Chapter 5
Carleson Measures and Operator Theoretic Differences

In this Chapter we show the conjecture raised by Wu is false. Indeed, we show that if
2 <p < oo, then there exists g analytic in D such that the measure p,, on D defined by

dug,(z) = (1= |z|*)P g’ (2)|Pdxdy is not a Carleson measure for 95-1 but is a
classical Carleson measure. We obtain also some sufficient conditions for multipliers of the
spaces 95-1 . In particular, it is shown, on one hand, that T: 95-1 — HP is bounded if and
only if gEBMOA when 0 < p < 2, and, on the other hand, that this equivalence is very far
from being true , if p > 2. Those symbols g such that Ty:Z)lf,’_1 — H? is bounded (or

compact) when p < q are also characterized. Moreover, the best known sufficient L* -type

condition for a positive Borel measure y on D to be a p —Carleson measure for D;’_l, p> 2,

1s significantly relaxed, and the established result is shown to be sharp in a very strong sense .
Sec(5.1): Spaces of Dirichlet Type:

We denote by D the unit disc {z € c: |z| < 1} and by Hol (D)the space of all
analytic functions in D. Also,HP(0 < p < o) are the classical Hardy spaces of analytic
functions in D (see [182] and [186]).

If Eis a measurable subset of the unit circle T = dD, we write |E| for the Lebesgue

measure of E. If [ € T is an interval, the Carleson square S(I) is defined as

L I
S() = {relt:elt €l 1 —u <r< 1}.
21

Carleson [181] (see also [182]) proved that if 0 <p < oo andpis a positive Borel

measure in D then HP ¢ LP(dp) if and only if there exists a positive constant C such that
u(S(I)) < C|I|,for every interval I c T. (D
The measures p which satisfy this condition will be called classical Carleson measures.

If 0<p <owand a>—1, the weighted Bergman space A},  consists of those f €
Hol(ID) such that

1/p

Il | @+ D [ - 12D Ar@Draae) <o
D
The unweighted Bergman space Ag is simply denoted by AP . Here, dA(z) = %dxdy

denotes the normalized Lebesgue area measure in D. We refer to [183] and [191] for the

theory of these spaces.
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The space DL (0 <p < o,a > —1) consists of those f € Hol( D) such that f’ € AY .

Hence, if f is analytic in D,then f € DLif and only if

d
IFIIE % £1P + 1107, < oo
a a

If p < a+ 1then it is well known that Dg = Aﬁ_p (see [185]). It is trivial thatD? = H .
The spaces DY, are called Dirichlet spaces ifp > a + 1. In particular, the spaceD2is the
classical Dirichlet space.

A positive Borel measure pin D is said to be a Carleson measure for A?, (respectively, a
Carleson measure for DY) ) if Ab, ¢ LP (dp) (respectively, DY < LP (dp).

The Carleson measures forA?, are characterized in the following theorem.

Theorem (5.1.1)[176]:

Suppose that) <p <ocoand a > —1,and let pbe a positive Borel measure
on D.Then p is a Carleson measure for A% if and only if there exists a positive constant
C such that u(S(1)) < C|I|%*?, for every interval I c T.

Theorem (5.1.1) was obtained by Oleinik and Pavlov [195,196] (see also the works of
Stegenga [197] and Hastings [190] where the result is proved for certain values ofpand
«). Luecking [192,193] (see [183]) obtained another characterizazion of the Carleson
measures forAY which involves the p seudohyperbolic metric. Z. Wu [199] and Arcozzi,
Rochberg and Sawyer [177] obtained a characterization of the Carleson measures for the
spacesD!, for certain values of p,a .Inparticular, parts (c) and (d) of Theorem 1 of
[199] (see also Theorem 2.1 of [198]), yield the following result.

Theorem (5.1.2) [176]:

Suppose that 0 < p < 2 and let p be a positive Borel measure on D , then p is a
Carleson measure for D;’_l if and only if p is a classical Carleson measure.

Wu conjectured of [199]that the conclusion of Theorem (5.1.3) is also true for
2 < p < oo. In this section we shall see that this conjecture is not true. Indeed, we shall
prove the following result.

Theorem (5.1.3) [176]:

Suppose that2 < p < oo. Then there exists a function g € Hol(ID) such that the
measure f1,,, on D given by du,,(z) = (1 —|z|*)P"'g'(2)|PdA(Z) is not a Carleson

measure forl);s_1 but is a classical Carleson measure.
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Note that ifp is a Carleson measure for D;’_l then it is a classical Carleson measure

(see [199]). Theorem (5.1.3) shows that p being a classical Carleson measure is not

enough to deduce that pis a Carleson measure for D;’_l(Z < p < o). However, it is easy

to prove the following result.
Proposition (5.1.4) [176]:
Suppose that 2 < p < o and let p be a positive Borel measure on D.Ifthere exist

C > 0 and € > 0 such that
u(s(D) < cli|te, (2)

for all intervals I c T,then pis a Carleson measure for D;’_l .

Theorem (5.1.3) and Proposition (5.1.4) will be proved will be devoted to obtain
several results that will be needed in the proof of Theorem (5.1.3) and which may be of
independent interest. In particular, Theorem (5.1.5) and Theorem (5.1.6) will be used in
to obtain sufficient conditions for multipliers of the spaces D;’_l, 0<p<?2

As usual, throughout this section the letter C denotes a positive constant thatmay
change from one step to the next.

We start obtaining a condition on the Taylor coefficients of a function g € Hol(ID)

which implies that the measure p,, onD defined as in Theorem (5.1.3) is a classical

Carleson measure.

Theorem (5.1.5) [176]:

Let g be an analytic function in , g(2) = Xy-0a,z" (z € D).If0 < p < o0 and
P

i D lad | <o, ®)

then the measure p,, on D defined by dp,,(z) = (1—|z|*)P~tg'(2)|PdA(Z) is a
classical Carleson measure.

Here and all over the section, forn = 0,1,..., we let I(n)be the set of the integers k
such that 2" < k < 2™*1,

Theorem( 5.1.5) improves part (i) of Theorem 1 of [188] which asserts that (3)
implies that € D;’_l :
Proof of Theorem (5.1.5). Using Lemma 3.3 in [186], we see that it suffices to prove that

j (1—lal»)(A - |z|*)P
D

|1 —az|?

sup 19" (2)|PdA(2) < oo. (4)

aeD
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Now, using Theorem 1 of [194], we deduce that there is a constantC,which depends only

on p such that, for every a € D,

j (1 -lal»(A - [P
D

lg'(2)|PdA(2)

|1 —azl|?
1 had p 2T 1
= ijo 1 -lal®»@—r?)Prt (Z nlay| r"‘1> (jo mdt) lg’ (@) |Pdr
n=1

1 2 2yp-1 [ p
A —=lal®>)(@ —r?)? _
< ijo T lap2r? E nlag| 1| dr
n=

1 ® p
< ij (1 —r2)p-1 (Z nla| r”‘1> dr
0

n=1
. p
<c, (Z z—np) klay|
n=0 KEI(n)
. 14
<G Z lay] | =Ap <
n=0 \kEI(n)

Hence, we have proved (4). This finishes the proof.

Using Proposition 2.1 of [180] (see also Proposition A of [188]), we obtain that if
g € Hol(D) is given by a power series with Hadamard gaps, g(z) = X5, a 2™ (z € D),
with n,,; = An,for all k,for some A > 1. Then, for every p € (0, ),

g € D;’_l e YroqlaglP < oo

Our next theorem is an improvement of this result.
Theorem (5.1.6) [176]:

Suppose that 0 < p < oo and let g be an analytic function in D. Which is given by
a power series with Hadamard gaps, g(z) = Y5, a,z™ (z € D)  with ny,, = Any, for
all k (4> 1), then, the following conditions are equivalent:

(a) The measurey,, onD defined by dug, = (1 — |z|2)P~1|g'(z)|[PdA(z) is a classical

Carleson measure.
(b) g€Dp_; .

(©) Xp=qilaglP < ..
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Proof.

We already know that (b) < (c). Trivially, (a) implies that g, is a finite measure
and, hence,g € 95—1 . Thus, we have seen that (a) = (b). Consequently, it only remains to

prove that (¢) = (a). So take g € Hol(ID) which is given by a power series with
Hadamard gaps

[ee]

g(2) = Z a,z™ , with n;“ >A>1,forall k, (5
k
k=1

and suppose that }.;7°_;|a,|? < oo . Using the gap condition, we see that there are at most
Cy =log, 2+ 1 of the ny’s in the set I(n). Then there exists a constant C;, > 0 such
that

[ee] p [ee]
Zn=0(zkel(n)|ak|) < Cl,p Zk=1|ak|p-

Using Theorem (5.1.5), we deduce that p ,is a classical Carleson measure. Thus, we have
proved that (¢) = (a), as needed. This finishes the proof.
We need to introduce some notation to state our last result in this section.

If f € Hol(D),0<p<owand 0<r <1, weset,asusual,

1

M (r,f) = (% [ Vreenr dt)p.

Notice that
1 - l
g€ D;’_l e [A-r) M (r, g")dr < .

It is well known (see [202]) thatif f € Hol(D) is given by a power series with Hadamard
gaps and 0 < p < oo, then M, (7, f) = M, (r, f) . It follows that if g € Hol(ID) is given by a
power series with Hadamard gaps then

g€ D;’_l =3 fol(l —7)PIMP (1, g")dr < .
Our next theorem asserts that this result is sharp in a strong sense.
Theorem (5.1.7) [176]:

Suppose that 0 < p < oo and let ¢ be a positive and increasing function defined in

(0,1) such that

j (1 =7r)P~ 1P (r)dr < oo. (6)
0
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Then there exists a function g € 95-1 given by a power series with Hadamard gaps such
that
ME(r,g") = ¢(r),forallr € (0,1). @)

The proof of Theorem (5.1.7) is very similar to that of Theorem D of [186].
Proof of Theorem (5.1.7).Setr, =1 —27% k = 1,2,... . Since ¢ is increasing

L—rpigr Mar= S [ (1= rp-igr (d

| a-rpmir @ar ij (1= rP-1g® (r)dr
> (ers =) (L= 1) 9P (1)
k=1

XA
k=1
Hence,
> 2 () < oo, ()
k=1
Set

g(z) = dp(r)z + e* Z 27kp q>p(rk)z2k, z € D.
k=1

Then g is an analytic function in D which is given by a power series with Hadamard gaps.
Using Theorem (5.1.6) and (8), we deduce that g € 95-1 .
We have

MZ(r,g") = p2(r) + €8 Y ¢2(r)r2 "2 = ¢2(r) +e® Y p2(r)r? T,

0<r<1.

Since ¢ is increasing, we deduce that
Mi(r,g") = $?(r) = ¢*(r), 0<r<r, 9)
Now, using the elementary inequality (1 —n~1)" > e 2 (n > 2) and bearing in mind

that ¢ is increasing, we see that, forj = 1and r; <r <rj;,,

i \4.2)
M2(r,g') = e® Z d2(r)r? > e8p2(r;,)r?"” = e8p2(r(1 - 21)42
k=1
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> p2(r).
This together with (9) implies that M,(r,g") = ¢(r), for all r € (0,1), and finishes the
proof.
Proof of Proposition (5.1.4). Suppose p, i, C and ¢ are as in Proposition (5.1.4). Take

f € D)_;. Then it is easy to see that

M,(r,f') =0 (L) , asr — 1.

1-r

Then it follows easily that M, (7, f) = O ( log 1—;) ,as r — 1. Actually, Theorem1 of [189]

implies that
N
M,(r,f)=0 <( log:) ),as r—1,

For all § > % . Then it is clear that f € AY , for every a > —1. Consequently, we have

p

proved that D) ; c A}, forevery a > —1.In particular, D) ; c A% ..

p

_1+¢ and then it follows

Now, Theorem (5.1.1) implies that p is a Carleson measure for A
that pis also a Carleson measure for 95-1-
Proof of Theorem (5.1.3). Suppose that 2 < p < o.Take two positive numbers a and ¢

such that %<a <% and0<£<%—a and define

[ee]

f(z) = Z 1+£sz ,Zz€D.

1
k=0 kP

Using Theorem (5.1.6) we see that f € D;’_l. Also, it is easy to see that there exist
7 € (0,1) and € > 0 such that

1 1
S———¢

2 p
) ro<r<1L (10)

M, (7, f) ZC<logl_r

Sincef is given by a power series with Hadamard gaps, , we see that there exist two
absolute constants A > 0 and B > 0 such that for every r € (0,1) the set
E. = {t € [0,2n]:|f(re® )| > BMy(, f)} (11)

has Lebesgue measure greater than or equal to 4,
|E,| = A4, 0<r <1 (12)

Define
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d(r) = 0<r <1 (13)

1

FEN T

oo (2]
Theng is an increasing function defined in (0,1)and fol(l —7r)P71¢P (r)dr < o . Using
Theorem (5.1.7), we see that there exists a function g € D;’_l which is given by a power

series with Hadamard gaps and such that

My(r,g') = ¢(r),r € (0,1). (14)
Now, Theorem (5.1.6)implies that the measure g, is a classical Carleson measure.

Using Holder’s inequality, see [202] and (12), we deduce that there exists a positive

constant C;such that
P
i 14 i 2
lg'(re®)[" dt = |E, '™ ( j |g'<relf)|”dt)
Er Ey

> C,|E MY (r, g") = C,LAME (1,g") ,0<r<1.
Hence, setting C = C;A ,we have

|g’(reit)|p dt >CMJ(r,g"), 0<r<1. (15)

Er
Bearing in mind the definition of the sets E,. (0 < r < 1) and using (15),(10), (14) and

the factthat a < % — & ,we obtain
[ a-Eprtig@pir@rae
D
1
2c[ a-rr [ 1gGe) oo atar
To E,

1
> Cj (1—r)p1t Mf(r,f)j lg' (re®t)| dtar
To ET

> Cj A =7r)P MY (r, )MY (r,g")dr

1 ¢
ZCJ (l—r)p‘1<logl_r) PP (r)dr
To
- 1 dr
- C_[T 1 pa—§+1—p£
°(1-r17) ( log:)
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= o0,

Since € DP

p—1 » this shows thaty, ,, is not a Carleson measure for D;’_l and finishes the

proof.
A functiong € Hol(D) is a multiplier for the space DY if gD! ¢ D , that is ,if
fg € DY, forall f € DF. By the closed-graph theorem, g is a multiplier for D if and

only if there exists a constant C > 0 such that

Ifgll pp < Clifgll pp, forall f € Dg.

The space of all multipliers of the space DY will be denoted by m( D). Since D} contains
the constant functions, we have m(DE) ¢ D! . Wu obtained in Theorem 4.2 of [199] a
characterization of the multipliers of the spaces D! (a > 1,0 < p < ). In particular, he

proved the following result.

Theorem (5.1.8) [176]:
Suppose that0 < p < o and g is an analytic function in D.Then g € m( D;’_l) if and
only if g € H”and the measure HgpON D defined by
dpg, (2) = (1 - |z)P~t|g'(2)|PdA(z) is a Carleson measure for D;’_l . Theorem (5.1.8)
and Theorem (5.1.2) yield the following theorem (see [198]).
Theorem (5.1.9) [176]:

Suppose that 0 < p < 2 and g is an analytic function in D.Then g € m( D;’_l) if

and only if ge€H® and the measure on D defined by

Hgp
dpg, (2) = (1 - |zNP~1|g'(2)|PdA(z) is a classical Carleson measure.

Since D? = H? ,we have m(D?) = m(H?) = H®.We remark also that even though there
is no relation of inclusion between D;’_l and Dg_l (p # q), itis easy to see that

m (Dzz))—l) c m( Dg_1), if0<p<qg<?2 (16)

Indeed, if 0<p<g<2and € m( D;’_l) , then g € H”and then it follows that

sup,ep(1 —12z)|g’'(z)| = A < . Then, for every interval I c T, we have

(1 -1z)7tg'(2)|7dA(2) < AT7P (1= 1zD)Pg'(2)IPdA(2)
N0 s
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Since g, is a classical Carleson measure, it follows that pg , is also a classical Carleson
measure. This and the fact that g € H*yield that € m( Dg_l) . Using Theorem (5.1.9) and
our results , we can obtain sufficient conditions for multipliers of the spaces D;’_l
,0<p <2

Theorem (5.1.10)[176]:

Suppose that 0 <gq <2 and letg be an analytic function in D, g(z) =

Ym0 Gnz™,z € D, satisfying
a

lag| | <o 17
n=0 \ k€I(n)
(DIf0<g<1land g<p<2,theng€m(D;_,) .
(iHDIf0<g<p<2 and geHw,thengEm(D;’_l) .

Proof.

Notice thatif 0 < g < p then (18) implies that
P

Then, using Theorem (5.1.5) and Theorem (5.1.9) we deduce (ii).

Now, if 0 < g <1 then (18) implies }7_;|ai| < c and, hence, g € H*. Then (i)
follows from (ii).

Similarly, using Theorem (5.1.6), we obtain the following.
Theorem (5.1.11)[176]:
Suppose that 0 < g < 1 and g < p < 2.Let g be an analytic function in D which is

given by a power series with Hadamard gaps,
g(2) =X7_payz™ , z€ D with ng, = Any ,forallk (1 > 1),

With

e}

Z|ak|q <o .

k=1

Theng €m (D;’_l)

We will close the section studying the connection between the multipliers of the

spaces Dg_l and the spaces Q.
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When 0 < p < oo, an analytic function f in D belongs to the space Q,,if
supgen [ 1F I g0 aA@) < o
D

Where g denotes the Green function for the disc given by

1—az

g(z,a) = log , z,a€D, z+a .

a—z
The spaces @, are conformally invariant. They have their origin in [200] where it was
shown thatQ, = B (the Bloch space) and [178] where this result was extended by
showing that Q, = B for all p > 1. The space Q,coincides with BMOA-When 0 <p <1
,Qp is a proper subspace of BMOA and has many Interesting properties (see, [184],
[179], or the recent detailed monograph [201]).

There are various characterizations of @, spaces. The one that will be useful for us is
expressed in terms of p —Carleson measures. Given a positive Borel measure pon D, we
say that p is a p —Carleson measure if there exists a positive constant C such that

u(S(I)) < C|I|?, for every interval [ c T (18)

The special case p = 1yields the classical Carleson measures. The following
characterization of @, spaces was obtained by Aulaskari, Stegenga and Xiao [179].
Theorem (5.1.12) [176]:
Let 0 < p < o. Afunction f holomorphic in D is a member of @, if and only if the
measure pon D defined by du(z) = (1 — |z]?)P|f'(2)|2dA(z) is a p —Carleson measure.
Vinogradov [198] proved that, for 0 < s < 2, there are Blaschke products which
do not belong to the space D;_, . Hence,

H” ¢ Dy ;and Q¢ D5_; , 0<s<2.

However, we can prove the following result.
Theorem (5.1.13). (i) Upcp<1 @p SNo<s<z Ds-1-

(()If0<p <1land 0<s <2,then H” N Q, & m(D;_;).
Proof of (i). Take pand s with0 <p <1 and 0 <s < 2,and f € Q,.We have

j '@ A = |212)51dA)
D

s(2-p)-2

- ]D [Fr@Pa - 1z2:] 1= 12122 dAG).
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Applying Hélder’s inequality with the exponents % and zi—s , weobtain

jwwmvwmﬂw@
D

2-s
s(2-p)-2 2

jvwmvu—unmmgﬂlju—u|) dA@)| . 19)

Theorem(5.1.13) [176]:

Implies thatf If’(z)l2 (1 —|z|>)PdA(z) < .Also,% > —1 and then it follows that

Jo(1 = z|? ) dA(z) < oo. Consequently, we see that [[|f'(2)|* (1 — |z]*)°"'dA(2) <
o, thatis,f € D;_;.Thus we have proved that Uycp<q Q@p SNocs<; D5 . To see that the

inclusion is strict, let S be the atomic singular inner function defined by

z+1
-1

S(z) = exp( ) , z€D. 20)

Then Theorem 2.7 of [198] implies that S €ENys<; M(D3_;) SNys<2 D54 but Theorem
2.2 of [184] shows that S €Uy.p<; @, the following simple lemma will be used to prove
(i7).
Lemma (5.1.14) [176]:

If « > —1 then there exists a constant C > 0 (which depends only on «) such that

j(bmwwwswww
NG

for all intervals I c T.
The proof of the lemma is elementary and will be omitted.

Proof of (ii). Suppose that 0 <p <1and 0 < s < Zand take f € H* N Q,.Let] < T.be an

interval. Applying Hdélder’s inequality with the exponents 2/s and 22:, we obtain

jlﬂmmeWWW@
s

2-s

jlﬂmmeVM@H -2 dA@)| . @D
s s

<

Since f € @y, there is a constant C; such that
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j PR e <. @2)
S(1

|On the other hand, since % > —1 ,Lemma (5.1.14)implies that
s(2-p)-2 s(2-p)-2
(1 =1z 2= dA(z) < C|I| 2= ,
S

which, together with (22) and (23), gives that there is a constant C, such that

j IF @)1 (1 = 1212 1dA) < G,
s

Thus, the measure ps is a classical Carleson measure. Since f € H®,using Theorem
(5.1.9) we deduce that € m( D;_,) . Hence, we have proved that Q, N H* € m(D;_;) . As
noticed above, if S is the atomic singular inner function defined by (21) then S belongs to
m(D;_;) butnotto @, N H”. Hence, the inclusion is strict.

Sec(5.2):Hardy and Dirichlet-type spaces:

Let H (DD)denote the algebra of all analytic functions in the unit disc D =
{z:|z| < 1} of the complex plane C. Let T be the boundary of D.The Carleson square
associated with an interval I ¢ T is the set S(I) = {re‘t:e®* € 1,1 —|I| <r < 1}, where
|E'|denotes the normalized Lebesgue measure of the set E c T. For our purposes it is also
convenient to define for each a € D\{0} the interval I, = {e?: |arg (ae~®| < n(1 — lal),
and denote S(a) = S(I,) . For 0 < p < oo, the Hardy space HP consists of the functions
f € H(D) for which

1w = lim My, ) < o0,

where

1/p

2
1 :
Mp(r,f) = E.j |f(re‘9)|p dé ,0<p<oo,
0

and

My (7, f) = max |f(rei9)| .

0<6<2m

For the theory of the Hardy spaces, see [211,213].
For 0 <p < ©wand —1 < a < oo, the Dirichlet space D! consists of all f € H (D)

such that
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1A, = [1F7 Gl (- lePyase) < o
D

WheredA(z) = dxdy

is the normalized Lebesgue area measure on D . The purpose of this
study is to underline operator theoretic differences between the closely related spaces
D;’_land HP. Before going to that, it is appropriate to recall inclusion relations between

these spaces. The classical Littlewood -Paley formula impliesD? = H? . Moreover, it is

well known [52,219] that

DY L GHP ,0<p<2, (23)
and
HP €D} | ,2<p<oo. (24)

It is also worth mentioning that there are no inclusion relations between 95-1 and Dg_l

when p # q[216]. A natural way to illustrate differences between two given spaces is to
consider classical operators acting on them. For example, if 0 < p < 2, then the behavior

of the composition operator C,(f) = f o greveal that 95—1 is in a sense a much smaller

space than HP . Namely, it follows from Littlewood’s subordination theorem that

Cy: HP — HP is bounded for each 0 <p < o and all analytic self-maps ¢ of D, but in
contrast to this, there are symbols ¢ which induce unbounded operators qu:l)g_1 -
D;’_l when 0 <p < 2 [211]. As in the case of Hardy spaces, any composition operator
Cy: D;’_l - D;’_l is bounded when 2 < p < oo,

There are operators which do not distinguish between D;’_l and HP . For agiven

g € H (D), the generalized Hilbert operator H, is defined by

1

#,(N@ = [ F©Og @ @5)

0
for any f € H (D) such that follf(t)ldt <o .If1<p<o then f]—[y:l);f_1 - 95-1 is
bounded (compact) if and only if H,:HP — D;’_l is bounded (compact) by [213].
Moreover, the same condition, depending on g and p, describes the boundedness

(compactness) of the operators f]—[g:D;’_l — HP and H,:HP - HP when 1 <p < 2. As
o : PN
far as we know, the problem of characterizing the symbolsgfor which H;:D,_, - HP

and Hgy: HP — HP are bounded when 2 < p < o remains unsolved.
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We shall next study operator theoretic differences between D;’_landH” by

considering the integral operator
(NG = [ [Og@dg,  zep (26)
0

The bilinear operator (f,g) — [ fg' was introduced by Calderén in harmonic analysis in
the 60’s[208].After his research on commutators of singular integral operators, this
bilinear form and its different variations, usually called “paraproducts”, have been
extensively studied and they have become a funda-mental tool in harmonic analysis.
Pommerenke was probably one of the first complex function theorists to consider the
operator T, . He used it in late 70’s to study the space BMOA, which consists of the
functions in the Hardy space H'that have bounded mean oscillation on the
boundary T [221].The space BMOA can be equipped with several different equivalent
norms[213],here we shall use the one given by

Js@)9' @12 (1~ 121*)dA(2)
1—|al

lgllzmoa = sup +1g(0)|%.
a€eD

Two decades later, in late 90’s, the pioneering works by Aleman and Siskakis [205,206]
lead to an abundant research activity on the operator T,. In particular, the analytic
symbols g such that T;: H? - HY is bounded were characterized by Aleman, Cima and
Siskakis [203,204]. Their result in the case p = q says that T;: H? — HP is bounded if and
only if g € BMOA. Our first result shows that whenever 0 < p < 2, the domain space
HP can be replaced by D;’_l.
Theorem (5.2.1)[203]:

Let0 <p <2 and g € H (D). Then the following are equivalent:
(i)Tg:D;;_l — HP is bounded;
(ii)Ty: HP - HP is bounded;
(iii)g € BMOA

The implication (ii) = (i) is a direct consequence of (23), so our contribution
here consists of showing (i) = (iii). The proof of the implication (ii) = (iii) in[204,205]
relies on several powerful properties of BMOA and H? such as the conformal invariance

of BMOA. Our proof is based on a circle of ideas developed in [220] and does not rely on

these properties. Instead, the Fefferman-Stein formula [223], which states that
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1A = [ S2@1agt+17 )1 27
T

plays an important role in the reasoning. Here, |d|{ denotes the arclength measure on T,
and Sy denotes the usual square function, also called the Lusin area function,
1/2
5@= [Ir@ran| cer,
I'6(C)

wherel,;({) denotes a nontangential approach region (a Stolz angle) with vertex at {and
of aperture g. We also show that the statement in Theorem (5.2.1)drastically fails for
p > 2.In order to give the precise statement, we need to fix the notation. The disc algebra
A is the space of all analytic functions in D that admit a continuous extension to the
closed unit discD. For 0 < a < 1, the Lipschitz space A(a) consists of the functions
g € H (D), having a non-tangential limit g(e‘®) almost everywhere on T, such that

up |9(ei®+9) — g(ei®)] e
0€[0,2m],0<t<1 te )

The “little oh” counterpart of this space is denoted by A(a). The following chain of strict
inclusions is known:

Ma)GA(@) S ASH® CSBMOASB, 0O0<a<1.

Here, as usual, Bstands for the Bloch space which consists of the functions f € # (D)

such that ||fllg = sup ,eplf'(2)[(1 = 12|*) + [(f(0)| < 0
Theorem (5.2.2) [203]:

Let2 <p < cand g € H(D).
(D) IfTy: D;’_l — HP isbounded, then g € BMOA.

(ii) There exists g € A and f € D;’_lsuch that T, (f) & HP.

Part(ii) shows that D;’_l is in a sense a much larger space than H? When p > 2, since we
may choose the inducing symbol gto be as smooth as admitting a continuous extension to

the boundary, but still a suitably chosen f € D;’_l establishes T, (f) € HP . In contrast to

this, when the inducing index of the domain space is strictly smaller than the one of the

target space, that is p < g,then T,does not distinguish between D;’_land HP.

Theorem (5.2.3) [203]:
Let0 <p < g < oand € H(D).
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(a) If % - é < 1, then the following are equivalent:
(i)Tg:D;;_l — H? is bounded;

(ii)Ty: HP —» HY is bounded;

(ii)g € /1(%—1).

q

(b) If % —% > 1,thenT,: HP —» H? is bounded if and only if g is constant .

Part (a) allows us to deduce a strengthened version of the classical result of Hardy

Littlewood which states that a primitive of each functionf € HP, 0 < p < 1, belongs
P
toH1-? .

Proposition (5.2.4) [203]:

Let p,p; and p, be positive numbers such that p < 1 <p, and %= pi + % Cf
1 2

fi € D;’ll_lfz € H(D) such that f= f;. f, wheref, € H(D) satisfies | f,(2)| =

14

0 (m) then f is the derivative of a function in H1-7 .

The statement in Proposition (5.2.4) with H? in place of D;’ll_l was proved by Aleman and
Cima[203]. The strict inclusions (23) and (24)show that their result is better when
p1 < 2, which is contrary to the case p; > 2. An important ingredient in the proofs of both

Theorems 1 and 3is the following result on a Hérmander-type maximal function

|d{|

- €D
27_[ rZ )

M@)(@) = sup |71| [lo@

I:zes(I)

defined for each 2m — periodic function ¢(e®) € L'(T) .
Theorem (5.2.5) [203]:

Let 0 <p<qg<oand 0 < a < o such that pa > 1. Let u be a positive Borel
measure on . Then there exists a positive constant C > 0 such that

||[M(f)%]a < Clifllzeery ,for all f e LP(T),

L9(w)

if and only if sup;ct H(S(;)) < ©

1P

Moreover,
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and a S(I
||[M(.)%] & sup [M(f)%]a = supu( (q)) .
£l o =1 LW IST ]

This result follows by the well-known works by Carleson[205,210], and hence the
P
measures u for which u(S(I)) < C|I|e are known as %—Carleson measures. For further

references, see either [212]or the proof of [220] for a similar result. Theorem (5.2.5) has
been used to characterize the so called q — Carleson measures for Hardy spaces. Recall
that ,for a given Banach space (or a complete metric space) Xof analytic functions in D, a
positive Borel measure pon D is called a g —Carleson measure forX if the identity
operator I;: X — L9(u) is bounded. Nowadays these measures are a standard tool in the
operator theory in spaces of analytic functions in D.Let us now turn back to the two
remaining cases that are not covered by Theorems (5.2.1) and (5.2.2).They are the ones
in which the operator T, acts from either H? or D;’_l to D;’_l . It is easy to see that, in
terms of the language of the previous paragraph, T;: HP — D;’_l is bounded if and only
if g q = 19" (2191 - |z|?)971dA(z) is a g —Carleson measure for H? . Therefore, in this
case the symbols g that induce bounded operators get characterized by [212,Theorem
9.5] ,when q = p ,and[18] if g < p. Analogously, it follows that TL,J:Z);:,’_1 - D;’_l is
bounded if and only if u, 4 is a ¢ —Carleson measure for D;’_l .

Unfortunately, as far as we know, the existing literature does not offer a characterization
of these measures, for the full range of parameter values, in terms of a condition

depending on p only. It is known that they coincide with g —Carleson measures for H?P

and can therefore be described by the condition

Supu(S(g)) <o 28)
IcT |1|5

Provided q > p[218, Theorem (5.2.1)(a)]. This statement remains valid also in the
diagonal case q = p, if p < 2,but fails for p > 2[217,222]. In more general terms, the
p —Carleson measures for D! are known excepting the case a =p—1 for p >
2[207,222]. This corresponds to the diagonal case g = p > 2 which interests us in
particular. It is known in this case that u being a 1 —Carleson measure is a necessary but

not a sufficient condition for u to be a p —Carleson measure for D;’_l [217], and that the

more restrictive condition
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n(s))
ICT 11| (log;;l)—P/Z

is a sufficient condition for I;: D;’_l — LP(u) to be bounded [215]. Our next result shows
that this best known sufficient condition can be relaxed by one logarithmic factor.
Theorem (5.2.6) [203]:

Let 2 < p < oo, and let i be a positive Borel measure on D.If

u(s)

fet |1] (log 5)_2%1

1|

then u isap —Carleson measure for D;’_l :

We shall see in Proposition (5.2.15) that the statement in Theorem (5.2.6) is sharp in a
very strong sense. The remaining part of the section is organized as follows. We state and
prove some preliminary results. Theorems (5.2.1) and (5.2.3) and their expected

analogues for compact operators as well as Proposition (5.2.4) are proved , we shall deal

p

with the growth of integral means of functions f €D,_, ,

p > 2, and we shall prove
Theorem (5.2.2).

Before proceeding further, a word about notation to be used. We shall write ||T|| xy, for

the norm of an operator T: X — Y, and if no confusion arises with regards to X and Y, we
shall simply write ||T||. Moreover, for two real-valued functions E;, E, we writeE; = E,

or E; S E,, if there exists a positive constantk, independent of the argument, such that
%El < E, < kE, orE; < kE,, respectively.

We begin with a straightforward but useful estimate that will be used in proofs of
Theorems 5.2.1 and 52.3.
Lemma (5.2.7) [203]:

Let0 < q,p < wand g € H(D) .If TL,J:Z);:,’_1 — HY is bounded, then

My(r,g) S —F=—=, 0<r<1. (29)

Proof:

The functions
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14y
1—]al®\ »
Fapy(2) = 1—az 0<y<o aeb,

Satiafy
|Fa'p'y(z)| =1 |, z € S(a) (30)
and a calculation shows that

”Fa,p,y(z)”%_l =1—|al , a€D

Since Tg:D;’_1—>H‘7 is bounded by the assumption, the well known

1+r

relationsM, (7, f) S M, (— f) (1-7)a and M,(r,f) < (1+T f) (1-7r)"1, valid
forall g € H (D) (see[9]), yield

M, (<34, (T, (P @) )

19" (@) = |[(Ty(Fopy (@) (@)] 3

(1—lalys
< (3+|a| (Ty (Fapy(z))) (T (Fapy)”Hq
(1 lal)™*s - lah™
Wil ool Wilg
P} 1 ~ 1 1 )
(1 —lap)*"a (1= lap) "7

and the assertion follows . We next recall some suitable reformulations of Lipschitz
spaces A(a) [212].

Lemma (5.2.8) [203]:

Let0 < a < 1and g € H (D). Then the following are equivalent:

(Dg € A(a);
1
(iD)My(r,g") = <(1 = a) , r-1" ;

(iii) The measure duy(2) = |g'(2)|*(1 — |z|*)dA(2) satisfies the condition

u(s)

Su
e STTECES

We shall also need the following result[218, Theorem (5.2.1) (i)].
Theorem (5.2.9) [203]:
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Let 0<p<gq <o andpu be a positive Borel measure onD.Then p is a

q —Carleson measure for 95-1 ifand only if u is a 5 —Carleson measure. Moreover,

||1d(Dp Lq(ﬂ))”q _ supu(S(i))
w 1<t 1P

Proof of Theorem (5.2.1):
It is known that T,:HP — HP is bounded if and only ifg € BMOA[204], and

therefore (ii) and (iii) are equivalent. Moreover, since D;’_l C HPfor 0 <p < 2, (ii)
implies (). To complete the proof we shall show that g € BMOA, whenever Tg: 95-1 -

HP is bounded. To see this, note first thatllgllz = ||T,|| by Lemma 6, and thus

(Dp—_1HP)
g € BLetnow 1 < a, < oosuch that /a = p/2 <1 , and let a’ and B’ be the conjugate
indices of @ and B, respectively. Assume for a moment that is g’ continuous on D. Then
(30), Fubini’s theorem and Hélder’s inequality yield

1 1
atw

[lv@ra-tmam=[{ [ 190k, @l ue ] 1

S(a) T \S(@)nT'g()

B
<| j j 9’ DP|E.y, (D dAC) | 142 |
T \I'¢({)

o 1/61
|/j [ORYS Idcl\l

T \I'g()NS(a)

p 1
=II(Tg(Fa,p,y)II,’f,pIISg(XS(a)IIjg(T) ,a€D  (31)

where

S, (@) = j 0DIPlg'DI2dAG) , (€T,
I's(3)

ﬁ') =B o4 , and hence by duality

ar a—p

for any bounded function ¢ in D.Now (
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||S (XS(a)” ,3 = sup
La' (T)

j RO (XS(@)(@)ld8] (32)

where the supremum is taken on all hsuch that ||h|| pa-y < 1. To estimate the right
-5 (M

hand side, we shall write I(z)for the arc{{ € T: z € I;({)} with |I(z)| =1 — |z|. Then

Fubini’s theorem, H6lder’s inequality and Theorem (5.2.5) yield

[ros@@lais 1) [ le@raae )
T T S(a)nT'($)

X

j 9’ @A ~ |21?) Hz j R@1d2) |dA)
S(a) 1(2)

< j 19’ @I2(L — |21 MIRI(2) dA(2)
S(a)

Z_:
< j 19’ DI2(1 — |212) dA(2)
S(a)

-5

) 14 @2 - 2P
. j MInl@) 1g' ()12 = |212) dA(z)
D

al

B
< j 19’ DI2(1 — |212) dA(2)
S(a)

[XI

2(1 - |zI?)dA
(Sblé% Jsanlg' @17 (1= 121%) (Z)> Al

, (33)

&)

Since any dilated function g, (z) = g(rz), 0 < r < 1, is analytic in D (O,%), we deduce by

1—1bl

replacing g by g, in (30)-(33) that

1
B!

[19:@Pa - 220 = T Gl | [ 19710 - 12 dae)

S(a) S(a)

.| sup

fs(b)lglr(z)lz (1 - |Z|2)dA(Z) i(l_g_:)
beD 1—|b]| (34)
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We claim that there exists y > 0 and a constant C = C(p,y) > 0 such that

p

sup ||(Ty, Fap)l,» < ClITy | (1—lal), aeD (35)
o<r<i

(Dh_,HP)

the proof of which is postponed for a moment. Now this combined with (34)and Fatou’s
lemma yield

Js@)9' @12 (1 = 121*)dA(2)
sup

a€eb 1—|al

2
S ||T‘g||(Dg_1, HP) '’

and so g € BMOA.

It remains to prove (35).To see this fix y > p. Recall that

2

1T ol = [ ] 7219 G2P|Eepy I 2a) ) 1231,

D \Ts({)

If |a| <, then

2

(T, Fap)II7 5(1—|al)y+1j j r21g' (r2)1?|Fopy D dA() | 12|

D \Is(d)
=1 =1aD)"*'lgr — g} < (1 = laDllg = g(O)I}»

= (1= laD[|T, |7, = @ = laD|| T

(D) HP)

Let now % <lal < ﬁ .Then|1 — arz| < 2|1 — az|forall z € D, and hence
1Ty, oo lp = Mo, Fapy D)ol < N T Fapi)IIs

<N pp Vel = Tl (1= laD

In the remaining case ﬁ <|a] <1 wehaver <2 — é < |a].Now y > p, and hence

2
dA(z)
14 I
1Ty, EDo 3 MECr gD (1 = lal)?*? ] — o | |
b \r,ll1—az| »
14
1% 1 Y+1 1
S My, (r,9")(1 = lal) 2(y+1)
|1 - aZl L HP

= (Mo(lal, g") (1 = la))?(1 = lal) < ligll(1 — lal)
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< Imligp, ny @ = la

By combining these three separate cases, we deduce (35).

Next, we shall proveTheorem3by using similar ideas to those employed in the proof
of Theorem (5.2.1).
Proof of Theorem (5.2.3):

It is known that (ii) and (iii) are equivalent [204]. Further, Lemma (5.2.7)and
Lemma Bgive (i) = (iii) and (b). Moreover, if 0 < p < 2, then D;’_l C HP and hence, in
this case, (ii) implies (i). To complete the proof, we show that (iii) implies (i) when
2 <p < oo. Since q > 2, Lg(']I‘) canbeidentified with the dual of qu—z(']I‘) , that is

*

q_
,Lg(']T) = (Lq—z(’]I‘)) . Therefore, T: D;’_l — HY is bounded if and only if
! 2
[ro| [ 1r@rig@raae gl s ikl 12,
T ro(0) WM e

q_
forall h € La-2(T) and f € D;’_l . To see this, we use first Fubini’s theorem to obtain

j h) j (DP9 (DIPdA(z) | 1dgl| < j F@I12g )12 j OS] |dac)
T I's(3) D I(z)

< j F@IEMARD@)Ng (D2 — |21?) dA()
D

Next, we estimate the last integral upwards by Holder’s inequality with exponent

2q
p(q-2)’

x=14+p G — %) and it’s conjugatex =1+

2q

2p (2+p)q-2p
(j|f(2)l“”7lg’(z)lz(1 —1z|?) dA(Z)>
D

1

-(j|f(Z)|2(M(|h|)(z))1+v(t2722)|g’(z)|2(1 —1z]?) dA(Z)>1+v(q—2)
D

Since |f(2)|?(1 —|z|?)dA(2) is 2 ((% — %) + 1) —Carleson measure by Lemma (5.2.8),
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1

2p 2
(2+p-2) 1 1 14t 1 1
9/ _ I_z p(g-=2) _ I_- ;
2(p q) + 1 and (qzz) 2(p q) +1 by using Theorem (5.2.9) and

Theorem (5.2.5), we get

j h(@) j F(DI2lg' @) I2dA) |1dgl| S IFI2, RN o
-1 L4d-2(T)
T I's()

and thus T}: D;’_l — H? is bounded.

Proof of Proposition (5.2.4):

Let F, be such that F', = f, then F',(z) = O( ! 1) by the assumption, and

(1-|z])P2

hence F, € A (1 - pi)by Lemma (5.2.8). Now Theorem (5.2.3) implies that the integral
2
b
operator TFZ:Z);;ll_1 — H*-? is bounded, and since f; € D;’ll_l by the assumption, we

deduce Tg, (f,)(2) = fOZ F',(Qdl = fozf(()d( € Hl%’ ,which give the assertion
We finish this section by proving the expected versions of Theorems 5.2.1and 5.2.3for
compact operators. The next auxiliary result is standard, and therefore its proof is
omitted.
Lemma (5.2.10) [203]:
Let 0 <p,q < wand g € H(D). Then the following are equivalent:
() T;:Dy_; —» H? is compact;
(i) For any sequence of analytic functions {f;, };~; in Dthat converges uniformly to 0 on

compact subsets of D and satisfies suppeylfyllp» _ < ,wehave
L
Tlll_r)g” Tyfn”Hq = 0.

Obviously the statement in this lemma remains valid if D;’_l is replaced by H? . The

space VMOA consists of the functions in the Hardy space H'that have vanishing mean
oscillationon the boundary T. It is known that this space is the closure of polynomials in

BMOA and is characterized by the condition

Js(@!9' @12 (1 — 121)dA(2)
sup =0
a€el 1- |a|

Theorem (5.2.11) [203]:

Let0 < p < 2and g € H (D) . Then the following are equivalent:
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(i)Tg:D;;_l — HP is compact;
(ii)Ty: HP - HP is compact;
(iii)g e VMOA.
Proof:

It is known that (ii) and (iii) are equivalent by [204]. Moreover, by bearing in
mind Lemma (5.2.10) and (23), we see that (ii) implies (i). It remains to show that
g € VMOA, whenever Ty:Z);’_1 — HP is compact. Since the proof of this implication is

similar to its counterpart in the proof of Theorem (5.2.1),weonly show in detail those

steps that are significantly different. First observe, that g € BMOA by Theorem (5.2.1).

F, . . .
Let fop, = ﬁ , where y > 0 andF,,, are the functions defined in the proof of

Lemma (5.2.7).1t is clear that ”fa'P'VHD” =1and f;, = 0as |a|l - 17, uniformly in
p—1

compact subsets of D. Therefore ||(Tg(fa,p,y)||Hp — 0 as |a| » 17, by Lemma (5.2.10).

Now,let1 < a,8 < o such that g = g < 1. Arguing as in (31), we deduce

1 r 1
A Tanee jlg’(z)lz(l —1212)dA(2) S ||(TgFap )l lISg (XS (@)%, foralla € D.
S(a) Ler(m

Following the reasoning in the proof of Theorem (5.2.1) and bearing in mind that

g € BMOA, we obtain

B1
Jsialg' @10 = 121)dA0) _ I m (flg' @12 = 121da@) )
(1—la)?/P S 1Ty Uapidllyp (1- |a|)%%

which is equivalent to
Js@l9' @A = 121)dA(2)
(1 —lal)

S T Fap)l -

Therefore g € VMOA.

It is known that the “little oh” analogue of Lemma (5.2.8) is valid. This together
with appropriate modifications in the proofs of Lemma (5.2.7) and Theorem (5.2.3) give
the next result.

Theorem (5.2.12) [203]:

Let 0 <p<qg<o,and % — é <1g € H(D).the following are equivalent:
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(i)Tg:D;;_l — HY9 is compact;

(ii)Ty: HP —» H1 is compact;

(ii)g € A(%—i)

In this section we shall prove sharp estimates for the growth of M,(r, f) when
f € D;’_l and 2<p<oo. If fE€ D;’_l and 0 <p <2, then M,(r,f) is uniformly
bounded due to(23).
Lemma (5.2.13) [203]:

Let 2<p < oo and &:[0,1) = (1,) be a differentiable increasing unbounded

@' (1)

function such that ——=
@(r)

(1 —r) is decreasing. Then the following hold:

11

(OM,(r,f) =0 ((loglefr)2 p) ,as r—> 17 ,forall f € D;’_l ;

(ii) there exists f € 95-1 such that

M,(r,f) = (log1 ir)E (Z((:)) 1- r)) ,0<r<1 (36)

for any fixed 0 < g < oo.

Part(i) is essentially known, but we include a proof for the sake of completeness . Part
(ii), apart from showing that (i) is sharp in a very strong sense, will be used to
proveTheorem (5.2.2)(ii) and the sharpness of Theorem (5.2.6). It is also worth noticing
that each function

exp N2\
(DN,a(r) = <IOgN%> ,NEN= {1, 2,3, },O <a< oo, (37)

Satisfies both hypotheses on the auxiliary function @ in Lemma (5.2.13). Here, as usual,
log,, x = log(log,,_1 x), log;x =logx , exp,x =log(log,_;x) and log;x =e*. We
remark thatlogy 2 is a normalization factor and the key point is the extremely slow
growth of the iterated logarithm.

Proof of Lemma (5.2.13):

(i) First observe that[215, Theorem 1.4] yields

Dypr €A% L NfIIe 2 HIFID,, f € H(D) (38)
2 2
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Where Aig denotes the weighted Bergman space induced by the rapidly increasing
2

_p
Weightg =(1-|z) (logl_ll) * ,z € D, see[220]. Therefore,

1

712, = A%, > [ smf (s pvE sdds = M) [ svBsdas

r

1P

_ P € 2
AMp(r,f)(logl_r) ,0<r<1,

and (i) follows. (ii) Let @ be as in the lemma. Consider the lacunary series
1

() = Z (h(m)(;(::gm-ﬂ)p 42k Cre=1-2%keN (39)
k=1

Where h(r) = log®(r) is a positive function such that A'(r)(1 —r) is decreasing by the
assumptions. By [217,Proposition 3.2],

C h(ry) — h(rx-1)
ity =0 ()

S ICL NG L
=,Z=1 ey Sojdb(t)dt=(p(0) <1,

and thus f € 95-1

On the other hand,

S

2 _ N h(ri) —h(re-1)\° Lk+1
M3 (ry, f) = ;( @ (1) ) N

S

C h(r) —h(e-1)\" k41
22( @ (1) ) N

k=1
2N+1 N Tk ds P
N3 [ rwa-915
e\,
" log2yr

2— (W' (n) = h(r.— 1))
(@(rw))? kZl
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2 (WA = ry)PN.
(@(ry))P

Letr € E, 1) be given, and choose N € N such that ry < r < ry,,. Then [222] yields

M2Gr, f) = M3(r, f) = M3 (. ) % ———— (R () (1 — 1y ))PN
(@)

e

2 —— (W)~ )P log

(®()P

e @' (r) %
= (log—) (Mr) (1- r)) ,

which finishes the proof. With these preparations we are ready to prove Theorem 5.2.2.

Proof of Theorem (5.2.2) [203]:

() If Tg:l);’_1 — HP is bounded, thenT;: H? — H? is bounded because H? & 95-1 for

2 <p < oo by(1.2),and hence g € BMOA.

(ii) In this part we use ideas from the proof of [217, Theorem 2.1]. Take a function @ as in

Lemma (5.2.13) and let f € D;’_lbe the lacunary series associated with @ via (39). By

using [223], we find two constants A > 0 and B > 0 such that for every r € (0,1) the set
E,. = {t € [02r]:|f(re’)| > BM,(r, f) (40)

has the Lebesgue measure greater than or equal to A.Let now g be a lacunary series . By
using [223] we find a constantC; > 0 such that
jlg’(reit)lz dt > C,AM2(r, g') = C,M2(r,g"),0 <r < 1, (41)
Ey
whereC, = C; A. Bearing in mind the definition (40) of the sets E, and using (41), we

obtain
17l 2 IO = [Pl @R - 12P1dae)
D

1

> j r(1—7) j F(rei®) |9’ (rei®)? dedr

0

1

> B? jr(l —r)MZ(r, f) j|g’(reit)|2 dtdr

0 E,
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1

> B?%C, jr(l —1r)M2(r, )M2(r, g")dr
0

2

> B2C,C j r(1—r) (log T i r) (i;((:)) 1- r))p M2(r,g")dr (42)
0

&
Choose now (r) = (loglefr) ,where 0 < ¢ <2—1, 50 that

(log 1 i r) (2;((:)) 1- r))p = (log - i r)1‘§(1+£)

NN

Further, let

- 1
9() =;(j + 1) (logj + 1)@

j
72 1<a<o.

2
1-—(1+e
~(1+e)

Then, clearly, g € A. Moreover, since w(r) = (1 —r) (loglefr) is a so-

called regular weight [220], we deduce

1
jrz"“ o@Mdr=n"tw(l-n"1) , neN ,
0

By [220, Lemma 1.3 and (23)]. This together with (43) yield

1 2
1-=(1+¢)

7P, = [ ra-n(logr=) ™ M50 g0ar

1—r
0

. 1
g2/ 1—%(1+£)

- 22j+1_1 _ e
) Z ey § RO I
]= 0

o (j+1)<1—3(1+e)>
2 14

:;(H D2(logj + D)2e "

and finishes the proof.

The statement in Theorem (5.2.6)follows directly by (38) and [220, Theorem 2.1]

with w = %”. Next, weshow that this result is sharp in a very strong sense. For this

purpose, the following lemma is needed.

Lemma (5.2.14) [203]:
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Let 2 <p < oo, and let @:[0,1) - (0, ) be a differentiable increasing function

such that
b (r)
-0,r->17, (43)
e \2 !
(los:)
And
D) e p
m= ll)r{l_mfm(l—r)logm>1—§ (44)
Then
F e (1)
s)ds r
j 7S 5 , T€(0,1)
r (1—1y5) (log—)2 (loglefr)2
Proof:

By the Bernoulli-I'H6pital theorem,

1 ®(s)ds
frie 4
. (1-s)(log1=)? -
lim sup#ﬁ (m+3—1) € (0, ),
r-1" — 7 2

(togs%)2

and thus®, satisfies both (43) and (44) if ¢ <2 — 1. Further, each function @,(r) =
2

logn%’iz) ,n € N ,satisfies
@', (r) e
1 - 1 O ) 1 )
@n(r)( ) 81T " re

and hence satisfies all hypotheses of the next result.

Proposition (5.2.15) [203]:
Let 2 < p < o0, and let @:[0,1) = (1,)be a differentiable increasing unbounded

function such thatzl((:)) (1 —r) is decreasing and (43) and (44) are satisfied. Then there

exists a positive Borel measure ¢ on D such that

u(s)
sup D

IcT e\ 241
11 (log %) @1 =111y

< oo, (45)

But pis not a p —Carleson measure for Dg_l :

Proof:
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The radial measure

dy - 2@

(1= IzD) (log =5 )°

p

satisfies (45) by Lemma (5.2.14).Toseethat u is not a p —Carleson measure for D,,_, ,

consider the lacunary series associated with @ via(39).By Lemma (5.2.13), f € D;’_l

p
1712, = [ OO,

0 (1-17) (loglefr)2

r®'(r)

zZ z li =

NJ 0 dr Z tll,r{l— log®(t) =
0

which finishes the proof.
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