Chapter 6
Fractional Poincare Inequalities and Fractional -Order Sobolev Semi-norms

We quantify the tightness at infinity provided by the control on the fractional derivative in
terms of a weight growing at infinity. The proof goes through the introduction of the
generator of the Ornstein—Uhlenbecks emigroup and some careful estimates of its powers.We
the proof of fractional Poincaré inequality for measures more general than Lévy measures.
Main results are mutual estimates of the three semi-norms of Sobolev-Slobodeckij,
interpolation and quotient space types. In particular, we show that the former two are
uniformly equivalent under affine mappings that ensure shape regularity of the domains

under consideration.

Sec (6.1):General Measures:

The aim of this section is to prove a Poincaré inequality on R", endowed with a
measure M(x)dx, involving non-local quantities in the right-hand side in the spirit of
Gagliardo semi-norms for Sobolev spaces WP (R") with fractional order s € (0,1) (see
e.g. [225]).

Fractional diffusions naturally appear in many models, ranging from plasma
turbulence [226] or geostrophic flows [227] in fluid dynamics, grazing collisions in
kinetic theory (cf. the Boltzmann equation for long-range interactions [228-231]), all
the way to stockmarket modeling based on Lévy processes [232]. They also appear
naturally in mathematics: in probability, they appear in the important class of infinitely
divisible Markov processes given (cf. the Lévy-Khinchin representation [233]); in
analysis they naturally appear in the study of singular integral operators (e.g. for the
Boltzmann equation, cf. references above) as well as in the so-called “Dirichlet-to-
Neuman” boundary value problem and in the Signorini (obstacle) problem [234] (see
for instance among other references [235] and [236]). The search for a Poincaré
inequality for the non-local fractional energy associated with such fractional diffusion is
therefore a natural and interesting question since this inequality governs the spectral
gap of the underlying operator and the speed of (fractional) diffusion towards an
equilibrium.

Throughout this section, we denote by M a positive weight in L(R"). In the sequel,
by L?(R™ M), we mean the space of measurable functions on R" which are square
integrable with respect to the measure M(x)dx, by L4 (R™, M) the subspace of functions
of L?(R", M) such that fmzn f(x)M(x) dx = 0, and by H!(R", M), the Sobolev space of
functions in L2(R", M), the weak derivative of which belongs to L?(R?,M). Finally for
any measurable subset A ¢ R" by L?(A,M) we mean the obvious restriction of the
definition above to the set A.
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We assume that M is a C? function and that this measure M satisfies the usual
Poincaré inequality: there exists a constant A(M) > 0 such that vf € H!(R", M),

2

M(y)dy. €Y)

j VFO)IZM() dy = A(M) j
Rn

]Rn
If the measure M can be written M = eV, this inequality is known to hold (see [237],
or also [238], Theorem (6.1.2), see also [239], proof of Theorem (6.1.2) for related

criteria) whenever there exista € (0,1),c > 0 and R > 0 such that

o) - [ remeax
Rn

V|x| = R, alVV(x)|? — AV > c. (2)
In particular, the inequality (1) holds, for instance, when M =

(2m)™™/2 exp(— |x|?/2)is the Gaussian measure, but also when M(x) = e~*l, and more
generally when M(x) = e ¥“with @ > 1. Note that, when Vis convex, and

Hess(V) > cstld

on the set where |V | < 400, the measure M(x)dx satisfies the log-Sobolev inequality,
which in turn implies (1) (see [240]).

As it shall be proved to be useful later on, remark that, under a slightly stronger
assumption than (1), the Poincaré inequality (2),the Poincaré inequality (1) admits the
following self-improvement:

Proposition (6.1.1) [224]:
Assume that there exists € >0 such that

1—¢)|VV|?
%—VVx—wo+00, M=e". €))

Then there exists A'(M) >0 such that, for all functions f € L3(R",M) N
HY(R™, M):

j j VFGOIMG) dx = 2 (M) j FGOIZ(L + [VIn MGOI?) M (x)dx. )
Rn

]Rn

The proof of Proposition (6.1.1) is classical and will be given for the sake of
completeness.
We want to generalize the inequality (1) in the strengthened form of Proposition

(6.1.1), replacing, in the left-hand side, the H! semi-norm by a non-local expression in
the flavour of the Gagliardo semi-norms.

We establish the following theorem:
Theorem (6.1.2) [224]:

Assume that M = e™V is a C? positive L! function which satisfies (3). Let a € (0, 2).
Then there exist A,(M) > 0 and 8§(M) (constructive from our proof and the usual
Poincaré constant A(M)such that, for any function f belonging to a dense subspace of
L3(R™, M), we have:
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M(x)e SMIx=¥l dx dy

j If () = fFOI?

e |x — y|n+a

> 2 (M) j FEOIRA

+ |VIn M(x)lz) M (x)dx (5
Remark (6.1.3) [224]:

Inequality (5) could as usual be extended to any function f with zero average such
that both sides of the inequality make sense. In particular it is satisfied for any function
fwith zero average belonging to the domain of the operator L = —A —VV - V that we
shall introduce later on. Functions of this domain with zero integral with respect to
M (x)dxare dense in L3(R"™, M).

Observe that the right-hand side of (5) involves a fractional moment of order
arelated to the homogeneity of the semi-norm appearing in the left-hand side. One
could expect in the left-hand side of (5) the Gagliardo semi-norm for

the fractional Sobolev space H*/2(R", M), namely

j If () = fFOI?

|x_y|n+a

M(x)M(y) dx dy.

RMXR™
Notice that, instead of this semi-norm, we obtain a “non-symmetric” expression.

However, our norm is more natural: one should think of the measure over y as the Lévy
measure, and the measure over x as the a mbient measure. We emphasize on the fact
that our measure is rather general and in particular, as a corollary of Theorem (6.1.2),
we obtain an automatic improvement of the Poincaré inequality (1) by:

j If () = fFOI?

|x _y|n+a

MEM() dx dy > Ao (M) j FCOIM () do.

The question of obtaining Poincaré-type inequalities (or more generally entropy
inequalities) for Lévy operators was studied in the probability community in the last
decades. For instance it was proved by Wu [241] and Chafai [242] that

Ent?(f) < jcpn(f)Vf-a-Vf du+ﬂ Do (F GO, f Cx + 2)) duy(2) diy ()

(see also the use of this inequality in [243]) with
Bt () = [ e(ndu— o ([ fau),

andDis the so-called Bregman distance associated to &:

Dy(a,b) = @(a) — @(b) — @'(b)(a — b),
Where @ is some well-suited functional with convexity properties, othe matrix of
diffusion of the process, ua rather general measure, and v,the (singular) Lévy measure
associated to . Choosing @(x) = x2 and o = 0 yields a Poincaré inequality for this
choice of measure y, v,. The improvement of our approach is that we do not impose any
link between our measure Mon xand the singular measure |z|™" %onz = x — y. This
is to our knowledge the first result that gets rid of this strong constraint.
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Remark (6.1.4)[224]:

Note that the exponentially decaying factor e ™)I*=¥I jn (5) also improvesthe
inequality as compared to what is expected from Poincaré inequality for Lévy measures.
This decay on the diagonal could most probably be further improved, as shall be
studied in future works. Other extensions in progress are to allow more general

L (see the book [244]) and to develop

|x_y|1l+ll

singularities than the Martin Riesz kernel

an LPtheory of the previous inequalities.

Our proof heavily relies on fractional powers of a (suitable generalization of the)
Ornstein-Uhlenbeck operator, which is defined by:

Lf = —M~'div(MVf) = —Vf — VInM - Vf,
for all f € D(L) = {g € H'(R",M); (1/V/M)div(MVg) € L?>(R™)}. One therefore has,
forall f € D(L)and g € H'(R™, M),

[ Lrmecom@ ar = [ v gtom dx

R R
It is obvious that Lis symmetric and nonnegative on L?(R", M), which allows to define
the usual power LPfor any B € (0,1)by means of spectral theory. Note that L%/? is

notthe symmetric operator associated to the Dirichlet form
ﬂ' If ) =f)I? M(x)dx d
RMXR™ |x—y|n+u y

We now describe the strategy of our proofs. The proof of Theorem (6.1.2) goes in
three steps. We first establish L?off-diagonal estimates of Gaffney type on theresolvent
of L on L?>(R™, M). These estimates are needed in our context since we do not have
Gaussian pointwise estimates on the kernel of the operator L.

Then, we bound the quantity,
[Ir@ra+ wnuem@ i,
]Rn
This will be obtained by an abstract argument of functional calculus based on rewriting

in a suitable way the conclusion of Proposition (6.1.1). Finally, using the L? off-diagonal
estimates for the kernel of L, we establish that

If () = fF)I?
|x _y|n+a

”La“f”iz(Rn'M) <C j M(x) dx dy,
R xR"

which concludes the proof.

As can be seen from the rough sketch previously described, we borrow methods
from harmonic analysis. This seems not so common in the field of Poincaré and log-
Sobolev inequalities (to the knowledge of the authors), where standard techniques rely
on global functional inequalities, see for instance the powerful so-called I;-calculus of
Bakry and Emery [245]. We hope this section will stimulate further exchanges between
these two fields.
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We recall that for every f € D(L), we define
Lf = —M~1div (MVf) = —Af — VInM - Vf. (6)
From the fact that L is self-adjoint and nonnegative on L?(R", M)we have:

1

L =W 2oy < dist (i, (L))

whereX(L) denotes the spectrum of L, and p € X(L). Then we deduce that (I + tL) ! is
bounded with norm less than 1 for all t > 0. Since tL(I + tL)™! =1— (I1+ tL)™!, the
same is true for tL(I+ tL)™* = I— (I + tL)~! with a norm less than 2. Moreover,
(1+ tL)™'f € HY(R", M).

Actually, when f € L?(R"™, M)is supported in a closed set E c R"and F c R"is a
closed subset disjoint from E, a much more precise estimate on the L? norm of
(I+ tL)™*fand tL(A+tL)"'fon Fcan be given. Here are these L? off-diagonal
estimates for the resolvent of L:

Lemma (6.1.5) [224]:
There exists C; = C;(M) > 0 (constructive from our proof) with the following

property: for all compact disjoint subsets E, F ¢ R", F bounded, with dist(E,F) =:d >
0, all functions f € L?(R"™, M) supported in E and all t > 0,

d
| (1T+ tL)_1f||L2(F,M) + |leL(1 + tL)_lf”LZ(F,M) = 89_C1ﬁ”f”LZ(E,M)'
Note that, in different contexts, this kind of estimate, originating in [246], turns out to be
a powerful tool, especially when no pointwise upper estimate on the kernel of the
semigroup generated by Lis available (see for instance [247-249]). Since we found no
reference for these off-diagonal estimates for the resolvent of L, we give here a proof.

Proof of Lemma (6.1.5):

We argue as in [248]. Since (I + tL)™! is bounded with norm less than 1 for all
t > 0 itis clearly enough to restrictto 0 < t < d.

Define ut = (I + tL)~!f, so that, for all functions v € H*(R", M),

j 1, COVOOM () dox + t j Vat, () - Vo ()M (x) = j FOPEOM(x) dx. %
R R R
Fix now a nonnegative function n € D(R")vanishing on E. Since fis supported inE,

applying (7) with v = n?u,(remember thatu, € H*(R", M)) yields,

j 02 ()l ()M (x) i + ¢ j Vi, () - V0r2u) M (x) dx = 0,
R" R"
which implies:
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[ em@rMe ax+ e [ e @rEme) ax

R"™ R"™

= -2t jn(x)ut(x)Vn(x) “Vu(x)M(x) dx
Rn
<t jlut(X)lzlvn(X)le(X) dx +t jnz(X)Wut(X)le(X) dx,
hence . .
jUZ(X)lvut(X)le(X) dx <t jlut(X)lzlvn(X)le(X) dx. 8)
R R

Let &be such that § =0 on E and ¢ nonnegative so that n =e* —1>0 and
nvanishes on Efor some a >0 to be chosen. Choosing this particular nin (8)
witha > 0 gives:

et = 1 GOm0 dx < ot [ 1 OPITEEORE S MG dx,
RD R1

Taking a = 1/(2vt||VE||l,), one obtains:
1
j|e°‘§(x) - 1|2|ut(x)|2M(x) dx < 7 jlut(x)lzezaf(")M(x) dx.
Rn Rn

Using the fact that the norm of (I + tL)™! is bounded by 1 uniformly in t > 0, this
gives:

leatell 2 g pry = 110 = Drtell 2 gy, + ez oy

1
= E”eafut”LZ(Rn'M) + ”f”LZ(]Rn,M)’
therefore

j|eaf<x>|2|ut(x)|2M(x) dx < 4 jlf(x)le(x) dx.
R" R™

We choose now &such that £ = 0 on E as before and additionally that ¢ = 1 on F(nis
then compactly supported from the fact that F is bounded). It can trivially be chosen
with ||V€|l, < C/d, which yields the desired conclusion for the L? norm of (I +
tL)~1fwith a factor 4 in the right-hand side. Since tL(I + tL)™'f = f — (I + tL)7'f,
the desired inequality with a factor 8 readily follows.

Remark (6.1.6) [224]:
Arguing similarly, we could also obtain analogous gradient estimates for

[Veva +eL)7 1| N

This section is devoted to the control of the L? norm of fractional powers of L.
This is the cornerstone of the proof of Theorem (6.1.2). In the functional calculus theory
of sectorial operators L, fractional powers (for the particular powers we are interested
in) are defined as follows (see for instance [250]):

V‘B € (0,1), L'Bf = [‘(1;—‘8)_[ t‘ﬁLe‘Ltf dt. (9)
0
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They can also be defined in terms of the resolvent by the Balakrishnan formulation (see
for instance [250]):

sm(n(l —

v € (0,1), LPf= ﬁ))j AB=1L(L + AD71f dA. (10)

We shall in fact not need any of the representations (9) or (10); instead we shall rely on
the powerful tool of the so-called “quadratic estimates” obtained in the functional
calculus. This is the object of the next lemma.

Lemma (6.1.7) [224]:

Let a € (0,2). There exists C3 = C3(M) > 0 such that, forall f € D(L),

+ oo

||La/4f||L2(]RnM) = C3j e 2 NeL (4 L) Il gy - an
0
Proof:

Let u € (O, %), and

Y+ =1{z € Clargz| < u}.
Let Ybe a holomorphic function in H* (3 ,+)such that for some C,0,7 > 0,

[Y(2)| < Cinf{|z|%, 2|77},

forany z € X,+.Since Lis positive self-adjoint operator on L?(R™ M)and Lis one-to-one
on L3(R™, M) by (6.80), one has by the spectral theorem,

IFIIZ2 gn gy < cj [GA p—— R

whenever F € L3(R"™, M). Choosing 1,[)(2) = z17%/% /(1 + z)yields,

d
IF N2 gy < Cj | L) /(1 + tL)~ 1F||L2(RnM) e (12)

whenever F € L3(R"™, M).

Let F € L*(R", M). Since
j LFGOM(x) dx = 0,

R"
it follows from (9) that the same is true with L%/*f. Applying now (12) with F = L%/*f
gives the conclusion of Lemma (6.1.7).
Let us draw a simple corollary of Lemma (6.1.7):

Corollary (6.1.8) [224]:

Forany a € (0,2)and € > 0, thereis A = A(M, &) such that
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A
I gy = € [ 47410004 0 Wy (1)
0
Proof:

The proof is straightforward since

( ) = ( )

and
+00
j t~1-2/2dt A > 4 0.
A

We now come to the desired estimate.

Lemma (6.1.9) [224]:
Let « € (0,2) and € and A given by Corollary (6.1.8). There exist C, = C,(M,A) > 0

and ¢’ = c¢'(4, M) > 0 such that, for all f € D(R"),

A

B If () = fF()I? e
jt 2\ L1+ L) fl o g gy dE < Cy j X y[a M(x)e=¢ =Yl dx dy.
0 R xR"
Proof:

Throughout this proof, for all x € R™and all s > 0, denote by Q(x, s)the closed cube
centered at xwith side length s. For fixed t € (0, A), following Lemma (6.1.7), we shall

look for an upper bound for |[tL(I + tL)~1f||? involving first order differences for

L?(R™ M)
f. Pick up a countable family of points xj € R",j € N, such that the cubes Q(x-t, \/l_t)

have pairwise disjoint interiors, and

R" = UQ(x-t,\/f). (14)

jEN
By Lemma (6.1.12), there exists a constant C > 0 such that for all # > 1 and all
x € R", there are at most Cf™"indexes jsuch that |x — xf < 6+/t.

For fixed j, one has
tL(I+ tL)™'f = tL(I + tL) 'g/t,
where, for all x € R",
ght(x) = fx) —m)t

andm/*t is defined by:

[ rorar
" a2 b

Note that, here, the mean value of f is computed with respect to the Lebesgue measure
on R"™. Since (14) holds and the cubes Q( 2\/_) have pairwise disjoint interiors, one

clearly has:
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-1 —1£]2
L+ L) T F 112 g gy = ZIItL(HtL) Flzg(t 2ve)

jEN

Z||tL(I+tL) g”lle (st 2t)

JEN
and we are left with the task of estimating,
— i 2
o2+ 77 g0
To that purpose, set
¢t = 9(xf, 2vt)andcl’ = Q(xf, 2 VENQ(xf, 2KVE), VK =1,

and gi’t = gl tlcj,t, k = 0, ,where, for any subset A ¢ R", 1, is the usual characteristic
k

function of A. Since g/t = Y50 gi’t one has:

I[eL(1 + L) g””LZ (6200 Z”tL(I +tL)" g””LZ (6200 (15)

k=0
and, using Lemma (6.1.5), one obtains (for some constants C, ¢ > 0):

s+ 78 gy < (I8 gy Yoo el ) 19

k=0
By Cauchy-Schwarz’s inequality, we deduce (for another constant C’ > O):

e +tL)‘1gj't||i2 (rtave) < (||g{,t||L2 o +Z ~<2lg|l (" )> (17)
k=0
As a consequence, we have:

A
[ et len i e gy e < € ol 40
0

A
L)
A
+C’jt -1~ a/ZZe Z e (¢l dt. (18
0 k=1 >0
We claim that

Lemma (6.1.10) [224]:
There exists C > 0 such that, for all t > 0 and all j EN:

A. For the first term:

2 c i
I8 ey <z | | 1= FoIPME dxay.
0(xj2Ve) o(x.2ve)

B. Forallk =1,

&N ooy < j j FGO) = FOIIPMG) dx dy.
L (Ck , ) (\/—)
er 2k+1\/E) yEQ(x;,Zk“\/E)
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We postpone the proof to the end of the section and finish the proof of Lemma
(6.1.9). Using Assertion A in Lemma (6.1.10), summing up on j > 0 and integrating
over (0,A4), we get:

4 A
.2 1
J e D ey e = 2 | U ey

0 Jj=0 j=0 o

o

<

j 153 j j FGO) — FO)I2M ) dx dy | dt
0 9(x}2vE) 0(x52ve)

<cy [ v

JZ0 (x,y)ER"MXR?

[, \

a |

| n
—fI*PM(x) i j tT 22 dt i dx dy.

2 2
\tm{@b_ﬁ} /
n n

A A
an a n
tT2ede =t 2z ) 1 2 2 (¢) dt.
=] [y =]
jEO |x—xt.|2 |y—xt.|2 0 ]20 max T'T ,+00
tzmax{—n] ;—n] }

Observe that, by Lemma (6.1.12), there is a constant N € N such that, for all ¢t > 0,
there are at most Nindexes jsuch that |x — xjt|2 < ntand |y — xjt|2 < nt. If such an

index jexists, one has |x — y| < 2+/nt. It therefore follows that

Z 1( {|x—xt.|2 lyost 2} >(t) < N1(|X—y|2/4n,+oo)(t)r
j=0 max{—2——9" 4+

so that
A

P2
[ 722 el ey e
0 J
A

<CN j £ GO — FOIM () j 55 de | dx dy

RPXR"™ [x—y|2/4n

<CN ﬂ lf(x)_f(y)le(x)dxdy. (19)

|x — y|n+a
lx—y|<2vnA
Using now Assertion B in Lemma (6.2.10), we obtain, forallj = 0 andallk > 1,

A

[ ey lgieI a

0 j=0
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A
<¢C jrsz _ﬂ FGO) = FONPMEx) dx dy | de
Jjz0 0 Q(x;'2k+1\/f)xg(x]§'2k+1\/f)

>
2 4k1l )

j|ﬂm—f@WMu)j} 55 %ﬁu F} (Ot |dx dy.
0 x,yeR 0 2 ,+ 00

But, given t > 0, x,y € R", by Lemma (6.1.12) again, there exist at most C2X" indexes j
such that

|x — xf| < 2¥v/ntand|y — x}| < 2*V/nt,
and for these indexes j, |x — y| < 2¥*1\/nt. As a consequence we have:

A A
_1-a_n ~ _q_&.n
t 2221 2 2y (B)dt < €2k t™ Tz zdt
i max —|x—xj| .—|y—xj| +0o0
0 Jj=0 Fn o akn [ t2|x_y|2
Hk+in

~,2k(a+n)|x_y|—n—a1

S C |x_y|52k+1m' (20)
for some other constant ' > 0, and therefore

A

- 2 . fG) - FWI?
[ Y el ae s cczer [ DRI MG axay.
0 j) |x—y|<2kt1Vna

We can now conclude the proof of Lemma (6.1.9), using Lemma (6.1.7), (16), (19) and
(20). We have proved, by reconsidering (18):

J If () = fFOI?

Xy M(x) dx dy

A
jt‘l 2NLA+ tL) T fllf2 g pydt < C'CN
0

|x—y|<2k+t1ynA

+Z C/C_vc’v'lzkae—czk jj |f(x) _f(y)le(x) dx dy (21)

|x — y|n+a
k=1 |x—y|52k+1\/n_A
and we deduce that

G = fF)I?
|x_y|n+a

for some constants C, and ¢’ > 0 as claimed in the statement.

A
j t~1=@/2||¢L(1 + tL)~ 1f||L2(]RnM) dt<C, j M(x)e~¢"*=Y dx dy
0

R xR"
Proof of Lemma (6.1.10):

Observe first that, for all x € R",

8 () = () - j FO)dy.

lo(xf, 2v0)| ZIN i)
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(f() = f()) dy.
“ a2 JM)

By Cauchy-Schwarz inequality, it follows that
¢ 2
@ <oz | e -roray

o(s2+e)
Therefore,

) C
I8 ey <z | | 1= rorrPM@ dxay,
0(xj2Vt) o[} )
which shows Assertion A. We argue similarly for Assertion B and obtain:

2 C
et e <7z | | rw-roruwara,
xEQ(xf,Z\/E) yEQ(xf,Z\/E)
which ends the proof of Lemma (6.1.10)

We end up this section with a few comments on Lemma (6.1.10). It is a well-known
fact [251] that, when 0 < @ < 2,forall P € (1, +0),

||(_A)a/4f||LP(]Rn) S COC,P”SOC,Pf”LP(]Rn)’ (22)
where

+ oo

d
Sepf() = j (j If(x+ry)—f(x)ldy> =

0

and also [252]
IC=8F ]| p ny < Car DS Mipcamy (23)

where
1

Daf(x)=( frin Tl y).
Rn

n [253], these inequalities were extended to the setting of a unimodular Lie group
endowed with a sub-laplacian A, relying on semigroups techniques and Littlewood-
Paley-Stein functionals. In particular, in [253], we use pointwise estimates of the kernel
of the semigroup generated by A. The conclusion of Lemma (6.1.10) means that the
norm of L¥*f in L?*(R", M) is bounded from above by the L?(R™ M)norm of an
appropriate version of D,. Note that this does not require pointwise estimates for the
kernel of the semigroup generated by L, and that the L?off-diagonal estimates given by
Lemma (6.1.5), which hold for a general measure M, are enough for our argument to
hold. However, we do not know if anL? version of Lemma (6.1.10) still holds. Note also
that we do not compare the L?(R™ M)norm of L*/*f with the L?(R", M)norm of a
version of S, pf. Finally, the converse inequalities to (22) and (23) hold in R" and also
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on a unimodular Lie group [252], and we did not consider the corresponding
inequalities in the present section.

Observe first that, by the definition of L, we have

[lvrrue = [ Lreoreome ax
R™ R™
forall f € D(L). The inequality (4) can therefore be rewritten, in terms of operators, as

L=y, (24)
wherepis the multiplication operator by x — 1 + |VIn M(x)|2. Since uis a nonnegative
operator on L?(R"™, M), using a functional calculus argument (see [254]), one deduces
from (24) that, for any a € (0,2),

La/z > (ll)a/zua/z’
which implies, thanks to the fact L%/ = (L"‘/“)2 and the symmetry of L%/ on L?(R", M),
that

()2 j IFGOI(L + [VIn M) 2M (x) dx < j 1L/ £ () [ M (x) dx
Rn

Rn
2

= ||La/4f||L2(]Rn'M)'
The conclusion of Theorem (6.1.2) readily follows by using the previous inequality in
conjunction with Corollary (6.1.6) and Lemma (6.1.7), and picking & small enough.

The first author would like to thank the Award No. KUK-11-007-43, funded by
the King Abdullah University of Science and Technology (KAUST) for the funding
provided in Cambridge University. In this section, we prove Proposition (6.1.1), namely:

Proposition (6.1.11) [224]:

Assume that M = e~V satisfies (3). Then there exists A’(M) > 0 such that, for all
functions f € L3(R", M) N H!(R", M):

j VFGOIRM () dx = 2(x) j IVFGOI2(L + [VIn MGOIP)M(x) dx. 25)
R"? R"?

Note that of course in general the constants A(M) and A(M) in (1) and (4) are
different.

Proof of Proposition (6.1.1):

1
Let f be as in the statement of Proposition (6.1.1) and let g := f Mz. Since

1 1 3
Vf =M"2Vg—-gM VM,

assumption (3) yields two positive constants £,y such that
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jIVf(X)IzM(X) dx = j (IVg(X)I2 +%gz(X)IV1n M(x)[* — g(x)vg(x) - VlnM(X)) dx
]Rn

]Rn

- j(lVg(x)lz +%g2(x)|V1nM(x)|2 —%ng(x) : VlnM(x))dx

]Rn

> ng(x) G IVInMGO|? + %Aln M(x)) dx

Rn
> jfz(x)(,BIVIHM(x)I2 — )M (x) dx. (26)
Rn

The conjunction of (1) (which holds because (2) is satisfied), and (26) yields the
desired conclusion.

We prove the following lemma.

Lemma (6.1.12) [224]:

There exists a constant C > 0 with the following property: for all 6 > land
allx € R", there are at most C™ indexes j such that |x — xf| < 6t.

Proof:
The argument is very simple (see [255]) and we give it for the sake of

completeness. Let x € R"and I(x) = {j € N; |x — x}| < 6+/t}. Since, for all j € I(x),

Q(xf,\t) c B (x, (9 + %) \/TE),
one has .
c ((9 + %) m) > ) |o(xf VO = HWNE,
jEICx)

we get the desired conclusion.
Lemma (6.1.13)[272]:

There exists C; = C;(M) > 0 with the following property: for all compact disjoint
subsets E,F c R®, F bounded, with dist(E,F)=:t+e,e>0, all functions
f € L*(R™, M) supported in E and all t2 > 1

”(I + (tz - 1)L*)_1f||L2(F,M) + ”(tz - 1)L*(I + (tz - 1)L*)_1f”L2(F,M)

t+e

< 8e” VN fll 2 g -
Note that, in different contexts, this kind of estimate, originating in [246], turns out to be
a powerful tool, especially when no pointwise upper estimate on the kernel of the
semigroup generated by L* is available (see [247-249]). Since we found no reference for

these off-diagonal estimates for the resolvent of L*, we give here a general proof

[224].
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Proof of Lemma (6.1.13): We argue as in [24]. Since (I+ (t?2 — 1)L*)"! is bounded

with norm less than 1 for all t? > 1 it is clearly enough to restrictto € > 0.

Define u(t? — 1) = (I + (t? — 1)L*)~f, so that, for all functions v € H*(R", M),

j e, Ge) v (e, )M Gy oy + (£ — 1) j Vitge_, () - Vo (o, )M ()
Rn

]Rn

= jf(xn)v(xn)M(xn) dx,,. (27)
Rn

Fix now a nonnegative function n € D(R™)vanishing on E. Since f is supported in E,

applying (27) with v = n?u,2_, (remember that u,2_; € H*(R", M)) yields,

j 02 Ge) e, (e M Gy ) ey + (62 — 1) j Vige_, () - Ve )M (x,) doxy, = 0,
Rn

]Rn

which implies:

j 02 ey (o) 12M () iy, + (62 — 1) j n? G Ve, () M (x,) dix,

R"™ R"™

= 22— 1) j NG (o) V() - Vatge_, (e )MCx,) dox,
Rn
<@ =1 [l GOPITIC)IPMCe) dx,
Rn

FE2—1) j 72 Gen) 19 ) 2M ) d
Rn

hence

jnz eI Vugz_y (x)12M () dx,, < (82— 1) j|utz_1(xn)IZIVn(xn)IzM(xn) dx,. (28)
R™ R™
Let & be such that £ = 0 on Eand ¢& nonnegative so that 7 :=e(*9% -1 >0 and 75
vanishes on E for some € >0 to be chosen. Choosing this particular n in (28)

with e > 0 gives:
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j 16298 — 1" |u,z_, (x)12M(x,0) dx,e
RH

< (2 - E)z(tz - 1) j|ut2—1(xn)|2|Vz(xn)|2e2(2_€)z(xn)M(xn) dxn'
Rn
Taking € =2 —1/(2Vt? — 1||VE||,), one obtains:
1
j|e(2—e)i(xn) _ 1|2|ut2—1(xn)|2M(xn) dx, < Z j|ut2_1(xn)|zez(2—e)s‘(xn)M(xn) dx,,.
RO R™

Using the fact that the norm of (I + (t? — 1)L*)~!is bounded by 1 uniformly in t2 > 1,

this gives:
”e(z_dgutz—l“LZ(Rz'M) < [|(e®9¢ - 1)ufz—lnLZ(lR{n,M) F ezl ey

< ”e(z—e)futz_l”LZ(Rn'M) + ”f”LZ(]Rn,M);

N =

therefore

2
j e @80 | T e () 12M () dix, < 4 j |f Ce)12M (x) docy.
R R™

We choose now ¢ suchthat ¢ = 0on E as before and additionally that £ = 1on F(n
is then compactly supported from the fact that F is bounded). It can trivially be chosen
with ||V€]l, < C/((t? — 1) + €), which yields the desired conclusion for the L? norm of
(I + (t? —1)L*)"1fwith a factor 4 in the right-hand side. Since (t?—1)L*(I +
&2=DLHf=f—(U + (t> —1)L")"1f, the desired inequality with a factor 8

readily follows.
Lemma (6.1.14)[272]:

Let €> 0.There exists C; = C3(M) > 0 such that, forall f € D(L),

2

L*(Z_e)/4f||L2(]Rn_M)

€-4 2

+00
< C3f (t2-1)"=2
0

|(t2 —DL(1+ 2 - DL 'f

d(t* —1).(29)

L2(R",M)
Proof: Let u € (O,%), and

Yu+ =1z, € C;largz,| < u}.
Let ¥ be a holomorphic functionin H*(},+) such that for some C,0,7 > 0,
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[W(z,)| < Cinf{|z,|%, 12,1773,

for any z, € X,+.Since L" is positive self-adjoint operator on L*(R*,M)and L*is one-
to-one on L3(R™, M) by (1), one has by the spectral theorem,

+ 00

2 d
”F”iz(R",M) = Cj ||¢((t2 - 1)L*)F”L2(R",M) d(t?2—1)
0

3—€
Whenever F € L3(R", M). Choosing ¥(z,) = z, + /(1 + z,)yields,

+00
2+€ 2 d

2 n < j || 2 _ 2 2 _ *)—1
IFN gy < C [ [|(G2=DL7) * A+ (&2 = DL)F e A1) (30)
0

Whenever F € L3(R", M).
Let F € L?(R", M). Since

j L FGe)M () dx,, = 0,
Rn

(2-e)/4

it follows from (9) that the same is true with L* f. Applying now (30) with

F = L**=9/*f gives the conclusion of Lemma (6.1.14).

Let us draw a simple corollary of Lemma (6.1.14) (see [224]).
Corollary (6.1.15)[272]:

Forany €,& > 0, thereis A = A(M, €) such that

2
L?(R™.M)

L*(Z—E)/4f||

A
< _E-4
< (s j(tz — D72 1@ - DL A+ (& = DL fll 72 gy - (31)
0
Proof.The proofis straightforward since

(2 = DL (1 + (¢ - 1)L*)_1f||]2dz(Rn'M) < C”F”]zdz(Rn'M)
And

+ oo

—3—€ 5
j (t* =12z dtA-> +0.
A

We now come to the desired estimate.
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Lemma (6.1.16)[272]:
Let €& > 0 and A given by Corollary (6.1.15). There exist €, = C,(M,A) > 0 and
¢' =c'(A,M) > 0 such that, forall f € D(R"),

A
j (€2 = DTN = DL A+ (@ = DL I gy dt
0

—c'|xp—x
M(x,)e ¢ n=*nsil dx dx,,,.

< 64, j |f(xn) - f(xn+1)|2

|otn = xpqq [427€
RXR™
Proof: Throughout this proof, for all x,, € R™ and all s > 0, denote by Q(x,,s) the
closed cube centered at x,with side length s . For fixed (t2— 1) € (0,4), following
Lemma (6.1.14), we shall look for an upper bound for

|(t? = DL+ (¢% - 1)L*)_1f||iz (&) involving first order differences for f. Pick up a
countable family of points (xn);z_1 € R",j € N, such that the cubes Q ((xﬁlz‘l)j, Vt? — 1)

have pairwise disjoint interiors, and

R® = U 0 ((x,tf—l)]_, Jet - 1). (32)

jEN
By Lemma (B.1) in [224], there exists a constant € > 0 such that forall €>0 and all

x, € R", there are at most C(1+€)"indexes jsuch that |xn — (xﬁlz_l)j| < (1+e)Vt* - 1.

For fixed j, one has
@ -DL I+ -DL) ' f=@-D)L' 1+ -1DL) g,
Where, for all x, € R",
g/ ) = £ (o) =m0
And m/*-1 s defined by:

mj,tz—l . 1

e (G, 2v )| .

f(xn+1) dxn+1'
((x%z_l)j,Z tz—l)

Note that, here, the mean value of f is computed with respect to the Lebesgue measure
on R™. Since (32) holds and the cubes Q ((xﬁlz‘l)j, 2Vt — 1) have pairwise disjoint

interiors, one clearly has:
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162~ DL A+ (@ = DL gy

=Z||(t2_1)L*(I+(t2—1)L*) 1f||2 0o P 1.271)

JEN

Z||(t2—1)L*(I+(t2—1)L* g1f|| of(51) 21y

jEN

And we are left with the task of estimating,
(2 — DL + (82 — 1)L")"1ght*-1 .
|| g a7

To that purpose, set

¢ =120 (), 2422 = 1) andc
=120 (1) 2V —1)\120 (), 2V - 1), vk =1,

And g” g g”2 11 2,k =0, where, for any subset A c R, 1, is the usual

. P2
characteristic function of A. Since g”z‘1 = Yk=0 g{('t ! one has:
2 _ * 2 _ #\—15Jj,t2—1 2
122 = DL A+ (¢ - DL) g IILZQ((X;_I)}Z )

Z||(t2—1)L*(I+(t2 DLt 1|| o{(+1) 2 (33)

k=0

and, using Lemma (6.1.13), one obtains (for some constants €, ¢ > 0):

||(t2 DL+ (& - I)L*)_lgj'tz_l||i2Q<(x%2_1) 2 t2_1)
j

< (”gé,tz_ C]t _|_ Z —czk ] t2—1 (Clg,tz—l'M)> (34)
k=0

By Cauchy-Schwarz’s inequality, we deduce (for another constant C'; > 0):

||(t2 DL+ (& - I)L*)_lgj'tz_l||i2Q<(x%2_1) 2 t2_1)
j

<c, (”gé,tz— . +Z —CZk ]tz L2<C1t 1M)> (35)
k=0

As a consequence, we have:
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A
-4 . 12 q |2
j(t2 -1z (¢ - DL+ (2 - 1)L) gl 1||L2Q<(x%2_1)}2 75) d(t? - 1)
0 J
2 _(3 Sl jtr-1 d(t2
(t -1) s sy 2 =1
j=z0 '
/ 2 =(3-9) o—c2k jitP-1 2
+C'; (t —1) Z [P 1,0 d(t? — 1). (36)
0 j=0 '
We claim that
Lemma (6.1.17)[272]:
There exists C; > 0 such that, for all t?> > 1 and all j EN:
C. For the first term:
|2 e
0 Lz(cg" ‘1M) -
C, )
@z |f (xn) = f Cena )12 M (o) dxy dxpyg.

Q((x%z_l)j,z tz—l) Q((x%z_l)j,z tz—l)

D. Forallk = 1,

2

|| jt2—1
. 2_
12 (c,i’t 1,M)

8k

1
= — j j |f ()
( ¢ - 1) anQ((X%Z_I)/Zk"Ll\/tZTl) Yn+1€Q<(X%2_1)j'2k+1\/t2T1)

- f(xn+1) |2M(xn) dxn dxn+1'
We postpone the proof to the end of the section and finish the proof of Lemma (6.1.16).

Using Assertion A in Lemma (6.1.17), summing up on j = Oand integrating over (0, A),

we get:
—(3 )

J CEEVERDY Mol IRV GRS

; ()

]>
(3 €) 2
Z j(t2 —1) g d2—1)
3y L2<Cé’ ,M)
]>
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—(3+e+n) /

ftz—l : | j j |f Cen)
b \ e 2T D)o (), 1)

— e DI*PM () dxy, dxpyq \d(t?2 — 1)

A
< -12 ff |f Gen) = f (ensa)12M () f («
j=0
(XnXn+1)ERMXRM 2_1\ |2 2
" t>max{|xn_(xtz 1)J'| ’|xn+1 (nt 1)J'| }
—(3+ \
-1) d(t2 -1) | dx, dx,.q.

I
The Fubini theorem now shows:

A

Y j @ -1 5 d(? - 1)

j=0 ( 2, 2 tz . 2\
- ()] ™) |
{ )
j(tz B 1)—(3+€+n) Z 1 I(xn ) i x +1_<Xt _1) ‘Z\I \(tz -1) d(tz
j=0 \max{l = - n” ! I¥+oo)
{ )
- 1.

Observe that, by Lemma (B.1) in [224], there is a constant N € N such that, for all
2
t?>1, there are at most N indexes jsuch that |xn—(x$lz‘1)j| <n(t?-1) and

2
|xn+1—(x$lz‘1)j| <n(t* —1). If such an index j exists, one has |x, —x,.| <

2,/n(t? — 1). It therefore follows that
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(tZ —_ 1) S Nl(lxn—xn+1|2/4n,+oo)(t2 — 1),

So that
2 . jt?-1
_[(t _1) Z”g 12 Cjt 1M)dt
j
A
_ —(4+€+n)
<on [ e - felMe | [ @07 ae
R™XR™ lxn—2xn4+1l2/4n
—1) |dx, dx,.q
= |f(xn) - f(xn+1)|2
< C;N ﬂ X, — x| M(x,,) dx, dx, 1. (37

|Xn—xn41|s2vna

Using now Assertion B in Lemma (6.1.17), we obtain, forall j > 0 and all k > 1,

j(tz—l)z 3 et acer -

jz0

., j (12 — 1)-1-C-0/2 I/ | 1 ()
Jj20 0

\Q((x%z‘l)j,zk“m)xQ((xflz‘l)j,zk“m)

IA

- f(xn+1)|2M(xn) dxn dxn+1 d(tz - 1)
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<y | e

]20 xn,xn+1€Rn

| ‘ —(4+e+n)
— f ) M (x) | j(tz -1 z 1 , (t?
0

(
max{ - j ; -
|
\ |
—Dd(t? - 1)\i dx, dx,,,.

J

But, given t? > 1, x,,x,4; € R", by Lemma (B.1) in [224] again, there exist at most

C,2%" indexes j such that

|xn — (xﬁlz‘l)j| < 2k\n(t* — 1)and |xn+1 — (xflz_l)j| < 2kyn(t? — 1),

and for these indexes j, |x, — xp41] < 2871 /n(t? — 1). As a consequence we have:

—(4+e+n)
j (t*-1) Z 1

jz0

t?-1)d(t*>-1)

(
|
max{I
\

—(4+€+n)

< G2k j (t* -1 =z dt

2
2.1 —xn 4l
2= k1, 11

5 ,zk(z—e+n)|x —x |—n—(2—e)1 ,
SCl n~Xn+1 Ixn—xn+1|52k+1m (38)

for some other constant C’; > 0, and there for

A
j(t2 -1)° Z |2
0

< 516'12k(2_6+n)

dt

12 c“ ‘1M)

|f(xn) - f(xn+1)|2

|2y, — Xpyp |27

M(xy) dxp, dxpyq.

[Xn=xn41ls2k*1Vna
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We can now conclude the proof of Lemma (6.1.16), using Lemma (6.1.14), (35), (37)
and (38). We have proved, by reconsidering (36):

A

(e-4)
j (€2 = 1) 5 = DL+ (@ = DIl gy d (8 = 1)
0

|f(xn) - f(xn+1)|2

|n+2—6

<C',C,N M(x,) dx,, dx,1
|xn — Xn+1

|xn—xn+1|52k+1\/nA

_ 2
_l_zc,lc-lé,lzk(z_e)e_fzk ﬂ |f Cen) = f Oyt M) dx, dxos

— n+2—-e
k=1 |xn xn+1|
- |xn—xn+1|52k+1\/nA

and we deduce that

A

(e-4)
j (€ = 1) TN = DL A+ (@ = DL 1P gy A — 1)
0

—c'|xp—-x
M(x,)e ¢ n=*ns1l dx dx, .,

< 64, j |f(xn) - f(xn+1)|2

RIAR™ |xn - xn+1|n+2_6

for some constants C, and ¢’ > 0 as claimed in the statement.

Proof of Lemma (6.1.17): Observe first that, for all x,, € R",

1
), 2T,

gé'tz_l(xn) = f(xn) - | f(xn+1) dxn+1'
2 (20

1
oGy, 2T

(f(xn) - f(xn+1)) dxpiq.
((x%z_l)j,Z tz—l)

By Cauchy-Schwarz inequality, it follows that

|gé,t2_1(xn)|2 < ﬁ j 1f () = F e )I? dxpes.

Q((x%z_l)j,z tz—l)

Therefore,
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e
8k LZ(Cli’t,M)

¢ 2
= (t2 — 1)n/2 2 j 2 j |f Cn) — f O D12M () dixyy dxpiq
Q((x% ‘1)j,2 t2—1) Q((x,g —1)j,2 t2—1)

which shows Assertion A. We argue similarly for Assertion B and obtain:

2

1
k 12 (c,i’t ‘1,M)
¢ 2
= tn/Z |f(xn) - f(xn+1)| M(xn) dx ndxn+1r

er((x,gz—l)j,z t2—1) yeQ((x,gz—l)j,z t2—1)

which ends the proof of Lemma (6.1.17)
We end up this section with a few comments on Lemma (6.1.17). It is a well-known fact

[250] that, when € > 0.

||(_A)(Z_E)/4f||L1+Er(Rn) < 62—6,1+€,||52—6,1+€,f||L1+E,(Rn)r (40)
where
1
400 ) =
dr
52_6»1+€f(x71) = j jlf(xn +1xn41) — f(x) ] dXpgg y3—e |’
0 ‘B
And also [251]
2—€ -
||(_A) 4 f L1+E(]Rn) S 62—6,1+€||D2—6f||L1+E(]Rn) (41)
Where

1

D, flx)= ( ] I Gt + Ani) = £ Cen)I? dx”ﬂ){
R"

|xn+1 |n+2_6

In [251], these inequalities were extended to the setting of a unimodular Lie group
endowed with a sub-laplacian A, relying on semigroups techniques and Littlewood-
Paley-Stein functionals. In particular, in [251] and [224] use pointwise estimates of the

kernel of the semigroup generated by A. The conclusion of Lemma (6.1.71) means that

the norm ofL*(z_E)/4f in L2(R™, M) is bounded from above by the L?(R", M)norm of an
appropriate version of D,_.. Note that this does not require pointwise estimates for the

kernel of the semigroup generated by L*, and that the L?off-diagonal estimates given by
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Lemma (6.1.13), which hold for a general sequence measure M, are enough for the
argument to hold (see [224]) However, we do not know if anL'*¢ version of Lemma
(6.1.17) still holds. Note also that we do not compare the L2(R"™, M)norm of L*?~€/*f
with the L*(R™, M)norm of a version of S,_ ,.f. Finally, the converse inequalities to
(40) and (41) hold in R™ and also on a unimodular Lie group [252] and [224] did not

consider the corresponding inequalities .
Corollary (6.1.18)[272] :

If L* is self-adjoint and normal then

. ’ dist (u,x L")
A > a2
M Il > ELEID

. 1
@) lulle < 57
(iii) 1>2—t2.

€
t2-1"

(iv) Il <1+
Proof:

(i)  SinceL* = A'u then ||[(L* — ) lpz < lw Q' — D72
Weget |lp A" — Dl z = dist (u,XL") — €

dist (u,x L") _

Thus, || >
12112 el 2

(i)  Let L* beacontraction from (24) we have |[u|[;z < ﬁ :

(iii)  Given |[(I + (t? = 1) Auw)71|| < 1, using (ii) we can get 1 > 2 — t2.
(iv) For |JU+ @ -1 L)Y <1,and I+ (t?—1)L" =1+ e, using (iii) we

€
t2-1 °

can get ||L*]l2 <1+

Sec (6.2):Equivalence of Fractional Order:

Sobolev norms and semi-norms play a central role in the numerical analysis of
discretization methods for partial differential equations. For instance, standard finite
element error analysis is essentially a combination of the Bramble-Hilbert lemma and
transformation properties of Sobolev (semi-) norms. These properties are also central
to the area of preconditioners for (and based on) variational methods. More precisely,
arguments based on finite dimensions of local spaces are inherently connected with
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scaling arguments to keep dimensions bounded. Norms are usually not scalable. That is,
the corresponding equivalence numbers behave differently with respect to a scaling
parameter like the diameter DO of the domain Owhen the domain under consideration
is transformed by an affine map that maintains shape regularity (i.e., the ratio of DO
and the “inner diameter” of Ois bounded). This can be usually fixed only when essential
boundary conditions are present. An example is using the H'-semi-norm as norm in H}.
More generally, semi-norms have better scaling properties: usually they can be defined
so that equivalence numbers are of the same order with respect to DO under shape-
regular affine transformations of the domain.

Whereas properties of Sobolev (semi-) norms under smooth transformations or
simple scaling are straightforward as long as their orders are integer, things are getting
more complicated for fractional-order Sobolev norms. Such norms appear, e.g., in a
natural way when considering boundary integral equations of the first kind [268, 266]
or when studying the regularity of elliptic problems in non-convex polygonal domains
[264]. There are different ways to define fractionalorderSobolev norms and they all
have advantages and disadvantages (standard references are [267, 257]). Different
norm variants are known to be equivalent. But dependence of the equivalence constants
on the order and the domain are more involved.

There are several ways to define Sobolev norms. We use the ones defined by a
double integral (Sobolev-Slobodeckij) and by interpolation. For the latter we use the
so-called real K-method, cf. [258]. For 0 <s < 1, the interpolation norm in the
fractional-order Sobolev space H*(0) is defined by

oo 1/2
dt
— — -2 : 2 2 2 -
Iz 0010, = IVllz)m10)s = (jo t sz},{}ﬁvl(”vo”o,o + 2w, llF0) t)

Here and in the following, the notation inf,,:,,owl(llvoll(zw + t2||170||f0) implies that
the infimum is taken over v, € L?(0)and v; € H?(0), or corresponding spaces as
indicated by the respective norms.

We also define the interpolation space
H#(0) = [L?(0),H5 (0)]s
with corresponding notation for the norm. The notation H® is used by Grisvard and
is common in the boundary element literature, whereas the notation H, = H* is used
by Lions and Magenes and is common in the finite element literature.

The Sobolev-Slobodeckij variant of these norms is defined (for 0 < s < 1) by

|mm—v@n7“2
P 1/2
L2 (0))

mmmm=wmﬂ=@ﬂam+LL R (42)

v(x)
dist(x, 00)s

Ivllasy = Ivll-s0 = | IvllFso) +
©)

The corresponding semi-norms are
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. 1/2
, dt
|17|[L2(0)'H1(0)]S = |v|L2(0),H1(0),S = (j t—ZS lnfvl(”vo”(z)'a + t2|v1|%'0)7>
0

v=vp+

lv(x) — v(y)|? Yz
[Vlusy = vlso = (j dxdy | .
070

|x _y|n+25

Additionally, it is useful to define the semi-norm of quotient space type

and

IVls0int = vllgsoyr = ggﬂgllv + clls0-

The aim of this section is to study equivalences of the semi-norms previously
defined, on a fixed domain. Together with mapping properties , these estimates are
needed to prove our main results . Proofs are based on a standard norm equivalence
and specific Poincar’e-Friedrichs’ inequalities, which are also recalled here.

It is well known that for Lipschitz domains different definitions of Sobolev
norms are equivalent. However, equivalence constants depend usually on the order and
the domain under consideration. In particular, for a bounded Lipschitzdomain O, the
norms |||lso and [|*ll 20y #10)s are equivalent for 0 < s <1, cf. [267, 264, 268]. Such
equivalences are shown by corresponding equivalences on R™ and the use of
appropriate extension operators, cf. [260], see also [125] for non-Lipschitz domains. In

particular, the norms previously defined are uniformly equivalent for s in a closed
subset of (0, 1), see [267].

Here, for the norms, we don’t elaborate on the dependence of the equivalence
constants on sand 0. We rather give them specific names to be used in estimates to
follow.

Proposition (6.2.1) [256]: (equivalence of norms)

For a bounded Lipschitz domain O ¢ R" and for given s € (0,1) there exist
constants k(s, 0), K(s, 0) > 0 such that

k(s, O)Ivlliz0)n10)s < IIVIlso < K(s, Ol 20y uroys Vv € H*(0).

For a proof (see [268]).
It is well known that, on bounded Lipschitz domains, lower-order norms can be

bounded by higher-order semi-norms plus finite rank terms. Such estimates are
referred to as Poincar’e-Friedrichs’ inequalities. For integer-order norms there are
direct proofs with explicit constants (depending on orders and domains) [269] and
attention has received finding best constants and deriving improved weighted
estimates, (see [270, 271] and [261]), respectively. We need such a Poincar’e-
Friedrichs’ inequality for fractional-order norms on bounded domains (for unbounded
domains, see [224]), and refer to [262, Lemma 3.4] for a proof. This proof is given for
two dimensions but immediately extends to the general case.
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Proposition (6.2.2) [256]: (Poincar’e-Friedrichs inequality, Sobolev-Slobodeckij semi-
norms)
Let O c R" be a bounded domain, and s € (0,1). Then there holds

lvllop < Cprss(s, 0) (Ivls,a + jv > vv € H5(0)
0

Crrss(s,0) = 0]71/2 maX{1’2—1/2D5/2+s}.
Here, |O| denotes the area of O and, as mentioned in the introduction, D, is its

with

diameter.

Lemma (6.2.3)[256]:

Let O € R" be a bounded, connected Lipschitz domain. Then there holds

I3 < I3 ome = VI30 + ggﬂgllv +cllfo < (1+ Chpss)Ivlio
for any v € H(0) and s € (0,1). Here, Cprss = Cprss(s,0) is the number from
Proposition (6.2.2).

Proof:

By definition of |-|g there holds for any ¢ € Rand any v € H*(0) (we now drop
Ofrom the notation)

lvls = v+ cls.
Therefore
|v|s < 1nf||v + C”s = |v|s,inf
ceR

which is the first assertion. By the initial argument and the definition of the Sobolev-
Slobodeckij norm one also finds that

2 — — i 2
vISine = infllv +cllf = infllv + cllg + [vI3.

This is the second assertion.

The last relation and the Poincar’e-Friedrichs’ inequality (Proposition (6.2.2)
lead to

2
) + vl = (1 + Chpss)Ivl3.

2 2 :
vl <C f{lv
| Is,1nf — “PF,SS L}IEl]R (l |s +

This finishes the proof.

jo(v+c)

Lemma (6.2.4) [256]:

Let O € R" be a bounded Lipschitz domain. There holds

2
2 2 .
kzlvle(O),Hl(O),S S |v|§'0'inf S 3K2|v|L2(0),H1(0),S + 5(1 _ S) ggﬂg”v + C“(z),a

for any v € H5(0) and s € (0,1). Here, k = k(s,0) and K = K(s,0) are the numbers
from Proposition (6.2.1).
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Proof:
Let v € H(0), and let ¢y, c; denote generic constants. For any t > Othere holds

nf lwelld + ewalD) = inf (g + colly + 21y 1D)
—v0 1

v=vg+Cot+v1+Cy

= inf (”170”2 + t? |‘l71| ),

C1,V—C1=vo+V1

that is
mf (Ilvoll2 + 23| ]d) = inf +Clr}]f lwoll§ + t2v412)
0
< 1nf inf (||170||2 + t2|v,|3).
ERv+c=vy+

(Recall that our convention for the notatlon 1nfv+c=v0+vl(llv0||(2) + t%|v,|?) implies that
the infimum is taken with respect to v, € L?(0)and v; € H1(0).) We conclude that

oo
2 — -2 : 2 2 2
s = | €% int (vl + e2fus ) de

oo
< inf —2s f voll% + t2|v —=infv cll
<if | e o (vl + 2o = infllo 4l
By Proposition (6.2.1)
: 2 -2 2 — -2
grel]]gllv + C”LZ'Hl'S <k L}Iel]]gllv + C”s - |v|51nf'

so that the first assertion follows.

By definition and using Proposition (6.2.1) there holds

|v|51nf - lnf”v + C”z < KZ lnf”v + C”LZ H1
_ K2 infj 2 inf (ol + 210 )— (43)
ceR 0 v+Cc=vy+

We bound the integrand separately for t < land ¢ 2 1.
For t < 1 we use the representation v + ¢ = v, + v; to bound

vollg + 21w ll§ + 2w |F < llwoll§ + 2¢*(lv + cll§ + llvolIF) + t2vy 13
< 3|lvoll3 + 2¢2||lv + cl|3 + t2|vy |3
If t > 1then we select vy = v + ¢ to conclude that

inf (Ilvoll2 + 2l lI§ + 2|, 1) < llv + cll§.

v+Cc=vo+

Together this yields

jtﬂs in m%W+thW+tWA)—
0

v+Cc=v, 0
- ) ) L L dt
< | t% inf (3||v0|| + 2t%||lv + cll3 + t?|v,|? )—+ t=25||lv + cll3 —
0 v+c=vo+ 1 t
o 1 [ee})
=j t=* inf (3||v0||2 +t?|v, |3 )—+ ||v+c||2<j 2t1728 dt+j t‘l‘zsdt>
0 vte=vot 0 1
< 3|v +———Ilv+clld 44
| |L2H1 S(I—S) ” C”O ( )

Therefore, recalling (44), we obtain
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2

s(1-5)

V1210 < 3K2 112 + infllv + cll?,

which is the second assertion.

From the proof of the previous lemma one can conclude that the semi-norm
|| .2 0y,1(0),s is indeed the principal part of a norm in H*(0). This will be useful to

deduce a Poincar’e-Friedrichs inequality with this semi-norm. First let us specify what
we mean by the semi-norm being principal part of a norm.

Corollary (6.2.5) [256]:

Let O c R" be a bounded Lipschitz domain. There holds

2

Ivllso < s(1—s) V1130 + 3K21V1 520y 110y s
for any v € H5(0) and s € (0,1). Here, K = K(s,0) is the number from Proposition
(6.2.1).
Proof:

This is a combination of the second bound from Proposition (6.2.1) and (44)
with ¢ = 0.

We are now ready to prove a second Poincar’e-Friedrichs inequality.

Proposition (6.2.6) [256]:(Poincar’e-Friedrichs inequality, interpolation semi-norms)
Let O € R™ be a bounded connected Lipschitz domain, and s € (0,1). Then there

exists a constant Cpr; > 0, depending on O and s, such that

jq
0
Proof:

Assume that the inequality is not true. Then there is a sequence (vj) c H5(0)

such that
j j
0

Therefore, by Corollary (6.2.5), (v;) is bounded in H*(0) with respect to the Sobolev-
Slobodeckij norm. Then, by Rellich’s theorem (see [268]) there is a convergent

Ivllo,0 < Cprils, 0) (Ivlfz(a),},lw),s + ) vv € H(0).

”vj”(w =1, |v|iz(0),H1(0),s + -0 (- o).

subsequence (again denoted by (vj)) in L?(0). Since |vj| — 0 this sequence is

L2(0),H(0).s
Cauchy and with limit vin HS(0O). It holds Ivle(O)'H1(0)'S =0 so that v is constant.
Furthermore, since fo v = 0 and O is connected we conclude that v = 0, a contradiction

tolyll,p = 1

With the help of Proposition (6.2.6) we can now turn the estimate by Lemma
(6.2.4) into a seminorm equivalence.
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Lemma (6.2.7) [256]:

Let O c R" be a connected bounded Lipschitz domain. There holds

CZ
112 ) 2 PFI 2
k |v|L2(0)'H1(0),S S |v|S,0,inf S K (3 + 5(1 — S)) |v|L2(0)rH1(0)'S

for any v € H*(0) and s € (0,1). Here, k = k(s,0),K = K(s,0) are the numbers from
Proposition (6.2.1), and Cpg (s, 0) is the number from Proposition (6.2.6).
Proof:

The lower bound is the one from Lemma (6.2.4). The upper bound is a combination

of the upper bound from the same lemma and the Poincar’eFriedrichs’ inequality from
Proposition (6.2.6). To this end note that the infimum inf.cg|lv + cllo is achieved by
the same constant ¢ that eliminates the integral in the bound of the Poincar’e-
Friedrichs’ inequality for v + c.

Meanwhile we have accumulated quite some parameters in the semi-norm estimates
that depend on the order s and the domain Ounder consideration. Our goal is to show
equivalence of semi-norms which is uniform for a family of affinely transformed
domains. We therefore study transformation properties of semi-norms in the following
section. In this way, parameters from this section enter final results only via their values
on a reference domain.

Obviously, both norms in H*(0) defined previously, ||*|l;2(0) y1(0)sand [I|l50, are not
scalable.This could be achieved by weighting the L?(0)-contributions according to the
diameter of O, for instance, cf. [261]. Of course, in this way one does not obtain
uniformly equivalent norms (of un-weighted and weighted variants) under
transformation of the domain.

This is different for the norm in H%(0). It can be easily fixed (to be scalable) by using
that the semi-norm ||, ¢ is a norm in H} (0), and re-defining

||17|| [ (0)'H3(0)]s = ||17 ||L2 (0),HE(0),s

o dt 1/2
= (j t=2s inf (lwoll2 o + t2|171|i0)7>
0

v=vy+v1,01€HE(0)

in the case of interpolation. In the case of the Sobolev-Slobodeckij norm one can ensure
scalability by re-defining
v(x)

5 1/2
dist(x, 00) L2(0)>
since the last term guarantees positivity. In the following we will make use of these re-

”‘U”ﬁs(a) = ||v||~,s,0 = (lvlllz-ls((?) +

defined norms.
For a domain O € R™ we denote by O = F(@) the affinely transformed domain

0 ={F#; 2 € O}with F% =x,+ B%, xo € R, B € R™" (45)
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Here, B is assumed to be invertible. Correspondingly, for a given real function v defined
onO,
N { 0-R
(& - v(FX)
is the function transformed onto O.

Lemma (6.2.8) [256]: (transformation properties of norms)

Let O c R" be a bounded Lipschitz domainand let O be the affinely transformed
domain defined by (6.2.4). Then there hold the transformation properties

|detB|”B” zsllv”LZ(O)H (0)5 < ”v”LZ(O)H (0)5
< Idet BIIB U2 N1911% ) 43 0.
|det BIBII~2* min{|det B|IIBII™", 1} 191I% ; 5 < lIvlIZ 0
< |det B|IIB~*||* max{|det BI[[B~*||I", 1} I2II% . 5 (47)
forany ¥ € HS(@) and s € (0,1).
Proof:

(46)

For the interpolation norm and 0,0 being a cubes, this property (with an
unspecified equivalence constant) has been shown in [264]. It is simply the scaling
properties of the L?and H}-norms together with the exactness of the K-method of
interpolation (employed here). The proof generalizes to affine mappings in a
straightforward way as follows. In Euclidean norm one has ||Vv(x)|| < [IB7||||[VeR)]| so
that the following relations are immediate,

10112, 0y = 1det BIIBIZ ), 101230, < Idet BIIB 121012 ).

Then, with transformation r = ||B~!||t, we deduce that
(e}

dt
2 25 2 2
v = t v + t“|v —
I ”LZ(O)»Hol(O)rS _[0 v= v0+v1v1eH0 (” 0” | 1|1'0) t
dt
< |detB j £2s 1nf Doll2 o + t2|IB~LII2|19,1% 5) —
detsl | et ing (190l + B TIRIBI)
1[|-1,\-25 2 dt
= |det B| (IIB I=*r)=2 lnf (llvOll 5 +120,020) —
_U0+ 1, 1 T

|detB|”B 1”2$”v||L2(0)H (0)5
This proves the upper bound in (6.2.5). The lower bound is verified by using the
inverse transformation F~! with matrix B~1.The transformation property of the second
norm is obtained similarly, see also [87] for the term of the double integral.

lv(x) — v(y)|? v(x) i
v ||~sa—]0 P dxdy*L dis G, 90y )
<|detB|2jj @ -2 -
B 0JollB

—1||—n—25|£ _y|n+25

(%) .
+ IdetBIJ — | dX
o \[IB~1[|=sdist(%,00)

QU
ND
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< |det B|||B~*|1* + max{|det B||[B~*|I", 1} [|?]|?

~5,0

This is the upper bound in (6.3.6). Analogously one finds that

19112 ;5 < |detB~*|[|B]I* max{|detB~*[IIBII", 1} |[v]IZ 5 o-

~,5,0

This proves the lower bound in (6.2.6).
Lemma (6.2.9) [256]: (transformation properties of semi-norms)

Let O c R™ be a bounded Lipschitz domain and let O be the affinely transformed
domain defined by (30). Then there hold the transformation properties

IdetB‘l | ||B ||25 |ﬁ|i2(@),H1(@),s < |v|iz (0),HL(0),s

< |detB_1|||B||25|1’7\|i2(@)ﬂ1(@)'5, (48)
—n—255|2 2
|detB[2|BII "2 [912,5 < lv]2,
< |detB|?||B~[I"**9l7 4 (49)
forany ¥ € HS(@) and s € (0,1).
Proof:

The proof is basically identical to the one of Lemma (6.2.8).

The third semi-norm, |-|5 ¢ inf, behaves under affine transformations as follows.

Lemma (6.2.10) [256]:

Let O c R? be a bounded Lipschitz domain and let O be the affinely transformed
domain defined by (30). Then there hold the transformation properties

|det BI2||BII=""%1912 5 + |det B|infllD + cl1? 5 < V]2 o0
2|| p—1[|n+2s|5|2 el 2
) < |detB|?||B~t||** Slvls'@ + |det B| ggﬂgllv + cllo'@
forany V € HS(O) and s € (0,1).

Proof:

This result is immediate from the representation of the semi-norm given in
Lemma (6.2.3) and the transformation properties of the |-|¢-semi-norm by Lemma
(6.2.9) and of the L?-norm.

We are now ready to state and prove our main results on certain equivalences of
fractional-order

Sobolev semi-norms. We use the notation (45) from Section (2.3) for affine
transformations. In particular, we assume that the domain Ounder consideration is the
affine image of a bounded Lipschitzdomain @. The following results specify how
equivalence constants depend on the affine map. At the end of this section we conclude
the equivalence of some semi-norms which is uniform for a family of so called shape
regular domains Theorem (6.2.14) and some scaling properties Corollary (6.2.15).
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These results are of importance for the approximation theory of piecewise polynomial
spaces in fractional-order Sobolev spaces.

The first theorem shows the equivalence of the semi-norms |-|;2(9) y1(0)s» and
|' |s vk

Theorem (6.2.11) [256]:
Let @ c R? be a bounded, connected Lipschitz domain and let Obe the affinely

transformed domain defined by (30). Then there hold the following relations.
()
A2
Crr1 (S ,0 )
S

(1-5)
for any v € H°(0) and s € (0,1) with K(s,0) from Proposition (6.2.1) and Cpg,(s,0)

from Proposition (6.2.6).

(ii)
Ay —2 ~\ 2
|v|22(0)'1_11(0)'s < |detB|_1”B”n+zs”B_l”ZSK(S! 0) (1 + CPF,SS(S’ 0) ) |v|§,0

~\ 2
lvI2, < |det BIIIB~H|™*25||BII*K(s,0)" [ 3 + |v|§z(0),,,1(0),5

for any v € H°(0) and s € (0,1) with K(S, (5) from Proposition (6.2.1) and from
Proposition (6.2.2).
Proof:

On a fixed domain O we obtain, by combining Lemmas (6.2.3) and (6.2.7), the
equivalence of semi-norms:

12 . N2 C '(S,@)z R
|0|s,@ < |v|§,@,inf < K(S,O) (3 +F::(11——S)> |v|iz(@),H1(@),s (50)
and
. A2 A
191%2(0),12(6)s < K(5,0) “I915 6 ins
<x(5,0)” (1
+ Cprss(s, @)Z)WE@ (51)

The first assertion of the theorem then follows by combining (40) with the
transformation properties of the semi-norms by Lemma (6.2.9):

19150 < |det BI2IBH"**°|91%

AN 2
~\ 2 C S,O A~
< |det BI?||B~|"*2%5K (s, 0) (3 +%> |v|f2(@),H1(@),s

~\2
AN 2 C S,O ~
< |det BIIIB=*[***IBII**K (s, 0) (3 * ZF(';(— s)) )'vlfz(@),m(@),s

The second assertion of the theorem is proved by a combination of (41) with the
transformation properties by Lemma (6.2.9).
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The next two theorems study the other pairs of semi-norms for equivalence in
combination with affine maps, (l'ls'al'ls'a'inf )and (I-ILz(O)'Hl(O)'Sl-ls'O'inf )

Theorem (6.2.12) [256]:

Let O c R? be a bounded, connected Lipschitz domain and let O be the affinely
transformed domain defined by (35). Then there hold the following relations.

(.
vlso < Vlsoime Vv € H(0),Vs € (0,1),
(ii).
N2\ | A
VIZome < (1 + |det BIYIBI|™*25Cpp 55(s, 0) ) 1912, Vv € HS(0),Vs € (0,1)

withCpp ss (s, (5) being the number from Proposition (6.2.2).
Proof:
Assertion (i) is a repetition of the first estimate in Lemma (6.2.3).

To show the second assertion we use Proposition (6.2.2) and Lemma (6.2.9) to
deduce that
. . ~ N2
infllv + cll o = |det Bl infll? + cli3 o < |det BICprs5(s,0) 1912,

AN 2
<1+ |det B|7Y|B|I™*?5Cpp ss(s,0)".
The assertion then follows by the definition of the semi-norm [-[ o i

Theorem (6.2.13) [256]:

Let O c R? be a bounded, connected Lipschitz domain and let O be the affinely
transformed domain defined by (30). Then there hold the following relations.

(0.
A — — b~ _2 A
1912 0y 10y < 1B max{ldet BI[IBI™*25, 13 (s, 0) 1912 us
forany v € H°(0) and s € (0,1) with k(s, O) from Proposition (6.2.1),
(ii).

~12 — ~\ 2
|17|S'0'inf S maX{ldetB”lB 1||7’l+25’ I}K(S, 0) (3 + S(l _ S) LZ(O),Hl(O),S

for any v € H5(0) and s € (0,1) with K(s, O) from Proposition (6.2.1) and CPF'SS(S, (5)2
from Proposition (6.2.6).

—CPF"(S’W) 192

Proof:

By Lemmas (6.2.9),(6.2.7) and (6.2.10) we obtain

A — A — A _2 A
|v|iz(0)'H1(0)'s < IdetBI 1||B||n+25|17|]2d2(@)'H1(@)'S < IdetBIIIB 1”25}((5,0) |v|§'0'inf
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< |detB||IBII*x(s,0)" (IdetB|‘2||B||”+25K(s 0) vl + Idet B infllv + cll2,)

< ||B~11%° max{|det B|||B~1||"*25, 1} (s, 0) |v|50 inf
This is the first assertion. The second one follows analogously by the same lemmas:

AN"2 . . ~
Ivlsalnf < |det B|?||B~1||"*25k (s, O) Ivl2 5 + |det B| 1nf||v + clli'@
< |det B| max{|det B|||B~1||"**?, 1}|v|50lnf

AN 2
~ C 5,0 R
< |detB]| max{ldetBII|B‘1I|"+25, 1}1((5, 0)2 (3 + %) |v|iz(@),H1(@),s

N2
CPF,I(S;O) |v|
5(1 _ S) L?(0),HY(0),s

We end this section with establishing uniform equivalence of the semi-norms

< max{|det B|[|B~|["*2%, 1}[|B||>°K (s, O)° (3

|'ls0 and || ;2(0y u1(0),s for shape-regular domains. Three of the four remaining bounds

for other combinations of semi-norms are uniform under further restrictions on the
diameter of the domain.

Let us introduce some notation. We consider a bounded, connected Lipschitz
domain O c R"and maps of Oonto domains Owhere the ratio pO :=D,/d, is
controlled. Here, Dpdenotes the diameter of Oand d,, is the supremum of the diameters
of all balls contained inO. In the case of finite elements (or convex polygons)
boundedness of p is referred to as shaperegularity of O. Also, when defining d, with
balls with respect to which Ois star-shaped, then pOis referred to as chunkiness
parameter.

Using the notation (30) there holds

Do _ Dy . _Ds_Dg B -
IBIl < — d, = Dg"? 1B~ < 4, ~ Dy =p0, BB~ < pO p0, (42)
cf, e.g., [258]. Furthermore, we conclude that
ol _ D3 ., _Di D}
|det B| = |A| < d”'ld etB|7l < — ar = pi = D" 43)

With this notation, the results of Theorems (6.2.11-6.2.13) imply the following.
Theorem (6.2.14) [256]:
Let O be the affine map of a bounded connected Lipschitz domain @ c R®, cf (2.4).

(). The semi-norms |-|5¢ and ||;2(9) y1(0)s are uniformly equivalent for a family of
shape-regular domains O:

~N 2
N2 CPF,I(S;O)
|v|50 >~ gK(S, 0) (3 + (1 _ ) |v|22(0)'1_11(0)'sr

|v|L2(0)H 10),s = <p5*¥p n+2$’c(5 0) (1 + CPF,SS(S'@)Z) |v|§,o
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for any v € H°(0O) and s € (0,1). Here, K(s, @),K(s, (5) are the numbers from
Proposition (6.2.1) and CPF'SS(S,@), CPF,,(S, (5) are as in Propositions (6.2.2), (6.2.6),
respectively.

(ii). The semi-norms |-|gp and |-[sp¢ are uniformly equivalent for a family of
uniformly bounded, shape-regular domains O:
|v|s,0 < |'|s,0,inf )
D& N2
|v|§,0,inf = (1 +t 2 pgpg+ZSCPF,SS(S’0) >|V|§a

Ds

for any v € H5(0) and s € (0,1). Here, CPF'SS(S, (5) is the number from Proposition
(6.2.2).

(iii). a) For a family of shape-regular domains Owhose diameters are bounded
from below by a positive constant, the semi-norm |-|;2(9)y1(0)sis uniformly

bounded by/-|5,0 inf

_ A2
|”|iz(0),H1(0),s = maX{nggHS'Da 25055} P(%SK(S'O) |v|§,0,inf
forany v € H*(0) and s € (0,1).

b) For a family of uniformly bounded, shape-regular domains O, the semi-norm
|'l5,0,inf  is uniformly bounded by |-|;20) 41 (0).s

AN 2
512 -25) 2 7\2 Cpra(s,0) 2
1913 0me < max{pi*? pg, D5 D5 }p5° K(s,0) (3 T o | Eomions

forany v € H°(0) and s € (0,1).

Here, k(s,0), K(s, 0) are the parameters from Proposition (6.2.1), and Cpg (s, 0)is the
number from Proposition (6.2.6).

Proof:
The assertions (i)-(iii) are a combination of Theorems (6.2.11-6.2.13),

respectively, with the bounds provided by (42), (43).

The uniform equivalence of the semi-norms |-|s» and||;2(pyy1(0)s for shape-
regular domains is based on what one calls their scaling property. It means that both
semi-norms for functions on a domain Oare uniformly equivalent to the respective
semi-norm of the affinely transformed functions onto a fixed domain O, when one of the
semi-norms is multiplied by an appropriate number (it is a power of the diameter of 0).
This property applies also to the norms |-|;2(9) y1(0)sand ||.50, cf. Lemma (6.2.8).
Scaling properties are relevant for the error analysis of piecewise polynomial
approximations. We formulate the result as a corollary to Lemmas (6.2.8) and (6.2.9).

Corollary (6.2.15) [256]:
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The norms |'|L2(0),H3(0),s' |"|s0 and semi-norms |*|5ol*|;2(0) y1(0)s are scalable of

order D} ~25:

D(rj;,—Zs nDZS n

s n 2
o P W0l 2(0) g (0).5 = VN2 0y i 0).s

< D”‘zspésDzs_”pg||i7\“i2(@)ﬂ3(@)»5
pa mln{pa Ps ,1}||v||~S@ < |vll2s0

<D}~ pOSDZS n max{p0p0,1}||v||~50

nDZS n

Dg *po

for any v € H5(0) and s € (0,1), and

D3™%p5"D5" P 191 i2(0y 1) s < [Vi20ym1(0ys < DB P8 D5 PG 10112 () i1 (6) s
Dy~ pg™"D5" "pg" 10l < Iwlio < DG pg D5 " pg19156
foranyv € H’(0O) and s € (0,1).

Proof:
The bounds are a combination of Lemmas (6.2.8) and (6.2.9) with (42), (43).
Remark (6.2.16) [256]:

The estimate by Theorem (6.2.14) (iii) a) breaks down when D, = 0. In fact, for
a family of scaled domains Oy, with Dy, = h and a non-constant function v scaled to a

family {v},} of functions on {0}, |Vh|i2(0h)'H1(0h)'s ~ h"~25 by Corollary (6.2.15) whereas
IVhlg(jbinf > infocgllvy — C”oOh ~ h", Therefore, the dependence on D, like D;%%of the
upper bound in Theorem (6.2.14) (iii) a) is optimal.

Proposition (6.2.17)[272]: (equivalence of norms) For a bounded Lipschitz series domain
2r,0; cR® and for given € >0 there exist constants k(1 —¢ X%, 0;),K(1—
€2, 0;) > 0 such that

n
k(1—6'201> villizgsz, oz, 0)a-c < Villiesz,o;

i=1
n
=K (1 B E’Z 0i> ”Vi”LZ(Z?n 0;)H'(Z{L1 01).1—€

i=1

n
VVi € Hl_e (Z 01>
i=1

It is well known that, on bounded Lipschitz series domains, lower-order norms can be
bounded by higher-order semi-norms plus finite rank terms. Such estimates are referred to

as Poincar’e-Friedrichs’ inequalities. For integer-order norms there are direct proofs with
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explicit constants (depending on small orders and series domains) (see [269], [256]) and
attention has received finding best constants and deriving improved weighted estimates,
(see [270,271] and [261]), respectively. We need such a Poincar’e-Friedrichs’ inequality for
fractional-order norms on bounded series domain (for unbounded domains, see [224] and

[263]) , gives for two dimensions but immediately extends to the general case.

Proposition(6.2.18)[272]: (Poincar’e-Friedrichs inequality, Sobolev-Slobodeckij semi-norm)

Let ), O; < R" be a bounded series domain, and € > 0. Then there holds

n n
Ivillosr, 0, < Cprss (1 - E’Z 01) <|Vi|1—e,z}1=10i + j Vi ) Vv; € H¢ (Z 01)
= YL, 0; i=1
With
n n -1/2
Cprss| (1 —6), Z 0; | = Z 0; rnax{l, 2°1/2 D;{l:(gll_e)}
i=1 i=1

Here, |XiL, O;| denotes the area of X 0; and, as mentioned in the introduction, Dyn o, is

its diameter.

Lemma (6.2.19)[272]: Let })*, O; € R"be a bounded, connected Lipschitz series domain.

Then there holds

< (14 Crss)lvili_esn o,
For any v; € H"¢(¥L, Opand € > 0. Here, Cprss = Cprss(1 — €, X, O;) is the number

from Proposition (6.2.8).
Proof: By definition of |'|1—e,2?=101 there holds for any ¢; € R and any v; € H"¢ (3L, 0))
(we now drop X, O; from the notation)
[Vili—e = Vi + cili—e
Therefore
|Vi|1—e < inf ”Vi + Ci”l—e = |Vi|1—e,inf
c;€ER

Which is the first assertion by the initial argument and the definition of the Sobolev-

Slobodeckij norm one also finds that
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|Vl 1-€inf — ci.Iel]]fg”Vi + Ci”%—e = égﬂgllvl + Ci”(z) + |Vi %—e
12

This is the second assertion.

The last relation and the Poincar’e-Friedrichs’ inequality (Proposition (6.2.18) lead to

2
) +lvilic = (1 + CgF,ss)|Vi|%—e-

|Vi|%—e,inf < CIZ’F,SS érel]]g (lVill—e + (Vi + Ci)

z:?=10
This finishes the proof.

Lemma (6.2.20)[272]: Let X, O; c R" be a bounded Lipschitz series domain. There holds

k? |Vl|L2(Z"10)H1(21"10)1 € = |Vz|1 €Xr, 0;inf
KZ
< 3K?|v;|?% 1 1nf||v + ¢;I2
= iL2@r 0)H (Zi":loi),l—e . (1 Y i Ui
for any v; e HI"¢(XL,0;) and €>0. Here, k=k(1—¢X",0;) and K=K(1 -

€, 2., 0;) are the numbers from Proposition (6.2.17).

Proof: Letv; € HQY, 0;), and let c,,c,41 denote generic constants. For any t > 0 there

holds

inf  (Ivall§ + t?1va4al?) = inf (v + call§ + t1vnil?)
Vi=Vn+Vnis Vi=Vpn+Cn+Vni41+Cnyis
= inf (”Vn“(z) + t2|Vn+1|%);
Cn+1,Vi~Cn+1=VntVn+1
That is
_ inf (”Vn“(z) + t2|Vn+1|%) = inf _inf (”Vn“(z) + t2|Vn+1|%)
Vi=Vn+Vni1 Ci€ER Vv;+C;=v+Vpiq

< inf inf AV 2 + t2 v 2 .
CiERVi+Ci=Vn+Vn+1(|| n”O | n+1|1)

(Recall that our convention for the notation iani=Vn+Vn+1(”Vn”(2) + t2|vy41]%) implies
that the infimum is taken with respect to v, € L2(Q, O;)and v,y € HI(ZL, 0;).) We

conclude that

(e}
Wil = [ €2079 it (vl + Clvagald dt
0 L

i=VntVn+1
< infjwt‘“l‘e) inf (vall? + 2 lvya D S = infllv, + 12
- CiE]R 0 Vi+Ci=Vvpn+vn41 ntlo n+1i1 t CiE]R l L4 HY1-€

By Proposition (6.2.17)
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. 2 -2 = 2 — 1,—2 2
CliTEI{R“Vi +cill{zyi;_ <K CliTEI{R“Vi + cilli—e = K %|vili_ginp

So that the first assertion follows
By definition and using Proposition (6.2.17) there holds

2 oz 2 2 2
IVil{—¢inf = Clifé{R“Vi +cilli—e <K l_felgg”Vi +cillizyri_e

Ci
(0]
= K? inf f t723-9  inf (||vn||%+t2|vn+1|%)$ (44)
ci€R J, Vi+C;=Vn+Vni1 t

We bound the integrand separately fore; > 0 and €, > 0.

For €; > 0 we use the representation v; + ¢; = v, + v, to bound

IVall§ + (1 — €)?1IVa4all§ + (1 — €)% vn4a |7
< Ivall§ +2(1 — €)?(llvi + ill§ + valld) + (1 = )2 Vnyq |7
< 3llvall§ + 21 — €)?llvi + ¢ilIg + (1 — €1)?IVnali.

If €, > 0 then we select v, = v; + ¢; to conclude that

inf  (Ivall§ + (1 + €)?1va4allf + (1 + €2)%[Viga 1D < llvi + il

Vi+Ci=vp+Vn41
Together this yields

@ _ dt
[aredo ot AVl 3+ el + (1 + v DS
0 +1

Vi+Cij=vp+vp

© dt
< j (1 +¢,)720-9 inf Gllvollz + 21 + €)%lv; + cill3 + (1 + ez)zlvnHl%)T
0

Vi+Ci=Vvnpn+vn41

«© dt
+ j (1 + )20y, + IS
1

@ _ dt
_ j A+e) 2079 inf Gl + (O + e vl S
0

Vi+Ci=VntVn+1
1 oo
+lv; + I3 (j 2(1 + ;)" 1+2e dt + j 1+ Ez)_3+2€dt>
0 1

< 3|Vi|i2,H1,1—e + ”Vi + Ci”(z). (23)

1
e(l—e¢)

Therefore, recalling (44), we obtain
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2
2 2 2 ; 2
Vili-eine < 3KEViliz g1y e + o= dnf v + cillo,

Which is the second assertion

From the proof of the previous lemma one can conclude that the semi-norm

|.|L2(Z?=1Oii)rH1(2?=10i)r1_€ is indeed the principal part of a norm in H=¢(3L, 0;). This will

be useful to deduce a Poincar’e-Friedrichs inequality with this semi-norm. First let us

specify what we mean by the semi-norm being principal part of a norm.

Corollary (6.2.21)[272]: Let X}, 0; c R" be a bounded Lipschitz series domain. There
holds

KZ

”Villl—e»ﬂéloi = e(l—¢) ”VlllO»Z?:lOi +3K%|v;

2

lL2(sr, 001 (52, 0)1-¢

For any v; € H7¢(3, 0;) and € > 0. Here, K=K(1 — €Y, 0;) is the number from
Proposition (6.2.17).

Proof:

This is a combination of the second bound from Proposition (6.2.17) and (6.2.19) with

¢; = 0. We are now ready to show (see [256]) a second Poincar’e-Friedrichs inequality.

Proposition (6.2.22)[272]: (Poincar’e-Friedrichs inequality, interpolation semi-norm)
Let ), O; € R" be a bounded connected Lipschitz series domain, and € > 0. Then there

exists a constant Cpg; > 0, depending on -, O; and 1 — €, such that

n
WVillosz, o, < Cory (1 -e ). Oi> ("’i'52@;;1oi),Hl(z;;loi)a—e " j v )
i=1 2101
n
Vv; € HI"¢ (Z Oi>.
i=1

Proof:
Assume that the inequality is not true. Then there is a sequence ((Vi)j) c H (XL, 0y)

such that
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-0 (i,j - ).

_ 2
||(Vi)j||0,z?=10i =1 WVillzgsn opgmrsn,o)1-e + ‘ jz . V)
i=1Yi

Therefore, by Corollary (6.2.21), ((Vi)j) is bounded in H17¢(X ™, O;) with respect to the
Sobolev-Slobodeckij norm. Then, by Rellich’s theorem (see [268]) there is a convergent
subsequence (again denoted by ((Vi)j)) in L2, 0y). Since

|(Vi)j|L2(Z7l 0 HA(ET 0_)1_€—>O this sequence is Cauchy and with limit v; in
1=1~1) i=1%v1)

H=¢(3M, 0)). It holds |Vi|L2(Z;l=1Oi)'Hl(Z;lzloi)'l_e = 0 so that v; is constant. Furthermore,

since fz" 0. Vi = 0 and X}, O; is connected we conclude that v; = 0, a contradiction to
i=1 %Y1

1cva)s L.

0»2?:1 Oi

With the help of Proposition (6.2.22) we can now turn the estimate by Lemma (6.2.20) into

a semi norm equivalence.

Lemma (6.2.23)[272]: Let X, O; c R"be a connected bounded Lipschitz series domain.
There holds

2 2 2
K* Vil La(sn, o mrsr, 09a-e < Vilizezn, oine

2
< K? (3 + %) Viltz(gn o m(sn, 00-c
For any v; € HI"¢(X™,0;) and € > 0. Here, k=k(1 — &>, 0,),K=K(1 —¢ X", 0;)
are the numbers from Proposition (6.2.17), and Cpg;(1 — €, XL O;) is the number from
Proposition (6.2.22).
Proof: The lower bound is the one from Lemma (6.2.22). The upper bound is a combination
of the upper bound from the same lemma and the Poincar’eFriedrichs’ inequality from

Proposition (6.2.22). To this end note that the infimum inf; cg|lv; + Ci”o,z};loi is achieved

by the same constant c¢; that eliminates the integral in the bound of the Poincar’e-
Friedrichs” inequality for v; + c;. Meanwhile we have accumulated quite some parameters
in the semi-norm estimates that depend on the order €> 0 and the series domain
2, Ojunder consideration. Our goal is to show equivalence of semi-norms which is
uniform for a family of affinely transformed series domains. We therefore study
transformation properties of semi-norms in the following section. In this way, parameters

from this section enter final results only via their values on a reference series domain.
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Lemma (6.2.24)[272]: (transformation properties of norms) Let Z O, cR" be a

bounded Lipschitz domain and let 2", O; be the affinely transformed series domain defined

by (30). Then there hold the transformation properties

-2(1-9)(1%. 1|2 12
|det BJ|[B| “Vl”L2(2?:101),H(1)(2?:101).1—€ < “Vl”L2(2?=101).H3(2?=101).1—€

< 1det BIIBH PN 2 o rscersopaoe (46)
|det B|||B||72(*~© min{|det B|||B|| ™ 1}|IV1|I~1 3T < vill2 1—esn 0
< |det B[IB7[1>*~ max{|det B|||B~ 1|In 1} IIVL|I~1_ s, (47)

Forany¥; € F e)(z 0) and € > 0.

Proof: For the interpolation norm and Z 10,2, 05 being a cubes, this property (with an
unspecified equivalence constant) has been shown in [264]. It is simply the scaling
properties of the L2 and H}-norms together with the exactness of the K-method of
interpolation (employed here). The proof generalizes to affine mappings in a
straightforward way as follows. In Euclidean norm one has ||Vv; (x|l < [IB7Y||IV9;(X))]| so

that the following relations are immediate,

IvillZagsy o = 1et B, 0 oy, Wil 0
< |detB||IB‘1|I2I\7i|ﬁ1(z?=1oi)'

Then, with transformation r = ||B~1||t, we deduce that

2
”Vi ” L2 (Z?:l 01),1’1%(2?:1 Oi)'l_e

= [ w0 inf (Mal 30, + EWaealgn o) S
0 Vi=Vn+Vn41,Vn+1€HG(ZIL, 0;) 170,221 O ML= O t
< |detB|jwt‘2(1‘€) inf (||v I2 + 12 (94412 )dt
-_ — 11 11
0 91=n+9n419n1€HA(ZL,0,) v 0Zi= O ITLEL 00 ¢
o0
= ldetB] [ (B~ -1r)20-0 inf (Il
0 9=Tn+TnsIns1 €HAET 0) V0 OXELOr
) dr
+r |Vn+1|12n10)?

= 1detBIIB PNl iz (5, 0 ma(ere, 01—
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This proves the upper bound in (2.5). The lower bound is verified by using the inverse

transformation F~1 with matrix B~1.

The transformation property of the second norm is obtained similarly, (see also [87] ) for the

term of the double integral.

2
||Vl || ~,1—€,Z?=1 Oi

|Vi (Xn) -V (Xn+1) |2

— +2(1-
'[Z?ﬂoi XL, 0i |Xp — Xpgq [1H20170)

2
Vi(Xn)
+ R n — an
sn_ o, \dis Xp, 0 X, 0))1¢

< IdetBIzj j 9:&) — %I

S Z};l(?i Z?=1Oi ||B_1||_n_2(1_€)|)?i _ S\,|n+2(1—e)
%) i
VilX;

+ |detB] ( L — 1_€> dg
s, 03 \[IB-1[|I-(-9dist(&;, d X2, 0,)

< |detB|IIBHI?*~ + max{|det B|IIB~*[I", B} 1%:I2 ,_ svy
y 1ul=1 1

an an+1

dz, dy

This is the upper bound in (6.2.22). Analogously one finds that

19117 ,_ g, < |detB=[IIBIPO=9 max{|detBIBII", 1} Ivil12,,_5n o,

This proves the lower bound in (6.2.22).

_—

Lemma (6.2.25)[272]: (transformation properties of semi-norms) Let »*, 0, € R™ be a
bounded Lipschitz series domain and let ., O; be the affinely transformed series domain

defined by (30). Then there hold the transformation properties

-1 2(1—- o 12 2
|detB~H B 21912 g, s (o1 -¢ < Vill2op e (s, 00
-1 2(1—€) 3. 2 - -
S |detB |||B|| |Vl L2(2?=101)'H1(211=101)'(1_€)r (48)
|detB|?||B|72(1"9)[¢, i_ezgol <lv; i—e,z?:l‘ol
< |detB B+ 20-919,2__ oy (49)
1lu1=1 1

for any ¥; € HE=9(¥™, 0,) and € > 0.

Proof: The proof is basically identical to the one of Lemma (6.2.24).

282



The third semi-norm, |*|,_. vn . i.¢, behaves under affine transformations as follows.
1-€,);=, Oj,inf

Lemma (6.2.26)[272]: Let Z 0, € R? be a bounded Lipschitz series domain and let
2, O; be the affinely transformed series domain defined by (30). Then there hold the

transformation properties

|det BI2[IBII"20-919,%__

< |det B|?||[B~*||"*2(-9|g,|?

+ |detB| 1nf||\71 + Ci”f)zﬁ:\ol < |Vi|i—e,2?=101,inf

+ |det B| 1nf||Vl + ¢;|?

1-eY™, 0, oYL, 0,

Forany ¥; € H'™¢(¥™, 0,) and € > 0.

Proof: This result is immediate from the representation of the semi-norm given in Lemma
(6.2.19) and the transformation properties of the |-|;_.-semi-norm by Lemma (6.2.25) and

of the L?-norm.

Theorem (6.2.27)[272]: Let Z 0, c R?be a bounded, connected Lipschitz series domain
and let (31X, 0;),be the affinely transformed series domain defined by (30). Then there

holds the following relations.

. 2
@ ili_egn o,

n 2
< |detB|||B—1||n+2<1-€>||B||2<1-€)K(1—, (Z oi>,> ( 3

i=1

CPF,I(1 — € Z?—1 0 ) | |2
€ (1 —_ E) Vl LZ(Z?=1Oi)'H1(Z?=1Oi)'l_e

for any v; € HI7¢(3 L, 0;) and € > 0 with K(1 — ¢, Z 0,) from Proposition (6.2.17) and
Cpri(1 — € X, O,) from Proposition (6.2.22).

(ii) |Vl’|i2(0i).H1(0i).1_€

—\ 2

n

< ldet B [BI"2(-9 BP0~ 1 - > 0, |1

1=1

n
+Cppss| 1 — € Z 0, lvi |i—€.(21"=1 0i)

1=1
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For any v; € H™ (3™, 0;)) and € > 0 with K(l el O Oi)) from Proposition (6.2.17)

and from Proposition (6.2.18)

_—

Proof: On a fixed series domain ), O, we obtain, by combining Lemmas (6.2.19) and

(6.2.23), the equivalence of semi-norms:

2

—
~ 12
ZOI = |Vi 1—e.Zlﬁ=TOIi.inf
1=1 1—6,2?;01
2
n
<K[|[1- E’Z 0, (3
1=1
W\ 2
CPF,I(1 -6, 01) 19,2 (50)
c(1—e Vill2(37 0) H1 (ST, 0,).1-¢
And
-2
n
~ 12 ~ 12
IV L2(SI 0 A (ST 0)a—e = K| 1~ E’Z O 1o 1-€3[L, Oyinf
1=1
-2 o\ 2
n n
<kl|l1l- E,Z 01 1+ CPF,SS 1-— E,Z 01 |‘71 i—e.Zlﬁ_Tol (51)
1=1 1=1

The first assertion of the theorem then follows by combining (50) with the transformation

properties of the semi-norms by Lemma (6.2.25):

~ [2 - ~91%;13
1907 _cxn o, < 1det BRIIB[[M20-919,3_ o

_— \ 2
n — N2
C 1—¢X™.0
< |detB|?||B~1||n+2(-aOK [ 1 — ¢, E O, <3+ pra( 210) )Kzi 2

€ (1 - E) LZ(Zlﬁ;Ol)'Hl(Zlﬁ;Ol)'l_e
1=1

2

n
< |det B|||B~1||+20-9)||B||2A-9K | 1 — e,z 0, (3

1=1

2
Cpri(1— €2, 0,) 19,12
e(1—¢ VilL2(sT0,) (ST, 0,)1-€

The second assertion of the theorem is proved by a combination of (51) with the

transformation properties by Lemma (6.2.25).
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The next two theorems (see [256]) study the other pairs of semi-norms for equivalence in
combination with affine maps (I-Il_e'ﬂz:loi|-|1_€'Z?=1Oi'inf ) and
(|'|L2(z;;1oi),Hl(z;;loi),1_e|'|1-e,zyzloi,inf )

Theorem (6.2.28)[272]: Let Y1, O; € R?be a bounded, connected Lipschitz series domain
and let ), O; be the affinely transformed series domain defined by (30). Then there holds

the following relations.

(D Vili—esn 0, < |Vi|1—e,z;1=1oii,inf Vv, EH'"¢(ZL,0:),Ve>0,

. 2
@) lv; |1_e,z;1=1 0y,inf

2
n
< | 1+ |detB|7IB|"*2(=OCppgs | 1 — E'Z 0, 19 i—e,Zn_l(?i
1=1 B
n
wwere(Y o) vexo
i=1

With CPF,SS(I -0, 01) being the number from Proposition (6.2.18)
Proof: Assertion (i) is a repetition of the first estimate in Lemma (6.2.19).

To show the second assertion we use Proposition (6.2.18) and Lemma (6.2.25) to deduce

that

—\ 2

n

. 2 _ EPEIN 2 o 12
cligllfR”Vi +cillggn o, = IdetB] Clirelﬂg”Vi +cillggn o, < IdetBlCppss| 1 - E,Z O | ili_egn o,

1=1
<1+ |detB|7Y|B||"*2A~9Cppss(1 — €, XL, 0))2.

The assertion then follows by the definition of the semi-norm |-|1_€'Z?=10i'inf

Theorem (6.2.29)[272]: Let Y, O, € R? be a bounded, connected Lipschitz series domain
and let Y-, O; be the affinely transformed series domain defined by (30). Then there holds

the following relations.

.. ~ 12
(- 1925y, o (51, 01
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—\ 2

n
< IB712=9 max{|det B|~!||B||*2(1=9), 1} k[ 1 - E,Z 0,

1=1

a 12
|Vi l—e,Zin=1 0j,inf
foranyv; € H17¢(3, 0;) and € > 0 with k(1 — €, X1, O;) from Proposition (6.2.17),

o 12
(iii). |Vi|1_e,zgl=101,inf

——\ 2

n

< max{|det Bl [B~I"*209, 1}K[ 1-¢, ) 0,

1=1

— 2
3 Crri(1—€ XM, 0) 19,2
T ea—e Vili2(sz, 0 (3, o)1

Forany v; € HI"¢(X™, 0)) and € > 0 with K(1 — €, X, O,) from Proposition (6.2.17) and

— 2
CPF'55(1 —exm, 01) from Proposition (6.2.22).
Proof: By Lemmas (6.2.25),(6.2.23) and (6.2.27) we obtain

1”B“n+2(1—e)|<}i

A~ 12 — 2
Viltz s, op i, 0p1-e = [det Bl L2(xm0) L (5 0) 1

-2
n
-1)12(1- o2
< |det B]||B~1||20-9x 1—e,20i [Vili_exr , 0,inf
i=1
-2 __\ -2
n_o n
< |det B|||B]|)2A-9x 1_5,201 |det B|2||B||+2(1-9)k 1—6,201 lv; i_ez_n_loi
1=1 1=1 )
_11 s 2
+ |detB |c1irel]1fR”Vi +cillggn o,
__\ -2
n
—1y12(1- —1|n+2(1- 5.2
< IB-1]120~9 max{|det B|[B~1[|*+2(1-9), 1} 1—5,201 1902 csn ouont
1=1

This is the first assertion. The second one follows analogously by the same lemmas:

2
|Vi l—e,Zin=1 0j,inf

—\ 2

n
< |det BJ2[|B-1||"+20-9 [ 1 — e,z o 19,12
1=1

1‘&2?:1 0,

2 o —
O.Zln=1 0,

+ |detB] inf |[9; + |
ci€R
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< |det Bl max{|det B|[|[B~*||"*2(1=9) 1} |¢;]?

1-eY, O,inf
2

n
< |det B| max{|det B|||B~*||"*2(1=9) 1}K | 1 — E,Z 0, (3

1=1

2
Cpri(1— €2, 0,) 19,12
e(1—¢€) VilL2(sT0,) H1(S, 0,)1-¢

n
< max{|detB|||B~1||"+2(1-9, 1}||B||21-9K | 1 — E,Z 0, (3

1=1

— \2
Cpri(1— €2, 0,) 19,12
e(l—e Villz(, 00) B (S, 05) 1€

We end this section with establishing uniform equivalence of the semi-norms
l'liesn 0, and |lizzn o) mi(zn, 0,)1-e for shape-regular series domains. Three of the
four remaining bounds for other combinations of semi-norms are uniform under further

restrictions on the diameter of the series domain [256].

Now , we consider a bounded, connected Lipschitz series domain Y ; O, € R"and maps of
n .0, onto the series domain Y, O;where the ratio pyn o, = Dyn_o,/dyn o, is
controlled. Here, Dz?zloidenotes the diameter of »*, O;and dZILlOi is the supremum of

the diameters of all balls contained in}>; O;. In the case of finite elements (or convex
polygons) boundedness of p is referred to as shape regularity of X, 0;. Also, when
defining dZILlOi with balls with respect to which Y, O;is star-shaped, then pZILlOiiS

referred to as chunkiness parameter.

Using the notation (2.4) there holds

sr,0 Dyno L Pxmo, Dy, _
Bl < 2 = 2B B < 2R = Em g BB
z?:101 ?:101 z:?=10i z:?=10i
< Pyr o; PI, 0, (52)
(See [259]) Furthermore, we conclude that
n_Q. Dnn 0. Dnﬁ\o n1T\0
|detB| — |Zl—1 1| < 21=1 l,ldetBl_l < £ — pl’ln . Yi=1 1. (53)
n dn n 21_101 Dn
X, 0] T dgry, spop o Dyn o

With this notation, the results of Theorems (6.2.27-6.2.29) imply the following.
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Corollary (6.2.30)[272]: Show that

-1 -1
(i) |det Bl|detB=| < [IBIIIB~*llpgz., P50, -

IBIIIBII=**2€ min{|det BIIIBII=",1}1Iv;1I?

.. 1= GZ" 10i 1—n
(”) |det B~ = pzn 10, pzrl ||Vl||~1 62"
IBIIB=|”"* max{ldet BB 1}i0:l> ST
- |detB_1|
Moreover if B is normal then,
n-1 1-n
(i) Pyr, 0Py 0, = L.
2 — —((1— S 112
(V) P3" 0,370, IVill%, ey 0, = 1det BIRIBI=A= w92 | ooy
Proof. (i) We can easily get that
|detBl|det B~| _ o, Dy, 1
IBIIBT = "X, “pyr o, P30,
Therefore
|detB||detB~*| < ||B||[|B~ 1Ilpzn opzn 0, (54)

(ii) Appling (54) in Lemma (6.2.24) .
Here suppose B is normal, applying (50) in Lemma (6.2.24) we can find that.
(iii) pzn 0. pzn 0, >1.

2 — 2| B[~ ((A=+) ||, |2
12,1 _csn o, = Idet BIZI|B] 191

(iv) pzn 0: pzn 0, ”Vl ~,1—€,Z?/=1\01

Theorem (6.2.31)[272]: Let Y, O; be the affine map of a bounded connected Lipschitz
series domaan 0, c R", cf(30).
(iii). The semi-norms |-[;_cyn o, and |-l iz;zn o) mi(zn,0,)1-e are uniformly

equivalent for a family of shape-regular series domain ., O;:

_\ 2

n —— \2
Crri(1—€ XM, 0) 2

Vil csp 0, < Prio K 1‘5’20‘ <3+ c(l-¢o Vilte (g, o (s, 01-e

1=1
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2
Viltz(sz, 00 (s, 00),1-c

n
<ot ese x| 1me 0 ) |1
1=1

—\ 2

n

2
+ CPF,SS 1—¢€ 2 01 |Vi |1_€v2in=10i

1=1
for any v; € H17¢(0,) and € > 0. Here, K(l —exnr, 01), K(l -0, 01) are the numbers

from Proposition (6.2.17) and Cppss(1—€ X%, 0,),Cpri(1—€X™,0,) are as in

Propositions (6.2.18), (6.2.22), respectively.

(iv). The semi-norms |-[;_cyn o, and |-|;_¢yn o,ine  are uniformly equivalent for a
family of uniformly bounded, shape-regular series domain >, O;:

|V|1—e,2?=101 < Hl—e,Z?:lOi,inf ’

2(1—¢€) n z
2 DZ” 10i n+2(1-e)
Vili_esn, oyt = 1+D2(1 5 P, 0Py0, CPRss| 1 _E’ZO‘ Vs o
21_10 1=1

for any v; € H'"¢(X%, 0;) and € > 0. Here, Cprss(1—€ X", 0,) is the number from

Proposition (6.2.18).

(iv). a) For a family of shape-regular series domain Y-, O;whose diameters are

bounded from below by a positive constant, the semi-norm
|'|L2(Z;l=1Oi)'Hl(Z;lzloi)'l_eis uniformly bounded by|-|1_€'2?=10i'inf

2

Vilia(z, o) mi(siz, 001

n+2(1—€) n—2(1-€)2(1—-€)) 2(1-¢€)
Smax{pzrlolpzn ,D n o DZl 10} in=10i1< 1

o

6’2 ) |V11 €Y, Opinf

1=

foranyv; € H1¢(3L, 0;) and € > 0.

b) For a family of uniformly bounded, shape-regular series domain Y}, O;, the semi-norm

|-l1—exn 0pine  is uniformly bounded by |- 2(yn o) ui(zn, 0;)1-c
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|Vl 1-eYL, Oyinf

n
n+2(1—€) n 2(1—€) 2(1-¢) 2(1 €) _
< max{pzr 0, PsmTop DZI;lO DZl o, }p D, K[ 1 E’Z 0, (3

1=1

CPF,I(1 — € Z?—l 0 ) |
e(l—o Villz(zp, o ma(sy, 0

foranyv; € H1¢(3, 0;) and € > 0.

Here, K(l —exr, 01), K(l -0, 01) are the parameters from Proposition (6.2.17), and

CPF,I(l -0, Ol)is the number from Proposition (6.2.22).

Proof: The assertions (i)—(iii) are a combination of Theorems (6.2.27-6.2.29), respectively,
with the bounds provided by (52), (53).

The uniform equivalence of the semi-norms |-[;_cyn o, andl-liz2;zn o) ni(zn, 0p)1-¢ for
shape-regular series domains is based on what one calls their scaling property (see [256]). It
means that both semi-norms for functions on a series domain ), O;are uniformly
equivalent to the respective semi-norm of the affinely transformed functions onto a fixed
series domain le_l\(?l, when one of the semi-norms is multiplied by an appropriate number
(it is a power of the diameter of }, ;). This property applies also to the norms
l-lL2(sn o) mr (g, 01— and [lii_ezn o, cf. Lemma (6.2.24). Scaling properties are
relevant for the error analysis of piecewise polynomial approximations. We formulate the

result as (see [256]) a corollary to Lemmas (6.2.24) and (6.2.25).

Corollary(6.2.32)[272]: the norms || z2(yn o) ui(z™, 0))1-c |'l~1-e3n 0; and semi-norms

n-2(1-¢),

|'|1-e,z}l=101|'|L2(Z?=101),H1(Z?=101),1—€ are scalable of order DZI;lOi

n-2(1-¢) — 2(1—-e)-n _—-2(1- e)
DZ{;loi pZ{{iloiDz{; o, Pyt o N7 “L2(2" 0,)H§(XL, 0;),1—€
2
< IVillzqzn, oy macsr, 01

2(1 e) 2(1- e)DZ(l €)—n n

< DZ" pzln_l(j Zn : ”V ”LZ(Zn O)HO(Z 0)1 €
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n—2(1—€) —n 2(1_6)—1'1 —2(1—6) . —n —n ~ 2

Dzilloi pZLlOiDZ?ﬂOi P i=10; min pzir;loipzinﬂoi'l ”Vi”~,1—e,2?’:179
2

< ,

< P 1z o

n-2(1—-e) 2(1-¢) 2(1 €)—n _n n n A2
< DZinzloi Pyr o, Dy 0, Py p, MaxX {pZi’;loipzizToi» 1} ||Vi||~,1_€,217=_1\0

Foranyv; € H'=¢(X™,0;) and €> 0, and
n—-2(1—¢€¢) -n 2(1—-e)-n _—-2(1—€) |~ {2
Dyrio PrtioDyre’ Poro Filiemo)mron-c
< Viltz s, op 1, 0p1-c

n-2(1-¢) 2(1-€)2(1—€)—n n
= DZi"=101 pZin=10 DZ" ; |V|L2(Z" 0;),H! (2 10),1—¢’

n- 2(1 €) —2n n2(1—-¢)-n_—n-2(1-€)~ 2
Dyn'o,  PiioDsy  Pyro iy < Vilioesr,o

n-2(1—-¢) n+2(1—-e)n2(1—€)—n _n

<Dy, P30, Dyro  PyrolWli_cyro

foranyv; € H1¢(3, 0;) and € > 0.
Proof: The bounds are a combination of Lemmas (6.2.24) and (6.2.25) with (52), (53).

Remark (6.2.33)[272]): The estimate by Theorem (6.2.31) (iii) a) breaks down when

Dyn o, = 0.Infact, for a family of scaled series domains 2, (0)p with Dyn (o, = hand

a non-constant function v; scaled to a family {(v;),} of functions on
-2(1—-

210D}, |(V1)h|Lz(Z1 OB H (SR 0D, )1 = ~ h"=2(1=9 py Corollary (6.2.39) whereas

|(Vi)h|1_€'z?=1(0i)h'inf > inf erll(Vi)n — Ci||0»2?=1(0i)h ~ h", Therefore, the dependence on

2(e—-1

DZ?=10i I|ke szl 10

) of the upper bound in Theorem (6.2.31) (iii) a) is optimal.
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