ) − ଵ݂‖௅మ(ℝ೙ି(∗ܮ(1 ,ெ)
ଶ

= ෍‖(2ݐ − I)∗ܮ(1 + 2ݐ) − ‖ଵ݂ି(∗ܮ(1
௅మ࣫ቀ(௫೙)ೕ

1ቁ−2ݐଶඥ,1−2ݐ
ଶ

௝∈ℕ

 

                            = ෍ฮ(2ݐ − I)∗ܮ(1 + 2ݐ) − ଵg௝,௧ฮି(∗ܮ(1
௅మ࣫൬ቀ݊ݔ

1ቁ−2ݐ
݆
,ଶඥ1−2ݐ൰

ଶ

௝∈ℕ

, 

And we are left with the task of estimating, 

ฮ(2ݐ − I)∗ܮ(1 + 2ݐ) − 1ฮ−2ݐ,ଵg௝ି(∗ܮ(1
௅మ࣫൬ቀ݊ݔ

1ቁ−2ݐ
݆
,ଶඥ1−2ݐ൰

ଶ
. 

To that purpose, set 

଴ܥ
௝,1−2ݐ = ଶ࣫ܮ ቀ൫݊ݔ

1൯−2ݐ
݆
, 2ඥ2ݐ − 1ቁ andܥ௞

௝,1−2ݐ

= ଶ࣫ܮ ቀ൫݊ݔ
1൯−2ݐ

݆
, 2ඥ2ݐ − 1ቁ ଶ࣫ܮ\ ቀ൫݊ݔ

1൯−2ݐ
݆
, 2ඥ2ݐ − 1ቁ,   ∀݇ ≥ 1, 

And  g௞
௝,1−2ݐ ≔ g௝,1−2ݐ૚

஼ೖ
ೕ,1−2ݐ, ݇ ≥ 0 , where, for any subset ܣ ⊂ ℝ௡ , ૚஺ is the usual  

characteristic  function of  ܣ. Since  g௝,1−2ݐ = ∑ g௞
௝,1−2ݐ

௞ஹ଴  one has: 

ฮ(2ݐ − I)∗ܮ(1 + 2ݐ) − 1ฮ−2ݐ,ଵg௝ି(∗ܮ(1
௅మ࣫൬ቀ݊ݔ

1ቁ−2ݐ
݆
,ଶඥ1−2ݐ൰

ଶ
 

≤ ෍ฮ(2ݐ − I)∗ܮ(1 + 2ݐ) − 1ฮ−2ݐ,ଵg௝ି(∗ܮ(1
௅మ࣫൬ቀ݊ݔ

1ቁ−2ݐ
݆
,ଶඥ1−2ݐ൰

ଶ

௞ஹ଴

                     (33) 

 

and, using Lemma (6.1.13), one obtains (for some constants ܥሚ, ܿ̃ > 0): 

ฮ(2ݐ − I)∗ܮ(1 + 2ݐ) − 1ฮ−2ݐ,ଵg௝ି(∗ܮ(1
௅మ࣫൬ቀ݊ݔ

1ቁ−2ݐ
݆
,ଶඥ1−2ݐ൰

ଶ
  

≤ ሚܥ ൭ቛg଴
௝,1−2ݐቛ

௅మ൬஼బ
ೕ,1−2ݐ,ெ൰

+ ෍ ݁ି௖̃ଶೖ ቛg௞
௝,1−2ݐቛ

௅మ൬஼ೖ
ೕ,1−2ݐ,ெ൰

௞ஹ଴

൱       (34) 

 

By Cauchy-Schwarz’s inequality, we deduce (for another constant  ܥᇱ
ଵ > 0): 

ฮ(2ݐ − I)∗ܮ(1 + 2ݐ) − 1ฮ−2ݐ,ଵg௝ି(∗ܮ(1
௅మ࣫൬ቀ݊ݔ

1ቁ−2ݐ
݆
,ଶඥ1−2ݐ൰

ଶ
 

≤ ᇱܥ
ଵ ൭ቛg଴

௝,1−2ݐቛ
௅మ൬஼బ

ೕ,1−2ݐ,ெ൰
+ ෍ ݁ି௖̃ଶೖ ቛg௞

௝,1−2ݐቛ
௅మ൬஼ೖ

ೕ,1−2ݐ,ெ൰
௞ஹ଴

൱              (35) 

 

As a consequence, we have: 
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න(ݐଶ − 1)
∈షర

మ ฮ(2ݐ − I)∗ܮ(1 + 2ݐ) − 1ฮ−2ݐ,ଵg௝ି(∗ܮ(1
௅మ࣫൬ቀ݊ݔ

1ቁ−2ݐ
݆
,ଶඥ1−2ݐ൰

ଶ
஺

଴

ଶݐ)݀ − 1)

≤ ᇱܥ
ଵ න(2ݐ − 1)

ష(యష∈)
మ ෍ ቛg଴

௝,1−2ݐቛ
௅మ൬஼బ

ೕ,1−2ݐ,ெ൰
௝ஹ଴

஺

଴

ଶݐ)݀ − 1)) 

ᇱܥ+    
ଵ න(2ݐ − 1)

ష(యష∈)
మ ෍ ݁ି௖̃ଶೖ

௞ஹଵ

஺

଴

෍ ቛg௞
௝,1−2ݐቛ

௅మ൬஼ೖ
ೕ,1−2ݐ,ெ൰

௝ஹ଴

ଶݐ)݀ − 1).                  (36) 

We claim that 

Lemma (6.1.17)[272]: 

        There exists Cതଵ > 0 such that, for all  tଶ > 1 and all  j ∈ ℕ: 

C. For the first term: 

ቛg଴
௝,1−2ݐቛ

௅మ൬஼బ
ೕ,1−2ݐ,ெ൰

ଶ
≤ 

ଵ̅ܥ

2ݐ) − 1)௡ ଶ⁄ න න (௡ݔ)݂| − ௡ାଵݔ݀ ௡ݔ݀(௡ݔ)ܯଶ|(௡ାଵݔ)݂

࣫൬ቀ݊ݔ
1ቁ−2ݐ

݆
,ଶඥ1−2ݐ൰࣫൬ቀ݊ݔ

1ቁ−2ݐ
݆
,ଶඥ1−2ݐ൰

. 

D. For all ݇ ≥ 1, 

ቛg௞
௝,1−2ݐቛ

௅మ൬஼ೖ
ೕ,1−2ݐ,ெ൰

ଶ

≤
ଵ̅ܥ

൫√2ݐ − 1൯
ଶ න න (௡ݔ)݂|

௬೙శభ∈࣫൬ቀ݊ݔ
1ቁ−2ݐ

݆
,ଶೖశభඥ1−2ݐ൰௫೙∈࣫൬ቀ݊ݔ

1ቁ−2ݐ
݆
,ଶೖశభඥ1−2ݐ൰

− (௡ݔ)ܯଶ|(௡ାଵݔ)݂  .௡ାଵݔ݀ ௡ݔ݀

We postpone the proof to the end of the section and finish the proof of Lemma (6.1.16). 

Using Assertion A in Lemma (6.1.17), summing up on  ݆ ≥ 0and  integrating over (0,  ,(ܣ

we get: 

න(2ݐ − 1)
ష(యష∈)

మ ෍ ቛg଴
௝,1−2ݐቛ

௅మ൬஼బ
ೕ,1−2ݐ,ெ൰

ଶ

௝ஹ଴

஺

଴

ଶݐ)݀ − 1)

= ෍ න(2ݐ − 1)
ష(యష∈)

మ

஺

଴

ቛg଴
௝,1−2ݐቛ

௅మ൬஼బ
ೕ,1−2ݐ,ெ൰

ଶ

௝ஹ଴

ଶݐ)݀ − 1) 
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≤ ത1ܥ ෍ න(2ݐ − 1)
ష(యశ∈శ೙)

మ

⎝

⎜
⎛

න න (௡ݔ)݂|

࣫൬ቀ݊ݔ
1ቁ−2ݐ

݆
,ଶඥ1−2ݐ൰࣫ቀ(௫೙)ೕ

1ቁ−2ݐଶඥ,1−2ݐ

஺

଴௝ஹ଴

− (௡ݔ)ܯଶ|(௡ାଵݔ)݂ ௡ାଵቍݔ݀ ௡ݔ݀
ଶݐ)݀ − 1) 

≤ ଵܥ̅ ෍ ඵ (௡ݔ)݂| − (௡ݔ)ܯଶ|(௡ାଵݔ)݂
 

(௫೙,௫೙శభ)∈ℝ೙×ℝ೙௝ஹ଴ 

⎝

⎜
⎜
⎜
⎜
⎛

න ଶݐ)  
஺

௧ஹ୫ୟ୶൞
ฬೣ೙షቀೣ೙೟

మషభቁ
ೕ

ฬ
మ

೙ ;
ฬೣ೙శభషቀೣ೙೟

మషభቁ
ೕ

ฬ
మ

೙ ൢ

− 1)
ష(యశ∈శ೙)

మ ଶݐ)݀ − 1)

⎠

⎟
⎟
⎞  .௡ାଵݔ݀ ௡ݔ݀ 

The Fubini  theorem now shows: 

   

෍ න 2ݐ) − 1)
−(3+∈+݊)

2

஺

(௧మିଵ)ஹ୫ୟ୶

⎩
⎪
⎨

⎪
⎧ቤೣ೙−൬1−2ݐ݊ݔ൰

݆
ቤ
2

݊ ;
ቤೣ೙శభ−൬1−2ݐ݊ݔ൰

݆
ቤ
2

݊

⎭
⎪
⎬

⎪
⎫

ଶݐ)݀ − 1)
௝ஹ଴

= න(ݐଶ − 1)
−(3+∈+݊)

2 ෍ ૚

⎝

⎜
⎛

୫ୟ୶

⎩
⎪
⎨

⎪
⎧ቤೣ೙−൬1−2ݐ݊ݔ൰

݆
ቤ
2

݊ ;
ቤೣ೙శభ−൬1−2ݐ݊ݔ൰

݆
ቤ
2

݊

⎭
⎪
⎬

⎪
⎫

,ାஶ 

⎠

⎟
⎞

2ݐ) − 1)
௝ஹ଴

஺

଴

ଶݐ)݀

− 1). 

Observe that, by Lemma (B.1) in [224], there is a constant ܰ ∈ ℕ such that, for all  

ଶݐ > 1,  there are at most ܰ indexes ݆such that ቚݔ௡ − ൫݊ݔ
1൯−2ݐ

݆
ቚ

ଶ
< ଶݐ)݊ − 1) and 

ቚݔ௡ାଵ − ൫݊ݔ
1൯−2ݐ

݆
ቚ

ଶ
< 2ݐ)݊ − 1). If such  an index  ݆  exists, one has |ݔ௡ − |௡ାଵݔ <

2ඥ݊(ݐଶ − 1). It therefore follows that 
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෍ ૚

⎝

⎜
⎛

୫ୟ୶

⎩
⎪
⎨

⎪
⎧ቤೣ೙−൬1−2ݐ݊ݔ൰

݆
ቤ
2

݊ ;
ቤೣ೙శభ−൬1−2ݐ݊ݔ൰

݆
ቤ
2

݊

⎭
⎪
⎬

⎪
⎫

,ାஶ

⎠

⎟
⎞

ଶݐ) − 1)
௝ஹ଴

≤ ܰ૚൫|௫೙ି௫೙శభ|మ ସ௡,ାஶ⁄ ൯(2ݐ − 1), 

So that 

න(2ݐ − 1)
∈షర

మ ෍ ቛg଴
௝,1−2ݐቛ

௅మ൬஼బ
ೕ,1−2ݐ,ெ൰

ଶ

௝

஺

଴

 ݐ݀

≤ ܰ̅ܥ ඵ (௡ݔ)݂| − (௡ݔ)ܯଶ|(௡ାଵݔ)݂ ൮ න 2ݐ) − 1)
ష(రశ∈శ೙)

మ

஺

|௫೙ି௫೙శభ|మ ସ௡⁄

ଶݐ)݀

ℝ೙×ℝ೙

− 1)൲  ௡ାଵݔ݀ ௡ݔ݀

  ≤ ଵ̅ܰܥ ඵ
(௡ݔ)݂| − ଶ|(௡ାଵݔ)݂

௡ݔ| − ௡ାଵ|௡ାଶିఢݔ (௡ݔ)ܯ
|௫೙ି௫೙శభ|ஸଶ√௡஺

 ௡ାଵ.                                         (37)ݔ݀ ௡ݔ݀

Using now Assertion B in Lemma (6.1.17), we obtain, for all ݆ ≥ 0  and all  ݇ ≥ 1, 

න(2ݐ − 1)
∈షర

మ ෍ ቛg௞
௝,1−2ݐቛ

ଶ

ଶ

௝ஹ଴

஺

଴

ଶݐ)݀ − 1) 

≤ ଵ̅ܥ ෍ න(ݐଶ − 1)ିଵି(ଶିఢ) ଶ⁄

⎝

⎜
⎛

ඵ (௡ݔ)݂|

࣫൬ቀ݊ݔ
1ቁ−2ݐ

݆
,ଶೖశభ√௧మିଵ൰×࣫൬ቀ݊ݔ

1ቁ−2ݐ
݆
,ଶೖశభ√௧మିଵ൰

஺

଴௝ஹ଴

− (௡ݔ)ܯଶ|(௡ାଵݔ)݂ ௡ାଵቍݔ݀ ௡ݔ݀
ଶݐ)݀ − 1) 
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         ≤ ଵ̅ܥ ෍ ඵ (௡ݔ)݂|
௫೙,௫೙శభ∈ℝ೙௝ஹ଴

− (௡ݔ)ܯଶ|(௡ାଵݔ)݂

⎝

⎜
⎜
⎜
⎛

න(2ݐ − 1)
ష(రశ∈శ೙)

మ 1

୫ୟ୶

⎩
⎪
⎨

⎪
⎧ቤೣ೙−൬1−2ݐ݊ݔ൰

݆
ቤ
2

݊ ;
ቤೣ೙శభ−൬1−2ݐ݊ݔ൰

݆
ቤ
2

݊

⎭
⎪
⎬

⎪
⎫

,ାஶ

஺

଴

2ݐ)

− ଶݐ)݀(1 − 1)

⎠

⎟⎟
⎞  .௡ାଵݔ݀ ௡ݔ݀

But, given tଶ > 1, ௡ݔ , ௡ାଵݔ ∈ ℝ୬, by Lemma (B.1) in [224] again, there exist at most 

C෨ଵ2୩୬ indexes  j  such that 

ቚݔ௡ − ൫݊ݔ
1൯−2ݐ

݆
ቚ ≤ 2௞ඥ݊(2ݐ − 1)and ቚݔ௡ାଵ − ൫݊ݔ

1൯−2ݐ
݆
ቚ ≤ 2௞ඥ݊(2ݐ − 1), 

and for these indexes  ݆, ௡ݔ| − |௡ାଵݔ ≤ 2௞ାଵඥ݊(2ݐ − 1).  As a consequence we have: 

න(2ݐ − 1)
ష(రశ∈శ೙)

మ ෍ ૚

୫ୟ୶

⎩
⎪
⎨

⎪
⎧ቤೣ೙−൬1−2ݐ݊ݔ൰

݆
ቤ
2

4݇݊
;
ቤೣ೙శభ−൬1−2ݐ݊ݔ൰

݆
ቤ
2

4݇݊

⎭
⎪
⎬

⎪
⎫

,ାஶ

2ݐ) − 1)
௝ஹ଴

஺

଴

ଶݐ)݀ − 1) 

≤ ሚଵ2௞௡ܥ න 2ݐ) − 1)ିష(రశചశ೙)
మ

஺

2ஹ|ೣ೙షೣ೙శభ|మݐ

రೖశభ೙
ାଵ

 ݐ݀

 ≤ ሚଵܥ
ᇱଶೖ(మషചశ೙)|௫೙ି௫೙శభ|ష೙ష(మషച)૚

|ೣ೙షೣ೙శభ|ರమೖశభ√೙ಲ ,
     (38) 

for some other constant ܥሚ ᇱ
ଵ > 0, and there for 

න(2ݐ − 1)ିଵିమషച
మ ෍ ቛg௞

௝,1−2ݐቛ
௅మ൬஼బ

ೕ,1−2ݐ,ெ൰

ଶ

௝

஺

଴

ݐ݀

≤ ሚܥଵ̅ܥ ᇱ
ଵ2௞(ଶିఢା௡) ඵ

(௡ݔ)݂| − ଶ|(௡ାଵݔ)݂

௡ݔ| − ௡ାଵ|௡ାଶିఢݔ (௡ݔ)ܯ
|௫೙ି௫೙శభ|ஸଶೖశభ√௡஺

 .௡ାଵݔ݀ ௡ݔ݀
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We can now conclude the proof of Lemma (6.1.16), using Lemma (6.1.14), (35), (37) 

and (38). We have proved, by reconsidering (36): 

න(2ݐ − 1)
(∈షర)

మ

஺

଴

2ݐ)‖ − I)∗ܮ(1 + 2ݐ) − ଵ݂‖௅మ(ℝ೙,ெ)ି(∗ܮ(1
ଶ ଶݐ)݀ − 1)   

≤ ᇱܥ
ଵܥሚଵܰ ඵ

(௡ݔ)݂| − ଶ|(௡ାଵݔ)݂

௡ݔ| − ௡ାଵ|௡ାଶିఢݔ (௡ݔ)ܯ
|௫೙ି௫೙శభ|ஸଶೖశభ√௡஺

 ௡ାଵݔ݀ ௡ݔ݀

   + ෍ ᇱܥ
ଵܥଵ̅ܥሚ ᇱ

ଵ2௞(ଶିఢ)݁ି௖̃ଶೖ

௞ஹଵ

ඵ
(௡ݔ)݂| − ଶ|(௡ାଵݔ)݂

௡ݔ| − ௡ାଵ|௡ାଶିఢݔ (௡ݔ)ܯ
|௫೙ି௫೙శభ|ஸଶೖశభ√௡஺

 ௡ାଵ                         (39)ݔ݀ ௡ݔ݀

and we deduce that 

න(2ݐ − 1)
(ചషర)

మ 2ݐ)‖ − I)∗ܮ(1 + 2ݐ) − ଵ݂‖௅మ(ℝ೙,ெ)ି(∗ܮ(1
ଶ

஺

଴

ଶݐ)݀ − 1) 

≤ ሚସܥ ඵ
(௡ݔ)݂| − ଶ|(௡ାଵݔ)݂

௡ݔ| − ௡ାଵ|௡ାଶିఢݔ |௖ᇲ|௫೙ି௫೙శభି݁(௡ݔ)ܯ

ℝ೙×ℝ೙

 ௡ାଵݔ݀ ௡ݔ݀

 

for some constants ܥሚସ and ܿᇱ > 0 as claimed in the statement. 

 

 

Proof of Lemma (6.1.17): Observe first that, for all x୬ ∈ ℝ୬, 

g଴
௝,1−2ݐ(ݔ௡) = (௡ݔ)݂ −

1

ቚ࣫ ቀ൫݊ݔ
1൯−2ݐ

݆
, 2ݐ√2 − 1ቁቚ

න (௡ାଵݔ)݂

࣫ቀ௫ೕ
1ቁ−2ݐଶඥ,1−2ݐ

 .௡ାଵݔ݀

               =
1

ቚ࣫ ቀ൫݊ݔ
1൯−2ݐ

݆
, 2ݐ√2 − 1ቁቚ

න ൫݂(ݔ௡) − ൯(௡ାଵݔ)݂

࣫൬ቀ݊ݔ
1ቁ−2ݐ

݆
,ଶඥ1−2ݐ൰

 .௡ାଵݔ݀

By Cauchy-Schwarz inequality, it follows that 

ቚg଴
௝,1−2ݐ(ݔ௡)ቚ

ଶ
≤

ሚܥ
2ݐ) − 1)௡ ଶ⁄ න (௡ݔ)݂| − ଶ|(௡ାଵݔ)݂

࣫൬ቀ݊ݔ
1ቁ−2ݐ

݆
,ଶඥ1−2ݐ൰

 .௡ାଵݔ݀

Therefore, 
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ቛg௞
௝,1−2ݐቛ

௅మቀ஼ೖ
ೕ,೟ ,ெቁ

ଶ
 

≤
ሚܥ

2ݐ) − 1)௡ ଶ⁄ න න (௡ݔ)݂| − (௡ݔ)ܯଶ|(௡ାଵݔ)݂

࣫൬ቀ݊ݔ
1ቁ−2ݐ

݆
,ଶඥ1−2ݐ൰࣫൬ቀ݊ݔ

1ቁ−2ݐ
݆
,ଶඥ1−2ݐ൰

 ௡ାଵݔ݀ ௡ݔ݀

 

which shows Assertion A. We argue similarly for Assertion B and obtain: 

ቛg௞
௝,1−2ݐቛ

௅మ൬஼ೖ
ೕ,1−2ݐ,ெ൰

ଶ
 

≤
ሚܥ

௡ݐ ଶ⁄ න න (௡ݔ)݂| − (௡ݔ)ܯଶ|(௡ାଵݔ)݂

௬∈࣫൬ቀ݊ݔ
1ቁ−2ݐ

݆
,ଶඥ1−2ݐ൰௫∈࣫൬ቀ݊ݔ

1ቁ−2ݐ
݆
,ଶඥ1−2ݐ൰

 ,௡ାଵݔ௡݀ ݔ݀

which ends the proof of  Lemma (6.1.17) 

We end up this section with a few comments on Lemma (6.1.17). It is a  well-known fact 

[250] that, when ߳ ≥ 0. 

ฮ(−∆)(ଶିఢ) ସ⁄ ݂ฮ
௅భశ∈,(ℝ೙) ≤ ሚଶିఢ,ଵା∈,ฮܵଶିఢ,ଵା∈,݂ฮܥ

௅భశ∈,(ℝ೙),                    (40) 

where 

                    ܵଶିఢ,ଵା∈݂(ݔ௡) = ቌන ൭න|݂(ݔ௡ + (௡ାଵݔݎ − |(௡ݔ)݂
஻

௡ାଵ൱ݔ݀
ଶ

ݎ݀
ଷିఢݎ

ାஶ

଴

ቍ

భ
మ

, 

And also [251] 

ቛ(−∆)
మషച

ర ݂ቛ
௅భశ∈(ℝ೙)

≤  ଶିఢ݂‖௅భశ∈(ℝ೙)                                                                  (41)ܦ‖∋ሚଶିఢ,ଵାܥ

Where 

(௡ݔ)ଶିఢ݂ܦ = ൭ න
௡ݔ)݂| + (௡ାଵݔ − ଶ|(௡ݔ)݂

௡ାଵ|௡ାଶିఢݔ| ௡ାଵݔ݀

ℝ೙

൱

భ
మ

. 

In [251], these inequalities were extended to the setting of a unimodular Lie group  

endowed with a sub-laplacian  ∆, relying on semigroups techniques and  Littlewood-

Paley-Stein functionals. In particular, in [251] and [224] use pointwise estimates of the 

kernel of the semigroup generated by ∆. The conclusion of Lemma (6.1.71) means that 

the norm of ܮ∗(ଶିఢ) ସ⁄ ݂ in  ܮଶ(ℝ௡ , ଶ(ℝ௡ܮ  is bounded from above by the (ܯ ,  norm of an(ܯ

appropriate version of ܦଶିఢ . Note that this does not require  pointwise estimates for the 

kernel of the semigroup generated by  ܮ∗, and that the  ܮଶoff-diagonal estimates given by 
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Lemma (6.1.13), which hold for a general  sequence measure  ܯ, are enough for the 

argument to hold (see [224]) However, we do not know if anܮଵାఢ version of Lemma 

(6.1.17) still holds. Note also that we do not compare the  ܮଶ(ℝ௡ , (ଶିఢ)∗ܮ norm of(ܯ ସ⁄ ݂ 

with the ܮଶ(ℝ௡ ,  norm of a version of ܵଶିఢ,ଵାఢ݂.  Finally,  the converse inequalities to(ܯ

(40) and (41) hold in ℝ௡ and also on a unimodular  Lie group [252] and [224] did not 

consider the corresponding inequalities . 

Corollary  (6.1.18)[272] : 

              If  ܮ∗  is self-adjoint and normal then 

(i) ‖ߣᇱ‖௅మ ≥ ௗ௜௦௧ (ఓ ,∑ ௅∗ )
‖ఓ‖ಽమ

−  ϵ . 

(ii) ‖μ‖୐మ ≤ ଵ
|஛ᇲ|

 . 

(iii) I > 2 − tଶ . 

(iv) ‖L∗‖୐మ < 1 + ஫
୲మିଵ

 . 

Proof:  

(i) Since ܮ∗ ≥ ∗then  ‖(L  ߤᇱߣ − μ)ିଵ‖୐మ ≤ ‖μିଵ(λᇱ − 1)ିଵ‖୐మ   

We get ‖μ (λᇱ − 1)‖୐మ = , ߤ) ݐݏ݅݀ ∑ ( ∗ܮ −  ϵ  

Thus ,  ‖ߣᇱ‖௅మ ≥ ௗ௜௦௧ (ఓ ,∑ ௅∗ )
‖ఓ‖ಽమ

−  ϵ  . 

(ii) Let  ܮ∗  be a contraction from (24) we have  ‖μ‖୐మ ≤ ଵ
|஛ᇲ|

  . 

(iii) Given  ‖(ܫ + (tଶ − ‖ଵି(ߤᇱߣ (1 ≤ 1 , using (ii) we can get  I > 2 − tଶ . 

(iv) For  ‖(ܫ + (tଶ − ‖ଵି(∗ܮ (1 ≤ 1 , and   ܫ + (tଶ − ∗ܮ (1 = 1 + ϵ , using (iii) we 

can get  ‖L∗‖୐మ < 1 + ஫
୲మିଵ

  . 

Sec	(6.2):Equivalence	of		Fractional	Order: 

Sobolev norms and semi-norms play a central role in the numerical analysis of 
discretization methods for partial differential equations. For instance, standard  finite 
element error analysis is essentially a combination of the Bramble-Hilbert  lemma and 
transformation properties of Sobolev (semi-) norms. These properties are also central 
to the area of preconditioners for (and based on) variational methods. More precisely, 
arguments based on finite dimensions of local spaces are inherently connected with 
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scaling arguments to keep dimensions bounded. Norms are usually not scalable. That is, 
the corresponding equivalence numbers behave differently with respect to a scaling 
parameter like the diameter ࣩܦ of the domain  ࣩwhen the domain under consideration 
is transformed by an affine map that  maintains shape regularity (i.e., the ratio of ࣩܦ 
and the “inner diameter” of ࣩis  bounded). This can be usually fixed only when essential 
boundary conditions are present. An example is using the ܪଵ-semi-norm as norm in ܪ଴

ଵ. 
More generally,  semi-norms have better scaling properties: usually they can be defined 
so that  equivalence numbers are of the same order with respect to ࣩܦ under shape-
regular  affine transformations of the domain.  

Whereas properties of Sobolev (semi-) norms under smooth transformations  or 
simple scaling are straightforward as long as their orders are integer, things are  getting 
more complicated for fractional-order Sobolev norms. Such norms appear,  e.g., in a 
natural way when considering boundary integral equations of the ϐirst  kind [268, 266] 
or when studying the regularity of elliptic problems in non-convex  polygonal domains 
[264]. There are different ways to define fractionalorderSobolev  norms and they all 
have advantages and disadvantages (standard references are [267, 257]). Different 
norm variants are known to be equivalent. But dependence of the equivalence constants 
on the order and the domain are more involved. 

There are several ways to define Sobolev norms. We use the ones defined by  a 
double integral (Sobolev-Slobodeckij) and by interpolation. For the latter we use  the 
so-called real ܭ-method, cf. [258]. For  0 < ݏ < 1, the interpolation norm in the  
fractional-order Sobolev space ܪ௦(ࣩ) is defined by 

௅మ(ࣩ),ுభ(ࣩ)൧ೞൣ‖ݒ‖
 = ௅మ(ࣩ),ுభ(ࣩ)ೞ‖ݒ‖  = ቆන ଶ௦ିݐ inf

௩ୀ௩బା௩భ
൫‖ݒ଴‖଴,ࣩ

ଶ + ࣩ,଴‖ଵݒ‖ଶݐ
ଶ ൯

ݐ݀
ݐ

ஶ

଴
ቇ

ଵ ଶ⁄

. 

Here and in the following, the notation inf௩ୀ௩బା௩భ൫‖ݒ଴‖଴,ࣩ
ଶ + ࣩ,଴‖ଵݒ‖ଶݐ

ଶ ൯  implies that 
the infimum is taken over ݒ଴ ∈ ଵݒ ଶ(ࣩ)andܮ ∈  ଶ(ࣩ), or corresponding  spaces asܪ
indicated by the respective norms. 

We also define the interpolation space 
(ࣩ)෩௦ܪ = ,(ࣩ)ଶܮ] ଴ܪ

ଵ(ࣩ)]௦ 
with corresponding notation for the norm. The notation ܪ෩௦  is used by Grisvard  and 

is common in the boundary element literature, whereas the notation ܪ଴଴
௦ =  ෩௦ is usedܪ

by  Lions and Magenes and is common in the finite element literature.  

The Sobolev-Slobodeckij variant of these norms is defined (for  0 < ݏ <  1)  by 

(ࣩ)ுೞ‖ݒ‖ = ࣩ,௦‖ݒ‖ = ቆ‖ݒ‖௅మ(ࣩ)
ଶ + න න

(ݔ)ݒ| − ଶ|(ݕ)ݒ

ݔ| − ௡ାଶ௦|ݕ
ࣩࣩ

ቇ
ଵ ଶ⁄

                                       (42) 

(ࣩ)ு෩ೞ‖ݒ‖ = ࣩ,௦,~‖ݒ‖ = ൭‖ݒ‖ுೞ(ࣩ)
ଶ + ብ

(ݔ)ݒ
dist(ݔ, ߲ࣩ)௦ብ

௅మ(ࣩ)

ଶ

൱
ଵ ଶ⁄

 

The corresponding semi-norms are 
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௅మ(ࣩ),ுభ(ࣩ)൧ೞൣ|ݒ|
 = ௅మ(ࣩ),ுభ(ࣩ),௦|ݒ|  = ቆන ଶ௦ିݐ inf

௩ୀ௩బା௩భ
൫‖ݒ଴‖଴,ࣩ

ଶ + ࣩ,ଵ|ଵݒ|ଶݐ
ଶ ൯

ݐ݀
ݐ

ஶ

଴
ቇ

ଵ ଶ⁄

 

and 

(ࣩ)ுೞ|ݒ|  = ࣩ,௦|ݒ|  =  ቆන න
(ݔ)ݒ| − ଶ|(ݕ)ݒ

ݔ| − ௡ାଶ௦|ݕ
ࣩࣩ

ቇݕ݀ ݔ݀
ଵ ଶ⁄

. 

Additionally, it is useful to define the semi-norm of quotient space type 

௦,ࣩ,୧୬୤|ݒ|  = (ࣩ)ுೞ‖ݒ‖  ℝ⁄ = inf
௖∈ℝ

ݒ‖ + ܿ‖௦,ࣩ . 
The aim of this section is to study equivalences of the semi-norms previously 

defined, on a fixed domain. Together with mapping properties , these estimates are 
needed to prove our main results . Proofs are based on a standard norm equivalence 
and specific  Poincar´e-Friedrichs’ inequalities, which are also recalled here.  

It is well known that for Lipschitz domains different definitions of Sobolev  
norms are equivalent. However, equivalence constants depend usually on the order  and 
the domain under consideration. In particular, for a bounded Lipschitzdomain  ࣩ, the 
norms ‖∙‖௦,ࣩ and ‖∙‖௅మ(ࣩ),ுభ(ࣩ),௦  are equivalent for 0 < ݏ < 1, cf. [267, 264, 268]. Such 
equivalences are shown by corresponding equivalences on ℝ௡ and the  use of 
appropriate extension operators, cf. [260], see also [125] for non-Lipschitz  domains. In 
particular, the norms previously defined are uniformly equivalent for ݏ in a closed 
subset of (0, 1), see [267]. 

Here, for the norms, we don’t elaborate on the dependence of the equivalence 
constants on ݏand ࣩ. We rather give them specific names to be used  in estimates to 
follow.  

Proposition	(6.2.1)	[256]:	(equivalence	of	norms)		

For a bounded Lipschitz domain ࣩ ⊂ ℝ୬ and for given s ∈ (0, 1)  there exist 
constants k(s, ࣩ), K(s, ࣩ) > 0  such that 

k(s, ࣩ)‖v‖୐మ(ࣩ),ୌభ(ࣩ),ୱ ≤ ‖v‖ୱ,ࣩ ≤ K(s, ݒ∀     ௅మ(ࣩ),ுభ(ࣩ),௦‖ݒ‖(ࣩ ∈  .(ࣩ)௦ܪ

For a proof (see [268]). 
It is well known that, on bounded Lipschitz domains,  lower-order norms can be 

bounded by higher-order semi-norms plus finite rank terms. Such estimates are 
referred to as Poincar´e-Friedrichs’ inequalities. For integer-order norms there are 
direct proofs with explicit constants (depending on orders and domains) [269] and 
attention has received finding best constants and deriving improved weighted 
estimates, (see [270, 271] and [261]), respectively. We need such a Poincar´e-
Friedrichs’ inequality for fractional-order norms on bounded  domains (for unbounded 
domains, see [224]), and refer to [262, Lemma 3.4] for a  proof. This proof is given for 
two dimensions but immediately extends to the  general case. 
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Proposition	 (6.2.2)	 [256]:	 (Poincar´e-Friedrichs	 inequality,	 Sobolev-Slobodeckij	 semi-
norms) 

Let ࣩ ⊂ ℝ௡ be a bounded domain, and ݏ ∈ (0,1). Then there holds 

ࣩ,଴‖ݒ‖ ≤ ,ݏ)௉ி,ௌௌܥ ࣩ) ቆ|ݒ|௦,ࣩ + ቤන ݒ
ࣩ

ቤቇ     ∀ݒ ∈  (ࣩ)௦ܪ

with 
,ݏ)௉ி,ௌௌܥ ࣩ) = |ࣩ|ିଵ ଶ⁄ max൛1, 2ିଵ ଶ⁄ ࣩܦ

௡ ଶା௦⁄ ൟ. 
Here, |ࣩ| denotes the area of ࣩ and, as mentioned in the introduction, ࣩܦ is its  
diameter. 

Lemma	(6.2.3)[256]:	

 Let ࣩ ⊂ ℝ௡ be a bounded, connected Lipschitz domain. Then there holds 

ࣩ,௦|ݒ|
ଶ ≤ ௦,ࣩ,୧୬୤|ݒ|

ଶ = ࣩ,௦|ݒ|
ଶ + inf

௖∈ℝ
ݒ‖ + ܿ‖଴,ࣩ

ଶ ≤ ൫1 + ௉ி,ௌௌܥ
ଶ ൯|ݒ|௦,ࣩ

ଶ  
for any ݒ ∈ ݏ ௦(ࣩ)  andܪ ∈ (0,1). Here, ܥ௉ி,ௌௌ = ,ݏ)௉ி,ௌௌܥ ࣩ) is the number from  
Proposition (6.2.2). 

Proof:	

By definition of |∙|௦,ࣩ  there holds for any ܿ ∈ ℝand any ݒ ∈  ௦(ࣩ) (we  now dropܪ
ࣩfrom the notation) 

௦|ݒ| = ݒ| + ܿ|௦. 
Therefore 

௦|ݒ| ≤ inf
௖∈ℝ

ݒ‖ + ܿ‖௦ =  ௦,୧୬୤|ݒ|
which is the first assertion. By the initial argument and the definition of the  Sobolev-
Slobodeckij norm one also finds that 

௦,୧୬୤|ݒ|
ଶ = inf

௖∈ℝ
ݒ‖ + ܿ‖௦

ଶ  = inf
௖∈ℝ

ݒ‖ + ܿ‖଴
ଶ + ௦|ݒ|

ଶ. 
This is the second assertion. 

The last relation and the Poincar´e-Friedrichs’ inequality (Proposition (6.2.2) 
lead to 

௦,୧୬୤|ݒ|
ଶ ≤ ௉ி,ௌௌܥ

ଶ inf
௖∈ℝ

ቆ|ݒ|௦ + ቤන ݒ) + ܿ)
ࣩ

ቤቇ
ଶ

+ ௦|ݒ|
ଶ = ൫1 + ௉ி,ௌௌܥ

ଶ ൯|ݒ|௦
ଶ. 

This finishes the proof. 

Lemma	(6.2.4)	[256]:	

Let ࣩ ⊂ ℝ௡ be a bounded Lipschitz domain. There holds 

݇ଶ|ݒ|௅మ(ࣩ),ுభ(ࣩ),௦
ଶ ≤ ௦,ࣩ,୧୬୤|ݒ|

ଶ ≤ ௅మ(ࣩ),ுభ(ࣩ),௦|ݒ|ଶܭ3
ଶ +

ଶܭ

1)ݏ − (ݏ inf
௖∈ℝ

ݒ‖ + ܿ‖଴,ࣩ
ଶ  

for any ݒ ∈ ݏ ௦(ࣩ) andܪ ∈ (0,1). Here, ݇ = ,ݏ)݇ ࣩ) and ܭ = ,ݏ)ܭ ࣩ) are the  numbers 
from Proposition (6.2.1). 
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Proof: 
Let ݒ ∈ ,and let ܿ଴ ,(ࣩ)ܪ ܿଵ  denote generic constants. For any  ݐ > 0there  holds 

inf
௩ୀ௩బା௩భ

଴‖଴ݒ‖)
ଶ + ଵ|ଵݒ|ଶݐ

ଶ) = inf
௩ୀ௩బା௖బା௩భା௖భ

଴ݒ‖) + ܿ଴‖଴
ଶ + ଵ|ଵݒ|ଶݐ

ଶ) 

                                         = inf
௖భ,௩ି௖భୀ௩బା௩భ

଴‖଴ݒ‖)
ଶ + ଵ|ଵݒ|ଶݐ

ଶ), 

that is 
inf

௩ୀ௩బା௩భ
଴‖଴ݒ‖)

ଶ + ଵ|ଵݒ|ଶݐ
ଶ) = inf

௖∈ℝ
inf

௩ା௖ୀ௩బା௩భ
଴‖଴ݒ‖)

ଶ + ଵ|ଵݒ|ଶݐ
ଶ) 

                                          ≤ inf
௖∈ℝ

inf
௩ା௖ୀ௩బା௩భ

଴‖଴ݒ‖)
ଶ + ଵ|ଵݒ|ଶݐ

ଶ). 

(Recall that our convention for the notation inf௩ା௖ୀ௩బା௩భ
଴‖଴ݒ‖)

ଶ + ଵ|ଵݒ|ଶݐ
ଶ) implies that 

the infimum is taken with respect to ݒ଴ ∈ ଵݒ ଶ(ࣩ)andܮ ∈  ଵ(ࣩ).) We  conclude thatܪ

௅మ|ݒ| ,ுభ,௦
ଶ = න ଶ௦ିݐ inf

௩ୀ௩బା௩భ
଴‖଴ݒ‖)

ଶ + ଵ|ଵݒ|ଶݐ
ଶ)

ஶ

଴
 ݐ݀

    ≤ inf
௖∈ℝ

න ଶ௦ିݐ inf
௩ା௖ୀ௩బା௩భ

଴‖଴ݒ‖)
ଶ + ଵ|ଵݒ|ଶݐ

ଶ)
ஶ

଴

ݐ݀
ݐ = inf

௖∈ℝ
ݒ‖ + ܿ‖௅మ ,ுభ,௦

ଶ . 

By Proposition (6.2.1) 

inf
௖∈ℝ

ݒ‖ + ܿ‖௅మ ,ுభ,௦
ଶ ≤ ݇ିଶ inf

௖∈ℝ
ݒ‖ + ܿ‖௦

ଶ = ݇ିଶ|ݒ|௦,୧୬୤
ଶ , 

so that the first assertion follows. 

By deϐinition and using Proposition (6.2.1) there holds 

௦,୧୬୤|ݒ|
ଶ = inf

௖∈ℝ
ݒ‖ + ܿ‖௦

ଶ ≤ ଶܭ inf
௖∈ℝ

ݒ‖ + ܿ‖௅మ ,ுభ,௦
ଶ  

 = ଶܭ inf
௖∈ℝ

න ଶ௦ିݐ inf
௩ା௖ୀ௩బା௩భ

଴‖଴ݒ‖)
ଶ + ଵ|ଵݒ|ଶݐ

ଶ)
ஶ

଴

ݐ݀
ݐ .                  (43) 

We bound the integrand separately for  ݐ <  1and  ݐ ≥ 1. 

For ݐ < 1 we use the representation ݒ + ܿ = ଴ݒ +  ଵ to boundݒ

଴‖଴ݒ‖
ଶ + ଵ‖଴ݒ‖ଶݐ

ଶ + ଵ|ଵݒ|ଶݐ
ଶ ≤ ଴‖଴ݒ‖

ଶ + ݒ‖)ଶݐ2 + ܿ‖଴
ଶ + ଴‖଴ݒ‖

ଶ) + ଵ|ଵݒ|ଶݐ
ଶ 

≤ ଴‖଴ݒ‖3
ଶ + ݒ‖ଶݐ2 + ܿ‖଴

ଶ + ଵ|ଵݒ|ଶݐ
ଶ. 

If  ݐ ≥ 1 then we select ݒ଴  = ݒ + ܿ to conclude that 

inf
௩ା௖ୀ௩బା௩భ

଴‖଴ݒ‖)
ଶ + ଵ‖଴ݒ‖ଶݐ

ଶ + ଵ|ଵݒ|ଶݐ
ଶ) ≤ ݒ‖ + ܿ‖଴

ଶ. 

Together this yields 

න ଶ௦ିݐ
ஶ

଴
inf

௩ା௖ୀ௩బା௩భ
଴‖଴ݒ‖)

ଶ + ଵ‖଴ݒ‖ଶݐ
ଶ + ଵ|ଵݒ|ଶݐ

ଶ)
ݐ݀
ݐ  

≤ න ଶ௦ିݐ
ஶ

଴
inf

௩ା௖ୀ௩బା௩భ
଴‖଴ݒ‖3)

ଶ + ݒ‖ଶݐ2 + ܿ‖଴
ଶ + ଵ|ଵݒ|ଶݐ

ଶ)
ݐ݀
ݐ + න ݒ‖ଶ௦ିݐ + ܿ‖଴

ଶ
ஶ

ଵ

ݐ݀
ݐ  

     = න ଶ௦ିݐ
ஶ

଴
inf

௩ା௖ୀ௩బା௩భ
଴‖଴ݒ‖3)

ଶ + ଵ|ଵݒ|ଶݐ
ଶ)

ݐ݀
ݐ + ݒ‖ + ܿ‖଴

ଶ ቆන ଵିଶ௦ݐ2
ଵ

଴
ݐ݀ + න ݐଵିଶ௦݀ିݐ

ஶ

ଵ
ቇ 

  ≤ ௅మ|ݒ|3 ,ுభ,௦
ଶ +

1
1)ݏ − (ݏ ݒ‖ + ܿ‖଴

ଶ.                                                                                               (44) 

Therefore, recalling (44), we obtain 
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௦,୧୬୤|ݒ|
ଶ ≤ ௅మ|ݒ|ଶܭ3 ,ுభ,௦

ଶ +
ଶܭ

1)ݏ − (ݏ inf
௖∈ℝ

ݒ‖ + ܿ‖଴
ଶ, 

which is the second assertion. 

From the proof of the previous lemma one can conclude that the semi-norm 
|∙|௅మ(ࣩ),ுభ(ࣩ),௦ is indeed the principal part of a norm in ܪ௦(ࣩ). This will be useful  to 
deduce a Poincar´e-Friedrichs inequality with this semi-norm. First let us  specify what 
we mean by the semi-norm being principal part of a norm. 

Corollary	(6.2.5)	[256]:	

Let ࣩ ⊂ ℝ୬ be a bounded Lipschitz domain. There holds 

ࣩ,௦‖ݒ‖
ଶ ≤

ଶܭ

1)ݏ − (ݏ ࣩ,଴‖ݒ‖
ଶ + ௅మ(ࣩ),ுభ(ࣩ),௦|ݒ|ଶܭ3

ଶ  

for any ݒ ∈ ݏ ௦(ࣩ) andܪ ∈ (0,1). Here, ܭ = ,ݏ)ܭ ࣩ) is the number from  Proposition 
(6.2.1). 
Proof:	

This is a combination of the second bound from Proposition (6.2.1) and (44) 
with c = 0. 

We are now ready to prove a second Poincar´e-Friedrichs inequality. 

Proposition	(6.2.6)	[256]:(Poincar´e-Friedrichs	inequality,	interpolation	semi-norms) 
Let ࣩ ∈ ℝ௡ be a bounded connected Lipschitz domain, and ݏ ∈ (0,1). Then  there 

exists a constant ܥ௉ி,ூ > 0, depending on ࣩ and ݏ, such that 

ࣩ,଴‖ݒ‖ ≤ ,ݏ)୍,௉ிܥ ࣩ) ቆ|ݒ|௅మ(ࣩ),ுభ(ࣩ),௦
ଶ + ቤන ݒ

ࣩ
ቤቇ     ∀ݒ ∈  .(ࣩ)௦ܪ

Proof:	
Assume that the inequality is not true. Then there is a sequence ൫ݒ௝൯ ⊂  (ࣩ)௦ܪ

such that 

ฮݒ௝ฮ
଴,ࣩ

= ௅మ(ࣩ),ுభ(ࣩ),௦|ݒ|     ,1
ଶ + ቤන ௝ݒ

ࣩ
ቤ → 0   (݆ → ∞). 

Therefore, by Corollary (6.2.5), ൫ݒ௝൯ is bounded in ܪ௦(ࣩ) with respect to the  Sobolev-
Slobodeckij norm. Then, by Rellich’s theorem (see [268])  there is a convergent 
subsequence (again denoted by ൫ݒ௝൯) in ܮଶ(ࣩ). Since หݒ௝ห

௅మ(ࣩ),ுభ(ࣩ),௦
→ 0  this sequence is 

Cauchy and with limit ݒin ܪ௦(ࣩ). It holds |ݒ|௅మ(ࣩ),ுభ(ࣩ),௦ = 0  so that ݒ is constant. 
Furthermore, since ∫ ࣩݒ = 0 and ࣩ is connected we conclude that ݒ = 0, a contradiction 
to ฮݒ௝ฮ

଴,ࣩ
= 1. 

With the help of Proposition (6.2.6) we can now turn the estimate by Lemma 
(6.2.4) into a seminorm equivalence. 
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Lemma	(6.2.7)	[256]:	

Let ࣩ ⊂ ℝ୬ be a connected bounded Lipschitz domain. There holds 

݇ଶ|ݒ|௅మ(ࣩ),ுభ(ࣩ),௦
ଶ ≤ ௦,ࣩ,୧୬୤|ݒ|

ଶ ≤ ଶܭ ቆ3 +
୍,௉ிܥ

ଶ

1)ݏ − ቇ(ݏ ௅మ(ࣩ),ுభ(ࣩ),௦|ݒ|
ଶ  

for any ݒ ∈ ݏ ௦(ࣩ) andܪ ∈ (0,1). Here, ݇ = ,ݏ)݇ ࣩ), ܭ = ,ݏ)ܭ ࣩ) are the numbers  from 
Proposition (6.2.1), and C୔୊,୍(s, ࣩ) is the number from Proposition (6.2.6).   
Proof:	

The lower bound is the one from Lemma (6.2.4). The upper bound is a  combination 
of the upper bound from the same lemma and the Poincar´eFriedrichs’ inequality from 
Proposition (6.2.6). To this end note that the inϐimum infୡ∈ℝ‖v + c‖଴,ࣩ is achieved by 
the same constant ܿ that eliminates the integral in the bound of the Poincar´e-
Friedrichs’ inequality for  ݒ +  ܿ. 

Meanwhile we have accumulated quite some parameters in the semi-norm estimates 
that depend on the order s and the domain ࣩunder consideration. Our  goal is to show 
equivalence of semi-norms which is uniform for a family of  affinely transformed 
domains. We therefore study transformation properties of semi-norms in the following 
section. In this way, parameters from this section enter final results only via their values 
on a reference domain. 

Obviously, both norms in ܪ௦(ࣩ) defined previously, ‖∙‖௅మ(ࣩ),ுభ(ࣩ),௦and ‖∙‖௦,ࣩ , are not 
scalable.This could be achieved by weighting the ܮଶ(ࣩ)-contributions according to the 
diameter of ࣩ, for instance, cf. [261]. Of course, in this  way one does not obtain 
uniformly equivalent norms (of un-weighted and weighted  variants) under 
transformation of the domain. 

This is different for the norm in ܪ෩௦(ࣩ). It can be easily fixed (to be scalable) by  using 
that the semi-norm |∙|ଵ,ࣩ is a norm in ܪ଴

ଵ(ࣩ), and re-defining 

௅మ(ࣩ),ுబൣ‖ݒ‖
భ(ࣩ)൧ೞ

 = ௅మ(ࣩ),ுబ‖ݒ‖
భ(ࣩ),௦  

= ቆන ଶ௦ିݐ inf
௩ୀ௩బା௩భ,௩భ∈ுబ

భ(ࣩ)
൫‖ݒ଴‖଴,ࣩ

ଶ + ࣩ,ଵ|ଵݒ|ଶݐ
ଶ ൯

ݐ݀
ݐ

ஶ

଴
ቇ

ଵ ଶ⁄

 

in the case of interpolation. In the case of the Sobolev-Slobodeckij norm one can  ensure 
scalability by re-defining 

(ࣩ)ு෩ೞ‖ݒ‖  = ࣩ,௦,~‖ݒ‖  = ൭|ݒଵ|ுೞ(ࣩ)
ଶ + ብ

(ݔ)ݒ
dist(ݔ, ߲ࣩ)ብ

௅మ(ࣩ)

ଶ

൱
ଵ ଶ⁄

 

since the last term guarantees positivity. In the following we will make use of these re-
defined norms. 

For a domain ෠ࣩ ∈ ℝ௡  we denote by ࣩ = ൫ܨ ෠ࣩ൯ the affinely transformed  domain 

  ࣩ = ൛ݔܨො; ݔො ∈ ෠ࣩൟwith   ݔܨො = ଴ݔ + ଴ݔ   ,ොݔܤ ∈ ℝ௡ ܤ   , ∈ ℝ௡×௡                                     (45) 



269 
 

Here, ܤ is assumed to be invertible. Correspondingly, for a given real function ݒ  defined 
on ࣩ, 

:ොݒ ൜
෠ࣩ → ℝ

ොݔ → (ොݔܨ)ݒ
� 

is the function transformed onto ෠ࣩ. 

Lemma	(6.2.8)	[256]:	(transformation	properties	of	norms)	

Let ෠ࣩ ⊂ ℝ୬ be a bounded Lipschitz domainand let ࣩ be the affinely  transformed 
domain deϐined by  (6.2.4). Then there hold the transformation properties 

|det ො‖௅మ(ࣩ),ுబݒ‖ଶ௦ି‖ܤ‖|ܤ
భ(ࣩ),௦

ଶ ≤ ௅మ(ࣩ),ுబ‖ݒ‖
భ(ࣩ),௦

ଶ  
≤ |det ො‖௅మ(ࣩ),ுబݒ‖ଵ‖ଶ௦ିܤ‖|ܤ

భ(ࣩ),௦
ଶ ,                                              (46) 

|det ଶ௦ି‖ܤ‖|ܤ min{|det ௡ି‖ܤ‖|ܤ , 1} ,ො‖~,௦ݒ‖ ෠ࣩ
ଶ ≤ ࣩ,௦,~‖ݒ‖

ଶ  
≤ |det ଵ‖ଶ௦ିܤ‖|ܤ max{|det ଵ‖௡ିܤ‖|ܤ , 1} ,ො‖~,௦ݒ‖ ෠ࣩ

ଶ      (47) 
for any ݒො ∈ ෩௦൫ܪ ෠ࣩ൯ and ݏ ∈ (0,1). 
Proof:	

For the interpolation norm and ෠ࣩ, ࣩ being a cubes, this property (with an  
unspeciϐied equivalence constant) has been shown in [264]. It is simply the scaling  
properties of the Lଶand H଴

ଵ-norms together with the exactness of the K-method of  
interpolation (employed here). The proof generalizes to affine mappings in a 
straightforward way as follows. In Euclidean norm one has ‖∇v(x)‖ ≤ ‖Bିଵ‖‖∇vො(xො)‖ so 
that the following relations are immediate, 

(ࣩ)௅మ‖ݒ‖
ଶ = |det (ࣩ)ො‖௅మݒ‖|ܤ

ଶ (ࣩ)ுభ|ݒ|   ,
ଶ ≤ |det ො|ுభ൫ݒ|ଵ‖ଶିܤ‖|ܤ ෠ࣩ൯

ଶ . 
Then, with transformation  ݎ =  we deduce that ,ݐ‖ଵିܤ‖

௅మ(ࣩ),ுబ‖ݒ‖
భ(ࣩ),௦

ଶ            = න ଶ௦ିݐ inf
௩ୀ௩బା௩భ,௩భ∈ுబ

భ(ࣩ)
൫‖ݒ଴‖଴,ࣩ

ଶ + ࣩ,ଵ|ଵݒ|ଶݐ
ଶ ൯

ஶ

଴

ݐ݀
ݐ  

                         ≤ |det |ܤ න ଶ௦ିݐ inf
௩ොୀ௩ොబା௩ොభ,௩ොభ∈ுబ

భ(ࣩ)
൫‖ݒො଴‖଴,ࣩ

ଶ + ,ොଵ|ଵݒ|ଵ‖ଶିܤ‖ଶݐ ෠ࣩ
ଶ ൯

ஶ

଴

ݐ݀
ݐ  

                                   = |det |ܤ න ଶ௦ି(ݎଵ‖ିଵିܤ‖) inf
௩ොୀ௩ොబା௩ොభ,௩ොభ∈ுబ

భ(ࣩ)
൫‖ݒො଴‖଴, ෠ࣩ

ଶ + ࣩ,ොଵ|ଵݒ|ଶݎ
ଶ ൯

ஶ

଴

ݐ݀
ݎ  

                                        = |det ො‖௅మ(ࣩ),ுబݒ‖ଵ‖ଶ௦ିܤ‖|ܤ
భ(ࣩ),௦

ଶ . 
This proves the upper bound in (6.2.5). The lower bound is veriϐied by using the  
inverse transformation ିܨଵ with matrix ିܤଵ.The transformation property of the second 
norm is obtained similarly, see  also [87] for the term of the double integral. 

ࣩ,௦,~‖ݒ‖
ଶ = න න

(ݔ)ݒ| − ଶ|(ݕ)ݒ

ݔ| − ௡ାଶ௦|ݕ
ࣩࣩ

ݕ݀ ݔ݀ + න ቆ
(ݔ)ݒ

,ݔ) ݏ݅݀ ߲ࣩ)௦ቇ
ଶ

ࣩ
 ݔ݀

          ≤ |det ଶ|ܤ න න
(ොݔ)ොݒ| − ଶ|(ොݕ)ොݒ

ොݔ|ଵ‖ି௡ିଶ௦ିܤ‖ − ො|௡ାଶ௦ݕ
ࣩࣩ

ොݕ݀ ොݔ݀

+ |det |ܤ න ൭
(ොݔ)ොݒ

,ොݔଵ‖ି௦dist൫ିܤ‖ ߲ ෠ࣩ൯௦൱
ଶ

ࣩ
 ොݔ݀
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          ≤ |det ଵ‖ଶ௦ିܤ‖|ܤ + max{|det ଵ‖௡ିܤ‖|ܤ , 1} ,ො‖~,௦ݒ‖ ෠ࣩ
ଶ  

This is the upper bound in (6.3.6). Analogously one ϐinds that 

,ො‖~,௦ݒ‖ ෠ࣩ
ଶ ≤ |detିܤଵ|‖ܤ‖ଶ௦ max{|detିܤଵ|‖ܤ‖௡ , 1} ࣩ,௦,~‖ݒ‖

ଶ . 
This proves the lower bound in (6.2.6). 

Lemma	(6.2.9)	[256]:	(transformation	properties	of	semi-norms)	

Let ෠ࣩ ⊂ ℝ୬ be a bounded Lipschitz domain and let ࣩ be the affinely  transformed 
domain deϐined by (30). Then there hold the transformation  properties 

|detିܤଵ|‖ܤ‖ଶ௦|ݒො|௅మ൫ ෠ࣩ൯,ுభ൫ ෠ࣩ൯,௦
ଶ ≤ ௅మ(ࣩ),ுభ(ࣩ),௦|ݒ|

ଶ            
≤ |detିܤଵ|‖ܤ‖ଶ௦|ݒො|௅మ൫ ෠ࣩ൯,ுభ൫ ෠ࣩ൯,௦

ଶ ,                                                                                (48) 
|detܤ|ଶ‖ܤ‖ି௡ିଶ௦|ݒො|௦, ෠ࣩ

ଶ ≤ ,௦|ݒ| ෠ࣩ
ଶ

≤ |detܤ|ଶ‖ିܤଵ‖௡ାଶ௦|ݒො|௦, ෠ࣩ
ଶ                                                           (49) 

for any ݒො ∈ ௦൫ܪ ෠ࣩ൯ and ݏ ∈ (0,1). 
Proof:	

The proof is basically identical to the one of Lemma (6.2.8). 

The third semi-norm, |∙|ୱ,ࣩ,୧୬୤, behaves under affine transformations as follows. 

Lemma	(6.2.10)	[256]:	

Let ෠ࣩ ⊂ ℝଶ be a bounded Lipschitz domain and let ࣩ be the affinely transformed 
domain deϐined by (30). Then there hold the transformation properties 

|det ,ො|௦ݒ|௡ିଶ௦ି‖ܤ‖ଶ|ܤ ෠ࣩ
ଶ + |det |ܤ inf‖ݒො + ܿ‖௢, ෠ࣩ

ଶ ≤ ௦,ࣩ,୧୬୤|ݒ|
ଶ

≤ |det ,ො|௦ݒ|ଵ‖௡ାଶ௦ିܤ‖ଶ|ܤ ෠ࣩ
ଶ + |det |ܤ inf

௖∈ℝ
ොݒ‖ + ܿ‖௢, ෠ࣩ

ଶ  
for any vො ∈ Hୱ൫ ෠ࣩ൯ and s ∈ (0,1). 

Proof:	

This result is immediate from the representation of the semi-norm given in 
Lemma (6.2.3) and the transformation properties of the |⋅|௦-semi-norm by Lemma 
(6.2.9) and of the ܮଶ-norm. 

We are now ready to state and prove our main results on certain equivalences of 
fractional-order 

Sobolev semi-norms. We use the notation (45) from Section (2.3) for afϐine 
transformations. In particular, we assume that the domain ࣩunder consideration is the 
affine image of a bounded Lipschitzdomain ෠ࣩ. The following results specify how 
equivalence constants depend on the affine map. At the end of this section we conclude 
the equivalence of some semi-norms which is uniform for a family of so called shape 
regular domains Theorem (6.2.14) and some scaling properties Corollary (6.2.15). 
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These results are of importance for the approximation theory of piecewise polynomial 
spaces in fractional-order Sobolev spaces. 

The first theorem shows the equivalence of the semi-norms |⋅|௅మ(ࣩ),ுభ(ࣩ),௦ , and 
|⋅|௦,ࣩ . 

Theorem	(6.2.11)	[256]: 
Let ෠ࣩ ⊂ ℝଶ be a bounded, connected Lipschitz domain and let ࣩbe the affinely 

transformed domain deϐined by (30). Then there hold the following relations. 

(i)  

ࣩ,௦|ݒ|
ଶ ≤ |det ,ݏ൫ܭଶ௦‖ܤ‖ଵ‖௡ାଶ௦ିܤ‖|ܤ ෠ࣩ൯ଶ ቌ3 +

,ݏ௉ி,ூ൫ܥ ෠ࣩ൯ଶ

ݏ
(1 − (ݏ

ቍ ௅మ(ࣩ),ுభ(ࣩ),௦|ݒ|
ଶ  

for any ݒ ∈ ݏ ௦(ࣩ) andܪ ∈ (0,1) with ݏ)ܭ, ෠ࣩ) from Proposition (6.2.1) and ܥ௉ி,ூ൫ݏ, ෠ࣩ൯ 
from Proposition (6.2.6). 

(ii)  
௅మ(ࣩ),ுభ(ࣩ),௦|ݒ|

ଶ ≤ |det ,ݏ൫ߢଵ‖ଶ௦ିܤ‖௡ାଶ௦‖ܤ‖ଵି|ܤ ෠ࣩ൯ିଶ
ቀ1 + ,ݏ௉ி,ௌௌ൫ܥ ෠ࣩ൯ଶ

ቁ ࣩ,௦|ݒ|
ଶ  

for any ݒ ∈ ݏ ௦(ࣩ) andܪ ∈ (0,1) with ߢ൫ݏ, ෠ࣩ൯ from Proposition (6.2.1) and from 
Proposition (6.2.2). 
Proof:		

On a fixed domain ෠ࣩ we obtain, by combining Lemmas (6.2.3) and (6.2.7), the 
equivalence of semi-norms: 

ห ෠ࣩห
௦, ෠ࣩ
ଶ

≤ ,ො|௦ݒ| ෠ࣩ,୧୬୤
ଶ ≤ ,ݏ൫ܭ ෠ࣩ൯ଶ ൭3 +

,ݏ௉ி,ூ൫ܥ ෠ࣩ൯ଶ

1)ݏ − (ݏ ൱ ො|௅మ൫ݒ| ෠ࣩ൯,ுభ൫ ෠ࣩ൯,௦
ଶ           (50) 

and 
ො|௅మ൫ݒ| ෠ࣩ൯,ுభ൫ ෠ࣩ൯,௦

ଶ ≤ ,ݏ൫ߢ ෠ࣩ൯ିଶ|ݒො|௦, ෠ࣩ,୧୬୤
ଶ

≤ ,ݏ൫ߢ ෠ࣩ൯ିଶ
ቀ1

+ ,ݏ௉ி,ௌௌ൫ܥ ෠ࣩ൯ଶ൯|ݒො|௦, ෠ࣩ
ଶ                                                                      (51) 

The first assertion of the theorem then follows by combining (40) with the 
transformation properties of the semi-norms by Lemma (6.2.9): 

ࣩ,ො|௦ݒ|
ଶ ≤ |det ࣩ,ො|,௦ݒ|ଵ‖௡ାଶ௦ିܤ‖ଶ|ܤ

ଶ  

≤ |det ,ݏ൫ܭଵ‖௡ାଶ௦ିܤ‖ଶ|ܤ ෠ࣩ൯ଶ ൭3 +
,ݏ௉ி,ூ൫ܥ ෠ࣩ൯ଶ

1)ݏ − (ݏ ൱ ො|௅మ൫ݒ| ෠ࣩ൯,ுభ൫ ෠ࣩ൯,௦
ଶ  

         ≤ |det ,ݏ൫ܭଶ௦‖ܤ‖ଵ‖௡ାଶ௦ିܤ‖|ܤ ෠ࣩ൯ଶ ൭3 +
,ݏ௉ி,ூ൫ܥ ෠ࣩ൯ଶ

1)ݏ − (ݏ ൱ ො|௅మ൫ݒ| ෠ࣩ൯,ுభ൫ ෠ࣩ൯,௦
ଶ  

The second assertion of the theorem is proved by a combination of (41) with the 
transformation properties by Lemma (6.2.9). 
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The next two theorems study the other pairs of semi-norms for equivalence in 
combination with affine maps, ൫|⋅|ୱ,ࣩ|⋅|ୱ,ࣩ,୧୬୤ ൯ and ൫|⋅|୐మ(ࣩ),ୌభ(ࣩ),ୱ|⋅|ୱ,ࣩ,୧୬୤ ൯ 

Theorem	(6.2.12)	[256]:	

Let ෠ࣩ ⊂ ℝଶ be a bounded, connected Lipschitz domain and let ࣩ be the affinely 
transformed domain deϐined by (35). Then there hold the following relations. 

(i).  
ࣩ,௦|ݒ| ≤ ௦,ࣩ,୧୬୤|ݒ| ݒ∀    ∈ ,(ࣩ)௦ܪ ݏ∀ ∈ (0,1), 

(ii).  
௦,ࣩ,୧୬୤|ݒ|

ଶ ≤ ቀ1 + |det ,ݏ௉ி,ௌௌ൫ܥ௡ାଶ௦‖ܤ‖ଵି|ܤ ෠ࣩ൯ଶ
ቁ ࣩ,ො|௦ݒ|

ଶ ݒ∀  ∈ ,(ࣩ)௦ܪ ݏ∀ ∈ (0,1) 

withC୔୊,ୗୗ൫s, ෠ࣩ൯  being the number from Proposition (6.2.2). 

Proof:		

Assertion (i) is a repetition of the ϐirst estimate in Lemma (6.2.3). 

To show the second assertion we use Proposition (6.2.2) and Lemma (6.2.9) to 
deduce that 

inf
௖∈ℝ

ݒ‖ + ܿ‖௢,ࣩ
ଶ = |det |ܤ inf

௖∈ℝ
ොݒ‖ + ܿ‖௢,ࣩ

ଶ ≤ |det ,ݏ௉ி,ௌௌ൫ܥ|ܤ ෠ࣩ൯ଶ|ݒො|௦,ࣩ
ଶ  

≤ 1 + |det ,ݏ௉ி,ௌௌ൫ܥ௡ାଶ௦‖ܤ‖ଵି|ܤ ෠ࣩ൯ଶ
. 

The assertion then follows by the definition of the semi-norm |⋅|ୱ,ࣩ,୧୬୤ . 

Theorem	(6.2.13)	[256]:		

Let ෠ࣩ ⊂ ℝଶ be a bounded, connected Lipschitz domain and let ࣩ be the affinely 
transformed domain deϐined by (30). Then there hold the following relations. 

(i).  
ො|௅మ(ࣩ),ுభ(ࣩ),௦ݒ|

ଶ ≤ ଵ‖ଶ௦ିܤ‖ max{|det ௡ାଶ௦‖ܤ‖ଵି|ܤ , 1} ,ݏ൫ߢ ෠ࣩ൯ିଶ|ݒො|௦,ࣩ,୧୬୤
ଶ  

for any ݒ ∈ ݏ ௦(ܱ) andܪ ∈ (0,1) with ݇(ݏ, ࣩ) from Proposition (6.2.1), 

(ii).  

ො|௦,ࣩ,୧୬୤ݒ|
ଶ ≤ max{|det ,ଵ‖௡ାଶ௦ିܤ‖|ܤ 1} ,ݏ൫ܭ ෠ࣩ൯ଶ ൭3 +

,ݏ௉ி,ூ൫ܥ ෠ࣩ൯ଶ

1)ݏ − (ݏ ൱ ො|௅మ(ࣩ),ுభ(ࣩ),௦ݒ|
ଶ  

for any ݒ ∈ ݏ ௦(ࣩ) andܪ ∈ (0,1) with ݏ)ܭ, ෠ࣩ) from Proposition (6.2.1) and ܥ௉ி,ௌௌ൫ݏ, ෠ࣩ൯ଶ
 

from Proposition (6.2.6). 

Proof:		

By Lemmas (6.2.9),(6.2.7) and (6.2.10) we obtain 

ො|௅మ(ࣩ),ுభ(ࣩ),௦ݒ|
ଶ ≤ |det ො|௅మ൫ݒ|௡ାଶ௦‖ܤ‖ଵି|ܤ ෠ࣩ൯,ுభ൫ ෠ࣩ൯,௦

ଶ ≤ |det ,ݏ൫ߢଵ‖ଶ௦ିܤ‖|ܤ ෠ࣩ൯ିଶ|ݒො|௦,ࣩ,୧୬୤
ଶ  
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 ≤ |det ,ݏ൫ߢଶ௦‖ܤ‖|ܤ ෠ࣩ൯ିଶ
ቀ|det ,ݏ൫ߢ௡ାଶ௦‖ܤ‖ଶି|ܤ ෠ࣩ൯ିଶ|ݒ|௦,ࣩ

ଶ + |det |ଵିܤ inf
௖∈ℝ

ݒ‖ + ܿ‖௢,ࣩ
ଶ ቁ 

       ≤ ଵ‖ଶ௦ିܤ‖ max{|det ,ଵ‖௡ାଶ௦ିܤ‖|ܤ ,ݏ൫ߢ{1 ෠ࣩ൯ିଶ|ݒො|௦,ࣩ,୧୬୤
ଶ  

This is the first assertion. The second one follows analogously by the same lemmas: 

௦,ࣩ,୧୬୤|ݒ|
ଶ ≤ |det ,ݏ൫ߢଵ‖௡ାଶ௦ିܤ‖ଶ|ܤ ෠ࣩ൯ିଶ|ݒො|௦, ෠ࣩ

ଶ + |det |ܤ inf
௖∈ℝ

ොݒ‖ + ܿ‖௢, ෠ࣩ
ଶ  

                          ≤ |det |ܤ max{|det ,ଵ‖௡ାଶ௦ିܤ‖|ܤ 1} ,ො|௦ݒ| ෠ࣩ,୧୬୤
ଶ  

                     ≤ |det |ܤ max{|det ଵ‖௡ାଶ௦ିܤ‖|ܤ , ,ݏ൫ܭ{1 ෠ࣩ൯ଶ ൭3 +
,ݏ௉ி,ூ൫ܥ ෠ࣩ൯ଶ

1)ݏ − (ݏ ൱ ො|௅మ൫ݒ| ෠ࣩ൯,ுభ൫ ෠ࣩ൯,௦
ଶ  

                  ≤ max{|det ,ଵ‖௡ାଶ௦ିܤ‖|ܤ ,ݏ൫ܭଶ௦‖ܤ‖{1 ෠ࣩ൯ଶ ൭3 +
,ݏ௉ி,ூ൫ܥ ෠ࣩ൯ଶ

1)ݏ − (ݏ ൱ ො|௅మ(ࣩ),ுభ(ࣩ),௦ݒ|
ଶ  

We end this section with establishing uniform equivalence of the semi-norms  
|⋅|௦,ࣩ   and |⋅|௅మ(ࣩ),ுభ(ࣩ),௦ for shape-regular domains. Three of the four remaining bounds 
for other combinations of semi-norms are uniform under further restrictions on the 
diameter of the domain. 

Let us introduce some notation. We consider a bounded, connected Lipschitz 
domain ෠ࣩ ⊂ ℝ௡and maps of ෠ࣩonto domains ࣩwhere the ratio ࣩߩ ≔  is ࣩ݀/ࣩܦ
controlled. Here, ࣩܦdenotes the diameter of ࣩand ࣩ݀  is the supremum of the diameters 
of all balls contained inࣩ. In the case of finite elements (or convex polygons) 
boundedness of ߩ is referred to as shaperegularity of ࣩ. Also, when defining ࣩ݀  with 
balls with respect to which ࣩis star-shaped, then ࣩߩis referred to as chunkiness 
parameter. 

Using the notation (30) there holds 

‖ܤ‖ ≤
ࣩܦ

ࣩ݀
=

ࣩܦ

ܦ ෠ࣩ
ߩ ෠ࣩ ‖ଵିܤ‖   , ≤

ܦ ෠ࣩ

ࣩ݀
=

ܦ ෠ࣩ

ࣩܦ
‖ଵିܤ‖‖ܤ‖   ,ࣩߩ ≤ ߩ ࣩߩ ෠ࣩ,                    (42) 

cf., e.g., [258]. Furthermore, we conclude that 

|det |ܤ =
|ࣩ|
ห ෠ࣩห

≤
ࣩܦ

௡

ࣩ݀
௡ , |det ଵି|ܤ ≤

ܦ ෠ࣩ
௡

ࣩ݀
௡ = ࣩߩ

௡ ܦ ෠ࣩ
௡

ࣩܦ
௡ .                                               (43) 

With this notation, the results of Theorems (6.2.11-6.2.13) imply the following. 

Theorem	(6.2.14)	[256]:		

Let ࣩ be the affine map of a bounded connected Lipschitz domain ࣩ ෠ ⊂ ℝ୬,  cf (2.4). 

(i). The semi-norms |⋅|௦,ࣩ  and |⋅|௅మ(ࣩ),ுభ(ࣩ),௦ are uniformly equivalent for a family of 
shape-regular domains ࣩ: 

ࣩ,௦|ݒ|
ଶ ≤ ߩ ෠ࣩ

௡ܭ൫ݏ, ෠ࣩ൯ଶ ൭3 +
,ݏ௉ி,ூ൫ܥ ෠ࣩ൯ଶ

1)ݏ − (ݏ ൱ ௅మ(ࣩ),ுభ(ࣩ),௦|ݒ|
ଶ , 

௅మ(ࣩ),ுభ(ࣩ),௦|ݒ|
ଶ ≤ ࣩߩ

௡ାଶ௦ߩ ෠ࣩ
௡ାଶ௦ߢ൫ݏ, ෠ࣩ൯ଶ

ቀ1 + ,ݏ௉ி,ௌௌ൫ܥ ෠ࣩ൯ଶ
ቁ ࣩ,௦|ݒ|

ଶ  
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for any ݒ ∈ ݏ ௦(ࣩ) andܪ ∈ (0,1). Here, ߢ൫ݏ, ෠ࣩ൯, ,ݏ൫ܭ ෠ࣩ൯ are the numbers from 
Proposition (6.2.1) and ܥ௉ி,ௌௌ൫ݏ, ෠ࣩ൯, ,ݏ௉ி,ூ൫ܥ ෠ࣩ൯ are as in Propositions (6.2.2), (6.2.6), 
respectively. 

(ii). The semi-norms |⋅|௦,ࣩ  and |⋅|௦,ࣩ,୧୬୤  are uniformly equivalent for a family of 
uniformly bounded, shape-regular domains ࣩ: 

ࣩ,௦|ݒ| ≤ |⋅|௦,ࣩ,୧୬୤ , 

௦,ࣩ,୧୬୤|ݒ|
ଶ ≤ ቆ1 +

ࣩܦ
ଶ௦

ܦ ෠ࣩ
ଶ௦ ࣩߩ

௡ߩ ෠ࣩ
௡ାଶ௦ܥ௉ி,ௌௌ൫ݏ, ෠ࣩ൯ଶ

ቇ ࣩ,௦|ݒ|
ଶ  

for any ݒ ∈ ݏ ௦(ࣩ) andܪ ∈ (0,1). Here, ܥ௉ி,ௌௌ൫ݏ, ෠ࣩ൯ is the number from Proposition 
(6.2.2). 

(iii). a) For a family of shape-regular domains ࣩwhose diameters are bounded 
from below by a positive constant, the semi-norm |⋅|௅మ(ࣩ),ுభ(ࣩ),௦is uniformly 
bounded by|⋅|௦,ࣩ,୧୬୤ : 

௅మ(ࣩ),ுభ(ࣩ),௦|ݒ|
ଶ ≤ max൛ࣩߩ

௡ߩ ෠ࣩ
௡ାଶ௦ , ࣩܦ

ିଶ௦ܦ ෠ࣩ
ଶ௦ൟ ࣩߩ

ଶ௦ߢ൫ݏ, ෠ࣩ൯ଶ|ݒ|௦,ࣩ,୧୬୤
ଶ  

for any ݒ ∈ ݏ ௦(ࣩ) andܪ ∈ (0,1). 

b) For a family of uniformly bounded, shape-regular domains ࣩ, the semi-norm 
|⋅|௦,ࣩ,୧୬୤  is uniformly bounded by |⋅|௅మ(ࣩ),ுభ(ࣩ),௦ 

ො|௦,ࣩ,୧୬୤ݒ|
ଶ ≤ max൛ࣩߩ

௡ାଶ௦ߩ ෠ࣩ
௡ , ࣩܦ

ଶ௦ܦ ෠ࣩ
ିଶ௦ൟߩ ෠ࣩ

ଶ௦ ,ݏ൫ܭ ෠ࣩ൯ଶ ൭3 +
,ݏ௉ி,ூ൫ܥ ෠ࣩ൯ଶ

1)ݏ − (ݏ ൱ ௅మ(ࣩ),ுభ(ࣩ),௦|ݒ|
ଶ  

for any ݒ ∈ ݏ ௦(ࣩ) andܪ ∈ (0,1). 

Here, ߢ൫ݏ, ෠ࣩ൯, ,ݏ൫ܭ ෠ࣩ൯ are the parameters from Proposition (6.2.1), and ܥ௉ி,ூ൫ݏ, ෠ࣩ൯is the 
number from Proposition (6.2.6). 

Proof:		
The assertions (i)–(iii) are a combination of Theorems (6.2.11-6.2.13), 

respectively, with the bounds provided by (42), (43). 

The uniform equivalence of the semi-norms |⋅|௦,ࣩ  and|⋅|௅మ(ࣩ),ுభ(ࣩ),௦  for shape-
regular domains is based on what one calls their scaling property. It means that both 
semi-norms for functions on a domain ࣩare uniformly equivalent to the respective 
semi-norm of the affinely transformed functions onto a fixed domain ෠ࣩ, when one of the 
semi-norms is multiplied by an appropriate number (it is a power of the diameter of ࣩ). 
This property applies also to the norms |⋅|௅మ(ࣩ),ுభ(ࣩ),௦and |⋅|~௦,ࣩ , cf. Lemma (6.2.8). 
Scaling properties are relevant for the error analysis of piecewise polynomial 
approximations. We formulate the result as a corollary to Lemmas (6.2.8) and (6.2.9). 

	
	
	
Corollary	(6.2.15)	[256]:		
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The norms |⋅|௅మ(ࣩ),ுబ
భ(ࣩ),௦, |⋅|~௦,ࣩ  and semi-norms |⋅|௦,ࣩ|⋅|௅మ(ࣩ),ுభ(ࣩ),௦ are scalable of 

order ࣩܦ
௡ିଶ௦ : 

ࣩܦ
௡ିଶ௦ࣩߩ

ି௡ܦ ෠ࣩ
ଶ௦ି௡ߩ ෠ࣩ

ିଶ௦‖ݒො‖௅మ൫ ෠ࣩ൯,ுబ
భ൫ ෠ࣩ൯,௦ ≤ ௅మ(ࣩ),ுబ‖ݒ‖

భ(ࣩ),௦
ଶ

≤ ࣩܦ
௡ିଶ௦ࣩߩ

ଶ௦ܦ ෠ࣩ
ଶ௦ି௡ߩ ෠ࣩ

௡‖ݒො‖௅మ൫ ෠ࣩ൯,ுబ
భ൫ ෠ࣩ൯,௦

ଶ  

ࣩܦ
௡ିଶ௦ࣩߩ

ି௡ܦ ෠ࣩ
ଶ௦ି௡ߩ ෠ࣩ

ିଶ௦ min൛ࣩߩ
ି௡ߩ ෠ࣩ

ି௡ , 1ൟ‖ݒො‖~,௦, ෠ࣩ
ଶ ≤ ࣩ,௦,~‖ݒ‖

ଶ  
                                                           ≤ ࣩܦ

௡ିଶ௦ࣩߩ
ଶ௦ܦ ෠ࣩ

ଶ௦ି௡ߩ ෠ࣩ
௡ max൛ࣩߩ

௡ߩ ෠ࣩ
௡ , 1ൟ ,ො‖~,௦ݒ‖ ෠ࣩ

ଶ  
 

for any ݒ ∈ ݏ ෩௦(ࣩ) andܪ ∈ (0,1), and 
ࣩܦ

௡ିଶ௦ࣩߩ
ି௡ܦ ෠ࣩ

ଶ௦ି௡ߩ ෠ࣩ
ିଶ௦|ݒො|௅మ൫ ෠ࣩ൯,ுభ൫ ෠ࣩ൯,௦

ଶ ≤ ௅మ(ࣩ),ுభ(ࣩ),௦|ݒ|
ଶ ≤ ࣩܦ

௡ିଶ௦ࣩߩ
ଶ௦ܦ ෠ࣩ

ଶ௦ି௡ߩ ෠ࣩ
௡|ݒො|௅మ൫ ෠ࣩ൯,ுభ൫ ෠ࣩ൯,௦

ଶ , 
ࣩܦ

௡ିଶ௦ࣩߩ
ିଶ௡ܦ ෠ࣩ

ଶ௦ି௡ߩ ෠ࣩ
ି௡ିଶ௦|ݒො|௦, ෠ࣩ

ଶ ≤ ࣩ,௦,|ݒ|
ଶ ≤ ࣩܦ

௡ିଶ௦ࣩߩ
௡ାଶ௦ܦ ෠ࣩ

ଶ௦ି௡ߩ ෠ࣩ
௡|ݒො|௦, ෠ࣩ

ଶ  
for any v ∈ Hୱ(ࣩ) and s ∈ (0,1). 

Proof:		

The bounds are a combination of Lemmas (6.2.8) and (6.2.9) with (42), (43). 

Remark	(6.2.16)	[256]:	

The estimate by Theorem (6.2.14) (iii) a) breaks down when Dࣩ →  0. In fact, for 
a family of scaled domains ࣩ୦ with Dࣩ౞ = h and a non-constant function v scaled to a 
family {v୦} of functions on {ࣩ୦}, |v୦|୐మ(ࣩ౞),ୌభ(ࣩ౞),ୱ

ଶ ≃ h୬ିଶୱ by Corollary (6.2.15) whereas 
|v୦|ୱ,ࣩ౞ ,୧୬୤

ଶ ≥ infୡ∈ℝ‖v୦ − c‖୭,ࣩ౞
ଶ ≃ h୬. Therefore, the dependence on Dࣩ  like Dࣩ

ିଶୱof the 
upper bound in Theorem (6.2.14) (iii) a) is optimal. 

Proposition (6.2.17)[272]:  (equivalence of norms)  For a bounded Lipschitz series domain 

∑ ࣩ୧
௡
୧ୀଵ  ⊂ ℝ୬ and for given ϵ > 0  there exist constants k(1 − ϵ, ∑ ࣩ୧

௡
୧ୀଵ ), K(1 −

ϵ, ∑ ࣩ୧
௡
୧ୀଵ ) > 0  such that 

  k ൭1 − ϵ, ෍ ࣩ୧

௡

୧ୀଵ

൱ ‖v௜‖୐మ൫∑ ࣩ౟
೙
౟సభ ൯,ୌభ൫∑ ࣩ౟

೙
౟సభ ൯,ଵି஫ ≤ ‖v௜‖ଵି஫,∑ ࣩ౟

೙
౟సభ

 

≤ K ൭1 − ϵ, ෍ ࣩ୧

௡

୧ୀଵ

൱ ‖v௜‖୐మ൫∑ ࣩ౟
೙
౟సభ ൯,ୌభ൫∑ ࣩ౟

೙
౟సభ ൯,ଵି஫ 

                   ∀ v௜ ∈ Hଵି஫ ൭෍ ࣩ୧

௡

୧ୀଵ

൱. 

It is well known that, on bounded Lipschitz series domains,  lower-order norms can be 

bounded by higher-order semi-norms plus finite rank terms. Such estimates are referred to 

as Poincar´e-Friedrichs’ inequalities. For integer-order norms there are direct proofs with 
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explicit constants (depending on small orders and series domains) (see [269], [256])  and  

attention has received finding best constants and deriving improved weighted estimates, 

(see [270,271] and [261]), respectively. We need such a Poincar´e-Friedrichs’ inequality for 

fractional-order norms on bounded series domain (for unbounded domains, see [224] and 

[263]) , gives for two dimensions but immediately extends to the  general case. 

Proposition(6.2.18)[272]:  (Poincar´e-Friedrichs inequality, Sobolev-Slobodeckij semi-norm) 

.Let ∑ ࣩ୧
௡
୧ୀଵ  ⊂ ℝ୬ be a bounded series domain, and  ϵ > 0. Then there holds 

‖v௜‖଴,∑ ࣩ౟
೙
౟సభ

≤ C୔୊,ୗୗ ൭1 − ϵ, ෍ ࣩ୧

௡

୧ୀଵ

൱ ቆ|v௜|ଵି஫,∑ ࣩ౟
೙
౟సభ

+ ቤන v௜
∑ ࣩ౟

೙
౟సభ

ቤቇ     ∀ v௜ ∈ Hଵି஫ ൭෍ ࣩ୧

௡

୧ୀଵ

൱ 

With 

C୔୊,ୗୗ ቌ(1 − ϵ), ෍ ࣩ୧

௡

୧ୀଵ

ቍ = อ෍ ࣩ୧

௡

୧ୀଵ

อ
ିଵ ଶ⁄

max ቄ1, 2ିଵ ଶ⁄ D∑ ࣩ౟
೙
౟సభ

୬ ଶା(ଵି஫)⁄ ቅ. 

Here, |∑ ࣩ୧
௡
୧ୀଵ | denotes the area of ∑ ࣩ୧

௡
୧ୀଵ  and, as mentioned in the introduction, D∑ ࣩ౟

೙
౟సభ

 is 

its  diameter. 

Lemma (6.2.19)[272]:  Let ∑ ࣩ୧
௡
୧ୀଵ ⊂ ℝ୬be a bounded, connected Lipschitz series domain. 

Then there holds 

                             |v௜|ଵି஫,∑ ࣩ౟
೙
౟సభ

ଶ ≤ |v௜|ଵି஫,∑ ࣩ౟
೙
౟సభ  ,୧୬୤

ଶ = |v௜|ଵି஫,∑ ࣩ౟
೙
౟సభ

ଶ + inf
ୡ∈ℝ

‖v௜ + c௜‖଴,∑ ࣩ౟
೙
౟సభ

ଶ  

  ≤ ൫1 + C୔୊,ୗୗ
ଶ ൯|v௜|ଵି஫,∑ ࣩ౟

೙
౟సభ

ଶ  

For any v௜ ∈ Hଵି஫(∑ ࣩ୧
௡
୧ୀଵ )and ϵ > 0. Here, C୔୊,ୗୗ = C୔୊,ୗୗ(1 − ϵ, ∑ ࣩ୧

௡
୧ୀଵ ) is the number 

from Proposition (6.2.8). 

Proof: By definition of |∙|ଵି஫,∑ ࣩ౟
೙
౟సభ

 there holds for any c௜ ∈ ℝ  and any v௜ ∈ Hଵି஫(∑ ࣩ୧
௡
୧ୀଵ ) 

(we  now  drop  ∑ ࣩ୧
௡
୧ୀଵ  from the notation) 

|v௜|ଵି஫ = |v௜ + c௜|ଵି஫. 

Therefore 

                       |v௜|ଵି஫ ≤ inf
ୡ೔∈ℝ

‖v௜ + c௜‖ଵି஫ = |v௜|ଵି஫,୧୬୤  

Which is the first assertion by the initial argument and the definition of the  Sobolev-

Slobodeckij norm one also finds that 
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|v௜|ଵି஫,୧୬୤
ଶ = inf

ୡ೔∈ℝ
‖v௜ + c௜‖ଵି஫

ଶ  = inf
ୡ∈ℝ

‖v௜ + c௜‖଴
ଶ + |v௜|ଵି஫

ଶ . 

This is the second assertion. 

The last relation and the Poincar´e-Friedrichs’ inequality (Proposition (6.2.18) lead to 

|v௜|ଵି஫,୧୬୤
ଶ ≤ C୔୊,ୗୗ

ଶ inf
ୡ∈ℝ

ቆ|v௜|ଵି஫ + ቤන (v௜ + c௜)
∑ ࣩ౟

೙
౟సభ

ቤቇ
ଶ

+ |v௜|ଵି஫
ଶ = ൫1 + C୔୊,ୗୗ

ଶ ൯|v௜|ଵି஫
ଶ . 

This finishes the proof. 

Lemma (6.2.20)[272]:  Let  ∑ ࣩ୧
௡
୧ୀଵ ⊂ ℝ୬ be a bounded Lipschitz series domain. There holds 

kଶ|v௜|୐మ(∑ ࣩi
݊
i=1 ),ୌభ(∑ ࣩi

݊
i=1 ),ଵି஫

ଶ ≤ |v௜|ଵି஫,∑ ࣩi
݊
i=1 ,୧୬୤

ଶ  

≤ 3Kଶ|v௜|୐మ(∑ ࣩi
݊
i=1 ),ୌభ(∑ ࣩi

݊
i=1 ),ଵି஫

ଶ +
Kଶ

ϵ (1 − ϵ) inf
ୡ೔∈ℝ

‖v௜ + c௜‖଴,∑ ࣩi
݊
i=1

ଶ  

for any v௜ ∈ Hଵି஫(∑ ࣩ୧
௡
୧ୀଵ ) and ϵ > 0. Here, k = k(1 − ϵ, ∑ ࣩ୧

௡
୧ୀଵ ) and K = K(1 −

ϵ, ∑ ࣩ୧
௡
୧ୀଵ ) are the numbers from Proposition (6.2.17). 

Proof: Let v௜ ∈ H(∑ ࣩ୧
௡
୧ୀଵ ), and let c୬, c୬ାଵ  denote generic constants. For any t > 0  there 

holds 

inf
୴೔ୀ୴౤ା୴౤శభ

(‖v୬‖଴
ଶ + tଶ|v୬ାଵ|ଵ

ଶ) = inf
୴೔ୀ୴౤ାୡ౤ା୴౤శభାୡ౤శభ

(‖v୬ + c୬‖଴
ଶ + tଶ|v୬ାଵ|ଵ

ଶ) 

                                                          = inf
ୡ౤శభ,୴೔ିୡ౤శభୀ୴౤ା୴౤శభ

(‖v୬‖଴
ଶ + tଶ|v୬ାଵ|ଵ

ଶ), 

That is  

inf
୴೔ୀ୴౤ା୴౤శభ

(‖v୬‖଴
ଶ + tଶ|v୬ାଵ|ଵ

ଶ) = inf
ୡ೔∈ℝ

inf
୴೔ାୡ೔ୀ୴౤ା୴౤శభ

(‖v୬‖଴
ଶ + tଶ|v୬ାଵ|ଵ

ଶ) 

                                                          ≤ inf
ୡ೔∈ℝ

inf
୴೔ାୡ೔ୀ୴౤ା୴౤శభ

(‖v୬‖଴
ଶ + tଶ|v୬ାଵ|ଵ

ଶ). 

(Recall that our convention for the notation inf୴೔ୀ୴౤ା୴౤శభ
(‖v୬‖଴

ଶ + tଶ|v୬ାଵ|ଵ
ଶ) implies 

that the infimum is taken with respect to v୬ ∈ Lଶ(∑ ࣩ୧
௡
୧ୀଵ )and v୬ାଵ ∈ Hଵ(∑ ࣩ୧

௡
୧ୀଵ ).) We  

conclude that 

|v௜|୐మ,ୌభ,ଵି஫
ଶ = න tିଶ(ଵି஫) inf

୴೔ୀ୴౤ା୴౤శభ
(‖v୬‖଴

ଶ + tଶ|v୬ାଵ|ଵ
ଶ)

ஶ

଴
dt 

                ≤ inf
ୡ೔∈ℝ

න tିଶ(ଵି஫) inf
୴೔ାୡ೔ୀ୴౤ା୴౤శభ

(‖v୬‖଴
ଶ + tଶ|v୬ାଵ|ଵ

ଶ)
ஶ

଴

dt
t = inf

ୡ೔∈ℝ
‖v௜ + c௜‖୐మ,ୌభ,ଵି஫

ଶ . 

By Proposition (6.2.17) 
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inf
ୡ೔∈ℝ

‖v௜ + c௜‖୐మ,ୌభ,ଵି஫
ଶ ≤ kିଶ inf

ୡ೔∈ℝ
‖v௜ + c௜‖ଵି஫

ଶ = kିଶ|v௜|ଵି஫,୧୬୤
ଶ , 

So that the first assertion follows 

By definition and using Proposition (6.2.17) there holds 

|v௜|ଵି஫,୧୬୤
ଶ = inf

ୡ೔∈ℝ
‖v௜ + c௜‖ଵି஫

ଶ ≤ Kଶ inf
ୡ೔∈ℝ

‖v௜ + c௜‖୐మ,ୌభ,ଵି஫
ଶ  

 = Kଶ inf
ୡ೔∈ℝ

න tିଶ(ଵି஫) inf
୴೔ାୡ೔ୀ୴౤ା୴౤శభ

(‖v୬‖଴
ଶ + tଶ|v୬ାଵ|ଵ

ଶ)
ஶ

଴

dt
t

.                  (44) 

We bound the integrand separately for ߳ଵ > 0 and  ߳ଶ > 0. 

For ߳ଵ > 0 we use the representation v௜ + c௜ = v୬ + v୬ାଵ to bound 

‖v୬‖଴
ଶ + (1 − ߳ଵ)ଶ‖v୬ାଵ‖଴

ଶ + (1 − ߳ଵ)ଶ|v୬ାଵ|ଵ
ଶ     

≤ ‖v୬‖଴
ଶ + 2(1 − ߳ଵ)ଶ(‖v௜ + c௜‖଴

ଶ + ‖v୬‖଴
ଶ) + (1 − ߳ଵ)ଶ|v୬ାଵ|ଵ

ଶ 

                           ≤ 3‖v୬‖଴
ଶ + 2(1 − ߳ଵ)ଶ‖v௜ + c௜‖଴

ଶ + (1 − ߳ଵ)ଶ|v୬ାଵ|ଵ
ଶ. 

If  ߳ଵ > 0 then we select v୬  = v௜ + c௜  to conclude that 

inf
୴೔ାୡ೔ୀ୴౤ା୴౤శభ

(‖v୬‖଴
ଶ + (1 + ߳ଶ)ଶ‖v୬ାଵ‖଴

ଶ + (1 + ߳ଶ)ଶ|v୬ାଵ|ଵ
ଶ) ≤ ‖v௜ + c௜‖଴

ଶ. 

 

Together this yields 

න (1 + ߳ଶ)ିଶ(ଵି஫)
ஶ

଴
inf

୴೔ାୡ೔ୀ୴౤ା୴౤శభ
(‖v୬‖଴

ଶ + (1 + ߳ଶ)ଶ‖v୬ାଵ‖଴
ଶ + (1 + ߳ଶ)ଶ|v୬ାଵ|ଵ

ଶ)
dt
t  

≤ න (1 + ߳ଶ)ିଶ(ଵି஫)
ஶ

଴
inf

୴೔ାୡ೔ୀ୴౤ା୴౤శభ
(3‖v଴‖଴

ଶ + 2(1 + ߳ଶ)ଶ‖v௜ + c݅‖଴
ଶ + (1 + ߳ଶ)ଶ|v୬ାଵ|ଵ

ଶ)
dt
t

+ න (1 + ߳ଶ)ିଶ(ଵି஫)‖v௜ + c௜‖଴
ଶ

ஶ

ଵ

dt
t  

     = න (1 + ߳ଶ)ିଶ(ଵି஫)
ஶ

଴
inf

୴೔ାୡ೔ୀ୴౤ା୴౤శభ
(3‖v୬‖଴

ଶ + (1 + ߳ଶ)ଶ|v୬ାଵ|ଵ
ଶ)

dt
t  

+‖v௜ + c௜‖଴
ଶ ቆන 2(1 + ߳ଶ)ିଵାଶ஫

ଵ

଴
dt + න (1 + ߳ଶ)ିଷାଶ஫dt

ஶ

ଵ
ቇ 

   ≤ 3|v௜|୐మ,ୌభ,ଵି஫
ଶ +

1
ϵ (1 − ϵ) ‖v௜ + c௜‖଴

ଶ.               (2.3) 

Therefore, recalling (44), we obtain 
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|v௜|ଵି஫,୧୬୤
ଶ ≤ 3Kଶ|v௜|୐మ,ୌభ,ଵି஫

ଶ +
Kଶ

ϵ (1 − ϵ) inf
ୡ೔∈ℝ

‖v௜ + c௜‖଴
ଶ, 

Which is the second assertion 

From the proof of the previous lemma one can conclude that the semi-norm 

|∙|୐మቀ∑ ࣩ౟
೙
౟సభ ೔ቁ,ୌభ൫∑ ࣩ౟

೙
౟సభ ൯,ଵି஫ is indeed the principal part of a norm in Hଵି஫(∑ ࣩ୧

௡
୧ୀଵ ). This will 

be useful to deduce a Poincar´e-Friedrichs inequality with this semi-norm. First let us  

specify what we mean by the semi-norm being principal part of a norm. 

Corollary (6.2.21)[272]:  Let  ∑ ࣩ୧
௡
୧ୀଵ ⊂ ℝ୬  be a bounded Lipschitz series domain. There 

holds 

‖v௜‖ଵି஫,∑ ࣩ౟
೙
౟సభ

ଶ ≤
Kଶ

ϵ (1 − ϵ) ‖v௜‖଴,∑ ࣩ౟
೙
౟సభ

ଶ + 3Kଶ|v௜|୐మ൫∑ ࣩ౟
೙
౟సభ ൯,ୌభ൫∑ ࣩ౟

೙
౟సభ ൯,ଵି஫

ଶ  

For any v௜ ∈ Hଵି஫(∑ ࣩ୧
௡
୧ୀଵ ) and ϵ > 0. Here, K = K(1 − ϵ, ∑ ࣩ୧

௡
୧ୀଵ ) is the number from  

ProposiƟon  (6.2.17). 

 

Proof: 

This is a combination of the second bound from Proposition (6.2.17) and (6.2.19) with  

c୧ = 0. We are now ready to show (see [256]) a second Poincar´e-Friedrichs inequality. 

 

Proposition (6.2.22)[272]:  (Poincar´e-Friedrichs inequality, interpolation semi-norm) 

Let ∑ ࣩ୧
௡
୧ୀଵ ∈ ℝ୬ be a bounded connected Lipschitz series domain ,  and  ϵ > 0. Then there 

exists a constant  C୔୊,୍ > 0, depending on ∑ ࣩ୧
௡
୧ୀଵ  and 1 − ϵ, such that 

‖v௜‖଴,∑ ࣩ౟
೙
౟సభ

≤ C୔୊,୍ ൭1 − ϵ, ෍ ࣩ୧

௡

୧ୀଵ

൱ ቆ|v௜|୐మ൫∑ ࣩ౟
೙
౟సభ ൯,ୌభ൫∑ ࣩ౟

೙
౟సభ ൯,ଵି஫

ଶ + ቤන v௜
∑ ࣩ౟

೙
౟సభ

ቤቇ   

∀ v௜ ∈ Hଵି஫ ൭෍ ࣩ୧

௡

୧ୀଵ

൱. 

Proof: 

Assume that the inequality is not true. Then there is a sequence ൫(v௜)୨൯ ⊂ Hଵି஫(∑ ࣩ୧
௡
୧ୀଵ ) 

such that 
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ฮ(v௜)୨ฮ଴,∑ ࣩ౟
೙
౟సభ

= 1,     |v௜|୐మ൫∑ ࣩ౟
೙
౟సభ ൯,ୌభ൫∑ ࣩ౟

೙
౟సభ ൯,ଵି஫

ଶ + ቤන (v௜)୨
∑ ࣩ౟

೙
౟సభ

ቤ → 0   (i, j → ∞). 

Therefore, by Corollary (6.2.21), ൫(v௜)୨൯ is bounded in Hଵି஫(∑ ࣩ୧
௡
୧ୀଵ ) with respect to the  

Sobolev-Slobodeckij norm. Then, by Rellich’s theorem (see [268]) there is a convergent 

subsequence (again denoted by ൫(v௜)୨൯) in Lଶ(∑ ࣩ୧
௡
୧ୀଵ ). Since 

ห(v௜)୨ห୐మ൫∑ ࣩ౟
೙
౟సభ ൯,ୌభ൫∑ ࣩ౟

೙
౟సభ ൯,ଵି஫

→ 0  this sequence is Cauchy and with limit v୧ in   

Hଵି஫(∑ ࣩ୧
௡
୧ୀଵ ). It holds |v௜|୐మ൫∑ ࣩ౟

೙
౟సభ ൯,ୌభ൫∑ ࣩ౟

೙
౟సభ ൯,ଵି஫ = 0  so that v୧  is constant. Furthermore, 

since ∫ v௜∑ ࣩ౟
೙
౟సభ

= 0 and  ∑ ࣩ୧
௡
୧ୀଵ  is connected we conclude that v௜ = 0, a contradiction to 

ฮ(v௜)୨ฮ଴,∑ ࣩ౟
೙
౟సభ

= 1. 

With the help of Proposition (6.2.22) we can now turn the estimate by Lemma (6.2.20) into  

a semi norm equivalence. 

Lemma (6.2.23)[272]:  Let   ∑ ࣩ୧
௡
୧ୀଵ ⊂ ℝ୬be a connected bounded Lipschitz series domain. 

There holds 

kଶ|v௜|୐మ൫∑ ࣩ౟
೙
౟సభ ൯,ୌభ൫∑ ࣩ౟

೙
౟సభ ൯,ଵି஫

ଶ ≤ |v௜|ଵି஫,∑ ࣩ౟
೙
౟సభ ,୧୬୤

ଶ                              

                     ≤ Kଶ ቆ3 +
C୔୊,୍

ଶ

ϵ(1 − ϵ)ቇ |v௜|୐మ൫∑ ࣩ౟
೙
౟సభ ൯,ୌభ൫∑ ࣩ౟

೙
౟సభ ൯,ଵି஫

ଶ  

For any v௜ ∈ Hଵି஫(∑ ࣩ୧
௡
୧ୀଵ )  and ϵ > 0. Here, k = k(1 − ε, ∑ ࣩ୧

௡
୧ୀଵ ), K = K(1 − ϵ, ∑ ࣩ୧

௡
୧ୀଵ ) 

are the numbers from Proposition (6.2.17), and C୔୊,୍(1 − ϵ, ∑ ࣩ୧
௡
୧ୀଵ ) is the number from 

Proposition (6.2.22).   

Proof: The lower bound is the one from Lemma (6.2.22). The upper bound is a  combination 

of the upper bound from the same lemma and the Poincar´eFriedrichs’ inequality from 

Proposition (6.2.22). To this end note that the infimum infୡ೔∈ℝ‖v௜ + c௜‖଴,∑ ࣩ౟
೙
౟సభ

 is achieved 

by the same constant c௜  that eliminates the integral in the bound of the Poincar´e-

Friedrichs’ inequality for  v௜  +  c௜. Meanwhile we have accumulated quite some parameters 

in the semi-norm estimates that depend on the order ∈> 0 and the series domain 

∑ ࣩ୧
௡
୧ୀଵ under consideration. Our goal is to show equivalence of semi-norms which is 

uniform for a family of affinely transformed series domains. We therefore study 

transformation properties of semi-norms in the following section. In this way, parameters 

from this section enter final results only via their values on a reference series domain. 



281 
 

Lemma (6.2.24)[272]:  (transformation properties of norms) Let ∑ ࣩన
௡
నୀଵ
෣

௜ ⊂ ℝ୬ be a 

bounded Lipschitz domain and let ∑ ࣩ୧
௡
୧ୀଵ  be the affinely transformed series domain defined 

by   (30). Then there hold the transformation properties 

|det B|‖B‖ିଶ(ଵି஫)‖vො௜‖୐మ(∑ ࣩi
݊
i=1 ),ୌబ

భ(∑ ࣩi
݊
i=1 ),ଵି஫

ଶ ≤ ‖v௜‖୐మ(∑ ࣩi
݊
i=1 ),ୌబ

భ(∑ ࣩi
݊
i=1 ),ଵି஫

ଶ  

≤ |det B|‖Bିଵ‖ଶ(ଵି஫)‖vෝ݅‖୐మ(∑ ࣩi
݊
i=1 ),ୌబ

భ(∑ ࣩi
݊
i=1 ),ଵି஫

ଶ       (46) 

|det B|‖B‖ିଶ(ଵି஫) min{|det B|‖B‖ି୬, 1} ‖vො௜‖~,ଵି஫,∑ ࣩi
݊
i=1
෣

݅

ଶ ≤ ‖v௜‖~,ଵି஫,∑ ࣩi
݊
i=1

ଶ  

≤ |det B|‖Bିଵ‖ଶ(ଵି஫) max{|det B|‖Bିଵ‖୬, 1} ‖vො௜‖~,ଵି஫,∑ ࣩi
݊
i=1
෣

ଶ      (47) 

For any vො ௜ ∈ H෥(1−ϵ)൫∑ ࣩi
݊
i=1

෣ ൯  and ϵ > 0. 

Proof: For the interpolation norm and ∑ ࣩన
௡
నୀଵ
෣ , ∑ ࣩ୧

௡
୧ୀଵ  being a cubes, this property (with an 

unspecified equivalence constant) has been shown in [264]. It is simply the scaling 

properties of the Lଶ and    H଴
ଵ-norms together with the exactness of the K-method of 

interpolation (employed here). The proof generalizes to affine mappings in a 

straightforward way as follows. In Euclidean norm one has ‖∇v௜(x௡)‖ ≤ ‖Bିଵ‖‖∇vො௜(ݔො௜)‖ so 

that the following relations are immediate, 

‖v௜‖୐మ(∑ ࣩi
݊
i=1 )

ଶ = |det B|‖vො ௜‖୐మ(∑ ࣩi
݊
i=1 )

ଶ ,   |v௜|ୌభ(∑ ࣩi
݊
i=1 )

ଶ

≤ |det B|‖Bିଵ‖ଶ|vො ௜|ୌభ(∑ ࣩi
݊
i=1 )

ଶ . 

 

Then, with transformation   r = ‖Bିଵ‖t, we deduce that 

‖v௜‖୐మ൫∑ ࣩ౟
೙
౟సభ ൯,ୌబ

భ൫∑ ࣩ౟
೙
౟సభ ൯,ଵି஫

ଶ            

= න tିଶ(ଵି஫) inf
୴೔ୀ୴౤ା୴౤శభ,୴౤శభ∈ୌబ

భ൫∑ ࣩ౟
೙
౟సభ ൯

ቀ‖v୬‖଴,∑ ࣩ౟
೙
౟సభ

ଶ + tଶ|v୬ାଵ|ଵ,∑ ࣩ౟
೙
౟సభ

ଶ ቁ
ஶ

଴

dt
t  

             ≤ |det B| න tିଶ(ଵି஫) inf
୴ෝ೔ୀ୴ෝ౤ା୴ෝ౤శభ,୴ෝ౤శభ∈ୌబ

భ൫∑ ࣩഠ
೙
ഠసభ
෣ ൯

ቀ‖vො୬‖଴,∑ ࣩഠ
೙
ഠసభ
෣

ଶ + tଶ|vො୬ାଵ|ଵ,∑ ࣩഠ
೙
ഠసభ
෣

ଶ ቁ
ஶ

଴

dt
t  

  = |det B| න (‖Bିଵ‖ିଵr)ିଶ(ଵି஫) inf
୴ෝ೔ୀ୴ෝ౤ା୴ෝ౤శభ,୴ෝ౤శభ∈ୌబ

భ൫∑ ࣩഠ
೙
ഠసభ
෣ ൯

ቀ‖vො୬‖଴,∑ ࣩഠ
೙
ഠసభ
෣

ଶ
ஶ

଴

+ rଶ|vො୬ାଵ|ଵ,∑ ࣩഠ
೙
ഠసభ
෣

ଶ ቁ
dr
r  

 = |det B|‖Bିଵ‖ଶ(ଵି஫)‖vො௜‖୐మ൫∑ ࣩ౟
೙
౟సభ ൯,ୌబ

భ൫∑ ࣩ౟
೙
౟సభ ൯,ଵି஫

ଶ . 
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This proves the upper bound in (2.5). The lower bound is verified by using the inverse 

transformation Fିଵ with  matrix  Bିଵ. 

The transformation property of the second norm is obtained similarly, (see also [87] ) for the 

term of the double integral. 

‖v௜‖~,ଵି஫,∑ ࣩ౟
೙
౟సభ

ଶ

= න න
|v௜(x௡) − v௜(x௡ାଵ)|ଶ

|x௡ − x௡ାଵ|୬ାଶ(ଵି஫)
∑ ࣩ౟

೙
౟సభ∑ ࣩ౟

೙
౟సభ

dx௡ dx௡ାଵ

+ න ቆ
v௜(x௡)

dis (x௡ , ∂ ∑ ࣩ୧
௡
୧ୀଵ )ଵି஫ቇ

ଶ

∑ ࣩ౟
೙
౟సభ

dx௡ 

          ≤ |det B|ଶ න න
|vො݅(xො௜) − vො݅(yො)|ଶ

‖Bିଵ‖ି୬ିଶ(ଵି஫)|xො௜ − yො|୬ାଶ(ଵି஫)
∑ ࣩ౟

೙
౟సభ∑ ࣩ౟

೙
౟సభ

dxො௜  dyො

+ |det B| න ൭
vො݅(xො௜)

‖Bିଵ‖ି(ଵି஫)dist൫xො௜ , ∂ ∑ ࣩన
௡
నୀଵ
෣ ൯

ଵି஫൱
ଶ

∑ ࣩ౟
೙
౟సభ

dxො 

        ≤ |det B|‖Bିଵ‖ଶ(ଵି஫) + max{|det B|‖Bିଵ‖୬, 1} ‖vො௜‖~,ଵି஫,∑ ࣩഠ
೙
ഠసభ
෣

ଶ  

This is the upper bound in (6.2.22). Analogously one finds that 

‖vො௜‖~,ଵି஫,∑ ࣩഠ
೙
ഠసభ
෣

ଶ ≤ |detBିଵ|‖B‖ଶ(ଵି஫) max{|detBିଵ|‖B‖୬, 1} ‖v௜‖~,ଵି஫,∑ ࣩ౟
೙
౟సభ

ଶ . 

This proves the lower bound in (6.2.22). 

Lemma (6.2.25)[272]:  (transformation properties of semi-norms) Let ∑ ࣩన
௡
నୀଵ
෣ ⊂ ℝ୬ be a 

bounded Lipschitz series domain and let ∑ ࣩ୧
௡
୧ୀଵ  be the affinely transformed series domain 

defined by (30). Then there hold the transformation properties 

|detBିଵ|‖B‖ଶ(ଵି஫)|vො௜|୐మ൫∑ ࣩഠ
೙
ഠసభ
෣ ൯,ୌభ൫∑ ࣩഠ

೙
ഠసభ
෣ ൯,ଵି஫

ଶ ≤ |v௜|୐మ(ࣩ೔),ୌభ൫∑ ࣩ౟
೙
౟సభ ൯,ଵି஫

ଶ                

≤ |detBିଵ|‖B‖ଶ(ଵି஫)|vො௜|୐మ൫∑ ࣩഠ
೙
ഠసభ
෣ ൯,ୌభ൫∑ ࣩഠ

೙
ഠసభ
෣ ൯,(ଵି஫)

ଶ ,                           (48) 

 

|detB|ଶ‖B‖ି୬ିଶ(ଵି஫)|vො௜|ଵି஫,∑ ࣩഠ
೙
ഠసభ
෣

ଶ ≤ |v௜|ଵି஫,∑ ࣩഠ
೙
ഠసభ
෣

ଶ    

  ≤ |detB|ଶ‖Bିଵ‖୬ାଶ(ଵି஫)|vො௜|ଵି஫,∑ ࣩഠ
೙
ഠసభ
෣

ଶ                                 (49) 

for  any vො௜ ∈ H(ଵି஫)൫∑ ࣩన
௡
నୀଵ
෣ ൯ and ϵ > 0. 

Proof: The proof is basically identical to the one of Lemma (6.2.24). 
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The third semi-norm, |∙|ଵି஫,∑ ࣩ౟
೙
౟సభ ,୧୬୤, behaves under affine transformations as follows. 

Lemma (6.2.26)[272]:  Let ∑ ࣩన
௡
నୀଵ
෣ ⊂ ℝଶ be a bounded Lipschitz series domain and let 

∑ ࣩ୧
௡
୧ୀଵ  be the affinely transformed series domain defined by (30). Then there hold the 

transformation properties 

|det B|ଶ‖B‖ି୬ିଶ(ଵି஫)|vො௜|ଵି஫,∑ ࣩഠ
೙
ഠసభ
෣

ଶ + |det B| inf‖vො௜ + c௜‖୭,∑ ࣩഠ
೙
ഠసభ
෣

ଶ ≤ |v௜|ଵି஫,∑ ࣩ౟
೙
౟సభ ,୧୬୤

ଶ

≤ |det B|ଶ‖Bିଵ‖୬ାଶ(ଵି஫)|vො௜|ଵି஫,∑ ࣩഠ
೙
ഠసభ
෣

ଶ + |det B| inf
ୡ೔∈ℝ

‖vො ௜ + c௜‖୭,∑ ࣩഠ
೙
ഠసభ
෣

ଶ  

For any  vො௜ ∈ Hଵି஫൫∑ ࣩన
௡
నୀଵ
෣ ൯   and  ϵ > 0. 

Proof: This result is immediate from the representation of the semi-norm given in Lemma 

(6.2.19) and the transformation properties of the |⋅|ଵି஫-semi-norm by Lemma (6.2.25) and 

of the Lଶ-norm. 

Theorem (6.2.27)[272]:  Let ∑ ࣩన
௡
నୀଵ
෣ ⊂ ℝଶbe a bounded, connected Lipschitz series domain 

and let (∑ ࣩ୧
௡
୧ୀଵ ),be the affinely transformed series domain defined by (30). Then there 

holds the following relations. 

(i)  |v୧|ଵି஫,∑ ࣩ౟        
౤
౟సభ

ଶ  

≤ |det B|‖Bିଵ‖୬ାଶ(ଵି஫)‖B‖ଶ(ଵି஫)K ൭1−, ൭෍ ࣩ୧

௡

୧ୀଵ

൱ , ൱
ଶ

൭  3

+
C୔୊,୍൫1 − ϵ, ∑ ࣩన

௡
నୀଵ
෣ ൯

ଶ

ϵ (1 − ϵ)
ቇ |v௜|୐మ൫∑ ࣩ౟

೙
౟సభ ൯,ୌభ൫∑ ࣩ౟

೙
౟సభ ൯,ଵି஫

ଶ  

for any v௜ ∈ Hଵି஫(∑ ࣩ୧
௡
୧ୀଵ ) and ϵ > 0 with K(1 − ϵ, ∑ ࣩన

௡
నୀଵ
෣ ) from Proposition (6.2.17) and 

C୔୊,୍൫1 − ϵ, ∑ ࣩన
௡
నୀଵ
෣ ൯ from Proposition (6.2.22). 

(ii)   |v௜|୐మ(ࣩ೔),ୌభ(ࣩ೔),ଵି஫
ଶ  

≤ |det B|ିଵ‖B‖୬ାଶ(ଵି஫)‖Bିଵ‖ଶ(ଵି஫)κ ቌ1 − ϵ, ෍ నࣩ

௡

నୀଵ

෣
ቍ

ିଶ

൮1

+ C୔୊,ୗୗ ቌ1 − ϵ, ෍ నࣩ

௡

నୀଵ

෣
ቍ

ଶ

ቍ |v௜|ଵି஫,൫∑ ࣩ౟
೙
౟సభ ൯

ଶ  
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For any v௜ ∈ Hଵି஫((∑ ࣩ୧
௡
୧ୀଵ )) and ϵ > 0 with κ൫1 − ϵ, (∑ ࣩ୧

௡
୧ୀଵ )൯ from Proposition (6.2.17) 

and from Proposition (6.2.18) 

Proof:  On a fixed series domain ∑ ࣩన
௡
నୀଵ
෣  we obtain, by combining Lemmas (6.2.19) and 

(6.2.23), the equivalence of semi-norms: 

ቮ෍ నࣩ

௡

నୀଵ

෣
ቮ

ଵି஫,∑ ࣩഠ
೙
ഠసభ
෣

ଶ

≤ |vො௜|
ଵି஫,∑ ࣩഠ

೙
ഠసభ
෣

೔,୧୬୤
ଶ

≤ K ቌ1 − ϵ, ෍ నࣩ

௡

నୀଵ

෣
ቍ

ଶ

൭3

+
C୔୊,୍൫1 − ϵ, ∑ నࣩ

௡
నୀଵ
෣ ൯

ଶ

ϵ(1 − ϵ)
ቇ |vො௜|

୐మ൫∑ ࣩഠ
೙
ഠసభ
෣ ൯,ୌభ൫∑ ࣩഠ

೙
ഠసభ
෣ ൯,ଵି஫

ଶ           (50) 

And 

|vො௜|୐మ൫∑ ࣩഠ
೙
ഠసభ
෣ ൯,ୌభ൫∑ ࣩഠ

೙
ഠసభ
෣ ൯,ଵି஫

ଶ ≤ κ ቌ1 − ϵ, ෍ ࣩన

௡

నୀଵ

෣
ቍ

ିଶ

|vො௜|ଵି஫,∑ ࣩഠ
೙
ഠసభ
෣ ,୧୬୤

ଶ  

                ≤ κ ቌ1 − ϵ, ෍ నࣩ

௡

నୀଵ

෣
ቍ

ିଶ

൮1 + C୔୊,ୗୗ ቌ1 − ϵ, ෍ నࣩ

௡

నୀଵ

෣
ቍ

ଶ

൲ |vො௜|
ଵି஫,∑ ࣩഠ

೙
ഠసభ
෣

ଶ        (51) 

The first assertion of the theorem then follows by combining (50) with the transformation 

properties of the semi-norms by Lemma (6.2.25): 

|vො௜|ଵି஫,∑ ࣩ౟
೙
౟సభ

ଶ ≤ |det B|ଶ‖Bିଵ‖୬ାଶ(ଵି஫)|vො௜|,ଵି஫,∑ ࣩ౟
೙
౟సభ

ଶ  

≤ |det B|ଶ‖Bିଵ‖୬ାଶ(ଵି஫)K ቌ1 − ϵ, ෍ నࣩ

௡

నୀଵ

෣
ቍ

ଶ

൭3 +
C୔୊,୍൫1 − ϵ, ∑ నࣩ

௡
నୀଵ
෣ ൯

ଶ

ϵ (1 − ϵ) ൱ |vො௜|
୐మ൫∑ ࣩഠ

೙
ഠసభ
෣ ൯,ୌభ൫∑ ࣩഠ

೙
ഠసభ
෣ ൯,ଵି஫

ଶ  

 ≤ |det B|‖Bିଵ‖୬ାଶ(ଵି஫)‖B‖ଶ(ଵି஫)K ቌ1 − ϵ, ෍ నࣩ

௡

నୀଵ

෣
ቍ

ଶ

൭3

+
C୔୊,୍൫1 − ϵ, ∑ నࣩ

௡
నୀଵ
෣ ൯

ଶ

ϵ (1 − ϵ)
ቇ |vො௜|

୐మ൫∑ ࣩഠ
೙
ഠసభ
෣ ൯,ୌభ൫∑ ࣩഠ

೙
ഠసభ
෣ ൯,ଵି஫

ଶ  

The second assertion of the theorem is proved by a combinaƟon of (51) with the 

transformation properties by Lemma (6.2.25). 
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The next two theorems (see [256]) study the other pairs of semi-norms for equivalence in 

combination with affine maps ቀ|⋅|ଵି஫,∑ ࣩ౟
೙
౟సభ

|⋅|ଵି஫,∑ ࣩ౟
೙
౟సభ ,୧୬୤ ቁ and  

ቀ|⋅|୐మ൫∑ ࣩ౟
೙
౟సభ ൯,ୌభ൫∑ ࣩ౟

೙
౟సభ ൯,ଵି஫|⋅|ଵି஫,∑ ࣩ౟

೙
౟సభ ,୧୬୤ ቁ 

Theorem (6.2.28)[272]:  Let ∑ ࣩ୧
௡
୧ୀଵ ⊂ ℝଶbe a bounded, connected Lipschitz series domain 

and let ∑ ࣩ୧
௡
୧ୀଵ  be the affinely transformed series domain defined by (30). Then there holds 

the following relations. 

(i)          |v௜|ଵି஫,∑ ࣩ౟
೙
౟సభ

≤ |v௜|ଵି஫,∑ ࣩ౟
೙
౟సభ ೔,୧୬୤    ∀ v௜ ∈ Hଵି஫(∑ ࣩ୧

௡
୧ୀଵ ), ∀ ϵ > 0, 

(ii)  |v௜|ଵି஫,∑ ࣩ౟
೙
౟సభ ,୧୬୤

ଶ

≤ ൮1 + |det B|ିଵ‖B‖୬ାଶ(ଵି஫)C୔୊,ୗୗ ቌ1 − ϵ, ෍ ࣩన

௡

నୀଵ

෣
ቍ

ଶ

൲ |vො௜|ଵି஫,∑ ࣩ౟
೙
౟సభ

ଶ  

∀ v௜ ∈ Hଵି஫ ൭෍ ࣩ୧

௡

୧ୀଵ

൱ , ∀ϵ > 0 

With  C୔୊,ୗୗ൫1 − ϵ, ∑ ࣩన
௡
నୀଵ
෣ ൯  being the number from Proposition (6.2.18) 

Proof:  Assertion (i) is a repetition of the first esƟmate in Lemma (6.2.19). 

To show the second assertion we use Proposition (6.2.18) and Lemma (6.2.25) to deduce 

that 

inf
ୡ೔∈ℝ

‖v௜ + c௜‖୭,∑ ࣩ౟
೙
౟సభ

ଶ = |det B| inf
ୡ೔∈ℝ

‖vො௜ + c௜‖୭,∑ ࣩ౟
೙
౟సభ

ଶ ≤ |det B|C୔୊,ୗୗ ቌ1 − ϵ, ෍ నࣩ

௡

నୀଵ

෣
ቍ

ଶ

|vො௜|ଵି஫,∑ ࣩ౟
೙
౟సభ

ଶ  

                                    ≤ 1 + |det B|ିଵ‖B‖୬ାଶ(ଵି஫)C୔୊,ୗୗ(1 − ϵ, ∑ ࣩ୧
௡
୧ୀଵ )ଶ. 

The assertion then follows by the definition of the semi-norm  |⋅|ଵି஫,∑ ࣩ౟
೙
౟సభ ,୧୬୤ . 

Theorem (6.2.29)[272]:  Let ∑ ࣩన
௡
నୀଵ
෣ ⊂ ℝଶ be a bounded, connected Lipschitz series domain 

and let ∑ ࣩ୧
௡
୧ୀଵ  be the affinely transformed series domain defined by (30). Then there holds 

the following relations. 

(ii). |vො௜|୐మ൫∑ ࣩ౟
೙
౟సభ ൯,ୌభ൫∑ ࣩ౟

೙
౟సభ ൯,ଵି஫

ଶ  
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≤ ‖Bିଵ‖ଶ(ଵି஫) max൛|det B|ିଵ‖B‖୬ାଶ(ଵି஫), 1ൟ κ ቌ1 − ϵ, ෍ నࣩ

௡

నୀଵ

෣
ቍ

ିଶ

|vො௜|ଵି஫,∑ ࣩ౟
೙
౟సభ ,୧୬୤

ଶ  

for any v௜ ∈ Hଵି஫(∑ ࣩ୧
௡
୧ୀଵ ) and ϵ > 0 with k(1 − ϵ, ∑ ࣩ୧

௡
୧ୀଵ ) from Proposition (6.2.17), 

(iii). |vො௜|ଵି஫,∑ ࣩ౟
೙
౟సభ ,୧୬୤

ଶ  

≤ max൛|det B|‖Bିଵ‖୬ାଶ(ଵି஫), 1ൟ K ቌ1 − ϵ, ෍ నࣩ

௡

నୀଵ

෣
ቍ

ଶ

. 

൭3 +
C୔୊,୍൫1 − ϵ, ∑ నࣩ

௡
నୀଵ
෣ ൯

ଶ

ϵ (1 − ϵ) ൱ |vො௜|୐మ൫∑ ࣩ౟
೙
౟సభ ൯,ୌభ൫∑ ࣩ౟

೙
౟సభ ൯,ଵି஫

ଶ  

For any v௜ ∈ Hଵି஫(∑ ࣩ୧
௡
୧ୀଵ ) and ϵ > 0 with K(1 − ϵ, ∑ ࣩన

௡
నୀଵ
෣ ) from Proposition (6.2.17) and 

C୔୊,ୗୗ൫1 − ϵ, ∑ ࣩన
௡
నୀଵ
෣ ൯

ଶ
 from  Proposition  (6.2.22). 

Proof:  By Lemmas (6.2.25),(6.2.23) and (6.2.27) we obtain 

|vො ௜|୐మ(∑ ࣩi
݊
i=1 ),ୌభ(∑ ࣩi

݊
i=1 ),ଵି஫

ଶ ≤ |det B|ିଵ‖B‖୬ାଶ(ଵି஫)|vො ௜|୐మ൫∑ ࣩi
݊
i=1
෣ ൯,ୌభ൫∑ ࣩi

݊
i=1

෣ ൯,ଵି஫
ଶ  

≤ |det B|‖Bିଵ‖ଶ(1−ϵ)κ ቌ1 − ϵ, ෍ ࣩi

݊

i=1

෣
ቍ

ିଶ

|vො ௜|ଵି஫,∑ ࣩi
݊
i=1 ,୧୬୤

ଶ  

 ≤ |det B|‖B‖ଶ(ଵି஫)κ ቌ1 − ϵ, ෍ నࣩ

௡

నୀଵ

෣
ቍ

ିଶ

൮|det B|ିଶ‖B‖୬ାଶ(ଵି஫)κ ቌ1 − ϵ, ෍ నࣩ

௡

నୀଵ

෣
ቍ

ିଶ

|v௜|ଵି஫,∑ ࣩ౟
೙
౟సభ

ଶ

+ |det Bିଵ| inf
ୡ೔∈ℝ

‖v௜ + c௜‖୭,∑ ࣩ౟
೙
౟సభ

ଶ ቍ 

       ≤ ‖Bିଵ‖ଶ(ଵି஫) max൛|det B|‖Bିଵ‖୬ାଶ(ଵି஫), 1ൟκ ቌ1 − ϵ, ෍ నࣩ

௡

నୀଵ

෣
ቍ

ିଶ

|vො௜|ଵି஫,∑ ࣩ౟
೙
౟సభ ,୧୬୤

ଶ  

This is the first assertion. The second one follows analogously by the same lemmas: 

|v௜|ଵି஫,∑ ࣩ౟
೙
౟సభ ,୧୬୤

ଶ

≤ |det B|ଶ‖Bିଵ‖୬ାଶ(ଵି஫)κ ቌ1 − ϵ, ෍ నࣩ

௡

నୀଵ

෣
ቍ

ିଶ

|vො௜|
ଵି஫,∑ ࣩഠ

೙
ഠసభ
෣

ଶ

+ |det B| inf
ୡ೔∈ℝ

‖vො௜ + c௜‖
୭,∑ ࣩഠ

೙
ഠసభ
෣

ଶ  
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                          ≤ |det B| max൛|det B|‖Bିଵ‖୬ାଶ(ଵି஫), 1ൟ |vො௜|ଵି஫,∑ ࣩഠ
೙
ഠసభ
෣ ୧୬୤

ଶ  

   ≤ |det B| max൛|det B|‖Bିଵ‖୬ାଶ(ଵି஫), 1ൟK ቌ1 − ϵ, ෍ నࣩ

௡

నୀଵ

෣
ቍ

ଶ

൭3

+
C୔୊,୍൫1 − ϵ, ∑ నࣩ

௡
నୀଵ
෣ ൯

ଶ

ϵ(1 − ϵ)
ቇ |vො௜|

୐మ൫∑ ࣩഠ
೙
ഠసభ
෣ ൯,ୌభ൫∑ ࣩഠ

೙
ഠసభ
෣ ൯,ଵି஫

ଶ  

   ≤ max൛|det B|‖Bିଵ‖୬ାଶ(ଵି஫), 1ൟ‖B‖ଶ(ଵି஫)K ቌ1 − ϵ, ෍ నࣩ

௡

నୀଵ

෣
ቍ

ଶ

൭3

+
C୔୊,୍൫1 − ϵ, ∑ నࣩ

௡
నୀଵ
෣ ൯

ଶ

ϵ(1 − ϵ)
ቇ |vො௜|୐మ൫∑ ࣩ౟

೙
౟సభ ൯,ୌభ൫∑ ࣩ౟

೙
౟సభ ൯,ଵି஫

ଶ  

We end this section with establishing uniform equivalence of the semi-norms  

|⋅|ଵି஫,∑ ࣩ౟
೙
౟సభ

  and |⋅|୐మ൫∑ ࣩ౟
೙
౟సభ ൯,ୌభ൫∑ ࣩ౟

೙
౟సభ ൯,ଵି஫ for shape-regular series domains. Three of the 

four remaining bounds for other combinations of semi-norms are uniform under further 

restrictions on the diameter of the series domain [256]. 

Now , we consider a bounded, connected Lipschitz series domain ∑ ࣩన
௡
నୀଵ
෣ ⊂ ℝ୬and maps of 

∑ ࣩన
௡
నୀଵ
෣  onto  the series domain ∑ ࣩ୧

௡
୧ୀଵ where the ratio ρ∑ ࣩ౟

೙
౟సభ

= D∑ ࣩ౟
೙
౟సభ

/d∑ ࣩ౟
೙
౟సభ

 is 

controlled. Here, D∑ ࣩ౟
೙
౟సభ

denotes the diameter of ∑ ࣩ୧
௡
୧ୀଵ and d∑ ࣩ౟

೙
౟సభ

 is the supremum of 

the diameters of all balls contained in∑ ࣩ୧
௡
୧ୀଵ . In the case of finite elements (or convex 

polygons) boundedness of ρ is referred to as shape regularity of ∑ ࣩ୧
௡
୧ୀଵ . Also, when 

defining d∑ ࣩ౟
೙
౟సభ

 with balls with respect to which ∑ ࣩ୧
௡
୧ୀଵ is star-shaped, then ρ∑ ࣩ౟

೙
౟సభ

is 

referred to as chunkiness parameter. 

Using the notaƟon (2.4) there holds 

‖B‖ ≤
D∑ ࣩ౟

೙
౟సభ

d∑ ࣩ౟
೙
౟సభ

=
D∑ ࣩ౟

೙
౟సభ

D∑ ࣩഠ
೙
ഠసభ
෣

ρ∑ ࣩഠ
೙
ഠసభ
෣ ,   ‖Bିଵ‖ ≤

D∑ ࣩഠ
೙
ഠసభ
෣

d∑ ࣩ౟
೙
౟సభ

=
D∑ ࣩഠ

೙
ഠసభ
෣

D∑ ࣩ౟
೙
౟సభ

ρ∑ ࣩ౟
೙
౟సభ

,   ‖B‖‖Bିଵ‖ 

≤ ρ∑ ࣩ౟
೙
౟సభ

 ρ∑ ࣩഠ
೙
ഠసభ

ෟ ,                                       (52) 

(See [259]) Furthermore, we conclude that 

|det B| =
|∑ ࣩ୧

௡
୧ୀଵ |

ห∑ ࣩన
௡
నୀଵ
෣ ห

≤
D∑ ࣩ౟

೙
౟సభ

୬

d∑ ࣩഠ
೙
ഠసభ
෣

୬ , |det B|ିଵ ≤
D∑ ࣩഠ

೙
ഠసభ
෣

୬

d∑ ࣩ౟
೙
౟సభ

୬ = ρ∑ ࣩ౟
೙
౟సభ

୬
D∑ ࣩഠ

೙
ഠసభ
෣

୬

D∑ ࣩ౟
೙
౟సభ

୬ .        (53) 

With this notation, the results of Theorems (6.2.27-6.2.29) imply the following. 
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Corollary (6.2.30)[272]:  Show that 

(i) |det B||det Bିଵ| ≤ ‖B‖‖Bିଵ‖ρ∑ ࣩ౟
೙
౟సభ

୬ିଵ ρ∑ ࣩഠ
೙
ഠసభ
෣

ଵି୬  . 

  

(ii)  
‖୆‖‖୆‖షభశమಣ ୫୧୬{|ୢୣ୲ ୆|‖୆‖ష౤,ଵ}‖୴ෝ೔‖

~,భషಣ,∑ ࣩi
݊
i=1
෣

݅

మ

|det B−1| ≤ ρ∑ ࣩi
݊
i=1

1−n ρ∑ ࣩi
݊
i=1

෣
1−n ‖v௜‖~,ଵି஫,∑ ࣩi

݊
i=1

ଶ  

≤
‖୆‖ฮ୆షభฮయషమಣ ୫ୟ୶ቄ|ୢୣ୲ ୆|ฮ୆షభฮ౤,ଵቅ‖୴ෝ౟‖

~,భషಣ,∑ ࣩഠ౤
ഠసభ
෣

మ

|det B−1| . 

Moreover if  ܤ is normal  then , 

(iii)     ρ∑ ࣩ౟
೙
౟సభ

୬ିଵ ρ∑ ࣩഠ
೙
ഠసభ
෣

ଵି୬ ≥ 1  . 

(iv)  ρ∑ ࣩ౟
೙
౟సభ

ଵି୬ ρ∑ ࣩഠ
೙
ഠసభ
෣

ଵି୬ ‖v݅‖~,1−ϵ,∑ ࣩ౟
೙
౟సభ

2 = |det B|2‖B‖−((1−ϵ)+n)‖vෝi‖~,1−ϵ,∑ ࣩi
n
i=1
෣

2 . 

Proof.  (i) We can easily get that   

|det B||det Bିଵ|
‖B‖‖Bିଵ‖ ≤ ρ∑ ࣩ౟

೙
౟సభ

୬
D∑ ࣩഠ

೙
ഠసభ
෣

୬

d∑ ࣩഠ
೙
ഠసభ
෣

୬  .
1

ρ∑ ࣩ౟
೙
౟సభ

 ρ∑ ࣩഠ
೙
ഠసభ

ෟ  

Therefore 

|det B||det Bିଵ| ≤ ‖B‖‖Bିଵ‖ρ∑ ࣩ౟
೙
౟సభ

୬ିଵ ρ∑ ࣩഠ
೙
ഠసభ
෣

ଵି୬                                         (54) 

(ii) Appling (54) in Lemma (6.2.24) . 

Here suppose B  is normal , applying   (50) in Lemma (6.2.24) we can find that. 

(iii)  ρ∑ ࣩ౟
೙
౟సభ

୬ିଵ ρ∑ ࣩഠ
೙
ഠసభ
෣

ଵି୬ ≥ 1  . 

(iv)  ρ∑ ࣩ౟
೙
౟సభ

ଵି୬ ρ∑ ࣩഠ
೙
ഠసభ
෣

ଵି୬ ‖v݅‖~,1−ϵ,∑ ࣩ౟
೙
౟సభ

2 = |det B|2‖B‖−((1−ϵ)+n)‖vෝi‖~,1−ϵ,∑ ࣩi
n
i=1
෣

2 . 

Theorem (6.2.31)[272]:  Let ∑ ࣩ୧
௡
୧ୀଵ  be the affine map of a bounded connected Lipschitz 

series domain ∑ ࣩన
௡
నୀଵ
෣ ⊂ ℝ୬,  cf (30). 

(iii). The semi-norms |⋅|ଵି஫,∑ ࣩ౟
೙
౟సభ

 and |⋅|୐మ൫∑ ࣩ౟
೙
౟సభ ൯,ୌభ൫∑ ࣩ౟

೙
౟సభ ൯,ଵି஫ are uniformly 

equivalent for a family of shape-regular series domain  ∑ ࣩ୧
௡
୧ୀଵ : 

|v௜|ଵି஫,∑ ࣩ౟
೙
౟సభ

ଶ ≤ ρ∑ ࣩഠ
೙
ഠసభ
෣

୬ K ቌ1 − ϵ, ෍ నࣩ

௡

నୀଵ

෣
ቍ

ଶ

൭3 +
C୔୊,୍൫1 − ϵ, ∑ నࣩ

௡
నୀଵ
෣ ൯

ଶ

ϵ (1 − ϵ) ൱ |v௜|୐మ൫∑ ࣩ౟
೙
౟సభ ൯,ୌభ൫∑ ࣩ౟

೙
౟సభ ൯,ଵି஫

ଶ , 
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|v௜|୐మ൫∑ ࣩ౟
೙
౟సభ ൯,ୌభ൫∑ ࣩ౟

೙
౟సభ ൯,ଵି஫

ଶ

≤ ρ∑ ࣩ౟
೙
౟సభ

୬ାଶ(ଵି஫)ρ∑ ࣩഠ
೙
ഠసభ
෣

୬ାଶ(ଵି஫)κ ቌ1 − ϵ, ෍ నࣩ

௡

నୀଵ

෣
ቍ

ଶ

൮1

+ C୔୊,ୗୗ ቌ1 − ϵ, ෍ నࣩ

௡

నୀଵ

෣
ቍ

ଶ

ቍ |v௜|ଵି஫,∑ ࣩ౟
೙
౟సభ

ଶ  

for any v௜ ∈ Hଵି஫( ௜ࣩ) and ϵ > 0. Here, κ൫1 − ϵ, ∑ ࣩన
௡
నୀଵ
෣ ൯, K൫1 − ϵ, ∑ ࣩన

௡
నୀଵ
෣ ൯ are the numbers 

from Proposition (6.2.17) and C୔୊,ୗୗ൫1 − ϵ, ∑ ࣩన
௡
నୀଵ
෣ ൯, C୔୊,୍൫1 − ϵ, ∑ ࣩన

௡
నୀଵ
෣ ൯ are as in 

Propositions (6.2.18), (6.2.22), respectively. 

(iv). The semi-norms |⋅|ଵି஫,∑ ࣩ౟
೙
౟సభ

 and |⋅|ଵି஫,∑ ࣩ౟
೙
౟సభ ,୧୬୤  are uniformly equivalent for a 

family of uniformly bounded, shape-regular series domain  ∑ ࣩ୧
௡
୧ୀଵ : 

|v|ଵି஫,∑ ࣩ౟
೙
౟సభ

≤ |⋅|ଵି஫,∑ ࣩ౟
೙
౟సభ ,୧୬୤ , 

|v௜|ଵି஫,∑ ࣩ౟
೙
౟సభ ,୧୬୤

ଶ ≤ ൮1 +
D∑ ࣩ౟

೙
౟సభ

ଶ(ଵି஫)

D
∑ ࣩഠ

೙
ഠసభ
෣

ଶ(ଵି஫) ρ∑ ࣩ౟
೙
౟సభ

୬ ρ∑ ࣩഠ
೙
ഠసభ
෣

୬ାଶ(ଵି஫)C୔୊,ୗୗ ቌ1 − ϵ, ෍ ࣩన

௡

నୀଵ

෣
ቍ

ଶ

൲ |v|ଵି஫,∑ ࣩ౟
೙
౟సభ

ଶ  

for any v௜ ∈ Hଵି஫(∑ ࣩ୧
௡
୧ୀଵ ) and ϵ > 0. Here, C୔୊,ୗୗ൫1 − ϵ, ∑ ࣩన

௡
నୀଵ
෣ ൯ is the number from 

Proposition (6.2.18). 

(iv). a) For a family of shape-regular series domain  ∑ ࣩ୧
௡
୧ୀଵ whose diameters are 

bounded from below by a positive constant, the semi-norm 

|⋅|୐మ൫∑ ࣩ౟
೙
౟సభ ൯,ୌభ൫∑ ࣩ౟

೙
౟సభ ൯,ଵି஫is uniformly bounded by|⋅|ଵି஫,∑ ࣩ౟

೙
౟సభ ,୧୬୤ : 

|v௜|୐మ൫∑ ࣩ౟
೙
౟సభ ൯,ୌభ൫∑ ࣩ౟

೙
౟సభ ൯,ଵି஫

ଶ

≤ max ቄρ∑ ࣩ౟
೙
౟సభ

୬ ρ∑ ࣩഠ
೙
ഠసభ
෣

୬ାଶ(ଵି஫), D∑ ࣩ౟
೙
౟సభ

ିଶ(ଵି஫)D∑ ࣩഠ
೙
ഠసభ
෣

ଶ(ଵି஫)ቅ ρ∑ ࣩ౟
೙
౟సభ

ଶ(ଵି஫)κ ቌ1

− ϵ, ෍ నࣩ

௡

నୀଵ

෣
൱

ଶ

|v௜|ଵି஫,∑ ࣩ౟
೙
౟సభ ,୧୬୤

ଶ  

for any v௜ ∈ Hଵି஫(∑ ࣩ୧
௡
୧ୀଵ ) and ϵ > 0. 

b) For a family of uniformly bounded, shape-regular series domain   ∑ ࣩ୧
௡
୧ୀଵ , the semi-norm 

|⋅|ଵି஫,∑ ࣩ౟
೙
౟సభ ,୧୬୤  is uniformly bounded by |⋅|୐మ൫∑ ࣩ౟

೙
౟సభ ൯,ୌభ൫∑ ࣩ౟

೙
౟సభ ൯,ଵି஫ 
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|vො௜|ଵି஫,∑ ࣩ౟
೙
౟సభ ,୧୬୤

ଶ

≤ max ቄρ∑ ࣩ౟
೙
౟సభ

୬ାଶ(ଵି஫)ρ∑ ࣩഠ
೙
ഠసభ
෣

୬ , D∑ ࣩ౟
೙
౟సభ

ଶ(ଵି஫) D∑ ࣩഠ
೙
ഠసభ
෣

ିଶ(ଵି஫)ቅ ρ∑ ࣩഠ
೙
ഠసభ
෣

ଶ(ଵି஫) K ቌ1 − ϵ, ෍ ࣩన

௡

నୀଵ

෣
ቍ

ଶ

൭3

+
C୔୊,୍൫1 − ϵ, ∑ ࣩన

௡
నୀଵ
෣ ൯

ଶ

ϵ (1 − ϵ)
ቇ |v௜|୐మ൫∑ ࣩ౟

೙
౟సభ ൯,ୌభ൫∑ ࣩ౟

೙
౟సభ ൯,ଵି஫

ଶ  

for any v௜ ∈ Hଵି஫(∑ ࣩ୧
௡
୧ୀଵ ) and ϵ > 0. 

Here, κ൫1 − ϵ, ∑ ࣩన
௡
నୀଵ
෣ ൯, K൫1 − ϵ, ∑ ࣩన

௡
నୀଵ
෣ ൯ are the parameters from Proposition (6.2.17), and 

C୔୊,୍൫1 − ϵ, ∑ ࣩన
௡
నୀଵ
෣ ൯is the number from Proposition (6.2.22). 

Proof:  The assertions (i)–(iii) are a combinaƟon of Theorems (6.2.27-6.2.29), respectively, 

with the bounds provided by (52), (53). 

The uniform equivalence of the semi-norms |⋅|ଵି஫,∑ ࣩ౟
೙
౟సభ

 and|⋅|୐మ൫∑ ࣩ౟
೙
౟సభ ൯,ୌభ൫∑ ࣩ౟

೙
౟సభ ൯,ଵି஫ for 

shape-regular series domains is based on what one calls their scaling property (see [256]). It 

means that both semi-norms for functions on a series domain ∑ ࣩ୧
௡
୧ୀଵ are uniformly 

equivalent to the respective semi-norm of the affinely transformed functions onto a fixed 

series domain ∑ ࣩన
௡
నୀଵ
෣ , when one of the semi-norms is multiplied by an appropriate number 

(it is a power of the diameter of ∑ ࣩ୧
௡
୧ୀଵ ). This property applies also to the norms 

|⋅|୐మ൫∑ ࣩ౟
೙
౟సభ ൯,ୌభ൫∑ ࣩ౟

೙
౟సభ ൯,ଵି஫ and |⋅|~ଵି஫,∑ ࣩ౟

೙
౟సభ

, cf. Lemma (6.2.24). Scaling properties are 

relevant for the error analysis of piecewise polynomial approximations. We formulate the 

result as (see [256]) a corollary to Lemmas (6.2.24) and (6.2.25). 

Corollary(6.2.32)[272]:  the norms |⋅|୐మ൫∑ ࣩ౟
೙
౟సభ ൯,ୌబ

భ൫∑ ࣩ౟
೙
౟సభ ൯,ଵି஫, |⋅|~ଵି஫,∑ ࣩ౟

೙
౟సభ

 and semi-norms 

|⋅|ଵି஫,∑ ࣩ౟
೙
౟సభ

|⋅|୐మ൫∑ ࣩ౟
೙
౟సభ ൯,ୌభ൫∑ ࣩ౟

೙
౟సభ ൯,ଵି஫  are scalable of order   D∑ ࣩ౟

೙
౟సభ

୬ିଶ(ଵି஫): 

 

D∑ ࣩi
݊
i=1

୬ିଶ(ଵି஫)ρ∑ ࣩi
݊
i=1

ି୬ D∑ ࣩi
݊
i=1

෣
ଶ(ଵି஫)ି୬ρ∑ ࣩi

݊
i=1
෣

ିଶ(ଵି஫)‖vො݅‖୐మ൫∑ ࣩi
݊
i=1
෣ ൯,ୌబ

భ൫∑ ࣩi
݊
i=1
෣ ൯,ଵି஫

≤ ‖v௜‖୐మ(∑ ࣩi
݊
i=1 ),ୌబ

భ(∑ ࣩi
݊
i=1 ),ଵି஫

ଶ

≤ D∑ ࣩi
݊
i=1

୬ିଶ(ଵି஫)ρ∑ ࣩi
݊
i=1

ଶ(ଵି஫)D∑ ࣩi
݊
i=1

෣
ଶ(ଵି஫)ି୬ρ∑ ࣩi

݊
i=1

෣
୬ ‖vො݅‖୐మ൫∑ ࣩi

݊
i=1

෣ ൯,ୌబ
భ൫∑ ࣩi

݊
i=1

෣ ൯,ଵି஫
ଶ  
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D∑ ࣩi
݊
i=1

୬ିଶ(ଵି஫)ρ∑ ࣩi
݊
i=1

ି୬ D∑ ࣩi
݊
i=1
෣

ଶ(ଵି஫)ି୬ρ∑ ࣩi
݊
i=1

෣
ିଶ(ଵି஫) min ቄρ∑ ࣩi

݊
i=1

ି୬ ρ∑ ࣩi
݊
i=1

෣
ି୬ , 1ቅ ‖vො݅‖~,ଵି஫,∑ ࣩi

݊
i=1

෣
ଶ

≤ ‖v௜‖~,ଵି஫,∑ ࣩi
݊
i=1

ଶ   

≤ D∑ ࣩi
݊
i=1

୬ିଶ(ଵି஫)ρ∑ ࣩi
݊
i=1

ଶ(ଵି஫)D∑ ࣩi
݊
i=1
෣

ଶ(ଵି஫)ି୬ρ∑ ࣩi
݊
i=1

෣
୬ max ቄρ∑ ࣩi

݊
i=1

୬ ρ∑ ࣩi
݊
i=1
෣

୬ , 1ቅ ‖vො݅‖~,ଵି஫,∑ ࣩi
݊
i=1
෣

ଶ  

For any v௜ ∈ H෩ଵି஫(∑ ࣩ୧
௡
୧ୀଵ )  and   ϵ > 0, and 

D∑ ࣩi
݊
i=1

୬ିଶ(ଵି஫)ρ∑ ࣩi
݊
i=1

ି୬ D∑ ࣩi
݊
i=1

෣
ଶ(ଵି஫)ି୬ρ∑ ࣩi

݊
i=1
෣

ିଶ(ଵି஫)|vො݅|୐మ൫∑ ࣩi
݊
i=1
෣ ൯,ୌభ൫∑ ࣩi

݊
i=1

෣ ൯,ଵି஫
ଶ

≤ |v௜|୐మ(∑ ࣩi
݊
i=1 ),ୌభ(∑ ࣩi

݊
i=1 ),ଵି஫

ଶ

≤ D∑ ࣩi
݊
i=1

୬ିଶ(ଵି஫)ρ∑ ࣩi
݊
i=1

ଶ(ଵି஫)D∑ ࣩi
݊
i=1

෣
ଶ(ଵି஫)ି୬ρ∑ ࣩi

݊
i=1

෣
୬ |vො݅|୐మ൫∑ ࣩi

݊
i=1

෣ ൯,ୌభ൫∑ ࣩi
݊
i=1
෣ ൯,ଵି஫

ଶ , 

D∑ ࣩi
݊
i=1

୬ିଶ(ଵି஫)ρ∑ ࣩi
݊
i=1

ିଶ୬ D∑ ࣩi
݊
i=1

෣
ଶ(ଵି஫)ି୬ρ∑ ࣩi

݊
i=1
෣

ି୬ିଶ(ଵି஫)|vො݅|ଵି஫,∑ ࣩi
݊
i=1
෣

ଶ ≤ |v௜|,ଵି஫,∑ ࣩi
݊
i=1

ଶ

≤ D∑ ࣩi
݊
i=1

୬ିଶ(ଵି஫)ρ∑ ࣩi
݊
i=1

୬ାଶ(ଵି஫)D∑ ࣩi
݊
i=1
෣

ଶ(ଵି஫)ି୬ρ∑ ࣩi
݊
i=1

෣
୬ |vො݅|ଵି஫,∑ ࣩi

݊
i=1
෣

ଶ  

for any v௜ ∈ Hଵି஫(∑ ࣩ୧
௡
୧ୀଵ ) and ϵ > 0. 

Proof:  The bounds are a combination of Lemmas (6.2.24) and (6.2.25) with (52), (53). 

Remark (6.2.33)[272]:  The estimate by Theorem (6.2.31) (iii) a) breaks down when  

D∑ ࣩ౟
೙
౟సభ

→  0. In fact, for a family of scaled series domains ∑ ( ୧ࣩ)୦
୬
୧ୀଵ  with D∑ (ࣩ౟)౞

౤
౟సభ

= h and 

a non-constant function v୧ scaled to a family {(v୧)୦} of functions on 

{∑ ( ୧ࣩ)୦
୬
୧ୀଵ }, |(v୧)୦|୐మ൫∑ (ࣩ౟

౤
౟సభ )౞൯,ୌభ൫∑ (ࣩ౟)౤

౟సభ ౞൯,ଵି஫
ଶ ≃ h୬ିଶ(ଵି஫) by Corollary (6.2.39) whereas  

|(v୧)୦|ଵି஫,∑ (ࣩ౟
౤
౟సభ )౞,୧୬୤

ଶ ≥ infୡ౟∈ℝ‖(v୧)୦ − c୧‖଴,∑ (ࣩ౟)౤
౟సభ ౞

ଶ ≃ h୬. Therefore, the dependence on 

D∑ ࣩ౟
౤
౟సభ

 like D∑ ࣩ౟
౤
౟సభ

ଶ(஫ିଵ)of the upper bound in Theorem (6.2.31) (iii) a) is optimal. 


